xref: /openbmc/linux/fs/jffs2/file.c (revision 171f1bc7)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  *
9  * For licensing information, see the file 'LICENCE' in this directory.
10  *
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/time.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/crc32.h>
19 #include <linux/jffs2.h>
20 #include "nodelist.h"
21 
22 static int jffs2_write_end(struct file *filp, struct address_space *mapping,
23 			loff_t pos, unsigned len, unsigned copied,
24 			struct page *pg, void *fsdata);
25 static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
26 			loff_t pos, unsigned len, unsigned flags,
27 			struct page **pagep, void **fsdata);
28 static int jffs2_readpage (struct file *filp, struct page *pg);
29 
30 int jffs2_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
31 {
32 	struct inode *inode = filp->f_mapping->host;
33 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
34 	int ret;
35 
36 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
37 	if (ret)
38 		return ret;
39 
40 	mutex_lock(&inode->i_mutex);
41 	/* Trigger GC to flush any pending writes for this inode */
42 	jffs2_flush_wbuf_gc(c, inode->i_ino);
43 	mutex_unlock(&inode->i_mutex);
44 
45 	return 0;
46 }
47 
48 const struct file_operations jffs2_file_operations =
49 {
50 	.llseek =	generic_file_llseek,
51 	.open =		generic_file_open,
52  	.read =		do_sync_read,
53  	.aio_read =	generic_file_aio_read,
54  	.write =	do_sync_write,
55  	.aio_write =	generic_file_aio_write,
56 	.unlocked_ioctl=jffs2_ioctl,
57 	.mmap =		generic_file_readonly_mmap,
58 	.fsync =	jffs2_fsync,
59 	.splice_read =	generic_file_splice_read,
60 };
61 
62 /* jffs2_file_inode_operations */
63 
64 const struct inode_operations jffs2_file_inode_operations =
65 {
66 	.get_acl =	jffs2_get_acl,
67 	.setattr =	jffs2_setattr,
68 	.setxattr =	jffs2_setxattr,
69 	.getxattr =	jffs2_getxattr,
70 	.listxattr =	jffs2_listxattr,
71 	.removexattr =	jffs2_removexattr
72 };
73 
74 const struct address_space_operations jffs2_file_address_operations =
75 {
76 	.readpage =	jffs2_readpage,
77 	.write_begin =	jffs2_write_begin,
78 	.write_end =	jffs2_write_end,
79 };
80 
81 static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
82 {
83 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
84 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
85 	unsigned char *pg_buf;
86 	int ret;
87 
88 	D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT));
89 
90 	BUG_ON(!PageLocked(pg));
91 
92 	pg_buf = kmap(pg);
93 	/* FIXME: Can kmap fail? */
94 
95 	ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
96 
97 	if (ret) {
98 		ClearPageUptodate(pg);
99 		SetPageError(pg);
100 	} else {
101 		SetPageUptodate(pg);
102 		ClearPageError(pg);
103 	}
104 
105 	flush_dcache_page(pg);
106 	kunmap(pg);
107 
108 	D2(printk(KERN_DEBUG "readpage finished\n"));
109 	return ret;
110 }
111 
112 int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
113 {
114 	int ret = jffs2_do_readpage_nolock(inode, pg);
115 	unlock_page(pg);
116 	return ret;
117 }
118 
119 
120 static int jffs2_readpage (struct file *filp, struct page *pg)
121 {
122 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
123 	int ret;
124 
125 	mutex_lock(&f->sem);
126 	ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
127 	mutex_unlock(&f->sem);
128 	return ret;
129 }
130 
131 static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
132 			loff_t pos, unsigned len, unsigned flags,
133 			struct page **pagep, void **fsdata)
134 {
135 	struct page *pg;
136 	struct inode *inode = mapping->host;
137 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
138 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
139 	uint32_t pageofs = index << PAGE_CACHE_SHIFT;
140 	int ret = 0;
141 
142 	pg = grab_cache_page_write_begin(mapping, index, flags);
143 	if (!pg)
144 		return -ENOMEM;
145 	*pagep = pg;
146 
147 	D1(printk(KERN_DEBUG "jffs2_write_begin()\n"));
148 
149 	if (pageofs > inode->i_size) {
150 		/* Make new hole frag from old EOF to new page */
151 		struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
152 		struct jffs2_raw_inode ri;
153 		struct jffs2_full_dnode *fn;
154 		uint32_t alloc_len;
155 
156 		D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
157 			  (unsigned int)inode->i_size, pageofs));
158 
159 		ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
160 					  ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
161 		if (ret)
162 			goto out_page;
163 
164 		mutex_lock(&f->sem);
165 		memset(&ri, 0, sizeof(ri));
166 
167 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
168 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
169 		ri.totlen = cpu_to_je32(sizeof(ri));
170 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
171 
172 		ri.ino = cpu_to_je32(f->inocache->ino);
173 		ri.version = cpu_to_je32(++f->highest_version);
174 		ri.mode = cpu_to_jemode(inode->i_mode);
175 		ri.uid = cpu_to_je16(inode->i_uid);
176 		ri.gid = cpu_to_je16(inode->i_gid);
177 		ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
178 		ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
179 		ri.offset = cpu_to_je32(inode->i_size);
180 		ri.dsize = cpu_to_je32(pageofs - inode->i_size);
181 		ri.csize = cpu_to_je32(0);
182 		ri.compr = JFFS2_COMPR_ZERO;
183 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
184 		ri.data_crc = cpu_to_je32(0);
185 
186 		fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
187 
188 		if (IS_ERR(fn)) {
189 			ret = PTR_ERR(fn);
190 			jffs2_complete_reservation(c);
191 			mutex_unlock(&f->sem);
192 			goto out_page;
193 		}
194 		ret = jffs2_add_full_dnode_to_inode(c, f, fn);
195 		if (f->metadata) {
196 			jffs2_mark_node_obsolete(c, f->metadata->raw);
197 			jffs2_free_full_dnode(f->metadata);
198 			f->metadata = NULL;
199 		}
200 		if (ret) {
201 			D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n", ret));
202 			jffs2_mark_node_obsolete(c, fn->raw);
203 			jffs2_free_full_dnode(fn);
204 			jffs2_complete_reservation(c);
205 			mutex_unlock(&f->sem);
206 			goto out_page;
207 		}
208 		jffs2_complete_reservation(c);
209 		inode->i_size = pageofs;
210 		mutex_unlock(&f->sem);
211 	}
212 
213 	/*
214 	 * Read in the page if it wasn't already present. Cannot optimize away
215 	 * the whole page write case until jffs2_write_end can handle the
216 	 * case of a short-copy.
217 	 */
218 	if (!PageUptodate(pg)) {
219 		mutex_lock(&f->sem);
220 		ret = jffs2_do_readpage_nolock(inode, pg);
221 		mutex_unlock(&f->sem);
222 		if (ret)
223 			goto out_page;
224 	}
225 	D1(printk(KERN_DEBUG "end write_begin(). pg->flags %lx\n", pg->flags));
226 	return ret;
227 
228 out_page:
229 	unlock_page(pg);
230 	page_cache_release(pg);
231 	return ret;
232 }
233 
234 static int jffs2_write_end(struct file *filp, struct address_space *mapping,
235 			loff_t pos, unsigned len, unsigned copied,
236 			struct page *pg, void *fsdata)
237 {
238 	/* Actually commit the write from the page cache page we're looking at.
239 	 * For now, we write the full page out each time. It sucks, but it's simple
240 	 */
241 	struct inode *inode = mapping->host;
242 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
243 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
244 	struct jffs2_raw_inode *ri;
245 	unsigned start = pos & (PAGE_CACHE_SIZE - 1);
246 	unsigned end = start + copied;
247 	unsigned aligned_start = start & ~3;
248 	int ret = 0;
249 	uint32_t writtenlen = 0;
250 
251 	D1(printk(KERN_DEBUG "jffs2_write_end(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
252 		  inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));
253 
254 	/* We need to avoid deadlock with page_cache_read() in
255 	   jffs2_garbage_collect_pass(). So the page must be
256 	   up to date to prevent page_cache_read() from trying
257 	   to re-lock it. */
258 	BUG_ON(!PageUptodate(pg));
259 
260 	if (end == PAGE_CACHE_SIZE) {
261 		/* When writing out the end of a page, write out the
262 		   _whole_ page. This helps to reduce the number of
263 		   nodes in files which have many short writes, like
264 		   syslog files. */
265 		aligned_start = 0;
266 	}
267 
268 	ri = jffs2_alloc_raw_inode();
269 
270 	if (!ri) {
271 		D1(printk(KERN_DEBUG "jffs2_write_end(): Allocation of raw inode failed\n"));
272 		unlock_page(pg);
273 		page_cache_release(pg);
274 		return -ENOMEM;
275 	}
276 
277 	/* Set the fields that the generic jffs2_write_inode_range() code can't find */
278 	ri->ino = cpu_to_je32(inode->i_ino);
279 	ri->mode = cpu_to_jemode(inode->i_mode);
280 	ri->uid = cpu_to_je16(inode->i_uid);
281 	ri->gid = cpu_to_je16(inode->i_gid);
282 	ri->isize = cpu_to_je32((uint32_t)inode->i_size);
283 	ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
284 
285 	/* In 2.4, it was already kmapped by generic_file_write(). Doesn't
286 	   hurt to do it again. The alternative is ifdefs, which are ugly. */
287 	kmap(pg);
288 
289 	ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
290 				      (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
291 				      end - aligned_start, &writtenlen);
292 
293 	kunmap(pg);
294 
295 	if (ret) {
296 		/* There was an error writing. */
297 		SetPageError(pg);
298 	}
299 
300 	/* Adjust writtenlen for the padding we did, so we don't confuse our caller */
301 	writtenlen -= min(writtenlen, (start - aligned_start));
302 
303 	if (writtenlen) {
304 		if (inode->i_size < pos + writtenlen) {
305 			inode->i_size = pos + writtenlen;
306 			inode->i_blocks = (inode->i_size + 511) >> 9;
307 
308 			inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
309 		}
310 	}
311 
312 	jffs2_free_raw_inode(ri);
313 
314 	if (start+writtenlen < end) {
315 		/* generic_file_write has written more to the page cache than we've
316 		   actually written to the medium. Mark the page !Uptodate so that
317 		   it gets reread */
318 		D1(printk(KERN_DEBUG "jffs2_write_end(): Not all bytes written. Marking page !uptodate\n"));
319 		SetPageError(pg);
320 		ClearPageUptodate(pg);
321 	}
322 
323 	D1(printk(KERN_DEBUG "jffs2_write_end() returning %d\n",
324 					writtenlen > 0 ? writtenlen : ret));
325 	unlock_page(pg);
326 	page_cache_release(pg);
327 	return writtenlen > 0 ? writtenlen : ret;
328 }
329