xref: /openbmc/linux/fs/jffs2/readinode.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/crc32.h>
19 #include <linux/pagemap.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/compiler.h>
22 #include "nodelist.h"
23 
24 /*
25  * Check the data CRC of the node.
26  *
27  * Returns: 0 if the data CRC is correct;
28  * 	    1 - if incorrect;
29  *	    error code if an error occurred.
30  */
31 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
32 {
33 	struct jffs2_raw_node_ref *ref = tn->fn->raw;
34 	int err = 0, pointed = 0;
35 	struct jffs2_eraseblock *jeb;
36 	unsigned char *buffer;
37 	uint32_t crc, ofs, len;
38 	size_t retlen;
39 
40 	BUG_ON(tn->csize == 0);
41 
42 	/* Calculate how many bytes were already checked */
43 	ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
44 	len = tn->csize;
45 
46 	if (jffs2_is_writebuffered(c)) {
47 		int adj = ofs % c->wbuf_pagesize;
48 		if (likely(adj))
49 			adj = c->wbuf_pagesize - adj;
50 
51 		if (adj >= tn->csize) {
52 			dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
53 				      ref_offset(ref), tn->csize, ofs);
54 			goto adj_acc;
55 		}
56 
57 		ofs += adj;
58 		len -= adj;
59 	}
60 
61 	dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
62 		ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
63 
64 #ifndef __ECOS
65 	/* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
66 	 * adding and jffs2_flash_read_end() interface. */
67 	err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL);
68 	if (!err && retlen < len) {
69 		JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
70 		mtd_unpoint(c->mtd, ofs, retlen);
71 	} else if (err) {
72 		if (err != -EOPNOTSUPP)
73 			JFFS2_WARNING("MTD point failed: error code %d.\n", err);
74 	} else
75 		pointed = 1; /* succefully pointed to device */
76 #endif
77 
78 	if (!pointed) {
79 		buffer = kmalloc(len, GFP_KERNEL);
80 		if (unlikely(!buffer))
81 			return -ENOMEM;
82 
83 		/* TODO: this is very frequent pattern, make it a separate
84 		 * routine */
85 		err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
86 		if (err) {
87 			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
88 			goto free_out;
89 		}
90 
91 		if (retlen != len) {
92 			JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
93 			err = -EIO;
94 			goto free_out;
95 		}
96 	}
97 
98 	/* Continue calculating CRC */
99 	crc = crc32(tn->partial_crc, buffer, len);
100 	if(!pointed)
101 		kfree(buffer);
102 #ifndef __ECOS
103 	else
104 		mtd_unpoint(c->mtd, ofs, len);
105 #endif
106 
107 	if (crc != tn->data_crc) {
108 		JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
109 			     ref_offset(ref), tn->data_crc, crc);
110 		return 1;
111 	}
112 
113 adj_acc:
114 	jeb = &c->blocks[ref->flash_offset / c->sector_size];
115 	len = ref_totlen(c, jeb, ref);
116 	/* If it should be REF_NORMAL, it'll get marked as such when
117 	   we build the fragtree, shortly. No need to worry about GC
118 	   moving it while it's marked REF_PRISTINE -- GC won't happen
119 	   till we've finished checking every inode anyway. */
120 	ref->flash_offset |= REF_PRISTINE;
121 	/*
122 	 * Mark the node as having been checked and fix the
123 	 * accounting accordingly.
124 	 */
125 	spin_lock(&c->erase_completion_lock);
126 	jeb->used_size += len;
127 	jeb->unchecked_size -= len;
128 	c->used_size += len;
129 	c->unchecked_size -= len;
130 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
131 	spin_unlock(&c->erase_completion_lock);
132 
133 	return 0;
134 
135 free_out:
136 	if(!pointed)
137 		kfree(buffer);
138 #ifndef __ECOS
139 	else
140 		mtd_unpoint(c->mtd, ofs, len);
141 #endif
142 	return err;
143 }
144 
145 /*
146  * Helper function for jffs2_add_older_frag_to_fragtree().
147  *
148  * Checks the node if we are in the checking stage.
149  */
150 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
151 {
152 	int ret;
153 
154 	BUG_ON(ref_obsolete(tn->fn->raw));
155 
156 	/* We only check the data CRC of unchecked nodes */
157 	if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
158 		return 0;
159 
160 	dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
161 		      tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
162 
163 	ret = check_node_data(c, tn);
164 	if (unlikely(ret < 0)) {
165 		JFFS2_ERROR("check_node_data() returned error: %d.\n",
166 			ret);
167 	} else if (unlikely(ret > 0)) {
168 		dbg_readinode("CRC error, mark it obsolete.\n");
169 		jffs2_mark_node_obsolete(c, tn->fn->raw);
170 	}
171 
172 	return ret;
173 }
174 
175 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
176 {
177 	struct rb_node *next;
178 	struct jffs2_tmp_dnode_info *tn = NULL;
179 
180 	dbg_readinode("root %p, offset %d\n", tn_root, offset);
181 
182 	next = tn_root->rb_node;
183 
184 	while (next) {
185 		tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
186 
187 		if (tn->fn->ofs < offset)
188 			next = tn->rb.rb_right;
189 		else if (tn->fn->ofs >= offset)
190 			next = tn->rb.rb_left;
191 		else
192 			break;
193 	}
194 
195 	return tn;
196 }
197 
198 
199 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
200 {
201 	jffs2_mark_node_obsolete(c, tn->fn->raw);
202 	jffs2_free_full_dnode(tn->fn);
203 	jffs2_free_tmp_dnode_info(tn);
204 }
205 /*
206  * This function is used when we read an inode. Data nodes arrive in
207  * arbitrary order -- they may be older or newer than the nodes which
208  * are already in the tree. Where overlaps occur, the older node can
209  * be discarded as long as the newer passes the CRC check. We don't
210  * bother to keep track of holes in this rbtree, and neither do we deal
211  * with frags -- we can have multiple entries starting at the same
212  * offset, and the one with the smallest length will come first in the
213  * ordering.
214  *
215  * Returns 0 if the node was handled (including marking it obsolete)
216  *	 < 0 an if error occurred
217  */
218 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
219 				struct jffs2_readinode_info *rii,
220 				struct jffs2_tmp_dnode_info *tn)
221 {
222 	uint32_t fn_end = tn->fn->ofs + tn->fn->size;
223 	struct jffs2_tmp_dnode_info *this, *ptn;
224 
225 	dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
226 
227 	/* If a node has zero dsize, we only have to keep if it if it might be the
228 	   node with highest version -- i.e. the one which will end up as f->metadata.
229 	   Note that such nodes won't be REF_UNCHECKED since there are no data to
230 	   check anyway. */
231 	if (!tn->fn->size) {
232 		if (rii->mdata_tn) {
233 			if (rii->mdata_tn->version < tn->version) {
234 				/* We had a candidate mdata node already */
235 				dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
236 				jffs2_kill_tn(c, rii->mdata_tn);
237 			} else {
238 				dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
239 					      tn->version, rii->mdata_tn->version);
240 				jffs2_kill_tn(c, tn);
241 				return 0;
242 			}
243 		}
244 		rii->mdata_tn = tn;
245 		dbg_readinode("keep new mdata with ver %d\n", tn->version);
246 		return 0;
247 	}
248 
249 	/* Find the earliest node which _may_ be relevant to this one */
250 	this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
251 	if (this) {
252 		/* If the node is coincident with another at a lower address,
253 		   back up until the other node is found. It may be relevant */
254 		while (this->overlapped) {
255 			ptn = tn_prev(this);
256 			if (!ptn) {
257 				/*
258 				 * We killed a node which set the overlapped
259 				 * flags during the scan. Fix it up.
260 				 */
261 				this->overlapped = 0;
262 				break;
263 			}
264 			this = ptn;
265 		}
266 		dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
267 	}
268 
269 	while (this) {
270 		if (this->fn->ofs > fn_end)
271 			break;
272 		dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
273 			      this->version, this->fn->ofs, this->fn->size);
274 
275 		if (this->version == tn->version) {
276 			/* Version number collision means REF_PRISTINE GC. Accept either of them
277 			   as long as the CRC is correct. Check the one we have already...  */
278 			if (!check_tn_node(c, this)) {
279 				/* The one we already had was OK. Keep it and throw away the new one */
280 				dbg_readinode("Like old node. Throw away new\n");
281 				jffs2_kill_tn(c, tn);
282 				return 0;
283 			} else {
284 				/* Who cares if the new one is good; keep it for now anyway. */
285 				dbg_readinode("Like new node. Throw away old\n");
286 				rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
287 				jffs2_kill_tn(c, this);
288 				/* Same overlapping from in front and behind */
289 				return 0;
290 			}
291 		}
292 		if (this->version < tn->version &&
293 		    this->fn->ofs >= tn->fn->ofs &&
294 		    this->fn->ofs + this->fn->size <= fn_end) {
295 			/* New node entirely overlaps 'this' */
296 			if (check_tn_node(c, tn)) {
297 				dbg_readinode("new node bad CRC\n");
298 				jffs2_kill_tn(c, tn);
299 				return 0;
300 			}
301 			/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
302 			while (this && this->fn->ofs + this->fn->size <= fn_end) {
303 				struct jffs2_tmp_dnode_info *next = tn_next(this);
304 				if (this->version < tn->version) {
305 					tn_erase(this, &rii->tn_root);
306 					dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
307 						      this->version, this->fn->ofs,
308 						      this->fn->ofs+this->fn->size);
309 					jffs2_kill_tn(c, this);
310 				}
311 				this = next;
312 			}
313 			dbg_readinode("Done killing overlapped nodes\n");
314 			continue;
315 		}
316 		if (this->version > tn->version &&
317 		    this->fn->ofs <= tn->fn->ofs &&
318 		    this->fn->ofs+this->fn->size >= fn_end) {
319 			/* New node entirely overlapped by 'this' */
320 			if (!check_tn_node(c, this)) {
321 				dbg_readinode("Good CRC on old node. Kill new\n");
322 				jffs2_kill_tn(c, tn);
323 				return 0;
324 			}
325 			/* ... but 'this' was bad. Replace it... */
326 			dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
327 			tn_erase(this, &rii->tn_root);
328 			jffs2_kill_tn(c, this);
329 			break;
330 		}
331 
332 		this = tn_next(this);
333 	}
334 
335 	/* We neither completely obsoleted nor were completely
336 	   obsoleted by an earlier node. Insert into the tree */
337 	{
338 		struct rb_node *parent;
339 		struct rb_node **link = &rii->tn_root.rb_node;
340 		struct jffs2_tmp_dnode_info *insert_point = NULL;
341 
342 		while (*link) {
343 			parent = *link;
344 			insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
345 			if (tn->fn->ofs > insert_point->fn->ofs)
346 				link = &insert_point->rb.rb_right;
347 			else if (tn->fn->ofs < insert_point->fn->ofs ||
348 				 tn->fn->size < insert_point->fn->size)
349 				link = &insert_point->rb.rb_left;
350 			else
351 				link = &insert_point->rb.rb_right;
352 		}
353 		rb_link_node(&tn->rb, &insert_point->rb, link);
354 		rb_insert_color(&tn->rb, &rii->tn_root);
355 	}
356 
357 	/* If there's anything behind that overlaps us, note it */
358 	this = tn_prev(tn);
359 	if (this) {
360 		while (1) {
361 			if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
362 				dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
363 					      this, this->version, this->fn->ofs,
364 					      this->fn->ofs+this->fn->size);
365 				tn->overlapped = 1;
366 				break;
367 			}
368 			if (!this->overlapped)
369 				break;
370 
371 			ptn = tn_prev(this);
372 			if (!ptn) {
373 				/*
374 				 * We killed a node which set the overlapped
375 				 * flags during the scan. Fix it up.
376 				 */
377 				this->overlapped = 0;
378 				break;
379 			}
380 			this = ptn;
381 		}
382 	}
383 
384 	/* If the new node overlaps anything ahead, note it */
385 	this = tn_next(tn);
386 	while (this && this->fn->ofs < fn_end) {
387 		this->overlapped = 1;
388 		dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
389 			      this->version, this->fn->ofs,
390 			      this->fn->ofs+this->fn->size);
391 		this = tn_next(this);
392 	}
393 	return 0;
394 }
395 
396 /* Trivial function to remove the last node in the tree. Which by definition
397    has no right-hand child — so can be removed just by making its left-hand
398    child (if any) take its place under its parent. Since this is only done
399    when we're consuming the whole tree, there's no need to use rb_erase()
400    and let it worry about adjusting colours and balancing the tree. That
401    would just be a waste of time. */
402 static void eat_last(struct rb_root *root, struct rb_node *node)
403 {
404 	struct rb_node *parent = rb_parent(node);
405 	struct rb_node **link;
406 
407 	/* LAST! */
408 	BUG_ON(node->rb_right);
409 
410 	if (!parent)
411 		link = &root->rb_node;
412 	else if (node == parent->rb_left)
413 		link = &parent->rb_left;
414 	else
415 		link = &parent->rb_right;
416 
417 	*link = node->rb_left;
418 	if (node->rb_left)
419 		node->rb_left->__rb_parent_color = node->__rb_parent_color;
420 }
421 
422 /* We put the version tree in reverse order, so we can use the same eat_last()
423    function that we use to consume the tmpnode tree (tn_root). */
424 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
425 {
426 	struct rb_node **link = &ver_root->rb_node;
427 	struct rb_node *parent = NULL;
428 	struct jffs2_tmp_dnode_info *this_tn;
429 
430 	while (*link) {
431 		parent = *link;
432 		this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
433 
434 		if (tn->version > this_tn->version)
435 			link = &parent->rb_left;
436 		else
437 			link = &parent->rb_right;
438 	}
439 	dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
440 	rb_link_node(&tn->rb, parent, link);
441 	rb_insert_color(&tn->rb, ver_root);
442 }
443 
444 /* Build final, normal fragtree from tn tree. It doesn't matter which order
445    we add nodes to the real fragtree, as long as they don't overlap. And
446    having thrown away the majority of overlapped nodes as we went, there
447    really shouldn't be many sets of nodes which do overlap. If we start at
448    the end, we can use the overlap markers -- we can just eat nodes which
449    aren't overlapped, and when we encounter nodes which _do_ overlap we
450    sort them all into a temporary tree in version order before replaying them. */
451 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
452 				      struct jffs2_inode_info *f,
453 				      struct jffs2_readinode_info *rii)
454 {
455 	struct jffs2_tmp_dnode_info *pen, *last, *this;
456 	struct rb_root ver_root = RB_ROOT;
457 	uint32_t high_ver = 0;
458 
459 	if (rii->mdata_tn) {
460 		dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
461 		high_ver = rii->mdata_tn->version;
462 		rii->latest_ref = rii->mdata_tn->fn->raw;
463 	}
464 #ifdef JFFS2_DBG_READINODE_MESSAGES
465 	this = tn_last(&rii->tn_root);
466 	while (this) {
467 		dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
468 			      this->fn->ofs+this->fn->size, this->overlapped);
469 		this = tn_prev(this);
470 	}
471 #endif
472 	pen = tn_last(&rii->tn_root);
473 	while ((last = pen)) {
474 		pen = tn_prev(last);
475 
476 		eat_last(&rii->tn_root, &last->rb);
477 		ver_insert(&ver_root, last);
478 
479 		if (unlikely(last->overlapped)) {
480 			if (pen)
481 				continue;
482 			/*
483 			 * We killed a node which set the overlapped
484 			 * flags during the scan. Fix it up.
485 			 */
486 			last->overlapped = 0;
487 		}
488 
489 		/* Now we have a bunch of nodes in reverse version
490 		   order, in the tree at ver_root. Most of the time,
491 		   there'll actually be only one node in the 'tree',
492 		   in fact. */
493 		this = tn_last(&ver_root);
494 
495 		while (this) {
496 			struct jffs2_tmp_dnode_info *vers_next;
497 			int ret;
498 			vers_next = tn_prev(this);
499 			eat_last(&ver_root, &this->rb);
500 			if (check_tn_node(c, this)) {
501 				dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
502 					     this->version, this->fn->ofs,
503 					     this->fn->ofs+this->fn->size);
504 				jffs2_kill_tn(c, this);
505 			} else {
506 				if (this->version > high_ver) {
507 					/* Note that this is different from the other
508 					   highest_version, because this one is only
509 					   counting _valid_ nodes which could give the
510 					   latest inode metadata */
511 					high_ver = this->version;
512 					rii->latest_ref = this->fn->raw;
513 				}
514 				dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
515 					     this, this->version, this->fn->ofs,
516 					     this->fn->ofs+this->fn->size, this->overlapped);
517 
518 				ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
519 				if (ret) {
520 					/* Free the nodes in vers_root; let the caller
521 					   deal with the rest */
522 					JFFS2_ERROR("Add node to tree failed %d\n", ret);
523 					while (1) {
524 						vers_next = tn_prev(this);
525 						if (check_tn_node(c, this))
526 							jffs2_mark_node_obsolete(c, this->fn->raw);
527 						jffs2_free_full_dnode(this->fn);
528 						jffs2_free_tmp_dnode_info(this);
529 						this = vers_next;
530 						if (!this)
531 							break;
532 						eat_last(&ver_root, &vers_next->rb);
533 					}
534 					return ret;
535 				}
536 				jffs2_free_tmp_dnode_info(this);
537 			}
538 			this = vers_next;
539 		}
540 	}
541 	return 0;
542 }
543 
544 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
545 {
546 	struct jffs2_tmp_dnode_info *tn, *next;
547 
548 	rbtree_postorder_for_each_entry_safe(tn, next, list, rb) {
549 			jffs2_free_full_dnode(tn->fn);
550 			jffs2_free_tmp_dnode_info(tn);
551 	}
552 
553 	*list = RB_ROOT;
554 }
555 
556 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
557 {
558 	struct jffs2_full_dirent *next;
559 
560 	while (fd) {
561 		next = fd->next;
562 		jffs2_free_full_dirent(fd);
563 		fd = next;
564 	}
565 }
566 
567 /* Returns first valid node after 'ref'. May return 'ref' */
568 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
569 {
570 	while (ref && ref->next_in_ino) {
571 		if (!ref_obsolete(ref))
572 			return ref;
573 		dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
574 		ref = ref->next_in_ino;
575 	}
576 	return NULL;
577 }
578 
579 /*
580  * Helper function for jffs2_get_inode_nodes().
581  * It is called every time an directory entry node is found.
582  *
583  * Returns: 0 on success;
584  * 	    negative error code on failure.
585  */
586 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
587 				struct jffs2_raw_dirent *rd, size_t read,
588 				struct jffs2_readinode_info *rii)
589 {
590 	struct jffs2_full_dirent *fd;
591 	uint32_t crc;
592 
593 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
594 	BUG_ON(ref_obsolete(ref));
595 
596 	crc = crc32(0, rd, sizeof(*rd) - 8);
597 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
598 		JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
599 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
600 		jffs2_mark_node_obsolete(c, ref);
601 		return 0;
602 	}
603 
604 	/* If we've never checked the CRCs on this node, check them now */
605 	if (ref_flags(ref) == REF_UNCHECKED) {
606 		struct jffs2_eraseblock *jeb;
607 		int len;
608 
609 		/* Sanity check */
610 		if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
611 			JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
612 				    ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
613 			jffs2_mark_node_obsolete(c, ref);
614 			return 0;
615 		}
616 
617 		jeb = &c->blocks[ref->flash_offset / c->sector_size];
618 		len = ref_totlen(c, jeb, ref);
619 
620 		spin_lock(&c->erase_completion_lock);
621 		jeb->used_size += len;
622 		jeb->unchecked_size -= len;
623 		c->used_size += len;
624 		c->unchecked_size -= len;
625 		ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
626 		spin_unlock(&c->erase_completion_lock);
627 	}
628 
629 	fd = jffs2_alloc_full_dirent(rd->nsize + 1);
630 	if (unlikely(!fd))
631 		return -ENOMEM;
632 
633 	fd->raw = ref;
634 	fd->version = je32_to_cpu(rd->version);
635 	fd->ino = je32_to_cpu(rd->ino);
636 	fd->type = rd->type;
637 
638 	if (fd->version > rii->highest_version)
639 		rii->highest_version = fd->version;
640 
641 	/* Pick out the mctime of the latest dirent */
642 	if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
643 		rii->mctime_ver = fd->version;
644 		rii->latest_mctime = je32_to_cpu(rd->mctime);
645 	}
646 
647 	/*
648 	 * Copy as much of the name as possible from the raw
649 	 * dirent we've already read from the flash.
650 	 */
651 	if (read > sizeof(*rd))
652 		memcpy(&fd->name[0], &rd->name[0],
653 		       min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
654 
655 	/* Do we need to copy any more of the name directly from the flash? */
656 	if (rd->nsize + sizeof(*rd) > read) {
657 		/* FIXME: point() */
658 		int err;
659 		int already = read - sizeof(*rd);
660 
661 		err = jffs2_flash_read(c, (ref_offset(ref)) + read,
662 				rd->nsize - already, &read, &fd->name[already]);
663 		if (unlikely(read != rd->nsize - already) && likely(!err))
664 			return -EIO;
665 
666 		if (unlikely(err)) {
667 			JFFS2_ERROR("read remainder of name: error %d\n", err);
668 			jffs2_free_full_dirent(fd);
669 			return -EIO;
670 		}
671 	}
672 
673 	fd->nhash = full_name_hash(fd->name, rd->nsize);
674 	fd->next = NULL;
675 	fd->name[rd->nsize] = '\0';
676 
677 	/*
678 	 * Wheee. We now have a complete jffs2_full_dirent structure, with
679 	 * the name in it and everything. Link it into the list
680 	 */
681 	jffs2_add_fd_to_list(c, fd, &rii->fds);
682 
683 	return 0;
684 }
685 
686 /*
687  * Helper function for jffs2_get_inode_nodes().
688  * It is called every time an inode node is found.
689  *
690  * Returns: 0 on success (possibly after marking a bad node obsolete);
691  * 	    negative error code on failure.
692  */
693 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
694 			     struct jffs2_raw_inode *rd, int rdlen,
695 			     struct jffs2_readinode_info *rii)
696 {
697 	struct jffs2_tmp_dnode_info *tn;
698 	uint32_t len, csize;
699 	int ret = 0;
700 	uint32_t crc;
701 
702 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
703 	BUG_ON(ref_obsolete(ref));
704 
705 	crc = crc32(0, rd, sizeof(*rd) - 8);
706 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
707 		JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
708 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
709 		jffs2_mark_node_obsolete(c, ref);
710 		return 0;
711 	}
712 
713 	tn = jffs2_alloc_tmp_dnode_info();
714 	if (!tn) {
715 		JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
716 		return -ENOMEM;
717 	}
718 
719 	tn->partial_crc = 0;
720 	csize = je32_to_cpu(rd->csize);
721 
722 	/* If we've never checked the CRCs on this node, check them now */
723 	if (ref_flags(ref) == REF_UNCHECKED) {
724 
725 		/* Sanity checks */
726 		if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
727 		    unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
728 			JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
729 			jffs2_dbg_dump_node(c, ref_offset(ref));
730 			jffs2_mark_node_obsolete(c, ref);
731 			goto free_out;
732 		}
733 
734 		if (jffs2_is_writebuffered(c) && csize != 0) {
735 			/* At this point we are supposed to check the data CRC
736 			 * of our unchecked node. But thus far, we do not
737 			 * know whether the node is valid or obsolete. To
738 			 * figure this out, we need to walk all the nodes of
739 			 * the inode and build the inode fragtree. We don't
740 			 * want to spend time checking data of nodes which may
741 			 * later be found to be obsolete. So we put off the full
742 			 * data CRC checking until we have read all the inode
743 			 * nodes and have started building the fragtree.
744 			 *
745 			 * The fragtree is being built starting with nodes
746 			 * having the highest version number, so we'll be able
747 			 * to detect whether a node is valid (i.e., it is not
748 			 * overlapped by a node with higher version) or not.
749 			 * And we'll be able to check only those nodes, which
750 			 * are not obsolete.
751 			 *
752 			 * Of course, this optimization only makes sense in case
753 			 * of NAND flashes (or other flashes with
754 			 * !jffs2_can_mark_obsolete()), since on NOR flashes
755 			 * nodes are marked obsolete physically.
756 			 *
757 			 * Since NAND flashes (or other flashes with
758 			 * jffs2_is_writebuffered(c)) are anyway read by
759 			 * fractions of c->wbuf_pagesize, and we have just read
760 			 * the node header, it is likely that the starting part
761 			 * of the node data is also read when we read the
762 			 * header. So we don't mind to check the CRC of the
763 			 * starting part of the data of the node now, and check
764 			 * the second part later (in jffs2_check_node_data()).
765 			 * Of course, we will not need to re-read and re-check
766 			 * the NAND page which we have just read. This is why we
767 			 * read the whole NAND page at jffs2_get_inode_nodes(),
768 			 * while we needed only the node header.
769 			 */
770 			unsigned char *buf;
771 
772 			/* 'buf' will point to the start of data */
773 			buf = (unsigned char *)rd + sizeof(*rd);
774 			/* len will be the read data length */
775 			len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
776 			tn->partial_crc = crc32(0, buf, len);
777 
778 			dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
779 
780 			/* If we actually calculated the whole data CRC
781 			 * and it is wrong, drop the node. */
782 			if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
783 				JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
784 					ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
785 				jffs2_mark_node_obsolete(c, ref);
786 				goto free_out;
787 			}
788 
789 		} else if (csize == 0) {
790 			/*
791 			 * We checked the header CRC. If the node has no data, adjust
792 			 * the space accounting now. For other nodes this will be done
793 			 * later either when the node is marked obsolete or when its
794 			 * data is checked.
795 			 */
796 			struct jffs2_eraseblock *jeb;
797 
798 			dbg_readinode("the node has no data.\n");
799 			jeb = &c->blocks[ref->flash_offset / c->sector_size];
800 			len = ref_totlen(c, jeb, ref);
801 
802 			spin_lock(&c->erase_completion_lock);
803 			jeb->used_size += len;
804 			jeb->unchecked_size -= len;
805 			c->used_size += len;
806 			c->unchecked_size -= len;
807 			ref->flash_offset = ref_offset(ref) | REF_NORMAL;
808 			spin_unlock(&c->erase_completion_lock);
809 		}
810 	}
811 
812 	tn->fn = jffs2_alloc_full_dnode();
813 	if (!tn->fn) {
814 		JFFS2_ERROR("alloc fn failed\n");
815 		ret = -ENOMEM;
816 		goto free_out;
817 	}
818 
819 	tn->version = je32_to_cpu(rd->version);
820 	tn->fn->ofs = je32_to_cpu(rd->offset);
821 	tn->data_crc = je32_to_cpu(rd->data_crc);
822 	tn->csize = csize;
823 	tn->fn->raw = ref;
824 	tn->overlapped = 0;
825 
826 	if (tn->version > rii->highest_version)
827 		rii->highest_version = tn->version;
828 
829 	/* There was a bug where we wrote hole nodes out with
830 	   csize/dsize swapped. Deal with it */
831 	if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
832 		tn->fn->size = csize;
833 	else // normal case...
834 		tn->fn->size = je32_to_cpu(rd->dsize);
835 
836 	dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
837 		       ref_offset(ref), je32_to_cpu(rd->version),
838 		       je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
839 
840 	ret = jffs2_add_tn_to_tree(c, rii, tn);
841 
842 	if (ret) {
843 		jffs2_free_full_dnode(tn->fn);
844 	free_out:
845 		jffs2_free_tmp_dnode_info(tn);
846 		return ret;
847 	}
848 #ifdef JFFS2_DBG_READINODE2_MESSAGES
849 	dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
850 	tn = tn_first(&rii->tn_root);
851 	while (tn) {
852 		dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
853 			       tn, tn->version, tn->fn->ofs,
854 			       tn->fn->ofs+tn->fn->size, tn->overlapped);
855 		tn = tn_next(tn);
856 	}
857 #endif
858 	return 0;
859 }
860 
861 /*
862  * Helper function for jffs2_get_inode_nodes().
863  * It is called every time an unknown node is found.
864  *
865  * Returns: 0 on success;
866  * 	    negative error code on failure.
867  */
868 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
869 {
870 	/* We don't mark unknown nodes as REF_UNCHECKED */
871 	if (ref_flags(ref) == REF_UNCHECKED) {
872 		JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
873 			    ref_offset(ref));
874 		JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
875 			    je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
876 			    je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
877 		jffs2_mark_node_obsolete(c, ref);
878 		return 0;
879 	}
880 
881 	un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
882 
883 	switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
884 
885 	case JFFS2_FEATURE_INCOMPAT:
886 		JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
887 			    je16_to_cpu(un->nodetype), ref_offset(ref));
888 		/* EEP */
889 		BUG();
890 		break;
891 
892 	case JFFS2_FEATURE_ROCOMPAT:
893 		JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
894 			    je16_to_cpu(un->nodetype), ref_offset(ref));
895 		BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
896 		break;
897 
898 	case JFFS2_FEATURE_RWCOMPAT_COPY:
899 		JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
900 			     je16_to_cpu(un->nodetype), ref_offset(ref));
901 		break;
902 
903 	case JFFS2_FEATURE_RWCOMPAT_DELETE:
904 		JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
905 			     je16_to_cpu(un->nodetype), ref_offset(ref));
906 		jffs2_mark_node_obsolete(c, ref);
907 		return 0;
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * Helper function for jffs2_get_inode_nodes().
915  * The function detects whether more data should be read and reads it if yes.
916  *
917  * Returns: 0 on success;
918  * 	    negative error code on failure.
919  */
920 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
921 		     int needed_len, int *rdlen, unsigned char *buf)
922 {
923 	int err, to_read = needed_len - *rdlen;
924 	size_t retlen;
925 	uint32_t offs;
926 
927 	if (jffs2_is_writebuffered(c)) {
928 		int rem = to_read % c->wbuf_pagesize;
929 
930 		if (rem)
931 			to_read += c->wbuf_pagesize - rem;
932 	}
933 
934 	/* We need to read more data */
935 	offs = ref_offset(ref) + *rdlen;
936 
937 	dbg_readinode("read more %d bytes\n", to_read);
938 
939 	err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
940 	if (err) {
941 		JFFS2_ERROR("can not read %d bytes from 0x%08x, "
942 			"error code: %d.\n", to_read, offs, err);
943 		return err;
944 	}
945 
946 	if (retlen < to_read) {
947 		JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
948 				offs, retlen, to_read);
949 		return -EIO;
950 	}
951 
952 	*rdlen += to_read;
953 	return 0;
954 }
955 
956 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
957    with this ino. Perform a preliminary ordering on data nodes, throwing away
958    those which are completely obsoleted by newer ones. The naïve approach we
959    use to take of just returning them _all_ in version order will cause us to
960    run out of memory in certain degenerate cases. */
961 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
962 				 struct jffs2_readinode_info *rii)
963 {
964 	struct jffs2_raw_node_ref *ref, *valid_ref;
965 	unsigned char *buf = NULL;
966 	union jffs2_node_union *node;
967 	size_t retlen;
968 	int len, err;
969 
970 	rii->mctime_ver = 0;
971 
972 	dbg_readinode("ino #%u\n", f->inocache->ino);
973 
974 	/* FIXME: in case of NOR and available ->point() this
975 	 * needs to be fixed. */
976 	len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
977 	buf = kmalloc(len, GFP_KERNEL);
978 	if (!buf)
979 		return -ENOMEM;
980 
981 	spin_lock(&c->erase_completion_lock);
982 	valid_ref = jffs2_first_valid_node(f->inocache->nodes);
983 	if (!valid_ref && f->inocache->ino != 1)
984 		JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
985 	while (valid_ref) {
986 		/* We can hold a pointer to a non-obsolete node without the spinlock,
987 		   but _obsolete_ nodes may disappear at any time, if the block
988 		   they're in gets erased. So if we mark 'ref' obsolete while we're
989 		   not holding the lock, it can go away immediately. For that reason,
990 		   we find the next valid node first, before processing 'ref'.
991 		*/
992 		ref = valid_ref;
993 		valid_ref = jffs2_first_valid_node(ref->next_in_ino);
994 		spin_unlock(&c->erase_completion_lock);
995 
996 		cond_resched();
997 
998 		/*
999 		 * At this point we don't know the type of the node we're going
1000 		 * to read, so we do not know the size of its header. In order
1001 		 * to minimize the amount of flash IO we assume the header is
1002 		 * of size = JFFS2_MIN_NODE_HEADER.
1003 		 */
1004 		len = JFFS2_MIN_NODE_HEADER;
1005 		if (jffs2_is_writebuffered(c)) {
1006 			int end, rem;
1007 
1008 			/*
1009 			 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1010 			 * but this flash has some minimal I/O unit. It is
1011 			 * possible that we'll need to read more soon, so read
1012 			 * up to the next min. I/O unit, in order not to
1013 			 * re-read the same min. I/O unit twice.
1014 			 */
1015 			end = ref_offset(ref) + len;
1016 			rem = end % c->wbuf_pagesize;
1017 			if (rem)
1018 				end += c->wbuf_pagesize - rem;
1019 			len = end - ref_offset(ref);
1020 		}
1021 
1022 		dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1023 
1024 		/* FIXME: point() */
1025 		err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1026 		if (err) {
1027 			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ref_offset(ref), err);
1028 			goto free_out;
1029 		}
1030 
1031 		if (retlen < len) {
1032 			JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1033 			err = -EIO;
1034 			goto free_out;
1035 		}
1036 
1037 		node = (union jffs2_node_union *)buf;
1038 
1039 		/* No need to mask in the valid bit; it shouldn't be invalid */
1040 		if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1041 			JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1042 				     ref_offset(ref), je16_to_cpu(node->u.magic),
1043 				     je16_to_cpu(node->u.nodetype),
1044 				     je32_to_cpu(node->u.totlen),
1045 				     je32_to_cpu(node->u.hdr_crc));
1046 			jffs2_dbg_dump_node(c, ref_offset(ref));
1047 			jffs2_mark_node_obsolete(c, ref);
1048 			goto cont;
1049 		}
1050 		if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1051 			/* Not a JFFS2 node, whinge and move on */
1052 			JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1053 				     je16_to_cpu(node->u.magic), ref_offset(ref));
1054 			jffs2_mark_node_obsolete(c, ref);
1055 			goto cont;
1056 		}
1057 
1058 		switch (je16_to_cpu(node->u.nodetype)) {
1059 
1060 		case JFFS2_NODETYPE_DIRENT:
1061 
1062 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
1063 			    len < sizeof(struct jffs2_raw_dirent)) {
1064 				err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1065 				if (unlikely(err))
1066 					goto free_out;
1067 			}
1068 
1069 			err = read_direntry(c, ref, &node->d, retlen, rii);
1070 			if (unlikely(err))
1071 				goto free_out;
1072 
1073 			break;
1074 
1075 		case JFFS2_NODETYPE_INODE:
1076 
1077 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
1078 			    len < sizeof(struct jffs2_raw_inode)) {
1079 				err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1080 				if (unlikely(err))
1081 					goto free_out;
1082 			}
1083 
1084 			err = read_dnode(c, ref, &node->i, len, rii);
1085 			if (unlikely(err))
1086 				goto free_out;
1087 
1088 			break;
1089 
1090 		default:
1091 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
1092 			    len < sizeof(struct jffs2_unknown_node)) {
1093 				err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1094 				if (unlikely(err))
1095 					goto free_out;
1096 			}
1097 
1098 			err = read_unknown(c, ref, &node->u);
1099 			if (unlikely(err))
1100 				goto free_out;
1101 
1102 		}
1103 	cont:
1104 		spin_lock(&c->erase_completion_lock);
1105 	}
1106 
1107 	spin_unlock(&c->erase_completion_lock);
1108 	kfree(buf);
1109 
1110 	f->highest_version = rii->highest_version;
1111 
1112 	dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1113 		      f->inocache->ino, rii->highest_version, rii->latest_mctime,
1114 		      rii->mctime_ver);
1115 	return 0;
1116 
1117  free_out:
1118 	jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1119 	jffs2_free_full_dirent_list(rii->fds);
1120 	rii->fds = NULL;
1121 	kfree(buf);
1122 	return err;
1123 }
1124 
1125 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1126 					struct jffs2_inode_info *f,
1127 					struct jffs2_raw_inode *latest_node)
1128 {
1129 	struct jffs2_readinode_info rii;
1130 	uint32_t crc, new_size;
1131 	size_t retlen;
1132 	int ret;
1133 
1134 	dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
1135 		      f->inocache->pino_nlink);
1136 
1137 	memset(&rii, 0, sizeof(rii));
1138 
1139 	/* Grab all nodes relevant to this ino */
1140 	ret = jffs2_get_inode_nodes(c, f, &rii);
1141 
1142 	if (ret) {
1143 		JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1144 		if (f->inocache->state == INO_STATE_READING)
1145 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1146 		return ret;
1147 	}
1148 
1149 	ret = jffs2_build_inode_fragtree(c, f, &rii);
1150 	if (ret) {
1151 		JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1152 			    f->inocache->ino, ret);
1153 		if (f->inocache->state == INO_STATE_READING)
1154 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1155 		jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1156 		/* FIXME: We could at least crc-check them all */
1157 		if (rii.mdata_tn) {
1158 			jffs2_free_full_dnode(rii.mdata_tn->fn);
1159 			jffs2_free_tmp_dnode_info(rii.mdata_tn);
1160 			rii.mdata_tn = NULL;
1161 		}
1162 		return ret;
1163 	}
1164 
1165 	if (rii.mdata_tn) {
1166 		if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1167 			f->metadata = rii.mdata_tn->fn;
1168 			jffs2_free_tmp_dnode_info(rii.mdata_tn);
1169 		} else {
1170 			jffs2_kill_tn(c, rii.mdata_tn);
1171 		}
1172 		rii.mdata_tn = NULL;
1173 	}
1174 
1175 	f->dents = rii.fds;
1176 
1177 	jffs2_dbg_fragtree_paranoia_check_nolock(f);
1178 
1179 	if (unlikely(!rii.latest_ref)) {
1180 		/* No data nodes for this inode. */
1181 		if (f->inocache->ino != 1) {
1182 			JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1183 			if (!rii.fds) {
1184 				if (f->inocache->state == INO_STATE_READING)
1185 					jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1186 				return -EIO;
1187 			}
1188 			JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1189 		}
1190 		latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1191 		latest_node->version = cpu_to_je32(0);
1192 		latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1193 		latest_node->isize = cpu_to_je32(0);
1194 		latest_node->gid = cpu_to_je16(0);
1195 		latest_node->uid = cpu_to_je16(0);
1196 		if (f->inocache->state == INO_STATE_READING)
1197 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1198 		return 0;
1199 	}
1200 
1201 	ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1202 	if (ret || retlen != sizeof(*latest_node)) {
1203 		JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1204 			ret, retlen, sizeof(*latest_node));
1205 		/* FIXME: If this fails, there seems to be a memory leak. Find it. */
1206 		mutex_unlock(&f->sem);
1207 		jffs2_do_clear_inode(c, f);
1208 		return ret?ret:-EIO;
1209 	}
1210 
1211 	crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1212 	if (crc != je32_to_cpu(latest_node->node_crc)) {
1213 		JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1214 			f->inocache->ino, ref_offset(rii.latest_ref));
1215 		mutex_unlock(&f->sem);
1216 		jffs2_do_clear_inode(c, f);
1217 		return -EIO;
1218 	}
1219 
1220 	switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1221 	case S_IFDIR:
1222 		if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1223 			/* The times in the latest_node are actually older than
1224 			   mctime in the latest dirent. Cheat. */
1225 			latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1226 		}
1227 		break;
1228 
1229 
1230 	case S_IFREG:
1231 		/* If it was a regular file, truncate it to the latest node's isize */
1232 		new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1233 		if (new_size != je32_to_cpu(latest_node->isize)) {
1234 			JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
1235 				      f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
1236 			latest_node->isize = cpu_to_je32(new_size);
1237 		}
1238 		break;
1239 
1240 	case S_IFLNK:
1241 		/* Hack to work around broken isize in old symlink code.
1242 		   Remove this when dwmw2 comes to his senses and stops
1243 		   symlinks from being an entirely gratuitous special
1244 		   case. */
1245 		if (!je32_to_cpu(latest_node->isize))
1246 			latest_node->isize = latest_node->dsize;
1247 
1248 		if (f->inocache->state != INO_STATE_CHECKING) {
1249 			/* Symlink's inode data is the target path. Read it and
1250 			 * keep in RAM to facilitate quick follow symlink
1251 			 * operation. */
1252 			uint32_t csize = je32_to_cpu(latest_node->csize);
1253 			if (csize > JFFS2_MAX_NAME_LEN) {
1254 				mutex_unlock(&f->sem);
1255 				jffs2_do_clear_inode(c, f);
1256 				return -ENAMETOOLONG;
1257 			}
1258 			f->target = kmalloc(csize + 1, GFP_KERNEL);
1259 			if (!f->target) {
1260 				JFFS2_ERROR("can't allocate %u bytes of memory for the symlink target path cache\n", csize);
1261 				mutex_unlock(&f->sem);
1262 				jffs2_do_clear_inode(c, f);
1263 				return -ENOMEM;
1264 			}
1265 
1266 			ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1267 					       csize, &retlen, (char *)f->target);
1268 
1269 			if (ret || retlen != csize) {
1270 				if (retlen != csize)
1271 					ret = -EIO;
1272 				kfree(f->target);
1273 				f->target = NULL;
1274 				mutex_unlock(&f->sem);
1275 				jffs2_do_clear_inode(c, f);
1276 				return ret;
1277 			}
1278 
1279 			f->target[csize] = '\0';
1280 			dbg_readinode("symlink's target '%s' cached\n", f->target);
1281 		}
1282 
1283 		/* fall through... */
1284 
1285 	case S_IFBLK:
1286 	case S_IFCHR:
1287 		/* Certain inode types should have only one data node, and it's
1288 		   kept as the metadata node */
1289 		if (f->metadata) {
1290 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1291 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
1292 			mutex_unlock(&f->sem);
1293 			jffs2_do_clear_inode(c, f);
1294 			return -EIO;
1295 		}
1296 		if (!frag_first(&f->fragtree)) {
1297 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1298 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
1299 			mutex_unlock(&f->sem);
1300 			jffs2_do_clear_inode(c, f);
1301 			return -EIO;
1302 		}
1303 		/* ASSERT: f->fraglist != NULL */
1304 		if (frag_next(frag_first(&f->fragtree))) {
1305 			JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1306 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
1307 			/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1308 			mutex_unlock(&f->sem);
1309 			jffs2_do_clear_inode(c, f);
1310 			return -EIO;
1311 		}
1312 		/* OK. We're happy */
1313 		f->metadata = frag_first(&f->fragtree)->node;
1314 		jffs2_free_node_frag(frag_first(&f->fragtree));
1315 		f->fragtree = RB_ROOT;
1316 		break;
1317 	}
1318 	if (f->inocache->state == INO_STATE_READING)
1319 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1320 
1321 	return 0;
1322 }
1323 
1324 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
1325 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1326 			uint32_t ino, struct jffs2_raw_inode *latest_node)
1327 {
1328 	dbg_readinode("read inode #%u\n", ino);
1329 
1330  retry_inocache:
1331 	spin_lock(&c->inocache_lock);
1332 	f->inocache = jffs2_get_ino_cache(c, ino);
1333 
1334 	if (f->inocache) {
1335 		/* Check its state. We may need to wait before we can use it */
1336 		switch(f->inocache->state) {
1337 		case INO_STATE_UNCHECKED:
1338 		case INO_STATE_CHECKEDABSENT:
1339 			f->inocache->state = INO_STATE_READING;
1340 			break;
1341 
1342 		case INO_STATE_CHECKING:
1343 		case INO_STATE_GC:
1344 			/* If it's in either of these states, we need
1345 			   to wait for whoever's got it to finish and
1346 			   put it back. */
1347 			dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1348 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1349 			goto retry_inocache;
1350 
1351 		case INO_STATE_READING:
1352 		case INO_STATE_PRESENT:
1353 			/* Eep. This should never happen. It can
1354 			happen if Linux calls read_inode() again
1355 			before clear_inode() has finished though. */
1356 			JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1357 			/* Fail. That's probably better than allowing it to succeed */
1358 			f->inocache = NULL;
1359 			break;
1360 
1361 		default:
1362 			BUG();
1363 		}
1364 	}
1365 	spin_unlock(&c->inocache_lock);
1366 
1367 	if (!f->inocache && ino == 1) {
1368 		/* Special case - no root inode on medium */
1369 		f->inocache = jffs2_alloc_inode_cache();
1370 		if (!f->inocache) {
1371 			JFFS2_ERROR("cannot allocate inocache for root inode\n");
1372 			return -ENOMEM;
1373 		}
1374 		dbg_readinode("creating inocache for root inode\n");
1375 		memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1376 		f->inocache->ino = f->inocache->pino_nlink = 1;
1377 		f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1378 		f->inocache->state = INO_STATE_READING;
1379 		jffs2_add_ino_cache(c, f->inocache);
1380 	}
1381 	if (!f->inocache) {
1382 		JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1383 		return -ENOENT;
1384 	}
1385 
1386 	return jffs2_do_read_inode_internal(c, f, latest_node);
1387 }
1388 
1389 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1390 {
1391 	struct jffs2_raw_inode n;
1392 	struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1393 	int ret;
1394 
1395 	if (!f)
1396 		return -ENOMEM;
1397 
1398 	mutex_init(&f->sem);
1399 	mutex_lock(&f->sem);
1400 	f->inocache = ic;
1401 
1402 	ret = jffs2_do_read_inode_internal(c, f, &n);
1403 	if (!ret) {
1404 		mutex_unlock(&f->sem);
1405 		jffs2_do_clear_inode(c, f);
1406 	}
1407 	jffs2_xattr_do_crccheck_inode(c, ic);
1408 	kfree (f);
1409 	return ret;
1410 }
1411 
1412 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1413 {
1414 	struct jffs2_full_dirent *fd, *fds;
1415 	int deleted;
1416 
1417 	jffs2_xattr_delete_inode(c, f->inocache);
1418 	mutex_lock(&f->sem);
1419 	deleted = f->inocache && !f->inocache->pino_nlink;
1420 
1421 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1422 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1423 
1424 	if (f->metadata) {
1425 		if (deleted)
1426 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1427 		jffs2_free_full_dnode(f->metadata);
1428 	}
1429 
1430 	jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1431 
1432 	if (f->target) {
1433 		kfree(f->target);
1434 		f->target = NULL;
1435 	}
1436 
1437 	fds = f->dents;
1438 	while(fds) {
1439 		fd = fds;
1440 		fds = fd->next;
1441 		jffs2_free_full_dirent(fd);
1442 	}
1443 
1444 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1445 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1446 		if (f->inocache->nodes == (void *)f->inocache)
1447 			jffs2_del_ino_cache(c, f->inocache);
1448 	}
1449 
1450 	mutex_unlock(&f->sem);
1451 }
1452