xref: /openbmc/linux/fs/jffs2/gc.c (revision 9c261b33)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  *
9  * For licensing information, see the file 'LICENCE' in this directory.
10  *
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/crc32.h>
18 #include <linux/compiler.h>
19 #include <linux/stat.h>
20 #include "nodelist.h"
21 #include "compr.h"
22 
23 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
24 					  struct jffs2_inode_cache *ic,
25 					  struct jffs2_raw_node_ref *raw);
26 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
27 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
28 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
29 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
30 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
31 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
32 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
33 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
34 				      uint32_t start, uint32_t end);
35 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
36 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
37 				       uint32_t start, uint32_t end);
38 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
39 			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
40 
41 /* Called with erase_completion_lock held */
42 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
43 {
44 	struct jffs2_eraseblock *ret;
45 	struct list_head *nextlist = NULL;
46 	int n = jiffies % 128;
47 
48 	/* Pick an eraseblock to garbage collect next. This is where we'll
49 	   put the clever wear-levelling algorithms. Eventually.  */
50 	/* We possibly want to favour the dirtier blocks more when the
51 	   number of free blocks is low. */
52 again:
53 	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
54 		jffs2_dbg(1, "Picking block from bad_used_list to GC next\n");
55 		nextlist = &c->bad_used_list;
56 	} else if (n < 50 && !list_empty(&c->erasable_list)) {
57 		/* Note that most of them will have gone directly to be erased.
58 		   So don't favour the erasable_list _too_ much. */
59 		jffs2_dbg(1, "Picking block from erasable_list to GC next\n");
60 		nextlist = &c->erasable_list;
61 	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
62 		/* Most of the time, pick one off the very_dirty list */
63 		jffs2_dbg(1, "Picking block from very_dirty_list to GC next\n");
64 		nextlist = &c->very_dirty_list;
65 	} else if (n < 126 && !list_empty(&c->dirty_list)) {
66 		jffs2_dbg(1, "Picking block from dirty_list to GC next\n");
67 		nextlist = &c->dirty_list;
68 	} else if (!list_empty(&c->clean_list)) {
69 		jffs2_dbg(1, "Picking block from clean_list to GC next\n");
70 		nextlist = &c->clean_list;
71 	} else if (!list_empty(&c->dirty_list)) {
72 		jffs2_dbg(1, "Picking block from dirty_list to GC next (clean_list was empty)\n");
73 
74 		nextlist = &c->dirty_list;
75 	} else if (!list_empty(&c->very_dirty_list)) {
76 		jffs2_dbg(1, "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n");
77 		nextlist = &c->very_dirty_list;
78 	} else if (!list_empty(&c->erasable_list)) {
79 		jffs2_dbg(1, "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n");
80 
81 		nextlist = &c->erasable_list;
82 	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
83 		/* There are blocks are wating for the wbuf sync */
84 		jffs2_dbg(1, "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n");
85 		spin_unlock(&c->erase_completion_lock);
86 		jffs2_flush_wbuf_pad(c);
87 		spin_lock(&c->erase_completion_lock);
88 		goto again;
89 	} else {
90 		/* Eep. All were empty */
91 		jffs2_dbg(1, "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n");
92 		return NULL;
93 	}
94 
95 	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
96 	list_del(&ret->list);
97 	c->gcblock = ret;
98 	ret->gc_node = ret->first_node;
99 	if (!ret->gc_node) {
100 		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
101 		BUG();
102 	}
103 
104 	/* Have we accidentally picked a clean block with wasted space ? */
105 	if (ret->wasted_size) {
106 		jffs2_dbg(1, "Converting wasted_size %08x to dirty_size\n",
107 			  ret->wasted_size);
108 		ret->dirty_size += ret->wasted_size;
109 		c->wasted_size -= ret->wasted_size;
110 		c->dirty_size += ret->wasted_size;
111 		ret->wasted_size = 0;
112 	}
113 
114 	return ret;
115 }
116 
117 /* jffs2_garbage_collect_pass
118  * Make a single attempt to progress GC. Move one node, and possibly
119  * start erasing one eraseblock.
120  */
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122 {
123 	struct jffs2_inode_info *f;
124 	struct jffs2_inode_cache *ic;
125 	struct jffs2_eraseblock *jeb;
126 	struct jffs2_raw_node_ref *raw;
127 	uint32_t gcblock_dirty;
128 	int ret = 0, inum, nlink;
129 	int xattr = 0;
130 
131 	if (mutex_lock_interruptible(&c->alloc_sem))
132 		return -EINTR;
133 
134 	for (;;) {
135 		spin_lock(&c->erase_completion_lock);
136 		if (!c->unchecked_size)
137 			break;
138 
139 		/* We can't start doing GC yet. We haven't finished checking
140 		   the node CRCs etc. Do it now. */
141 
142 		/* checked_ino is protected by the alloc_sem */
143 		if (c->checked_ino > c->highest_ino && xattr) {
144 			printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
145 			       c->unchecked_size);
146 			jffs2_dbg_dump_block_lists_nolock(c);
147 			spin_unlock(&c->erase_completion_lock);
148 			mutex_unlock(&c->alloc_sem);
149 			return -ENOSPC;
150 		}
151 
152 		spin_unlock(&c->erase_completion_lock);
153 
154 		if (!xattr)
155 			xattr = jffs2_verify_xattr(c);
156 
157 		spin_lock(&c->inocache_lock);
158 
159 		ic = jffs2_get_ino_cache(c, c->checked_ino++);
160 
161 		if (!ic) {
162 			spin_unlock(&c->inocache_lock);
163 			continue;
164 		}
165 
166 		if (!ic->pino_nlink) {
167 			jffs2_dbg(1, "Skipping check of ino #%d with nlink/pino zero\n",
168 				  ic->ino);
169 			spin_unlock(&c->inocache_lock);
170 			jffs2_xattr_delete_inode(c, ic);
171 			continue;
172 		}
173 		switch(ic->state) {
174 		case INO_STATE_CHECKEDABSENT:
175 		case INO_STATE_PRESENT:
176 			jffs2_dbg(1, "Skipping ino #%u already checked\n",
177 				  ic->ino);
178 			spin_unlock(&c->inocache_lock);
179 			continue;
180 
181 		case INO_STATE_GC:
182 		case INO_STATE_CHECKING:
183 			printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
184 			spin_unlock(&c->inocache_lock);
185 			BUG();
186 
187 		case INO_STATE_READING:
188 			/* We need to wait for it to finish, lest we move on
189 			   and trigger the BUG() above while we haven't yet
190 			   finished checking all its nodes */
191 			jffs2_dbg(1, "Waiting for ino #%u to finish reading\n",
192 				  ic->ino);
193 			/* We need to come back again for the _same_ inode. We've
194 			 made no progress in this case, but that should be OK */
195 			c->checked_ino--;
196 
197 			mutex_unlock(&c->alloc_sem);
198 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
199 			return 0;
200 
201 		default:
202 			BUG();
203 
204 		case INO_STATE_UNCHECKED:
205 			;
206 		}
207 		ic->state = INO_STATE_CHECKING;
208 		spin_unlock(&c->inocache_lock);
209 
210 		jffs2_dbg(1, "%s(): triggering inode scan of ino#%u\n",
211 			  __func__, ic->ino);
212 
213 		ret = jffs2_do_crccheck_inode(c, ic);
214 		if (ret)
215 			printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
216 
217 		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
218 		mutex_unlock(&c->alloc_sem);
219 		return ret;
220 	}
221 
222 	/* If there are any blocks which need erasing, erase them now */
223 	if (!list_empty(&c->erase_complete_list) ||
224 	    !list_empty(&c->erase_pending_list)) {
225 		spin_unlock(&c->erase_completion_lock);
226 		mutex_unlock(&c->alloc_sem);
227 		jffs2_dbg(1, "%s(): erasing pending blocks\n", __func__);
228 		if (jffs2_erase_pending_blocks(c, 1))
229 			return 0;
230 
231 		jffs2_dbg(1, "No progress from erasing block; doing GC anyway\n");
232 		spin_lock(&c->erase_completion_lock);
233 		mutex_lock(&c->alloc_sem);
234 	}
235 
236 	/* First, work out which block we're garbage-collecting */
237 	jeb = c->gcblock;
238 
239 	if (!jeb)
240 		jeb = jffs2_find_gc_block(c);
241 
242 	if (!jeb) {
243 		/* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
244 		if (c->nr_erasing_blocks) {
245 			spin_unlock(&c->erase_completion_lock);
246 			mutex_unlock(&c->alloc_sem);
247 			return -EAGAIN;
248 		}
249 		jffs2_dbg(1, "jffs2: Couldn't find erase block to garbage collect!\n");
250 		spin_unlock(&c->erase_completion_lock);
251 		mutex_unlock(&c->alloc_sem);
252 		return -EIO;
253 	}
254 
255 	jffs2_dbg(1, "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n",
256 		  jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size);
257 	D1(if (c->nextblock)
258 	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
259 
260 	if (!jeb->used_size) {
261 		mutex_unlock(&c->alloc_sem);
262 		goto eraseit;
263 	}
264 
265 	raw = jeb->gc_node;
266 	gcblock_dirty = jeb->dirty_size;
267 
268 	while(ref_obsolete(raw)) {
269 		jffs2_dbg(1, "Node at 0x%08x is obsolete... skipping\n",
270 			  ref_offset(raw));
271 		raw = ref_next(raw);
272 		if (unlikely(!raw)) {
273 			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
274 			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
275 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
276 			jeb->gc_node = raw;
277 			spin_unlock(&c->erase_completion_lock);
278 			mutex_unlock(&c->alloc_sem);
279 			BUG();
280 		}
281 	}
282 	jeb->gc_node = raw;
283 
284 	jffs2_dbg(1, "Going to garbage collect node at 0x%08x\n",
285 		  ref_offset(raw));
286 
287 	if (!raw->next_in_ino) {
288 		/* Inode-less node. Clean marker, snapshot or something like that */
289 		spin_unlock(&c->erase_completion_lock);
290 		if (ref_flags(raw) == REF_PRISTINE) {
291 			/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
292 			jffs2_garbage_collect_pristine(c, NULL, raw);
293 		} else {
294 			/* Just mark it obsolete */
295 			jffs2_mark_node_obsolete(c, raw);
296 		}
297 		mutex_unlock(&c->alloc_sem);
298 		goto eraseit_lock;
299 	}
300 
301 	ic = jffs2_raw_ref_to_ic(raw);
302 
303 #ifdef CONFIG_JFFS2_FS_XATTR
304 	/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
305 	 * We can decide whether this node is inode or xattr by ic->class.     */
306 	if (ic->class == RAWNODE_CLASS_XATTR_DATUM
307 	    || ic->class == RAWNODE_CLASS_XATTR_REF) {
308 		spin_unlock(&c->erase_completion_lock);
309 
310 		if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
311 			ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
312 		} else {
313 			ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
314 		}
315 		goto test_gcnode;
316 	}
317 #endif
318 
319 	/* We need to hold the inocache. Either the erase_completion_lock or
320 	   the inocache_lock are sufficient; we trade down since the inocache_lock
321 	   causes less contention. */
322 	spin_lock(&c->inocache_lock);
323 
324 	spin_unlock(&c->erase_completion_lock);
325 
326 	jffs2_dbg(1, "%s(): collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n",
327 		  __func__, jeb->offset, ref_offset(raw), ref_flags(raw),
328 		  ic->ino);
329 
330 	/* Three possibilities:
331 	   1. Inode is already in-core. We must iget it and do proper
332 	      updating to its fragtree, etc.
333 	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
334 	      inocache to prevent a read_inode(), copy the node intact.
335 	   3. Inode is not in-core, node is not pristine. We must iget()
336 	      and take the slow path.
337 	*/
338 
339 	switch(ic->state) {
340 	case INO_STATE_CHECKEDABSENT:
341 		/* It's been checked, but it's not currently in-core.
342 		   We can just copy any pristine nodes, but have
343 		   to prevent anyone else from doing read_inode() while
344 		   we're at it, so we set the state accordingly */
345 		if (ref_flags(raw) == REF_PRISTINE)
346 			ic->state = INO_STATE_GC;
347 		else {
348 			jffs2_dbg(1, "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
349 				  ic->ino);
350 		}
351 		break;
352 
353 	case INO_STATE_PRESENT:
354 		/* It's in-core. GC must iget() it. */
355 		break;
356 
357 	case INO_STATE_UNCHECKED:
358 	case INO_STATE_CHECKING:
359 	case INO_STATE_GC:
360 		/* Should never happen. We should have finished checking
361 		   by the time we actually start doing any GC, and since
362 		   we're holding the alloc_sem, no other garbage collection
363 		   can happen.
364 		*/
365 		printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
366 		       ic->ino, ic->state);
367 		mutex_unlock(&c->alloc_sem);
368 		spin_unlock(&c->inocache_lock);
369 		BUG();
370 
371 	case INO_STATE_READING:
372 		/* Someone's currently trying to read it. We must wait for
373 		   them to finish and then go through the full iget() route
374 		   to do the GC. However, sometimes read_inode() needs to get
375 		   the alloc_sem() (for marking nodes invalid) so we must
376 		   drop the alloc_sem before sleeping. */
377 
378 		mutex_unlock(&c->alloc_sem);
379 		jffs2_dbg(1, "%s(): waiting for ino #%u in state %d\n",
380 			  __func__, ic->ino, ic->state);
381 		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
382 		/* And because we dropped the alloc_sem we must start again from the
383 		   beginning. Ponder chance of livelock here -- we're returning success
384 		   without actually making any progress.
385 
386 		   Q: What are the chances that the inode is back in INO_STATE_READING
387 		   again by the time we next enter this function? And that this happens
388 		   enough times to cause a real delay?
389 
390 		   A: Small enough that I don't care :)
391 		*/
392 		return 0;
393 	}
394 
395 	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
396 	   node intact, and we don't have to muck about with the fragtree etc.
397 	   because we know it's not in-core. If it _was_ in-core, we go through
398 	   all the iget() crap anyway */
399 
400 	if (ic->state == INO_STATE_GC) {
401 		spin_unlock(&c->inocache_lock);
402 
403 		ret = jffs2_garbage_collect_pristine(c, ic, raw);
404 
405 		spin_lock(&c->inocache_lock);
406 		ic->state = INO_STATE_CHECKEDABSENT;
407 		wake_up(&c->inocache_wq);
408 
409 		if (ret != -EBADFD) {
410 			spin_unlock(&c->inocache_lock);
411 			goto test_gcnode;
412 		}
413 
414 		/* Fall through if it wanted us to, with inocache_lock held */
415 	}
416 
417 	/* Prevent the fairly unlikely race where the gcblock is
418 	   entirely obsoleted by the final close of a file which had
419 	   the only valid nodes in the block, followed by erasure,
420 	   followed by freeing of the ic because the erased block(s)
421 	   held _all_ the nodes of that inode.... never been seen but
422 	   it's vaguely possible. */
423 
424 	inum = ic->ino;
425 	nlink = ic->pino_nlink;
426 	spin_unlock(&c->inocache_lock);
427 
428 	f = jffs2_gc_fetch_inode(c, inum, !nlink);
429 	if (IS_ERR(f)) {
430 		ret = PTR_ERR(f);
431 		goto release_sem;
432 	}
433 	if (!f) {
434 		ret = 0;
435 		goto release_sem;
436 	}
437 
438 	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
439 
440 	jffs2_gc_release_inode(c, f);
441 
442  test_gcnode:
443 	if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
444 		/* Eep. This really should never happen. GC is broken */
445 		printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
446 		ret = -ENOSPC;
447 	}
448  release_sem:
449 	mutex_unlock(&c->alloc_sem);
450 
451  eraseit_lock:
452 	/* If we've finished this block, start it erasing */
453 	spin_lock(&c->erase_completion_lock);
454 
455  eraseit:
456 	if (c->gcblock && !c->gcblock->used_size) {
457 		jffs2_dbg(1, "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n",
458 			  c->gcblock->offset);
459 		/* We're GC'ing an empty block? */
460 		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
461 		c->gcblock = NULL;
462 		c->nr_erasing_blocks++;
463 		jffs2_garbage_collect_trigger(c);
464 	}
465 	spin_unlock(&c->erase_completion_lock);
466 
467 	return ret;
468 }
469 
470 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
471 				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
472 {
473 	struct jffs2_node_frag *frag;
474 	struct jffs2_full_dnode *fn = NULL;
475 	struct jffs2_full_dirent *fd;
476 	uint32_t start = 0, end = 0, nrfrags = 0;
477 	int ret = 0;
478 
479 	mutex_lock(&f->sem);
480 
481 	/* Now we have the lock for this inode. Check that it's still the one at the head
482 	   of the list. */
483 
484 	spin_lock(&c->erase_completion_lock);
485 
486 	if (c->gcblock != jeb) {
487 		spin_unlock(&c->erase_completion_lock);
488 		jffs2_dbg(1, "GC block is no longer gcblock. Restart\n");
489 		goto upnout;
490 	}
491 	if (ref_obsolete(raw)) {
492 		spin_unlock(&c->erase_completion_lock);
493 		jffs2_dbg(1, "node to be GC'd was obsoleted in the meantime.\n");
494 		/* They'll call again */
495 		goto upnout;
496 	}
497 	spin_unlock(&c->erase_completion_lock);
498 
499 	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
500 	if (f->metadata && f->metadata->raw == raw) {
501 		fn = f->metadata;
502 		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
503 		goto upnout;
504 	}
505 
506 	/* FIXME. Read node and do lookup? */
507 	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
508 		if (frag->node && frag->node->raw == raw) {
509 			fn = frag->node;
510 			end = frag->ofs + frag->size;
511 			if (!nrfrags++)
512 				start = frag->ofs;
513 			if (nrfrags == frag->node->frags)
514 				break; /* We've found them all */
515 		}
516 	}
517 	if (fn) {
518 		if (ref_flags(raw) == REF_PRISTINE) {
519 			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
520 			if (!ret) {
521 				/* Urgh. Return it sensibly. */
522 				frag->node->raw = f->inocache->nodes;
523 			}
524 			if (ret != -EBADFD)
525 				goto upnout;
526 		}
527 		/* We found a datanode. Do the GC */
528 		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
529 			/* It crosses a page boundary. Therefore, it must be a hole. */
530 			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
531 		} else {
532 			/* It could still be a hole. But we GC the page this way anyway */
533 			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
534 		}
535 		goto upnout;
536 	}
537 
538 	/* Wasn't a dnode. Try dirent */
539 	for (fd = f->dents; fd; fd=fd->next) {
540 		if (fd->raw == raw)
541 			break;
542 	}
543 
544 	if (fd && fd->ino) {
545 		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
546 	} else if (fd) {
547 		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
548 	} else {
549 		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
550 		       ref_offset(raw), f->inocache->ino);
551 		if (ref_obsolete(raw)) {
552 			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
553 		} else {
554 			jffs2_dbg_dump_node(c, ref_offset(raw));
555 			BUG();
556 		}
557 	}
558  upnout:
559 	mutex_unlock(&f->sem);
560 
561 	return ret;
562 }
563 
564 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
565 					  struct jffs2_inode_cache *ic,
566 					  struct jffs2_raw_node_ref *raw)
567 {
568 	union jffs2_node_union *node;
569 	size_t retlen;
570 	int ret;
571 	uint32_t phys_ofs, alloclen;
572 	uint32_t crc, rawlen;
573 	int retried = 0;
574 
575 	jffs2_dbg(1, "Going to GC REF_PRISTINE node at 0x%08x\n",
576 		  ref_offset(raw));
577 
578 	alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
579 
580 	/* Ask for a small amount of space (or the totlen if smaller) because we
581 	   don't want to force wastage of the end of a block if splitting would
582 	   work. */
583 	if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
584 		alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
585 
586 	ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
587 	/* 'rawlen' is not the exact summary size; it is only an upper estimation */
588 
589 	if (ret)
590 		return ret;
591 
592 	if (alloclen < rawlen) {
593 		/* Doesn't fit untouched. We'll go the old route and split it */
594 		return -EBADFD;
595 	}
596 
597 	node = kmalloc(rawlen, GFP_KERNEL);
598 	if (!node)
599 		return -ENOMEM;
600 
601 	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
602 	if (!ret && retlen != rawlen)
603 		ret = -EIO;
604 	if (ret)
605 		goto out_node;
606 
607 	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
608 	if (je32_to_cpu(node->u.hdr_crc) != crc) {
609 		printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
610 		       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
611 		goto bail;
612 	}
613 
614 	switch(je16_to_cpu(node->u.nodetype)) {
615 	case JFFS2_NODETYPE_INODE:
616 		crc = crc32(0, node, sizeof(node->i)-8);
617 		if (je32_to_cpu(node->i.node_crc) != crc) {
618 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
619 			       ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
620 			goto bail;
621 		}
622 
623 		if (je32_to_cpu(node->i.dsize)) {
624 			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
625 			if (je32_to_cpu(node->i.data_crc) != crc) {
626 				printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
627 				       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
628 				goto bail;
629 			}
630 		}
631 		break;
632 
633 	case JFFS2_NODETYPE_DIRENT:
634 		crc = crc32(0, node, sizeof(node->d)-8);
635 		if (je32_to_cpu(node->d.node_crc) != crc) {
636 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
637 			       ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
638 			goto bail;
639 		}
640 
641 		if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
642 			printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
643 			goto bail;
644 		}
645 
646 		if (node->d.nsize) {
647 			crc = crc32(0, node->d.name, node->d.nsize);
648 			if (je32_to_cpu(node->d.name_crc) != crc) {
649 				printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
650 				       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
651 				goto bail;
652 			}
653 		}
654 		break;
655 	default:
656 		/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
657 		if (ic) {
658 			printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
659 			       ref_offset(raw), je16_to_cpu(node->u.nodetype));
660 			goto bail;
661 		}
662 	}
663 
664 	/* OK, all the CRCs are good; this node can just be copied as-is. */
665  retry:
666 	phys_ofs = write_ofs(c);
667 
668 	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
669 
670 	if (ret || (retlen != rawlen)) {
671 		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
672 		       rawlen, phys_ofs, ret, retlen);
673 		if (retlen) {
674 			jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
675 		} else {
676 			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
677 		}
678 		if (!retried) {
679 			/* Try to reallocate space and retry */
680 			uint32_t dummy;
681 			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
682 
683 			retried = 1;
684 
685 			jffs2_dbg(1, "Retrying failed write of REF_PRISTINE node.\n");
686 
687 			jffs2_dbg_acct_sanity_check(c,jeb);
688 			jffs2_dbg_acct_paranoia_check(c, jeb);
689 
690 			ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
691 						/* this is not the exact summary size of it,
692 							it is only an upper estimation */
693 
694 			if (!ret) {
695 				jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write.\n",
696 					  phys_ofs);
697 
698 				jffs2_dbg_acct_sanity_check(c,jeb);
699 				jffs2_dbg_acct_paranoia_check(c, jeb);
700 
701 				goto retry;
702 			}
703 			jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
704 				  ret);
705 		}
706 
707 		if (!ret)
708 			ret = -EIO;
709 		goto out_node;
710 	}
711 	jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
712 
713 	jffs2_mark_node_obsolete(c, raw);
714 	jffs2_dbg(1, "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n",
715 		  ref_offset(raw));
716 
717  out_node:
718 	kfree(node);
719 	return ret;
720  bail:
721 	ret = -EBADFD;
722 	goto out_node;
723 }
724 
725 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
726 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
727 {
728 	struct jffs2_full_dnode *new_fn;
729 	struct jffs2_raw_inode ri;
730 	struct jffs2_node_frag *last_frag;
731 	union jffs2_device_node dev;
732 	char *mdata = NULL;
733 	int mdatalen = 0;
734 	uint32_t alloclen, ilen;
735 	int ret;
736 
737 	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
738 	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
739 		/* For these, we don't actually need to read the old node */
740 		mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
741 		mdata = (char *)&dev;
742 		jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
743 			  __func__, mdatalen);
744 	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
745 		mdatalen = fn->size;
746 		mdata = kmalloc(fn->size, GFP_KERNEL);
747 		if (!mdata) {
748 			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
749 			return -ENOMEM;
750 		}
751 		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
752 		if (ret) {
753 			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
754 			kfree(mdata);
755 			return ret;
756 		}
757 		jffs2_dbg(1, "%s(): Writing %d bites of symlink target\n",
758 			  __func__, mdatalen);
759 
760 	}
761 
762 	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
763 				JFFS2_SUMMARY_INODE_SIZE);
764 	if (ret) {
765 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
766 		       sizeof(ri)+ mdatalen, ret);
767 		goto out;
768 	}
769 
770 	last_frag = frag_last(&f->fragtree);
771 	if (last_frag)
772 		/* Fetch the inode length from the fragtree rather then
773 		 * from i_size since i_size may have not been updated yet */
774 		ilen = last_frag->ofs + last_frag->size;
775 	else
776 		ilen = JFFS2_F_I_SIZE(f);
777 
778 	memset(&ri, 0, sizeof(ri));
779 	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
780 	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
781 	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
782 	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
783 
784 	ri.ino = cpu_to_je32(f->inocache->ino);
785 	ri.version = cpu_to_je32(++f->highest_version);
786 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
787 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
788 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
789 	ri.isize = cpu_to_je32(ilen);
790 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
791 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
792 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
793 	ri.offset = cpu_to_je32(0);
794 	ri.csize = cpu_to_je32(mdatalen);
795 	ri.dsize = cpu_to_je32(mdatalen);
796 	ri.compr = JFFS2_COMPR_NONE;
797 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
798 	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
799 
800 	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
801 
802 	if (IS_ERR(new_fn)) {
803 		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
804 		ret = PTR_ERR(new_fn);
805 		goto out;
806 	}
807 	jffs2_mark_node_obsolete(c, fn->raw);
808 	jffs2_free_full_dnode(fn);
809 	f->metadata = new_fn;
810  out:
811 	if (S_ISLNK(JFFS2_F_I_MODE(f)))
812 		kfree(mdata);
813 	return ret;
814 }
815 
816 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
817 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
818 {
819 	struct jffs2_full_dirent *new_fd;
820 	struct jffs2_raw_dirent rd;
821 	uint32_t alloclen;
822 	int ret;
823 
824 	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
825 	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
826 	rd.nsize = strlen(fd->name);
827 	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
828 	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
829 
830 	rd.pino = cpu_to_je32(f->inocache->ino);
831 	rd.version = cpu_to_je32(++f->highest_version);
832 	rd.ino = cpu_to_je32(fd->ino);
833 	/* If the times on this inode were set by explicit utime() they can be different,
834 	   so refrain from splatting them. */
835 	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
836 		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
837 	else
838 		rd.mctime = cpu_to_je32(0);
839 	rd.type = fd->type;
840 	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
841 	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
842 
843 	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
844 				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
845 	if (ret) {
846 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
847 		       sizeof(rd)+rd.nsize, ret);
848 		return ret;
849 	}
850 	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
851 
852 	if (IS_ERR(new_fd)) {
853 		printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
854 		return PTR_ERR(new_fd);
855 	}
856 	jffs2_add_fd_to_list(c, new_fd, &f->dents);
857 	return 0;
858 }
859 
860 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
861 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
862 {
863 	struct jffs2_full_dirent **fdp = &f->dents;
864 	int found = 0;
865 
866 	/* On a medium where we can't actually mark nodes obsolete
867 	   pernamently, such as NAND flash, we need to work out
868 	   whether this deletion dirent is still needed to actively
869 	   delete a 'real' dirent with the same name that's still
870 	   somewhere else on the flash. */
871 	if (!jffs2_can_mark_obsolete(c)) {
872 		struct jffs2_raw_dirent *rd;
873 		struct jffs2_raw_node_ref *raw;
874 		int ret;
875 		size_t retlen;
876 		int name_len = strlen(fd->name);
877 		uint32_t name_crc = crc32(0, fd->name, name_len);
878 		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
879 
880 		rd = kmalloc(rawlen, GFP_KERNEL);
881 		if (!rd)
882 			return -ENOMEM;
883 
884 		/* Prevent the erase code from nicking the obsolete node refs while
885 		   we're looking at them. I really don't like this extra lock but
886 		   can't see any alternative. Suggestions on a postcard to... */
887 		mutex_lock(&c->erase_free_sem);
888 
889 		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
890 
891 			cond_resched();
892 
893 			/* We only care about obsolete ones */
894 			if (!(ref_obsolete(raw)))
895 				continue;
896 
897 			/* Any dirent with the same name is going to have the same length... */
898 			if (ref_totlen(c, NULL, raw) != rawlen)
899 				continue;
900 
901 			/* Doesn't matter if there's one in the same erase block. We're going to
902 			   delete it too at the same time. */
903 			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
904 				continue;
905 
906 			jffs2_dbg(1, "Check potential deletion dirent at %08x\n",
907 				  ref_offset(raw));
908 
909 			/* This is an obsolete node belonging to the same directory, and it's of the right
910 			   length. We need to take a closer look...*/
911 			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
912 			if (ret) {
913 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
914 				/* If we can't read it, we don't need to continue to obsolete it. Continue */
915 				continue;
916 			}
917 			if (retlen != rawlen) {
918 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
919 				       retlen, rawlen, ref_offset(raw));
920 				continue;
921 			}
922 
923 			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
924 				continue;
925 
926 			/* If the name CRC doesn't match, skip */
927 			if (je32_to_cpu(rd->name_crc) != name_crc)
928 				continue;
929 
930 			/* If the name length doesn't match, or it's another deletion dirent, skip */
931 			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
932 				continue;
933 
934 			/* OK, check the actual name now */
935 			if (memcmp(rd->name, fd->name, name_len))
936 				continue;
937 
938 			/* OK. The name really does match. There really is still an older node on
939 			   the flash which our deletion dirent obsoletes. So we have to write out
940 			   a new deletion dirent to replace it */
941 			mutex_unlock(&c->erase_free_sem);
942 
943 			jffs2_dbg(1, "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
944 				  ref_offset(fd->raw), fd->name,
945 				  ref_offset(raw), je32_to_cpu(rd->ino));
946 			kfree(rd);
947 
948 			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
949 		}
950 
951 		mutex_unlock(&c->erase_free_sem);
952 		kfree(rd);
953 	}
954 
955 	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
956 	   we should update the metadata node with those times accordingly */
957 
958 	/* No need for it any more. Just mark it obsolete and remove it from the list */
959 	while (*fdp) {
960 		if ((*fdp) == fd) {
961 			found = 1;
962 			*fdp = fd->next;
963 			break;
964 		}
965 		fdp = &(*fdp)->next;
966 	}
967 	if (!found) {
968 		printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
969 	}
970 	jffs2_mark_node_obsolete(c, fd->raw);
971 	jffs2_free_full_dirent(fd);
972 	return 0;
973 }
974 
975 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
976 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
977 				      uint32_t start, uint32_t end)
978 {
979 	struct jffs2_raw_inode ri;
980 	struct jffs2_node_frag *frag;
981 	struct jffs2_full_dnode *new_fn;
982 	uint32_t alloclen, ilen;
983 	int ret;
984 
985 	jffs2_dbg(1, "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
986 		  f->inocache->ino, start, end);
987 
988 	memset(&ri, 0, sizeof(ri));
989 
990 	if(fn->frags > 1) {
991 		size_t readlen;
992 		uint32_t crc;
993 		/* It's partially obsoleted by a later write. So we have to
994 		   write it out again with the _same_ version as before */
995 		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
996 		if (readlen != sizeof(ri) || ret) {
997 			printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
998 			goto fill;
999 		}
1000 		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
1001 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
1002 			       ref_offset(fn->raw),
1003 			       je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
1004 			return -EIO;
1005 		}
1006 		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
1007 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
1008 			       ref_offset(fn->raw),
1009 			       je32_to_cpu(ri.totlen), sizeof(ri));
1010 			return -EIO;
1011 		}
1012 		crc = crc32(0, &ri, sizeof(ri)-8);
1013 		if (crc != je32_to_cpu(ri.node_crc)) {
1014 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
1015 			       ref_offset(fn->raw),
1016 			       je32_to_cpu(ri.node_crc), crc);
1017 			/* FIXME: We could possibly deal with this by writing new holes for each frag */
1018 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1019 			       start, end, f->inocache->ino);
1020 			goto fill;
1021 		}
1022 		if (ri.compr != JFFS2_COMPR_ZERO) {
1023 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
1024 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1025 			       start, end, f->inocache->ino);
1026 			goto fill;
1027 		}
1028 	} else {
1029 	fill:
1030 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1031 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1032 		ri.totlen = cpu_to_je32(sizeof(ri));
1033 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1034 
1035 		ri.ino = cpu_to_je32(f->inocache->ino);
1036 		ri.version = cpu_to_je32(++f->highest_version);
1037 		ri.offset = cpu_to_je32(start);
1038 		ri.dsize = cpu_to_je32(end - start);
1039 		ri.csize = cpu_to_je32(0);
1040 		ri.compr = JFFS2_COMPR_ZERO;
1041 	}
1042 
1043 	frag = frag_last(&f->fragtree);
1044 	if (frag)
1045 		/* Fetch the inode length from the fragtree rather then
1046 		 * from i_size since i_size may have not been updated yet */
1047 		ilen = frag->ofs + frag->size;
1048 	else
1049 		ilen = JFFS2_F_I_SIZE(f);
1050 
1051 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1052 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1053 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1054 	ri.isize = cpu_to_je32(ilen);
1055 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1056 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1057 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1058 	ri.data_crc = cpu_to_je32(0);
1059 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1060 
1061 	ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1062 				     JFFS2_SUMMARY_INODE_SIZE);
1063 	if (ret) {
1064 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1065 		       sizeof(ri), ret);
1066 		return ret;
1067 	}
1068 	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1069 
1070 	if (IS_ERR(new_fn)) {
1071 		printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1072 		return PTR_ERR(new_fn);
1073 	}
1074 	if (je32_to_cpu(ri.version) == f->highest_version) {
1075 		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1076 		if (f->metadata) {
1077 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1078 			jffs2_free_full_dnode(f->metadata);
1079 			f->metadata = NULL;
1080 		}
1081 		return 0;
1082 	}
1083 
1084 	/*
1085 	 * We should only get here in the case where the node we are
1086 	 * replacing had more than one frag, so we kept the same version
1087 	 * number as before. (Except in case of error -- see 'goto fill;'
1088 	 * above.)
1089 	 */
1090 	D1(if(unlikely(fn->frags <= 1)) {
1091 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1092 		       fn->frags, je32_to_cpu(ri.version), f->highest_version,
1093 		       je32_to_cpu(ri.ino));
1094 	});
1095 
1096 	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1097 	mark_ref_normal(new_fn->raw);
1098 
1099 	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1100 	     frag; frag = frag_next(frag)) {
1101 		if (frag->ofs > fn->size + fn->ofs)
1102 			break;
1103 		if (frag->node == fn) {
1104 			frag->node = new_fn;
1105 			new_fn->frags++;
1106 			fn->frags--;
1107 		}
1108 	}
1109 	if (fn->frags) {
1110 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1111 		BUG();
1112 	}
1113 	if (!new_fn->frags) {
1114 		printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1115 		BUG();
1116 	}
1117 
1118 	jffs2_mark_node_obsolete(c, fn->raw);
1119 	jffs2_free_full_dnode(fn);
1120 
1121 	return 0;
1122 }
1123 
1124 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1125 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1126 				       uint32_t start, uint32_t end)
1127 {
1128 	struct jffs2_full_dnode *new_fn;
1129 	struct jffs2_raw_inode ri;
1130 	uint32_t alloclen, offset, orig_end, orig_start;
1131 	int ret = 0;
1132 	unsigned char *comprbuf = NULL, *writebuf;
1133 	unsigned long pg;
1134 	unsigned char *pg_ptr;
1135 
1136 	memset(&ri, 0, sizeof(ri));
1137 
1138 	jffs2_dbg(1, "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1139 		  f->inocache->ino, start, end);
1140 
1141 	orig_end = end;
1142 	orig_start = start;
1143 
1144 	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1145 		/* Attempt to do some merging. But only expand to cover logically
1146 		   adjacent frags if the block containing them is already considered
1147 		   to be dirty. Otherwise we end up with GC just going round in
1148 		   circles dirtying the nodes it already wrote out, especially
1149 		   on NAND where we have small eraseblocks and hence a much higher
1150 		   chance of nodes having to be split to cross boundaries. */
1151 
1152 		struct jffs2_node_frag *frag;
1153 		uint32_t min, max;
1154 
1155 		min = start & ~(PAGE_CACHE_SIZE-1);
1156 		max = min + PAGE_CACHE_SIZE;
1157 
1158 		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1159 
1160 		/* BUG_ON(!frag) but that'll happen anyway... */
1161 
1162 		BUG_ON(frag->ofs != start);
1163 
1164 		/* First grow down... */
1165 		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1166 
1167 			/* If the previous frag doesn't even reach the beginning, there's
1168 			   excessive fragmentation. Just merge. */
1169 			if (frag->ofs > min) {
1170 				jffs2_dbg(1, "Expanding down to cover partial frag (0x%x-0x%x)\n",
1171 					  frag->ofs, frag->ofs+frag->size);
1172 				start = frag->ofs;
1173 				continue;
1174 			}
1175 			/* OK. This frag holds the first byte of the page. */
1176 			if (!frag->node || !frag->node->raw) {
1177 				jffs2_dbg(1, "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1178 					  frag->ofs, frag->ofs+frag->size);
1179 				break;
1180 			} else {
1181 
1182 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1183 				   in a block which is still considered clean? If so, don't obsolete it.
1184 				   If not, cover it anyway. */
1185 
1186 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1187 				struct jffs2_eraseblock *jeb;
1188 
1189 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1190 
1191 				if (jeb == c->gcblock) {
1192 					jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1193 						  frag->ofs,
1194 						  frag->ofs + frag->size,
1195 						  ref_offset(raw));
1196 					start = frag->ofs;
1197 					break;
1198 				}
1199 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1200 					jffs2_dbg(1, "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1201 						  frag->ofs,
1202 						  frag->ofs + frag->size,
1203 						  jeb->offset);
1204 					break;
1205 				}
1206 
1207 				jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1208 					  frag->ofs,
1209 					  frag->ofs + frag->size,
1210 					  jeb->offset);
1211 				start = frag->ofs;
1212 				break;
1213 			}
1214 		}
1215 
1216 		/* ... then up */
1217 
1218 		/* Find last frag which is actually part of the node we're to GC. */
1219 		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1220 
1221 		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1222 
1223 			/* If the previous frag doesn't even reach the beginning, there's lots
1224 			   of fragmentation. Just merge. */
1225 			if (frag->ofs+frag->size < max) {
1226 				jffs2_dbg(1, "Expanding up to cover partial frag (0x%x-0x%x)\n",
1227 					  frag->ofs, frag->ofs+frag->size);
1228 				end = frag->ofs + frag->size;
1229 				continue;
1230 			}
1231 
1232 			if (!frag->node || !frag->node->raw) {
1233 				jffs2_dbg(1, "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1234 					  frag->ofs, frag->ofs+frag->size);
1235 				break;
1236 			} else {
1237 
1238 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1239 				   in a block which is still considered clean? If so, don't obsolete it.
1240 				   If not, cover it anyway. */
1241 
1242 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1243 				struct jffs2_eraseblock *jeb;
1244 
1245 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1246 
1247 				if (jeb == c->gcblock) {
1248 					jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1249 						  frag->ofs,
1250 						  frag->ofs + frag->size,
1251 						  ref_offset(raw));
1252 					end = frag->ofs + frag->size;
1253 					break;
1254 				}
1255 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1256 					jffs2_dbg(1, "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1257 						  frag->ofs,
1258 						  frag->ofs + frag->size,
1259 						  jeb->offset);
1260 					break;
1261 				}
1262 
1263 				jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1264 					  frag->ofs,
1265 					  frag->ofs + frag->size,
1266 					  jeb->offset);
1267 				end = frag->ofs + frag->size;
1268 				break;
1269 			}
1270 		}
1271 		jffs2_dbg(1, "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1272 			  orig_start, orig_end, start, end);
1273 
1274 		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1275 		BUG_ON(end < orig_end);
1276 		BUG_ON(start > orig_start);
1277 	}
1278 
1279 	/* First, use readpage() to read the appropriate page into the page cache */
1280 	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1281 	 *    triggered garbage collection in the first place?
1282 	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1283 	 *    page OK. We'll actually write it out again in commit_write, which is a little
1284 	 *    suboptimal, but at least we're correct.
1285 	 */
1286 	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1287 
1288 	if (IS_ERR(pg_ptr)) {
1289 		printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1290 		return PTR_ERR(pg_ptr);
1291 	}
1292 
1293 	offset = start;
1294 	while(offset < orig_end) {
1295 		uint32_t datalen;
1296 		uint32_t cdatalen;
1297 		uint16_t comprtype = JFFS2_COMPR_NONE;
1298 
1299 		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1300 					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
1301 
1302 		if (ret) {
1303 			printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1304 			       sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1305 			break;
1306 		}
1307 		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1308 		datalen = end - offset;
1309 
1310 		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1311 
1312 		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1313 
1314 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1315 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1316 		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1317 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1318 
1319 		ri.ino = cpu_to_je32(f->inocache->ino);
1320 		ri.version = cpu_to_je32(++f->highest_version);
1321 		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1322 		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1323 		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1324 		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1325 		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1326 		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1327 		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1328 		ri.offset = cpu_to_je32(offset);
1329 		ri.csize = cpu_to_je32(cdatalen);
1330 		ri.dsize = cpu_to_je32(datalen);
1331 		ri.compr = comprtype & 0xff;
1332 		ri.usercompr = (comprtype >> 8) & 0xff;
1333 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1334 		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1335 
1336 		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1337 
1338 		jffs2_free_comprbuf(comprbuf, writebuf);
1339 
1340 		if (IS_ERR(new_fn)) {
1341 			printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1342 			ret = PTR_ERR(new_fn);
1343 			break;
1344 		}
1345 		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1346 		offset += datalen;
1347 		if (f->metadata) {
1348 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1349 			jffs2_free_full_dnode(f->metadata);
1350 			f->metadata = NULL;
1351 		}
1352 	}
1353 
1354 	jffs2_gc_release_page(c, pg_ptr, &pg);
1355 	return ret;
1356 }
1357