xref: /openbmc/linux/fs/jffs2/nodemgmt.c (revision 5bf17237)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/compiler.h>
16 #include <linux/sched.h> /* For cond_resched() */
17 #include "nodelist.h"
18 #include "debug.h"
19 
20 /**
21  *	jffs2_reserve_space - request physical space to write nodes to flash
22  *	@c: superblock info
23  *	@minsize: Minimum acceptable size of allocation
24  *	@len: Returned value of allocation length
25  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
26  *
27  *	Requests a block of physical space on the flash. Returns zero for success
28  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other
29  *	error if appropriate. Doesn't return len since that's
30  *
31  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
32  *	allocation semaphore, to prevent more than one allocation from being
33  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
34  *
35  *	jffs2_reserve_space() may trigger garbage collection in order to make room
36  *	for the requested allocation.
37  */
38 
39 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
40 				  uint32_t *len, uint32_t sumsize);
41 
42 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
43 			uint32_t *len, int prio, uint32_t sumsize)
44 {
45 	int ret = -EAGAIN;
46 	int blocksneeded = c->resv_blocks_write;
47 	/* align it */
48 	minsize = PAD(minsize);
49 
50 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51 	mutex_lock(&c->alloc_sem);
52 
53 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
54 
55 	spin_lock(&c->erase_completion_lock);
56 
57 	/* this needs a little more thought (true <tglx> :)) */
58 	while(ret == -EAGAIN) {
59 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60 			uint32_t dirty, avail;
61 
62 			/* calculate real dirty size
63 			 * dirty_size contains blocks on erase_pending_list
64 			 * those blocks are counted in c->nr_erasing_blocks.
65 			 * If one block is actually erased, it is not longer counted as dirty_space
66 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
67 			 * with c->nr_erasing_blocks * c->sector_size again.
68 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
69 			 * This helps us to force gc and pick eventually a clean block to spread the load.
70 			 * We add unchecked_size here, as we hopefully will find some space to use.
71 			 * This will affect the sum only once, as gc first finishes checking
72 			 * of nodes.
73 			 */
74 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
75 			if (dirty < c->nospc_dirty_size) {
76 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
77 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
78 					break;
79 				}
80 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
81 					  dirty, c->unchecked_size, c->sector_size));
82 
83 				spin_unlock(&c->erase_completion_lock);
84 				mutex_unlock(&c->alloc_sem);
85 				return -ENOSPC;
86 			}
87 
88 			/* Calc possibly available space. Possibly available means that we
89 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
90 			 * more usable space. This will affect the sum only once, as gc first finishes checking
91 			 * of nodes.
92 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
93 			 * blocksneeded * sector_size.
94 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
95 			 * the check above passes.
96 			 */
97 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
98 			if ( (avail / c->sector_size) <= blocksneeded) {
99 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
100 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
101 					break;
102 				}
103 
104 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
105 					  avail, blocksneeded * c->sector_size));
106 				spin_unlock(&c->erase_completion_lock);
107 				mutex_unlock(&c->alloc_sem);
108 				return -ENOSPC;
109 			}
110 
111 			mutex_unlock(&c->alloc_sem);
112 
113 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
114 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
115 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
116 			spin_unlock(&c->erase_completion_lock);
117 
118 			ret = jffs2_garbage_collect_pass(c);
119 
120 			if (ret == -EAGAIN)
121 				jffs2_erase_pending_blocks(c, 1);
122 			else if (ret)
123 				return ret;
124 
125 			cond_resched();
126 
127 			if (signal_pending(current))
128 				return -EINTR;
129 
130 			mutex_lock(&c->alloc_sem);
131 			spin_lock(&c->erase_completion_lock);
132 		}
133 
134 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
135 		if (ret) {
136 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
137 		}
138 	}
139 	spin_unlock(&c->erase_completion_lock);
140 	if (!ret)
141 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
142 	if (ret)
143 		mutex_unlock(&c->alloc_sem);
144 	return ret;
145 }
146 
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 			   uint32_t *len, uint32_t sumsize)
149 {
150 	int ret = -EAGAIN;
151 	minsize = PAD(minsize);
152 
153 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
154 
155 	spin_lock(&c->erase_completion_lock);
156 	while(ret == -EAGAIN) {
157 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
158 		if (ret) {
159 			D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
160 		}
161 	}
162 	spin_unlock(&c->erase_completion_lock);
163 	if (!ret)
164 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
165 
166 	return ret;
167 }
168 
169 
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
171 
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
173 {
174 
175 	if (c->nextblock == NULL) {
176 		D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
177 		  jeb->offset));
178 		return;
179 	}
180 	/* Check, if we have a dirty block now, or if it was dirty already */
181 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
182 		c->dirty_size += jeb->wasted_size;
183 		c->wasted_size -= jeb->wasted_size;
184 		jeb->dirty_size += jeb->wasted_size;
185 		jeb->wasted_size = 0;
186 		if (VERYDIRTY(c, jeb->dirty_size)) {
187 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
188 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
189 			list_add_tail(&jeb->list, &c->very_dirty_list);
190 		} else {
191 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 			list_add_tail(&jeb->list, &c->dirty_list);
194 		}
195 	} else {
196 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
197 		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
198 		list_add_tail(&jeb->list, &c->clean_list);
199 	}
200 	c->nextblock = NULL;
201 
202 }
203 
204 /* Select a new jeb for nextblock */
205 
206 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
207 {
208 	struct list_head *next;
209 
210 	/* Take the next block off the 'free' list */
211 
212 	if (list_empty(&c->free_list)) {
213 
214 		if (!c->nr_erasing_blocks &&
215 			!list_empty(&c->erasable_list)) {
216 			struct jffs2_eraseblock *ejeb;
217 
218 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
219 			list_move_tail(&ejeb->list, &c->erase_pending_list);
220 			c->nr_erasing_blocks++;
221 			jffs2_erase_pending_trigger(c);
222 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
223 				  ejeb->offset));
224 		}
225 
226 		if (!c->nr_erasing_blocks &&
227 			!list_empty(&c->erasable_pending_wbuf_list)) {
228 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
229 			/* c->nextblock is NULL, no update to c->nextblock allowed */
230 			spin_unlock(&c->erase_completion_lock);
231 			jffs2_flush_wbuf_pad(c);
232 			spin_lock(&c->erase_completion_lock);
233 			/* Have another go. It'll be on the erasable_list now */
234 			return -EAGAIN;
235 		}
236 
237 		if (!c->nr_erasing_blocks) {
238 			/* Ouch. We're in GC, or we wouldn't have got here.
239 			   And there's no space left. At all. */
240 			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
241 				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
242 				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
243 			return -ENOSPC;
244 		}
245 
246 		spin_unlock(&c->erase_completion_lock);
247 		/* Don't wait for it; just erase one right now */
248 		jffs2_erase_pending_blocks(c, 1);
249 		spin_lock(&c->erase_completion_lock);
250 
251 		/* An erase may have failed, decreasing the
252 		   amount of free space available. So we must
253 		   restart from the beginning */
254 		return -EAGAIN;
255 	}
256 
257 	next = c->free_list.next;
258 	list_del(next);
259 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
260 	c->nr_free_blocks--;
261 
262 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
263 
264 	/* adjust write buffer offset, else we get a non contiguous write bug */
265 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
266 		c->wbuf_ofs = 0xffffffff;
267 
268 	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
269 
270 	return 0;
271 }
272 
273 /* Called with alloc sem _and_ erase_completion_lock */
274 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
275 				  uint32_t *len, uint32_t sumsize)
276 {
277 	struct jffs2_eraseblock *jeb = c->nextblock;
278 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
279 	int ret;
280 
281  restart:
282 	reserved_size = 0;
283 
284 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
285 							/* NOSUM_SIZE means not to generate summary */
286 
287 		if (jeb) {
288 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
289 			dbg_summary("minsize=%d , jeb->free=%d ,"
290 						"summary->size=%d , sumsize=%d\n",
291 						minsize, jeb->free_size,
292 						c->summary->sum_size, sumsize);
293 		}
294 
295 		/* Is there enough space for writing out the current node, or we have to
296 		   write out summary information now, close this jeb and select new nextblock? */
297 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
298 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
299 
300 			/* Has summary been disabled for this jeb? */
301 			if (jffs2_sum_is_disabled(c->summary)) {
302 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
303 				goto restart;
304 			}
305 
306 			/* Writing out the collected summary information */
307 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
308 			ret = jffs2_sum_write_sumnode(c);
309 
310 			if (ret)
311 				return ret;
312 
313 			if (jffs2_sum_is_disabled(c->summary)) {
314 				/* jffs2_write_sumnode() couldn't write out the summary information
315 				   diabling summary for this jeb and free the collected information
316 				 */
317 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
318 				goto restart;
319 			}
320 
321 			jffs2_close_nextblock(c, jeb);
322 			jeb = NULL;
323 			/* keep always valid value in reserved_size */
324 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
325 		}
326 	} else {
327 		if (jeb && minsize > jeb->free_size) {
328 			uint32_t waste;
329 
330 			/* Skip the end of this block and file it as having some dirty space */
331 			/* If there's a pending write to it, flush now */
332 
333 			if (jffs2_wbuf_dirty(c)) {
334 				spin_unlock(&c->erase_completion_lock);
335 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
336 				jffs2_flush_wbuf_pad(c);
337 				spin_lock(&c->erase_completion_lock);
338 				jeb = c->nextblock;
339 				goto restart;
340 			}
341 
342 			spin_unlock(&c->erase_completion_lock);
343 
344 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
345 			if (ret)
346 				return ret;
347 			/* Just lock it again and continue. Nothing much can change because
348 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
349 			   we hold c->erase_completion_lock in the majority of this function...
350 			   but that's a question for another (more caffeine-rich) day. */
351 			spin_lock(&c->erase_completion_lock);
352 
353 			waste = jeb->free_size;
354 			jffs2_link_node_ref(c, jeb,
355 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
356 					    waste, NULL);
357 			/* FIXME: that made it count as dirty. Convert to wasted */
358 			jeb->dirty_size -= waste;
359 			c->dirty_size -= waste;
360 			jeb->wasted_size += waste;
361 			c->wasted_size += waste;
362 
363 			jffs2_close_nextblock(c, jeb);
364 			jeb = NULL;
365 		}
366 	}
367 
368 	if (!jeb) {
369 
370 		ret = jffs2_find_nextblock(c);
371 		if (ret)
372 			return ret;
373 
374 		jeb = c->nextblock;
375 
376 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
377 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
378 			goto restart;
379 		}
380 	}
381 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
382 	   enough space */
383 	*len = jeb->free_size - reserved_size;
384 
385 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
386 	    !jeb->first_node->next_in_ino) {
387 		/* Only node in it beforehand was a CLEANMARKER node (we think).
388 		   So mark it obsolete now that there's going to be another node
389 		   in the block. This will reduce used_size to zero but We've
390 		   already set c->nextblock so that jffs2_mark_node_obsolete()
391 		   won't try to refile it to the dirty_list.
392 		*/
393 		spin_unlock(&c->erase_completion_lock);
394 		jffs2_mark_node_obsolete(c, jeb->first_node);
395 		spin_lock(&c->erase_completion_lock);
396 	}
397 
398 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
399 		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
400 	return 0;
401 }
402 
403 /**
404  *	jffs2_add_physical_node_ref - add a physical node reference to the list
405  *	@c: superblock info
406  *	@new: new node reference to add
407  *	@len: length of this physical node
408  *
409  *	Should only be used to report nodes for which space has been allocated
410  *	by jffs2_reserve_space.
411  *
412  *	Must be called with the alloc_sem held.
413  */
414 
415 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
416 						       uint32_t ofs, uint32_t len,
417 						       struct jffs2_inode_cache *ic)
418 {
419 	struct jffs2_eraseblock *jeb;
420 	struct jffs2_raw_node_ref *new;
421 
422 	jeb = &c->blocks[ofs / c->sector_size];
423 
424 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
425 		  ofs & ~3, ofs & 3, len));
426 #if 1
427 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
428 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
429 	   even after refiling c->nextblock */
430 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
431 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
432 		printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
433 		if (c->nextblock)
434 			printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
435 		else
436 			printk(KERN_WARNING "No nextblock");
437 		printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
438 		return ERR_PTR(-EINVAL);
439 	}
440 #endif
441 	spin_lock(&c->erase_completion_lock);
442 
443 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
444 
445 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
446 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
447 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
448 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
449 		if (jffs2_wbuf_dirty(c)) {
450 			/* Flush the last write in the block if it's outstanding */
451 			spin_unlock(&c->erase_completion_lock);
452 			jffs2_flush_wbuf_pad(c);
453 			spin_lock(&c->erase_completion_lock);
454 		}
455 
456 		list_add_tail(&jeb->list, &c->clean_list);
457 		c->nextblock = NULL;
458 	}
459 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
460 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
461 
462 	spin_unlock(&c->erase_completion_lock);
463 
464 	return new;
465 }
466 
467 
468 void jffs2_complete_reservation(struct jffs2_sb_info *c)
469 {
470 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
471 	jffs2_garbage_collect_trigger(c);
472 	mutex_unlock(&c->alloc_sem);
473 }
474 
475 static inline int on_list(struct list_head *obj, struct list_head *head)
476 {
477 	struct list_head *this;
478 
479 	list_for_each(this, head) {
480 		if (this == obj) {
481 			D1(printk("%p is on list at %p\n", obj, head));
482 			return 1;
483 
484 		}
485 	}
486 	return 0;
487 }
488 
489 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
490 {
491 	struct jffs2_eraseblock *jeb;
492 	int blocknr;
493 	struct jffs2_unknown_node n;
494 	int ret, addedsize;
495 	size_t retlen;
496 	uint32_t freed_len;
497 
498 	if(unlikely(!ref)) {
499 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
500 		return;
501 	}
502 	if (ref_obsolete(ref)) {
503 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
504 		return;
505 	}
506 	blocknr = ref->flash_offset / c->sector_size;
507 	if (blocknr >= c->nr_blocks) {
508 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
509 		BUG();
510 	}
511 	jeb = &c->blocks[blocknr];
512 
513 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
514 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
515 		/* Hm. This may confuse static lock analysis. If any of the above
516 		   three conditions is false, we're going to return from this
517 		   function without actually obliterating any nodes or freeing
518 		   any jffs2_raw_node_refs. So we don't need to stop erases from
519 		   happening, or protect against people holding an obsolete
520 		   jffs2_raw_node_ref without the erase_completion_lock. */
521 		mutex_lock(&c->erase_free_sem);
522 	}
523 
524 	spin_lock(&c->erase_completion_lock);
525 
526 	freed_len = ref_totlen(c, jeb, ref);
527 
528 	if (ref_flags(ref) == REF_UNCHECKED) {
529 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
530 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
531 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
532 			BUG();
533 		})
534 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
535 		jeb->unchecked_size -= freed_len;
536 		c->unchecked_size -= freed_len;
537 	} else {
538 		D1(if (unlikely(jeb->used_size < freed_len)) {
539 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
540 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
541 			BUG();
542 		})
543 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
544 		jeb->used_size -= freed_len;
545 		c->used_size -= freed_len;
546 	}
547 
548 	// Take care, that wasted size is taken into concern
549 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
550 		D1(printk("Dirtying\n"));
551 		addedsize = freed_len;
552 		jeb->dirty_size += freed_len;
553 		c->dirty_size += freed_len;
554 
555 		/* Convert wasted space to dirty, if not a bad block */
556 		if (jeb->wasted_size) {
557 			if (on_list(&jeb->list, &c->bad_used_list)) {
558 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
559 					  jeb->offset));
560 				addedsize = 0; /* To fool the refiling code later */
561 			} else {
562 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
563 					  jeb->wasted_size, jeb->offset));
564 				addedsize += jeb->wasted_size;
565 				jeb->dirty_size += jeb->wasted_size;
566 				c->dirty_size += jeb->wasted_size;
567 				c->wasted_size -= jeb->wasted_size;
568 				jeb->wasted_size = 0;
569 			}
570 		}
571 	} else {
572 		D1(printk("Wasting\n"));
573 		addedsize = 0;
574 		jeb->wasted_size += freed_len;
575 		c->wasted_size += freed_len;
576 	}
577 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
578 
579 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
580 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
581 
582 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
583 		/* Flash scanning is in progress. Don't muck about with the block
584 		   lists because they're not ready yet, and don't actually
585 		   obliterate nodes that look obsolete. If they weren't
586 		   marked obsolete on the flash at the time they _became_
587 		   obsolete, there was probably a reason for that. */
588 		spin_unlock(&c->erase_completion_lock);
589 		/* We didn't lock the erase_free_sem */
590 		return;
591 	}
592 
593 	if (jeb == c->nextblock) {
594 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
595 	} else if (!jeb->used_size && !jeb->unchecked_size) {
596 		if (jeb == c->gcblock) {
597 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
598 			c->gcblock = NULL;
599 		} else {
600 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
601 			list_del(&jeb->list);
602 		}
603 		if (jffs2_wbuf_dirty(c)) {
604 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
605 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
606 		} else {
607 			if (jiffies & 127) {
608 				/* Most of the time, we just erase it immediately. Otherwise we
609 				   spend ages scanning it on mount, etc. */
610 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
611 				list_add_tail(&jeb->list, &c->erase_pending_list);
612 				c->nr_erasing_blocks++;
613 				jffs2_erase_pending_trigger(c);
614 			} else {
615 				/* Sometimes, however, we leave it elsewhere so it doesn't get
616 				   immediately reused, and we spread the load a bit. */
617 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
618 				list_add_tail(&jeb->list, &c->erasable_list);
619 			}
620 		}
621 		D1(printk(KERN_DEBUG "Done OK\n"));
622 	} else if (jeb == c->gcblock) {
623 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
624 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
625 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
626 		list_del(&jeb->list);
627 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
628 		list_add_tail(&jeb->list, &c->dirty_list);
629 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
630 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
631 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
632 		list_del(&jeb->list);
633 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
634 		list_add_tail(&jeb->list, &c->very_dirty_list);
635 	} else {
636 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
637 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
638 	}
639 
640 	spin_unlock(&c->erase_completion_lock);
641 
642 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
643 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
644 		/* We didn't lock the erase_free_sem */
645 		return;
646 	}
647 
648 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
649 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
650 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
651 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
652 
653 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
654 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
655 	if (ret) {
656 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
657 		goto out_erase_sem;
658 	}
659 	if (retlen != sizeof(n)) {
660 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
661 		goto out_erase_sem;
662 	}
663 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
664 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
665 		goto out_erase_sem;
666 	}
667 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
668 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
669 		goto out_erase_sem;
670 	}
671 	/* XXX FIXME: This is ugly now */
672 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
673 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
674 	if (ret) {
675 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
676 		goto out_erase_sem;
677 	}
678 	if (retlen != sizeof(n)) {
679 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
680 		goto out_erase_sem;
681 	}
682 
683 	/* Nodes which have been marked obsolete no longer need to be
684 	   associated with any inode. Remove them from the per-inode list.
685 
686 	   Note we can't do this for NAND at the moment because we need
687 	   obsolete dirent nodes to stay on the lists, because of the
688 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
689 	   because we delete the inocache, and on NAND we need that to
690 	   stay around until all the nodes are actually erased, in order
691 	   to stop us from giving the same inode number to another newly
692 	   created inode. */
693 	if (ref->next_in_ino) {
694 		struct jffs2_inode_cache *ic;
695 		struct jffs2_raw_node_ref **p;
696 
697 		spin_lock(&c->erase_completion_lock);
698 
699 		ic = jffs2_raw_ref_to_ic(ref);
700 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
701 			;
702 
703 		*p = ref->next_in_ino;
704 		ref->next_in_ino = NULL;
705 
706 		switch (ic->class) {
707 #ifdef CONFIG_JFFS2_FS_XATTR
708 			case RAWNODE_CLASS_XATTR_DATUM:
709 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
710 				break;
711 			case RAWNODE_CLASS_XATTR_REF:
712 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
713 				break;
714 #endif
715 			default:
716 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
717 					jffs2_del_ino_cache(c, ic);
718 				break;
719 		}
720 		spin_unlock(&c->erase_completion_lock);
721 	}
722 
723  out_erase_sem:
724 	mutex_unlock(&c->erase_free_sem);
725 }
726 
727 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
728 {
729 	int ret = 0;
730 	uint32_t dirty;
731 	int nr_very_dirty = 0;
732 	struct jffs2_eraseblock *jeb;
733 
734 	if (c->unchecked_size) {
735 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
736 			  c->unchecked_size, c->checked_ino));
737 		return 1;
738 	}
739 
740 	/* dirty_size contains blocks on erase_pending_list
741 	 * those blocks are counted in c->nr_erasing_blocks.
742 	 * If one block is actually erased, it is not longer counted as dirty_space
743 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
744 	 * with c->nr_erasing_blocks * c->sector_size again.
745 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
746 	 * This helps us to force gc and pick eventually a clean block to spread the load.
747 	 */
748 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
749 
750 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
751 			(dirty > c->nospc_dirty_size))
752 		ret = 1;
753 
754 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
755 		nr_very_dirty++;
756 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
757 			ret = 1;
758 			/* In debug mode, actually go through and count them all */
759 			D1(continue);
760 			break;
761 		}
762 	}
763 
764 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
765 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
766 
767 	return ret;
768 }
769