1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright © 2001-2007 Red Hat, Inc. 5 * 6 * Created by David Woodhouse <dwmw2@infradead.org> 7 * 8 * For licensing information, see the file 'LICENCE' in this directory. 9 * 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/crc32.h> 17 #include <linux/pagemap.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/compiler.h> 20 #include "nodelist.h" 21 22 /* 23 * Check the data CRC of the node. 24 * 25 * Returns: 0 if the data CRC is correct; 26 * 1 - if incorrect; 27 * error code if an error occurred. 28 */ 29 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) 30 { 31 struct jffs2_raw_node_ref *ref = tn->fn->raw; 32 int err = 0, pointed = 0; 33 struct jffs2_eraseblock *jeb; 34 unsigned char *buffer; 35 uint32_t crc, ofs, len; 36 size_t retlen; 37 38 BUG_ON(tn->csize == 0); 39 40 /* Calculate how many bytes were already checked */ 41 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode); 42 len = tn->csize; 43 44 if (jffs2_is_writebuffered(c)) { 45 int adj = ofs % c->wbuf_pagesize; 46 if (likely(adj)) 47 adj = c->wbuf_pagesize - adj; 48 49 if (adj >= tn->csize) { 50 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n", 51 ref_offset(ref), tn->csize, ofs); 52 goto adj_acc; 53 } 54 55 ofs += adj; 56 len -= adj; 57 } 58 59 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n", 60 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len); 61 62 #ifndef __ECOS 63 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(), 64 * adding and jffs2_flash_read_end() interface. */ 65 err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL); 66 if (!err && retlen < len) { 67 JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize); 68 mtd_unpoint(c->mtd, ofs, retlen); 69 } else if (err) { 70 if (err != -EOPNOTSUPP) 71 JFFS2_WARNING("MTD point failed: error code %d.\n", err); 72 } else 73 pointed = 1; /* succefully pointed to device */ 74 #endif 75 76 if (!pointed) { 77 buffer = kmalloc(len, GFP_KERNEL); 78 if (unlikely(!buffer)) 79 return -ENOMEM; 80 81 /* TODO: this is very frequent pattern, make it a separate 82 * routine */ 83 err = jffs2_flash_read(c, ofs, len, &retlen, buffer); 84 if (err) { 85 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err); 86 goto free_out; 87 } 88 89 if (retlen != len) { 90 JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len); 91 err = -EIO; 92 goto free_out; 93 } 94 } 95 96 /* Continue calculating CRC */ 97 crc = crc32(tn->partial_crc, buffer, len); 98 if(!pointed) 99 kfree(buffer); 100 #ifndef __ECOS 101 else 102 mtd_unpoint(c->mtd, ofs, len); 103 #endif 104 105 if (crc != tn->data_crc) { 106 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", 107 ref_offset(ref), tn->data_crc, crc); 108 return 1; 109 } 110 111 adj_acc: 112 jeb = &c->blocks[ref->flash_offset / c->sector_size]; 113 len = ref_totlen(c, jeb, ref); 114 /* If it should be REF_NORMAL, it'll get marked as such when 115 we build the fragtree, shortly. No need to worry about GC 116 moving it while it's marked REF_PRISTINE -- GC won't happen 117 till we've finished checking every inode anyway. */ 118 ref->flash_offset |= REF_PRISTINE; 119 /* 120 * Mark the node as having been checked and fix the 121 * accounting accordingly. 122 */ 123 spin_lock(&c->erase_completion_lock); 124 jeb->used_size += len; 125 jeb->unchecked_size -= len; 126 c->used_size += len; 127 c->unchecked_size -= len; 128 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 129 spin_unlock(&c->erase_completion_lock); 130 131 return 0; 132 133 free_out: 134 if(!pointed) 135 kfree(buffer); 136 #ifndef __ECOS 137 else 138 mtd_unpoint(c->mtd, ofs, len); 139 #endif 140 return err; 141 } 142 143 /* 144 * Helper function for jffs2_add_older_frag_to_fragtree(). 145 * 146 * Checks the node if we are in the checking stage. 147 */ 148 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) 149 { 150 int ret; 151 152 BUG_ON(ref_obsolete(tn->fn->raw)); 153 154 /* We only check the data CRC of unchecked nodes */ 155 if (ref_flags(tn->fn->raw) != REF_UNCHECKED) 156 return 0; 157 158 dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n", 159 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw)); 160 161 ret = check_node_data(c, tn); 162 if (unlikely(ret < 0)) { 163 JFFS2_ERROR("check_node_data() returned error: %d.\n", 164 ret); 165 } else if (unlikely(ret > 0)) { 166 dbg_readinode("CRC error, mark it obsolete.\n"); 167 jffs2_mark_node_obsolete(c, tn->fn->raw); 168 } 169 170 return ret; 171 } 172 173 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset) 174 { 175 struct rb_node *next; 176 struct jffs2_tmp_dnode_info *tn = NULL; 177 178 dbg_readinode("root %p, offset %d\n", tn_root, offset); 179 180 next = tn_root->rb_node; 181 182 while (next) { 183 tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb); 184 185 if (tn->fn->ofs < offset) 186 next = tn->rb.rb_right; 187 else if (tn->fn->ofs >= offset) 188 next = tn->rb.rb_left; 189 else 190 break; 191 } 192 193 return tn; 194 } 195 196 197 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) 198 { 199 jffs2_mark_node_obsolete(c, tn->fn->raw); 200 jffs2_free_full_dnode(tn->fn); 201 jffs2_free_tmp_dnode_info(tn); 202 } 203 /* 204 * This function is used when we read an inode. Data nodes arrive in 205 * arbitrary order -- they may be older or newer than the nodes which 206 * are already in the tree. Where overlaps occur, the older node can 207 * be discarded as long as the newer passes the CRC check. We don't 208 * bother to keep track of holes in this rbtree, and neither do we deal 209 * with frags -- we can have multiple entries starting at the same 210 * offset, and the one with the smallest length will come first in the 211 * ordering. 212 * 213 * Returns 0 if the node was handled (including marking it obsolete) 214 * < 0 an if error occurred 215 */ 216 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c, 217 struct jffs2_readinode_info *rii, 218 struct jffs2_tmp_dnode_info *tn) 219 { 220 uint32_t fn_end = tn->fn->ofs + tn->fn->size; 221 struct jffs2_tmp_dnode_info *this, *ptn; 222 223 dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw)); 224 225 /* If a node has zero dsize, we only have to keep if it if it might be the 226 node with highest version -- i.e. the one which will end up as f->metadata. 227 Note that such nodes won't be REF_UNCHECKED since there are no data to 228 check anyway. */ 229 if (!tn->fn->size) { 230 if (rii->mdata_tn) { 231 if (rii->mdata_tn->version < tn->version) { 232 /* We had a candidate mdata node already */ 233 dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version); 234 jffs2_kill_tn(c, rii->mdata_tn); 235 } else { 236 dbg_readinode("kill new mdata with ver %d (older than existing %d\n", 237 tn->version, rii->mdata_tn->version); 238 jffs2_kill_tn(c, tn); 239 return 0; 240 } 241 } 242 rii->mdata_tn = tn; 243 dbg_readinode("keep new mdata with ver %d\n", tn->version); 244 return 0; 245 } 246 247 /* Find the earliest node which _may_ be relevant to this one */ 248 this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs); 249 if (this) { 250 /* If the node is coincident with another at a lower address, 251 back up until the other node is found. It may be relevant */ 252 while (this->overlapped) { 253 ptn = tn_prev(this); 254 if (!ptn) { 255 /* 256 * We killed a node which set the overlapped 257 * flags during the scan. Fix it up. 258 */ 259 this->overlapped = 0; 260 break; 261 } 262 this = ptn; 263 } 264 dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole"); 265 } 266 267 while (this) { 268 if (this->fn->ofs > fn_end) 269 break; 270 dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n", 271 this->version, this->fn->ofs, this->fn->size); 272 273 if (this->version == tn->version) { 274 /* Version number collision means REF_PRISTINE GC. Accept either of them 275 as long as the CRC is correct. Check the one we have already... */ 276 if (!check_tn_node(c, this)) { 277 /* The one we already had was OK. Keep it and throw away the new one */ 278 dbg_readinode("Like old node. Throw away new\n"); 279 jffs2_kill_tn(c, tn); 280 return 0; 281 } else { 282 /* Who cares if the new one is good; keep it for now anyway. */ 283 dbg_readinode("Like new node. Throw away old\n"); 284 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root); 285 jffs2_kill_tn(c, this); 286 /* Same overlapping from in front and behind */ 287 return 0; 288 } 289 } 290 if (this->version < tn->version && 291 this->fn->ofs >= tn->fn->ofs && 292 this->fn->ofs + this->fn->size <= fn_end) { 293 /* New node entirely overlaps 'this' */ 294 if (check_tn_node(c, tn)) { 295 dbg_readinode("new node bad CRC\n"); 296 jffs2_kill_tn(c, tn); 297 return 0; 298 } 299 /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */ 300 while (this && this->fn->ofs + this->fn->size <= fn_end) { 301 struct jffs2_tmp_dnode_info *next = tn_next(this); 302 if (this->version < tn->version) { 303 tn_erase(this, &rii->tn_root); 304 dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n", 305 this->version, this->fn->ofs, 306 this->fn->ofs+this->fn->size); 307 jffs2_kill_tn(c, this); 308 } 309 this = next; 310 } 311 dbg_readinode("Done killing overlapped nodes\n"); 312 continue; 313 } 314 if (this->version > tn->version && 315 this->fn->ofs <= tn->fn->ofs && 316 this->fn->ofs+this->fn->size >= fn_end) { 317 /* New node entirely overlapped by 'this' */ 318 if (!check_tn_node(c, this)) { 319 dbg_readinode("Good CRC on old node. Kill new\n"); 320 jffs2_kill_tn(c, tn); 321 return 0; 322 } 323 /* ... but 'this' was bad. Replace it... */ 324 dbg_readinode("Bad CRC on old overlapping node. Kill it\n"); 325 tn_erase(this, &rii->tn_root); 326 jffs2_kill_tn(c, this); 327 break; 328 } 329 330 this = tn_next(this); 331 } 332 333 /* We neither completely obsoleted nor were completely 334 obsoleted by an earlier node. Insert into the tree */ 335 { 336 struct rb_node *parent; 337 struct rb_node **link = &rii->tn_root.rb_node; 338 struct jffs2_tmp_dnode_info *insert_point = NULL; 339 340 while (*link) { 341 parent = *link; 342 insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); 343 if (tn->fn->ofs > insert_point->fn->ofs) 344 link = &insert_point->rb.rb_right; 345 else if (tn->fn->ofs < insert_point->fn->ofs || 346 tn->fn->size < insert_point->fn->size) 347 link = &insert_point->rb.rb_left; 348 else 349 link = &insert_point->rb.rb_right; 350 } 351 rb_link_node(&tn->rb, &insert_point->rb, link); 352 rb_insert_color(&tn->rb, &rii->tn_root); 353 } 354 355 /* If there's anything behind that overlaps us, note it */ 356 this = tn_prev(tn); 357 if (this) { 358 while (1) { 359 if (this->fn->ofs + this->fn->size > tn->fn->ofs) { 360 dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n", 361 this, this->version, this->fn->ofs, 362 this->fn->ofs+this->fn->size); 363 tn->overlapped = 1; 364 break; 365 } 366 if (!this->overlapped) 367 break; 368 369 ptn = tn_prev(this); 370 if (!ptn) { 371 /* 372 * We killed a node which set the overlapped 373 * flags during the scan. Fix it up. 374 */ 375 this->overlapped = 0; 376 break; 377 } 378 this = ptn; 379 } 380 } 381 382 /* If the new node overlaps anything ahead, note it */ 383 this = tn_next(tn); 384 while (this && this->fn->ofs < fn_end) { 385 this->overlapped = 1; 386 dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n", 387 this->version, this->fn->ofs, 388 this->fn->ofs+this->fn->size); 389 this = tn_next(this); 390 } 391 return 0; 392 } 393 394 /* Trivial function to remove the last node in the tree. Which by definition 395 has no right-hand -- so can be removed just by making its only child (if 396 any) take its place under its parent. */ 397 static void eat_last(struct rb_root *root, struct rb_node *node) 398 { 399 struct rb_node *parent = rb_parent(node); 400 struct rb_node **link; 401 402 /* LAST! */ 403 BUG_ON(node->rb_right); 404 405 if (!parent) 406 link = &root->rb_node; 407 else if (node == parent->rb_left) 408 link = &parent->rb_left; 409 else 410 link = &parent->rb_right; 411 412 *link = node->rb_left; 413 /* Colour doesn't matter now. Only the parent pointer. */ 414 if (node->rb_left) 415 node->rb_left->rb_parent_color = node->rb_parent_color; 416 } 417 418 /* We put this in reverse order, so we can just use eat_last */ 419 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn) 420 { 421 struct rb_node **link = &ver_root->rb_node; 422 struct rb_node *parent = NULL; 423 struct jffs2_tmp_dnode_info *this_tn; 424 425 while (*link) { 426 parent = *link; 427 this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); 428 429 if (tn->version > this_tn->version) 430 link = &parent->rb_left; 431 else 432 link = &parent->rb_right; 433 } 434 dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root); 435 rb_link_node(&tn->rb, parent, link); 436 rb_insert_color(&tn->rb, ver_root); 437 } 438 439 /* Build final, normal fragtree from tn tree. It doesn't matter which order 440 we add nodes to the real fragtree, as long as they don't overlap. And 441 having thrown away the majority of overlapped nodes as we went, there 442 really shouldn't be many sets of nodes which do overlap. If we start at 443 the end, we can use the overlap markers -- we can just eat nodes which 444 aren't overlapped, and when we encounter nodes which _do_ overlap we 445 sort them all into a temporary tree in version order before replaying them. */ 446 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c, 447 struct jffs2_inode_info *f, 448 struct jffs2_readinode_info *rii) 449 { 450 struct jffs2_tmp_dnode_info *pen, *last, *this; 451 struct rb_root ver_root = RB_ROOT; 452 uint32_t high_ver = 0; 453 454 if (rii->mdata_tn) { 455 dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn); 456 high_ver = rii->mdata_tn->version; 457 rii->latest_ref = rii->mdata_tn->fn->raw; 458 } 459 #ifdef JFFS2_DBG_READINODE_MESSAGES 460 this = tn_last(&rii->tn_root); 461 while (this) { 462 dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs, 463 this->fn->ofs+this->fn->size, this->overlapped); 464 this = tn_prev(this); 465 } 466 #endif 467 pen = tn_last(&rii->tn_root); 468 while ((last = pen)) { 469 pen = tn_prev(last); 470 471 eat_last(&rii->tn_root, &last->rb); 472 ver_insert(&ver_root, last); 473 474 if (unlikely(last->overlapped)) { 475 if (pen) 476 continue; 477 /* 478 * We killed a node which set the overlapped 479 * flags during the scan. Fix it up. 480 */ 481 last->overlapped = 0; 482 } 483 484 /* Now we have a bunch of nodes in reverse version 485 order, in the tree at ver_root. Most of the time, 486 there'll actually be only one node in the 'tree', 487 in fact. */ 488 this = tn_last(&ver_root); 489 490 while (this) { 491 struct jffs2_tmp_dnode_info *vers_next; 492 int ret; 493 vers_next = tn_prev(this); 494 eat_last(&ver_root, &this->rb); 495 if (check_tn_node(c, this)) { 496 dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n", 497 this->version, this->fn->ofs, 498 this->fn->ofs+this->fn->size); 499 jffs2_kill_tn(c, this); 500 } else { 501 if (this->version > high_ver) { 502 /* Note that this is different from the other 503 highest_version, because this one is only 504 counting _valid_ nodes which could give the 505 latest inode metadata */ 506 high_ver = this->version; 507 rii->latest_ref = this->fn->raw; 508 } 509 dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n", 510 this, this->version, this->fn->ofs, 511 this->fn->ofs+this->fn->size, this->overlapped); 512 513 ret = jffs2_add_full_dnode_to_inode(c, f, this->fn); 514 if (ret) { 515 /* Free the nodes in vers_root; let the caller 516 deal with the rest */ 517 JFFS2_ERROR("Add node to tree failed %d\n", ret); 518 while (1) { 519 vers_next = tn_prev(this); 520 if (check_tn_node(c, this)) 521 jffs2_mark_node_obsolete(c, this->fn->raw); 522 jffs2_free_full_dnode(this->fn); 523 jffs2_free_tmp_dnode_info(this); 524 this = vers_next; 525 if (!this) 526 break; 527 eat_last(&ver_root, &vers_next->rb); 528 } 529 return ret; 530 } 531 jffs2_free_tmp_dnode_info(this); 532 } 533 this = vers_next; 534 } 535 } 536 return 0; 537 } 538 539 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list) 540 { 541 struct rb_node *this; 542 struct jffs2_tmp_dnode_info *tn; 543 544 this = list->rb_node; 545 546 /* Now at bottom of tree */ 547 while (this) { 548 if (this->rb_left) 549 this = this->rb_left; 550 else if (this->rb_right) 551 this = this->rb_right; 552 else { 553 tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb); 554 jffs2_free_full_dnode(tn->fn); 555 jffs2_free_tmp_dnode_info(tn); 556 557 this = rb_parent(this); 558 if (!this) 559 break; 560 561 if (this->rb_left == &tn->rb) 562 this->rb_left = NULL; 563 else if (this->rb_right == &tn->rb) 564 this->rb_right = NULL; 565 else BUG(); 566 } 567 } 568 *list = RB_ROOT; 569 } 570 571 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd) 572 { 573 struct jffs2_full_dirent *next; 574 575 while (fd) { 576 next = fd->next; 577 jffs2_free_full_dirent(fd); 578 fd = next; 579 } 580 } 581 582 /* Returns first valid node after 'ref'. May return 'ref' */ 583 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref) 584 { 585 while (ref && ref->next_in_ino) { 586 if (!ref_obsolete(ref)) 587 return ref; 588 dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref)); 589 ref = ref->next_in_ino; 590 } 591 return NULL; 592 } 593 594 /* 595 * Helper function for jffs2_get_inode_nodes(). 596 * It is called every time an directory entry node is found. 597 * 598 * Returns: 0 on success; 599 * negative error code on failure. 600 */ 601 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, 602 struct jffs2_raw_dirent *rd, size_t read, 603 struct jffs2_readinode_info *rii) 604 { 605 struct jffs2_full_dirent *fd; 606 uint32_t crc; 607 608 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ 609 BUG_ON(ref_obsolete(ref)); 610 611 crc = crc32(0, rd, sizeof(*rd) - 8); 612 if (unlikely(crc != je32_to_cpu(rd->node_crc))) { 613 JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n", 614 ref_offset(ref), je32_to_cpu(rd->node_crc), crc); 615 jffs2_mark_node_obsolete(c, ref); 616 return 0; 617 } 618 619 /* If we've never checked the CRCs on this node, check them now */ 620 if (ref_flags(ref) == REF_UNCHECKED) { 621 struct jffs2_eraseblock *jeb; 622 int len; 623 624 /* Sanity check */ 625 if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { 626 JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", 627 ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); 628 jffs2_mark_node_obsolete(c, ref); 629 return 0; 630 } 631 632 jeb = &c->blocks[ref->flash_offset / c->sector_size]; 633 len = ref_totlen(c, jeb, ref); 634 635 spin_lock(&c->erase_completion_lock); 636 jeb->used_size += len; 637 jeb->unchecked_size -= len; 638 c->used_size += len; 639 c->unchecked_size -= len; 640 ref->flash_offset = ref_offset(ref) | dirent_node_state(rd); 641 spin_unlock(&c->erase_completion_lock); 642 } 643 644 fd = jffs2_alloc_full_dirent(rd->nsize + 1); 645 if (unlikely(!fd)) 646 return -ENOMEM; 647 648 fd->raw = ref; 649 fd->version = je32_to_cpu(rd->version); 650 fd->ino = je32_to_cpu(rd->ino); 651 fd->type = rd->type; 652 653 if (fd->version > rii->highest_version) 654 rii->highest_version = fd->version; 655 656 /* Pick out the mctime of the latest dirent */ 657 if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) { 658 rii->mctime_ver = fd->version; 659 rii->latest_mctime = je32_to_cpu(rd->mctime); 660 } 661 662 /* 663 * Copy as much of the name as possible from the raw 664 * dirent we've already read from the flash. 665 */ 666 if (read > sizeof(*rd)) 667 memcpy(&fd->name[0], &rd->name[0], 668 min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); 669 670 /* Do we need to copy any more of the name directly from the flash? */ 671 if (rd->nsize + sizeof(*rd) > read) { 672 /* FIXME: point() */ 673 int err; 674 int already = read - sizeof(*rd); 675 676 err = jffs2_flash_read(c, (ref_offset(ref)) + read, 677 rd->nsize - already, &read, &fd->name[already]); 678 if (unlikely(read != rd->nsize - already) && likely(!err)) 679 return -EIO; 680 681 if (unlikely(err)) { 682 JFFS2_ERROR("read remainder of name: error %d\n", err); 683 jffs2_free_full_dirent(fd); 684 return -EIO; 685 } 686 } 687 688 fd->nhash = full_name_hash(fd->name, rd->nsize); 689 fd->next = NULL; 690 fd->name[rd->nsize] = '\0'; 691 692 /* 693 * Wheee. We now have a complete jffs2_full_dirent structure, with 694 * the name in it and everything. Link it into the list 695 */ 696 jffs2_add_fd_to_list(c, fd, &rii->fds); 697 698 return 0; 699 } 700 701 /* 702 * Helper function for jffs2_get_inode_nodes(). 703 * It is called every time an inode node is found. 704 * 705 * Returns: 0 on success (possibly after marking a bad node obsolete); 706 * negative error code on failure. 707 */ 708 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, 709 struct jffs2_raw_inode *rd, int rdlen, 710 struct jffs2_readinode_info *rii) 711 { 712 struct jffs2_tmp_dnode_info *tn; 713 uint32_t len, csize; 714 int ret = 0; 715 uint32_t crc; 716 717 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ 718 BUG_ON(ref_obsolete(ref)); 719 720 crc = crc32(0, rd, sizeof(*rd) - 8); 721 if (unlikely(crc != je32_to_cpu(rd->node_crc))) { 722 JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n", 723 ref_offset(ref), je32_to_cpu(rd->node_crc), crc); 724 jffs2_mark_node_obsolete(c, ref); 725 return 0; 726 } 727 728 tn = jffs2_alloc_tmp_dnode_info(); 729 if (!tn) { 730 JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn)); 731 return -ENOMEM; 732 } 733 734 tn->partial_crc = 0; 735 csize = je32_to_cpu(rd->csize); 736 737 /* If we've never checked the CRCs on this node, check them now */ 738 if (ref_flags(ref) == REF_UNCHECKED) { 739 740 /* Sanity checks */ 741 if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || 742 unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { 743 JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref)); 744 jffs2_dbg_dump_node(c, ref_offset(ref)); 745 jffs2_mark_node_obsolete(c, ref); 746 goto free_out; 747 } 748 749 if (jffs2_is_writebuffered(c) && csize != 0) { 750 /* At this point we are supposed to check the data CRC 751 * of our unchecked node. But thus far, we do not 752 * know whether the node is valid or obsolete. To 753 * figure this out, we need to walk all the nodes of 754 * the inode and build the inode fragtree. We don't 755 * want to spend time checking data of nodes which may 756 * later be found to be obsolete. So we put off the full 757 * data CRC checking until we have read all the inode 758 * nodes and have started building the fragtree. 759 * 760 * The fragtree is being built starting with nodes 761 * having the highest version number, so we'll be able 762 * to detect whether a node is valid (i.e., it is not 763 * overlapped by a node with higher version) or not. 764 * And we'll be able to check only those nodes, which 765 * are not obsolete. 766 * 767 * Of course, this optimization only makes sense in case 768 * of NAND flashes (or other flashes with 769 * !jffs2_can_mark_obsolete()), since on NOR flashes 770 * nodes are marked obsolete physically. 771 * 772 * Since NAND flashes (or other flashes with 773 * jffs2_is_writebuffered(c)) are anyway read by 774 * fractions of c->wbuf_pagesize, and we have just read 775 * the node header, it is likely that the starting part 776 * of the node data is also read when we read the 777 * header. So we don't mind to check the CRC of the 778 * starting part of the data of the node now, and check 779 * the second part later (in jffs2_check_node_data()). 780 * Of course, we will not need to re-read and re-check 781 * the NAND page which we have just read. This is why we 782 * read the whole NAND page at jffs2_get_inode_nodes(), 783 * while we needed only the node header. 784 */ 785 unsigned char *buf; 786 787 /* 'buf' will point to the start of data */ 788 buf = (unsigned char *)rd + sizeof(*rd); 789 /* len will be the read data length */ 790 len = min_t(uint32_t, rdlen - sizeof(*rd), csize); 791 tn->partial_crc = crc32(0, buf, len); 792 793 dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize); 794 795 /* If we actually calculated the whole data CRC 796 * and it is wrong, drop the node. */ 797 if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) { 798 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", 799 ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc)); 800 jffs2_mark_node_obsolete(c, ref); 801 goto free_out; 802 } 803 804 } else if (csize == 0) { 805 /* 806 * We checked the header CRC. If the node has no data, adjust 807 * the space accounting now. For other nodes this will be done 808 * later either when the node is marked obsolete or when its 809 * data is checked. 810 */ 811 struct jffs2_eraseblock *jeb; 812 813 dbg_readinode("the node has no data.\n"); 814 jeb = &c->blocks[ref->flash_offset / c->sector_size]; 815 len = ref_totlen(c, jeb, ref); 816 817 spin_lock(&c->erase_completion_lock); 818 jeb->used_size += len; 819 jeb->unchecked_size -= len; 820 c->used_size += len; 821 c->unchecked_size -= len; 822 ref->flash_offset = ref_offset(ref) | REF_NORMAL; 823 spin_unlock(&c->erase_completion_lock); 824 } 825 } 826 827 tn->fn = jffs2_alloc_full_dnode(); 828 if (!tn->fn) { 829 JFFS2_ERROR("alloc fn failed\n"); 830 ret = -ENOMEM; 831 goto free_out; 832 } 833 834 tn->version = je32_to_cpu(rd->version); 835 tn->fn->ofs = je32_to_cpu(rd->offset); 836 tn->data_crc = je32_to_cpu(rd->data_crc); 837 tn->csize = csize; 838 tn->fn->raw = ref; 839 tn->overlapped = 0; 840 841 if (tn->version > rii->highest_version) 842 rii->highest_version = tn->version; 843 844 /* There was a bug where we wrote hole nodes out with 845 csize/dsize swapped. Deal with it */ 846 if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize) 847 tn->fn->size = csize; 848 else // normal case... 849 tn->fn->size = je32_to_cpu(rd->dsize); 850 851 dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n", 852 ref_offset(ref), je32_to_cpu(rd->version), 853 je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize); 854 855 ret = jffs2_add_tn_to_tree(c, rii, tn); 856 857 if (ret) { 858 jffs2_free_full_dnode(tn->fn); 859 free_out: 860 jffs2_free_tmp_dnode_info(tn); 861 return ret; 862 } 863 #ifdef JFFS2_DBG_READINODE2_MESSAGES 864 dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version)); 865 tn = tn_first(&rii->tn_root); 866 while (tn) { 867 dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n", 868 tn, tn->version, tn->fn->ofs, 869 tn->fn->ofs+tn->fn->size, tn->overlapped); 870 tn = tn_next(tn); 871 } 872 #endif 873 return 0; 874 } 875 876 /* 877 * Helper function for jffs2_get_inode_nodes(). 878 * It is called every time an unknown node is found. 879 * 880 * Returns: 0 on success; 881 * negative error code on failure. 882 */ 883 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un) 884 { 885 /* We don't mark unknown nodes as REF_UNCHECKED */ 886 if (ref_flags(ref) == REF_UNCHECKED) { 887 JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n", 888 ref_offset(ref)); 889 JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n", 890 je16_to_cpu(un->magic), je16_to_cpu(un->nodetype), 891 je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc)); 892 jffs2_mark_node_obsolete(c, ref); 893 return 0; 894 } 895 896 un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); 897 898 switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { 899 900 case JFFS2_FEATURE_INCOMPAT: 901 JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n", 902 je16_to_cpu(un->nodetype), ref_offset(ref)); 903 /* EEP */ 904 BUG(); 905 break; 906 907 case JFFS2_FEATURE_ROCOMPAT: 908 JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n", 909 je16_to_cpu(un->nodetype), ref_offset(ref)); 910 BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); 911 break; 912 913 case JFFS2_FEATURE_RWCOMPAT_COPY: 914 JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", 915 je16_to_cpu(un->nodetype), ref_offset(ref)); 916 break; 917 918 case JFFS2_FEATURE_RWCOMPAT_DELETE: 919 JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", 920 je16_to_cpu(un->nodetype), ref_offset(ref)); 921 jffs2_mark_node_obsolete(c, ref); 922 return 0; 923 } 924 925 return 0; 926 } 927 928 /* 929 * Helper function for jffs2_get_inode_nodes(). 930 * The function detects whether more data should be read and reads it if yes. 931 * 932 * Returns: 0 on success; 933 * negative error code on failure. 934 */ 935 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, 936 int needed_len, int *rdlen, unsigned char *buf) 937 { 938 int err, to_read = needed_len - *rdlen; 939 size_t retlen; 940 uint32_t offs; 941 942 if (jffs2_is_writebuffered(c)) { 943 int rem = to_read % c->wbuf_pagesize; 944 945 if (rem) 946 to_read += c->wbuf_pagesize - rem; 947 } 948 949 /* We need to read more data */ 950 offs = ref_offset(ref) + *rdlen; 951 952 dbg_readinode("read more %d bytes\n", to_read); 953 954 err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen); 955 if (err) { 956 JFFS2_ERROR("can not read %d bytes from 0x%08x, " 957 "error code: %d.\n", to_read, offs, err); 958 return err; 959 } 960 961 if (retlen < to_read) { 962 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", 963 offs, retlen, to_read); 964 return -EIO; 965 } 966 967 *rdlen += to_read; 968 return 0; 969 } 970 971 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated 972 with this ino. Perform a preliminary ordering on data nodes, throwing away 973 those which are completely obsoleted by newer ones. The naïve approach we 974 use to take of just returning them _all_ in version order will cause us to 975 run out of memory in certain degenerate cases. */ 976 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 977 struct jffs2_readinode_info *rii) 978 { 979 struct jffs2_raw_node_ref *ref, *valid_ref; 980 unsigned char *buf = NULL; 981 union jffs2_node_union *node; 982 size_t retlen; 983 int len, err; 984 985 rii->mctime_ver = 0; 986 987 dbg_readinode("ino #%u\n", f->inocache->ino); 988 989 /* FIXME: in case of NOR and available ->point() this 990 * needs to be fixed. */ 991 len = sizeof(union jffs2_node_union) + c->wbuf_pagesize; 992 buf = kmalloc(len, GFP_KERNEL); 993 if (!buf) 994 return -ENOMEM; 995 996 spin_lock(&c->erase_completion_lock); 997 valid_ref = jffs2_first_valid_node(f->inocache->nodes); 998 if (!valid_ref && f->inocache->ino != 1) 999 JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino); 1000 while (valid_ref) { 1001 /* We can hold a pointer to a non-obsolete node without the spinlock, 1002 but _obsolete_ nodes may disappear at any time, if the block 1003 they're in gets erased. So if we mark 'ref' obsolete while we're 1004 not holding the lock, it can go away immediately. For that reason, 1005 we find the next valid node first, before processing 'ref'. 1006 */ 1007 ref = valid_ref; 1008 valid_ref = jffs2_first_valid_node(ref->next_in_ino); 1009 spin_unlock(&c->erase_completion_lock); 1010 1011 cond_resched(); 1012 1013 /* 1014 * At this point we don't know the type of the node we're going 1015 * to read, so we do not know the size of its header. In order 1016 * to minimize the amount of flash IO we assume the header is 1017 * of size = JFFS2_MIN_NODE_HEADER. 1018 */ 1019 len = JFFS2_MIN_NODE_HEADER; 1020 if (jffs2_is_writebuffered(c)) { 1021 int end, rem; 1022 1023 /* 1024 * We are about to read JFFS2_MIN_NODE_HEADER bytes, 1025 * but this flash has some minimal I/O unit. It is 1026 * possible that we'll need to read more soon, so read 1027 * up to the next min. I/O unit, in order not to 1028 * re-read the same min. I/O unit twice. 1029 */ 1030 end = ref_offset(ref) + len; 1031 rem = end % c->wbuf_pagesize; 1032 if (rem) 1033 end += c->wbuf_pagesize - rem; 1034 len = end - ref_offset(ref); 1035 } 1036 1037 dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref)); 1038 1039 /* FIXME: point() */ 1040 err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf); 1041 if (err) { 1042 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ref_offset(ref), err); 1043 goto free_out; 1044 } 1045 1046 if (retlen < len) { 1047 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len); 1048 err = -EIO; 1049 goto free_out; 1050 } 1051 1052 node = (union jffs2_node_union *)buf; 1053 1054 /* No need to mask in the valid bit; it shouldn't be invalid */ 1055 if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) { 1056 JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n", 1057 ref_offset(ref), je16_to_cpu(node->u.magic), 1058 je16_to_cpu(node->u.nodetype), 1059 je32_to_cpu(node->u.totlen), 1060 je32_to_cpu(node->u.hdr_crc)); 1061 jffs2_dbg_dump_node(c, ref_offset(ref)); 1062 jffs2_mark_node_obsolete(c, ref); 1063 goto cont; 1064 } 1065 if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) { 1066 /* Not a JFFS2 node, whinge and move on */ 1067 JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n", 1068 je16_to_cpu(node->u.magic), ref_offset(ref)); 1069 jffs2_mark_node_obsolete(c, ref); 1070 goto cont; 1071 } 1072 1073 switch (je16_to_cpu(node->u.nodetype)) { 1074 1075 case JFFS2_NODETYPE_DIRENT: 1076 1077 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) && 1078 len < sizeof(struct jffs2_raw_dirent)) { 1079 err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf); 1080 if (unlikely(err)) 1081 goto free_out; 1082 } 1083 1084 err = read_direntry(c, ref, &node->d, retlen, rii); 1085 if (unlikely(err)) 1086 goto free_out; 1087 1088 break; 1089 1090 case JFFS2_NODETYPE_INODE: 1091 1092 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) && 1093 len < sizeof(struct jffs2_raw_inode)) { 1094 err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf); 1095 if (unlikely(err)) 1096 goto free_out; 1097 } 1098 1099 err = read_dnode(c, ref, &node->i, len, rii); 1100 if (unlikely(err)) 1101 goto free_out; 1102 1103 break; 1104 1105 default: 1106 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) && 1107 len < sizeof(struct jffs2_unknown_node)) { 1108 err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf); 1109 if (unlikely(err)) 1110 goto free_out; 1111 } 1112 1113 err = read_unknown(c, ref, &node->u); 1114 if (unlikely(err)) 1115 goto free_out; 1116 1117 } 1118 cont: 1119 spin_lock(&c->erase_completion_lock); 1120 } 1121 1122 spin_unlock(&c->erase_completion_lock); 1123 kfree(buf); 1124 1125 f->highest_version = rii->highest_version; 1126 1127 dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n", 1128 f->inocache->ino, rii->highest_version, rii->latest_mctime, 1129 rii->mctime_ver); 1130 return 0; 1131 1132 free_out: 1133 jffs2_free_tmp_dnode_info_list(&rii->tn_root); 1134 jffs2_free_full_dirent_list(rii->fds); 1135 rii->fds = NULL; 1136 kfree(buf); 1137 return err; 1138 } 1139 1140 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, 1141 struct jffs2_inode_info *f, 1142 struct jffs2_raw_inode *latest_node) 1143 { 1144 struct jffs2_readinode_info rii; 1145 uint32_t crc, new_size; 1146 size_t retlen; 1147 int ret; 1148 1149 dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino, 1150 f->inocache->pino_nlink); 1151 1152 memset(&rii, 0, sizeof(rii)); 1153 1154 /* Grab all nodes relevant to this ino */ 1155 ret = jffs2_get_inode_nodes(c, f, &rii); 1156 1157 if (ret) { 1158 JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret); 1159 if (f->inocache->state == INO_STATE_READING) 1160 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); 1161 return ret; 1162 } 1163 1164 ret = jffs2_build_inode_fragtree(c, f, &rii); 1165 if (ret) { 1166 JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n", 1167 f->inocache->ino, ret); 1168 if (f->inocache->state == INO_STATE_READING) 1169 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); 1170 jffs2_free_tmp_dnode_info_list(&rii.tn_root); 1171 /* FIXME: We could at least crc-check them all */ 1172 if (rii.mdata_tn) { 1173 jffs2_free_full_dnode(rii.mdata_tn->fn); 1174 jffs2_free_tmp_dnode_info(rii.mdata_tn); 1175 rii.mdata_tn = NULL; 1176 } 1177 return ret; 1178 } 1179 1180 if (rii.mdata_tn) { 1181 if (rii.mdata_tn->fn->raw == rii.latest_ref) { 1182 f->metadata = rii.mdata_tn->fn; 1183 jffs2_free_tmp_dnode_info(rii.mdata_tn); 1184 } else { 1185 jffs2_kill_tn(c, rii.mdata_tn); 1186 } 1187 rii.mdata_tn = NULL; 1188 } 1189 1190 f->dents = rii.fds; 1191 1192 jffs2_dbg_fragtree_paranoia_check_nolock(f); 1193 1194 if (unlikely(!rii.latest_ref)) { 1195 /* No data nodes for this inode. */ 1196 if (f->inocache->ino != 1) { 1197 JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino); 1198 if (!rii.fds) { 1199 if (f->inocache->state == INO_STATE_READING) 1200 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); 1201 return -EIO; 1202 } 1203 JFFS2_NOTICE("but it has children so we fake some modes for it\n"); 1204 } 1205 latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); 1206 latest_node->version = cpu_to_je32(0); 1207 latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); 1208 latest_node->isize = cpu_to_je32(0); 1209 latest_node->gid = cpu_to_je16(0); 1210 latest_node->uid = cpu_to_je16(0); 1211 if (f->inocache->state == INO_STATE_READING) 1212 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); 1213 return 0; 1214 } 1215 1216 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node); 1217 if (ret || retlen != sizeof(*latest_node)) { 1218 JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n", 1219 ret, retlen, sizeof(*latest_node)); 1220 /* FIXME: If this fails, there seems to be a memory leak. Find it. */ 1221 mutex_unlock(&f->sem); 1222 jffs2_do_clear_inode(c, f); 1223 return ret?ret:-EIO; 1224 } 1225 1226 crc = crc32(0, latest_node, sizeof(*latest_node)-8); 1227 if (crc != je32_to_cpu(latest_node->node_crc)) { 1228 JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n", 1229 f->inocache->ino, ref_offset(rii.latest_ref)); 1230 mutex_unlock(&f->sem); 1231 jffs2_do_clear_inode(c, f); 1232 return -EIO; 1233 } 1234 1235 switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { 1236 case S_IFDIR: 1237 if (rii.mctime_ver > je32_to_cpu(latest_node->version)) { 1238 /* The times in the latest_node are actually older than 1239 mctime in the latest dirent. Cheat. */ 1240 latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime); 1241 } 1242 break; 1243 1244 1245 case S_IFREG: 1246 /* If it was a regular file, truncate it to the latest node's isize */ 1247 new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize)); 1248 if (new_size != je32_to_cpu(latest_node->isize)) { 1249 JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n", 1250 f->inocache->ino, je32_to_cpu(latest_node->isize), new_size); 1251 latest_node->isize = cpu_to_je32(new_size); 1252 } 1253 break; 1254 1255 case S_IFLNK: 1256 /* Hack to work around broken isize in old symlink code. 1257 Remove this when dwmw2 comes to his senses and stops 1258 symlinks from being an entirely gratuitous special 1259 case. */ 1260 if (!je32_to_cpu(latest_node->isize)) 1261 latest_node->isize = latest_node->dsize; 1262 1263 if (f->inocache->state != INO_STATE_CHECKING) { 1264 /* Symlink's inode data is the target path. Read it and 1265 * keep in RAM to facilitate quick follow symlink 1266 * operation. */ 1267 f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL); 1268 if (!f->target) { 1269 JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize)); 1270 mutex_unlock(&f->sem); 1271 jffs2_do_clear_inode(c, f); 1272 return -ENOMEM; 1273 } 1274 1275 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node), 1276 je32_to_cpu(latest_node->csize), &retlen, (char *)f->target); 1277 1278 if (ret || retlen != je32_to_cpu(latest_node->csize)) { 1279 if (retlen != je32_to_cpu(latest_node->csize)) 1280 ret = -EIO; 1281 kfree(f->target); 1282 f->target = NULL; 1283 mutex_unlock(&f->sem); 1284 jffs2_do_clear_inode(c, f); 1285 return ret; 1286 } 1287 1288 f->target[je32_to_cpu(latest_node->csize)] = '\0'; 1289 dbg_readinode("symlink's target '%s' cached\n", f->target); 1290 } 1291 1292 /* fall through... */ 1293 1294 case S_IFBLK: 1295 case S_IFCHR: 1296 /* Certain inode types should have only one data node, and it's 1297 kept as the metadata node */ 1298 if (f->metadata) { 1299 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n", 1300 f->inocache->ino, jemode_to_cpu(latest_node->mode)); 1301 mutex_unlock(&f->sem); 1302 jffs2_do_clear_inode(c, f); 1303 return -EIO; 1304 } 1305 if (!frag_first(&f->fragtree)) { 1306 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n", 1307 f->inocache->ino, jemode_to_cpu(latest_node->mode)); 1308 mutex_unlock(&f->sem); 1309 jffs2_do_clear_inode(c, f); 1310 return -EIO; 1311 } 1312 /* ASSERT: f->fraglist != NULL */ 1313 if (frag_next(frag_first(&f->fragtree))) { 1314 JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n", 1315 f->inocache->ino, jemode_to_cpu(latest_node->mode)); 1316 /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ 1317 mutex_unlock(&f->sem); 1318 jffs2_do_clear_inode(c, f); 1319 return -EIO; 1320 } 1321 /* OK. We're happy */ 1322 f->metadata = frag_first(&f->fragtree)->node; 1323 jffs2_free_node_frag(frag_first(&f->fragtree)); 1324 f->fragtree = RB_ROOT; 1325 break; 1326 } 1327 if (f->inocache->state == INO_STATE_READING) 1328 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); 1329 1330 return 0; 1331 } 1332 1333 /* Scan the list of all nodes present for this ino, build map of versions, etc. */ 1334 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 1335 uint32_t ino, struct jffs2_raw_inode *latest_node) 1336 { 1337 dbg_readinode("read inode #%u\n", ino); 1338 1339 retry_inocache: 1340 spin_lock(&c->inocache_lock); 1341 f->inocache = jffs2_get_ino_cache(c, ino); 1342 1343 if (f->inocache) { 1344 /* Check its state. We may need to wait before we can use it */ 1345 switch(f->inocache->state) { 1346 case INO_STATE_UNCHECKED: 1347 case INO_STATE_CHECKEDABSENT: 1348 f->inocache->state = INO_STATE_READING; 1349 break; 1350 1351 case INO_STATE_CHECKING: 1352 case INO_STATE_GC: 1353 /* If it's in either of these states, we need 1354 to wait for whoever's got it to finish and 1355 put it back. */ 1356 dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state); 1357 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); 1358 goto retry_inocache; 1359 1360 case INO_STATE_READING: 1361 case INO_STATE_PRESENT: 1362 /* Eep. This should never happen. It can 1363 happen if Linux calls read_inode() again 1364 before clear_inode() has finished though. */ 1365 JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state); 1366 /* Fail. That's probably better than allowing it to succeed */ 1367 f->inocache = NULL; 1368 break; 1369 1370 default: 1371 BUG(); 1372 } 1373 } 1374 spin_unlock(&c->inocache_lock); 1375 1376 if (!f->inocache && ino == 1) { 1377 /* Special case - no root inode on medium */ 1378 f->inocache = jffs2_alloc_inode_cache(); 1379 if (!f->inocache) { 1380 JFFS2_ERROR("cannot allocate inocache for root inode\n"); 1381 return -ENOMEM; 1382 } 1383 dbg_readinode("creating inocache for root inode\n"); 1384 memset(f->inocache, 0, sizeof(struct jffs2_inode_cache)); 1385 f->inocache->ino = f->inocache->pino_nlink = 1; 1386 f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache; 1387 f->inocache->state = INO_STATE_READING; 1388 jffs2_add_ino_cache(c, f->inocache); 1389 } 1390 if (!f->inocache) { 1391 JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino); 1392 return -ENOENT; 1393 } 1394 1395 return jffs2_do_read_inode_internal(c, f, latest_node); 1396 } 1397 1398 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic) 1399 { 1400 struct jffs2_raw_inode n; 1401 struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL); 1402 int ret; 1403 1404 if (!f) 1405 return -ENOMEM; 1406 1407 mutex_init(&f->sem); 1408 mutex_lock(&f->sem); 1409 f->inocache = ic; 1410 1411 ret = jffs2_do_read_inode_internal(c, f, &n); 1412 if (!ret) { 1413 mutex_unlock(&f->sem); 1414 jffs2_do_clear_inode(c, f); 1415 } 1416 kfree (f); 1417 return ret; 1418 } 1419 1420 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f) 1421 { 1422 struct jffs2_full_dirent *fd, *fds; 1423 int deleted; 1424 1425 jffs2_xattr_delete_inode(c, f->inocache); 1426 mutex_lock(&f->sem); 1427 deleted = f->inocache && !f->inocache->pino_nlink; 1428 1429 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) 1430 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING); 1431 1432 if (f->metadata) { 1433 if (deleted) 1434 jffs2_mark_node_obsolete(c, f->metadata->raw); 1435 jffs2_free_full_dnode(f->metadata); 1436 } 1437 1438 jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL); 1439 1440 if (f->target) { 1441 kfree(f->target); 1442 f->target = NULL; 1443 } 1444 1445 fds = f->dents; 1446 while(fds) { 1447 fd = fds; 1448 fds = fd->next; 1449 jffs2_free_full_dirent(fd); 1450 } 1451 1452 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) { 1453 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); 1454 if (f->inocache->nodes == (void *)f->inocache) 1455 jffs2_del_ino_cache(c, f->inocache); 1456 } 1457 1458 mutex_unlock(&f->sem); 1459 } 1460