1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) 199 return; 200 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 201 TASK_UNINTERRUPTIBLE); 202 read_unlock(&journal->j_state_lock); 203 /* 204 * We don't call jbd2_might_wait_for_commit() here as there's no 205 * waiting for outstanding handles happening anymore in T_SWITCH state 206 * and handling of reserved handles actually relies on that for 207 * correctness. 208 */ 209 schedule(); 210 finish_wait(&journal->j_wait_transaction_locked, &wait); 211 } 212 213 static void sub_reserved_credits(journal_t *journal, int blocks) 214 { 215 atomic_sub(blocks, &journal->j_reserved_credits); 216 wake_up(&journal->j_wait_reserved); 217 } 218 219 /* 220 * Wait until we can add credits for handle to the running transaction. Called 221 * with j_state_lock held for reading. Returns 0 if handle joined the running 222 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 223 * caller must retry. 224 */ 225 static int add_transaction_credits(journal_t *journal, int blocks, 226 int rsv_blocks) 227 { 228 transaction_t *t = journal->j_running_transaction; 229 int needed; 230 int total = blocks + rsv_blocks; 231 232 /* 233 * If the current transaction is locked down for commit, wait 234 * for the lock to be released. 235 */ 236 if (t->t_state != T_RUNNING) { 237 WARN_ON_ONCE(t->t_state >= T_FLUSH); 238 wait_transaction_locked(journal); 239 return 1; 240 } 241 242 /* 243 * If there is not enough space left in the log to write all 244 * potential buffers requested by this operation, we need to 245 * stall pending a log checkpoint to free some more log space. 246 */ 247 needed = atomic_add_return(total, &t->t_outstanding_credits); 248 if (needed > journal->j_max_transaction_buffers) { 249 /* 250 * If the current transaction is already too large, 251 * then start to commit it: we can then go back and 252 * attach this handle to a new transaction. 253 */ 254 atomic_sub(total, &t->t_outstanding_credits); 255 256 /* 257 * Is the number of reserved credits in the current transaction too 258 * big to fit this handle? Wait until reserved credits are freed. 259 */ 260 if (atomic_read(&journal->j_reserved_credits) + total > 261 journal->j_max_transaction_buffers) { 262 read_unlock(&journal->j_state_lock); 263 jbd2_might_wait_for_commit(journal); 264 wait_event(journal->j_wait_reserved, 265 atomic_read(&journal->j_reserved_credits) + total <= 266 journal->j_max_transaction_buffers); 267 return 1; 268 } 269 270 wait_transaction_locked(journal); 271 return 1; 272 } 273 274 /* 275 * The commit code assumes that it can get enough log space 276 * without forcing a checkpoint. This is *critical* for 277 * correctness: a checkpoint of a buffer which is also 278 * associated with a committing transaction creates a deadlock, 279 * so commit simply cannot force through checkpoints. 280 * 281 * We must therefore ensure the necessary space in the journal 282 * *before* starting to dirty potentially checkpointed buffers 283 * in the new transaction. 284 */ 285 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 286 atomic_sub(total, &t->t_outstanding_credits); 287 read_unlock(&journal->j_state_lock); 288 jbd2_might_wait_for_commit(journal); 289 write_lock(&journal->j_state_lock); 290 if (jbd2_log_space_left(journal) < 291 journal->j_max_transaction_buffers) 292 __jbd2_log_wait_for_space(journal); 293 write_unlock(&journal->j_state_lock); 294 return 1; 295 } 296 297 /* No reservation? We are done... */ 298 if (!rsv_blocks) 299 return 0; 300 301 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 302 /* We allow at most half of a transaction to be reserved */ 303 if (needed > journal->j_max_transaction_buffers / 2) { 304 sub_reserved_credits(journal, rsv_blocks); 305 atomic_sub(total, &t->t_outstanding_credits); 306 read_unlock(&journal->j_state_lock); 307 jbd2_might_wait_for_commit(journal); 308 wait_event(journal->j_wait_reserved, 309 atomic_read(&journal->j_reserved_credits) + rsv_blocks 310 <= journal->j_max_transaction_buffers / 2); 311 return 1; 312 } 313 return 0; 314 } 315 316 /* 317 * start_this_handle: Given a handle, deal with any locking or stalling 318 * needed to make sure that there is enough journal space for the handle 319 * to begin. Attach the handle to a transaction and set up the 320 * transaction's buffer credits. 321 */ 322 323 static int start_this_handle(journal_t *journal, handle_t *handle, 324 gfp_t gfp_mask) 325 { 326 transaction_t *transaction, *new_transaction = NULL; 327 int blocks = handle->h_total_credits; 328 int rsv_blocks = 0; 329 unsigned long ts = jiffies; 330 331 if (handle->h_rsv_handle) 332 rsv_blocks = handle->h_rsv_handle->h_total_credits; 333 334 /* 335 * Limit the number of reserved credits to 1/2 of maximum transaction 336 * size and limit the number of total credits to not exceed maximum 337 * transaction size per operation. 338 */ 339 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 340 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 341 printk(KERN_ERR "JBD2: %s wants too many credits " 342 "credits:%d rsv_credits:%d max:%d\n", 343 current->comm, blocks, rsv_blocks, 344 journal->j_max_transaction_buffers); 345 WARN_ON(1); 346 return -ENOSPC; 347 } 348 349 alloc_transaction: 350 if (!journal->j_running_transaction) { 351 /* 352 * If __GFP_FS is not present, then we may be being called from 353 * inside the fs writeback layer, so we MUST NOT fail. 354 */ 355 if ((gfp_mask & __GFP_FS) == 0) 356 gfp_mask |= __GFP_NOFAIL; 357 new_transaction = kmem_cache_zalloc(transaction_cache, 358 gfp_mask); 359 if (!new_transaction) 360 return -ENOMEM; 361 } 362 363 jbd_debug(3, "New handle %p going live.\n", handle); 364 365 /* 366 * We need to hold j_state_lock until t_updates has been incremented, 367 * for proper journal barrier handling 368 */ 369 repeat: 370 read_lock(&journal->j_state_lock); 371 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 372 if (is_journal_aborted(journal) || 373 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 374 read_unlock(&journal->j_state_lock); 375 jbd2_journal_free_transaction(new_transaction); 376 return -EROFS; 377 } 378 379 /* 380 * Wait on the journal's transaction barrier if necessary. Specifically 381 * we allow reserved handles to proceed because otherwise commit could 382 * deadlock on page writeback not being able to complete. 383 */ 384 if (!handle->h_reserved && journal->j_barrier_count) { 385 read_unlock(&journal->j_state_lock); 386 wait_event(journal->j_wait_transaction_locked, 387 journal->j_barrier_count == 0); 388 goto repeat; 389 } 390 391 if (!journal->j_running_transaction) { 392 read_unlock(&journal->j_state_lock); 393 if (!new_transaction) 394 goto alloc_transaction; 395 write_lock(&journal->j_state_lock); 396 if (!journal->j_running_transaction && 397 (handle->h_reserved || !journal->j_barrier_count)) { 398 jbd2_get_transaction(journal, new_transaction); 399 new_transaction = NULL; 400 } 401 write_unlock(&journal->j_state_lock); 402 goto repeat; 403 } 404 405 transaction = journal->j_running_transaction; 406 407 if (!handle->h_reserved) { 408 /* We may have dropped j_state_lock - restart in that case */ 409 if (add_transaction_credits(journal, blocks, rsv_blocks)) 410 goto repeat; 411 } else { 412 /* 413 * We have handle reserved so we are allowed to join T_LOCKED 414 * transaction and we don't have to check for transaction size 415 * and journal space. But we still have to wait while running 416 * transaction is being switched to a committing one as it 417 * won't wait for any handles anymore. 418 */ 419 if (transaction->t_state == T_SWITCH) { 420 wait_transaction_switching(journal); 421 goto repeat; 422 } 423 sub_reserved_credits(journal, blocks); 424 handle->h_reserved = 0; 425 } 426 427 /* OK, account for the buffers that this operation expects to 428 * use and add the handle to the running transaction. 429 */ 430 update_t_max_wait(transaction, ts); 431 handle->h_transaction = transaction; 432 handle->h_requested_credits = blocks; 433 handle->h_revoke_credits_requested = handle->h_revoke_credits; 434 handle->h_start_jiffies = jiffies; 435 atomic_inc(&transaction->t_updates); 436 atomic_inc(&transaction->t_handle_count); 437 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 438 handle, blocks, 439 atomic_read(&transaction->t_outstanding_credits), 440 jbd2_log_space_left(journal)); 441 read_unlock(&journal->j_state_lock); 442 current->journal_info = handle; 443 444 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 445 jbd2_journal_free_transaction(new_transaction); 446 /* 447 * Ensure that no allocations done while the transaction is open are 448 * going to recurse back to the fs layer. 449 */ 450 handle->saved_alloc_context = memalloc_nofs_save(); 451 return 0; 452 } 453 454 /* Allocate a new handle. This should probably be in a slab... */ 455 static handle_t *new_handle(int nblocks) 456 { 457 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 458 if (!handle) 459 return NULL; 460 handle->h_total_credits = nblocks; 461 handle->h_ref = 1; 462 463 return handle; 464 } 465 466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 467 int revoke_records, gfp_t gfp_mask, 468 unsigned int type, unsigned int line_no) 469 { 470 handle_t *handle = journal_current_handle(); 471 int err; 472 473 if (!journal) 474 return ERR_PTR(-EROFS); 475 476 if (handle) { 477 J_ASSERT(handle->h_transaction->t_journal == journal); 478 handle->h_ref++; 479 return handle; 480 } 481 482 nblocks += DIV_ROUND_UP(revoke_records, 483 journal->j_revoke_records_per_block); 484 handle = new_handle(nblocks); 485 if (!handle) 486 return ERR_PTR(-ENOMEM); 487 if (rsv_blocks) { 488 handle_t *rsv_handle; 489 490 rsv_handle = new_handle(rsv_blocks); 491 if (!rsv_handle) { 492 jbd2_free_handle(handle); 493 return ERR_PTR(-ENOMEM); 494 } 495 rsv_handle->h_reserved = 1; 496 rsv_handle->h_journal = journal; 497 handle->h_rsv_handle = rsv_handle; 498 } 499 handle->h_revoke_credits = revoke_records; 500 501 err = start_this_handle(journal, handle, gfp_mask); 502 if (err < 0) { 503 if (handle->h_rsv_handle) 504 jbd2_free_handle(handle->h_rsv_handle); 505 jbd2_free_handle(handle); 506 return ERR_PTR(err); 507 } 508 handle->h_type = type; 509 handle->h_line_no = line_no; 510 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 511 handle->h_transaction->t_tid, type, 512 line_no, nblocks); 513 514 return handle; 515 } 516 EXPORT_SYMBOL(jbd2__journal_start); 517 518 519 /** 520 * handle_t *jbd2_journal_start() - Obtain a new handle. 521 * @journal: Journal to start transaction on. 522 * @nblocks: number of block buffer we might modify 523 * 524 * We make sure that the transaction can guarantee at least nblocks of 525 * modified buffers in the log. We block until the log can guarantee 526 * that much space. Additionally, if rsv_blocks > 0, we also create another 527 * handle with rsv_blocks reserved blocks in the journal. This handle is 528 * stored in h_rsv_handle. It is not attached to any particular transaction 529 * and thus doesn't block transaction commit. If the caller uses this reserved 530 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 531 * on the parent handle will dispose the reserved one. Reserved handle has to 532 * be converted to a normal handle using jbd2_journal_start_reserved() before 533 * it can be used. 534 * 535 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 536 * on failure. 537 */ 538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 539 { 540 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 541 } 542 EXPORT_SYMBOL(jbd2_journal_start); 543 544 static void __jbd2_journal_unreserve_handle(handle_t *handle) 545 { 546 journal_t *journal = handle->h_journal; 547 548 WARN_ON(!handle->h_reserved); 549 sub_reserved_credits(journal, handle->h_total_credits); 550 } 551 552 void jbd2_journal_free_reserved(handle_t *handle) 553 { 554 __jbd2_journal_unreserve_handle(handle); 555 jbd2_free_handle(handle); 556 } 557 EXPORT_SYMBOL(jbd2_journal_free_reserved); 558 559 /** 560 * int jbd2_journal_start_reserved() - start reserved handle 561 * @handle: handle to start 562 * @type: for handle statistics 563 * @line_no: for handle statistics 564 * 565 * Start handle that has been previously reserved with jbd2_journal_reserve(). 566 * This attaches @handle to the running transaction (or creates one if there's 567 * not transaction running). Unlike jbd2_journal_start() this function cannot 568 * block on journal commit, checkpointing, or similar stuff. It can block on 569 * memory allocation or frozen journal though. 570 * 571 * Return 0 on success, non-zero on error - handle is freed in that case. 572 */ 573 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 574 unsigned int line_no) 575 { 576 journal_t *journal = handle->h_journal; 577 int ret = -EIO; 578 579 if (WARN_ON(!handle->h_reserved)) { 580 /* Someone passed in normal handle? Just stop it. */ 581 jbd2_journal_stop(handle); 582 return ret; 583 } 584 /* 585 * Usefulness of mixing of reserved and unreserved handles is 586 * questionable. So far nobody seems to need it so just error out. 587 */ 588 if (WARN_ON(current->journal_info)) { 589 jbd2_journal_free_reserved(handle); 590 return ret; 591 } 592 593 handle->h_journal = NULL; 594 /* 595 * GFP_NOFS is here because callers are likely from writeback or 596 * similarly constrained call sites 597 */ 598 ret = start_this_handle(journal, handle, GFP_NOFS); 599 if (ret < 0) { 600 handle->h_journal = journal; 601 jbd2_journal_free_reserved(handle); 602 return ret; 603 } 604 handle->h_type = type; 605 handle->h_line_no = line_no; 606 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 607 handle->h_transaction->t_tid, type, 608 line_no, handle->h_total_credits); 609 return 0; 610 } 611 EXPORT_SYMBOL(jbd2_journal_start_reserved); 612 613 /** 614 * int jbd2_journal_extend() - extend buffer credits. 615 * @handle: handle to 'extend' 616 * @nblocks: nr blocks to try to extend by. 617 * @revoke_records: number of revoke records to try to extend by. 618 * 619 * Some transactions, such as large extends and truncates, can be done 620 * atomically all at once or in several stages. The operation requests 621 * a credit for a number of buffer modifications in advance, but can 622 * extend its credit if it needs more. 623 * 624 * jbd2_journal_extend tries to give the running handle more buffer credits. 625 * It does not guarantee that allocation - this is a best-effort only. 626 * The calling process MUST be able to deal cleanly with a failure to 627 * extend here. 628 * 629 * Return 0 on success, non-zero on failure. 630 * 631 * return code < 0 implies an error 632 * return code > 0 implies normal transaction-full status. 633 */ 634 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 635 { 636 transaction_t *transaction = handle->h_transaction; 637 journal_t *journal; 638 int result; 639 int wanted; 640 641 if (is_handle_aborted(handle)) 642 return -EROFS; 643 journal = transaction->t_journal; 644 645 result = 1; 646 647 read_lock(&journal->j_state_lock); 648 649 /* Don't extend a locked-down transaction! */ 650 if (transaction->t_state != T_RUNNING) { 651 jbd_debug(3, "denied handle %p %d blocks: " 652 "transaction not running\n", handle, nblocks); 653 goto error_out; 654 } 655 656 nblocks += DIV_ROUND_UP( 657 handle->h_revoke_credits_requested + revoke_records, 658 journal->j_revoke_records_per_block) - 659 DIV_ROUND_UP( 660 handle->h_revoke_credits_requested, 661 journal->j_revoke_records_per_block); 662 spin_lock(&transaction->t_handle_lock); 663 wanted = atomic_add_return(nblocks, 664 &transaction->t_outstanding_credits); 665 666 if (wanted > journal->j_max_transaction_buffers) { 667 jbd_debug(3, "denied handle %p %d blocks: " 668 "transaction too large\n", handle, nblocks); 669 atomic_sub(nblocks, &transaction->t_outstanding_credits); 670 goto unlock; 671 } 672 673 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 674 transaction->t_tid, 675 handle->h_type, handle->h_line_no, 676 handle->h_total_credits, 677 nblocks); 678 679 handle->h_total_credits += nblocks; 680 handle->h_requested_credits += nblocks; 681 handle->h_revoke_credits += revoke_records; 682 handle->h_revoke_credits_requested += revoke_records; 683 result = 0; 684 685 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 686 unlock: 687 spin_unlock(&transaction->t_handle_lock); 688 error_out: 689 read_unlock(&journal->j_state_lock); 690 return result; 691 } 692 693 static void stop_this_handle(handle_t *handle) 694 { 695 transaction_t *transaction = handle->h_transaction; 696 journal_t *journal = transaction->t_journal; 697 int revokes; 698 699 J_ASSERT(journal_current_handle() == handle); 700 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 701 current->journal_info = NULL; 702 /* 703 * Subtract necessary revoke descriptor blocks from handle credits. We 704 * take care to account only for revoke descriptor blocks the 705 * transaction will really need as large sequences of transactions with 706 * small numbers of revokes are relatively common. 707 */ 708 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 709 if (revokes) { 710 int t_revokes, revoke_descriptors; 711 int rr_per_blk = journal->j_revoke_records_per_block; 712 713 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 714 > handle->h_total_credits); 715 t_revokes = atomic_add_return(revokes, 716 &transaction->t_outstanding_revokes); 717 revoke_descriptors = 718 DIV_ROUND_UP(t_revokes, rr_per_blk) - 719 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 720 handle->h_total_credits -= revoke_descriptors; 721 } 722 atomic_sub(handle->h_total_credits, 723 &transaction->t_outstanding_credits); 724 if (handle->h_rsv_handle) 725 __jbd2_journal_unreserve_handle(handle->h_rsv_handle); 726 if (atomic_dec_and_test(&transaction->t_updates)) 727 wake_up(&journal->j_wait_updates); 728 729 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 730 /* 731 * Scope of the GFP_NOFS context is over here and so we can restore the 732 * original alloc context. 733 */ 734 memalloc_nofs_restore(handle->saved_alloc_context); 735 } 736 737 /** 738 * int jbd2_journal_restart() - restart a handle . 739 * @handle: handle to restart 740 * @nblocks: nr credits requested 741 * @revoke_records: number of revoke record credits requested 742 * @gfp_mask: memory allocation flags (for start_this_handle) 743 * 744 * Restart a handle for a multi-transaction filesystem 745 * operation. 746 * 747 * If the jbd2_journal_extend() call above fails to grant new buffer credits 748 * to a running handle, a call to jbd2_journal_restart will commit the 749 * handle's transaction so far and reattach the handle to a new 750 * transaction capable of guaranteeing the requested number of 751 * credits. We preserve reserved handle if there's any attached to the 752 * passed in handle. 753 */ 754 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 755 gfp_t gfp_mask) 756 { 757 transaction_t *transaction = handle->h_transaction; 758 journal_t *journal; 759 tid_t tid; 760 int need_to_start; 761 int ret; 762 763 /* If we've had an abort of any type, don't even think about 764 * actually doing the restart! */ 765 if (is_handle_aborted(handle)) 766 return 0; 767 journal = transaction->t_journal; 768 tid = transaction->t_tid; 769 770 /* 771 * First unlink the handle from its current transaction, and start the 772 * commit on that. 773 */ 774 jbd_debug(2, "restarting handle %p\n", handle); 775 stop_this_handle(handle); 776 handle->h_transaction = NULL; 777 778 /* 779 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 780 * get rid of pointless j_state_lock traffic like this. 781 */ 782 read_lock(&journal->j_state_lock); 783 need_to_start = !tid_geq(journal->j_commit_request, tid); 784 read_unlock(&journal->j_state_lock); 785 if (need_to_start) 786 jbd2_log_start_commit(journal, tid); 787 handle->h_total_credits = nblocks + 788 DIV_ROUND_UP(revoke_records, 789 journal->j_revoke_records_per_block); 790 handle->h_revoke_credits = revoke_records; 791 ret = start_this_handle(journal, handle, gfp_mask); 792 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 793 ret ? 0 : handle->h_transaction->t_tid, 794 handle->h_type, handle->h_line_no, 795 handle->h_total_credits); 796 return ret; 797 } 798 EXPORT_SYMBOL(jbd2__journal_restart); 799 800 801 int jbd2_journal_restart(handle_t *handle, int nblocks) 802 { 803 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 804 } 805 EXPORT_SYMBOL(jbd2_journal_restart); 806 807 /** 808 * void jbd2_journal_lock_updates () - establish a transaction barrier. 809 * @journal: Journal to establish a barrier on. 810 * 811 * This locks out any further updates from being started, and blocks 812 * until all existing updates have completed, returning only once the 813 * journal is in a quiescent state with no updates running. 814 * 815 * The journal lock should not be held on entry. 816 */ 817 void jbd2_journal_lock_updates(journal_t *journal) 818 { 819 DEFINE_WAIT(wait); 820 821 jbd2_might_wait_for_commit(journal); 822 823 write_lock(&journal->j_state_lock); 824 ++journal->j_barrier_count; 825 826 /* Wait until there are no reserved handles */ 827 if (atomic_read(&journal->j_reserved_credits)) { 828 write_unlock(&journal->j_state_lock); 829 wait_event(journal->j_wait_reserved, 830 atomic_read(&journal->j_reserved_credits) == 0); 831 write_lock(&journal->j_state_lock); 832 } 833 834 /* Wait until there are no running updates */ 835 while (1) { 836 transaction_t *transaction = journal->j_running_transaction; 837 838 if (!transaction) 839 break; 840 841 spin_lock(&transaction->t_handle_lock); 842 prepare_to_wait(&journal->j_wait_updates, &wait, 843 TASK_UNINTERRUPTIBLE); 844 if (!atomic_read(&transaction->t_updates)) { 845 spin_unlock(&transaction->t_handle_lock); 846 finish_wait(&journal->j_wait_updates, &wait); 847 break; 848 } 849 spin_unlock(&transaction->t_handle_lock); 850 write_unlock(&journal->j_state_lock); 851 schedule(); 852 finish_wait(&journal->j_wait_updates, &wait); 853 write_lock(&journal->j_state_lock); 854 } 855 write_unlock(&journal->j_state_lock); 856 857 /* 858 * We have now established a barrier against other normal updates, but 859 * we also need to barrier against other jbd2_journal_lock_updates() calls 860 * to make sure that we serialise special journal-locked operations 861 * too. 862 */ 863 mutex_lock(&journal->j_barrier); 864 } 865 866 /** 867 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 868 * @journal: Journal to release the barrier on. 869 * 870 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 871 * 872 * Should be called without the journal lock held. 873 */ 874 void jbd2_journal_unlock_updates (journal_t *journal) 875 { 876 J_ASSERT(journal->j_barrier_count != 0); 877 878 mutex_unlock(&journal->j_barrier); 879 write_lock(&journal->j_state_lock); 880 --journal->j_barrier_count; 881 write_unlock(&journal->j_state_lock); 882 wake_up(&journal->j_wait_transaction_locked); 883 } 884 885 static void warn_dirty_buffer(struct buffer_head *bh) 886 { 887 printk(KERN_WARNING 888 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 889 "There's a risk of filesystem corruption in case of system " 890 "crash.\n", 891 bh->b_bdev, (unsigned long long)bh->b_blocknr); 892 } 893 894 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 895 static void jbd2_freeze_jh_data(struct journal_head *jh) 896 { 897 struct page *page; 898 int offset; 899 char *source; 900 struct buffer_head *bh = jh2bh(jh); 901 902 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 903 page = bh->b_page; 904 offset = offset_in_page(bh->b_data); 905 source = kmap_atomic(page); 906 /* Fire data frozen trigger just before we copy the data */ 907 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 908 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 909 kunmap_atomic(source); 910 911 /* 912 * Now that the frozen data is saved off, we need to store any matching 913 * triggers. 914 */ 915 jh->b_frozen_triggers = jh->b_triggers; 916 } 917 918 /* 919 * If the buffer is already part of the current transaction, then there 920 * is nothing we need to do. If it is already part of a prior 921 * transaction which we are still committing to disk, then we need to 922 * make sure that we do not overwrite the old copy: we do copy-out to 923 * preserve the copy going to disk. We also account the buffer against 924 * the handle's metadata buffer credits (unless the buffer is already 925 * part of the transaction, that is). 926 * 927 */ 928 static int 929 do_get_write_access(handle_t *handle, struct journal_head *jh, 930 int force_copy) 931 { 932 struct buffer_head *bh; 933 transaction_t *transaction = handle->h_transaction; 934 journal_t *journal; 935 int error; 936 char *frozen_buffer = NULL; 937 unsigned long start_lock, time_lock; 938 939 journal = transaction->t_journal; 940 941 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 942 943 JBUFFER_TRACE(jh, "entry"); 944 repeat: 945 bh = jh2bh(jh); 946 947 /* @@@ Need to check for errors here at some point. */ 948 949 start_lock = jiffies; 950 lock_buffer(bh); 951 spin_lock(&jh->b_state_lock); 952 953 /* If it takes too long to lock the buffer, trace it */ 954 time_lock = jbd2_time_diff(start_lock, jiffies); 955 if (time_lock > HZ/10) 956 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 957 jiffies_to_msecs(time_lock)); 958 959 /* We now hold the buffer lock so it is safe to query the buffer 960 * state. Is the buffer dirty? 961 * 962 * If so, there are two possibilities. The buffer may be 963 * non-journaled, and undergoing a quite legitimate writeback. 964 * Otherwise, it is journaled, and we don't expect dirty buffers 965 * in that state (the buffers should be marked JBD_Dirty 966 * instead.) So either the IO is being done under our own 967 * control and this is a bug, or it's a third party IO such as 968 * dump(8) (which may leave the buffer scheduled for read --- 969 * ie. locked but not dirty) or tune2fs (which may actually have 970 * the buffer dirtied, ugh.) */ 971 972 if (buffer_dirty(bh)) { 973 /* 974 * First question: is this buffer already part of the current 975 * transaction or the existing committing transaction? 976 */ 977 if (jh->b_transaction) { 978 J_ASSERT_JH(jh, 979 jh->b_transaction == transaction || 980 jh->b_transaction == 981 journal->j_committing_transaction); 982 if (jh->b_next_transaction) 983 J_ASSERT_JH(jh, jh->b_next_transaction == 984 transaction); 985 warn_dirty_buffer(bh); 986 } 987 /* 988 * In any case we need to clean the dirty flag and we must 989 * do it under the buffer lock to be sure we don't race 990 * with running write-out. 991 */ 992 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 993 clear_buffer_dirty(bh); 994 set_buffer_jbddirty(bh); 995 } 996 997 unlock_buffer(bh); 998 999 error = -EROFS; 1000 if (is_handle_aborted(handle)) { 1001 spin_unlock(&jh->b_state_lock); 1002 goto out; 1003 } 1004 error = 0; 1005 1006 /* 1007 * The buffer is already part of this transaction if b_transaction or 1008 * b_next_transaction points to it 1009 */ 1010 if (jh->b_transaction == transaction || 1011 jh->b_next_transaction == transaction) 1012 goto done; 1013 1014 /* 1015 * this is the first time this transaction is touching this buffer, 1016 * reset the modified flag 1017 */ 1018 jh->b_modified = 0; 1019 1020 /* 1021 * If the buffer is not journaled right now, we need to make sure it 1022 * doesn't get written to disk before the caller actually commits the 1023 * new data 1024 */ 1025 if (!jh->b_transaction) { 1026 JBUFFER_TRACE(jh, "no transaction"); 1027 J_ASSERT_JH(jh, !jh->b_next_transaction); 1028 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1029 /* 1030 * Make sure all stores to jh (b_modified, b_frozen_data) are 1031 * visible before attaching it to the running transaction. 1032 * Paired with barrier in jbd2_write_access_granted() 1033 */ 1034 smp_wmb(); 1035 spin_lock(&journal->j_list_lock); 1036 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1037 spin_unlock(&journal->j_list_lock); 1038 goto done; 1039 } 1040 /* 1041 * If there is already a copy-out version of this buffer, then we don't 1042 * need to make another one 1043 */ 1044 if (jh->b_frozen_data) { 1045 JBUFFER_TRACE(jh, "has frozen data"); 1046 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1047 goto attach_next; 1048 } 1049 1050 JBUFFER_TRACE(jh, "owned by older transaction"); 1051 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1052 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1053 1054 /* 1055 * There is one case we have to be very careful about. If the 1056 * committing transaction is currently writing this buffer out to disk 1057 * and has NOT made a copy-out, then we cannot modify the buffer 1058 * contents at all right now. The essence of copy-out is that it is 1059 * the extra copy, not the primary copy, which gets journaled. If the 1060 * primary copy is already going to disk then we cannot do copy-out 1061 * here. 1062 */ 1063 if (buffer_shadow(bh)) { 1064 JBUFFER_TRACE(jh, "on shadow: sleep"); 1065 spin_unlock(&jh->b_state_lock); 1066 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1067 goto repeat; 1068 } 1069 1070 /* 1071 * Only do the copy if the currently-owning transaction still needs it. 1072 * If buffer isn't on BJ_Metadata list, the committing transaction is 1073 * past that stage (here we use the fact that BH_Shadow is set under 1074 * bh_state lock together with refiling to BJ_Shadow list and at this 1075 * point we know the buffer doesn't have BH_Shadow set). 1076 * 1077 * Subtle point, though: if this is a get_undo_access, then we will be 1078 * relying on the frozen_data to contain the new value of the 1079 * committed_data record after the transaction, so we HAVE to force the 1080 * frozen_data copy in that case. 1081 */ 1082 if (jh->b_jlist == BJ_Metadata || force_copy) { 1083 JBUFFER_TRACE(jh, "generate frozen data"); 1084 if (!frozen_buffer) { 1085 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1086 spin_unlock(&jh->b_state_lock); 1087 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1088 GFP_NOFS | __GFP_NOFAIL); 1089 goto repeat; 1090 } 1091 jh->b_frozen_data = frozen_buffer; 1092 frozen_buffer = NULL; 1093 jbd2_freeze_jh_data(jh); 1094 } 1095 attach_next: 1096 /* 1097 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1098 * before attaching it to the running transaction. Paired with barrier 1099 * in jbd2_write_access_granted() 1100 */ 1101 smp_wmb(); 1102 jh->b_next_transaction = transaction; 1103 1104 done: 1105 spin_unlock(&jh->b_state_lock); 1106 1107 /* 1108 * If we are about to journal a buffer, then any revoke pending on it is 1109 * no longer valid 1110 */ 1111 jbd2_journal_cancel_revoke(handle, jh); 1112 1113 out: 1114 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1115 jbd2_free(frozen_buffer, bh->b_size); 1116 1117 JBUFFER_TRACE(jh, "exit"); 1118 return error; 1119 } 1120 1121 /* Fast check whether buffer is already attached to the required transaction */ 1122 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1123 bool undo) 1124 { 1125 struct journal_head *jh; 1126 bool ret = false; 1127 1128 /* Dirty buffers require special handling... */ 1129 if (buffer_dirty(bh)) 1130 return false; 1131 1132 /* 1133 * RCU protects us from dereferencing freed pages. So the checks we do 1134 * are guaranteed not to oops. However the jh slab object can get freed 1135 * & reallocated while we work with it. So we have to be careful. When 1136 * we see jh attached to the running transaction, we know it must stay 1137 * so until the transaction is committed. Thus jh won't be freed and 1138 * will be attached to the same bh while we run. However it can 1139 * happen jh gets freed, reallocated, and attached to the transaction 1140 * just after we get pointer to it from bh. So we have to be careful 1141 * and recheck jh still belongs to our bh before we return success. 1142 */ 1143 rcu_read_lock(); 1144 if (!buffer_jbd(bh)) 1145 goto out; 1146 /* This should be bh2jh() but that doesn't work with inline functions */ 1147 jh = READ_ONCE(bh->b_private); 1148 if (!jh) 1149 goto out; 1150 /* For undo access buffer must have data copied */ 1151 if (undo && !jh->b_committed_data) 1152 goto out; 1153 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1154 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1155 goto out; 1156 /* 1157 * There are two reasons for the barrier here: 1158 * 1) Make sure to fetch b_bh after we did previous checks so that we 1159 * detect when jh went through free, realloc, attach to transaction 1160 * while we were checking. Paired with implicit barrier in that path. 1161 * 2) So that access to bh done after jbd2_write_access_granted() 1162 * doesn't get reordered and see inconsistent state of concurrent 1163 * do_get_write_access(). 1164 */ 1165 smp_mb(); 1166 if (unlikely(jh->b_bh != bh)) 1167 goto out; 1168 ret = true; 1169 out: 1170 rcu_read_unlock(); 1171 return ret; 1172 } 1173 1174 /** 1175 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1176 * @handle: transaction to add buffer modifications to 1177 * @bh: bh to be used for metadata writes 1178 * 1179 * Returns: error code or 0 on success. 1180 * 1181 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1182 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1183 */ 1184 1185 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1186 { 1187 struct journal_head *jh; 1188 int rc; 1189 1190 if (is_handle_aborted(handle)) 1191 return -EROFS; 1192 1193 if (jbd2_write_access_granted(handle, bh, false)) 1194 return 0; 1195 1196 jh = jbd2_journal_add_journal_head(bh); 1197 /* We do not want to get caught playing with fields which the 1198 * log thread also manipulates. Make sure that the buffer 1199 * completes any outstanding IO before proceeding. */ 1200 rc = do_get_write_access(handle, jh, 0); 1201 jbd2_journal_put_journal_head(jh); 1202 return rc; 1203 } 1204 1205 1206 /* 1207 * When the user wants to journal a newly created buffer_head 1208 * (ie. getblk() returned a new buffer and we are going to populate it 1209 * manually rather than reading off disk), then we need to keep the 1210 * buffer_head locked until it has been completely filled with new 1211 * data. In this case, we should be able to make the assertion that 1212 * the bh is not already part of an existing transaction. 1213 * 1214 * The buffer should already be locked by the caller by this point. 1215 * There is no lock ranking violation: it was a newly created, 1216 * unlocked buffer beforehand. */ 1217 1218 /** 1219 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1220 * @handle: transaction to new buffer to 1221 * @bh: new buffer. 1222 * 1223 * Call this if you create a new bh. 1224 */ 1225 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1226 { 1227 transaction_t *transaction = handle->h_transaction; 1228 journal_t *journal; 1229 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1230 int err; 1231 1232 jbd_debug(5, "journal_head %p\n", jh); 1233 err = -EROFS; 1234 if (is_handle_aborted(handle)) 1235 goto out; 1236 journal = transaction->t_journal; 1237 err = 0; 1238 1239 JBUFFER_TRACE(jh, "entry"); 1240 /* 1241 * The buffer may already belong to this transaction due to pre-zeroing 1242 * in the filesystem's new_block code. It may also be on the previous, 1243 * committing transaction's lists, but it HAS to be in Forget state in 1244 * that case: the transaction must have deleted the buffer for it to be 1245 * reused here. 1246 */ 1247 spin_lock(&jh->b_state_lock); 1248 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1249 jh->b_transaction == NULL || 1250 (jh->b_transaction == journal->j_committing_transaction && 1251 jh->b_jlist == BJ_Forget))); 1252 1253 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1254 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1255 1256 if (jh->b_transaction == NULL) { 1257 /* 1258 * Previous jbd2_journal_forget() could have left the buffer 1259 * with jbddirty bit set because it was being committed. When 1260 * the commit finished, we've filed the buffer for 1261 * checkpointing and marked it dirty. Now we are reallocating 1262 * the buffer so the transaction freeing it must have 1263 * committed and so it's safe to clear the dirty bit. 1264 */ 1265 clear_buffer_dirty(jh2bh(jh)); 1266 /* first access by this transaction */ 1267 jh->b_modified = 0; 1268 1269 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1270 spin_lock(&journal->j_list_lock); 1271 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1272 spin_unlock(&journal->j_list_lock); 1273 } else if (jh->b_transaction == journal->j_committing_transaction) { 1274 /* first access by this transaction */ 1275 jh->b_modified = 0; 1276 1277 JBUFFER_TRACE(jh, "set next transaction"); 1278 spin_lock(&journal->j_list_lock); 1279 jh->b_next_transaction = transaction; 1280 spin_unlock(&journal->j_list_lock); 1281 } 1282 spin_unlock(&jh->b_state_lock); 1283 1284 /* 1285 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1286 * blocks which contain freed but then revoked metadata. We need 1287 * to cancel the revoke in case we end up freeing it yet again 1288 * and the reallocating as data - this would cause a second revoke, 1289 * which hits an assertion error. 1290 */ 1291 JBUFFER_TRACE(jh, "cancelling revoke"); 1292 jbd2_journal_cancel_revoke(handle, jh); 1293 out: 1294 jbd2_journal_put_journal_head(jh); 1295 return err; 1296 } 1297 1298 /** 1299 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1300 * non-rewindable consequences 1301 * @handle: transaction 1302 * @bh: buffer to undo 1303 * 1304 * Sometimes there is a need to distinguish between metadata which has 1305 * been committed to disk and that which has not. The ext3fs code uses 1306 * this for freeing and allocating space, we have to make sure that we 1307 * do not reuse freed space until the deallocation has been committed, 1308 * since if we overwrote that space we would make the delete 1309 * un-rewindable in case of a crash. 1310 * 1311 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1312 * buffer for parts of non-rewindable operations such as delete 1313 * operations on the bitmaps. The journaling code must keep a copy of 1314 * the buffer's contents prior to the undo_access call until such time 1315 * as we know that the buffer has definitely been committed to disk. 1316 * 1317 * We never need to know which transaction the committed data is part 1318 * of, buffers touched here are guaranteed to be dirtied later and so 1319 * will be committed to a new transaction in due course, at which point 1320 * we can discard the old committed data pointer. 1321 * 1322 * Returns error number or 0 on success. 1323 */ 1324 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1325 { 1326 int err; 1327 struct journal_head *jh; 1328 char *committed_data = NULL; 1329 1330 if (is_handle_aborted(handle)) 1331 return -EROFS; 1332 1333 if (jbd2_write_access_granted(handle, bh, true)) 1334 return 0; 1335 1336 jh = jbd2_journal_add_journal_head(bh); 1337 JBUFFER_TRACE(jh, "entry"); 1338 1339 /* 1340 * Do this first --- it can drop the journal lock, so we want to 1341 * make sure that obtaining the committed_data is done 1342 * atomically wrt. completion of any outstanding commits. 1343 */ 1344 err = do_get_write_access(handle, jh, 1); 1345 if (err) 1346 goto out; 1347 1348 repeat: 1349 if (!jh->b_committed_data) 1350 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1351 GFP_NOFS|__GFP_NOFAIL); 1352 1353 spin_lock(&jh->b_state_lock); 1354 if (!jh->b_committed_data) { 1355 /* Copy out the current buffer contents into the 1356 * preserved, committed copy. */ 1357 JBUFFER_TRACE(jh, "generate b_committed data"); 1358 if (!committed_data) { 1359 spin_unlock(&jh->b_state_lock); 1360 goto repeat; 1361 } 1362 1363 jh->b_committed_data = committed_data; 1364 committed_data = NULL; 1365 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1366 } 1367 spin_unlock(&jh->b_state_lock); 1368 out: 1369 jbd2_journal_put_journal_head(jh); 1370 if (unlikely(committed_data)) 1371 jbd2_free(committed_data, bh->b_size); 1372 return err; 1373 } 1374 1375 /** 1376 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1377 * @bh: buffer to trigger on 1378 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1379 * 1380 * Set any triggers on this journal_head. This is always safe, because 1381 * triggers for a committing buffer will be saved off, and triggers for 1382 * a running transaction will match the buffer in that transaction. 1383 * 1384 * Call with NULL to clear the triggers. 1385 */ 1386 void jbd2_journal_set_triggers(struct buffer_head *bh, 1387 struct jbd2_buffer_trigger_type *type) 1388 { 1389 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1390 1391 if (WARN_ON(!jh)) 1392 return; 1393 jh->b_triggers = type; 1394 jbd2_journal_put_journal_head(jh); 1395 } 1396 1397 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1398 struct jbd2_buffer_trigger_type *triggers) 1399 { 1400 struct buffer_head *bh = jh2bh(jh); 1401 1402 if (!triggers || !triggers->t_frozen) 1403 return; 1404 1405 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1406 } 1407 1408 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1409 struct jbd2_buffer_trigger_type *triggers) 1410 { 1411 if (!triggers || !triggers->t_abort) 1412 return; 1413 1414 triggers->t_abort(triggers, jh2bh(jh)); 1415 } 1416 1417 /** 1418 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1419 * @handle: transaction to add buffer to. 1420 * @bh: buffer to mark 1421 * 1422 * mark dirty metadata which needs to be journaled as part of the current 1423 * transaction. 1424 * 1425 * The buffer must have previously had jbd2_journal_get_write_access() 1426 * called so that it has a valid journal_head attached to the buffer 1427 * head. 1428 * 1429 * The buffer is placed on the transaction's metadata list and is marked 1430 * as belonging to the transaction. 1431 * 1432 * Returns error number or 0 on success. 1433 * 1434 * Special care needs to be taken if the buffer already belongs to the 1435 * current committing transaction (in which case we should have frozen 1436 * data present for that commit). In that case, we don't relink the 1437 * buffer: that only gets done when the old transaction finally 1438 * completes its commit. 1439 */ 1440 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1441 { 1442 transaction_t *transaction = handle->h_transaction; 1443 journal_t *journal; 1444 struct journal_head *jh; 1445 int ret = 0; 1446 1447 if (is_handle_aborted(handle)) 1448 return -EROFS; 1449 if (!buffer_jbd(bh)) 1450 return -EUCLEAN; 1451 1452 /* 1453 * We don't grab jh reference here since the buffer must be part 1454 * of the running transaction. 1455 */ 1456 jh = bh2jh(bh); 1457 jbd_debug(5, "journal_head %p\n", jh); 1458 JBUFFER_TRACE(jh, "entry"); 1459 1460 /* 1461 * This and the following assertions are unreliable since we may see jh 1462 * in inconsistent state unless we grab bh_state lock. But this is 1463 * crucial to catch bugs so let's do a reliable check until the 1464 * lockless handling is fully proven. 1465 */ 1466 if (jh->b_transaction != transaction && 1467 jh->b_next_transaction != transaction) { 1468 spin_lock(&jh->b_state_lock); 1469 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1470 jh->b_next_transaction == transaction); 1471 spin_unlock(&jh->b_state_lock); 1472 } 1473 if (jh->b_modified == 1) { 1474 /* If it's in our transaction it must be in BJ_Metadata list. */ 1475 if (jh->b_transaction == transaction && 1476 jh->b_jlist != BJ_Metadata) { 1477 spin_lock(&jh->b_state_lock); 1478 if (jh->b_transaction == transaction && 1479 jh->b_jlist != BJ_Metadata) 1480 pr_err("JBD2: assertion failure: h_type=%u " 1481 "h_line_no=%u block_no=%llu jlist=%u\n", 1482 handle->h_type, handle->h_line_no, 1483 (unsigned long long) bh->b_blocknr, 1484 jh->b_jlist); 1485 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1486 jh->b_jlist == BJ_Metadata); 1487 spin_unlock(&jh->b_state_lock); 1488 } 1489 goto out; 1490 } 1491 1492 journal = transaction->t_journal; 1493 spin_lock(&jh->b_state_lock); 1494 1495 if (jh->b_modified == 0) { 1496 /* 1497 * This buffer's got modified and becoming part 1498 * of the transaction. This needs to be done 1499 * once a transaction -bzzz 1500 */ 1501 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1502 ret = -ENOSPC; 1503 goto out_unlock_bh; 1504 } 1505 jh->b_modified = 1; 1506 handle->h_total_credits--; 1507 } 1508 1509 /* 1510 * fastpath, to avoid expensive locking. If this buffer is already 1511 * on the running transaction's metadata list there is nothing to do. 1512 * Nobody can take it off again because there is a handle open. 1513 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1514 * result in this test being false, so we go in and take the locks. 1515 */ 1516 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1517 JBUFFER_TRACE(jh, "fastpath"); 1518 if (unlikely(jh->b_transaction != 1519 journal->j_running_transaction)) { 1520 printk(KERN_ERR "JBD2: %s: " 1521 "jh->b_transaction (%llu, %p, %u) != " 1522 "journal->j_running_transaction (%p, %u)\n", 1523 journal->j_devname, 1524 (unsigned long long) bh->b_blocknr, 1525 jh->b_transaction, 1526 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1527 journal->j_running_transaction, 1528 journal->j_running_transaction ? 1529 journal->j_running_transaction->t_tid : 0); 1530 ret = -EINVAL; 1531 } 1532 goto out_unlock_bh; 1533 } 1534 1535 set_buffer_jbddirty(bh); 1536 1537 /* 1538 * Metadata already on the current transaction list doesn't 1539 * need to be filed. Metadata on another transaction's list must 1540 * be committing, and will be refiled once the commit completes: 1541 * leave it alone for now. 1542 */ 1543 if (jh->b_transaction != transaction) { 1544 JBUFFER_TRACE(jh, "already on other transaction"); 1545 if (unlikely(((jh->b_transaction != 1546 journal->j_committing_transaction)) || 1547 (jh->b_next_transaction != transaction))) { 1548 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1549 "bad jh for block %llu: " 1550 "transaction (%p, %u), " 1551 "jh->b_transaction (%p, %u), " 1552 "jh->b_next_transaction (%p, %u), jlist %u\n", 1553 journal->j_devname, 1554 (unsigned long long) bh->b_blocknr, 1555 transaction, transaction->t_tid, 1556 jh->b_transaction, 1557 jh->b_transaction ? 1558 jh->b_transaction->t_tid : 0, 1559 jh->b_next_transaction, 1560 jh->b_next_transaction ? 1561 jh->b_next_transaction->t_tid : 0, 1562 jh->b_jlist); 1563 WARN_ON(1); 1564 ret = -EINVAL; 1565 } 1566 /* And this case is illegal: we can't reuse another 1567 * transaction's data buffer, ever. */ 1568 goto out_unlock_bh; 1569 } 1570 1571 /* That test should have eliminated the following case: */ 1572 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1573 1574 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1575 spin_lock(&journal->j_list_lock); 1576 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1577 spin_unlock(&journal->j_list_lock); 1578 out_unlock_bh: 1579 spin_unlock(&jh->b_state_lock); 1580 out: 1581 JBUFFER_TRACE(jh, "exit"); 1582 return ret; 1583 } 1584 1585 /** 1586 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1587 * @handle: transaction handle 1588 * @bh: bh to 'forget' 1589 * 1590 * We can only do the bforget if there are no commits pending against the 1591 * buffer. If the buffer is dirty in the current running transaction we 1592 * can safely unlink it. 1593 * 1594 * bh may not be a journalled buffer at all - it may be a non-JBD 1595 * buffer which came off the hashtable. Check for this. 1596 * 1597 * Decrements bh->b_count by one. 1598 * 1599 * Allow this call even if the handle has aborted --- it may be part of 1600 * the caller's cleanup after an abort. 1601 */ 1602 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1603 { 1604 transaction_t *transaction = handle->h_transaction; 1605 journal_t *journal; 1606 struct journal_head *jh; 1607 int drop_reserve = 0; 1608 int err = 0; 1609 int was_modified = 0; 1610 1611 if (is_handle_aborted(handle)) 1612 return -EROFS; 1613 journal = transaction->t_journal; 1614 1615 BUFFER_TRACE(bh, "entry"); 1616 1617 jh = jbd2_journal_grab_journal_head(bh); 1618 if (!jh) { 1619 __bforget(bh); 1620 return 0; 1621 } 1622 1623 spin_lock(&jh->b_state_lock); 1624 1625 /* Critical error: attempting to delete a bitmap buffer, maybe? 1626 * Don't do any jbd operations, and return an error. */ 1627 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1628 "inconsistent data on disk")) { 1629 err = -EIO; 1630 goto drop; 1631 } 1632 1633 /* keep track of whether or not this transaction modified us */ 1634 was_modified = jh->b_modified; 1635 1636 /* 1637 * The buffer's going from the transaction, we must drop 1638 * all references -bzzz 1639 */ 1640 jh->b_modified = 0; 1641 1642 if (jh->b_transaction == transaction) { 1643 J_ASSERT_JH(jh, !jh->b_frozen_data); 1644 1645 /* If we are forgetting a buffer which is already part 1646 * of this transaction, then we can just drop it from 1647 * the transaction immediately. */ 1648 clear_buffer_dirty(bh); 1649 clear_buffer_jbddirty(bh); 1650 1651 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1652 1653 /* 1654 * we only want to drop a reference if this transaction 1655 * modified the buffer 1656 */ 1657 if (was_modified) 1658 drop_reserve = 1; 1659 1660 /* 1661 * We are no longer going to journal this buffer. 1662 * However, the commit of this transaction is still 1663 * important to the buffer: the delete that we are now 1664 * processing might obsolete an old log entry, so by 1665 * committing, we can satisfy the buffer's checkpoint. 1666 * 1667 * So, if we have a checkpoint on the buffer, we should 1668 * now refile the buffer on our BJ_Forget list so that 1669 * we know to remove the checkpoint after we commit. 1670 */ 1671 1672 spin_lock(&journal->j_list_lock); 1673 if (jh->b_cp_transaction) { 1674 __jbd2_journal_temp_unlink_buffer(jh); 1675 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1676 } else { 1677 __jbd2_journal_unfile_buffer(jh); 1678 jbd2_journal_put_journal_head(jh); 1679 } 1680 spin_unlock(&journal->j_list_lock); 1681 } else if (jh->b_transaction) { 1682 J_ASSERT_JH(jh, (jh->b_transaction == 1683 journal->j_committing_transaction)); 1684 /* However, if the buffer is still owned by a prior 1685 * (committing) transaction, we can't drop it yet... */ 1686 JBUFFER_TRACE(jh, "belongs to older transaction"); 1687 /* ... but we CAN drop it from the new transaction through 1688 * marking the buffer as freed and set j_next_transaction to 1689 * the new transaction, so that not only the commit code 1690 * knows it should clear dirty bits when it is done with the 1691 * buffer, but also the buffer can be checkpointed only 1692 * after the new transaction commits. */ 1693 1694 set_buffer_freed(bh); 1695 1696 if (!jh->b_next_transaction) { 1697 spin_lock(&journal->j_list_lock); 1698 jh->b_next_transaction = transaction; 1699 spin_unlock(&journal->j_list_lock); 1700 } else { 1701 J_ASSERT(jh->b_next_transaction == transaction); 1702 1703 /* 1704 * only drop a reference if this transaction modified 1705 * the buffer 1706 */ 1707 if (was_modified) 1708 drop_reserve = 1; 1709 } 1710 } else { 1711 /* 1712 * Finally, if the buffer is not belongs to any 1713 * transaction, we can just drop it now if it has no 1714 * checkpoint. 1715 */ 1716 spin_lock(&journal->j_list_lock); 1717 if (!jh->b_cp_transaction) { 1718 JBUFFER_TRACE(jh, "belongs to none transaction"); 1719 spin_unlock(&journal->j_list_lock); 1720 goto drop; 1721 } 1722 1723 /* 1724 * Otherwise, if the buffer has been written to disk, 1725 * it is safe to remove the checkpoint and drop it. 1726 */ 1727 if (!buffer_dirty(bh)) { 1728 __jbd2_journal_remove_checkpoint(jh); 1729 spin_unlock(&journal->j_list_lock); 1730 goto drop; 1731 } 1732 1733 /* 1734 * The buffer is still not written to disk, we should 1735 * attach this buffer to current transaction so that the 1736 * buffer can be checkpointed only after the current 1737 * transaction commits. 1738 */ 1739 clear_buffer_dirty(bh); 1740 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1741 spin_unlock(&journal->j_list_lock); 1742 } 1743 drop: 1744 __brelse(bh); 1745 spin_unlock(&jh->b_state_lock); 1746 jbd2_journal_put_journal_head(jh); 1747 if (drop_reserve) { 1748 /* no need to reserve log space for this block -bzzz */ 1749 handle->h_total_credits++; 1750 } 1751 return err; 1752 } 1753 1754 /** 1755 * int jbd2_journal_stop() - complete a transaction 1756 * @handle: transaction to complete. 1757 * 1758 * All done for a particular handle. 1759 * 1760 * There is not much action needed here. We just return any remaining 1761 * buffer credits to the transaction and remove the handle. The only 1762 * complication is that we need to start a commit operation if the 1763 * filesystem is marked for synchronous update. 1764 * 1765 * jbd2_journal_stop itself will not usually return an error, but it may 1766 * do so in unusual circumstances. In particular, expect it to 1767 * return -EIO if a jbd2_journal_abort has been executed since the 1768 * transaction began. 1769 */ 1770 int jbd2_journal_stop(handle_t *handle) 1771 { 1772 transaction_t *transaction = handle->h_transaction; 1773 journal_t *journal; 1774 int err = 0, wait_for_commit = 0; 1775 tid_t tid; 1776 pid_t pid; 1777 1778 if (--handle->h_ref > 0) { 1779 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1780 handle->h_ref); 1781 if (is_handle_aborted(handle)) 1782 return -EIO; 1783 return 0; 1784 } 1785 if (!transaction) { 1786 /* 1787 * Handle is already detached from the transaction so there is 1788 * nothing to do other than free the handle. 1789 */ 1790 memalloc_nofs_restore(handle->saved_alloc_context); 1791 goto free_and_exit; 1792 } 1793 journal = transaction->t_journal; 1794 tid = transaction->t_tid; 1795 1796 if (is_handle_aborted(handle)) 1797 err = -EIO; 1798 1799 jbd_debug(4, "Handle %p going down\n", handle); 1800 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1801 tid, handle->h_type, handle->h_line_no, 1802 jiffies - handle->h_start_jiffies, 1803 handle->h_sync, handle->h_requested_credits, 1804 (handle->h_requested_credits - 1805 handle->h_total_credits)); 1806 1807 /* 1808 * Implement synchronous transaction batching. If the handle 1809 * was synchronous, don't force a commit immediately. Let's 1810 * yield and let another thread piggyback onto this 1811 * transaction. Keep doing that while new threads continue to 1812 * arrive. It doesn't cost much - we're about to run a commit 1813 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1814 * operations by 30x or more... 1815 * 1816 * We try and optimize the sleep time against what the 1817 * underlying disk can do, instead of having a static sleep 1818 * time. This is useful for the case where our storage is so 1819 * fast that it is more optimal to go ahead and force a flush 1820 * and wait for the transaction to be committed than it is to 1821 * wait for an arbitrary amount of time for new writers to 1822 * join the transaction. We achieve this by measuring how 1823 * long it takes to commit a transaction, and compare it with 1824 * how long this transaction has been running, and if run time 1825 * < commit time then we sleep for the delta and commit. This 1826 * greatly helps super fast disks that would see slowdowns as 1827 * more threads started doing fsyncs. 1828 * 1829 * But don't do this if this process was the most recent one 1830 * to perform a synchronous write. We do this to detect the 1831 * case where a single process is doing a stream of sync 1832 * writes. No point in waiting for joiners in that case. 1833 * 1834 * Setting max_batch_time to 0 disables this completely. 1835 */ 1836 pid = current->pid; 1837 if (handle->h_sync && journal->j_last_sync_writer != pid && 1838 journal->j_max_batch_time) { 1839 u64 commit_time, trans_time; 1840 1841 journal->j_last_sync_writer = pid; 1842 1843 read_lock(&journal->j_state_lock); 1844 commit_time = journal->j_average_commit_time; 1845 read_unlock(&journal->j_state_lock); 1846 1847 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1848 transaction->t_start_time)); 1849 1850 commit_time = max_t(u64, commit_time, 1851 1000*journal->j_min_batch_time); 1852 commit_time = min_t(u64, commit_time, 1853 1000*journal->j_max_batch_time); 1854 1855 if (trans_time < commit_time) { 1856 ktime_t expires = ktime_add_ns(ktime_get(), 1857 commit_time); 1858 set_current_state(TASK_UNINTERRUPTIBLE); 1859 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1860 } 1861 } 1862 1863 if (handle->h_sync) 1864 transaction->t_synchronous_commit = 1; 1865 1866 /* 1867 * If the handle is marked SYNC, we need to set another commit 1868 * going! We also want to force a commit if the transaction is too 1869 * old now. 1870 */ 1871 if (handle->h_sync || 1872 time_after_eq(jiffies, transaction->t_expires)) { 1873 /* Do this even for aborted journals: an abort still 1874 * completes the commit thread, it just doesn't write 1875 * anything to disk. */ 1876 1877 jbd_debug(2, "transaction too old, requesting commit for " 1878 "handle %p\n", handle); 1879 /* This is non-blocking */ 1880 jbd2_log_start_commit(journal, tid); 1881 1882 /* 1883 * Special case: JBD2_SYNC synchronous updates require us 1884 * to wait for the commit to complete. 1885 */ 1886 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1887 wait_for_commit = 1; 1888 } 1889 1890 /* 1891 * Once stop_this_handle() drops t_updates, the transaction could start 1892 * committing on us and eventually disappear. So we must not 1893 * dereference transaction pointer again after calling 1894 * stop_this_handle(). 1895 */ 1896 stop_this_handle(handle); 1897 1898 if (wait_for_commit) 1899 err = jbd2_log_wait_commit(journal, tid); 1900 1901 free_and_exit: 1902 if (handle->h_rsv_handle) 1903 jbd2_free_handle(handle->h_rsv_handle); 1904 jbd2_free_handle(handle); 1905 return err; 1906 } 1907 1908 /* 1909 * 1910 * List management code snippets: various functions for manipulating the 1911 * transaction buffer lists. 1912 * 1913 */ 1914 1915 /* 1916 * Append a buffer to a transaction list, given the transaction's list head 1917 * pointer. 1918 * 1919 * j_list_lock is held. 1920 * 1921 * jh->b_state_lock is held. 1922 */ 1923 1924 static inline void 1925 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1926 { 1927 if (!*list) { 1928 jh->b_tnext = jh->b_tprev = jh; 1929 *list = jh; 1930 } else { 1931 /* Insert at the tail of the list to preserve order */ 1932 struct journal_head *first = *list, *last = first->b_tprev; 1933 jh->b_tprev = last; 1934 jh->b_tnext = first; 1935 last->b_tnext = first->b_tprev = jh; 1936 } 1937 } 1938 1939 /* 1940 * Remove a buffer from a transaction list, given the transaction's list 1941 * head pointer. 1942 * 1943 * Called with j_list_lock held, and the journal may not be locked. 1944 * 1945 * jh->b_state_lock is held. 1946 */ 1947 1948 static inline void 1949 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1950 { 1951 if (*list == jh) { 1952 *list = jh->b_tnext; 1953 if (*list == jh) 1954 *list = NULL; 1955 } 1956 jh->b_tprev->b_tnext = jh->b_tnext; 1957 jh->b_tnext->b_tprev = jh->b_tprev; 1958 } 1959 1960 /* 1961 * Remove a buffer from the appropriate transaction list. 1962 * 1963 * Note that this function can *change* the value of 1964 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1965 * t_reserved_list. If the caller is holding onto a copy of one of these 1966 * pointers, it could go bad. Generally the caller needs to re-read the 1967 * pointer from the transaction_t. 1968 * 1969 * Called under j_list_lock. 1970 */ 1971 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1972 { 1973 struct journal_head **list = NULL; 1974 transaction_t *transaction; 1975 struct buffer_head *bh = jh2bh(jh); 1976 1977 lockdep_assert_held(&jh->b_state_lock); 1978 transaction = jh->b_transaction; 1979 if (transaction) 1980 assert_spin_locked(&transaction->t_journal->j_list_lock); 1981 1982 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1983 if (jh->b_jlist != BJ_None) 1984 J_ASSERT_JH(jh, transaction != NULL); 1985 1986 switch (jh->b_jlist) { 1987 case BJ_None: 1988 return; 1989 case BJ_Metadata: 1990 transaction->t_nr_buffers--; 1991 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1992 list = &transaction->t_buffers; 1993 break; 1994 case BJ_Forget: 1995 list = &transaction->t_forget; 1996 break; 1997 case BJ_Shadow: 1998 list = &transaction->t_shadow_list; 1999 break; 2000 case BJ_Reserved: 2001 list = &transaction->t_reserved_list; 2002 break; 2003 } 2004 2005 __blist_del_buffer(list, jh); 2006 jh->b_jlist = BJ_None; 2007 if (transaction && is_journal_aborted(transaction->t_journal)) 2008 clear_buffer_jbddirty(bh); 2009 else if (test_clear_buffer_jbddirty(bh)) 2010 mark_buffer_dirty(bh); /* Expose it to the VM */ 2011 } 2012 2013 /* 2014 * Remove buffer from all transactions. The caller is responsible for dropping 2015 * the jh reference that belonged to the transaction. 2016 * 2017 * Called with bh_state lock and j_list_lock 2018 */ 2019 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2020 { 2021 __jbd2_journal_temp_unlink_buffer(jh); 2022 jh->b_transaction = NULL; 2023 } 2024 2025 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2026 { 2027 struct buffer_head *bh = jh2bh(jh); 2028 2029 /* Get reference so that buffer cannot be freed before we unlock it */ 2030 get_bh(bh); 2031 spin_lock(&jh->b_state_lock); 2032 spin_lock(&journal->j_list_lock); 2033 __jbd2_journal_unfile_buffer(jh); 2034 spin_unlock(&journal->j_list_lock); 2035 spin_unlock(&jh->b_state_lock); 2036 jbd2_journal_put_journal_head(jh); 2037 __brelse(bh); 2038 } 2039 2040 /* 2041 * Called from jbd2_journal_try_to_free_buffers(). 2042 * 2043 * Called under jh->b_state_lock 2044 */ 2045 static void 2046 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2047 { 2048 struct journal_head *jh; 2049 2050 jh = bh2jh(bh); 2051 2052 if (buffer_locked(bh) || buffer_dirty(bh)) 2053 goto out; 2054 2055 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2056 goto out; 2057 2058 spin_lock(&journal->j_list_lock); 2059 if (jh->b_cp_transaction != NULL) { 2060 /* written-back checkpointed metadata buffer */ 2061 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2062 __jbd2_journal_remove_checkpoint(jh); 2063 } 2064 spin_unlock(&journal->j_list_lock); 2065 out: 2066 return; 2067 } 2068 2069 /** 2070 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 2071 * @journal: journal for operation 2072 * @page: to try and free 2073 * @gfp_mask: we use the mask to detect how hard should we try to release 2074 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 2075 * code to release the buffers. 2076 * 2077 * 2078 * For all the buffers on this page, 2079 * if they are fully written out ordered data, move them onto BUF_CLEAN 2080 * so try_to_free_buffers() can reap them. 2081 * 2082 * This function returns non-zero if we wish try_to_free_buffers() 2083 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2084 * We also do it if the page has locked or dirty buffers and the caller wants 2085 * us to perform sync or async writeout. 2086 * 2087 * This complicates JBD locking somewhat. We aren't protected by the 2088 * BKL here. We wish to remove the buffer from its committing or 2089 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2090 * 2091 * This may *change* the value of transaction_t->t_datalist, so anyone 2092 * who looks at t_datalist needs to lock against this function. 2093 * 2094 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2095 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2096 * will come out of the lock with the buffer dirty, which makes it 2097 * ineligible for release here. 2098 * 2099 * Who else is affected by this? hmm... Really the only contender 2100 * is do_get_write_access() - it could be looking at the buffer while 2101 * journal_try_to_free_buffer() is changing its state. But that 2102 * cannot happen because we never reallocate freed data as metadata 2103 * while the data is part of a transaction. Yes? 2104 * 2105 * Return 0 on failure, 1 on success 2106 */ 2107 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2108 struct page *page, gfp_t gfp_mask) 2109 { 2110 struct buffer_head *head; 2111 struct buffer_head *bh; 2112 int ret = 0; 2113 2114 J_ASSERT(PageLocked(page)); 2115 2116 head = page_buffers(page); 2117 bh = head; 2118 do { 2119 struct journal_head *jh; 2120 2121 /* 2122 * We take our own ref against the journal_head here to avoid 2123 * having to add tons of locking around each instance of 2124 * jbd2_journal_put_journal_head(). 2125 */ 2126 jh = jbd2_journal_grab_journal_head(bh); 2127 if (!jh) 2128 continue; 2129 2130 spin_lock(&jh->b_state_lock); 2131 __journal_try_to_free_buffer(journal, bh); 2132 spin_unlock(&jh->b_state_lock); 2133 jbd2_journal_put_journal_head(jh); 2134 if (buffer_jbd(bh)) 2135 goto busy; 2136 } while ((bh = bh->b_this_page) != head); 2137 2138 ret = try_to_free_buffers(page); 2139 2140 busy: 2141 return ret; 2142 } 2143 2144 /* 2145 * This buffer is no longer needed. If it is on an older transaction's 2146 * checkpoint list we need to record it on this transaction's forget list 2147 * to pin this buffer (and hence its checkpointing transaction) down until 2148 * this transaction commits. If the buffer isn't on a checkpoint list, we 2149 * release it. 2150 * Returns non-zero if JBD no longer has an interest in the buffer. 2151 * 2152 * Called under j_list_lock. 2153 * 2154 * Called under jh->b_state_lock. 2155 */ 2156 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2157 { 2158 int may_free = 1; 2159 struct buffer_head *bh = jh2bh(jh); 2160 2161 if (jh->b_cp_transaction) { 2162 JBUFFER_TRACE(jh, "on running+cp transaction"); 2163 __jbd2_journal_temp_unlink_buffer(jh); 2164 /* 2165 * We don't want to write the buffer anymore, clear the 2166 * bit so that we don't confuse checks in 2167 * __journal_file_buffer 2168 */ 2169 clear_buffer_dirty(bh); 2170 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2171 may_free = 0; 2172 } else { 2173 JBUFFER_TRACE(jh, "on running transaction"); 2174 __jbd2_journal_unfile_buffer(jh); 2175 jbd2_journal_put_journal_head(jh); 2176 } 2177 return may_free; 2178 } 2179 2180 /* 2181 * jbd2_journal_invalidatepage 2182 * 2183 * This code is tricky. It has a number of cases to deal with. 2184 * 2185 * There are two invariants which this code relies on: 2186 * 2187 * i_size must be updated on disk before we start calling invalidatepage on the 2188 * data. 2189 * 2190 * This is done in ext3 by defining an ext3_setattr method which 2191 * updates i_size before truncate gets going. By maintaining this 2192 * invariant, we can be sure that it is safe to throw away any buffers 2193 * attached to the current transaction: once the transaction commits, 2194 * we know that the data will not be needed. 2195 * 2196 * Note however that we can *not* throw away data belonging to the 2197 * previous, committing transaction! 2198 * 2199 * Any disk blocks which *are* part of the previous, committing 2200 * transaction (and which therefore cannot be discarded immediately) are 2201 * not going to be reused in the new running transaction 2202 * 2203 * The bitmap committed_data images guarantee this: any block which is 2204 * allocated in one transaction and removed in the next will be marked 2205 * as in-use in the committed_data bitmap, so cannot be reused until 2206 * the next transaction to delete the block commits. This means that 2207 * leaving committing buffers dirty is quite safe: the disk blocks 2208 * cannot be reallocated to a different file and so buffer aliasing is 2209 * not possible. 2210 * 2211 * 2212 * The above applies mainly to ordered data mode. In writeback mode we 2213 * don't make guarantees about the order in which data hits disk --- in 2214 * particular we don't guarantee that new dirty data is flushed before 2215 * transaction commit --- so it is always safe just to discard data 2216 * immediately in that mode. --sct 2217 */ 2218 2219 /* 2220 * The journal_unmap_buffer helper function returns zero if the buffer 2221 * concerned remains pinned as an anonymous buffer belonging to an older 2222 * transaction. 2223 * 2224 * We're outside-transaction here. Either or both of j_running_transaction 2225 * and j_committing_transaction may be NULL. 2226 */ 2227 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2228 int partial_page) 2229 { 2230 transaction_t *transaction; 2231 struct journal_head *jh; 2232 int may_free = 1; 2233 2234 BUFFER_TRACE(bh, "entry"); 2235 2236 /* 2237 * It is safe to proceed here without the j_list_lock because the 2238 * buffers cannot be stolen by try_to_free_buffers as long as we are 2239 * holding the page lock. --sct 2240 */ 2241 2242 jh = jbd2_journal_grab_journal_head(bh); 2243 if (!jh) 2244 goto zap_buffer_unlocked; 2245 2246 /* OK, we have data buffer in journaled mode */ 2247 write_lock(&journal->j_state_lock); 2248 spin_lock(&jh->b_state_lock); 2249 spin_lock(&journal->j_list_lock); 2250 2251 /* 2252 * We cannot remove the buffer from checkpoint lists until the 2253 * transaction adding inode to orphan list (let's call it T) 2254 * is committed. Otherwise if the transaction changing the 2255 * buffer would be cleaned from the journal before T is 2256 * committed, a crash will cause that the correct contents of 2257 * the buffer will be lost. On the other hand we have to 2258 * clear the buffer dirty bit at latest at the moment when the 2259 * transaction marking the buffer as freed in the filesystem 2260 * structures is committed because from that moment on the 2261 * block can be reallocated and used by a different page. 2262 * Since the block hasn't been freed yet but the inode has 2263 * already been added to orphan list, it is safe for us to add 2264 * the buffer to BJ_Forget list of the newest transaction. 2265 * 2266 * Also we have to clear buffer_mapped flag of a truncated buffer 2267 * because the buffer_head may be attached to the page straddling 2268 * i_size (can happen only when blocksize < pagesize) and thus the 2269 * buffer_head can be reused when the file is extended again. So we end 2270 * up keeping around invalidated buffers attached to transactions' 2271 * BJ_Forget list just to stop checkpointing code from cleaning up 2272 * the transaction this buffer was modified in. 2273 */ 2274 transaction = jh->b_transaction; 2275 if (transaction == NULL) { 2276 /* First case: not on any transaction. If it 2277 * has no checkpoint link, then we can zap it: 2278 * it's a writeback-mode buffer so we don't care 2279 * if it hits disk safely. */ 2280 if (!jh->b_cp_transaction) { 2281 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2282 goto zap_buffer; 2283 } 2284 2285 if (!buffer_dirty(bh)) { 2286 /* bdflush has written it. We can drop it now */ 2287 __jbd2_journal_remove_checkpoint(jh); 2288 goto zap_buffer; 2289 } 2290 2291 /* OK, it must be in the journal but still not 2292 * written fully to disk: it's metadata or 2293 * journaled data... */ 2294 2295 if (journal->j_running_transaction) { 2296 /* ... and once the current transaction has 2297 * committed, the buffer won't be needed any 2298 * longer. */ 2299 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2300 may_free = __dispose_buffer(jh, 2301 journal->j_running_transaction); 2302 goto zap_buffer; 2303 } else { 2304 /* There is no currently-running transaction. So the 2305 * orphan record which we wrote for this file must have 2306 * passed into commit. We must attach this buffer to 2307 * the committing transaction, if it exists. */ 2308 if (journal->j_committing_transaction) { 2309 JBUFFER_TRACE(jh, "give to committing trans"); 2310 may_free = __dispose_buffer(jh, 2311 journal->j_committing_transaction); 2312 goto zap_buffer; 2313 } else { 2314 /* The orphan record's transaction has 2315 * committed. We can cleanse this buffer */ 2316 clear_buffer_jbddirty(bh); 2317 __jbd2_journal_remove_checkpoint(jh); 2318 goto zap_buffer; 2319 } 2320 } 2321 } else if (transaction == journal->j_committing_transaction) { 2322 JBUFFER_TRACE(jh, "on committing transaction"); 2323 /* 2324 * The buffer is committing, we simply cannot touch 2325 * it. If the page is straddling i_size we have to wait 2326 * for commit and try again. 2327 */ 2328 if (partial_page) { 2329 spin_unlock(&journal->j_list_lock); 2330 spin_unlock(&jh->b_state_lock); 2331 write_unlock(&journal->j_state_lock); 2332 jbd2_journal_put_journal_head(jh); 2333 return -EBUSY; 2334 } 2335 /* 2336 * OK, buffer won't be reachable after truncate. We just clear 2337 * b_modified to not confuse transaction credit accounting, and 2338 * set j_next_transaction to the running transaction (if there 2339 * is one) and mark buffer as freed so that commit code knows 2340 * it should clear dirty bits when it is done with the buffer. 2341 */ 2342 set_buffer_freed(bh); 2343 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2344 jh->b_next_transaction = journal->j_running_transaction; 2345 jh->b_modified = 0; 2346 spin_unlock(&journal->j_list_lock); 2347 spin_unlock(&jh->b_state_lock); 2348 write_unlock(&journal->j_state_lock); 2349 jbd2_journal_put_journal_head(jh); 2350 return 0; 2351 } else { 2352 /* Good, the buffer belongs to the running transaction. 2353 * We are writing our own transaction's data, not any 2354 * previous one's, so it is safe to throw it away 2355 * (remember that we expect the filesystem to have set 2356 * i_size already for this truncate so recovery will not 2357 * expose the disk blocks we are discarding here.) */ 2358 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2359 JBUFFER_TRACE(jh, "on running transaction"); 2360 may_free = __dispose_buffer(jh, transaction); 2361 } 2362 2363 zap_buffer: 2364 /* 2365 * This is tricky. Although the buffer is truncated, it may be reused 2366 * if blocksize < pagesize and it is attached to the page straddling 2367 * EOF. Since the buffer might have been added to BJ_Forget list of the 2368 * running transaction, journal_get_write_access() won't clear 2369 * b_modified and credit accounting gets confused. So clear b_modified 2370 * here. 2371 */ 2372 jh->b_modified = 0; 2373 spin_unlock(&journal->j_list_lock); 2374 spin_unlock(&jh->b_state_lock); 2375 write_unlock(&journal->j_state_lock); 2376 jbd2_journal_put_journal_head(jh); 2377 zap_buffer_unlocked: 2378 clear_buffer_dirty(bh); 2379 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2380 clear_buffer_mapped(bh); 2381 clear_buffer_req(bh); 2382 clear_buffer_new(bh); 2383 clear_buffer_delay(bh); 2384 clear_buffer_unwritten(bh); 2385 bh->b_bdev = NULL; 2386 return may_free; 2387 } 2388 2389 /** 2390 * void jbd2_journal_invalidatepage() 2391 * @journal: journal to use for flush... 2392 * @page: page to flush 2393 * @offset: start of the range to invalidate 2394 * @length: length of the range to invalidate 2395 * 2396 * Reap page buffers containing data after in the specified range in page. 2397 * Can return -EBUSY if buffers are part of the committing transaction and 2398 * the page is straddling i_size. Caller then has to wait for current commit 2399 * and try again. 2400 */ 2401 int jbd2_journal_invalidatepage(journal_t *journal, 2402 struct page *page, 2403 unsigned int offset, 2404 unsigned int length) 2405 { 2406 struct buffer_head *head, *bh, *next; 2407 unsigned int stop = offset + length; 2408 unsigned int curr_off = 0; 2409 int partial_page = (offset || length < PAGE_SIZE); 2410 int may_free = 1; 2411 int ret = 0; 2412 2413 if (!PageLocked(page)) 2414 BUG(); 2415 if (!page_has_buffers(page)) 2416 return 0; 2417 2418 BUG_ON(stop > PAGE_SIZE || stop < length); 2419 2420 /* We will potentially be playing with lists other than just the 2421 * data lists (especially for journaled data mode), so be 2422 * cautious in our locking. */ 2423 2424 head = bh = page_buffers(page); 2425 do { 2426 unsigned int next_off = curr_off + bh->b_size; 2427 next = bh->b_this_page; 2428 2429 if (next_off > stop) 2430 return 0; 2431 2432 if (offset <= curr_off) { 2433 /* This block is wholly outside the truncation point */ 2434 lock_buffer(bh); 2435 ret = journal_unmap_buffer(journal, bh, partial_page); 2436 unlock_buffer(bh); 2437 if (ret < 0) 2438 return ret; 2439 may_free &= ret; 2440 } 2441 curr_off = next_off; 2442 bh = next; 2443 2444 } while (bh != head); 2445 2446 if (!partial_page) { 2447 if (may_free && try_to_free_buffers(page)) 2448 J_ASSERT(!page_has_buffers(page)); 2449 } 2450 return 0; 2451 } 2452 2453 /* 2454 * File a buffer on the given transaction list. 2455 */ 2456 void __jbd2_journal_file_buffer(struct journal_head *jh, 2457 transaction_t *transaction, int jlist) 2458 { 2459 struct journal_head **list = NULL; 2460 int was_dirty = 0; 2461 struct buffer_head *bh = jh2bh(jh); 2462 2463 lockdep_assert_held(&jh->b_state_lock); 2464 assert_spin_locked(&transaction->t_journal->j_list_lock); 2465 2466 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2467 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2468 jh->b_transaction == NULL); 2469 2470 if (jh->b_transaction && jh->b_jlist == jlist) 2471 return; 2472 2473 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2474 jlist == BJ_Shadow || jlist == BJ_Forget) { 2475 /* 2476 * For metadata buffers, we track dirty bit in buffer_jbddirty 2477 * instead of buffer_dirty. We should not see a dirty bit set 2478 * here because we clear it in do_get_write_access but e.g. 2479 * tune2fs can modify the sb and set the dirty bit at any time 2480 * so we try to gracefully handle that. 2481 */ 2482 if (buffer_dirty(bh)) 2483 warn_dirty_buffer(bh); 2484 if (test_clear_buffer_dirty(bh) || 2485 test_clear_buffer_jbddirty(bh)) 2486 was_dirty = 1; 2487 } 2488 2489 if (jh->b_transaction) 2490 __jbd2_journal_temp_unlink_buffer(jh); 2491 else 2492 jbd2_journal_grab_journal_head(bh); 2493 jh->b_transaction = transaction; 2494 2495 switch (jlist) { 2496 case BJ_None: 2497 J_ASSERT_JH(jh, !jh->b_committed_data); 2498 J_ASSERT_JH(jh, !jh->b_frozen_data); 2499 return; 2500 case BJ_Metadata: 2501 transaction->t_nr_buffers++; 2502 list = &transaction->t_buffers; 2503 break; 2504 case BJ_Forget: 2505 list = &transaction->t_forget; 2506 break; 2507 case BJ_Shadow: 2508 list = &transaction->t_shadow_list; 2509 break; 2510 case BJ_Reserved: 2511 list = &transaction->t_reserved_list; 2512 break; 2513 } 2514 2515 __blist_add_buffer(list, jh); 2516 jh->b_jlist = jlist; 2517 2518 if (was_dirty) 2519 set_buffer_jbddirty(bh); 2520 } 2521 2522 void jbd2_journal_file_buffer(struct journal_head *jh, 2523 transaction_t *transaction, int jlist) 2524 { 2525 spin_lock(&jh->b_state_lock); 2526 spin_lock(&transaction->t_journal->j_list_lock); 2527 __jbd2_journal_file_buffer(jh, transaction, jlist); 2528 spin_unlock(&transaction->t_journal->j_list_lock); 2529 spin_unlock(&jh->b_state_lock); 2530 } 2531 2532 /* 2533 * Remove a buffer from its current buffer list in preparation for 2534 * dropping it from its current transaction entirely. If the buffer has 2535 * already started to be used by a subsequent transaction, refile the 2536 * buffer on that transaction's metadata list. 2537 * 2538 * Called under j_list_lock 2539 * Called under jh->b_state_lock 2540 * 2541 * When this function returns true, there's no next transaction to refile to 2542 * and the caller has to drop jh reference through 2543 * jbd2_journal_put_journal_head(). 2544 */ 2545 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2546 { 2547 int was_dirty, jlist; 2548 struct buffer_head *bh = jh2bh(jh); 2549 2550 lockdep_assert_held(&jh->b_state_lock); 2551 if (jh->b_transaction) 2552 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2553 2554 /* If the buffer is now unused, just drop it. */ 2555 if (jh->b_next_transaction == NULL) { 2556 __jbd2_journal_unfile_buffer(jh); 2557 return true; 2558 } 2559 2560 /* 2561 * It has been modified by a later transaction: add it to the new 2562 * transaction's metadata list. 2563 */ 2564 2565 was_dirty = test_clear_buffer_jbddirty(bh); 2566 __jbd2_journal_temp_unlink_buffer(jh); 2567 /* 2568 * We set b_transaction here because b_next_transaction will inherit 2569 * our jh reference and thus __jbd2_journal_file_buffer() must not 2570 * take a new one. 2571 */ 2572 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2573 WRITE_ONCE(jh->b_next_transaction, NULL); 2574 if (buffer_freed(bh)) 2575 jlist = BJ_Forget; 2576 else if (jh->b_modified) 2577 jlist = BJ_Metadata; 2578 else 2579 jlist = BJ_Reserved; 2580 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2581 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2582 2583 if (was_dirty) 2584 set_buffer_jbddirty(bh); 2585 return false; 2586 } 2587 2588 /* 2589 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2590 * bh reference so that we can safely unlock bh. 2591 * 2592 * The jh and bh may be freed by this call. 2593 */ 2594 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2595 { 2596 bool drop; 2597 2598 spin_lock(&jh->b_state_lock); 2599 spin_lock(&journal->j_list_lock); 2600 drop = __jbd2_journal_refile_buffer(jh); 2601 spin_unlock(&jh->b_state_lock); 2602 spin_unlock(&journal->j_list_lock); 2603 if (drop) 2604 jbd2_journal_put_journal_head(jh); 2605 } 2606 2607 /* 2608 * File inode in the inode list of the handle's transaction 2609 */ 2610 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2611 unsigned long flags, loff_t start_byte, loff_t end_byte) 2612 { 2613 transaction_t *transaction = handle->h_transaction; 2614 journal_t *journal; 2615 2616 if (is_handle_aborted(handle)) 2617 return -EROFS; 2618 journal = transaction->t_journal; 2619 2620 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2621 transaction->t_tid); 2622 2623 spin_lock(&journal->j_list_lock); 2624 jinode->i_flags |= flags; 2625 2626 if (jinode->i_dirty_end) { 2627 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2628 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2629 } else { 2630 jinode->i_dirty_start = start_byte; 2631 jinode->i_dirty_end = end_byte; 2632 } 2633 2634 /* Is inode already attached where we need it? */ 2635 if (jinode->i_transaction == transaction || 2636 jinode->i_next_transaction == transaction) 2637 goto done; 2638 2639 /* 2640 * We only ever set this variable to 1 so the test is safe. Since 2641 * t_need_data_flush is likely to be set, we do the test to save some 2642 * cacheline bouncing 2643 */ 2644 if (!transaction->t_need_data_flush) 2645 transaction->t_need_data_flush = 1; 2646 /* On some different transaction's list - should be 2647 * the committing one */ 2648 if (jinode->i_transaction) { 2649 J_ASSERT(jinode->i_next_transaction == NULL); 2650 J_ASSERT(jinode->i_transaction == 2651 journal->j_committing_transaction); 2652 jinode->i_next_transaction = transaction; 2653 goto done; 2654 } 2655 /* Not on any transaction list... */ 2656 J_ASSERT(!jinode->i_next_transaction); 2657 jinode->i_transaction = transaction; 2658 list_add(&jinode->i_list, &transaction->t_inode_list); 2659 done: 2660 spin_unlock(&journal->j_list_lock); 2661 2662 return 0; 2663 } 2664 2665 int jbd2_journal_inode_ranged_write(handle_t *handle, 2666 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2667 { 2668 return jbd2_journal_file_inode(handle, jinode, 2669 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2670 start_byte + length - 1); 2671 } 2672 2673 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2674 loff_t start_byte, loff_t length) 2675 { 2676 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2677 start_byte, start_byte + length - 1); 2678 } 2679 2680 /* 2681 * File truncate and transaction commit interact with each other in a 2682 * non-trivial way. If a transaction writing data block A is 2683 * committing, we cannot discard the data by truncate until we have 2684 * written them. Otherwise if we crashed after the transaction with 2685 * write has committed but before the transaction with truncate has 2686 * committed, we could see stale data in block A. This function is a 2687 * helper to solve this problem. It starts writeout of the truncated 2688 * part in case it is in the committing transaction. 2689 * 2690 * Filesystem code must call this function when inode is journaled in 2691 * ordered mode before truncation happens and after the inode has been 2692 * placed on orphan list with the new inode size. The second condition 2693 * avoids the race that someone writes new data and we start 2694 * committing the transaction after this function has been called but 2695 * before a transaction for truncate is started (and furthermore it 2696 * allows us to optimize the case where the addition to orphan list 2697 * happens in the same transaction as write --- we don't have to write 2698 * any data in such case). 2699 */ 2700 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2701 struct jbd2_inode *jinode, 2702 loff_t new_size) 2703 { 2704 transaction_t *inode_trans, *commit_trans; 2705 int ret = 0; 2706 2707 /* This is a quick check to avoid locking if not necessary */ 2708 if (!jinode->i_transaction) 2709 goto out; 2710 /* Locks are here just to force reading of recent values, it is 2711 * enough that the transaction was not committing before we started 2712 * a transaction adding the inode to orphan list */ 2713 read_lock(&journal->j_state_lock); 2714 commit_trans = journal->j_committing_transaction; 2715 read_unlock(&journal->j_state_lock); 2716 spin_lock(&journal->j_list_lock); 2717 inode_trans = jinode->i_transaction; 2718 spin_unlock(&journal->j_list_lock); 2719 if (inode_trans == commit_trans) { 2720 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2721 new_size, LLONG_MAX); 2722 if (ret) 2723 jbd2_journal_abort(journal, ret); 2724 } 2725 out: 2726 return ret; 2727 } 2728