xref: /openbmc/linux/fs/jffs2/nodemgmt.c (revision 3ead9578)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/compiler.h>
17 #include <linux/sched.h> /* For cond_resched() */
18 #include "nodelist.h"
19 #include "debug.h"
20 
21 /*
22  * Check whether the user is allowed to write.
23  */
24 static int jffs2_rp_can_write(struct jffs2_sb_info *c)
25 {
26 	uint32_t avail;
27 	struct jffs2_mount_opts *opts = &c->mount_opts;
28 
29 	avail = c->dirty_size + c->free_size + c->unchecked_size +
30 		c->erasing_size - c->resv_blocks_write * c->sector_size
31 		- c->nospc_dirty_size;
32 
33 	if (avail < 2 * opts->rp_size)
34 		jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
35 			  "erasing_size %u, unchecked_size %u, "
36 			  "nr_erasing_blocks %u, avail %u, resrv %u\n",
37 			  opts->rp_size, c->dirty_size, c->free_size,
38 			  c->erasing_size, c->unchecked_size,
39 			  c->nr_erasing_blocks, avail, c->nospc_dirty_size);
40 
41 	if (avail > opts->rp_size)
42 		return 1;
43 
44 	/* Always allow root */
45 	if (capable(CAP_SYS_RESOURCE))
46 		return 1;
47 
48 	jffs2_dbg(1, "forbid writing\n");
49 	return 0;
50 }
51 
52 /**
53  *	jffs2_reserve_space - request physical space to write nodes to flash
54  *	@c: superblock info
55  *	@minsize: Minimum acceptable size of allocation
56  *	@len: Returned value of allocation length
57  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
58  *
59  *	Requests a block of physical space on the flash. Returns zero for success
60  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other
61  *	error if appropriate. Doesn't return len since that's
62  *
63  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
64  *	allocation semaphore, to prevent more than one allocation from being
65  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
66  *
67  *	jffs2_reserve_space() may trigger garbage collection in order to make room
68  *	for the requested allocation.
69  */
70 
71 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
72 				  uint32_t *len, uint32_t sumsize);
73 
74 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
75 			uint32_t *len, int prio, uint32_t sumsize)
76 {
77 	int ret = -EAGAIN;
78 	int blocksneeded = c->resv_blocks_write;
79 	/* align it */
80 	minsize = PAD(minsize);
81 
82 	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
83 	mutex_lock(&c->alloc_sem);
84 
85 	jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
86 
87 	spin_lock(&c->erase_completion_lock);
88 
89 	/*
90 	 * Check if the free space is greater then size of the reserved pool.
91 	 * If not, only allow root to proceed with writing.
92 	 */
93 	if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
94 		ret = -ENOSPC;
95 		goto out;
96 	}
97 
98 	/* this needs a little more thought (true <tglx> :)) */
99 	while(ret == -EAGAIN) {
100 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
101 			uint32_t dirty, avail;
102 
103 			/* calculate real dirty size
104 			 * dirty_size contains blocks on erase_pending_list
105 			 * those blocks are counted in c->nr_erasing_blocks.
106 			 * If one block is actually erased, it is not longer counted as dirty_space
107 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
108 			 * with c->nr_erasing_blocks * c->sector_size again.
109 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
110 			 * This helps us to force gc and pick eventually a clean block to spread the load.
111 			 * We add unchecked_size here, as we hopefully will find some space to use.
112 			 * This will affect the sum only once, as gc first finishes checking
113 			 * of nodes.
114 			 */
115 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
116 			if (dirty < c->nospc_dirty_size) {
117 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
118 					jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
119 						  __func__);
120 					break;
121 				}
122 				jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
123 					  dirty, c->unchecked_size,
124 					  c->sector_size);
125 
126 				spin_unlock(&c->erase_completion_lock);
127 				mutex_unlock(&c->alloc_sem);
128 				return -ENOSPC;
129 			}
130 
131 			/* Calc possibly available space. Possibly available means that we
132 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
133 			 * more usable space. This will affect the sum only once, as gc first finishes checking
134 			 * of nodes.
135 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
136 			 * blocksneeded * sector_size.
137 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
138 			 * the check above passes.
139 			 */
140 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
141 			if ( (avail / c->sector_size) <= blocksneeded) {
142 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
143 					jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
144 						  __func__);
145 					break;
146 				}
147 
148 				jffs2_dbg(1, "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
149 					  avail, blocksneeded * c->sector_size);
150 				spin_unlock(&c->erase_completion_lock);
151 				mutex_unlock(&c->alloc_sem);
152 				return -ENOSPC;
153 			}
154 
155 			mutex_unlock(&c->alloc_sem);
156 
157 			jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
158 				  c->nr_free_blocks, c->nr_erasing_blocks,
159 				  c->free_size, c->dirty_size, c->wasted_size,
160 				  c->used_size, c->erasing_size, c->bad_size,
161 				  c->free_size + c->dirty_size +
162 				  c->wasted_size + c->used_size +
163 				  c->erasing_size + c->bad_size,
164 				  c->flash_size);
165 			spin_unlock(&c->erase_completion_lock);
166 
167 			ret = jffs2_garbage_collect_pass(c);
168 
169 			if (ret == -EAGAIN) {
170 				spin_lock(&c->erase_completion_lock);
171 				if (c->nr_erasing_blocks &&
172 				    list_empty(&c->erase_pending_list) &&
173 				    list_empty(&c->erase_complete_list)) {
174 					DECLARE_WAITQUEUE(wait, current);
175 					set_current_state(TASK_UNINTERRUPTIBLE);
176 					add_wait_queue(&c->erase_wait, &wait);
177 					jffs2_dbg(1, "%s waiting for erase to complete\n",
178 						  __func__);
179 					spin_unlock(&c->erase_completion_lock);
180 
181 					schedule();
182 					remove_wait_queue(&c->erase_wait, &wait);
183 				} else
184 					spin_unlock(&c->erase_completion_lock);
185 			} else if (ret)
186 				return ret;
187 
188 			cond_resched();
189 
190 			if (signal_pending(current))
191 				return -EINTR;
192 
193 			mutex_lock(&c->alloc_sem);
194 			spin_lock(&c->erase_completion_lock);
195 		}
196 
197 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
198 		if (ret) {
199 			jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
200 		}
201 	}
202 
203 out:
204 	spin_unlock(&c->erase_completion_lock);
205 	if (!ret)
206 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
207 	if (ret)
208 		mutex_unlock(&c->alloc_sem);
209 	return ret;
210 }
211 
212 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
213 			   uint32_t *len, uint32_t sumsize)
214 {
215 	int ret = -EAGAIN;
216 	minsize = PAD(minsize);
217 
218 	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
219 
220 	spin_lock(&c->erase_completion_lock);
221 	while(ret == -EAGAIN) {
222 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
223 		if (ret) {
224 			jffs2_dbg(1, "%s(): looping, ret is %d\n",
225 				  __func__, ret);
226 		}
227 	}
228 	spin_unlock(&c->erase_completion_lock);
229 	if (!ret)
230 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
231 
232 	return ret;
233 }
234 
235 
236 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
237 
238 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
239 {
240 
241 	if (c->nextblock == NULL) {
242 		jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
243 			  __func__, jeb->offset);
244 		return;
245 	}
246 	/* Check, if we have a dirty block now, or if it was dirty already */
247 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
248 		c->dirty_size += jeb->wasted_size;
249 		c->wasted_size -= jeb->wasted_size;
250 		jeb->dirty_size += jeb->wasted_size;
251 		jeb->wasted_size = 0;
252 		if (VERYDIRTY(c, jeb->dirty_size)) {
253 			jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
254 				  jeb->offset, jeb->free_size, jeb->dirty_size,
255 				  jeb->used_size);
256 			list_add_tail(&jeb->list, &c->very_dirty_list);
257 		} else {
258 			jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
259 				  jeb->offset, jeb->free_size, jeb->dirty_size,
260 				  jeb->used_size);
261 			list_add_tail(&jeb->list, &c->dirty_list);
262 		}
263 	} else {
264 		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
265 			  jeb->offset, jeb->free_size, jeb->dirty_size,
266 			  jeb->used_size);
267 		list_add_tail(&jeb->list, &c->clean_list);
268 	}
269 	c->nextblock = NULL;
270 
271 }
272 
273 /* Select a new jeb for nextblock */
274 
275 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
276 {
277 	struct list_head *next;
278 
279 	/* Take the next block off the 'free' list */
280 
281 	if (list_empty(&c->free_list)) {
282 
283 		if (!c->nr_erasing_blocks &&
284 			!list_empty(&c->erasable_list)) {
285 			struct jffs2_eraseblock *ejeb;
286 
287 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
288 			list_move_tail(&ejeb->list, &c->erase_pending_list);
289 			c->nr_erasing_blocks++;
290 			jffs2_garbage_collect_trigger(c);
291 			jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
292 				  __func__, ejeb->offset);
293 		}
294 
295 		if (!c->nr_erasing_blocks &&
296 			!list_empty(&c->erasable_pending_wbuf_list)) {
297 			jffs2_dbg(1, "%s(): Flushing write buffer\n",
298 				  __func__);
299 			/* c->nextblock is NULL, no update to c->nextblock allowed */
300 			spin_unlock(&c->erase_completion_lock);
301 			jffs2_flush_wbuf_pad(c);
302 			spin_lock(&c->erase_completion_lock);
303 			/* Have another go. It'll be on the erasable_list now */
304 			return -EAGAIN;
305 		}
306 
307 		if (!c->nr_erasing_blocks) {
308 			/* Ouch. We're in GC, or we wouldn't have got here.
309 			   And there's no space left. At all. */
310 			pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
311 				c->nr_erasing_blocks, c->nr_free_blocks,
312 				list_empty(&c->erasable_list) ? "yes" : "no",
313 				list_empty(&c->erasing_list) ? "yes" : "no",
314 				list_empty(&c->erase_pending_list) ? "yes" : "no");
315 			return -ENOSPC;
316 		}
317 
318 		spin_unlock(&c->erase_completion_lock);
319 		/* Don't wait for it; just erase one right now */
320 		jffs2_erase_pending_blocks(c, 1);
321 		spin_lock(&c->erase_completion_lock);
322 
323 		/* An erase may have failed, decreasing the
324 		   amount of free space available. So we must
325 		   restart from the beginning */
326 		return -EAGAIN;
327 	}
328 
329 	next = c->free_list.next;
330 	list_del(next);
331 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
332 	c->nr_free_blocks--;
333 
334 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
335 
336 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
337 	/* adjust write buffer offset, else we get a non contiguous write bug */
338 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
339 		c->wbuf_ofs = 0xffffffff;
340 #endif
341 
342 	jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
343 		  __func__, c->nextblock->offset);
344 
345 	return 0;
346 }
347 
348 /* Called with alloc sem _and_ erase_completion_lock */
349 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
350 				  uint32_t *len, uint32_t sumsize)
351 {
352 	struct jffs2_eraseblock *jeb = c->nextblock;
353 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
354 	int ret;
355 
356  restart:
357 	reserved_size = 0;
358 
359 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
360 							/* NOSUM_SIZE means not to generate summary */
361 
362 		if (jeb) {
363 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
364 			dbg_summary("minsize=%d , jeb->free=%d ,"
365 						"summary->size=%d , sumsize=%d\n",
366 						minsize, jeb->free_size,
367 						c->summary->sum_size, sumsize);
368 		}
369 
370 		/* Is there enough space for writing out the current node, or we have to
371 		   write out summary information now, close this jeb and select new nextblock? */
372 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
373 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
374 
375 			/* Has summary been disabled for this jeb? */
376 			if (jffs2_sum_is_disabled(c->summary)) {
377 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
378 				goto restart;
379 			}
380 
381 			/* Writing out the collected summary information */
382 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
383 			ret = jffs2_sum_write_sumnode(c);
384 
385 			if (ret)
386 				return ret;
387 
388 			if (jffs2_sum_is_disabled(c->summary)) {
389 				/* jffs2_write_sumnode() couldn't write out the summary information
390 				   diabling summary for this jeb and free the collected information
391 				 */
392 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
393 				goto restart;
394 			}
395 
396 			jffs2_close_nextblock(c, jeb);
397 			jeb = NULL;
398 			/* keep always valid value in reserved_size */
399 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
400 		}
401 	} else {
402 		if (jeb && minsize > jeb->free_size) {
403 			uint32_t waste;
404 
405 			/* Skip the end of this block and file it as having some dirty space */
406 			/* If there's a pending write to it, flush now */
407 
408 			if (jffs2_wbuf_dirty(c)) {
409 				spin_unlock(&c->erase_completion_lock);
410 				jffs2_dbg(1, "%s(): Flushing write buffer\n",
411 					  __func__);
412 				jffs2_flush_wbuf_pad(c);
413 				spin_lock(&c->erase_completion_lock);
414 				jeb = c->nextblock;
415 				goto restart;
416 			}
417 
418 			spin_unlock(&c->erase_completion_lock);
419 
420 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
421 
422 			/* Just lock it again and continue. Nothing much can change because
423 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
424 			   we hold c->erase_completion_lock in the majority of this function...
425 			   but that's a question for another (more caffeine-rich) day. */
426 			spin_lock(&c->erase_completion_lock);
427 
428 			if (ret)
429 				return ret;
430 
431 			waste = jeb->free_size;
432 			jffs2_link_node_ref(c, jeb,
433 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
434 					    waste, NULL);
435 			/* FIXME: that made it count as dirty. Convert to wasted */
436 			jeb->dirty_size -= waste;
437 			c->dirty_size -= waste;
438 			jeb->wasted_size += waste;
439 			c->wasted_size += waste;
440 
441 			jffs2_close_nextblock(c, jeb);
442 			jeb = NULL;
443 		}
444 	}
445 
446 	if (!jeb) {
447 
448 		ret = jffs2_find_nextblock(c);
449 		if (ret)
450 			return ret;
451 
452 		jeb = c->nextblock;
453 
454 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
455 			pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
456 				jeb->offset, jeb->free_size);
457 			goto restart;
458 		}
459 	}
460 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
461 	   enough space */
462 	*len = jeb->free_size - reserved_size;
463 
464 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
465 	    !jeb->first_node->next_in_ino) {
466 		/* Only node in it beforehand was a CLEANMARKER node (we think).
467 		   So mark it obsolete now that there's going to be another node
468 		   in the block. This will reduce used_size to zero but We've
469 		   already set c->nextblock so that jffs2_mark_node_obsolete()
470 		   won't try to refile it to the dirty_list.
471 		*/
472 		spin_unlock(&c->erase_completion_lock);
473 		jffs2_mark_node_obsolete(c, jeb->first_node);
474 		spin_lock(&c->erase_completion_lock);
475 	}
476 
477 	jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
478 		  __func__,
479 		  *len, jeb->offset + (c->sector_size - jeb->free_size));
480 	return 0;
481 }
482 
483 /**
484  *	jffs2_add_physical_node_ref - add a physical node reference to the list
485  *	@c: superblock info
486  *	@new: new node reference to add
487  *	@len: length of this physical node
488  *
489  *	Should only be used to report nodes for which space has been allocated
490  *	by jffs2_reserve_space.
491  *
492  *	Must be called with the alloc_sem held.
493  */
494 
495 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
496 						       uint32_t ofs, uint32_t len,
497 						       struct jffs2_inode_cache *ic)
498 {
499 	struct jffs2_eraseblock *jeb;
500 	struct jffs2_raw_node_ref *new;
501 
502 	jeb = &c->blocks[ofs / c->sector_size];
503 
504 	jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
505 		  __func__, ofs & ~3, ofs & 3, len);
506 #if 1
507 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
508 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
509 	   even after refiling c->nextblock */
510 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
511 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
512 		pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
513 			ofs & ~3, ofs & 3);
514 		if (c->nextblock)
515 			pr_warn("nextblock 0x%08x", c->nextblock->offset);
516 		else
517 			pr_warn("No nextblock");
518 		pr_cont(", expected at %08x\n",
519 			jeb->offset + (c->sector_size - jeb->free_size));
520 		return ERR_PTR(-EINVAL);
521 	}
522 #endif
523 	spin_lock(&c->erase_completion_lock);
524 
525 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
526 
527 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
528 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
529 		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
530 			  jeb->offset, jeb->free_size, jeb->dirty_size,
531 			  jeb->used_size);
532 		if (jffs2_wbuf_dirty(c)) {
533 			/* Flush the last write in the block if it's outstanding */
534 			spin_unlock(&c->erase_completion_lock);
535 			jffs2_flush_wbuf_pad(c);
536 			spin_lock(&c->erase_completion_lock);
537 		}
538 
539 		list_add_tail(&jeb->list, &c->clean_list);
540 		c->nextblock = NULL;
541 	}
542 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
543 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
544 
545 	spin_unlock(&c->erase_completion_lock);
546 
547 	return new;
548 }
549 
550 
551 void jffs2_complete_reservation(struct jffs2_sb_info *c)
552 {
553 	jffs2_dbg(1, "jffs2_complete_reservation()\n");
554 	spin_lock(&c->erase_completion_lock);
555 	jffs2_garbage_collect_trigger(c);
556 	spin_unlock(&c->erase_completion_lock);
557 	mutex_unlock(&c->alloc_sem);
558 }
559 
560 static inline int on_list(struct list_head *obj, struct list_head *head)
561 {
562 	struct list_head *this;
563 
564 	list_for_each(this, head) {
565 		if (this == obj) {
566 			jffs2_dbg(1, "%p is on list at %p\n", obj, head);
567 			return 1;
568 
569 		}
570 	}
571 	return 0;
572 }
573 
574 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
575 {
576 	struct jffs2_eraseblock *jeb;
577 	int blocknr;
578 	struct jffs2_unknown_node n;
579 	int ret, addedsize;
580 	size_t retlen;
581 	uint32_t freed_len;
582 
583 	if(unlikely(!ref)) {
584 		pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
585 		return;
586 	}
587 	if (ref_obsolete(ref)) {
588 		jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
589 			  __func__, ref_offset(ref));
590 		return;
591 	}
592 	blocknr = ref->flash_offset / c->sector_size;
593 	if (blocknr >= c->nr_blocks) {
594 		pr_notice("raw node at 0x%08x is off the end of device!\n",
595 			  ref->flash_offset);
596 		BUG();
597 	}
598 	jeb = &c->blocks[blocknr];
599 
600 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
601 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
602 		/* Hm. This may confuse static lock analysis. If any of the above
603 		   three conditions is false, we're going to return from this
604 		   function without actually obliterating any nodes or freeing
605 		   any jffs2_raw_node_refs. So we don't need to stop erases from
606 		   happening, or protect against people holding an obsolete
607 		   jffs2_raw_node_ref without the erase_completion_lock. */
608 		mutex_lock(&c->erase_free_sem);
609 	}
610 
611 	spin_lock(&c->erase_completion_lock);
612 
613 	freed_len = ref_totlen(c, jeb, ref);
614 
615 	if (ref_flags(ref) == REF_UNCHECKED) {
616 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
617 				pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
618 					  freed_len, blocknr,
619 					  ref->flash_offset, jeb->used_size);
620 			BUG();
621 		})
622 			jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
623 				  ref_offset(ref), freed_len);
624 		jeb->unchecked_size -= freed_len;
625 		c->unchecked_size -= freed_len;
626 	} else {
627 		D1(if (unlikely(jeb->used_size < freed_len)) {
628 				pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
629 					  freed_len, blocknr,
630 					  ref->flash_offset, jeb->used_size);
631 			BUG();
632 		})
633 			jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
634 				  ref_offset(ref), freed_len);
635 		jeb->used_size -= freed_len;
636 		c->used_size -= freed_len;
637 	}
638 
639 	// Take care, that wasted size is taken into concern
640 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
641 		jffs2_dbg(1, "Dirtying\n");
642 		addedsize = freed_len;
643 		jeb->dirty_size += freed_len;
644 		c->dirty_size += freed_len;
645 
646 		/* Convert wasted space to dirty, if not a bad block */
647 		if (jeb->wasted_size) {
648 			if (on_list(&jeb->list, &c->bad_used_list)) {
649 				jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
650 					  jeb->offset);
651 				addedsize = 0; /* To fool the refiling code later */
652 			} else {
653 				jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
654 					  jeb->wasted_size, jeb->offset);
655 				addedsize += jeb->wasted_size;
656 				jeb->dirty_size += jeb->wasted_size;
657 				c->dirty_size += jeb->wasted_size;
658 				c->wasted_size -= jeb->wasted_size;
659 				jeb->wasted_size = 0;
660 			}
661 		}
662 	} else {
663 		jffs2_dbg(1, "Wasting\n");
664 		addedsize = 0;
665 		jeb->wasted_size += freed_len;
666 		c->wasted_size += freed_len;
667 	}
668 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
669 
670 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
671 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
672 
673 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
674 		/* Flash scanning is in progress. Don't muck about with the block
675 		   lists because they're not ready yet, and don't actually
676 		   obliterate nodes that look obsolete. If they weren't
677 		   marked obsolete on the flash at the time they _became_
678 		   obsolete, there was probably a reason for that. */
679 		spin_unlock(&c->erase_completion_lock);
680 		/* We didn't lock the erase_free_sem */
681 		return;
682 	}
683 
684 	if (jeb == c->nextblock) {
685 		jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
686 			  jeb->offset);
687 	} else if (!jeb->used_size && !jeb->unchecked_size) {
688 		if (jeb == c->gcblock) {
689 			jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
690 				  jeb->offset);
691 			c->gcblock = NULL;
692 		} else {
693 			jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
694 				  jeb->offset);
695 			list_del(&jeb->list);
696 		}
697 		if (jffs2_wbuf_dirty(c)) {
698 			jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
699 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
700 		} else {
701 			if (jiffies & 127) {
702 				/* Most of the time, we just erase it immediately. Otherwise we
703 				   spend ages scanning it on mount, etc. */
704 				jffs2_dbg(1, "...and adding to erase_pending_list\n");
705 				list_add_tail(&jeb->list, &c->erase_pending_list);
706 				c->nr_erasing_blocks++;
707 				jffs2_garbage_collect_trigger(c);
708 			} else {
709 				/* Sometimes, however, we leave it elsewhere so it doesn't get
710 				   immediately reused, and we spread the load a bit. */
711 				jffs2_dbg(1, "...and adding to erasable_list\n");
712 				list_add_tail(&jeb->list, &c->erasable_list);
713 			}
714 		}
715 		jffs2_dbg(1, "Done OK\n");
716 	} else if (jeb == c->gcblock) {
717 		jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
718 			  jeb->offset);
719 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
720 		jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
721 			  jeb->offset);
722 		list_del(&jeb->list);
723 		jffs2_dbg(1, "...and adding to dirty_list\n");
724 		list_add_tail(&jeb->list, &c->dirty_list);
725 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
726 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
727 		jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
728 			  jeb->offset);
729 		list_del(&jeb->list);
730 		jffs2_dbg(1, "...and adding to very_dirty_list\n");
731 		list_add_tail(&jeb->list, &c->very_dirty_list);
732 	} else {
733 		jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
734 			  jeb->offset, jeb->free_size, jeb->dirty_size,
735 			  jeb->used_size);
736 	}
737 
738 	spin_unlock(&c->erase_completion_lock);
739 
740 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
741 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
742 		/* We didn't lock the erase_free_sem */
743 		return;
744 	}
745 
746 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
747 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
748 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
749 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
750 
751 	jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
752 		  ref_offset(ref));
753 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
754 	if (ret) {
755 		pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
756 			ref_offset(ref), ret);
757 		goto out_erase_sem;
758 	}
759 	if (retlen != sizeof(n)) {
760 		pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
761 			ref_offset(ref), retlen);
762 		goto out_erase_sem;
763 	}
764 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
765 		pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
766 			je32_to_cpu(n.totlen), freed_len);
767 		goto out_erase_sem;
768 	}
769 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
770 		jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
771 			  ref_offset(ref), je16_to_cpu(n.nodetype));
772 		goto out_erase_sem;
773 	}
774 	/* XXX FIXME: This is ugly now */
775 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
776 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
777 	if (ret) {
778 		pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
779 			ref_offset(ref), ret);
780 		goto out_erase_sem;
781 	}
782 	if (retlen != sizeof(n)) {
783 		pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
784 			ref_offset(ref), retlen);
785 		goto out_erase_sem;
786 	}
787 
788 	/* Nodes which have been marked obsolete no longer need to be
789 	   associated with any inode. Remove them from the per-inode list.
790 
791 	   Note we can't do this for NAND at the moment because we need
792 	   obsolete dirent nodes to stay on the lists, because of the
793 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
794 	   because we delete the inocache, and on NAND we need that to
795 	   stay around until all the nodes are actually erased, in order
796 	   to stop us from giving the same inode number to another newly
797 	   created inode. */
798 	if (ref->next_in_ino) {
799 		struct jffs2_inode_cache *ic;
800 		struct jffs2_raw_node_ref **p;
801 
802 		spin_lock(&c->erase_completion_lock);
803 
804 		ic = jffs2_raw_ref_to_ic(ref);
805 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
806 			;
807 
808 		*p = ref->next_in_ino;
809 		ref->next_in_ino = NULL;
810 
811 		switch (ic->class) {
812 #ifdef CONFIG_JFFS2_FS_XATTR
813 			case RAWNODE_CLASS_XATTR_DATUM:
814 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
815 				break;
816 			case RAWNODE_CLASS_XATTR_REF:
817 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
818 				break;
819 #endif
820 			default:
821 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
822 					jffs2_del_ino_cache(c, ic);
823 				break;
824 		}
825 		spin_unlock(&c->erase_completion_lock);
826 	}
827 
828  out_erase_sem:
829 	mutex_unlock(&c->erase_free_sem);
830 }
831 
832 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
833 {
834 	int ret = 0;
835 	uint32_t dirty;
836 	int nr_very_dirty = 0;
837 	struct jffs2_eraseblock *jeb;
838 
839 	if (!list_empty(&c->erase_complete_list) ||
840 	    !list_empty(&c->erase_pending_list))
841 		return 1;
842 
843 	if (c->unchecked_size) {
844 		jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
845 			  c->unchecked_size, c->checked_ino);
846 		return 1;
847 	}
848 
849 	/* dirty_size contains blocks on erase_pending_list
850 	 * those blocks are counted in c->nr_erasing_blocks.
851 	 * If one block is actually erased, it is not longer counted as dirty_space
852 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
853 	 * with c->nr_erasing_blocks * c->sector_size again.
854 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
855 	 * This helps us to force gc and pick eventually a clean block to spread the load.
856 	 */
857 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
858 
859 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
860 			(dirty > c->nospc_dirty_size))
861 		ret = 1;
862 
863 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
864 		nr_very_dirty++;
865 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
866 			ret = 1;
867 			/* In debug mode, actually go through and count them all */
868 			D1(continue);
869 			break;
870 		}
871 	}
872 
873 	jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
874 		  __func__, c->nr_free_blocks, c->nr_erasing_blocks,
875 		  c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
876 
877 	return ret;
878 }
879