xref: /openbmc/linux/fs/jffs2/nodemgmt.c (revision 0717bf84)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/compiler.h>
15 #include <linux/sched.h> /* For cond_resched() */
16 #include "nodelist.h"
17 #include "debug.h"
18 
19 /**
20  *	jffs2_reserve_space - request physical space to write nodes to flash
21  *	@c: superblock info
22  *	@minsize: Minimum acceptable size of allocation
23  *	@len: Returned value of allocation length
24  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
25  *
26  *	Requests a block of physical space on the flash. Returns zero for success
27  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other
28  *	error if appropriate. Doesn't return len since that's
29  *
30  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31  *	allocation semaphore, to prevent more than one allocation from being
32  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
33  *
34  *	jffs2_reserve_space() may trigger garbage collection in order to make room
35  *	for the requested allocation.
36  */
37 
38 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
39 				  uint32_t *len, uint32_t sumsize);
40 
41 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 			uint32_t *len, int prio, uint32_t sumsize)
43 {
44 	int ret = -EAGAIN;
45 	int blocksneeded = c->resv_blocks_write;
46 	/* align it */
47 	minsize = PAD(minsize);
48 
49 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
50 	mutex_lock(&c->alloc_sem);
51 
52 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
53 
54 	spin_lock(&c->erase_completion_lock);
55 
56 	/* this needs a little more thought (true <tglx> :)) */
57 	while(ret == -EAGAIN) {
58 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
59 			uint32_t dirty, avail;
60 
61 			/* calculate real dirty size
62 			 * dirty_size contains blocks on erase_pending_list
63 			 * those blocks are counted in c->nr_erasing_blocks.
64 			 * If one block is actually erased, it is not longer counted as dirty_space
65 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66 			 * with c->nr_erasing_blocks * c->sector_size again.
67 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68 			 * This helps us to force gc and pick eventually a clean block to spread the load.
69 			 * We add unchecked_size here, as we hopefully will find some space to use.
70 			 * This will affect the sum only once, as gc first finishes checking
71 			 * of nodes.
72 			 */
73 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74 			if (dirty < c->nospc_dirty_size) {
75 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
77 					break;
78 				}
79 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 					  dirty, c->unchecked_size, c->sector_size));
81 
82 				spin_unlock(&c->erase_completion_lock);
83 				mutex_unlock(&c->alloc_sem);
84 				return -ENOSPC;
85 			}
86 
87 			/* Calc possibly available space. Possibly available means that we
88 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
89 			 * more usable space. This will affect the sum only once, as gc first finishes checking
90 			 * of nodes.
91 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
92 			 * blocksneeded * sector_size.
93 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
94 			 * the check above passes.
95 			 */
96 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97 			if ( (avail / c->sector_size) <= blocksneeded) {
98 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
100 					break;
101 				}
102 
103 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 					  avail, blocksneeded * c->sector_size));
105 				spin_unlock(&c->erase_completion_lock);
106 				mutex_unlock(&c->alloc_sem);
107 				return -ENOSPC;
108 			}
109 
110 			mutex_unlock(&c->alloc_sem);
111 
112 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
115 			spin_unlock(&c->erase_completion_lock);
116 
117 			ret = jffs2_garbage_collect_pass(c);
118 
119 			if (ret == -EAGAIN) {
120 				spin_lock(&c->erase_completion_lock);
121 				if (c->nr_erasing_blocks &&
122 				    list_empty(&c->erase_pending_list) &&
123 				    list_empty(&c->erase_complete_list)) {
124 					DECLARE_WAITQUEUE(wait, current);
125 					set_current_state(TASK_UNINTERRUPTIBLE);
126 					add_wait_queue(&c->erase_wait, &wait);
127 					D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__));
128 					spin_unlock(&c->erase_completion_lock);
129 
130 					schedule();
131 				} else
132 					spin_unlock(&c->erase_completion_lock);
133 			} else if (ret)
134 				return ret;
135 
136 			cond_resched();
137 
138 			if (signal_pending(current))
139 				return -EINTR;
140 
141 			mutex_lock(&c->alloc_sem);
142 			spin_lock(&c->erase_completion_lock);
143 		}
144 
145 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146 		if (ret) {
147 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
148 		}
149 	}
150 	spin_unlock(&c->erase_completion_lock);
151 	if (!ret)
152 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
153 	if (ret)
154 		mutex_unlock(&c->alloc_sem);
155 	return ret;
156 }
157 
158 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
159 			   uint32_t *len, uint32_t sumsize)
160 {
161 	int ret = -EAGAIN;
162 	minsize = PAD(minsize);
163 
164 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
165 
166 	spin_lock(&c->erase_completion_lock);
167 	while(ret == -EAGAIN) {
168 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169 		if (ret) {
170 			D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
171 		}
172 	}
173 	spin_unlock(&c->erase_completion_lock);
174 	if (!ret)
175 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
176 
177 	return ret;
178 }
179 
180 
181 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
182 
183 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
184 {
185 
186 	if (c->nextblock == NULL) {
187 		D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
188 		  jeb->offset));
189 		return;
190 	}
191 	/* Check, if we have a dirty block now, or if it was dirty already */
192 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
193 		c->dirty_size += jeb->wasted_size;
194 		c->wasted_size -= jeb->wasted_size;
195 		jeb->dirty_size += jeb->wasted_size;
196 		jeb->wasted_size = 0;
197 		if (VERYDIRTY(c, jeb->dirty_size)) {
198 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
200 			list_add_tail(&jeb->list, &c->very_dirty_list);
201 		} else {
202 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
204 			list_add_tail(&jeb->list, &c->dirty_list);
205 		}
206 	} else {
207 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208 		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
209 		list_add_tail(&jeb->list, &c->clean_list);
210 	}
211 	c->nextblock = NULL;
212 
213 }
214 
215 /* Select a new jeb for nextblock */
216 
217 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
218 {
219 	struct list_head *next;
220 
221 	/* Take the next block off the 'free' list */
222 
223 	if (list_empty(&c->free_list)) {
224 
225 		if (!c->nr_erasing_blocks &&
226 			!list_empty(&c->erasable_list)) {
227 			struct jffs2_eraseblock *ejeb;
228 
229 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
230 			list_move_tail(&ejeb->list, &c->erase_pending_list);
231 			c->nr_erasing_blocks++;
232 			jffs2_erase_pending_trigger(c);
233 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
234 				  ejeb->offset));
235 		}
236 
237 		if (!c->nr_erasing_blocks &&
238 			!list_empty(&c->erasable_pending_wbuf_list)) {
239 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
240 			/* c->nextblock is NULL, no update to c->nextblock allowed */
241 			spin_unlock(&c->erase_completion_lock);
242 			jffs2_flush_wbuf_pad(c);
243 			spin_lock(&c->erase_completion_lock);
244 			/* Have another go. It'll be on the erasable_list now */
245 			return -EAGAIN;
246 		}
247 
248 		if (!c->nr_erasing_blocks) {
249 			/* Ouch. We're in GC, or we wouldn't have got here.
250 			   And there's no space left. At all. */
251 			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252 				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
253 				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
254 			return -ENOSPC;
255 		}
256 
257 		spin_unlock(&c->erase_completion_lock);
258 		/* Don't wait for it; just erase one right now */
259 		jffs2_erase_pending_blocks(c, 1);
260 		spin_lock(&c->erase_completion_lock);
261 
262 		/* An erase may have failed, decreasing the
263 		   amount of free space available. So we must
264 		   restart from the beginning */
265 		return -EAGAIN;
266 	}
267 
268 	next = c->free_list.next;
269 	list_del(next);
270 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
271 	c->nr_free_blocks--;
272 
273 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
274 
275 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
276 	/* adjust write buffer offset, else we get a non contiguous write bug */
277 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
278 		c->wbuf_ofs = 0xffffffff;
279 #endif
280 
281 	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
282 
283 	return 0;
284 }
285 
286 /* Called with alloc sem _and_ erase_completion_lock */
287 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
288 				  uint32_t *len, uint32_t sumsize)
289 {
290 	struct jffs2_eraseblock *jeb = c->nextblock;
291 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
292 	int ret;
293 
294  restart:
295 	reserved_size = 0;
296 
297 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
298 							/* NOSUM_SIZE means not to generate summary */
299 
300 		if (jeb) {
301 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
302 			dbg_summary("minsize=%d , jeb->free=%d ,"
303 						"summary->size=%d , sumsize=%d\n",
304 						minsize, jeb->free_size,
305 						c->summary->sum_size, sumsize);
306 		}
307 
308 		/* Is there enough space for writing out the current node, or we have to
309 		   write out summary information now, close this jeb and select new nextblock? */
310 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
311 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
312 
313 			/* Has summary been disabled for this jeb? */
314 			if (jffs2_sum_is_disabled(c->summary)) {
315 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
316 				goto restart;
317 			}
318 
319 			/* Writing out the collected summary information */
320 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
321 			ret = jffs2_sum_write_sumnode(c);
322 
323 			if (ret)
324 				return ret;
325 
326 			if (jffs2_sum_is_disabled(c->summary)) {
327 				/* jffs2_write_sumnode() couldn't write out the summary information
328 				   diabling summary for this jeb and free the collected information
329 				 */
330 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
331 				goto restart;
332 			}
333 
334 			jffs2_close_nextblock(c, jeb);
335 			jeb = NULL;
336 			/* keep always valid value in reserved_size */
337 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
338 		}
339 	} else {
340 		if (jeb && minsize > jeb->free_size) {
341 			uint32_t waste;
342 
343 			/* Skip the end of this block and file it as having some dirty space */
344 			/* If there's a pending write to it, flush now */
345 
346 			if (jffs2_wbuf_dirty(c)) {
347 				spin_unlock(&c->erase_completion_lock);
348 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
349 				jffs2_flush_wbuf_pad(c);
350 				spin_lock(&c->erase_completion_lock);
351 				jeb = c->nextblock;
352 				goto restart;
353 			}
354 
355 			spin_unlock(&c->erase_completion_lock);
356 
357 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
358 			if (ret)
359 				return ret;
360 			/* Just lock it again and continue. Nothing much can change because
361 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
362 			   we hold c->erase_completion_lock in the majority of this function...
363 			   but that's a question for another (more caffeine-rich) day. */
364 			spin_lock(&c->erase_completion_lock);
365 
366 			waste = jeb->free_size;
367 			jffs2_link_node_ref(c, jeb,
368 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
369 					    waste, NULL);
370 			/* FIXME: that made it count as dirty. Convert to wasted */
371 			jeb->dirty_size -= waste;
372 			c->dirty_size -= waste;
373 			jeb->wasted_size += waste;
374 			c->wasted_size += waste;
375 
376 			jffs2_close_nextblock(c, jeb);
377 			jeb = NULL;
378 		}
379 	}
380 
381 	if (!jeb) {
382 
383 		ret = jffs2_find_nextblock(c);
384 		if (ret)
385 			return ret;
386 
387 		jeb = c->nextblock;
388 
389 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
391 			goto restart;
392 		}
393 	}
394 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
395 	   enough space */
396 	*len = jeb->free_size - reserved_size;
397 
398 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
399 	    !jeb->first_node->next_in_ino) {
400 		/* Only node in it beforehand was a CLEANMARKER node (we think).
401 		   So mark it obsolete now that there's going to be another node
402 		   in the block. This will reduce used_size to zero but We've
403 		   already set c->nextblock so that jffs2_mark_node_obsolete()
404 		   won't try to refile it to the dirty_list.
405 		*/
406 		spin_unlock(&c->erase_completion_lock);
407 		jffs2_mark_node_obsolete(c, jeb->first_node);
408 		spin_lock(&c->erase_completion_lock);
409 	}
410 
411 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
412 		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
413 	return 0;
414 }
415 
416 /**
417  *	jffs2_add_physical_node_ref - add a physical node reference to the list
418  *	@c: superblock info
419  *	@new: new node reference to add
420  *	@len: length of this physical node
421  *
422  *	Should only be used to report nodes for which space has been allocated
423  *	by jffs2_reserve_space.
424  *
425  *	Must be called with the alloc_sem held.
426  */
427 
428 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
429 						       uint32_t ofs, uint32_t len,
430 						       struct jffs2_inode_cache *ic)
431 {
432 	struct jffs2_eraseblock *jeb;
433 	struct jffs2_raw_node_ref *new;
434 
435 	jeb = &c->blocks[ofs / c->sector_size];
436 
437 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
438 		  ofs & ~3, ofs & 3, len));
439 #if 1
440 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
441 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442 	   even after refiling c->nextblock */
443 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445 		printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
446 		if (c->nextblock)
447 			printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
448 		else
449 			printk(KERN_WARNING "No nextblock");
450 		printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
451 		return ERR_PTR(-EINVAL);
452 	}
453 #endif
454 	spin_lock(&c->erase_completion_lock);
455 
456 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
457 
458 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
462 		if (jffs2_wbuf_dirty(c)) {
463 			/* Flush the last write in the block if it's outstanding */
464 			spin_unlock(&c->erase_completion_lock);
465 			jffs2_flush_wbuf_pad(c);
466 			spin_lock(&c->erase_completion_lock);
467 		}
468 
469 		list_add_tail(&jeb->list, &c->clean_list);
470 		c->nextblock = NULL;
471 	}
472 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
473 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
474 
475 	spin_unlock(&c->erase_completion_lock);
476 
477 	return new;
478 }
479 
480 
481 void jffs2_complete_reservation(struct jffs2_sb_info *c)
482 {
483 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
484 	jffs2_garbage_collect_trigger(c);
485 	mutex_unlock(&c->alloc_sem);
486 }
487 
488 static inline int on_list(struct list_head *obj, struct list_head *head)
489 {
490 	struct list_head *this;
491 
492 	list_for_each(this, head) {
493 		if (this == obj) {
494 			D1(printk("%p is on list at %p\n", obj, head));
495 			return 1;
496 
497 		}
498 	}
499 	return 0;
500 }
501 
502 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
503 {
504 	struct jffs2_eraseblock *jeb;
505 	int blocknr;
506 	struct jffs2_unknown_node n;
507 	int ret, addedsize;
508 	size_t retlen;
509 	uint32_t freed_len;
510 
511 	if(unlikely(!ref)) {
512 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
513 		return;
514 	}
515 	if (ref_obsolete(ref)) {
516 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
517 		return;
518 	}
519 	blocknr = ref->flash_offset / c->sector_size;
520 	if (blocknr >= c->nr_blocks) {
521 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
522 		BUG();
523 	}
524 	jeb = &c->blocks[blocknr];
525 
526 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
527 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
528 		/* Hm. This may confuse static lock analysis. If any of the above
529 		   three conditions is false, we're going to return from this
530 		   function without actually obliterating any nodes or freeing
531 		   any jffs2_raw_node_refs. So we don't need to stop erases from
532 		   happening, or protect against people holding an obsolete
533 		   jffs2_raw_node_ref without the erase_completion_lock. */
534 		mutex_lock(&c->erase_free_sem);
535 	}
536 
537 	spin_lock(&c->erase_completion_lock);
538 
539 	freed_len = ref_totlen(c, jeb, ref);
540 
541 	if (ref_flags(ref) == REF_UNCHECKED) {
542 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
543 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
544 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
545 			BUG();
546 		})
547 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
548 		jeb->unchecked_size -= freed_len;
549 		c->unchecked_size -= freed_len;
550 	} else {
551 		D1(if (unlikely(jeb->used_size < freed_len)) {
552 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
553 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
554 			BUG();
555 		})
556 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
557 		jeb->used_size -= freed_len;
558 		c->used_size -= freed_len;
559 	}
560 
561 	// Take care, that wasted size is taken into concern
562 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
563 		D1(printk("Dirtying\n"));
564 		addedsize = freed_len;
565 		jeb->dirty_size += freed_len;
566 		c->dirty_size += freed_len;
567 
568 		/* Convert wasted space to dirty, if not a bad block */
569 		if (jeb->wasted_size) {
570 			if (on_list(&jeb->list, &c->bad_used_list)) {
571 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
572 					  jeb->offset));
573 				addedsize = 0; /* To fool the refiling code later */
574 			} else {
575 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
576 					  jeb->wasted_size, jeb->offset));
577 				addedsize += jeb->wasted_size;
578 				jeb->dirty_size += jeb->wasted_size;
579 				c->dirty_size += jeb->wasted_size;
580 				c->wasted_size -= jeb->wasted_size;
581 				jeb->wasted_size = 0;
582 			}
583 		}
584 	} else {
585 		D1(printk("Wasting\n"));
586 		addedsize = 0;
587 		jeb->wasted_size += freed_len;
588 		c->wasted_size += freed_len;
589 	}
590 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
591 
592 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
593 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
594 
595 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
596 		/* Flash scanning is in progress. Don't muck about with the block
597 		   lists because they're not ready yet, and don't actually
598 		   obliterate nodes that look obsolete. If they weren't
599 		   marked obsolete on the flash at the time they _became_
600 		   obsolete, there was probably a reason for that. */
601 		spin_unlock(&c->erase_completion_lock);
602 		/* We didn't lock the erase_free_sem */
603 		return;
604 	}
605 
606 	if (jeb == c->nextblock) {
607 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
608 	} else if (!jeb->used_size && !jeb->unchecked_size) {
609 		if (jeb == c->gcblock) {
610 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
611 			c->gcblock = NULL;
612 		} else {
613 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
614 			list_del(&jeb->list);
615 		}
616 		if (jffs2_wbuf_dirty(c)) {
617 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
618 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
619 		} else {
620 			if (jiffies & 127) {
621 				/* Most of the time, we just erase it immediately. Otherwise we
622 				   spend ages scanning it on mount, etc. */
623 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
624 				list_add_tail(&jeb->list, &c->erase_pending_list);
625 				c->nr_erasing_blocks++;
626 				jffs2_erase_pending_trigger(c);
627 			} else {
628 				/* Sometimes, however, we leave it elsewhere so it doesn't get
629 				   immediately reused, and we spread the load a bit. */
630 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
631 				list_add_tail(&jeb->list, &c->erasable_list);
632 			}
633 		}
634 		D1(printk(KERN_DEBUG "Done OK\n"));
635 	} else if (jeb == c->gcblock) {
636 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
637 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
638 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
639 		list_del(&jeb->list);
640 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
641 		list_add_tail(&jeb->list, &c->dirty_list);
642 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
643 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
644 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
645 		list_del(&jeb->list);
646 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
647 		list_add_tail(&jeb->list, &c->very_dirty_list);
648 	} else {
649 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
650 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
651 	}
652 
653 	spin_unlock(&c->erase_completion_lock);
654 
655 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
656 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
657 		/* We didn't lock the erase_free_sem */
658 		return;
659 	}
660 
661 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
662 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
663 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
664 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
665 
666 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
667 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
668 	if (ret) {
669 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
670 		goto out_erase_sem;
671 	}
672 	if (retlen != sizeof(n)) {
673 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
674 		goto out_erase_sem;
675 	}
676 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
677 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
678 		goto out_erase_sem;
679 	}
680 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
681 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
682 		goto out_erase_sem;
683 	}
684 	/* XXX FIXME: This is ugly now */
685 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
686 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
687 	if (ret) {
688 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
689 		goto out_erase_sem;
690 	}
691 	if (retlen != sizeof(n)) {
692 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
693 		goto out_erase_sem;
694 	}
695 
696 	/* Nodes which have been marked obsolete no longer need to be
697 	   associated with any inode. Remove them from the per-inode list.
698 
699 	   Note we can't do this for NAND at the moment because we need
700 	   obsolete dirent nodes to stay on the lists, because of the
701 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
702 	   because we delete the inocache, and on NAND we need that to
703 	   stay around until all the nodes are actually erased, in order
704 	   to stop us from giving the same inode number to another newly
705 	   created inode. */
706 	if (ref->next_in_ino) {
707 		struct jffs2_inode_cache *ic;
708 		struct jffs2_raw_node_ref **p;
709 
710 		spin_lock(&c->erase_completion_lock);
711 
712 		ic = jffs2_raw_ref_to_ic(ref);
713 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
714 			;
715 
716 		*p = ref->next_in_ino;
717 		ref->next_in_ino = NULL;
718 
719 		switch (ic->class) {
720 #ifdef CONFIG_JFFS2_FS_XATTR
721 			case RAWNODE_CLASS_XATTR_DATUM:
722 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
723 				break;
724 			case RAWNODE_CLASS_XATTR_REF:
725 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
726 				break;
727 #endif
728 			default:
729 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
730 					jffs2_del_ino_cache(c, ic);
731 				break;
732 		}
733 		spin_unlock(&c->erase_completion_lock);
734 	}
735 
736  out_erase_sem:
737 	mutex_unlock(&c->erase_free_sem);
738 }
739 
740 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
741 {
742 	int ret = 0;
743 	uint32_t dirty;
744 	int nr_very_dirty = 0;
745 	struct jffs2_eraseblock *jeb;
746 
747 	if (c->unchecked_size) {
748 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
749 			  c->unchecked_size, c->checked_ino));
750 		return 1;
751 	}
752 
753 	/* dirty_size contains blocks on erase_pending_list
754 	 * those blocks are counted in c->nr_erasing_blocks.
755 	 * If one block is actually erased, it is not longer counted as dirty_space
756 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
757 	 * with c->nr_erasing_blocks * c->sector_size again.
758 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
759 	 * This helps us to force gc and pick eventually a clean block to spread the load.
760 	 */
761 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
762 
763 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
764 			(dirty > c->nospc_dirty_size))
765 		ret = 1;
766 
767 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
768 		nr_very_dirty++;
769 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
770 			ret = 1;
771 			/* In debug mode, actually go through and count them all */
772 			D1(continue);
773 			break;
774 		}
775 	}
776 
777 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
778 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
779 
780 	return ret;
781 }
782