1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (transaction_cache) 46 return 0; 47 return -ENOMEM; 48 } 49 50 void jbd2_journal_destroy_transaction_cache(void) 51 { 52 kmem_cache_destroy(transaction_cache); 53 transaction_cache = NULL; 54 } 55 56 void jbd2_journal_free_transaction(transaction_t *transaction) 57 { 58 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 59 return; 60 kmem_cache_free(transaction_cache, transaction); 61 } 62 63 /* 64 * jbd2_get_transaction: obtain a new transaction_t object. 65 * 66 * Simply initialise a new transaction. Initialize it in 67 * RUNNING state and add it to the current journal (which should not 68 * have an existing running transaction: we only make a new transaction 69 * once we have started to commit the old one). 70 * 71 * Preconditions: 72 * The journal MUST be locked. We don't perform atomic mallocs on the 73 * new transaction and we can't block without protecting against other 74 * processes trying to touch the journal while it is in transition. 75 * 76 */ 77 78 static void jbd2_get_transaction(journal_t *journal, 79 transaction_t *transaction) 80 { 81 transaction->t_journal = journal; 82 transaction->t_state = T_RUNNING; 83 transaction->t_start_time = ktime_get(); 84 transaction->t_tid = journal->j_transaction_sequence++; 85 transaction->t_expires = jiffies + journal->j_commit_interval; 86 spin_lock_init(&transaction->t_handle_lock); 87 atomic_set(&transaction->t_updates, 0); 88 atomic_set(&transaction->t_outstanding_credits, 89 atomic_read(&journal->j_reserved_credits)); 90 atomic_set(&transaction->t_handle_count, 0); 91 INIT_LIST_HEAD(&transaction->t_inode_list); 92 INIT_LIST_HEAD(&transaction->t_private_list); 93 94 /* Set up the commit timer for the new transaction. */ 95 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 96 add_timer(&journal->j_commit_timer); 97 98 J_ASSERT(journal->j_running_transaction == NULL); 99 journal->j_running_transaction = transaction; 100 transaction->t_max_wait = 0; 101 transaction->t_start = jiffies; 102 transaction->t_requested = 0; 103 } 104 105 /* 106 * Handle management. 107 * 108 * A handle_t is an object which represents a single atomic update to a 109 * filesystem, and which tracks all of the modifications which form part 110 * of that one update. 111 */ 112 113 /* 114 * Update transaction's maximum wait time, if debugging is enabled. 115 * 116 * In order for t_max_wait to be reliable, it must be protected by a 117 * lock. But doing so will mean that start_this_handle() can not be 118 * run in parallel on SMP systems, which limits our scalability. So 119 * unless debugging is enabled, we no longer update t_max_wait, which 120 * means that maximum wait time reported by the jbd2_run_stats 121 * tracepoint will always be zero. 122 */ 123 static inline void update_t_max_wait(transaction_t *transaction, 124 unsigned long ts) 125 { 126 #ifdef CONFIG_JBD2_DEBUG 127 if (jbd2_journal_enable_debug && 128 time_after(transaction->t_start, ts)) { 129 ts = jbd2_time_diff(ts, transaction->t_start); 130 spin_lock(&transaction->t_handle_lock); 131 if (ts > transaction->t_max_wait) 132 transaction->t_max_wait = ts; 133 spin_unlock(&transaction->t_handle_lock); 134 } 135 #endif 136 } 137 138 /* 139 * Wait until running transaction passes to T_FLUSH state and new transaction 140 * can thus be started. Also starts the commit if needed. The function expects 141 * running transaction to exist and releases j_state_lock. 142 */ 143 static void wait_transaction_locked(journal_t *journal) 144 __releases(journal->j_state_lock) 145 { 146 DEFINE_WAIT(wait); 147 int need_to_start; 148 tid_t tid = journal->j_running_transaction->t_tid; 149 150 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 151 TASK_UNINTERRUPTIBLE); 152 need_to_start = !tid_geq(journal->j_commit_request, tid); 153 read_unlock(&journal->j_state_lock); 154 if (need_to_start) 155 jbd2_log_start_commit(journal, tid); 156 jbd2_might_wait_for_commit(journal); 157 schedule(); 158 finish_wait(&journal->j_wait_transaction_locked, &wait); 159 } 160 161 /* 162 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 163 * state and new transaction can thus be started. The function releases 164 * j_state_lock. 165 */ 166 static void wait_transaction_switching(journal_t *journal) 167 __releases(journal->j_state_lock) 168 { 169 DEFINE_WAIT(wait); 170 171 if (WARN_ON(!journal->j_running_transaction || 172 journal->j_running_transaction->t_state != T_SWITCH)) 173 return; 174 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 175 TASK_UNINTERRUPTIBLE); 176 read_unlock(&journal->j_state_lock); 177 /* 178 * We don't call jbd2_might_wait_for_commit() here as there's no 179 * waiting for outstanding handles happening anymore in T_SWITCH state 180 * and handling of reserved handles actually relies on that for 181 * correctness. 182 */ 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 static void sub_reserved_credits(journal_t *journal, int blocks) 188 { 189 atomic_sub(blocks, &journal->j_reserved_credits); 190 wake_up(&journal->j_wait_reserved); 191 } 192 193 /* 194 * Wait until we can add credits for handle to the running transaction. Called 195 * with j_state_lock held for reading. Returns 0 if handle joined the running 196 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 197 * caller must retry. 198 */ 199 static int add_transaction_credits(journal_t *journal, int blocks, 200 int rsv_blocks) 201 { 202 transaction_t *t = journal->j_running_transaction; 203 int needed; 204 int total = blocks + rsv_blocks; 205 206 /* 207 * If the current transaction is locked down for commit, wait 208 * for the lock to be released. 209 */ 210 if (t->t_state != T_RUNNING) { 211 WARN_ON_ONCE(t->t_state >= T_FLUSH); 212 wait_transaction_locked(journal); 213 return 1; 214 } 215 216 /* 217 * If there is not enough space left in the log to write all 218 * potential buffers requested by this operation, we need to 219 * stall pending a log checkpoint to free some more log space. 220 */ 221 needed = atomic_add_return(total, &t->t_outstanding_credits); 222 if (needed > journal->j_max_transaction_buffers) { 223 /* 224 * If the current transaction is already too large, 225 * then start to commit it: we can then go back and 226 * attach this handle to a new transaction. 227 */ 228 atomic_sub(total, &t->t_outstanding_credits); 229 230 /* 231 * Is the number of reserved credits in the current transaction too 232 * big to fit this handle? Wait until reserved credits are freed. 233 */ 234 if (atomic_read(&journal->j_reserved_credits) + total > 235 journal->j_max_transaction_buffers) { 236 read_unlock(&journal->j_state_lock); 237 jbd2_might_wait_for_commit(journal); 238 wait_event(journal->j_wait_reserved, 239 atomic_read(&journal->j_reserved_credits) + total <= 240 journal->j_max_transaction_buffers); 241 return 1; 242 } 243 244 wait_transaction_locked(journal); 245 return 1; 246 } 247 248 /* 249 * The commit code assumes that it can get enough log space 250 * without forcing a checkpoint. This is *critical* for 251 * correctness: a checkpoint of a buffer which is also 252 * associated with a committing transaction creates a deadlock, 253 * so commit simply cannot force through checkpoints. 254 * 255 * We must therefore ensure the necessary space in the journal 256 * *before* starting to dirty potentially checkpointed buffers 257 * in the new transaction. 258 */ 259 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 260 atomic_sub(total, &t->t_outstanding_credits); 261 read_unlock(&journal->j_state_lock); 262 jbd2_might_wait_for_commit(journal); 263 write_lock(&journal->j_state_lock); 264 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 265 __jbd2_log_wait_for_space(journal); 266 write_unlock(&journal->j_state_lock); 267 return 1; 268 } 269 270 /* No reservation? We are done... */ 271 if (!rsv_blocks) 272 return 0; 273 274 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 275 /* We allow at most half of a transaction to be reserved */ 276 if (needed > journal->j_max_transaction_buffers / 2) { 277 sub_reserved_credits(journal, rsv_blocks); 278 atomic_sub(total, &t->t_outstanding_credits); 279 read_unlock(&journal->j_state_lock); 280 jbd2_might_wait_for_commit(journal); 281 wait_event(journal->j_wait_reserved, 282 atomic_read(&journal->j_reserved_credits) + rsv_blocks 283 <= journal->j_max_transaction_buffers / 2); 284 return 1; 285 } 286 return 0; 287 } 288 289 /* 290 * start_this_handle: Given a handle, deal with any locking or stalling 291 * needed to make sure that there is enough journal space for the handle 292 * to begin. Attach the handle to a transaction and set up the 293 * transaction's buffer credits. 294 */ 295 296 static int start_this_handle(journal_t *journal, handle_t *handle, 297 gfp_t gfp_mask) 298 { 299 transaction_t *transaction, *new_transaction = NULL; 300 int blocks = handle->h_buffer_credits; 301 int rsv_blocks = 0; 302 unsigned long ts = jiffies; 303 304 if (handle->h_rsv_handle) 305 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 306 307 /* 308 * Limit the number of reserved credits to 1/2 of maximum transaction 309 * size and limit the number of total credits to not exceed maximum 310 * transaction size per operation. 311 */ 312 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 313 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 314 printk(KERN_ERR "JBD2: %s wants too many credits " 315 "credits:%d rsv_credits:%d max:%d\n", 316 current->comm, blocks, rsv_blocks, 317 journal->j_max_transaction_buffers); 318 WARN_ON(1); 319 return -ENOSPC; 320 } 321 322 alloc_transaction: 323 if (!journal->j_running_transaction) { 324 /* 325 * If __GFP_FS is not present, then we may be being called from 326 * inside the fs writeback layer, so we MUST NOT fail. 327 */ 328 if ((gfp_mask & __GFP_FS) == 0) 329 gfp_mask |= __GFP_NOFAIL; 330 new_transaction = kmem_cache_zalloc(transaction_cache, 331 gfp_mask); 332 if (!new_transaction) 333 return -ENOMEM; 334 } 335 336 jbd_debug(3, "New handle %p going live.\n", handle); 337 338 /* 339 * We need to hold j_state_lock until t_updates has been incremented, 340 * for proper journal barrier handling 341 */ 342 repeat: 343 read_lock(&journal->j_state_lock); 344 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 345 if (is_journal_aborted(journal) || 346 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 347 read_unlock(&journal->j_state_lock); 348 jbd2_journal_free_transaction(new_transaction); 349 return -EROFS; 350 } 351 352 /* 353 * Wait on the journal's transaction barrier if necessary. Specifically 354 * we allow reserved handles to proceed because otherwise commit could 355 * deadlock on page writeback not being able to complete. 356 */ 357 if (!handle->h_reserved && journal->j_barrier_count) { 358 read_unlock(&journal->j_state_lock); 359 wait_event(journal->j_wait_transaction_locked, 360 journal->j_barrier_count == 0); 361 goto repeat; 362 } 363 364 if (!journal->j_running_transaction) { 365 read_unlock(&journal->j_state_lock); 366 if (!new_transaction) 367 goto alloc_transaction; 368 write_lock(&journal->j_state_lock); 369 if (!journal->j_running_transaction && 370 (handle->h_reserved || !journal->j_barrier_count)) { 371 jbd2_get_transaction(journal, new_transaction); 372 new_transaction = NULL; 373 } 374 write_unlock(&journal->j_state_lock); 375 goto repeat; 376 } 377 378 transaction = journal->j_running_transaction; 379 380 if (!handle->h_reserved) { 381 /* We may have dropped j_state_lock - restart in that case */ 382 if (add_transaction_credits(journal, blocks, rsv_blocks)) 383 goto repeat; 384 } else { 385 /* 386 * We have handle reserved so we are allowed to join T_LOCKED 387 * transaction and we don't have to check for transaction size 388 * and journal space. But we still have to wait while running 389 * transaction is being switched to a committing one as it 390 * won't wait for any handles anymore. 391 */ 392 if (transaction->t_state == T_SWITCH) { 393 wait_transaction_switching(journal); 394 goto repeat; 395 } 396 sub_reserved_credits(journal, blocks); 397 handle->h_reserved = 0; 398 } 399 400 /* OK, account for the buffers that this operation expects to 401 * use and add the handle to the running transaction. 402 */ 403 update_t_max_wait(transaction, ts); 404 handle->h_transaction = transaction; 405 handle->h_requested_credits = blocks; 406 handle->h_start_jiffies = jiffies; 407 atomic_inc(&transaction->t_updates); 408 atomic_inc(&transaction->t_handle_count); 409 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 410 handle, blocks, 411 atomic_read(&transaction->t_outstanding_credits), 412 jbd2_log_space_left(journal)); 413 read_unlock(&journal->j_state_lock); 414 current->journal_info = handle; 415 416 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 417 jbd2_journal_free_transaction(new_transaction); 418 /* 419 * Ensure that no allocations done while the transaction is open are 420 * going to recurse back to the fs layer. 421 */ 422 handle->saved_alloc_context = memalloc_nofs_save(); 423 return 0; 424 } 425 426 /* Allocate a new handle. This should probably be in a slab... */ 427 static handle_t *new_handle(int nblocks) 428 { 429 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 430 if (!handle) 431 return NULL; 432 handle->h_buffer_credits = nblocks; 433 handle->h_ref = 1; 434 435 return handle; 436 } 437 438 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 439 gfp_t gfp_mask, unsigned int type, 440 unsigned int line_no) 441 { 442 handle_t *handle = journal_current_handle(); 443 int err; 444 445 if (!journal) 446 return ERR_PTR(-EROFS); 447 448 if (handle) { 449 J_ASSERT(handle->h_transaction->t_journal == journal); 450 handle->h_ref++; 451 return handle; 452 } 453 454 handle = new_handle(nblocks); 455 if (!handle) 456 return ERR_PTR(-ENOMEM); 457 if (rsv_blocks) { 458 handle_t *rsv_handle; 459 460 rsv_handle = new_handle(rsv_blocks); 461 if (!rsv_handle) { 462 jbd2_free_handle(handle); 463 return ERR_PTR(-ENOMEM); 464 } 465 rsv_handle->h_reserved = 1; 466 rsv_handle->h_journal = journal; 467 handle->h_rsv_handle = rsv_handle; 468 } 469 470 err = start_this_handle(journal, handle, gfp_mask); 471 if (err < 0) { 472 if (handle->h_rsv_handle) 473 jbd2_free_handle(handle->h_rsv_handle); 474 jbd2_free_handle(handle); 475 return ERR_PTR(err); 476 } 477 handle->h_type = type; 478 handle->h_line_no = line_no; 479 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 480 handle->h_transaction->t_tid, type, 481 line_no, nblocks); 482 483 return handle; 484 } 485 EXPORT_SYMBOL(jbd2__journal_start); 486 487 488 /** 489 * handle_t *jbd2_journal_start() - Obtain a new handle. 490 * @journal: Journal to start transaction on. 491 * @nblocks: number of block buffer we might modify 492 * 493 * We make sure that the transaction can guarantee at least nblocks of 494 * modified buffers in the log. We block until the log can guarantee 495 * that much space. Additionally, if rsv_blocks > 0, we also create another 496 * handle with rsv_blocks reserved blocks in the journal. This handle is 497 * is stored in h_rsv_handle. It is not attached to any particular transaction 498 * and thus doesn't block transaction commit. If the caller uses this reserved 499 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 500 * on the parent handle will dispose the reserved one. Reserved handle has to 501 * be converted to a normal handle using jbd2_journal_start_reserved() before 502 * it can be used. 503 * 504 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 505 * on failure. 506 */ 507 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 508 { 509 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 510 } 511 EXPORT_SYMBOL(jbd2_journal_start); 512 513 void jbd2_journal_free_reserved(handle_t *handle) 514 { 515 journal_t *journal = handle->h_journal; 516 517 WARN_ON(!handle->h_reserved); 518 sub_reserved_credits(journal, handle->h_buffer_credits); 519 jbd2_free_handle(handle); 520 } 521 EXPORT_SYMBOL(jbd2_journal_free_reserved); 522 523 /** 524 * int jbd2_journal_start_reserved() - start reserved handle 525 * @handle: handle to start 526 * @type: for handle statistics 527 * @line_no: for handle statistics 528 * 529 * Start handle that has been previously reserved with jbd2_journal_reserve(). 530 * This attaches @handle to the running transaction (or creates one if there's 531 * not transaction running). Unlike jbd2_journal_start() this function cannot 532 * block on journal commit, checkpointing, or similar stuff. It can block on 533 * memory allocation or frozen journal though. 534 * 535 * Return 0 on success, non-zero on error - handle is freed in that case. 536 */ 537 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 538 unsigned int line_no) 539 { 540 journal_t *journal = handle->h_journal; 541 int ret = -EIO; 542 543 if (WARN_ON(!handle->h_reserved)) { 544 /* Someone passed in normal handle? Just stop it. */ 545 jbd2_journal_stop(handle); 546 return ret; 547 } 548 /* 549 * Usefulness of mixing of reserved and unreserved handles is 550 * questionable. So far nobody seems to need it so just error out. 551 */ 552 if (WARN_ON(current->journal_info)) { 553 jbd2_journal_free_reserved(handle); 554 return ret; 555 } 556 557 handle->h_journal = NULL; 558 /* 559 * GFP_NOFS is here because callers are likely from writeback or 560 * similarly constrained call sites 561 */ 562 ret = start_this_handle(journal, handle, GFP_NOFS); 563 if (ret < 0) { 564 handle->h_journal = journal; 565 jbd2_journal_free_reserved(handle); 566 return ret; 567 } 568 handle->h_type = type; 569 handle->h_line_no = line_no; 570 return 0; 571 } 572 EXPORT_SYMBOL(jbd2_journal_start_reserved); 573 574 /** 575 * int jbd2_journal_extend() - extend buffer credits. 576 * @handle: handle to 'extend' 577 * @nblocks: nr blocks to try to extend by. 578 * 579 * Some transactions, such as large extends and truncates, can be done 580 * atomically all at once or in several stages. The operation requests 581 * a credit for a number of buffer modifications in advance, but can 582 * extend its credit if it needs more. 583 * 584 * jbd2_journal_extend tries to give the running handle more buffer credits. 585 * It does not guarantee that allocation - this is a best-effort only. 586 * The calling process MUST be able to deal cleanly with a failure to 587 * extend here. 588 * 589 * Return 0 on success, non-zero on failure. 590 * 591 * return code < 0 implies an error 592 * return code > 0 implies normal transaction-full status. 593 */ 594 int jbd2_journal_extend(handle_t *handle, int nblocks) 595 { 596 transaction_t *transaction = handle->h_transaction; 597 journal_t *journal; 598 int result; 599 int wanted; 600 601 if (is_handle_aborted(handle)) 602 return -EROFS; 603 journal = transaction->t_journal; 604 605 result = 1; 606 607 read_lock(&journal->j_state_lock); 608 609 /* Don't extend a locked-down transaction! */ 610 if (transaction->t_state != T_RUNNING) { 611 jbd_debug(3, "denied handle %p %d blocks: " 612 "transaction not running\n", handle, nblocks); 613 goto error_out; 614 } 615 616 spin_lock(&transaction->t_handle_lock); 617 wanted = atomic_add_return(nblocks, 618 &transaction->t_outstanding_credits); 619 620 if (wanted > journal->j_max_transaction_buffers) { 621 jbd_debug(3, "denied handle %p %d blocks: " 622 "transaction too large\n", handle, nblocks); 623 atomic_sub(nblocks, &transaction->t_outstanding_credits); 624 goto unlock; 625 } 626 627 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 628 jbd2_log_space_left(journal)) { 629 jbd_debug(3, "denied handle %p %d blocks: " 630 "insufficient log space\n", handle, nblocks); 631 atomic_sub(nblocks, &transaction->t_outstanding_credits); 632 goto unlock; 633 } 634 635 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 636 transaction->t_tid, 637 handle->h_type, handle->h_line_no, 638 handle->h_buffer_credits, 639 nblocks); 640 641 handle->h_buffer_credits += nblocks; 642 handle->h_requested_credits += nblocks; 643 result = 0; 644 645 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 646 unlock: 647 spin_unlock(&transaction->t_handle_lock); 648 error_out: 649 read_unlock(&journal->j_state_lock); 650 return result; 651 } 652 653 654 /** 655 * int jbd2_journal_restart() - restart a handle . 656 * @handle: handle to restart 657 * @nblocks: nr credits requested 658 * @gfp_mask: memory allocation flags (for start_this_handle) 659 * 660 * Restart a handle for a multi-transaction filesystem 661 * operation. 662 * 663 * If the jbd2_journal_extend() call above fails to grant new buffer credits 664 * to a running handle, a call to jbd2_journal_restart will commit the 665 * handle's transaction so far and reattach the handle to a new 666 * transaction capable of guaranteeing the requested number of 667 * credits. We preserve reserved handle if there's any attached to the 668 * passed in handle. 669 */ 670 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 671 { 672 transaction_t *transaction = handle->h_transaction; 673 journal_t *journal; 674 tid_t tid; 675 int need_to_start, ret; 676 677 /* If we've had an abort of any type, don't even think about 678 * actually doing the restart! */ 679 if (is_handle_aborted(handle)) 680 return 0; 681 journal = transaction->t_journal; 682 683 /* 684 * First unlink the handle from its current transaction, and start the 685 * commit on that. 686 */ 687 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 688 J_ASSERT(journal_current_handle() == handle); 689 690 read_lock(&journal->j_state_lock); 691 spin_lock(&transaction->t_handle_lock); 692 atomic_sub(handle->h_buffer_credits, 693 &transaction->t_outstanding_credits); 694 if (handle->h_rsv_handle) { 695 sub_reserved_credits(journal, 696 handle->h_rsv_handle->h_buffer_credits); 697 } 698 if (atomic_dec_and_test(&transaction->t_updates)) 699 wake_up(&journal->j_wait_updates); 700 tid = transaction->t_tid; 701 spin_unlock(&transaction->t_handle_lock); 702 handle->h_transaction = NULL; 703 current->journal_info = NULL; 704 705 jbd_debug(2, "restarting handle %p\n", handle); 706 need_to_start = !tid_geq(journal->j_commit_request, tid); 707 read_unlock(&journal->j_state_lock); 708 if (need_to_start) 709 jbd2_log_start_commit(journal, tid); 710 711 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 712 handle->h_buffer_credits = nblocks; 713 /* 714 * Restore the original nofs context because the journal restart 715 * is basically the same thing as journal stop and start. 716 * start_this_handle will start a new nofs context. 717 */ 718 memalloc_nofs_restore(handle->saved_alloc_context); 719 ret = start_this_handle(journal, handle, gfp_mask); 720 return ret; 721 } 722 EXPORT_SYMBOL(jbd2__journal_restart); 723 724 725 int jbd2_journal_restart(handle_t *handle, int nblocks) 726 { 727 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 728 } 729 EXPORT_SYMBOL(jbd2_journal_restart); 730 731 /** 732 * void jbd2_journal_lock_updates () - establish a transaction barrier. 733 * @journal: Journal to establish a barrier on. 734 * 735 * This locks out any further updates from being started, and blocks 736 * until all existing updates have completed, returning only once the 737 * journal is in a quiescent state with no updates running. 738 * 739 * The journal lock should not be held on entry. 740 */ 741 void jbd2_journal_lock_updates(journal_t *journal) 742 { 743 DEFINE_WAIT(wait); 744 745 jbd2_might_wait_for_commit(journal); 746 747 write_lock(&journal->j_state_lock); 748 ++journal->j_barrier_count; 749 750 /* Wait until there are no reserved handles */ 751 if (atomic_read(&journal->j_reserved_credits)) { 752 write_unlock(&journal->j_state_lock); 753 wait_event(journal->j_wait_reserved, 754 atomic_read(&journal->j_reserved_credits) == 0); 755 write_lock(&journal->j_state_lock); 756 } 757 758 /* Wait until there are no running updates */ 759 while (1) { 760 transaction_t *transaction = journal->j_running_transaction; 761 762 if (!transaction) 763 break; 764 765 spin_lock(&transaction->t_handle_lock); 766 prepare_to_wait(&journal->j_wait_updates, &wait, 767 TASK_UNINTERRUPTIBLE); 768 if (!atomic_read(&transaction->t_updates)) { 769 spin_unlock(&transaction->t_handle_lock); 770 finish_wait(&journal->j_wait_updates, &wait); 771 break; 772 } 773 spin_unlock(&transaction->t_handle_lock); 774 write_unlock(&journal->j_state_lock); 775 schedule(); 776 finish_wait(&journal->j_wait_updates, &wait); 777 write_lock(&journal->j_state_lock); 778 } 779 write_unlock(&journal->j_state_lock); 780 781 /* 782 * We have now established a barrier against other normal updates, but 783 * we also need to barrier against other jbd2_journal_lock_updates() calls 784 * to make sure that we serialise special journal-locked operations 785 * too. 786 */ 787 mutex_lock(&journal->j_barrier); 788 } 789 790 /** 791 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 792 * @journal: Journal to release the barrier on. 793 * 794 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 795 * 796 * Should be called without the journal lock held. 797 */ 798 void jbd2_journal_unlock_updates (journal_t *journal) 799 { 800 J_ASSERT(journal->j_barrier_count != 0); 801 802 mutex_unlock(&journal->j_barrier); 803 write_lock(&journal->j_state_lock); 804 --journal->j_barrier_count; 805 write_unlock(&journal->j_state_lock); 806 wake_up(&journal->j_wait_transaction_locked); 807 } 808 809 static void warn_dirty_buffer(struct buffer_head *bh) 810 { 811 printk(KERN_WARNING 812 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 813 "There's a risk of filesystem corruption in case of system " 814 "crash.\n", 815 bh->b_bdev, (unsigned long long)bh->b_blocknr); 816 } 817 818 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 819 static void jbd2_freeze_jh_data(struct journal_head *jh) 820 { 821 struct page *page; 822 int offset; 823 char *source; 824 struct buffer_head *bh = jh2bh(jh); 825 826 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 827 page = bh->b_page; 828 offset = offset_in_page(bh->b_data); 829 source = kmap_atomic(page); 830 /* Fire data frozen trigger just before we copy the data */ 831 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 832 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 833 kunmap_atomic(source); 834 835 /* 836 * Now that the frozen data is saved off, we need to store any matching 837 * triggers. 838 */ 839 jh->b_frozen_triggers = jh->b_triggers; 840 } 841 842 /* 843 * If the buffer is already part of the current transaction, then there 844 * is nothing we need to do. If it is already part of a prior 845 * transaction which we are still committing to disk, then we need to 846 * make sure that we do not overwrite the old copy: we do copy-out to 847 * preserve the copy going to disk. We also account the buffer against 848 * the handle's metadata buffer credits (unless the buffer is already 849 * part of the transaction, that is). 850 * 851 */ 852 static int 853 do_get_write_access(handle_t *handle, struct journal_head *jh, 854 int force_copy) 855 { 856 struct buffer_head *bh; 857 transaction_t *transaction = handle->h_transaction; 858 journal_t *journal; 859 int error; 860 char *frozen_buffer = NULL; 861 unsigned long start_lock, time_lock; 862 863 if (is_handle_aborted(handle)) 864 return -EROFS; 865 journal = transaction->t_journal; 866 867 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 868 869 JBUFFER_TRACE(jh, "entry"); 870 repeat: 871 bh = jh2bh(jh); 872 873 /* @@@ Need to check for errors here at some point. */ 874 875 start_lock = jiffies; 876 lock_buffer(bh); 877 jbd_lock_bh_state(bh); 878 879 /* If it takes too long to lock the buffer, trace it */ 880 time_lock = jbd2_time_diff(start_lock, jiffies); 881 if (time_lock > HZ/10) 882 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 883 jiffies_to_msecs(time_lock)); 884 885 /* We now hold the buffer lock so it is safe to query the buffer 886 * state. Is the buffer dirty? 887 * 888 * If so, there are two possibilities. The buffer may be 889 * non-journaled, and undergoing a quite legitimate writeback. 890 * Otherwise, it is journaled, and we don't expect dirty buffers 891 * in that state (the buffers should be marked JBD_Dirty 892 * instead.) So either the IO is being done under our own 893 * control and this is a bug, or it's a third party IO such as 894 * dump(8) (which may leave the buffer scheduled for read --- 895 * ie. locked but not dirty) or tune2fs (which may actually have 896 * the buffer dirtied, ugh.) */ 897 898 if (buffer_dirty(bh)) { 899 /* 900 * First question: is this buffer already part of the current 901 * transaction or the existing committing transaction? 902 */ 903 if (jh->b_transaction) { 904 J_ASSERT_JH(jh, 905 jh->b_transaction == transaction || 906 jh->b_transaction == 907 journal->j_committing_transaction); 908 if (jh->b_next_transaction) 909 J_ASSERT_JH(jh, jh->b_next_transaction == 910 transaction); 911 warn_dirty_buffer(bh); 912 } 913 /* 914 * In any case we need to clean the dirty flag and we must 915 * do it under the buffer lock to be sure we don't race 916 * with running write-out. 917 */ 918 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 919 clear_buffer_dirty(bh); 920 set_buffer_jbddirty(bh); 921 } 922 923 unlock_buffer(bh); 924 925 error = -EROFS; 926 if (is_handle_aborted(handle)) { 927 jbd_unlock_bh_state(bh); 928 goto out; 929 } 930 error = 0; 931 932 /* 933 * The buffer is already part of this transaction if b_transaction or 934 * b_next_transaction points to it 935 */ 936 if (jh->b_transaction == transaction || 937 jh->b_next_transaction == transaction) 938 goto done; 939 940 /* 941 * this is the first time this transaction is touching this buffer, 942 * reset the modified flag 943 */ 944 jh->b_modified = 0; 945 946 /* 947 * If the buffer is not journaled right now, we need to make sure it 948 * doesn't get written to disk before the caller actually commits the 949 * new data 950 */ 951 if (!jh->b_transaction) { 952 JBUFFER_TRACE(jh, "no transaction"); 953 J_ASSERT_JH(jh, !jh->b_next_transaction); 954 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 955 /* 956 * Make sure all stores to jh (b_modified, b_frozen_data) are 957 * visible before attaching it to the running transaction. 958 * Paired with barrier in jbd2_write_access_granted() 959 */ 960 smp_wmb(); 961 spin_lock(&journal->j_list_lock); 962 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 963 spin_unlock(&journal->j_list_lock); 964 goto done; 965 } 966 /* 967 * If there is already a copy-out version of this buffer, then we don't 968 * need to make another one 969 */ 970 if (jh->b_frozen_data) { 971 JBUFFER_TRACE(jh, "has frozen data"); 972 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 973 goto attach_next; 974 } 975 976 JBUFFER_TRACE(jh, "owned by older transaction"); 977 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 978 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 979 980 /* 981 * There is one case we have to be very careful about. If the 982 * committing transaction is currently writing this buffer out to disk 983 * and has NOT made a copy-out, then we cannot modify the buffer 984 * contents at all right now. The essence of copy-out is that it is 985 * the extra copy, not the primary copy, which gets journaled. If the 986 * primary copy is already going to disk then we cannot do copy-out 987 * here. 988 */ 989 if (buffer_shadow(bh)) { 990 JBUFFER_TRACE(jh, "on shadow: sleep"); 991 jbd_unlock_bh_state(bh); 992 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 993 goto repeat; 994 } 995 996 /* 997 * Only do the copy if the currently-owning transaction still needs it. 998 * If buffer isn't on BJ_Metadata list, the committing transaction is 999 * past that stage (here we use the fact that BH_Shadow is set under 1000 * bh_state lock together with refiling to BJ_Shadow list and at this 1001 * point we know the buffer doesn't have BH_Shadow set). 1002 * 1003 * Subtle point, though: if this is a get_undo_access, then we will be 1004 * relying on the frozen_data to contain the new value of the 1005 * committed_data record after the transaction, so we HAVE to force the 1006 * frozen_data copy in that case. 1007 */ 1008 if (jh->b_jlist == BJ_Metadata || force_copy) { 1009 JBUFFER_TRACE(jh, "generate frozen data"); 1010 if (!frozen_buffer) { 1011 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1012 jbd_unlock_bh_state(bh); 1013 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1014 GFP_NOFS | __GFP_NOFAIL); 1015 goto repeat; 1016 } 1017 jh->b_frozen_data = frozen_buffer; 1018 frozen_buffer = NULL; 1019 jbd2_freeze_jh_data(jh); 1020 } 1021 attach_next: 1022 /* 1023 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1024 * before attaching it to the running transaction. Paired with barrier 1025 * in jbd2_write_access_granted() 1026 */ 1027 smp_wmb(); 1028 jh->b_next_transaction = transaction; 1029 1030 done: 1031 jbd_unlock_bh_state(bh); 1032 1033 /* 1034 * If we are about to journal a buffer, then any revoke pending on it is 1035 * no longer valid 1036 */ 1037 jbd2_journal_cancel_revoke(handle, jh); 1038 1039 out: 1040 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1041 jbd2_free(frozen_buffer, bh->b_size); 1042 1043 JBUFFER_TRACE(jh, "exit"); 1044 return error; 1045 } 1046 1047 /* Fast check whether buffer is already attached to the required transaction */ 1048 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1049 bool undo) 1050 { 1051 struct journal_head *jh; 1052 bool ret = false; 1053 1054 /* Dirty buffers require special handling... */ 1055 if (buffer_dirty(bh)) 1056 return false; 1057 1058 /* 1059 * RCU protects us from dereferencing freed pages. So the checks we do 1060 * are guaranteed not to oops. However the jh slab object can get freed 1061 * & reallocated while we work with it. So we have to be careful. When 1062 * we see jh attached to the running transaction, we know it must stay 1063 * so until the transaction is committed. Thus jh won't be freed and 1064 * will be attached to the same bh while we run. However it can 1065 * happen jh gets freed, reallocated, and attached to the transaction 1066 * just after we get pointer to it from bh. So we have to be careful 1067 * and recheck jh still belongs to our bh before we return success. 1068 */ 1069 rcu_read_lock(); 1070 if (!buffer_jbd(bh)) 1071 goto out; 1072 /* This should be bh2jh() but that doesn't work with inline functions */ 1073 jh = READ_ONCE(bh->b_private); 1074 if (!jh) 1075 goto out; 1076 /* For undo access buffer must have data copied */ 1077 if (undo && !jh->b_committed_data) 1078 goto out; 1079 if (jh->b_transaction != handle->h_transaction && 1080 jh->b_next_transaction != handle->h_transaction) 1081 goto out; 1082 /* 1083 * There are two reasons for the barrier here: 1084 * 1) Make sure to fetch b_bh after we did previous checks so that we 1085 * detect when jh went through free, realloc, attach to transaction 1086 * while we were checking. Paired with implicit barrier in that path. 1087 * 2) So that access to bh done after jbd2_write_access_granted() 1088 * doesn't get reordered and see inconsistent state of concurrent 1089 * do_get_write_access(). 1090 */ 1091 smp_mb(); 1092 if (unlikely(jh->b_bh != bh)) 1093 goto out; 1094 ret = true; 1095 out: 1096 rcu_read_unlock(); 1097 return ret; 1098 } 1099 1100 /** 1101 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1102 * @handle: transaction to add buffer modifications to 1103 * @bh: bh to be used for metadata writes 1104 * 1105 * Returns: error code or 0 on success. 1106 * 1107 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1108 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1109 */ 1110 1111 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1112 { 1113 struct journal_head *jh; 1114 int rc; 1115 1116 if (jbd2_write_access_granted(handle, bh, false)) 1117 return 0; 1118 1119 jh = jbd2_journal_add_journal_head(bh); 1120 /* We do not want to get caught playing with fields which the 1121 * log thread also manipulates. Make sure that the buffer 1122 * completes any outstanding IO before proceeding. */ 1123 rc = do_get_write_access(handle, jh, 0); 1124 jbd2_journal_put_journal_head(jh); 1125 return rc; 1126 } 1127 1128 1129 /* 1130 * When the user wants to journal a newly created buffer_head 1131 * (ie. getblk() returned a new buffer and we are going to populate it 1132 * manually rather than reading off disk), then we need to keep the 1133 * buffer_head locked until it has been completely filled with new 1134 * data. In this case, we should be able to make the assertion that 1135 * the bh is not already part of an existing transaction. 1136 * 1137 * The buffer should already be locked by the caller by this point. 1138 * There is no lock ranking violation: it was a newly created, 1139 * unlocked buffer beforehand. */ 1140 1141 /** 1142 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1143 * @handle: transaction to new buffer to 1144 * @bh: new buffer. 1145 * 1146 * Call this if you create a new bh. 1147 */ 1148 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1149 { 1150 transaction_t *transaction = handle->h_transaction; 1151 journal_t *journal; 1152 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1153 int err; 1154 1155 jbd_debug(5, "journal_head %p\n", jh); 1156 err = -EROFS; 1157 if (is_handle_aborted(handle)) 1158 goto out; 1159 journal = transaction->t_journal; 1160 err = 0; 1161 1162 JBUFFER_TRACE(jh, "entry"); 1163 /* 1164 * The buffer may already belong to this transaction due to pre-zeroing 1165 * in the filesystem's new_block code. It may also be on the previous, 1166 * committing transaction's lists, but it HAS to be in Forget state in 1167 * that case: the transaction must have deleted the buffer for it to be 1168 * reused here. 1169 */ 1170 jbd_lock_bh_state(bh); 1171 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1172 jh->b_transaction == NULL || 1173 (jh->b_transaction == journal->j_committing_transaction && 1174 jh->b_jlist == BJ_Forget))); 1175 1176 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1177 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1178 1179 if (jh->b_transaction == NULL) { 1180 /* 1181 * Previous jbd2_journal_forget() could have left the buffer 1182 * with jbddirty bit set because it was being committed. When 1183 * the commit finished, we've filed the buffer for 1184 * checkpointing and marked it dirty. Now we are reallocating 1185 * the buffer so the transaction freeing it must have 1186 * committed and so it's safe to clear the dirty bit. 1187 */ 1188 clear_buffer_dirty(jh2bh(jh)); 1189 /* first access by this transaction */ 1190 jh->b_modified = 0; 1191 1192 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1193 spin_lock(&journal->j_list_lock); 1194 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1195 spin_unlock(&journal->j_list_lock); 1196 } else if (jh->b_transaction == journal->j_committing_transaction) { 1197 /* first access by this transaction */ 1198 jh->b_modified = 0; 1199 1200 JBUFFER_TRACE(jh, "set next transaction"); 1201 spin_lock(&journal->j_list_lock); 1202 jh->b_next_transaction = transaction; 1203 spin_unlock(&journal->j_list_lock); 1204 } 1205 jbd_unlock_bh_state(bh); 1206 1207 /* 1208 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1209 * blocks which contain freed but then revoked metadata. We need 1210 * to cancel the revoke in case we end up freeing it yet again 1211 * and the reallocating as data - this would cause a second revoke, 1212 * which hits an assertion error. 1213 */ 1214 JBUFFER_TRACE(jh, "cancelling revoke"); 1215 jbd2_journal_cancel_revoke(handle, jh); 1216 out: 1217 jbd2_journal_put_journal_head(jh); 1218 return err; 1219 } 1220 1221 /** 1222 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1223 * non-rewindable consequences 1224 * @handle: transaction 1225 * @bh: buffer to undo 1226 * 1227 * Sometimes there is a need to distinguish between metadata which has 1228 * been committed to disk and that which has not. The ext3fs code uses 1229 * this for freeing and allocating space, we have to make sure that we 1230 * do not reuse freed space until the deallocation has been committed, 1231 * since if we overwrote that space we would make the delete 1232 * un-rewindable in case of a crash. 1233 * 1234 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1235 * buffer for parts of non-rewindable operations such as delete 1236 * operations on the bitmaps. The journaling code must keep a copy of 1237 * the buffer's contents prior to the undo_access call until such time 1238 * as we know that the buffer has definitely been committed to disk. 1239 * 1240 * We never need to know which transaction the committed data is part 1241 * of, buffers touched here are guaranteed to be dirtied later and so 1242 * will be committed to a new transaction in due course, at which point 1243 * we can discard the old committed data pointer. 1244 * 1245 * Returns error number or 0 on success. 1246 */ 1247 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1248 { 1249 int err; 1250 struct journal_head *jh; 1251 char *committed_data = NULL; 1252 1253 if (jbd2_write_access_granted(handle, bh, true)) 1254 return 0; 1255 1256 jh = jbd2_journal_add_journal_head(bh); 1257 JBUFFER_TRACE(jh, "entry"); 1258 1259 /* 1260 * Do this first --- it can drop the journal lock, so we want to 1261 * make sure that obtaining the committed_data is done 1262 * atomically wrt. completion of any outstanding commits. 1263 */ 1264 err = do_get_write_access(handle, jh, 1); 1265 if (err) 1266 goto out; 1267 1268 repeat: 1269 if (!jh->b_committed_data) 1270 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1271 GFP_NOFS|__GFP_NOFAIL); 1272 1273 jbd_lock_bh_state(bh); 1274 if (!jh->b_committed_data) { 1275 /* Copy out the current buffer contents into the 1276 * preserved, committed copy. */ 1277 JBUFFER_TRACE(jh, "generate b_committed data"); 1278 if (!committed_data) { 1279 jbd_unlock_bh_state(bh); 1280 goto repeat; 1281 } 1282 1283 jh->b_committed_data = committed_data; 1284 committed_data = NULL; 1285 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1286 } 1287 jbd_unlock_bh_state(bh); 1288 out: 1289 jbd2_journal_put_journal_head(jh); 1290 if (unlikely(committed_data)) 1291 jbd2_free(committed_data, bh->b_size); 1292 return err; 1293 } 1294 1295 /** 1296 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1297 * @bh: buffer to trigger on 1298 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1299 * 1300 * Set any triggers on this journal_head. This is always safe, because 1301 * triggers for a committing buffer will be saved off, and triggers for 1302 * a running transaction will match the buffer in that transaction. 1303 * 1304 * Call with NULL to clear the triggers. 1305 */ 1306 void jbd2_journal_set_triggers(struct buffer_head *bh, 1307 struct jbd2_buffer_trigger_type *type) 1308 { 1309 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1310 1311 if (WARN_ON(!jh)) 1312 return; 1313 jh->b_triggers = type; 1314 jbd2_journal_put_journal_head(jh); 1315 } 1316 1317 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1318 struct jbd2_buffer_trigger_type *triggers) 1319 { 1320 struct buffer_head *bh = jh2bh(jh); 1321 1322 if (!triggers || !triggers->t_frozen) 1323 return; 1324 1325 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1326 } 1327 1328 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1329 struct jbd2_buffer_trigger_type *triggers) 1330 { 1331 if (!triggers || !triggers->t_abort) 1332 return; 1333 1334 triggers->t_abort(triggers, jh2bh(jh)); 1335 } 1336 1337 /** 1338 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1339 * @handle: transaction to add buffer to. 1340 * @bh: buffer to mark 1341 * 1342 * mark dirty metadata which needs to be journaled as part of the current 1343 * transaction. 1344 * 1345 * The buffer must have previously had jbd2_journal_get_write_access() 1346 * called so that it has a valid journal_head attached to the buffer 1347 * head. 1348 * 1349 * The buffer is placed on the transaction's metadata list and is marked 1350 * as belonging to the transaction. 1351 * 1352 * Returns error number or 0 on success. 1353 * 1354 * Special care needs to be taken if the buffer already belongs to the 1355 * current committing transaction (in which case we should have frozen 1356 * data present for that commit). In that case, we don't relink the 1357 * buffer: that only gets done when the old transaction finally 1358 * completes its commit. 1359 */ 1360 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1361 { 1362 transaction_t *transaction = handle->h_transaction; 1363 journal_t *journal; 1364 struct journal_head *jh; 1365 int ret = 0; 1366 1367 if (is_handle_aborted(handle)) 1368 return -EROFS; 1369 if (!buffer_jbd(bh)) 1370 return -EUCLEAN; 1371 1372 /* 1373 * We don't grab jh reference here since the buffer must be part 1374 * of the running transaction. 1375 */ 1376 jh = bh2jh(bh); 1377 jbd_debug(5, "journal_head %p\n", jh); 1378 JBUFFER_TRACE(jh, "entry"); 1379 1380 /* 1381 * This and the following assertions are unreliable since we may see jh 1382 * in inconsistent state unless we grab bh_state lock. But this is 1383 * crucial to catch bugs so let's do a reliable check until the 1384 * lockless handling is fully proven. 1385 */ 1386 if (jh->b_transaction != transaction && 1387 jh->b_next_transaction != transaction) { 1388 jbd_lock_bh_state(bh); 1389 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1390 jh->b_next_transaction == transaction); 1391 jbd_unlock_bh_state(bh); 1392 } 1393 if (jh->b_modified == 1) { 1394 /* If it's in our transaction it must be in BJ_Metadata list. */ 1395 if (jh->b_transaction == transaction && 1396 jh->b_jlist != BJ_Metadata) { 1397 jbd_lock_bh_state(bh); 1398 if (jh->b_transaction == transaction && 1399 jh->b_jlist != BJ_Metadata) 1400 pr_err("JBD2: assertion failure: h_type=%u " 1401 "h_line_no=%u block_no=%llu jlist=%u\n", 1402 handle->h_type, handle->h_line_no, 1403 (unsigned long long) bh->b_blocknr, 1404 jh->b_jlist); 1405 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1406 jh->b_jlist == BJ_Metadata); 1407 jbd_unlock_bh_state(bh); 1408 } 1409 goto out; 1410 } 1411 1412 journal = transaction->t_journal; 1413 jbd_lock_bh_state(bh); 1414 1415 if (jh->b_modified == 0) { 1416 /* 1417 * This buffer's got modified and becoming part 1418 * of the transaction. This needs to be done 1419 * once a transaction -bzzz 1420 */ 1421 if (handle->h_buffer_credits <= 0) { 1422 ret = -ENOSPC; 1423 goto out_unlock_bh; 1424 } 1425 jh->b_modified = 1; 1426 handle->h_buffer_credits--; 1427 } 1428 1429 /* 1430 * fastpath, to avoid expensive locking. If this buffer is already 1431 * on the running transaction's metadata list there is nothing to do. 1432 * Nobody can take it off again because there is a handle open. 1433 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1434 * result in this test being false, so we go in and take the locks. 1435 */ 1436 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1437 JBUFFER_TRACE(jh, "fastpath"); 1438 if (unlikely(jh->b_transaction != 1439 journal->j_running_transaction)) { 1440 printk(KERN_ERR "JBD2: %s: " 1441 "jh->b_transaction (%llu, %p, %u) != " 1442 "journal->j_running_transaction (%p, %u)\n", 1443 journal->j_devname, 1444 (unsigned long long) bh->b_blocknr, 1445 jh->b_transaction, 1446 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1447 journal->j_running_transaction, 1448 journal->j_running_transaction ? 1449 journal->j_running_transaction->t_tid : 0); 1450 ret = -EINVAL; 1451 } 1452 goto out_unlock_bh; 1453 } 1454 1455 set_buffer_jbddirty(bh); 1456 1457 /* 1458 * Metadata already on the current transaction list doesn't 1459 * need to be filed. Metadata on another transaction's list must 1460 * be committing, and will be refiled once the commit completes: 1461 * leave it alone for now. 1462 */ 1463 if (jh->b_transaction != transaction) { 1464 JBUFFER_TRACE(jh, "already on other transaction"); 1465 if (unlikely(((jh->b_transaction != 1466 journal->j_committing_transaction)) || 1467 (jh->b_next_transaction != transaction))) { 1468 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1469 "bad jh for block %llu: " 1470 "transaction (%p, %u), " 1471 "jh->b_transaction (%p, %u), " 1472 "jh->b_next_transaction (%p, %u), jlist %u\n", 1473 journal->j_devname, 1474 (unsigned long long) bh->b_blocknr, 1475 transaction, transaction->t_tid, 1476 jh->b_transaction, 1477 jh->b_transaction ? 1478 jh->b_transaction->t_tid : 0, 1479 jh->b_next_transaction, 1480 jh->b_next_transaction ? 1481 jh->b_next_transaction->t_tid : 0, 1482 jh->b_jlist); 1483 WARN_ON(1); 1484 ret = -EINVAL; 1485 } 1486 /* And this case is illegal: we can't reuse another 1487 * transaction's data buffer, ever. */ 1488 goto out_unlock_bh; 1489 } 1490 1491 /* That test should have eliminated the following case: */ 1492 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1493 1494 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1495 spin_lock(&journal->j_list_lock); 1496 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1497 spin_unlock(&journal->j_list_lock); 1498 out_unlock_bh: 1499 jbd_unlock_bh_state(bh); 1500 out: 1501 JBUFFER_TRACE(jh, "exit"); 1502 return ret; 1503 } 1504 1505 /** 1506 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1507 * @handle: transaction handle 1508 * @bh: bh to 'forget' 1509 * 1510 * We can only do the bforget if there are no commits pending against the 1511 * buffer. If the buffer is dirty in the current running transaction we 1512 * can safely unlink it. 1513 * 1514 * bh may not be a journalled buffer at all - it may be a non-JBD 1515 * buffer which came off the hashtable. Check for this. 1516 * 1517 * Decrements bh->b_count by one. 1518 * 1519 * Allow this call even if the handle has aborted --- it may be part of 1520 * the caller's cleanup after an abort. 1521 */ 1522 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1523 { 1524 transaction_t *transaction = handle->h_transaction; 1525 journal_t *journal; 1526 struct journal_head *jh; 1527 int drop_reserve = 0; 1528 int err = 0; 1529 int was_modified = 0; 1530 1531 if (is_handle_aborted(handle)) 1532 return -EROFS; 1533 journal = transaction->t_journal; 1534 1535 BUFFER_TRACE(bh, "entry"); 1536 1537 jbd_lock_bh_state(bh); 1538 1539 if (!buffer_jbd(bh)) 1540 goto not_jbd; 1541 jh = bh2jh(bh); 1542 1543 /* Critical error: attempting to delete a bitmap buffer, maybe? 1544 * Don't do any jbd operations, and return an error. */ 1545 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1546 "inconsistent data on disk")) { 1547 err = -EIO; 1548 goto not_jbd; 1549 } 1550 1551 /* keep track of whether or not this transaction modified us */ 1552 was_modified = jh->b_modified; 1553 1554 /* 1555 * The buffer's going from the transaction, we must drop 1556 * all references -bzzz 1557 */ 1558 jh->b_modified = 0; 1559 1560 if (jh->b_transaction == transaction) { 1561 J_ASSERT_JH(jh, !jh->b_frozen_data); 1562 1563 /* If we are forgetting a buffer which is already part 1564 * of this transaction, then we can just drop it from 1565 * the transaction immediately. */ 1566 clear_buffer_dirty(bh); 1567 clear_buffer_jbddirty(bh); 1568 1569 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1570 1571 /* 1572 * we only want to drop a reference if this transaction 1573 * modified the buffer 1574 */ 1575 if (was_modified) 1576 drop_reserve = 1; 1577 1578 /* 1579 * We are no longer going to journal this buffer. 1580 * However, the commit of this transaction is still 1581 * important to the buffer: the delete that we are now 1582 * processing might obsolete an old log entry, so by 1583 * committing, we can satisfy the buffer's checkpoint. 1584 * 1585 * So, if we have a checkpoint on the buffer, we should 1586 * now refile the buffer on our BJ_Forget list so that 1587 * we know to remove the checkpoint after we commit. 1588 */ 1589 1590 spin_lock(&journal->j_list_lock); 1591 if (jh->b_cp_transaction) { 1592 __jbd2_journal_temp_unlink_buffer(jh); 1593 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1594 } else { 1595 __jbd2_journal_unfile_buffer(jh); 1596 if (!buffer_jbd(bh)) { 1597 spin_unlock(&journal->j_list_lock); 1598 goto not_jbd; 1599 } 1600 } 1601 spin_unlock(&journal->j_list_lock); 1602 } else if (jh->b_transaction) { 1603 J_ASSERT_JH(jh, (jh->b_transaction == 1604 journal->j_committing_transaction)); 1605 /* However, if the buffer is still owned by a prior 1606 * (committing) transaction, we can't drop it yet... */ 1607 JBUFFER_TRACE(jh, "belongs to older transaction"); 1608 /* ... but we CAN drop it from the new transaction through 1609 * marking the buffer as freed and set j_next_transaction to 1610 * the new transaction, so that not only the commit code 1611 * knows it should clear dirty bits when it is done with the 1612 * buffer, but also the buffer can be checkpointed only 1613 * after the new transaction commits. */ 1614 1615 set_buffer_freed(bh); 1616 1617 if (!jh->b_next_transaction) { 1618 spin_lock(&journal->j_list_lock); 1619 jh->b_next_transaction = transaction; 1620 spin_unlock(&journal->j_list_lock); 1621 } else { 1622 J_ASSERT(jh->b_next_transaction == transaction); 1623 1624 /* 1625 * only drop a reference if this transaction modified 1626 * the buffer 1627 */ 1628 if (was_modified) 1629 drop_reserve = 1; 1630 } 1631 } else { 1632 /* 1633 * Finally, if the buffer is not belongs to any 1634 * transaction, we can just drop it now if it has no 1635 * checkpoint. 1636 */ 1637 spin_lock(&journal->j_list_lock); 1638 if (!jh->b_cp_transaction) { 1639 JBUFFER_TRACE(jh, "belongs to none transaction"); 1640 spin_unlock(&journal->j_list_lock); 1641 goto not_jbd; 1642 } 1643 1644 /* 1645 * Otherwise, if the buffer has been written to disk, 1646 * it is safe to remove the checkpoint and drop it. 1647 */ 1648 if (!buffer_dirty(bh)) { 1649 __jbd2_journal_remove_checkpoint(jh); 1650 spin_unlock(&journal->j_list_lock); 1651 goto not_jbd; 1652 } 1653 1654 /* 1655 * The buffer is still not written to disk, we should 1656 * attach this buffer to current transaction so that the 1657 * buffer can be checkpointed only after the current 1658 * transaction commits. 1659 */ 1660 clear_buffer_dirty(bh); 1661 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1662 spin_unlock(&journal->j_list_lock); 1663 } 1664 1665 jbd_unlock_bh_state(bh); 1666 __brelse(bh); 1667 drop: 1668 if (drop_reserve) { 1669 /* no need to reserve log space for this block -bzzz */ 1670 handle->h_buffer_credits++; 1671 } 1672 return err; 1673 1674 not_jbd: 1675 jbd_unlock_bh_state(bh); 1676 __bforget(bh); 1677 goto drop; 1678 } 1679 1680 /** 1681 * int jbd2_journal_stop() - complete a transaction 1682 * @handle: transaction to complete. 1683 * 1684 * All done for a particular handle. 1685 * 1686 * There is not much action needed here. We just return any remaining 1687 * buffer credits to the transaction and remove the handle. The only 1688 * complication is that we need to start a commit operation if the 1689 * filesystem is marked for synchronous update. 1690 * 1691 * jbd2_journal_stop itself will not usually return an error, but it may 1692 * do so in unusual circumstances. In particular, expect it to 1693 * return -EIO if a jbd2_journal_abort has been executed since the 1694 * transaction began. 1695 */ 1696 int jbd2_journal_stop(handle_t *handle) 1697 { 1698 transaction_t *transaction = handle->h_transaction; 1699 journal_t *journal; 1700 int err = 0, wait_for_commit = 0; 1701 tid_t tid; 1702 pid_t pid; 1703 1704 if (!transaction) { 1705 /* 1706 * Handle is already detached from the transaction so 1707 * there is nothing to do other than decrease a refcount, 1708 * or free the handle if refcount drops to zero 1709 */ 1710 if (--handle->h_ref > 0) { 1711 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1712 handle->h_ref); 1713 return err; 1714 } else { 1715 if (handle->h_rsv_handle) 1716 jbd2_free_handle(handle->h_rsv_handle); 1717 goto free_and_exit; 1718 } 1719 } 1720 journal = transaction->t_journal; 1721 1722 J_ASSERT(journal_current_handle() == handle); 1723 1724 if (is_handle_aborted(handle)) 1725 err = -EIO; 1726 else 1727 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1728 1729 if (--handle->h_ref > 0) { 1730 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1731 handle->h_ref); 1732 return err; 1733 } 1734 1735 jbd_debug(4, "Handle %p going down\n", handle); 1736 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1737 transaction->t_tid, 1738 handle->h_type, handle->h_line_no, 1739 jiffies - handle->h_start_jiffies, 1740 handle->h_sync, handle->h_requested_credits, 1741 (handle->h_requested_credits - 1742 handle->h_buffer_credits)); 1743 1744 /* 1745 * Implement synchronous transaction batching. If the handle 1746 * was synchronous, don't force a commit immediately. Let's 1747 * yield and let another thread piggyback onto this 1748 * transaction. Keep doing that while new threads continue to 1749 * arrive. It doesn't cost much - we're about to run a commit 1750 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1751 * operations by 30x or more... 1752 * 1753 * We try and optimize the sleep time against what the 1754 * underlying disk can do, instead of having a static sleep 1755 * time. This is useful for the case where our storage is so 1756 * fast that it is more optimal to go ahead and force a flush 1757 * and wait for the transaction to be committed than it is to 1758 * wait for an arbitrary amount of time for new writers to 1759 * join the transaction. We achieve this by measuring how 1760 * long it takes to commit a transaction, and compare it with 1761 * how long this transaction has been running, and if run time 1762 * < commit time then we sleep for the delta and commit. This 1763 * greatly helps super fast disks that would see slowdowns as 1764 * more threads started doing fsyncs. 1765 * 1766 * But don't do this if this process was the most recent one 1767 * to perform a synchronous write. We do this to detect the 1768 * case where a single process is doing a stream of sync 1769 * writes. No point in waiting for joiners in that case. 1770 * 1771 * Setting max_batch_time to 0 disables this completely. 1772 */ 1773 pid = current->pid; 1774 if (handle->h_sync && journal->j_last_sync_writer != pid && 1775 journal->j_max_batch_time) { 1776 u64 commit_time, trans_time; 1777 1778 journal->j_last_sync_writer = pid; 1779 1780 read_lock(&journal->j_state_lock); 1781 commit_time = journal->j_average_commit_time; 1782 read_unlock(&journal->j_state_lock); 1783 1784 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1785 transaction->t_start_time)); 1786 1787 commit_time = max_t(u64, commit_time, 1788 1000*journal->j_min_batch_time); 1789 commit_time = min_t(u64, commit_time, 1790 1000*journal->j_max_batch_time); 1791 1792 if (trans_time < commit_time) { 1793 ktime_t expires = ktime_add_ns(ktime_get(), 1794 commit_time); 1795 set_current_state(TASK_UNINTERRUPTIBLE); 1796 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1797 } 1798 } 1799 1800 if (handle->h_sync) 1801 transaction->t_synchronous_commit = 1; 1802 current->journal_info = NULL; 1803 atomic_sub(handle->h_buffer_credits, 1804 &transaction->t_outstanding_credits); 1805 1806 /* 1807 * If the handle is marked SYNC, we need to set another commit 1808 * going! We also want to force a commit if the current 1809 * transaction is occupying too much of the log, or if the 1810 * transaction is too old now. 1811 */ 1812 if (handle->h_sync || 1813 (atomic_read(&transaction->t_outstanding_credits) > 1814 journal->j_max_transaction_buffers) || 1815 time_after_eq(jiffies, transaction->t_expires)) { 1816 /* Do this even for aborted journals: an abort still 1817 * completes the commit thread, it just doesn't write 1818 * anything to disk. */ 1819 1820 jbd_debug(2, "transaction too old, requesting commit for " 1821 "handle %p\n", handle); 1822 /* This is non-blocking */ 1823 jbd2_log_start_commit(journal, transaction->t_tid); 1824 1825 /* 1826 * Special case: JBD2_SYNC synchronous updates require us 1827 * to wait for the commit to complete. 1828 */ 1829 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1830 wait_for_commit = 1; 1831 } 1832 1833 /* 1834 * Once we drop t_updates, if it goes to zero the transaction 1835 * could start committing on us and eventually disappear. So 1836 * once we do this, we must not dereference transaction 1837 * pointer again. 1838 */ 1839 tid = transaction->t_tid; 1840 if (atomic_dec_and_test(&transaction->t_updates)) { 1841 wake_up(&journal->j_wait_updates); 1842 if (journal->j_barrier_count) 1843 wake_up(&journal->j_wait_transaction_locked); 1844 } 1845 1846 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1847 1848 if (wait_for_commit) 1849 err = jbd2_log_wait_commit(journal, tid); 1850 1851 if (handle->h_rsv_handle) 1852 jbd2_journal_free_reserved(handle->h_rsv_handle); 1853 free_and_exit: 1854 /* 1855 * Scope of the GFP_NOFS context is over here and so we can restore the 1856 * original alloc context. 1857 */ 1858 memalloc_nofs_restore(handle->saved_alloc_context); 1859 jbd2_free_handle(handle); 1860 return err; 1861 } 1862 1863 /* 1864 * 1865 * List management code snippets: various functions for manipulating the 1866 * transaction buffer lists. 1867 * 1868 */ 1869 1870 /* 1871 * Append a buffer to a transaction list, given the transaction's list head 1872 * pointer. 1873 * 1874 * j_list_lock is held. 1875 * 1876 * jbd_lock_bh_state(jh2bh(jh)) is held. 1877 */ 1878 1879 static inline void 1880 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1881 { 1882 if (!*list) { 1883 jh->b_tnext = jh->b_tprev = jh; 1884 *list = jh; 1885 } else { 1886 /* Insert at the tail of the list to preserve order */ 1887 struct journal_head *first = *list, *last = first->b_tprev; 1888 jh->b_tprev = last; 1889 jh->b_tnext = first; 1890 last->b_tnext = first->b_tprev = jh; 1891 } 1892 } 1893 1894 /* 1895 * Remove a buffer from a transaction list, given the transaction's list 1896 * head pointer. 1897 * 1898 * Called with j_list_lock held, and the journal may not be locked. 1899 * 1900 * jbd_lock_bh_state(jh2bh(jh)) is held. 1901 */ 1902 1903 static inline void 1904 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1905 { 1906 if (*list == jh) { 1907 *list = jh->b_tnext; 1908 if (*list == jh) 1909 *list = NULL; 1910 } 1911 jh->b_tprev->b_tnext = jh->b_tnext; 1912 jh->b_tnext->b_tprev = jh->b_tprev; 1913 } 1914 1915 /* 1916 * Remove a buffer from the appropriate transaction list. 1917 * 1918 * Note that this function can *change* the value of 1919 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1920 * t_reserved_list. If the caller is holding onto a copy of one of these 1921 * pointers, it could go bad. Generally the caller needs to re-read the 1922 * pointer from the transaction_t. 1923 * 1924 * Called under j_list_lock. 1925 */ 1926 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1927 { 1928 struct journal_head **list = NULL; 1929 transaction_t *transaction; 1930 struct buffer_head *bh = jh2bh(jh); 1931 1932 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1933 transaction = jh->b_transaction; 1934 if (transaction) 1935 assert_spin_locked(&transaction->t_journal->j_list_lock); 1936 1937 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1938 if (jh->b_jlist != BJ_None) 1939 J_ASSERT_JH(jh, transaction != NULL); 1940 1941 switch (jh->b_jlist) { 1942 case BJ_None: 1943 return; 1944 case BJ_Metadata: 1945 transaction->t_nr_buffers--; 1946 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1947 list = &transaction->t_buffers; 1948 break; 1949 case BJ_Forget: 1950 list = &transaction->t_forget; 1951 break; 1952 case BJ_Shadow: 1953 list = &transaction->t_shadow_list; 1954 break; 1955 case BJ_Reserved: 1956 list = &transaction->t_reserved_list; 1957 break; 1958 } 1959 1960 __blist_del_buffer(list, jh); 1961 jh->b_jlist = BJ_None; 1962 if (transaction && is_journal_aborted(transaction->t_journal)) 1963 clear_buffer_jbddirty(bh); 1964 else if (test_clear_buffer_jbddirty(bh)) 1965 mark_buffer_dirty(bh); /* Expose it to the VM */ 1966 } 1967 1968 /* 1969 * Remove buffer from all transactions. 1970 * 1971 * Called with bh_state lock and j_list_lock 1972 * 1973 * jh and bh may be already freed when this function returns. 1974 */ 1975 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1976 { 1977 __jbd2_journal_temp_unlink_buffer(jh); 1978 jh->b_transaction = NULL; 1979 jbd2_journal_put_journal_head(jh); 1980 } 1981 1982 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1983 { 1984 struct buffer_head *bh = jh2bh(jh); 1985 1986 /* Get reference so that buffer cannot be freed before we unlock it */ 1987 get_bh(bh); 1988 jbd_lock_bh_state(bh); 1989 spin_lock(&journal->j_list_lock); 1990 __jbd2_journal_unfile_buffer(jh); 1991 spin_unlock(&journal->j_list_lock); 1992 jbd_unlock_bh_state(bh); 1993 __brelse(bh); 1994 } 1995 1996 /* 1997 * Called from jbd2_journal_try_to_free_buffers(). 1998 * 1999 * Called under jbd_lock_bh_state(bh) 2000 */ 2001 static void 2002 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2003 { 2004 struct journal_head *jh; 2005 2006 jh = bh2jh(bh); 2007 2008 if (buffer_locked(bh) || buffer_dirty(bh)) 2009 goto out; 2010 2011 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2012 goto out; 2013 2014 spin_lock(&journal->j_list_lock); 2015 if (jh->b_cp_transaction != NULL) { 2016 /* written-back checkpointed metadata buffer */ 2017 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2018 __jbd2_journal_remove_checkpoint(jh); 2019 } 2020 spin_unlock(&journal->j_list_lock); 2021 out: 2022 return; 2023 } 2024 2025 /** 2026 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 2027 * @journal: journal for operation 2028 * @page: to try and free 2029 * @gfp_mask: we use the mask to detect how hard should we try to release 2030 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 2031 * code to release the buffers. 2032 * 2033 * 2034 * For all the buffers on this page, 2035 * if they are fully written out ordered data, move them onto BUF_CLEAN 2036 * so try_to_free_buffers() can reap them. 2037 * 2038 * This function returns non-zero if we wish try_to_free_buffers() 2039 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2040 * We also do it if the page has locked or dirty buffers and the caller wants 2041 * us to perform sync or async writeout. 2042 * 2043 * This complicates JBD locking somewhat. We aren't protected by the 2044 * BKL here. We wish to remove the buffer from its committing or 2045 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2046 * 2047 * This may *change* the value of transaction_t->t_datalist, so anyone 2048 * who looks at t_datalist needs to lock against this function. 2049 * 2050 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2051 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2052 * will come out of the lock with the buffer dirty, which makes it 2053 * ineligible for release here. 2054 * 2055 * Who else is affected by this? hmm... Really the only contender 2056 * is do_get_write_access() - it could be looking at the buffer while 2057 * journal_try_to_free_buffer() is changing its state. But that 2058 * cannot happen because we never reallocate freed data as metadata 2059 * while the data is part of a transaction. Yes? 2060 * 2061 * Return 0 on failure, 1 on success 2062 */ 2063 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2064 struct page *page, gfp_t gfp_mask) 2065 { 2066 struct buffer_head *head; 2067 struct buffer_head *bh; 2068 int ret = 0; 2069 2070 J_ASSERT(PageLocked(page)); 2071 2072 head = page_buffers(page); 2073 bh = head; 2074 do { 2075 struct journal_head *jh; 2076 2077 /* 2078 * We take our own ref against the journal_head here to avoid 2079 * having to add tons of locking around each instance of 2080 * jbd2_journal_put_journal_head(). 2081 */ 2082 jh = jbd2_journal_grab_journal_head(bh); 2083 if (!jh) 2084 continue; 2085 2086 jbd_lock_bh_state(bh); 2087 __journal_try_to_free_buffer(journal, bh); 2088 jbd2_journal_put_journal_head(jh); 2089 jbd_unlock_bh_state(bh); 2090 if (buffer_jbd(bh)) 2091 goto busy; 2092 } while ((bh = bh->b_this_page) != head); 2093 2094 ret = try_to_free_buffers(page); 2095 2096 busy: 2097 return ret; 2098 } 2099 2100 /* 2101 * This buffer is no longer needed. If it is on an older transaction's 2102 * checkpoint list we need to record it on this transaction's forget list 2103 * to pin this buffer (and hence its checkpointing transaction) down until 2104 * this transaction commits. If the buffer isn't on a checkpoint list, we 2105 * release it. 2106 * Returns non-zero if JBD no longer has an interest in the buffer. 2107 * 2108 * Called under j_list_lock. 2109 * 2110 * Called under jbd_lock_bh_state(bh). 2111 */ 2112 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2113 { 2114 int may_free = 1; 2115 struct buffer_head *bh = jh2bh(jh); 2116 2117 if (jh->b_cp_transaction) { 2118 JBUFFER_TRACE(jh, "on running+cp transaction"); 2119 __jbd2_journal_temp_unlink_buffer(jh); 2120 /* 2121 * We don't want to write the buffer anymore, clear the 2122 * bit so that we don't confuse checks in 2123 * __journal_file_buffer 2124 */ 2125 clear_buffer_dirty(bh); 2126 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2127 may_free = 0; 2128 } else { 2129 JBUFFER_TRACE(jh, "on running transaction"); 2130 __jbd2_journal_unfile_buffer(jh); 2131 } 2132 return may_free; 2133 } 2134 2135 /* 2136 * jbd2_journal_invalidatepage 2137 * 2138 * This code is tricky. It has a number of cases to deal with. 2139 * 2140 * There are two invariants which this code relies on: 2141 * 2142 * i_size must be updated on disk before we start calling invalidatepage on the 2143 * data. 2144 * 2145 * This is done in ext3 by defining an ext3_setattr method which 2146 * updates i_size before truncate gets going. By maintaining this 2147 * invariant, we can be sure that it is safe to throw away any buffers 2148 * attached to the current transaction: once the transaction commits, 2149 * we know that the data will not be needed. 2150 * 2151 * Note however that we can *not* throw away data belonging to the 2152 * previous, committing transaction! 2153 * 2154 * Any disk blocks which *are* part of the previous, committing 2155 * transaction (and which therefore cannot be discarded immediately) are 2156 * not going to be reused in the new running transaction 2157 * 2158 * The bitmap committed_data images guarantee this: any block which is 2159 * allocated in one transaction and removed in the next will be marked 2160 * as in-use in the committed_data bitmap, so cannot be reused until 2161 * the next transaction to delete the block commits. This means that 2162 * leaving committing buffers dirty is quite safe: the disk blocks 2163 * cannot be reallocated to a different file and so buffer aliasing is 2164 * not possible. 2165 * 2166 * 2167 * The above applies mainly to ordered data mode. In writeback mode we 2168 * don't make guarantees about the order in which data hits disk --- in 2169 * particular we don't guarantee that new dirty data is flushed before 2170 * transaction commit --- so it is always safe just to discard data 2171 * immediately in that mode. --sct 2172 */ 2173 2174 /* 2175 * The journal_unmap_buffer helper function returns zero if the buffer 2176 * concerned remains pinned as an anonymous buffer belonging to an older 2177 * transaction. 2178 * 2179 * We're outside-transaction here. Either or both of j_running_transaction 2180 * and j_committing_transaction may be NULL. 2181 */ 2182 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2183 int partial_page) 2184 { 2185 transaction_t *transaction; 2186 struct journal_head *jh; 2187 int may_free = 1; 2188 2189 BUFFER_TRACE(bh, "entry"); 2190 2191 /* 2192 * It is safe to proceed here without the j_list_lock because the 2193 * buffers cannot be stolen by try_to_free_buffers as long as we are 2194 * holding the page lock. --sct 2195 */ 2196 2197 if (!buffer_jbd(bh)) 2198 goto zap_buffer_unlocked; 2199 2200 /* OK, we have data buffer in journaled mode */ 2201 write_lock(&journal->j_state_lock); 2202 jbd_lock_bh_state(bh); 2203 spin_lock(&journal->j_list_lock); 2204 2205 jh = jbd2_journal_grab_journal_head(bh); 2206 if (!jh) 2207 goto zap_buffer_no_jh; 2208 2209 /* 2210 * We cannot remove the buffer from checkpoint lists until the 2211 * transaction adding inode to orphan list (let's call it T) 2212 * is committed. Otherwise if the transaction changing the 2213 * buffer would be cleaned from the journal before T is 2214 * committed, a crash will cause that the correct contents of 2215 * the buffer will be lost. On the other hand we have to 2216 * clear the buffer dirty bit at latest at the moment when the 2217 * transaction marking the buffer as freed in the filesystem 2218 * structures is committed because from that moment on the 2219 * block can be reallocated and used by a different page. 2220 * Since the block hasn't been freed yet but the inode has 2221 * already been added to orphan list, it is safe for us to add 2222 * the buffer to BJ_Forget list of the newest transaction. 2223 * 2224 * Also we have to clear buffer_mapped flag of a truncated buffer 2225 * because the buffer_head may be attached to the page straddling 2226 * i_size (can happen only when blocksize < pagesize) and thus the 2227 * buffer_head can be reused when the file is extended again. So we end 2228 * up keeping around invalidated buffers attached to transactions' 2229 * BJ_Forget list just to stop checkpointing code from cleaning up 2230 * the transaction this buffer was modified in. 2231 */ 2232 transaction = jh->b_transaction; 2233 if (transaction == NULL) { 2234 /* First case: not on any transaction. If it 2235 * has no checkpoint link, then we can zap it: 2236 * it's a writeback-mode buffer so we don't care 2237 * if it hits disk safely. */ 2238 if (!jh->b_cp_transaction) { 2239 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2240 goto zap_buffer; 2241 } 2242 2243 if (!buffer_dirty(bh)) { 2244 /* bdflush has written it. We can drop it now */ 2245 __jbd2_journal_remove_checkpoint(jh); 2246 goto zap_buffer; 2247 } 2248 2249 /* OK, it must be in the journal but still not 2250 * written fully to disk: it's metadata or 2251 * journaled data... */ 2252 2253 if (journal->j_running_transaction) { 2254 /* ... and once the current transaction has 2255 * committed, the buffer won't be needed any 2256 * longer. */ 2257 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2258 may_free = __dispose_buffer(jh, 2259 journal->j_running_transaction); 2260 goto zap_buffer; 2261 } else { 2262 /* There is no currently-running transaction. So the 2263 * orphan record which we wrote for this file must have 2264 * passed into commit. We must attach this buffer to 2265 * the committing transaction, if it exists. */ 2266 if (journal->j_committing_transaction) { 2267 JBUFFER_TRACE(jh, "give to committing trans"); 2268 may_free = __dispose_buffer(jh, 2269 journal->j_committing_transaction); 2270 goto zap_buffer; 2271 } else { 2272 /* The orphan record's transaction has 2273 * committed. We can cleanse this buffer */ 2274 clear_buffer_jbddirty(bh); 2275 __jbd2_journal_remove_checkpoint(jh); 2276 goto zap_buffer; 2277 } 2278 } 2279 } else if (transaction == journal->j_committing_transaction) { 2280 JBUFFER_TRACE(jh, "on committing transaction"); 2281 /* 2282 * The buffer is committing, we simply cannot touch 2283 * it. If the page is straddling i_size we have to wait 2284 * for commit and try again. 2285 */ 2286 if (partial_page) { 2287 jbd2_journal_put_journal_head(jh); 2288 spin_unlock(&journal->j_list_lock); 2289 jbd_unlock_bh_state(bh); 2290 write_unlock(&journal->j_state_lock); 2291 return -EBUSY; 2292 } 2293 /* 2294 * OK, buffer won't be reachable after truncate. We just set 2295 * j_next_transaction to the running transaction (if there is 2296 * one) and mark buffer as freed so that commit code knows it 2297 * should clear dirty bits when it is done with the buffer. 2298 */ 2299 set_buffer_freed(bh); 2300 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2301 jh->b_next_transaction = journal->j_running_transaction; 2302 jbd2_journal_put_journal_head(jh); 2303 spin_unlock(&journal->j_list_lock); 2304 jbd_unlock_bh_state(bh); 2305 write_unlock(&journal->j_state_lock); 2306 return 0; 2307 } else { 2308 /* Good, the buffer belongs to the running transaction. 2309 * We are writing our own transaction's data, not any 2310 * previous one's, so it is safe to throw it away 2311 * (remember that we expect the filesystem to have set 2312 * i_size already for this truncate so recovery will not 2313 * expose the disk blocks we are discarding here.) */ 2314 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2315 JBUFFER_TRACE(jh, "on running transaction"); 2316 may_free = __dispose_buffer(jh, transaction); 2317 } 2318 2319 zap_buffer: 2320 /* 2321 * This is tricky. Although the buffer is truncated, it may be reused 2322 * if blocksize < pagesize and it is attached to the page straddling 2323 * EOF. Since the buffer might have been added to BJ_Forget list of the 2324 * running transaction, journal_get_write_access() won't clear 2325 * b_modified and credit accounting gets confused. So clear b_modified 2326 * here. 2327 */ 2328 jh->b_modified = 0; 2329 jbd2_journal_put_journal_head(jh); 2330 zap_buffer_no_jh: 2331 spin_unlock(&journal->j_list_lock); 2332 jbd_unlock_bh_state(bh); 2333 write_unlock(&journal->j_state_lock); 2334 zap_buffer_unlocked: 2335 clear_buffer_dirty(bh); 2336 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2337 clear_buffer_mapped(bh); 2338 clear_buffer_req(bh); 2339 clear_buffer_new(bh); 2340 clear_buffer_delay(bh); 2341 clear_buffer_unwritten(bh); 2342 bh->b_bdev = NULL; 2343 return may_free; 2344 } 2345 2346 /** 2347 * void jbd2_journal_invalidatepage() 2348 * @journal: journal to use for flush... 2349 * @page: page to flush 2350 * @offset: start of the range to invalidate 2351 * @length: length of the range to invalidate 2352 * 2353 * Reap page buffers containing data after in the specified range in page. 2354 * Can return -EBUSY if buffers are part of the committing transaction and 2355 * the page is straddling i_size. Caller then has to wait for current commit 2356 * and try again. 2357 */ 2358 int jbd2_journal_invalidatepage(journal_t *journal, 2359 struct page *page, 2360 unsigned int offset, 2361 unsigned int length) 2362 { 2363 struct buffer_head *head, *bh, *next; 2364 unsigned int stop = offset + length; 2365 unsigned int curr_off = 0; 2366 int partial_page = (offset || length < PAGE_SIZE); 2367 int may_free = 1; 2368 int ret = 0; 2369 2370 if (!PageLocked(page)) 2371 BUG(); 2372 if (!page_has_buffers(page)) 2373 return 0; 2374 2375 BUG_ON(stop > PAGE_SIZE || stop < length); 2376 2377 /* We will potentially be playing with lists other than just the 2378 * data lists (especially for journaled data mode), so be 2379 * cautious in our locking. */ 2380 2381 head = bh = page_buffers(page); 2382 do { 2383 unsigned int next_off = curr_off + bh->b_size; 2384 next = bh->b_this_page; 2385 2386 if (next_off > stop) 2387 return 0; 2388 2389 if (offset <= curr_off) { 2390 /* This block is wholly outside the truncation point */ 2391 lock_buffer(bh); 2392 ret = journal_unmap_buffer(journal, bh, partial_page); 2393 unlock_buffer(bh); 2394 if (ret < 0) 2395 return ret; 2396 may_free &= ret; 2397 } 2398 curr_off = next_off; 2399 bh = next; 2400 2401 } while (bh != head); 2402 2403 if (!partial_page) { 2404 if (may_free && try_to_free_buffers(page)) 2405 J_ASSERT(!page_has_buffers(page)); 2406 } 2407 return 0; 2408 } 2409 2410 /* 2411 * File a buffer on the given transaction list. 2412 */ 2413 void __jbd2_journal_file_buffer(struct journal_head *jh, 2414 transaction_t *transaction, int jlist) 2415 { 2416 struct journal_head **list = NULL; 2417 int was_dirty = 0; 2418 struct buffer_head *bh = jh2bh(jh); 2419 2420 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2421 assert_spin_locked(&transaction->t_journal->j_list_lock); 2422 2423 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2424 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2425 jh->b_transaction == NULL); 2426 2427 if (jh->b_transaction && jh->b_jlist == jlist) 2428 return; 2429 2430 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2431 jlist == BJ_Shadow || jlist == BJ_Forget) { 2432 /* 2433 * For metadata buffers, we track dirty bit in buffer_jbddirty 2434 * instead of buffer_dirty. We should not see a dirty bit set 2435 * here because we clear it in do_get_write_access but e.g. 2436 * tune2fs can modify the sb and set the dirty bit at any time 2437 * so we try to gracefully handle that. 2438 */ 2439 if (buffer_dirty(bh)) 2440 warn_dirty_buffer(bh); 2441 if (test_clear_buffer_dirty(bh) || 2442 test_clear_buffer_jbddirty(bh)) 2443 was_dirty = 1; 2444 } 2445 2446 if (jh->b_transaction) 2447 __jbd2_journal_temp_unlink_buffer(jh); 2448 else 2449 jbd2_journal_grab_journal_head(bh); 2450 jh->b_transaction = transaction; 2451 2452 switch (jlist) { 2453 case BJ_None: 2454 J_ASSERT_JH(jh, !jh->b_committed_data); 2455 J_ASSERT_JH(jh, !jh->b_frozen_data); 2456 return; 2457 case BJ_Metadata: 2458 transaction->t_nr_buffers++; 2459 list = &transaction->t_buffers; 2460 break; 2461 case BJ_Forget: 2462 list = &transaction->t_forget; 2463 break; 2464 case BJ_Shadow: 2465 list = &transaction->t_shadow_list; 2466 break; 2467 case BJ_Reserved: 2468 list = &transaction->t_reserved_list; 2469 break; 2470 } 2471 2472 __blist_add_buffer(list, jh); 2473 jh->b_jlist = jlist; 2474 2475 if (was_dirty) 2476 set_buffer_jbddirty(bh); 2477 } 2478 2479 void jbd2_journal_file_buffer(struct journal_head *jh, 2480 transaction_t *transaction, int jlist) 2481 { 2482 jbd_lock_bh_state(jh2bh(jh)); 2483 spin_lock(&transaction->t_journal->j_list_lock); 2484 __jbd2_journal_file_buffer(jh, transaction, jlist); 2485 spin_unlock(&transaction->t_journal->j_list_lock); 2486 jbd_unlock_bh_state(jh2bh(jh)); 2487 } 2488 2489 /* 2490 * Remove a buffer from its current buffer list in preparation for 2491 * dropping it from its current transaction entirely. If the buffer has 2492 * already started to be used by a subsequent transaction, refile the 2493 * buffer on that transaction's metadata list. 2494 * 2495 * Called under j_list_lock 2496 * Called under jbd_lock_bh_state(jh2bh(jh)) 2497 * 2498 * jh and bh may be already free when this function returns 2499 */ 2500 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2501 { 2502 int was_dirty, jlist; 2503 struct buffer_head *bh = jh2bh(jh); 2504 2505 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2506 if (jh->b_transaction) 2507 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2508 2509 /* If the buffer is now unused, just drop it. */ 2510 if (jh->b_next_transaction == NULL) { 2511 __jbd2_journal_unfile_buffer(jh); 2512 return; 2513 } 2514 2515 /* 2516 * It has been modified by a later transaction: add it to the new 2517 * transaction's metadata list. 2518 */ 2519 2520 was_dirty = test_clear_buffer_jbddirty(bh); 2521 __jbd2_journal_temp_unlink_buffer(jh); 2522 /* 2523 * We set b_transaction here because b_next_transaction will inherit 2524 * our jh reference and thus __jbd2_journal_file_buffer() must not 2525 * take a new one. 2526 */ 2527 jh->b_transaction = jh->b_next_transaction; 2528 jh->b_next_transaction = NULL; 2529 if (buffer_freed(bh)) 2530 jlist = BJ_Forget; 2531 else if (jh->b_modified) 2532 jlist = BJ_Metadata; 2533 else 2534 jlist = BJ_Reserved; 2535 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2536 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2537 2538 if (was_dirty) 2539 set_buffer_jbddirty(bh); 2540 } 2541 2542 /* 2543 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2544 * bh reference so that we can safely unlock bh. 2545 * 2546 * The jh and bh may be freed by this call. 2547 */ 2548 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2549 { 2550 struct buffer_head *bh = jh2bh(jh); 2551 2552 /* Get reference so that buffer cannot be freed before we unlock it */ 2553 get_bh(bh); 2554 jbd_lock_bh_state(bh); 2555 spin_lock(&journal->j_list_lock); 2556 __jbd2_journal_refile_buffer(jh); 2557 jbd_unlock_bh_state(bh); 2558 spin_unlock(&journal->j_list_lock); 2559 __brelse(bh); 2560 } 2561 2562 /* 2563 * File inode in the inode list of the handle's transaction 2564 */ 2565 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2566 unsigned long flags) 2567 { 2568 transaction_t *transaction = handle->h_transaction; 2569 journal_t *journal; 2570 2571 if (is_handle_aborted(handle)) 2572 return -EROFS; 2573 journal = transaction->t_journal; 2574 2575 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2576 transaction->t_tid); 2577 2578 /* 2579 * First check whether inode isn't already on the transaction's 2580 * lists without taking the lock. Note that this check is safe 2581 * without the lock as we cannot race with somebody removing inode 2582 * from the transaction. The reason is that we remove inode from the 2583 * transaction only in journal_release_jbd_inode() and when we commit 2584 * the transaction. We are guarded from the first case by holding 2585 * a reference to the inode. We are safe against the second case 2586 * because if jinode->i_transaction == transaction, commit code 2587 * cannot touch the transaction because we hold reference to it, 2588 * and if jinode->i_next_transaction == transaction, commit code 2589 * will only file the inode where we want it. 2590 */ 2591 if ((jinode->i_transaction == transaction || 2592 jinode->i_next_transaction == transaction) && 2593 (jinode->i_flags & flags) == flags) 2594 return 0; 2595 2596 spin_lock(&journal->j_list_lock); 2597 jinode->i_flags |= flags; 2598 /* Is inode already attached where we need it? */ 2599 if (jinode->i_transaction == transaction || 2600 jinode->i_next_transaction == transaction) 2601 goto done; 2602 2603 /* 2604 * We only ever set this variable to 1 so the test is safe. Since 2605 * t_need_data_flush is likely to be set, we do the test to save some 2606 * cacheline bouncing 2607 */ 2608 if (!transaction->t_need_data_flush) 2609 transaction->t_need_data_flush = 1; 2610 /* On some different transaction's list - should be 2611 * the committing one */ 2612 if (jinode->i_transaction) { 2613 J_ASSERT(jinode->i_next_transaction == NULL); 2614 J_ASSERT(jinode->i_transaction == 2615 journal->j_committing_transaction); 2616 jinode->i_next_transaction = transaction; 2617 goto done; 2618 } 2619 /* Not on any transaction list... */ 2620 J_ASSERT(!jinode->i_next_transaction); 2621 jinode->i_transaction = transaction; 2622 list_add(&jinode->i_list, &transaction->t_inode_list); 2623 done: 2624 spin_unlock(&journal->j_list_lock); 2625 2626 return 0; 2627 } 2628 2629 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2630 { 2631 return jbd2_journal_file_inode(handle, jinode, 2632 JI_WRITE_DATA | JI_WAIT_DATA); 2633 } 2634 2635 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2636 { 2637 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2638 } 2639 2640 /* 2641 * File truncate and transaction commit interact with each other in a 2642 * non-trivial way. If a transaction writing data block A is 2643 * committing, we cannot discard the data by truncate until we have 2644 * written them. Otherwise if we crashed after the transaction with 2645 * write has committed but before the transaction with truncate has 2646 * committed, we could see stale data in block A. This function is a 2647 * helper to solve this problem. It starts writeout of the truncated 2648 * part in case it is in the committing transaction. 2649 * 2650 * Filesystem code must call this function when inode is journaled in 2651 * ordered mode before truncation happens and after the inode has been 2652 * placed on orphan list with the new inode size. The second condition 2653 * avoids the race that someone writes new data and we start 2654 * committing the transaction after this function has been called but 2655 * before a transaction for truncate is started (and furthermore it 2656 * allows us to optimize the case where the addition to orphan list 2657 * happens in the same transaction as write --- we don't have to write 2658 * any data in such case). 2659 */ 2660 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2661 struct jbd2_inode *jinode, 2662 loff_t new_size) 2663 { 2664 transaction_t *inode_trans, *commit_trans; 2665 int ret = 0; 2666 2667 /* This is a quick check to avoid locking if not necessary */ 2668 if (!jinode->i_transaction) 2669 goto out; 2670 /* Locks are here just to force reading of recent values, it is 2671 * enough that the transaction was not committing before we started 2672 * a transaction adding the inode to orphan list */ 2673 read_lock(&journal->j_state_lock); 2674 commit_trans = journal->j_committing_transaction; 2675 read_unlock(&journal->j_state_lock); 2676 spin_lock(&journal->j_list_lock); 2677 inode_trans = jinode->i_transaction; 2678 spin_unlock(&journal->j_list_lock); 2679 if (inode_trans == commit_trans) { 2680 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2681 new_size, LLONG_MAX); 2682 if (ret) 2683 jbd2_journal_abort(journal, ret); 2684 } 2685 out: 2686 return ret; 2687 } 2688