xref: /openbmc/linux/fs/jffs2/nodemgmt.c (revision 5a0e3ad6)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/compiler.h>
15 #include <linux/sched.h> /* For cond_resched() */
16 #include "nodelist.h"
17 #include "debug.h"
18 
19 /**
20  *	jffs2_reserve_space - request physical space to write nodes to flash
21  *	@c: superblock info
22  *	@minsize: Minimum acceptable size of allocation
23  *	@len: Returned value of allocation length
24  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
25  *
26  *	Requests a block of physical space on the flash. Returns zero for success
27  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other
28  *	error if appropriate. Doesn't return len since that's
29  *
30  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31  *	allocation semaphore, to prevent more than one allocation from being
32  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
33  *
34  *	jffs2_reserve_space() may trigger garbage collection in order to make room
35  *	for the requested allocation.
36  */
37 
38 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
39 				  uint32_t *len, uint32_t sumsize);
40 
41 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 			uint32_t *len, int prio, uint32_t sumsize)
43 {
44 	int ret = -EAGAIN;
45 	int blocksneeded = c->resv_blocks_write;
46 	/* align it */
47 	minsize = PAD(minsize);
48 
49 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
50 	mutex_lock(&c->alloc_sem);
51 
52 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
53 
54 	spin_lock(&c->erase_completion_lock);
55 
56 	/* this needs a little more thought (true <tglx> :)) */
57 	while(ret == -EAGAIN) {
58 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
59 			uint32_t dirty, avail;
60 
61 			/* calculate real dirty size
62 			 * dirty_size contains blocks on erase_pending_list
63 			 * those blocks are counted in c->nr_erasing_blocks.
64 			 * If one block is actually erased, it is not longer counted as dirty_space
65 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66 			 * with c->nr_erasing_blocks * c->sector_size again.
67 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68 			 * This helps us to force gc and pick eventually a clean block to spread the load.
69 			 * We add unchecked_size here, as we hopefully will find some space to use.
70 			 * This will affect the sum only once, as gc first finishes checking
71 			 * of nodes.
72 			 */
73 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74 			if (dirty < c->nospc_dirty_size) {
75 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
77 					break;
78 				}
79 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 					  dirty, c->unchecked_size, c->sector_size));
81 
82 				spin_unlock(&c->erase_completion_lock);
83 				mutex_unlock(&c->alloc_sem);
84 				return -ENOSPC;
85 			}
86 
87 			/* Calc possibly available space. Possibly available means that we
88 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
89 			 * more usable space. This will affect the sum only once, as gc first finishes checking
90 			 * of nodes.
91 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
92 			 * blocksneeded * sector_size.
93 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
94 			 * the check above passes.
95 			 */
96 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97 			if ( (avail / c->sector_size) <= blocksneeded) {
98 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
100 					break;
101 				}
102 
103 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 					  avail, blocksneeded * c->sector_size));
105 				spin_unlock(&c->erase_completion_lock);
106 				mutex_unlock(&c->alloc_sem);
107 				return -ENOSPC;
108 			}
109 
110 			mutex_unlock(&c->alloc_sem);
111 
112 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
115 			spin_unlock(&c->erase_completion_lock);
116 
117 			ret = jffs2_garbage_collect_pass(c);
118 
119 			if (ret == -EAGAIN)
120 				jffs2_erase_pending_blocks(c, 1);
121 			else if (ret)
122 				return ret;
123 
124 			cond_resched();
125 
126 			if (signal_pending(current))
127 				return -EINTR;
128 
129 			mutex_lock(&c->alloc_sem);
130 			spin_lock(&c->erase_completion_lock);
131 		}
132 
133 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
134 		if (ret) {
135 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
136 		}
137 	}
138 	spin_unlock(&c->erase_completion_lock);
139 	if (!ret)
140 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
141 	if (ret)
142 		mutex_unlock(&c->alloc_sem);
143 	return ret;
144 }
145 
146 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
147 			   uint32_t *len, uint32_t sumsize)
148 {
149 	int ret = -EAGAIN;
150 	minsize = PAD(minsize);
151 
152 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
153 
154 	spin_lock(&c->erase_completion_lock);
155 	while(ret == -EAGAIN) {
156 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
157 		if (ret) {
158 			D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
159 		}
160 	}
161 	spin_unlock(&c->erase_completion_lock);
162 	if (!ret)
163 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
164 
165 	return ret;
166 }
167 
168 
169 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
170 
171 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
172 {
173 
174 	if (c->nextblock == NULL) {
175 		D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
176 		  jeb->offset));
177 		return;
178 	}
179 	/* Check, if we have a dirty block now, or if it was dirty already */
180 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
181 		c->dirty_size += jeb->wasted_size;
182 		c->wasted_size -= jeb->wasted_size;
183 		jeb->dirty_size += jeb->wasted_size;
184 		jeb->wasted_size = 0;
185 		if (VERYDIRTY(c, jeb->dirty_size)) {
186 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
187 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
188 			list_add_tail(&jeb->list, &c->very_dirty_list);
189 		} else {
190 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
191 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
192 			list_add_tail(&jeb->list, &c->dirty_list);
193 		}
194 	} else {
195 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
196 		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
197 		list_add_tail(&jeb->list, &c->clean_list);
198 	}
199 	c->nextblock = NULL;
200 
201 }
202 
203 /* Select a new jeb for nextblock */
204 
205 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
206 {
207 	struct list_head *next;
208 
209 	/* Take the next block off the 'free' list */
210 
211 	if (list_empty(&c->free_list)) {
212 
213 		if (!c->nr_erasing_blocks &&
214 			!list_empty(&c->erasable_list)) {
215 			struct jffs2_eraseblock *ejeb;
216 
217 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
218 			list_move_tail(&ejeb->list, &c->erase_pending_list);
219 			c->nr_erasing_blocks++;
220 			jffs2_erase_pending_trigger(c);
221 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
222 				  ejeb->offset));
223 		}
224 
225 		if (!c->nr_erasing_blocks &&
226 			!list_empty(&c->erasable_pending_wbuf_list)) {
227 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
228 			/* c->nextblock is NULL, no update to c->nextblock allowed */
229 			spin_unlock(&c->erase_completion_lock);
230 			jffs2_flush_wbuf_pad(c);
231 			spin_lock(&c->erase_completion_lock);
232 			/* Have another go. It'll be on the erasable_list now */
233 			return -EAGAIN;
234 		}
235 
236 		if (!c->nr_erasing_blocks) {
237 			/* Ouch. We're in GC, or we wouldn't have got here.
238 			   And there's no space left. At all. */
239 			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
240 				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
241 				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
242 			return -ENOSPC;
243 		}
244 
245 		spin_unlock(&c->erase_completion_lock);
246 		/* Don't wait for it; just erase one right now */
247 		jffs2_erase_pending_blocks(c, 1);
248 		spin_lock(&c->erase_completion_lock);
249 
250 		/* An erase may have failed, decreasing the
251 		   amount of free space available. So we must
252 		   restart from the beginning */
253 		return -EAGAIN;
254 	}
255 
256 	next = c->free_list.next;
257 	list_del(next);
258 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
259 	c->nr_free_blocks--;
260 
261 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
262 
263 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
264 	/* adjust write buffer offset, else we get a non contiguous write bug */
265 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
266 		c->wbuf_ofs = 0xffffffff;
267 #endif
268 
269 	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
270 
271 	return 0;
272 }
273 
274 /* Called with alloc sem _and_ erase_completion_lock */
275 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
276 				  uint32_t *len, uint32_t sumsize)
277 {
278 	struct jffs2_eraseblock *jeb = c->nextblock;
279 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
280 	int ret;
281 
282  restart:
283 	reserved_size = 0;
284 
285 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
286 							/* NOSUM_SIZE means not to generate summary */
287 
288 		if (jeb) {
289 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
290 			dbg_summary("minsize=%d , jeb->free=%d ,"
291 						"summary->size=%d , sumsize=%d\n",
292 						minsize, jeb->free_size,
293 						c->summary->sum_size, sumsize);
294 		}
295 
296 		/* Is there enough space for writing out the current node, or we have to
297 		   write out summary information now, close this jeb and select new nextblock? */
298 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
299 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
300 
301 			/* Has summary been disabled for this jeb? */
302 			if (jffs2_sum_is_disabled(c->summary)) {
303 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
304 				goto restart;
305 			}
306 
307 			/* Writing out the collected summary information */
308 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
309 			ret = jffs2_sum_write_sumnode(c);
310 
311 			if (ret)
312 				return ret;
313 
314 			if (jffs2_sum_is_disabled(c->summary)) {
315 				/* jffs2_write_sumnode() couldn't write out the summary information
316 				   diabling summary for this jeb and free the collected information
317 				 */
318 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
319 				goto restart;
320 			}
321 
322 			jffs2_close_nextblock(c, jeb);
323 			jeb = NULL;
324 			/* keep always valid value in reserved_size */
325 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
326 		}
327 	} else {
328 		if (jeb && minsize > jeb->free_size) {
329 			uint32_t waste;
330 
331 			/* Skip the end of this block and file it as having some dirty space */
332 			/* If there's a pending write to it, flush now */
333 
334 			if (jffs2_wbuf_dirty(c)) {
335 				spin_unlock(&c->erase_completion_lock);
336 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
337 				jffs2_flush_wbuf_pad(c);
338 				spin_lock(&c->erase_completion_lock);
339 				jeb = c->nextblock;
340 				goto restart;
341 			}
342 
343 			spin_unlock(&c->erase_completion_lock);
344 
345 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
346 			if (ret)
347 				return ret;
348 			/* Just lock it again and continue. Nothing much can change because
349 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
350 			   we hold c->erase_completion_lock in the majority of this function...
351 			   but that's a question for another (more caffeine-rich) day. */
352 			spin_lock(&c->erase_completion_lock);
353 
354 			waste = jeb->free_size;
355 			jffs2_link_node_ref(c, jeb,
356 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
357 					    waste, NULL);
358 			/* FIXME: that made it count as dirty. Convert to wasted */
359 			jeb->dirty_size -= waste;
360 			c->dirty_size -= waste;
361 			jeb->wasted_size += waste;
362 			c->wasted_size += waste;
363 
364 			jffs2_close_nextblock(c, jeb);
365 			jeb = NULL;
366 		}
367 	}
368 
369 	if (!jeb) {
370 
371 		ret = jffs2_find_nextblock(c);
372 		if (ret)
373 			return ret;
374 
375 		jeb = c->nextblock;
376 
377 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
378 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
379 			goto restart;
380 		}
381 	}
382 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
383 	   enough space */
384 	*len = jeb->free_size - reserved_size;
385 
386 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
387 	    !jeb->first_node->next_in_ino) {
388 		/* Only node in it beforehand was a CLEANMARKER node (we think).
389 		   So mark it obsolete now that there's going to be another node
390 		   in the block. This will reduce used_size to zero but We've
391 		   already set c->nextblock so that jffs2_mark_node_obsolete()
392 		   won't try to refile it to the dirty_list.
393 		*/
394 		spin_unlock(&c->erase_completion_lock);
395 		jffs2_mark_node_obsolete(c, jeb->first_node);
396 		spin_lock(&c->erase_completion_lock);
397 	}
398 
399 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
400 		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
401 	return 0;
402 }
403 
404 /**
405  *	jffs2_add_physical_node_ref - add a physical node reference to the list
406  *	@c: superblock info
407  *	@new: new node reference to add
408  *	@len: length of this physical node
409  *
410  *	Should only be used to report nodes for which space has been allocated
411  *	by jffs2_reserve_space.
412  *
413  *	Must be called with the alloc_sem held.
414  */
415 
416 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
417 						       uint32_t ofs, uint32_t len,
418 						       struct jffs2_inode_cache *ic)
419 {
420 	struct jffs2_eraseblock *jeb;
421 	struct jffs2_raw_node_ref *new;
422 
423 	jeb = &c->blocks[ofs / c->sector_size];
424 
425 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
426 		  ofs & ~3, ofs & 3, len));
427 #if 1
428 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
429 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
430 	   even after refiling c->nextblock */
431 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
432 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
433 		printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
434 		if (c->nextblock)
435 			printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
436 		else
437 			printk(KERN_WARNING "No nextblock");
438 		printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
439 		return ERR_PTR(-EINVAL);
440 	}
441 #endif
442 	spin_lock(&c->erase_completion_lock);
443 
444 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
445 
446 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
447 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
448 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
449 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
450 		if (jffs2_wbuf_dirty(c)) {
451 			/* Flush the last write in the block if it's outstanding */
452 			spin_unlock(&c->erase_completion_lock);
453 			jffs2_flush_wbuf_pad(c);
454 			spin_lock(&c->erase_completion_lock);
455 		}
456 
457 		list_add_tail(&jeb->list, &c->clean_list);
458 		c->nextblock = NULL;
459 	}
460 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
461 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
462 
463 	spin_unlock(&c->erase_completion_lock);
464 
465 	return new;
466 }
467 
468 
469 void jffs2_complete_reservation(struct jffs2_sb_info *c)
470 {
471 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
472 	jffs2_garbage_collect_trigger(c);
473 	mutex_unlock(&c->alloc_sem);
474 }
475 
476 static inline int on_list(struct list_head *obj, struct list_head *head)
477 {
478 	struct list_head *this;
479 
480 	list_for_each(this, head) {
481 		if (this == obj) {
482 			D1(printk("%p is on list at %p\n", obj, head));
483 			return 1;
484 
485 		}
486 	}
487 	return 0;
488 }
489 
490 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
491 {
492 	struct jffs2_eraseblock *jeb;
493 	int blocknr;
494 	struct jffs2_unknown_node n;
495 	int ret, addedsize;
496 	size_t retlen;
497 	uint32_t freed_len;
498 
499 	if(unlikely(!ref)) {
500 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
501 		return;
502 	}
503 	if (ref_obsolete(ref)) {
504 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
505 		return;
506 	}
507 	blocknr = ref->flash_offset / c->sector_size;
508 	if (blocknr >= c->nr_blocks) {
509 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
510 		BUG();
511 	}
512 	jeb = &c->blocks[blocknr];
513 
514 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
515 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
516 		/* Hm. This may confuse static lock analysis. If any of the above
517 		   three conditions is false, we're going to return from this
518 		   function without actually obliterating any nodes or freeing
519 		   any jffs2_raw_node_refs. So we don't need to stop erases from
520 		   happening, or protect against people holding an obsolete
521 		   jffs2_raw_node_ref without the erase_completion_lock. */
522 		mutex_lock(&c->erase_free_sem);
523 	}
524 
525 	spin_lock(&c->erase_completion_lock);
526 
527 	freed_len = ref_totlen(c, jeb, ref);
528 
529 	if (ref_flags(ref) == REF_UNCHECKED) {
530 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
531 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
532 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
533 			BUG();
534 		})
535 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
536 		jeb->unchecked_size -= freed_len;
537 		c->unchecked_size -= freed_len;
538 	} else {
539 		D1(if (unlikely(jeb->used_size < freed_len)) {
540 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
541 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
542 			BUG();
543 		})
544 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
545 		jeb->used_size -= freed_len;
546 		c->used_size -= freed_len;
547 	}
548 
549 	// Take care, that wasted size is taken into concern
550 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
551 		D1(printk("Dirtying\n"));
552 		addedsize = freed_len;
553 		jeb->dirty_size += freed_len;
554 		c->dirty_size += freed_len;
555 
556 		/* Convert wasted space to dirty, if not a bad block */
557 		if (jeb->wasted_size) {
558 			if (on_list(&jeb->list, &c->bad_used_list)) {
559 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
560 					  jeb->offset));
561 				addedsize = 0; /* To fool the refiling code later */
562 			} else {
563 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
564 					  jeb->wasted_size, jeb->offset));
565 				addedsize += jeb->wasted_size;
566 				jeb->dirty_size += jeb->wasted_size;
567 				c->dirty_size += jeb->wasted_size;
568 				c->wasted_size -= jeb->wasted_size;
569 				jeb->wasted_size = 0;
570 			}
571 		}
572 	} else {
573 		D1(printk("Wasting\n"));
574 		addedsize = 0;
575 		jeb->wasted_size += freed_len;
576 		c->wasted_size += freed_len;
577 	}
578 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
579 
580 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
581 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
582 
583 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
584 		/* Flash scanning is in progress. Don't muck about with the block
585 		   lists because they're not ready yet, and don't actually
586 		   obliterate nodes that look obsolete. If they weren't
587 		   marked obsolete on the flash at the time they _became_
588 		   obsolete, there was probably a reason for that. */
589 		spin_unlock(&c->erase_completion_lock);
590 		/* We didn't lock the erase_free_sem */
591 		return;
592 	}
593 
594 	if (jeb == c->nextblock) {
595 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
596 	} else if (!jeb->used_size && !jeb->unchecked_size) {
597 		if (jeb == c->gcblock) {
598 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
599 			c->gcblock = NULL;
600 		} else {
601 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
602 			list_del(&jeb->list);
603 		}
604 		if (jffs2_wbuf_dirty(c)) {
605 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
606 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
607 		} else {
608 			if (jiffies & 127) {
609 				/* Most of the time, we just erase it immediately. Otherwise we
610 				   spend ages scanning it on mount, etc. */
611 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
612 				list_add_tail(&jeb->list, &c->erase_pending_list);
613 				c->nr_erasing_blocks++;
614 				jffs2_erase_pending_trigger(c);
615 			} else {
616 				/* Sometimes, however, we leave it elsewhere so it doesn't get
617 				   immediately reused, and we spread the load a bit. */
618 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
619 				list_add_tail(&jeb->list, &c->erasable_list);
620 			}
621 		}
622 		D1(printk(KERN_DEBUG "Done OK\n"));
623 	} else if (jeb == c->gcblock) {
624 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
625 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
626 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
627 		list_del(&jeb->list);
628 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
629 		list_add_tail(&jeb->list, &c->dirty_list);
630 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
631 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
632 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
633 		list_del(&jeb->list);
634 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
635 		list_add_tail(&jeb->list, &c->very_dirty_list);
636 	} else {
637 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
638 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
639 	}
640 
641 	spin_unlock(&c->erase_completion_lock);
642 
643 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
644 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
645 		/* We didn't lock the erase_free_sem */
646 		return;
647 	}
648 
649 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
650 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
651 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
652 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
653 
654 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
655 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
656 	if (ret) {
657 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
658 		goto out_erase_sem;
659 	}
660 	if (retlen != sizeof(n)) {
661 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
662 		goto out_erase_sem;
663 	}
664 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
665 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
666 		goto out_erase_sem;
667 	}
668 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
669 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
670 		goto out_erase_sem;
671 	}
672 	/* XXX FIXME: This is ugly now */
673 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
674 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
675 	if (ret) {
676 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
677 		goto out_erase_sem;
678 	}
679 	if (retlen != sizeof(n)) {
680 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
681 		goto out_erase_sem;
682 	}
683 
684 	/* Nodes which have been marked obsolete no longer need to be
685 	   associated with any inode. Remove them from the per-inode list.
686 
687 	   Note we can't do this for NAND at the moment because we need
688 	   obsolete dirent nodes to stay on the lists, because of the
689 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
690 	   because we delete the inocache, and on NAND we need that to
691 	   stay around until all the nodes are actually erased, in order
692 	   to stop us from giving the same inode number to another newly
693 	   created inode. */
694 	if (ref->next_in_ino) {
695 		struct jffs2_inode_cache *ic;
696 		struct jffs2_raw_node_ref **p;
697 
698 		spin_lock(&c->erase_completion_lock);
699 
700 		ic = jffs2_raw_ref_to_ic(ref);
701 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
702 			;
703 
704 		*p = ref->next_in_ino;
705 		ref->next_in_ino = NULL;
706 
707 		switch (ic->class) {
708 #ifdef CONFIG_JFFS2_FS_XATTR
709 			case RAWNODE_CLASS_XATTR_DATUM:
710 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
711 				break;
712 			case RAWNODE_CLASS_XATTR_REF:
713 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
714 				break;
715 #endif
716 			default:
717 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
718 					jffs2_del_ino_cache(c, ic);
719 				break;
720 		}
721 		spin_unlock(&c->erase_completion_lock);
722 	}
723 
724  out_erase_sem:
725 	mutex_unlock(&c->erase_free_sem);
726 }
727 
728 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
729 {
730 	int ret = 0;
731 	uint32_t dirty;
732 	int nr_very_dirty = 0;
733 	struct jffs2_eraseblock *jeb;
734 
735 	if (c->unchecked_size) {
736 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
737 			  c->unchecked_size, c->checked_ino));
738 		return 1;
739 	}
740 
741 	/* dirty_size contains blocks on erase_pending_list
742 	 * those blocks are counted in c->nr_erasing_blocks.
743 	 * If one block is actually erased, it is not longer counted as dirty_space
744 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
745 	 * with c->nr_erasing_blocks * c->sector_size again.
746 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
747 	 * This helps us to force gc and pick eventually a clean block to spread the load.
748 	 */
749 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
750 
751 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
752 			(dirty > c->nospc_dirty_size))
753 		ret = 1;
754 
755 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
756 		nr_very_dirty++;
757 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
758 			ret = 1;
759 			/* In debug mode, actually go through and count them all */
760 			D1(continue);
761 			break;
762 		}
763 	}
764 
765 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
766 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
767 
768 	return ret;
769 }
770