xref: /openbmc/linux/fs/jffs2/gc.c (revision 2e16cfca)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/crc32.h>
17 #include <linux/compiler.h>
18 #include <linux/stat.h>
19 #include "nodelist.h"
20 #include "compr.h"
21 
22 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
23 					  struct jffs2_inode_cache *ic,
24 					  struct jffs2_raw_node_ref *raw);
25 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
26 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
27 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
29 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33 				      uint32_t start, uint32_t end);
34 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 				       uint32_t start, uint32_t end);
37 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
38 			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
39 
40 /* Called with erase_completion_lock held */
41 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
42 {
43 	struct jffs2_eraseblock *ret;
44 	struct list_head *nextlist = NULL;
45 	int n = jiffies % 128;
46 
47 	/* Pick an eraseblock to garbage collect next. This is where we'll
48 	   put the clever wear-levelling algorithms. Eventually.  */
49 	/* We possibly want to favour the dirtier blocks more when the
50 	   number of free blocks is low. */
51 again:
52 	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53 		D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54 		nextlist = &c->bad_used_list;
55 	} else if (n < 50 && !list_empty(&c->erasable_list)) {
56 		/* Note that most of them will have gone directly to be erased.
57 		   So don't favour the erasable_list _too_ much. */
58 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59 		nextlist = &c->erasable_list;
60 	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61 		/* Most of the time, pick one off the very_dirty list */
62 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63 		nextlist = &c->very_dirty_list;
64 	} else if (n < 126 && !list_empty(&c->dirty_list)) {
65 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66 		nextlist = &c->dirty_list;
67 	} else if (!list_empty(&c->clean_list)) {
68 		D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69 		nextlist = &c->clean_list;
70 	} else if (!list_empty(&c->dirty_list)) {
71 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
72 
73 		nextlist = &c->dirty_list;
74 	} else if (!list_empty(&c->very_dirty_list)) {
75 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76 		nextlist = &c->very_dirty_list;
77 	} else if (!list_empty(&c->erasable_list)) {
78 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
79 
80 		nextlist = &c->erasable_list;
81 	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82 		/* There are blocks are wating for the wbuf sync */
83 		D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
84 		spin_unlock(&c->erase_completion_lock);
85 		jffs2_flush_wbuf_pad(c);
86 		spin_lock(&c->erase_completion_lock);
87 		goto again;
88 	} else {
89 		/* Eep. All were empty */
90 		D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91 		return NULL;
92 	}
93 
94 	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95 	list_del(&ret->list);
96 	c->gcblock = ret;
97 	ret->gc_node = ret->first_node;
98 	if (!ret->gc_node) {
99 		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100 		BUG();
101 	}
102 
103 	/* Have we accidentally picked a clean block with wasted space ? */
104 	if (ret->wasted_size) {
105 		D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 		ret->dirty_size += ret->wasted_size;
107 		c->wasted_size -= ret->wasted_size;
108 		c->dirty_size += ret->wasted_size;
109 		ret->wasted_size = 0;
110 	}
111 
112 	return ret;
113 }
114 
115 /* jffs2_garbage_collect_pass
116  * Make a single attempt to progress GC. Move one node, and possibly
117  * start erasing one eraseblock.
118  */
119 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
120 {
121 	struct jffs2_inode_info *f;
122 	struct jffs2_inode_cache *ic;
123 	struct jffs2_eraseblock *jeb;
124 	struct jffs2_raw_node_ref *raw;
125 	uint32_t gcblock_dirty;
126 	int ret = 0, inum, nlink;
127 	int xattr = 0;
128 
129 	if (mutex_lock_interruptible(&c->alloc_sem))
130 		return -EINTR;
131 
132 	for (;;) {
133 		spin_lock(&c->erase_completion_lock);
134 		if (!c->unchecked_size)
135 			break;
136 
137 		/* We can't start doing GC yet. We haven't finished checking
138 		   the node CRCs etc. Do it now. */
139 
140 		/* checked_ino is protected by the alloc_sem */
141 		if (c->checked_ino > c->highest_ino && xattr) {
142 			printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 			       c->unchecked_size);
144 			jffs2_dbg_dump_block_lists_nolock(c);
145 			spin_unlock(&c->erase_completion_lock);
146 			mutex_unlock(&c->alloc_sem);
147 			return -ENOSPC;
148 		}
149 
150 		spin_unlock(&c->erase_completion_lock);
151 
152 		if (!xattr)
153 			xattr = jffs2_verify_xattr(c);
154 
155 		spin_lock(&c->inocache_lock);
156 
157 		ic = jffs2_get_ino_cache(c, c->checked_ino++);
158 
159 		if (!ic) {
160 			spin_unlock(&c->inocache_lock);
161 			continue;
162 		}
163 
164 		if (!ic->pino_nlink) {
165 			D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n",
166 				  ic->ino));
167 			spin_unlock(&c->inocache_lock);
168 			jffs2_xattr_delete_inode(c, ic);
169 			continue;
170 		}
171 		switch(ic->state) {
172 		case INO_STATE_CHECKEDABSENT:
173 		case INO_STATE_PRESENT:
174 			D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
175 			spin_unlock(&c->inocache_lock);
176 			continue;
177 
178 		case INO_STATE_GC:
179 		case INO_STATE_CHECKING:
180 			printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
181 			spin_unlock(&c->inocache_lock);
182 			BUG();
183 
184 		case INO_STATE_READING:
185 			/* We need to wait for it to finish, lest we move on
186 			   and trigger the BUG() above while we haven't yet
187 			   finished checking all its nodes */
188 			D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
189 			/* We need to come back again for the _same_ inode. We've
190 			 made no progress in this case, but that should be OK */
191 			c->checked_ino--;
192 
193 			mutex_unlock(&c->alloc_sem);
194 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
195 			return 0;
196 
197 		default:
198 			BUG();
199 
200 		case INO_STATE_UNCHECKED:
201 			;
202 		}
203 		ic->state = INO_STATE_CHECKING;
204 		spin_unlock(&c->inocache_lock);
205 
206 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
207 
208 		ret = jffs2_do_crccheck_inode(c, ic);
209 		if (ret)
210 			printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
211 
212 		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
213 		mutex_unlock(&c->alloc_sem);
214 		return ret;
215 	}
216 
217 	/* First, work out which block we're garbage-collecting */
218 	jeb = c->gcblock;
219 
220 	if (!jeb)
221 		jeb = jffs2_find_gc_block(c);
222 
223 	if (!jeb) {
224 		/* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
225 		if (!list_empty(&c->erase_pending_list)) {
226 			spin_unlock(&c->erase_completion_lock);
227 			mutex_unlock(&c->alloc_sem);
228 			return -EAGAIN;
229 		}
230 		D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
231 		spin_unlock(&c->erase_completion_lock);
232 		mutex_unlock(&c->alloc_sem);
233 		return -EIO;
234 	}
235 
236 	D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
237 	D1(if (c->nextblock)
238 	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
239 
240 	if (!jeb->used_size) {
241 		mutex_unlock(&c->alloc_sem);
242 		goto eraseit;
243 	}
244 
245 	raw = jeb->gc_node;
246 	gcblock_dirty = jeb->dirty_size;
247 
248 	while(ref_obsolete(raw)) {
249 		D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
250 		raw = ref_next(raw);
251 		if (unlikely(!raw)) {
252 			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
253 			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
254 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
255 			jeb->gc_node = raw;
256 			spin_unlock(&c->erase_completion_lock);
257 			mutex_unlock(&c->alloc_sem);
258 			BUG();
259 		}
260 	}
261 	jeb->gc_node = raw;
262 
263 	D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
264 
265 	if (!raw->next_in_ino) {
266 		/* Inode-less node. Clean marker, snapshot or something like that */
267 		spin_unlock(&c->erase_completion_lock);
268 		if (ref_flags(raw) == REF_PRISTINE) {
269 			/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
270 			jffs2_garbage_collect_pristine(c, NULL, raw);
271 		} else {
272 			/* Just mark it obsolete */
273 			jffs2_mark_node_obsolete(c, raw);
274 		}
275 		mutex_unlock(&c->alloc_sem);
276 		goto eraseit_lock;
277 	}
278 
279 	ic = jffs2_raw_ref_to_ic(raw);
280 
281 #ifdef CONFIG_JFFS2_FS_XATTR
282 	/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
283 	 * We can decide whether this node is inode or xattr by ic->class.     */
284 	if (ic->class == RAWNODE_CLASS_XATTR_DATUM
285 	    || ic->class == RAWNODE_CLASS_XATTR_REF) {
286 		spin_unlock(&c->erase_completion_lock);
287 
288 		if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
289 			ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
290 		} else {
291 			ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
292 		}
293 		goto test_gcnode;
294 	}
295 #endif
296 
297 	/* We need to hold the inocache. Either the erase_completion_lock or
298 	   the inocache_lock are sufficient; we trade down since the inocache_lock
299 	   causes less contention. */
300 	spin_lock(&c->inocache_lock);
301 
302 	spin_unlock(&c->erase_completion_lock);
303 
304 	D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
305 
306 	/* Three possibilities:
307 	   1. Inode is already in-core. We must iget it and do proper
308 	      updating to its fragtree, etc.
309 	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
310 	      inocache to prevent a read_inode(), copy the node intact.
311 	   3. Inode is not in-core, node is not pristine. We must iget()
312 	      and take the slow path.
313 	*/
314 
315 	switch(ic->state) {
316 	case INO_STATE_CHECKEDABSENT:
317 		/* It's been checked, but it's not currently in-core.
318 		   We can just copy any pristine nodes, but have
319 		   to prevent anyone else from doing read_inode() while
320 		   we're at it, so we set the state accordingly */
321 		if (ref_flags(raw) == REF_PRISTINE)
322 			ic->state = INO_STATE_GC;
323 		else {
324 			D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
325 				  ic->ino));
326 		}
327 		break;
328 
329 	case INO_STATE_PRESENT:
330 		/* It's in-core. GC must iget() it. */
331 		break;
332 
333 	case INO_STATE_UNCHECKED:
334 	case INO_STATE_CHECKING:
335 	case INO_STATE_GC:
336 		/* Should never happen. We should have finished checking
337 		   by the time we actually start doing any GC, and since
338 		   we're holding the alloc_sem, no other garbage collection
339 		   can happen.
340 		*/
341 		printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
342 		       ic->ino, ic->state);
343 		mutex_unlock(&c->alloc_sem);
344 		spin_unlock(&c->inocache_lock);
345 		BUG();
346 
347 	case INO_STATE_READING:
348 		/* Someone's currently trying to read it. We must wait for
349 		   them to finish and then go through the full iget() route
350 		   to do the GC. However, sometimes read_inode() needs to get
351 		   the alloc_sem() (for marking nodes invalid) so we must
352 		   drop the alloc_sem before sleeping. */
353 
354 		mutex_unlock(&c->alloc_sem);
355 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
356 			  ic->ino, ic->state));
357 		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
358 		/* And because we dropped the alloc_sem we must start again from the
359 		   beginning. Ponder chance of livelock here -- we're returning success
360 		   without actually making any progress.
361 
362 		   Q: What are the chances that the inode is back in INO_STATE_READING
363 		   again by the time we next enter this function? And that this happens
364 		   enough times to cause a real delay?
365 
366 		   A: Small enough that I don't care :)
367 		*/
368 		return 0;
369 	}
370 
371 	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
372 	   node intact, and we don't have to muck about with the fragtree etc.
373 	   because we know it's not in-core. If it _was_ in-core, we go through
374 	   all the iget() crap anyway */
375 
376 	if (ic->state == INO_STATE_GC) {
377 		spin_unlock(&c->inocache_lock);
378 
379 		ret = jffs2_garbage_collect_pristine(c, ic, raw);
380 
381 		spin_lock(&c->inocache_lock);
382 		ic->state = INO_STATE_CHECKEDABSENT;
383 		wake_up(&c->inocache_wq);
384 
385 		if (ret != -EBADFD) {
386 			spin_unlock(&c->inocache_lock);
387 			goto test_gcnode;
388 		}
389 
390 		/* Fall through if it wanted us to, with inocache_lock held */
391 	}
392 
393 	/* Prevent the fairly unlikely race where the gcblock is
394 	   entirely obsoleted by the final close of a file which had
395 	   the only valid nodes in the block, followed by erasure,
396 	   followed by freeing of the ic because the erased block(s)
397 	   held _all_ the nodes of that inode.... never been seen but
398 	   it's vaguely possible. */
399 
400 	inum = ic->ino;
401 	nlink = ic->pino_nlink;
402 	spin_unlock(&c->inocache_lock);
403 
404 	f = jffs2_gc_fetch_inode(c, inum, !nlink);
405 	if (IS_ERR(f)) {
406 		ret = PTR_ERR(f);
407 		goto release_sem;
408 	}
409 	if (!f) {
410 		ret = 0;
411 		goto release_sem;
412 	}
413 
414 	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
415 
416 	jffs2_gc_release_inode(c, f);
417 
418  test_gcnode:
419 	if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
420 		/* Eep. This really should never happen. GC is broken */
421 		printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
422 		ret = -ENOSPC;
423 	}
424  release_sem:
425 	mutex_unlock(&c->alloc_sem);
426 
427  eraseit_lock:
428 	/* If we've finished this block, start it erasing */
429 	spin_lock(&c->erase_completion_lock);
430 
431  eraseit:
432 	if (c->gcblock && !c->gcblock->used_size) {
433 		D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
434 		/* We're GC'ing an empty block? */
435 		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
436 		c->gcblock = NULL;
437 		c->nr_erasing_blocks++;
438 		jffs2_erase_pending_trigger(c);
439 	}
440 	spin_unlock(&c->erase_completion_lock);
441 
442 	return ret;
443 }
444 
445 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
446 				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
447 {
448 	struct jffs2_node_frag *frag;
449 	struct jffs2_full_dnode *fn = NULL;
450 	struct jffs2_full_dirent *fd;
451 	uint32_t start = 0, end = 0, nrfrags = 0;
452 	int ret = 0;
453 
454 	mutex_lock(&f->sem);
455 
456 	/* Now we have the lock for this inode. Check that it's still the one at the head
457 	   of the list. */
458 
459 	spin_lock(&c->erase_completion_lock);
460 
461 	if (c->gcblock != jeb) {
462 		spin_unlock(&c->erase_completion_lock);
463 		D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
464 		goto upnout;
465 	}
466 	if (ref_obsolete(raw)) {
467 		spin_unlock(&c->erase_completion_lock);
468 		D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
469 		/* They'll call again */
470 		goto upnout;
471 	}
472 	spin_unlock(&c->erase_completion_lock);
473 
474 	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
475 	if (f->metadata && f->metadata->raw == raw) {
476 		fn = f->metadata;
477 		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
478 		goto upnout;
479 	}
480 
481 	/* FIXME. Read node and do lookup? */
482 	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
483 		if (frag->node && frag->node->raw == raw) {
484 			fn = frag->node;
485 			end = frag->ofs + frag->size;
486 			if (!nrfrags++)
487 				start = frag->ofs;
488 			if (nrfrags == frag->node->frags)
489 				break; /* We've found them all */
490 		}
491 	}
492 	if (fn) {
493 		if (ref_flags(raw) == REF_PRISTINE) {
494 			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
495 			if (!ret) {
496 				/* Urgh. Return it sensibly. */
497 				frag->node->raw = f->inocache->nodes;
498 			}
499 			if (ret != -EBADFD)
500 				goto upnout;
501 		}
502 		/* We found a datanode. Do the GC */
503 		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
504 			/* It crosses a page boundary. Therefore, it must be a hole. */
505 			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
506 		} else {
507 			/* It could still be a hole. But we GC the page this way anyway */
508 			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
509 		}
510 		goto upnout;
511 	}
512 
513 	/* Wasn't a dnode. Try dirent */
514 	for (fd = f->dents; fd; fd=fd->next) {
515 		if (fd->raw == raw)
516 			break;
517 	}
518 
519 	if (fd && fd->ino) {
520 		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
521 	} else if (fd) {
522 		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
523 	} else {
524 		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
525 		       ref_offset(raw), f->inocache->ino);
526 		if (ref_obsolete(raw)) {
527 			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
528 		} else {
529 			jffs2_dbg_dump_node(c, ref_offset(raw));
530 			BUG();
531 		}
532 	}
533  upnout:
534 	mutex_unlock(&f->sem);
535 
536 	return ret;
537 }
538 
539 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
540 					  struct jffs2_inode_cache *ic,
541 					  struct jffs2_raw_node_ref *raw)
542 {
543 	union jffs2_node_union *node;
544 	size_t retlen;
545 	int ret;
546 	uint32_t phys_ofs, alloclen;
547 	uint32_t crc, rawlen;
548 	int retried = 0;
549 
550 	D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
551 
552 	alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
553 
554 	/* Ask for a small amount of space (or the totlen if smaller) because we
555 	   don't want to force wastage of the end of a block if splitting would
556 	   work. */
557 	if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
558 		alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
559 
560 	ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
561 	/* 'rawlen' is not the exact summary size; it is only an upper estimation */
562 
563 	if (ret)
564 		return ret;
565 
566 	if (alloclen < rawlen) {
567 		/* Doesn't fit untouched. We'll go the old route and split it */
568 		return -EBADFD;
569 	}
570 
571 	node = kmalloc(rawlen, GFP_KERNEL);
572 	if (!node)
573 		return -ENOMEM;
574 
575 	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
576 	if (!ret && retlen != rawlen)
577 		ret = -EIO;
578 	if (ret)
579 		goto out_node;
580 
581 	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
582 	if (je32_to_cpu(node->u.hdr_crc) != crc) {
583 		printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
584 		       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
585 		goto bail;
586 	}
587 
588 	switch(je16_to_cpu(node->u.nodetype)) {
589 	case JFFS2_NODETYPE_INODE:
590 		crc = crc32(0, node, sizeof(node->i)-8);
591 		if (je32_to_cpu(node->i.node_crc) != crc) {
592 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
593 			       ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
594 			goto bail;
595 		}
596 
597 		if (je32_to_cpu(node->i.dsize)) {
598 			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
599 			if (je32_to_cpu(node->i.data_crc) != crc) {
600 				printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
601 				       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
602 				goto bail;
603 			}
604 		}
605 		break;
606 
607 	case JFFS2_NODETYPE_DIRENT:
608 		crc = crc32(0, node, sizeof(node->d)-8);
609 		if (je32_to_cpu(node->d.node_crc) != crc) {
610 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
611 			       ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
612 			goto bail;
613 		}
614 
615 		if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
616 			printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
617 			goto bail;
618 		}
619 
620 		if (node->d.nsize) {
621 			crc = crc32(0, node->d.name, node->d.nsize);
622 			if (je32_to_cpu(node->d.name_crc) != crc) {
623 				printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
624 				       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
625 				goto bail;
626 			}
627 		}
628 		break;
629 	default:
630 		/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
631 		if (ic) {
632 			printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
633 			       ref_offset(raw), je16_to_cpu(node->u.nodetype));
634 			goto bail;
635 		}
636 	}
637 
638 	/* OK, all the CRCs are good; this node can just be copied as-is. */
639  retry:
640 	phys_ofs = write_ofs(c);
641 
642 	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
643 
644 	if (ret || (retlen != rawlen)) {
645 		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
646 		       rawlen, phys_ofs, ret, retlen);
647 		if (retlen) {
648 			jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
649 		} else {
650 			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
651 		}
652 		if (!retried) {
653 			/* Try to reallocate space and retry */
654 			uint32_t dummy;
655 			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
656 
657 			retried = 1;
658 
659 			D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
660 
661 			jffs2_dbg_acct_sanity_check(c,jeb);
662 			jffs2_dbg_acct_paranoia_check(c, jeb);
663 
664 			ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
665 						/* this is not the exact summary size of it,
666 							it is only an upper estimation */
667 
668 			if (!ret) {
669 				D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
670 
671 				jffs2_dbg_acct_sanity_check(c,jeb);
672 				jffs2_dbg_acct_paranoia_check(c, jeb);
673 
674 				goto retry;
675 			}
676 			D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
677 		}
678 
679 		if (!ret)
680 			ret = -EIO;
681 		goto out_node;
682 	}
683 	jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
684 
685 	jffs2_mark_node_obsolete(c, raw);
686 	D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
687 
688  out_node:
689 	kfree(node);
690 	return ret;
691  bail:
692 	ret = -EBADFD;
693 	goto out_node;
694 }
695 
696 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
697 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
698 {
699 	struct jffs2_full_dnode *new_fn;
700 	struct jffs2_raw_inode ri;
701 	struct jffs2_node_frag *last_frag;
702 	union jffs2_device_node dev;
703 	char *mdata = NULL;
704 	int mdatalen = 0;
705 	uint32_t alloclen, ilen;
706 	int ret;
707 
708 	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
709 	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
710 		/* For these, we don't actually need to read the old node */
711 		mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
712 		mdata = (char *)&dev;
713 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
714 	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
715 		mdatalen = fn->size;
716 		mdata = kmalloc(fn->size, GFP_KERNEL);
717 		if (!mdata) {
718 			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
719 			return -ENOMEM;
720 		}
721 		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
722 		if (ret) {
723 			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
724 			kfree(mdata);
725 			return ret;
726 		}
727 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
728 
729 	}
730 
731 	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
732 				JFFS2_SUMMARY_INODE_SIZE);
733 	if (ret) {
734 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
735 		       sizeof(ri)+ mdatalen, ret);
736 		goto out;
737 	}
738 
739 	last_frag = frag_last(&f->fragtree);
740 	if (last_frag)
741 		/* Fetch the inode length from the fragtree rather then
742 		 * from i_size since i_size may have not been updated yet */
743 		ilen = last_frag->ofs + last_frag->size;
744 	else
745 		ilen = JFFS2_F_I_SIZE(f);
746 
747 	memset(&ri, 0, sizeof(ri));
748 	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
749 	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
750 	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
751 	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
752 
753 	ri.ino = cpu_to_je32(f->inocache->ino);
754 	ri.version = cpu_to_je32(++f->highest_version);
755 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
756 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
757 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
758 	ri.isize = cpu_to_je32(ilen);
759 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
760 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
761 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
762 	ri.offset = cpu_to_je32(0);
763 	ri.csize = cpu_to_je32(mdatalen);
764 	ri.dsize = cpu_to_je32(mdatalen);
765 	ri.compr = JFFS2_COMPR_NONE;
766 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
767 	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
768 
769 	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
770 
771 	if (IS_ERR(new_fn)) {
772 		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
773 		ret = PTR_ERR(new_fn);
774 		goto out;
775 	}
776 	jffs2_mark_node_obsolete(c, fn->raw);
777 	jffs2_free_full_dnode(fn);
778 	f->metadata = new_fn;
779  out:
780 	if (S_ISLNK(JFFS2_F_I_MODE(f)))
781 		kfree(mdata);
782 	return ret;
783 }
784 
785 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
786 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
787 {
788 	struct jffs2_full_dirent *new_fd;
789 	struct jffs2_raw_dirent rd;
790 	uint32_t alloclen;
791 	int ret;
792 
793 	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
794 	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
795 	rd.nsize = strlen(fd->name);
796 	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
797 	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
798 
799 	rd.pino = cpu_to_je32(f->inocache->ino);
800 	rd.version = cpu_to_je32(++f->highest_version);
801 	rd.ino = cpu_to_je32(fd->ino);
802 	/* If the times on this inode were set by explicit utime() they can be different,
803 	   so refrain from splatting them. */
804 	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
805 		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
806 	else
807 		rd.mctime = cpu_to_je32(0);
808 	rd.type = fd->type;
809 	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
810 	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
811 
812 	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
813 				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
814 	if (ret) {
815 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
816 		       sizeof(rd)+rd.nsize, ret);
817 		return ret;
818 	}
819 	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
820 
821 	if (IS_ERR(new_fd)) {
822 		printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
823 		return PTR_ERR(new_fd);
824 	}
825 	jffs2_add_fd_to_list(c, new_fd, &f->dents);
826 	return 0;
827 }
828 
829 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
830 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
831 {
832 	struct jffs2_full_dirent **fdp = &f->dents;
833 	int found = 0;
834 
835 	/* On a medium where we can't actually mark nodes obsolete
836 	   pernamently, such as NAND flash, we need to work out
837 	   whether this deletion dirent is still needed to actively
838 	   delete a 'real' dirent with the same name that's still
839 	   somewhere else on the flash. */
840 	if (!jffs2_can_mark_obsolete(c)) {
841 		struct jffs2_raw_dirent *rd;
842 		struct jffs2_raw_node_ref *raw;
843 		int ret;
844 		size_t retlen;
845 		int name_len = strlen(fd->name);
846 		uint32_t name_crc = crc32(0, fd->name, name_len);
847 		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
848 
849 		rd = kmalloc(rawlen, GFP_KERNEL);
850 		if (!rd)
851 			return -ENOMEM;
852 
853 		/* Prevent the erase code from nicking the obsolete node refs while
854 		   we're looking at them. I really don't like this extra lock but
855 		   can't see any alternative. Suggestions on a postcard to... */
856 		mutex_lock(&c->erase_free_sem);
857 
858 		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
859 
860 			cond_resched();
861 
862 			/* We only care about obsolete ones */
863 			if (!(ref_obsolete(raw)))
864 				continue;
865 
866 			/* Any dirent with the same name is going to have the same length... */
867 			if (ref_totlen(c, NULL, raw) != rawlen)
868 				continue;
869 
870 			/* Doesn't matter if there's one in the same erase block. We're going to
871 			   delete it too at the same time. */
872 			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
873 				continue;
874 
875 			D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
876 
877 			/* This is an obsolete node belonging to the same directory, and it's of the right
878 			   length. We need to take a closer look...*/
879 			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
880 			if (ret) {
881 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
882 				/* If we can't read it, we don't need to continue to obsolete it. Continue */
883 				continue;
884 			}
885 			if (retlen != rawlen) {
886 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
887 				       retlen, rawlen, ref_offset(raw));
888 				continue;
889 			}
890 
891 			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
892 				continue;
893 
894 			/* If the name CRC doesn't match, skip */
895 			if (je32_to_cpu(rd->name_crc) != name_crc)
896 				continue;
897 
898 			/* If the name length doesn't match, or it's another deletion dirent, skip */
899 			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
900 				continue;
901 
902 			/* OK, check the actual name now */
903 			if (memcmp(rd->name, fd->name, name_len))
904 				continue;
905 
906 			/* OK. The name really does match. There really is still an older node on
907 			   the flash which our deletion dirent obsoletes. So we have to write out
908 			   a new deletion dirent to replace it */
909 			mutex_unlock(&c->erase_free_sem);
910 
911 			D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
912 				  ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
913 			kfree(rd);
914 
915 			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
916 		}
917 
918 		mutex_unlock(&c->erase_free_sem);
919 		kfree(rd);
920 	}
921 
922 	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
923 	   we should update the metadata node with those times accordingly */
924 
925 	/* No need for it any more. Just mark it obsolete and remove it from the list */
926 	while (*fdp) {
927 		if ((*fdp) == fd) {
928 			found = 1;
929 			*fdp = fd->next;
930 			break;
931 		}
932 		fdp = &(*fdp)->next;
933 	}
934 	if (!found) {
935 		printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
936 	}
937 	jffs2_mark_node_obsolete(c, fd->raw);
938 	jffs2_free_full_dirent(fd);
939 	return 0;
940 }
941 
942 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
943 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
944 				      uint32_t start, uint32_t end)
945 {
946 	struct jffs2_raw_inode ri;
947 	struct jffs2_node_frag *frag;
948 	struct jffs2_full_dnode *new_fn;
949 	uint32_t alloclen, ilen;
950 	int ret;
951 
952 	D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
953 		  f->inocache->ino, start, end));
954 
955 	memset(&ri, 0, sizeof(ri));
956 
957 	if(fn->frags > 1) {
958 		size_t readlen;
959 		uint32_t crc;
960 		/* It's partially obsoleted by a later write. So we have to
961 		   write it out again with the _same_ version as before */
962 		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
963 		if (readlen != sizeof(ri) || ret) {
964 			printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
965 			goto fill;
966 		}
967 		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
968 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
969 			       ref_offset(fn->raw),
970 			       je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
971 			return -EIO;
972 		}
973 		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
974 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
975 			       ref_offset(fn->raw),
976 			       je32_to_cpu(ri.totlen), sizeof(ri));
977 			return -EIO;
978 		}
979 		crc = crc32(0, &ri, sizeof(ri)-8);
980 		if (crc != je32_to_cpu(ri.node_crc)) {
981 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
982 			       ref_offset(fn->raw),
983 			       je32_to_cpu(ri.node_crc), crc);
984 			/* FIXME: We could possibly deal with this by writing new holes for each frag */
985 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
986 			       start, end, f->inocache->ino);
987 			goto fill;
988 		}
989 		if (ri.compr != JFFS2_COMPR_ZERO) {
990 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
991 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
992 			       start, end, f->inocache->ino);
993 			goto fill;
994 		}
995 	} else {
996 	fill:
997 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
998 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
999 		ri.totlen = cpu_to_je32(sizeof(ri));
1000 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1001 
1002 		ri.ino = cpu_to_je32(f->inocache->ino);
1003 		ri.version = cpu_to_je32(++f->highest_version);
1004 		ri.offset = cpu_to_je32(start);
1005 		ri.dsize = cpu_to_je32(end - start);
1006 		ri.csize = cpu_to_je32(0);
1007 		ri.compr = JFFS2_COMPR_ZERO;
1008 	}
1009 
1010 	frag = frag_last(&f->fragtree);
1011 	if (frag)
1012 		/* Fetch the inode length from the fragtree rather then
1013 		 * from i_size since i_size may have not been updated yet */
1014 		ilen = frag->ofs + frag->size;
1015 	else
1016 		ilen = JFFS2_F_I_SIZE(f);
1017 
1018 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1019 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1020 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1021 	ri.isize = cpu_to_je32(ilen);
1022 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1023 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1024 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1025 	ri.data_crc = cpu_to_je32(0);
1026 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1027 
1028 	ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1029 				     JFFS2_SUMMARY_INODE_SIZE);
1030 	if (ret) {
1031 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1032 		       sizeof(ri), ret);
1033 		return ret;
1034 	}
1035 	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1036 
1037 	if (IS_ERR(new_fn)) {
1038 		printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1039 		return PTR_ERR(new_fn);
1040 	}
1041 	if (je32_to_cpu(ri.version) == f->highest_version) {
1042 		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1043 		if (f->metadata) {
1044 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1045 			jffs2_free_full_dnode(f->metadata);
1046 			f->metadata = NULL;
1047 		}
1048 		return 0;
1049 	}
1050 
1051 	/*
1052 	 * We should only get here in the case where the node we are
1053 	 * replacing had more than one frag, so we kept the same version
1054 	 * number as before. (Except in case of error -- see 'goto fill;'
1055 	 * above.)
1056 	 */
1057 	D1(if(unlikely(fn->frags <= 1)) {
1058 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1059 		       fn->frags, je32_to_cpu(ri.version), f->highest_version,
1060 		       je32_to_cpu(ri.ino));
1061 	});
1062 
1063 	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1064 	mark_ref_normal(new_fn->raw);
1065 
1066 	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1067 	     frag; frag = frag_next(frag)) {
1068 		if (frag->ofs > fn->size + fn->ofs)
1069 			break;
1070 		if (frag->node == fn) {
1071 			frag->node = new_fn;
1072 			new_fn->frags++;
1073 			fn->frags--;
1074 		}
1075 	}
1076 	if (fn->frags) {
1077 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1078 		BUG();
1079 	}
1080 	if (!new_fn->frags) {
1081 		printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1082 		BUG();
1083 	}
1084 
1085 	jffs2_mark_node_obsolete(c, fn->raw);
1086 	jffs2_free_full_dnode(fn);
1087 
1088 	return 0;
1089 }
1090 
1091 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1092 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1093 				       uint32_t start, uint32_t end)
1094 {
1095 	struct jffs2_full_dnode *new_fn;
1096 	struct jffs2_raw_inode ri;
1097 	uint32_t alloclen, offset, orig_end, orig_start;
1098 	int ret = 0;
1099 	unsigned char *comprbuf = NULL, *writebuf;
1100 	unsigned long pg;
1101 	unsigned char *pg_ptr;
1102 
1103 	memset(&ri, 0, sizeof(ri));
1104 
1105 	D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1106 		  f->inocache->ino, start, end));
1107 
1108 	orig_end = end;
1109 	orig_start = start;
1110 
1111 	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1112 		/* Attempt to do some merging. But only expand to cover logically
1113 		   adjacent frags if the block containing them is already considered
1114 		   to be dirty. Otherwise we end up with GC just going round in
1115 		   circles dirtying the nodes it already wrote out, especially
1116 		   on NAND where we have small eraseblocks and hence a much higher
1117 		   chance of nodes having to be split to cross boundaries. */
1118 
1119 		struct jffs2_node_frag *frag;
1120 		uint32_t min, max;
1121 
1122 		min = start & ~(PAGE_CACHE_SIZE-1);
1123 		max = min + PAGE_CACHE_SIZE;
1124 
1125 		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1126 
1127 		/* BUG_ON(!frag) but that'll happen anyway... */
1128 
1129 		BUG_ON(frag->ofs != start);
1130 
1131 		/* First grow down... */
1132 		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1133 
1134 			/* If the previous frag doesn't even reach the beginning, there's
1135 			   excessive fragmentation. Just merge. */
1136 			if (frag->ofs > min) {
1137 				D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1138 					  frag->ofs, frag->ofs+frag->size));
1139 				start = frag->ofs;
1140 				continue;
1141 			}
1142 			/* OK. This frag holds the first byte of the page. */
1143 			if (!frag->node || !frag->node->raw) {
1144 				D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1145 					  frag->ofs, frag->ofs+frag->size));
1146 				break;
1147 			} else {
1148 
1149 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1150 				   in a block which is still considered clean? If so, don't obsolete it.
1151 				   If not, cover it anyway. */
1152 
1153 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1154 				struct jffs2_eraseblock *jeb;
1155 
1156 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1157 
1158 				if (jeb == c->gcblock) {
1159 					D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1160 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1161 					start = frag->ofs;
1162 					break;
1163 				}
1164 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1165 					D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1166 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1167 					break;
1168 				}
1169 
1170 				D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1171 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1172 				start = frag->ofs;
1173 				break;
1174 			}
1175 		}
1176 
1177 		/* ... then up */
1178 
1179 		/* Find last frag which is actually part of the node we're to GC. */
1180 		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1181 
1182 		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1183 
1184 			/* If the previous frag doesn't even reach the beginning, there's lots
1185 			   of fragmentation. Just merge. */
1186 			if (frag->ofs+frag->size < max) {
1187 				D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1188 					  frag->ofs, frag->ofs+frag->size));
1189 				end = frag->ofs + frag->size;
1190 				continue;
1191 			}
1192 
1193 			if (!frag->node || !frag->node->raw) {
1194 				D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1195 					  frag->ofs, frag->ofs+frag->size));
1196 				break;
1197 			} else {
1198 
1199 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1200 				   in a block which is still considered clean? If so, don't obsolete it.
1201 				   If not, cover it anyway. */
1202 
1203 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1204 				struct jffs2_eraseblock *jeb;
1205 
1206 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1207 
1208 				if (jeb == c->gcblock) {
1209 					D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1210 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1211 					end = frag->ofs + frag->size;
1212 					break;
1213 				}
1214 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1215 					D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1216 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1217 					break;
1218 				}
1219 
1220 				D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1221 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1222 				end = frag->ofs + frag->size;
1223 				break;
1224 			}
1225 		}
1226 		D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1227 			  orig_start, orig_end, start, end));
1228 
1229 		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1230 		BUG_ON(end < orig_end);
1231 		BUG_ON(start > orig_start);
1232 	}
1233 
1234 	/* First, use readpage() to read the appropriate page into the page cache */
1235 	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1236 	 *    triggered garbage collection in the first place?
1237 	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1238 	 *    page OK. We'll actually write it out again in commit_write, which is a little
1239 	 *    suboptimal, but at least we're correct.
1240 	 */
1241 	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1242 
1243 	if (IS_ERR(pg_ptr)) {
1244 		printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1245 		return PTR_ERR(pg_ptr);
1246 	}
1247 
1248 	offset = start;
1249 	while(offset < orig_end) {
1250 		uint32_t datalen;
1251 		uint32_t cdatalen;
1252 		uint16_t comprtype = JFFS2_COMPR_NONE;
1253 
1254 		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1255 					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
1256 
1257 		if (ret) {
1258 			printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1259 			       sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1260 			break;
1261 		}
1262 		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1263 		datalen = end - offset;
1264 
1265 		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1266 
1267 		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1268 
1269 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1270 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1271 		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1272 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1273 
1274 		ri.ino = cpu_to_je32(f->inocache->ino);
1275 		ri.version = cpu_to_je32(++f->highest_version);
1276 		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1277 		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1278 		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1279 		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1280 		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1281 		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1282 		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1283 		ri.offset = cpu_to_je32(offset);
1284 		ri.csize = cpu_to_je32(cdatalen);
1285 		ri.dsize = cpu_to_je32(datalen);
1286 		ri.compr = comprtype & 0xff;
1287 		ri.usercompr = (comprtype >> 8) & 0xff;
1288 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1289 		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1290 
1291 		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1292 
1293 		jffs2_free_comprbuf(comprbuf, writebuf);
1294 
1295 		if (IS_ERR(new_fn)) {
1296 			printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1297 			ret = PTR_ERR(new_fn);
1298 			break;
1299 		}
1300 		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1301 		offset += datalen;
1302 		if (f->metadata) {
1303 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1304 			jffs2_free_full_dnode(f->metadata);
1305 			f->metadata = NULL;
1306 		}
1307 	}
1308 
1309 	jffs2_gc_release_page(c, pg_ptr, &pg);
1310 	return ret;
1311 }
1312