xref: /openbmc/linux/fs/jffs2/nodemgmt.c (revision f04de505)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/compiler.h>
16 #include <linux/sched.h> /* For cond_resched() */
17 #include "nodelist.h"
18 #include "debug.h"
19 
20 /**
21  *	jffs2_reserve_space - request physical space to write nodes to flash
22  *	@c: superblock info
23  *	@minsize: Minimum acceptable size of allocation
24  *	@len: Returned value of allocation length
25  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
26  *
27  *	Requests a block of physical space on the flash. Returns zero for success
28  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other
29  *	error if appropriate. Doesn't return len since that's
30  *
31  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
32  *	allocation semaphore, to prevent more than one allocation from being
33  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
34  *
35  *	jffs2_reserve_space() may trigger garbage collection in order to make room
36  *	for the requested allocation.
37  */
38 
39 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
40 				  uint32_t *len, uint32_t sumsize);
41 
42 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
43 			uint32_t *len, int prio, uint32_t sumsize)
44 {
45 	int ret = -EAGAIN;
46 	int blocksneeded = c->resv_blocks_write;
47 	/* align it */
48 	minsize = PAD(minsize);
49 
50 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51 	mutex_lock(&c->alloc_sem);
52 
53 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
54 
55 	spin_lock(&c->erase_completion_lock);
56 
57 	/* this needs a little more thought (true <tglx> :)) */
58 	while(ret == -EAGAIN) {
59 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60 			uint32_t dirty, avail;
61 
62 			/* calculate real dirty size
63 			 * dirty_size contains blocks on erase_pending_list
64 			 * those blocks are counted in c->nr_erasing_blocks.
65 			 * If one block is actually erased, it is not longer counted as dirty_space
66 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
67 			 * with c->nr_erasing_blocks * c->sector_size again.
68 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
69 			 * This helps us to force gc and pick eventually a clean block to spread the load.
70 			 * We add unchecked_size here, as we hopefully will find some space to use.
71 			 * This will affect the sum only once, as gc first finishes checking
72 			 * of nodes.
73 			 */
74 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
75 			if (dirty < c->nospc_dirty_size) {
76 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
77 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
78 					break;
79 				}
80 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
81 					  dirty, c->unchecked_size, c->sector_size));
82 
83 				spin_unlock(&c->erase_completion_lock);
84 				mutex_unlock(&c->alloc_sem);
85 				return -ENOSPC;
86 			}
87 
88 			/* Calc possibly available space. Possibly available means that we
89 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
90 			 * more usable space. This will affect the sum only once, as gc first finishes checking
91 			 * of nodes.
92 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
93 			 * blocksneeded * sector_size.
94 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
95 			 * the check above passes.
96 			 */
97 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
98 			if ( (avail / c->sector_size) <= blocksneeded) {
99 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
100 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
101 					break;
102 				}
103 
104 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
105 					  avail, blocksneeded * c->sector_size));
106 				spin_unlock(&c->erase_completion_lock);
107 				mutex_unlock(&c->alloc_sem);
108 				return -ENOSPC;
109 			}
110 
111 			mutex_unlock(&c->alloc_sem);
112 
113 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
114 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
115 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
116 			spin_unlock(&c->erase_completion_lock);
117 
118 			ret = jffs2_garbage_collect_pass(c);
119 
120 			if (ret == -EAGAIN)
121 				jffs2_erase_pending_blocks(c, 1);
122 			else if (ret)
123 				return ret;
124 
125 			cond_resched();
126 
127 			if (signal_pending(current))
128 				return -EINTR;
129 
130 			mutex_lock(&c->alloc_sem);
131 			spin_lock(&c->erase_completion_lock);
132 		}
133 
134 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
135 		if (ret) {
136 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
137 		}
138 	}
139 	spin_unlock(&c->erase_completion_lock);
140 	if (!ret)
141 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
142 	if (ret)
143 		mutex_unlock(&c->alloc_sem);
144 	return ret;
145 }
146 
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 			   uint32_t *len, uint32_t sumsize)
149 {
150 	int ret = -EAGAIN;
151 	minsize = PAD(minsize);
152 
153 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
154 
155 	spin_lock(&c->erase_completion_lock);
156 	while(ret == -EAGAIN) {
157 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
158 		if (ret) {
159 			D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
160 		}
161 	}
162 	spin_unlock(&c->erase_completion_lock);
163 	if (!ret)
164 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
165 
166 	return ret;
167 }
168 
169 
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
171 
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
173 {
174 
175 	if (c->nextblock == NULL) {
176 		D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
177 		  jeb->offset));
178 		return;
179 	}
180 	/* Check, if we have a dirty block now, or if it was dirty already */
181 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
182 		c->dirty_size += jeb->wasted_size;
183 		c->wasted_size -= jeb->wasted_size;
184 		jeb->dirty_size += jeb->wasted_size;
185 		jeb->wasted_size = 0;
186 		if (VERYDIRTY(c, jeb->dirty_size)) {
187 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
188 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
189 			list_add_tail(&jeb->list, &c->very_dirty_list);
190 		} else {
191 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 			list_add_tail(&jeb->list, &c->dirty_list);
194 		}
195 	} else {
196 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
197 		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
198 		list_add_tail(&jeb->list, &c->clean_list);
199 	}
200 	c->nextblock = NULL;
201 
202 }
203 
204 /* Select a new jeb for nextblock */
205 
206 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
207 {
208 	struct list_head *next;
209 
210 	/* Take the next block off the 'free' list */
211 
212 	if (list_empty(&c->free_list)) {
213 
214 		if (!c->nr_erasing_blocks &&
215 			!list_empty(&c->erasable_list)) {
216 			struct jffs2_eraseblock *ejeb;
217 
218 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
219 			list_move_tail(&ejeb->list, &c->erase_pending_list);
220 			c->nr_erasing_blocks++;
221 			jffs2_erase_pending_trigger(c);
222 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
223 				  ejeb->offset));
224 		}
225 
226 		if (!c->nr_erasing_blocks &&
227 			!list_empty(&c->erasable_pending_wbuf_list)) {
228 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
229 			/* c->nextblock is NULL, no update to c->nextblock allowed */
230 			spin_unlock(&c->erase_completion_lock);
231 			jffs2_flush_wbuf_pad(c);
232 			spin_lock(&c->erase_completion_lock);
233 			/* Have another go. It'll be on the erasable_list now */
234 			return -EAGAIN;
235 		}
236 
237 		if (!c->nr_erasing_blocks) {
238 			/* Ouch. We're in GC, or we wouldn't have got here.
239 			   And there's no space left. At all. */
240 			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
241 				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
242 				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
243 			return -ENOSPC;
244 		}
245 
246 		spin_unlock(&c->erase_completion_lock);
247 		/* Don't wait for it; just erase one right now */
248 		jffs2_erase_pending_blocks(c, 1);
249 		spin_lock(&c->erase_completion_lock);
250 
251 		/* An erase may have failed, decreasing the
252 		   amount of free space available. So we must
253 		   restart from the beginning */
254 		return -EAGAIN;
255 	}
256 
257 	next = c->free_list.next;
258 	list_del(next);
259 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
260 	c->nr_free_blocks--;
261 
262 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
263 
264 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
265 	/* adjust write buffer offset, else we get a non contiguous write bug */
266 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
267 		c->wbuf_ofs = 0xffffffff;
268 #endif
269 
270 	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
271 
272 	return 0;
273 }
274 
275 /* Called with alloc sem _and_ erase_completion_lock */
276 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
277 				  uint32_t *len, uint32_t sumsize)
278 {
279 	struct jffs2_eraseblock *jeb = c->nextblock;
280 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
281 	int ret;
282 
283  restart:
284 	reserved_size = 0;
285 
286 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
287 							/* NOSUM_SIZE means not to generate summary */
288 
289 		if (jeb) {
290 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
291 			dbg_summary("minsize=%d , jeb->free=%d ,"
292 						"summary->size=%d , sumsize=%d\n",
293 						minsize, jeb->free_size,
294 						c->summary->sum_size, sumsize);
295 		}
296 
297 		/* Is there enough space for writing out the current node, or we have to
298 		   write out summary information now, close this jeb and select new nextblock? */
299 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
300 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
301 
302 			/* Has summary been disabled for this jeb? */
303 			if (jffs2_sum_is_disabled(c->summary)) {
304 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
305 				goto restart;
306 			}
307 
308 			/* Writing out the collected summary information */
309 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
310 			ret = jffs2_sum_write_sumnode(c);
311 
312 			if (ret)
313 				return ret;
314 
315 			if (jffs2_sum_is_disabled(c->summary)) {
316 				/* jffs2_write_sumnode() couldn't write out the summary information
317 				   diabling summary for this jeb and free the collected information
318 				 */
319 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
320 				goto restart;
321 			}
322 
323 			jffs2_close_nextblock(c, jeb);
324 			jeb = NULL;
325 			/* keep always valid value in reserved_size */
326 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
327 		}
328 	} else {
329 		if (jeb && minsize > jeb->free_size) {
330 			uint32_t waste;
331 
332 			/* Skip the end of this block and file it as having some dirty space */
333 			/* If there's a pending write to it, flush now */
334 
335 			if (jffs2_wbuf_dirty(c)) {
336 				spin_unlock(&c->erase_completion_lock);
337 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
338 				jffs2_flush_wbuf_pad(c);
339 				spin_lock(&c->erase_completion_lock);
340 				jeb = c->nextblock;
341 				goto restart;
342 			}
343 
344 			spin_unlock(&c->erase_completion_lock);
345 
346 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
347 			if (ret)
348 				return ret;
349 			/* Just lock it again and continue. Nothing much can change because
350 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
351 			   we hold c->erase_completion_lock in the majority of this function...
352 			   but that's a question for another (more caffeine-rich) day. */
353 			spin_lock(&c->erase_completion_lock);
354 
355 			waste = jeb->free_size;
356 			jffs2_link_node_ref(c, jeb,
357 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
358 					    waste, NULL);
359 			/* FIXME: that made it count as dirty. Convert to wasted */
360 			jeb->dirty_size -= waste;
361 			c->dirty_size -= waste;
362 			jeb->wasted_size += waste;
363 			c->wasted_size += waste;
364 
365 			jffs2_close_nextblock(c, jeb);
366 			jeb = NULL;
367 		}
368 	}
369 
370 	if (!jeb) {
371 
372 		ret = jffs2_find_nextblock(c);
373 		if (ret)
374 			return ret;
375 
376 		jeb = c->nextblock;
377 
378 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
379 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
380 			goto restart;
381 		}
382 	}
383 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
384 	   enough space */
385 	*len = jeb->free_size - reserved_size;
386 
387 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
388 	    !jeb->first_node->next_in_ino) {
389 		/* Only node in it beforehand was a CLEANMARKER node (we think).
390 		   So mark it obsolete now that there's going to be another node
391 		   in the block. This will reduce used_size to zero but We've
392 		   already set c->nextblock so that jffs2_mark_node_obsolete()
393 		   won't try to refile it to the dirty_list.
394 		*/
395 		spin_unlock(&c->erase_completion_lock);
396 		jffs2_mark_node_obsolete(c, jeb->first_node);
397 		spin_lock(&c->erase_completion_lock);
398 	}
399 
400 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
401 		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
402 	return 0;
403 }
404 
405 /**
406  *	jffs2_add_physical_node_ref - add a physical node reference to the list
407  *	@c: superblock info
408  *	@new: new node reference to add
409  *	@len: length of this physical node
410  *
411  *	Should only be used to report nodes for which space has been allocated
412  *	by jffs2_reserve_space.
413  *
414  *	Must be called with the alloc_sem held.
415  */
416 
417 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
418 						       uint32_t ofs, uint32_t len,
419 						       struct jffs2_inode_cache *ic)
420 {
421 	struct jffs2_eraseblock *jeb;
422 	struct jffs2_raw_node_ref *new;
423 
424 	jeb = &c->blocks[ofs / c->sector_size];
425 
426 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
427 		  ofs & ~3, ofs & 3, len));
428 #if 1
429 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
430 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
431 	   even after refiling c->nextblock */
432 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
433 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
434 		printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
435 		if (c->nextblock)
436 			printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
437 		else
438 			printk(KERN_WARNING "No nextblock");
439 		printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
440 		return ERR_PTR(-EINVAL);
441 	}
442 #endif
443 	spin_lock(&c->erase_completion_lock);
444 
445 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
446 
447 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
448 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
449 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
450 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
451 		if (jffs2_wbuf_dirty(c)) {
452 			/* Flush the last write in the block if it's outstanding */
453 			spin_unlock(&c->erase_completion_lock);
454 			jffs2_flush_wbuf_pad(c);
455 			spin_lock(&c->erase_completion_lock);
456 		}
457 
458 		list_add_tail(&jeb->list, &c->clean_list);
459 		c->nextblock = NULL;
460 	}
461 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
462 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
463 
464 	spin_unlock(&c->erase_completion_lock);
465 
466 	return new;
467 }
468 
469 
470 void jffs2_complete_reservation(struct jffs2_sb_info *c)
471 {
472 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
473 	jffs2_garbage_collect_trigger(c);
474 	mutex_unlock(&c->alloc_sem);
475 }
476 
477 static inline int on_list(struct list_head *obj, struct list_head *head)
478 {
479 	struct list_head *this;
480 
481 	list_for_each(this, head) {
482 		if (this == obj) {
483 			D1(printk("%p is on list at %p\n", obj, head));
484 			return 1;
485 
486 		}
487 	}
488 	return 0;
489 }
490 
491 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
492 {
493 	struct jffs2_eraseblock *jeb;
494 	int blocknr;
495 	struct jffs2_unknown_node n;
496 	int ret, addedsize;
497 	size_t retlen;
498 	uint32_t freed_len;
499 
500 	if(unlikely(!ref)) {
501 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
502 		return;
503 	}
504 	if (ref_obsolete(ref)) {
505 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
506 		return;
507 	}
508 	blocknr = ref->flash_offset / c->sector_size;
509 	if (blocknr >= c->nr_blocks) {
510 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
511 		BUG();
512 	}
513 	jeb = &c->blocks[blocknr];
514 
515 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
516 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
517 		/* Hm. This may confuse static lock analysis. If any of the above
518 		   three conditions is false, we're going to return from this
519 		   function without actually obliterating any nodes or freeing
520 		   any jffs2_raw_node_refs. So we don't need to stop erases from
521 		   happening, or protect against people holding an obsolete
522 		   jffs2_raw_node_ref without the erase_completion_lock. */
523 		mutex_lock(&c->erase_free_sem);
524 	}
525 
526 	spin_lock(&c->erase_completion_lock);
527 
528 	freed_len = ref_totlen(c, jeb, ref);
529 
530 	if (ref_flags(ref) == REF_UNCHECKED) {
531 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
532 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
533 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
534 			BUG();
535 		})
536 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
537 		jeb->unchecked_size -= freed_len;
538 		c->unchecked_size -= freed_len;
539 	} else {
540 		D1(if (unlikely(jeb->used_size < freed_len)) {
541 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
542 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
543 			BUG();
544 		})
545 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
546 		jeb->used_size -= freed_len;
547 		c->used_size -= freed_len;
548 	}
549 
550 	// Take care, that wasted size is taken into concern
551 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
552 		D1(printk("Dirtying\n"));
553 		addedsize = freed_len;
554 		jeb->dirty_size += freed_len;
555 		c->dirty_size += freed_len;
556 
557 		/* Convert wasted space to dirty, if not a bad block */
558 		if (jeb->wasted_size) {
559 			if (on_list(&jeb->list, &c->bad_used_list)) {
560 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
561 					  jeb->offset));
562 				addedsize = 0; /* To fool the refiling code later */
563 			} else {
564 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
565 					  jeb->wasted_size, jeb->offset));
566 				addedsize += jeb->wasted_size;
567 				jeb->dirty_size += jeb->wasted_size;
568 				c->dirty_size += jeb->wasted_size;
569 				c->wasted_size -= jeb->wasted_size;
570 				jeb->wasted_size = 0;
571 			}
572 		}
573 	} else {
574 		D1(printk("Wasting\n"));
575 		addedsize = 0;
576 		jeb->wasted_size += freed_len;
577 		c->wasted_size += freed_len;
578 	}
579 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
580 
581 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
582 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
583 
584 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
585 		/* Flash scanning is in progress. Don't muck about with the block
586 		   lists because they're not ready yet, and don't actually
587 		   obliterate nodes that look obsolete. If they weren't
588 		   marked obsolete on the flash at the time they _became_
589 		   obsolete, there was probably a reason for that. */
590 		spin_unlock(&c->erase_completion_lock);
591 		/* We didn't lock the erase_free_sem */
592 		return;
593 	}
594 
595 	if (jeb == c->nextblock) {
596 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
597 	} else if (!jeb->used_size && !jeb->unchecked_size) {
598 		if (jeb == c->gcblock) {
599 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
600 			c->gcblock = NULL;
601 		} else {
602 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
603 			list_del(&jeb->list);
604 		}
605 		if (jffs2_wbuf_dirty(c)) {
606 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
607 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
608 		} else {
609 			if (jiffies & 127) {
610 				/* Most of the time, we just erase it immediately. Otherwise we
611 				   spend ages scanning it on mount, etc. */
612 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
613 				list_add_tail(&jeb->list, &c->erase_pending_list);
614 				c->nr_erasing_blocks++;
615 				jffs2_erase_pending_trigger(c);
616 			} else {
617 				/* Sometimes, however, we leave it elsewhere so it doesn't get
618 				   immediately reused, and we spread the load a bit. */
619 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
620 				list_add_tail(&jeb->list, &c->erasable_list);
621 			}
622 		}
623 		D1(printk(KERN_DEBUG "Done OK\n"));
624 	} else if (jeb == c->gcblock) {
625 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
626 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
627 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
628 		list_del(&jeb->list);
629 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
630 		list_add_tail(&jeb->list, &c->dirty_list);
631 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
632 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
633 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
634 		list_del(&jeb->list);
635 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
636 		list_add_tail(&jeb->list, &c->very_dirty_list);
637 	} else {
638 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
639 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
640 	}
641 
642 	spin_unlock(&c->erase_completion_lock);
643 
644 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
645 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
646 		/* We didn't lock the erase_free_sem */
647 		return;
648 	}
649 
650 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
651 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
652 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
653 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
654 
655 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
656 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
657 	if (ret) {
658 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
659 		goto out_erase_sem;
660 	}
661 	if (retlen != sizeof(n)) {
662 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
663 		goto out_erase_sem;
664 	}
665 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
666 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
667 		goto out_erase_sem;
668 	}
669 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
670 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
671 		goto out_erase_sem;
672 	}
673 	/* XXX FIXME: This is ugly now */
674 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
675 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
676 	if (ret) {
677 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
678 		goto out_erase_sem;
679 	}
680 	if (retlen != sizeof(n)) {
681 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
682 		goto out_erase_sem;
683 	}
684 
685 	/* Nodes which have been marked obsolete no longer need to be
686 	   associated with any inode. Remove them from the per-inode list.
687 
688 	   Note we can't do this for NAND at the moment because we need
689 	   obsolete dirent nodes to stay on the lists, because of the
690 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
691 	   because we delete the inocache, and on NAND we need that to
692 	   stay around until all the nodes are actually erased, in order
693 	   to stop us from giving the same inode number to another newly
694 	   created inode. */
695 	if (ref->next_in_ino) {
696 		struct jffs2_inode_cache *ic;
697 		struct jffs2_raw_node_ref **p;
698 
699 		spin_lock(&c->erase_completion_lock);
700 
701 		ic = jffs2_raw_ref_to_ic(ref);
702 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
703 			;
704 
705 		*p = ref->next_in_ino;
706 		ref->next_in_ino = NULL;
707 
708 		switch (ic->class) {
709 #ifdef CONFIG_JFFS2_FS_XATTR
710 			case RAWNODE_CLASS_XATTR_DATUM:
711 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
712 				break;
713 			case RAWNODE_CLASS_XATTR_REF:
714 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
715 				break;
716 #endif
717 			default:
718 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
719 					jffs2_del_ino_cache(c, ic);
720 				break;
721 		}
722 		spin_unlock(&c->erase_completion_lock);
723 	}
724 
725  out_erase_sem:
726 	mutex_unlock(&c->erase_free_sem);
727 }
728 
729 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
730 {
731 	int ret = 0;
732 	uint32_t dirty;
733 	int nr_very_dirty = 0;
734 	struct jffs2_eraseblock *jeb;
735 
736 	if (c->unchecked_size) {
737 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
738 			  c->unchecked_size, c->checked_ino));
739 		return 1;
740 	}
741 
742 	/* dirty_size contains blocks on erase_pending_list
743 	 * those blocks are counted in c->nr_erasing_blocks.
744 	 * If one block is actually erased, it is not longer counted as dirty_space
745 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
746 	 * with c->nr_erasing_blocks * c->sector_size again.
747 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
748 	 * This helps us to force gc and pick eventually a clean block to spread the load.
749 	 */
750 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
751 
752 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
753 			(dirty > c->nospc_dirty_size))
754 		ret = 1;
755 
756 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
757 		nr_very_dirty++;
758 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
759 			ret = 1;
760 			/* In debug mode, actually go through and count them all */
761 			D1(continue);
762 			break;
763 		}
764 	}
765 
766 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
767 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
768 
769 	return ret;
770 }
771