xref: /openbmc/linux/fs/jffs2/gc.c (revision 730554d9)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: gc.c,v 1.149 2005/07/17 06:56:21 dedekind Exp $
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
23 
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 					  struct jffs2_inode_cache *ic,
26 					  struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 				      uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 				       uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
40 			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41 
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44 {
45 	struct jffs2_eraseblock *ret;
46 	struct list_head *nextlist = NULL;
47 	int n = jiffies % 128;
48 
49 	/* Pick an eraseblock to garbage collect next. This is where we'll
50 	   put the clever wear-levelling algorithms. Eventually.  */
51 	/* We possibly want to favour the dirtier blocks more when the
52 	   number of free blocks is low. */
53 again:
54 	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 		D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 		nextlist = &c->bad_used_list;
57 	} else if (n < 50 && !list_empty(&c->erasable_list)) {
58 		/* Note that most of them will have gone directly to be erased.
59 		   So don't favour the erasable_list _too_ much. */
60 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 		nextlist = &c->erasable_list;
62 	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 		/* Most of the time, pick one off the very_dirty list */
64 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 		nextlist = &c->very_dirty_list;
66 	} else if (n < 126 && !list_empty(&c->dirty_list)) {
67 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 		nextlist = &c->dirty_list;
69 	} else if (!list_empty(&c->clean_list)) {
70 		D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 		nextlist = &c->clean_list;
72 	} else if (!list_empty(&c->dirty_list)) {
73 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74 
75 		nextlist = &c->dirty_list;
76 	} else if (!list_empty(&c->very_dirty_list)) {
77 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 		nextlist = &c->very_dirty_list;
79 	} else if (!list_empty(&c->erasable_list)) {
80 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81 
82 		nextlist = &c->erasable_list;
83 	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 		/* There are blocks are wating for the wbuf sync */
85 		D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 		spin_unlock(&c->erase_completion_lock);
87 		jffs2_flush_wbuf_pad(c);
88 		spin_lock(&c->erase_completion_lock);
89 		goto again;
90 	} else {
91 		/* Eep. All were empty */
92 		D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 		return NULL;
94 	}
95 
96 	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 	list_del(&ret->list);
98 	c->gcblock = ret;
99 	ret->gc_node = ret->first_node;
100 	if (!ret->gc_node) {
101 		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 		BUG();
103 	}
104 
105 	/* Have we accidentally picked a clean block with wasted space ? */
106 	if (ret->wasted_size) {
107 		D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 		ret->dirty_size += ret->wasted_size;
109 		c->wasted_size -= ret->wasted_size;
110 		c->dirty_size += ret->wasted_size;
111 		ret->wasted_size = 0;
112 	}
113 
114 	D2(jffs2_dbg_dump_block_lists(c));
115 	return ret;
116 }
117 
118 /* jffs2_garbage_collect_pass
119  * Make a single attempt to progress GC. Move one node, and possibly
120  * start erasing one eraseblock.
121  */
122 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
123 {
124 	struct jffs2_inode_info *f;
125 	struct jffs2_inode_cache *ic;
126 	struct jffs2_eraseblock *jeb;
127 	struct jffs2_raw_node_ref *raw;
128 	int ret = 0, inum, nlink;
129 
130 	if (down_interruptible(&c->alloc_sem))
131 		return -EINTR;
132 
133 	for (;;) {
134 		spin_lock(&c->erase_completion_lock);
135 		if (!c->unchecked_size)
136 			break;
137 
138 		/* We can't start doing GC yet. We haven't finished checking
139 		   the node CRCs etc. Do it now. */
140 
141 		/* checked_ino is protected by the alloc_sem */
142 		if (c->checked_ino > c->highest_ino) {
143 			printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
144 			       c->unchecked_size);
145 			D2(jffs2_dbg_dump_block_lists(c));
146 			spin_unlock(&c->erase_completion_lock);
147 			BUG();
148 		}
149 
150 		spin_unlock(&c->erase_completion_lock);
151 
152 		spin_lock(&c->inocache_lock);
153 
154 		ic = jffs2_get_ino_cache(c, c->checked_ino++);
155 
156 		if (!ic) {
157 			spin_unlock(&c->inocache_lock);
158 			continue;
159 		}
160 
161 		if (!ic->nlink) {
162 			D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
163 				  ic->ino));
164 			spin_unlock(&c->inocache_lock);
165 			continue;
166 		}
167 		switch(ic->state) {
168 		case INO_STATE_CHECKEDABSENT:
169 		case INO_STATE_PRESENT:
170 			D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
171 			spin_unlock(&c->inocache_lock);
172 			continue;
173 
174 		case INO_STATE_GC:
175 		case INO_STATE_CHECKING:
176 			printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
177 			spin_unlock(&c->inocache_lock);
178 			BUG();
179 
180 		case INO_STATE_READING:
181 			/* We need to wait for it to finish, lest we move on
182 			   and trigger the BUG() above while we haven't yet
183 			   finished checking all its nodes */
184 			D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
185 			up(&c->alloc_sem);
186 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
187 			return 0;
188 
189 		default:
190 			BUG();
191 
192 		case INO_STATE_UNCHECKED:
193 			;
194 		}
195 		ic->state = INO_STATE_CHECKING;
196 		spin_unlock(&c->inocache_lock);
197 
198 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
199 
200 		ret = jffs2_do_crccheck_inode(c, ic);
201 		if (ret)
202 			printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
203 
204 		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
205 		up(&c->alloc_sem);
206 		return ret;
207 	}
208 
209 	/* First, work out which block we're garbage-collecting */
210 	jeb = c->gcblock;
211 
212 	if (!jeb)
213 		jeb = jffs2_find_gc_block(c);
214 
215 	if (!jeb) {
216 		D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
217 		spin_unlock(&c->erase_completion_lock);
218 		up(&c->alloc_sem);
219 		return -EIO;
220 	}
221 
222 	D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
223 	D1(if (c->nextblock)
224 	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
225 
226 	if (!jeb->used_size) {
227 		up(&c->alloc_sem);
228 		goto eraseit;
229 	}
230 
231 	raw = jeb->gc_node;
232 
233 	while(ref_obsolete(raw)) {
234 		D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
235 		raw = raw->next_phys;
236 		if (unlikely(!raw)) {
237 			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
238 			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
239 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
240 			jeb->gc_node = raw;
241 			spin_unlock(&c->erase_completion_lock);
242 			up(&c->alloc_sem);
243 			BUG();
244 		}
245 	}
246 	jeb->gc_node = raw;
247 
248 	D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
249 
250 	if (!raw->next_in_ino) {
251 		/* Inode-less node. Clean marker, snapshot or something like that */
252 		/* FIXME: If it's something that needs to be copied, including something
253 		   we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
254 		spin_unlock(&c->erase_completion_lock);
255 		jffs2_mark_node_obsolete(c, raw);
256 		up(&c->alloc_sem);
257 		goto eraseit_lock;
258 	}
259 
260 	ic = jffs2_raw_ref_to_ic(raw);
261 
262 	/* We need to hold the inocache. Either the erase_completion_lock or
263 	   the inocache_lock are sufficient; we trade down since the inocache_lock
264 	   causes less contention. */
265 	spin_lock(&c->inocache_lock);
266 
267 	spin_unlock(&c->erase_completion_lock);
268 
269 	D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
270 
271 	/* Three possibilities:
272 	   1. Inode is already in-core. We must iget it and do proper
273 	      updating to its fragtree, etc.
274 	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
275 	      inocache to prevent a read_inode(), copy the node intact.
276 	   3. Inode is not in-core, node is not pristine. We must iget()
277 	      and take the slow path.
278 	*/
279 
280 	switch(ic->state) {
281 	case INO_STATE_CHECKEDABSENT:
282 		/* It's been checked, but it's not currently in-core.
283 		   We can just copy any pristine nodes, but have
284 		   to prevent anyone else from doing read_inode() while
285 		   we're at it, so we set the state accordingly */
286 		if (ref_flags(raw) == REF_PRISTINE)
287 			ic->state = INO_STATE_GC;
288 		else {
289 			D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
290 				  ic->ino));
291 		}
292 		break;
293 
294 	case INO_STATE_PRESENT:
295 		/* It's in-core. GC must iget() it. */
296 		break;
297 
298 	case INO_STATE_UNCHECKED:
299 	case INO_STATE_CHECKING:
300 	case INO_STATE_GC:
301 		/* Should never happen. We should have finished checking
302 		   by the time we actually start doing any GC, and since
303 		   we're holding the alloc_sem, no other garbage collection
304 		   can happen.
305 		*/
306 		printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
307 		       ic->ino, ic->state);
308 		up(&c->alloc_sem);
309 		spin_unlock(&c->inocache_lock);
310 		BUG();
311 
312 	case INO_STATE_READING:
313 		/* Someone's currently trying to read it. We must wait for
314 		   them to finish and then go through the full iget() route
315 		   to do the GC. However, sometimes read_inode() needs to get
316 		   the alloc_sem() (for marking nodes invalid) so we must
317 		   drop the alloc_sem before sleeping. */
318 
319 		up(&c->alloc_sem);
320 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
321 			  ic->ino, ic->state));
322 		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
323 		/* And because we dropped the alloc_sem we must start again from the
324 		   beginning. Ponder chance of livelock here -- we're returning success
325 		   without actually making any progress.
326 
327 		   Q: What are the chances that the inode is back in INO_STATE_READING
328 		   again by the time we next enter this function? And that this happens
329 		   enough times to cause a real delay?
330 
331 		   A: Small enough that I don't care :)
332 		*/
333 		return 0;
334 	}
335 
336 	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
337 	   node intact, and we don't have to muck about with the fragtree etc.
338 	   because we know it's not in-core. If it _was_ in-core, we go through
339 	   all the iget() crap anyway */
340 
341 	if (ic->state == INO_STATE_GC) {
342 		spin_unlock(&c->inocache_lock);
343 
344 		ret = jffs2_garbage_collect_pristine(c, ic, raw);
345 
346 		spin_lock(&c->inocache_lock);
347 		ic->state = INO_STATE_CHECKEDABSENT;
348 		wake_up(&c->inocache_wq);
349 
350 		if (ret != -EBADFD) {
351 			spin_unlock(&c->inocache_lock);
352 			goto release_sem;
353 		}
354 
355 		/* Fall through if it wanted us to, with inocache_lock held */
356 	}
357 
358 	/* Prevent the fairly unlikely race where the gcblock is
359 	   entirely obsoleted by the final close of a file which had
360 	   the only valid nodes in the block, followed by erasure,
361 	   followed by freeing of the ic because the erased block(s)
362 	   held _all_ the nodes of that inode.... never been seen but
363 	   it's vaguely possible. */
364 
365 	inum = ic->ino;
366 	nlink = ic->nlink;
367 	spin_unlock(&c->inocache_lock);
368 
369 	f = jffs2_gc_fetch_inode(c, inum, nlink);
370 	if (IS_ERR(f)) {
371 		ret = PTR_ERR(f);
372 		goto release_sem;
373 	}
374 	if (!f) {
375 		ret = 0;
376 		goto release_sem;
377 	}
378 
379 	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
380 
381 	jffs2_gc_release_inode(c, f);
382 
383  release_sem:
384 	up(&c->alloc_sem);
385 
386  eraseit_lock:
387 	/* If we've finished this block, start it erasing */
388 	spin_lock(&c->erase_completion_lock);
389 
390  eraseit:
391 	if (c->gcblock && !c->gcblock->used_size) {
392 		D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
393 		/* We're GC'ing an empty block? */
394 		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
395 		c->gcblock = NULL;
396 		c->nr_erasing_blocks++;
397 		jffs2_erase_pending_trigger(c);
398 	}
399 	spin_unlock(&c->erase_completion_lock);
400 
401 	return ret;
402 }
403 
404 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
405 				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
406 {
407 	struct jffs2_node_frag *frag;
408 	struct jffs2_full_dnode *fn = NULL;
409 	struct jffs2_full_dirent *fd;
410 	uint32_t start = 0, end = 0, nrfrags = 0;
411 	int ret = 0;
412 
413 	down(&f->sem);
414 
415 	/* Now we have the lock for this inode. Check that it's still the one at the head
416 	   of the list. */
417 
418 	spin_lock(&c->erase_completion_lock);
419 
420 	if (c->gcblock != jeb) {
421 		spin_unlock(&c->erase_completion_lock);
422 		D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
423 		goto upnout;
424 	}
425 	if (ref_obsolete(raw)) {
426 		spin_unlock(&c->erase_completion_lock);
427 		D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
428 		/* They'll call again */
429 		goto upnout;
430 	}
431 	spin_unlock(&c->erase_completion_lock);
432 
433 	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
434 	if (f->metadata && f->metadata->raw == raw) {
435 		fn = f->metadata;
436 		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
437 		goto upnout;
438 	}
439 
440 	/* FIXME. Read node and do lookup? */
441 	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
442 		if (frag->node && frag->node->raw == raw) {
443 			fn = frag->node;
444 			end = frag->ofs + frag->size;
445 			if (!nrfrags++)
446 				start = frag->ofs;
447 			if (nrfrags == frag->node->frags)
448 				break; /* We've found them all */
449 		}
450 	}
451 	if (fn) {
452 		if (ref_flags(raw) == REF_PRISTINE) {
453 			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
454 			if (!ret) {
455 				/* Urgh. Return it sensibly. */
456 				frag->node->raw = f->inocache->nodes;
457 			}
458 			if (ret != -EBADFD)
459 				goto upnout;
460 		}
461 		/* We found a datanode. Do the GC */
462 		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
463 			/* It crosses a page boundary. Therefore, it must be a hole. */
464 			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
465 		} else {
466 			/* It could still be a hole. But we GC the page this way anyway */
467 			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
468 		}
469 		goto upnout;
470 	}
471 
472 	/* Wasn't a dnode. Try dirent */
473 	for (fd = f->dents; fd; fd=fd->next) {
474 		if (fd->raw == raw)
475 			break;
476 	}
477 
478 	if (fd && fd->ino) {
479 		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
480 	} else if (fd) {
481 		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
482 	} else {
483 		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
484 		       ref_offset(raw), f->inocache->ino);
485 		if (ref_obsolete(raw)) {
486 			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
487 		} else {
488 			ret = -EIO;
489 		}
490 	}
491  upnout:
492 	up(&f->sem);
493 
494 	return ret;
495 }
496 
497 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
498 					  struct jffs2_inode_cache *ic,
499 					  struct jffs2_raw_node_ref *raw)
500 {
501 	union jffs2_node_union *node;
502 	struct jffs2_raw_node_ref *nraw;
503 	size_t retlen;
504 	int ret;
505 	uint32_t phys_ofs, alloclen;
506 	uint32_t crc, rawlen;
507 	int retried = 0;
508 
509 	D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
510 
511 	rawlen = ref_totlen(c, c->gcblock, raw);
512 
513 	/* Ask for a small amount of space (or the totlen if smaller) because we
514 	   don't want to force wastage of the end of a block if splitting would
515 	   work. */
516 	ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN,
517 					      rawlen), &phys_ofs, &alloclen);
518 	if (ret)
519 		return ret;
520 
521 	if (alloclen < rawlen) {
522 		/* Doesn't fit untouched. We'll go the old route and split it */
523 		return -EBADFD;
524 	}
525 
526 	node = kmalloc(rawlen, GFP_KERNEL);
527 	if (!node)
528                return -ENOMEM;
529 
530 	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
531 	if (!ret && retlen != rawlen)
532 		ret = -EIO;
533 	if (ret)
534 		goto out_node;
535 
536 	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
537 	if (je32_to_cpu(node->u.hdr_crc) != crc) {
538 		printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
539 		       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
540 		goto bail;
541 	}
542 
543 	switch(je16_to_cpu(node->u.nodetype)) {
544 	case JFFS2_NODETYPE_INODE:
545 		crc = crc32(0, node, sizeof(node->i)-8);
546 		if (je32_to_cpu(node->i.node_crc) != crc) {
547 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
548 			       ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
549 			goto bail;
550 		}
551 
552 		if (je32_to_cpu(node->i.dsize)) {
553 			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
554 			if (je32_to_cpu(node->i.data_crc) != crc) {
555 				printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
556 				       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
557 				goto bail;
558 			}
559 		}
560 		break;
561 
562 	case JFFS2_NODETYPE_DIRENT:
563 		crc = crc32(0, node, sizeof(node->d)-8);
564 		if (je32_to_cpu(node->d.node_crc) != crc) {
565 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
566 			       ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
567 			goto bail;
568 		}
569 
570 		if (node->d.nsize) {
571 			crc = crc32(0, node->d.name, node->d.nsize);
572 			if (je32_to_cpu(node->d.name_crc) != crc) {
573 				printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
574 				       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
575 				goto bail;
576 			}
577 		}
578 		break;
579 	default:
580 		printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
581 		       ref_offset(raw), je16_to_cpu(node->u.nodetype));
582 		goto bail;
583 	}
584 
585 	nraw = jffs2_alloc_raw_node_ref();
586 	if (!nraw) {
587 		ret = -ENOMEM;
588 		goto out_node;
589 	}
590 
591 	/* OK, all the CRCs are good; this node can just be copied as-is. */
592  retry:
593 	nraw->flash_offset = phys_ofs;
594 	nraw->__totlen = rawlen;
595 	nraw->next_phys = NULL;
596 
597 	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
598 
599 	if (ret || (retlen != rawlen)) {
600 		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
601                        rawlen, phys_ofs, ret, retlen);
602 		if (retlen) {
603                         /* Doesn't belong to any inode */
604 			nraw->next_in_ino = NULL;
605 
606 			nraw->flash_offset |= REF_OBSOLETE;
607 			jffs2_add_physical_node_ref(c, nraw);
608 			jffs2_mark_node_obsolete(c, nraw);
609 		} else {
610 			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
611                         jffs2_free_raw_node_ref(nraw);
612 		}
613 		if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
614 			/* Try to reallocate space and retry */
615 			uint32_t dummy;
616 			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
617 
618 			retried = 1;
619 
620 			D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
621 
622 			jffs2_dbg_acct_sanity_check(c,jeb);
623 			jffs2_dbg_acct_paranoia_check(c, jeb);
624 
625 			ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy);
626 
627 			if (!ret) {
628 				D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
629 
630 				jffs2_dbg_acct_sanity_check(c,jeb);
631 				jffs2_dbg_acct_paranoia_check(c, jeb);
632 
633 				goto retry;
634 			}
635 			D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
636 			jffs2_free_raw_node_ref(nraw);
637 		}
638 
639 		jffs2_free_raw_node_ref(nraw);
640 		if (!ret)
641 			ret = -EIO;
642 		goto out_node;
643 	}
644 	nraw->flash_offset |= REF_PRISTINE;
645 	jffs2_add_physical_node_ref(c, nraw);
646 
647 	/* Link into per-inode list. This is safe because of the ic
648 	   state being INO_STATE_GC. Note that if we're doing this
649 	   for an inode which is in-core, the 'nraw' pointer is then
650 	   going to be fetched from ic->nodes by our caller. */
651 	spin_lock(&c->erase_completion_lock);
652         nraw->next_in_ino = ic->nodes;
653         ic->nodes = nraw;
654 	spin_unlock(&c->erase_completion_lock);
655 
656 	jffs2_mark_node_obsolete(c, raw);
657 	D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
658 
659  out_node:
660 	kfree(node);
661 	return ret;
662  bail:
663 	ret = -EBADFD;
664 	goto out_node;
665 }
666 
667 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
668 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
669 {
670 	struct jffs2_full_dnode *new_fn;
671 	struct jffs2_raw_inode ri;
672 	struct jffs2_node_frag *last_frag;
673 	jint16_t dev;
674 	char *mdata = NULL, mdatalen = 0;
675 	uint32_t alloclen, phys_ofs, ilen;
676 	int ret;
677 
678 	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
679 	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
680 		/* For these, we don't actually need to read the old node */
681 		/* FIXME: for minor or major > 255. */
682 		dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
683 			JFFS2_F_I_RDEV_MIN(f)));
684 		mdata = (char *)&dev;
685 		mdatalen = sizeof(dev);
686 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
687 	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
688 		mdatalen = fn->size;
689 		mdata = kmalloc(fn->size, GFP_KERNEL);
690 		if (!mdata) {
691 			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
692 			return -ENOMEM;
693 		}
694 		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
695 		if (ret) {
696 			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
697 			kfree(mdata);
698 			return ret;
699 		}
700 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
701 
702 	}
703 
704 	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
705 	if (ret) {
706 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
707 		       sizeof(ri)+ mdatalen, ret);
708 		goto out;
709 	}
710 
711 	last_frag = frag_last(&f->fragtree);
712 	if (last_frag)
713 		/* Fetch the inode length from the fragtree rather then
714 		 * from i_size since i_size may have not been updated yet */
715 		ilen = last_frag->ofs + last_frag->size;
716 	else
717 		ilen = JFFS2_F_I_SIZE(f);
718 
719 	memset(&ri, 0, sizeof(ri));
720 	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
721 	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
722 	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
723 	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
724 
725 	ri.ino = cpu_to_je32(f->inocache->ino);
726 	ri.version = cpu_to_je32(++f->highest_version);
727 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
728 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
729 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
730 	ri.isize = cpu_to_je32(ilen);
731 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
732 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
733 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
734 	ri.offset = cpu_to_je32(0);
735 	ri.csize = cpu_to_je32(mdatalen);
736 	ri.dsize = cpu_to_je32(mdatalen);
737 	ri.compr = JFFS2_COMPR_NONE;
738 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
739 	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
740 
741 	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
742 
743 	if (IS_ERR(new_fn)) {
744 		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
745 		ret = PTR_ERR(new_fn);
746 		goto out;
747 	}
748 	jffs2_mark_node_obsolete(c, fn->raw);
749 	jffs2_free_full_dnode(fn);
750 	f->metadata = new_fn;
751  out:
752 	if (S_ISLNK(JFFS2_F_I_MODE(f)))
753 		kfree(mdata);
754 	return ret;
755 }
756 
757 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
758 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
759 {
760 	struct jffs2_full_dirent *new_fd;
761 	struct jffs2_raw_dirent rd;
762 	uint32_t alloclen, phys_ofs;
763 	int ret;
764 
765 	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
766 	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
767 	rd.nsize = strlen(fd->name);
768 	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
769 	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
770 
771 	rd.pino = cpu_to_je32(f->inocache->ino);
772 	rd.version = cpu_to_je32(++f->highest_version);
773 	rd.ino = cpu_to_je32(fd->ino);
774 	rd.mctime = cpu_to_je32(max(JFFS2_F_I_MTIME(f), JFFS2_F_I_CTIME(f)));
775 	rd.type = fd->type;
776 	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
777 	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
778 
779 	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
780 	if (ret) {
781 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
782 		       sizeof(rd)+rd.nsize, ret);
783 		return ret;
784 	}
785 	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
786 
787 	if (IS_ERR(new_fd)) {
788 		printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
789 		return PTR_ERR(new_fd);
790 	}
791 	jffs2_add_fd_to_list(c, new_fd, &f->dents);
792 	return 0;
793 }
794 
795 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
796 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
797 {
798 	struct jffs2_full_dirent **fdp = &f->dents;
799 	int found = 0;
800 
801 	/* On a medium where we can't actually mark nodes obsolete
802 	   pernamently, such as NAND flash, we need to work out
803 	   whether this deletion dirent is still needed to actively
804 	   delete a 'real' dirent with the same name that's still
805 	   somewhere else on the flash. */
806 	if (!jffs2_can_mark_obsolete(c)) {
807 		struct jffs2_raw_dirent *rd;
808 		struct jffs2_raw_node_ref *raw;
809 		int ret;
810 		size_t retlen;
811 		int name_len = strlen(fd->name);
812 		uint32_t name_crc = crc32(0, fd->name, name_len);
813 		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
814 
815 		rd = kmalloc(rawlen, GFP_KERNEL);
816 		if (!rd)
817 			return -ENOMEM;
818 
819 		/* Prevent the erase code from nicking the obsolete node refs while
820 		   we're looking at them. I really don't like this extra lock but
821 		   can't see any alternative. Suggestions on a postcard to... */
822 		down(&c->erase_free_sem);
823 
824 		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
825 
826 			/* We only care about obsolete ones */
827 			if (!(ref_obsolete(raw)))
828 				continue;
829 
830 			/* Any dirent with the same name is going to have the same length... */
831 			if (ref_totlen(c, NULL, raw) != rawlen)
832 				continue;
833 
834 			/* Doesn't matter if there's one in the same erase block. We're going to
835 			   delete it too at the same time. */
836 			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
837 				continue;
838 
839 			D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
840 
841 			/* This is an obsolete node belonging to the same directory, and it's of the right
842 			   length. We need to take a closer look...*/
843 			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
844 			if (ret) {
845 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
846 				/* If we can't read it, we don't need to continue to obsolete it. Continue */
847 				continue;
848 			}
849 			if (retlen != rawlen) {
850 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
851 				       retlen, rawlen, ref_offset(raw));
852 				continue;
853 			}
854 
855 			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
856 				continue;
857 
858 			/* If the name CRC doesn't match, skip */
859 			if (je32_to_cpu(rd->name_crc) != name_crc)
860 				continue;
861 
862 			/* If the name length doesn't match, or it's another deletion dirent, skip */
863 			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
864 				continue;
865 
866 			/* OK, check the actual name now */
867 			if (memcmp(rd->name, fd->name, name_len))
868 				continue;
869 
870 			/* OK. The name really does match. There really is still an older node on
871 			   the flash which our deletion dirent obsoletes. So we have to write out
872 			   a new deletion dirent to replace it */
873 			up(&c->erase_free_sem);
874 
875 			D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
876 				  ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
877 			kfree(rd);
878 
879 			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
880 		}
881 
882 		up(&c->erase_free_sem);
883 		kfree(rd);
884 	}
885 
886 	/* No need for it any more. Just mark it obsolete and remove it from the list */
887 	while (*fdp) {
888 		if ((*fdp) == fd) {
889 			found = 1;
890 			*fdp = fd->next;
891 			break;
892 		}
893 		fdp = &(*fdp)->next;
894 	}
895 	if (!found) {
896 		printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
897 	}
898 	jffs2_mark_node_obsolete(c, fd->raw);
899 	jffs2_free_full_dirent(fd);
900 	return 0;
901 }
902 
903 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
904 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
905 				      uint32_t start, uint32_t end)
906 {
907 	struct jffs2_raw_inode ri;
908 	struct jffs2_node_frag *frag;
909 	struct jffs2_full_dnode *new_fn;
910 	uint32_t alloclen, phys_ofs, ilen;
911 	int ret;
912 
913 	D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
914 		  f->inocache->ino, start, end));
915 
916 	memset(&ri, 0, sizeof(ri));
917 
918 	if(fn->frags > 1) {
919 		size_t readlen;
920 		uint32_t crc;
921 		/* It's partially obsoleted by a later write. So we have to
922 		   write it out again with the _same_ version as before */
923 		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
924 		if (readlen != sizeof(ri) || ret) {
925 			printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
926 			goto fill;
927 		}
928 		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
929 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
930 			       ref_offset(fn->raw),
931 			       je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
932 			return -EIO;
933 		}
934 		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
935 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
936 			       ref_offset(fn->raw),
937 			       je32_to_cpu(ri.totlen), sizeof(ri));
938 			return -EIO;
939 		}
940 		crc = crc32(0, &ri, sizeof(ri)-8);
941 		if (crc != je32_to_cpu(ri.node_crc)) {
942 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
943 			       ref_offset(fn->raw),
944 			       je32_to_cpu(ri.node_crc), crc);
945 			/* FIXME: We could possibly deal with this by writing new holes for each frag */
946 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
947 			       start, end, f->inocache->ino);
948 			goto fill;
949 		}
950 		if (ri.compr != JFFS2_COMPR_ZERO) {
951 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
952 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
953 			       start, end, f->inocache->ino);
954 			goto fill;
955 		}
956 	} else {
957 	fill:
958 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
959 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
960 		ri.totlen = cpu_to_je32(sizeof(ri));
961 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
962 
963 		ri.ino = cpu_to_je32(f->inocache->ino);
964 		ri.version = cpu_to_je32(++f->highest_version);
965 		ri.offset = cpu_to_je32(start);
966 		ri.dsize = cpu_to_je32(end - start);
967 		ri.csize = cpu_to_je32(0);
968 		ri.compr = JFFS2_COMPR_ZERO;
969 	}
970 
971 	frag = frag_last(&f->fragtree);
972 	if (frag)
973 		/* Fetch the inode length from the fragtree rather then
974 		 * from i_size since i_size may have not been updated yet */
975 		ilen = frag->ofs + frag->size;
976 	else
977 		ilen = JFFS2_F_I_SIZE(f);
978 
979 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
980 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
981 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
982 	ri.isize = cpu_to_je32(ilen);
983 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
984 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
985 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
986 	ri.data_crc = cpu_to_je32(0);
987 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
988 
989 	ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
990 	if (ret) {
991 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
992 		       sizeof(ri), ret);
993 		return ret;
994 	}
995 	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
996 
997 	if (IS_ERR(new_fn)) {
998 		printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
999 		return PTR_ERR(new_fn);
1000 	}
1001 	if (je32_to_cpu(ri.version) == f->highest_version) {
1002 		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1003 		if (f->metadata) {
1004 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1005 			jffs2_free_full_dnode(f->metadata);
1006 			f->metadata = NULL;
1007 		}
1008 		return 0;
1009 	}
1010 
1011 	/*
1012 	 * We should only get here in the case where the node we are
1013 	 * replacing had more than one frag, so we kept the same version
1014 	 * number as before. (Except in case of error -- see 'goto fill;'
1015 	 * above.)
1016 	 */
1017 	D1(if(unlikely(fn->frags <= 1)) {
1018 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1019 		       fn->frags, je32_to_cpu(ri.version), f->highest_version,
1020 		       je32_to_cpu(ri.ino));
1021 	});
1022 
1023 	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1024 	mark_ref_normal(new_fn->raw);
1025 
1026 	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1027 	     frag; frag = frag_next(frag)) {
1028 		if (frag->ofs > fn->size + fn->ofs)
1029 			break;
1030 		if (frag->node == fn) {
1031 			frag->node = new_fn;
1032 			new_fn->frags++;
1033 			fn->frags--;
1034 		}
1035 	}
1036 	if (fn->frags) {
1037 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1038 		BUG();
1039 	}
1040 	if (!new_fn->frags) {
1041 		printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1042 		BUG();
1043 	}
1044 
1045 	jffs2_mark_node_obsolete(c, fn->raw);
1046 	jffs2_free_full_dnode(fn);
1047 
1048 	return 0;
1049 }
1050 
1051 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1052 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1053 				       uint32_t start, uint32_t end)
1054 {
1055 	struct jffs2_full_dnode *new_fn;
1056 	struct jffs2_raw_inode ri;
1057 	uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1058 	int ret = 0;
1059 	unsigned char *comprbuf = NULL, *writebuf;
1060 	unsigned long pg;
1061 	unsigned char *pg_ptr;
1062 
1063 	memset(&ri, 0, sizeof(ri));
1064 
1065 	D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1066 		  f->inocache->ino, start, end));
1067 
1068 	orig_end = end;
1069 	orig_start = start;
1070 
1071 	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1072 		/* Attempt to do some merging. But only expand to cover logically
1073 		   adjacent frags if the block containing them is already considered
1074 		   to be dirty. Otherwise we end up with GC just going round in
1075 		   circles dirtying the nodes it already wrote out, especially
1076 		   on NAND where we have small eraseblocks and hence a much higher
1077 		   chance of nodes having to be split to cross boundaries. */
1078 
1079 		struct jffs2_node_frag *frag;
1080 		uint32_t min, max;
1081 
1082 		min = start & ~(PAGE_CACHE_SIZE-1);
1083 		max = min + PAGE_CACHE_SIZE;
1084 
1085 		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1086 
1087 		/* BUG_ON(!frag) but that'll happen anyway... */
1088 
1089 		BUG_ON(frag->ofs != start);
1090 
1091 		/* First grow down... */
1092 		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1093 
1094 			/* If the previous frag doesn't even reach the beginning, there's
1095 			   excessive fragmentation. Just merge. */
1096 			if (frag->ofs > min) {
1097 				D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1098 					  frag->ofs, frag->ofs+frag->size));
1099 				start = frag->ofs;
1100 				continue;
1101 			}
1102 			/* OK. This frag holds the first byte of the page. */
1103 			if (!frag->node || !frag->node->raw) {
1104 				D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1105 					  frag->ofs, frag->ofs+frag->size));
1106 				break;
1107 			} else {
1108 
1109 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1110 				   in a block which is still considered clean? If so, don't obsolete it.
1111 				   If not, cover it anyway. */
1112 
1113 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1114 				struct jffs2_eraseblock *jeb;
1115 
1116 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1117 
1118 				if (jeb == c->gcblock) {
1119 					D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1120 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1121 					start = frag->ofs;
1122 					break;
1123 				}
1124 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1125 					D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1126 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1127 					break;
1128 				}
1129 
1130 				D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1131 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1132 				start = frag->ofs;
1133 				break;
1134 			}
1135 		}
1136 
1137 		/* ... then up */
1138 
1139 		/* Find last frag which is actually part of the node we're to GC. */
1140 		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1141 
1142 		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1143 
1144 			/* If the previous frag doesn't even reach the beginning, there's lots
1145 			   of fragmentation. Just merge. */
1146 			if (frag->ofs+frag->size < max) {
1147 				D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1148 					  frag->ofs, frag->ofs+frag->size));
1149 				end = frag->ofs + frag->size;
1150 				continue;
1151 			}
1152 
1153 			if (!frag->node || !frag->node->raw) {
1154 				D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1155 					  frag->ofs, frag->ofs+frag->size));
1156 				break;
1157 			} else {
1158 
1159 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1160 				   in a block which is still considered clean? If so, don't obsolete it.
1161 				   If not, cover it anyway. */
1162 
1163 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1164 				struct jffs2_eraseblock *jeb;
1165 
1166 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1167 
1168 				if (jeb == c->gcblock) {
1169 					D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1170 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1171 					end = frag->ofs + frag->size;
1172 					break;
1173 				}
1174 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1175 					D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1176 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1177 					break;
1178 				}
1179 
1180 				D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1181 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1182 				end = frag->ofs + frag->size;
1183 				break;
1184 			}
1185 		}
1186 		D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1187 			  orig_start, orig_end, start, end));
1188 
1189 		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1190 		BUG_ON(end < orig_end);
1191 		BUG_ON(start > orig_start);
1192 	}
1193 
1194 	/* First, use readpage() to read the appropriate page into the page cache */
1195 	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1196 	 *    triggered garbage collection in the first place?
1197 	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1198 	 *    page OK. We'll actually write it out again in commit_write, which is a little
1199 	 *    suboptimal, but at least we're correct.
1200 	 */
1201 	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1202 
1203 	if (IS_ERR(pg_ptr)) {
1204 		printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1205 		return PTR_ERR(pg_ptr);
1206 	}
1207 
1208 	offset = start;
1209 	while(offset < orig_end) {
1210 		uint32_t datalen;
1211 		uint32_t cdatalen;
1212 		uint16_t comprtype = JFFS2_COMPR_NONE;
1213 
1214 		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
1215 
1216 		if (ret) {
1217 			printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1218 			       sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1219 			break;
1220 		}
1221 		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1222 		datalen = end - offset;
1223 
1224 		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1225 
1226 		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1227 
1228 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1229 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1230 		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1231 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1232 
1233 		ri.ino = cpu_to_je32(f->inocache->ino);
1234 		ri.version = cpu_to_je32(++f->highest_version);
1235 		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1236 		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1237 		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1238 		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1239 		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1240 		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1241 		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1242 		ri.offset = cpu_to_je32(offset);
1243 		ri.csize = cpu_to_je32(cdatalen);
1244 		ri.dsize = cpu_to_je32(datalen);
1245 		ri.compr = comprtype & 0xff;
1246 		ri.usercompr = (comprtype >> 8) & 0xff;
1247 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1248 		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1249 
1250 		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1251 
1252 		jffs2_free_comprbuf(comprbuf, writebuf);
1253 
1254 		if (IS_ERR(new_fn)) {
1255 			printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1256 			ret = PTR_ERR(new_fn);
1257 			break;
1258 		}
1259 		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1260 		offset += datalen;
1261 		if (f->metadata) {
1262 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1263 			jffs2_free_full_dnode(f->metadata);
1264 			f->metadata = NULL;
1265 		}
1266 	}
1267 
1268 	jffs2_gc_release_page(c, pg_ptr, &pg);
1269 	return ret;
1270 }
1271 
1272