xref: /openbmc/linux/fs/jbd2/transaction.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 	int tags_per_block;
72 
73 	/* Subtract UUID */
74 	tag_space -= 16;
75 	if (jbd2_journal_has_csum_v2or3(journal))
76 		tag_space -= sizeof(struct jbd2_journal_block_tail);
77 	/* Commit code leaves a slack space of 16 bytes at the end of block */
78 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 	/*
80 	 * Revoke descriptors are accounted separately so we need to reserve
81 	 * space for commit block and normal transaction descriptor blocks.
82 	 */
83 	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 				tags_per_block);
85 }
86 
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *	The journal MUST be locked.  We don't perform atomic mallocs on the
97  *	new transaction	and we can't block without protecting against other
98  *	processes trying to touch the journal while it is in transition.
99  *
100  */
101 
102 static void jbd2_get_transaction(journal_t *journal,
103 				transaction_t *transaction)
104 {
105 	transaction->t_journal = journal;
106 	transaction->t_state = T_RUNNING;
107 	transaction->t_start_time = ktime_get();
108 	transaction->t_tid = journal->j_transaction_sequence++;
109 	transaction->t_expires = jiffies + journal->j_commit_interval;
110 	spin_lock_init(&transaction->t_handle_lock);
111 	atomic_set(&transaction->t_updates, 0);
112 	atomic_set(&transaction->t_outstanding_credits,
113 		   jbd2_descriptor_blocks_per_trans(journal) +
114 		   atomic_read(&journal->j_reserved_credits));
115 	atomic_set(&transaction->t_outstanding_revokes, 0);
116 	atomic_set(&transaction->t_handle_count, 0);
117 	INIT_LIST_HEAD(&transaction->t_inode_list);
118 	INIT_LIST_HEAD(&transaction->t_private_list);
119 
120 	/* Set up the commit timer for the new transaction. */
121 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122 	add_timer(&journal->j_commit_timer);
123 
124 	J_ASSERT(journal->j_running_transaction == NULL);
125 	journal->j_running_transaction = transaction;
126 	transaction->t_max_wait = 0;
127 	transaction->t_start = jiffies;
128 	transaction->t_requested = 0;
129 }
130 
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138 
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150 				     unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153 	if (jbd2_journal_enable_debug &&
154 	    time_after(transaction->t_start, ts)) {
155 		ts = jbd2_time_diff(ts, transaction->t_start);
156 		spin_lock(&transaction->t_handle_lock);
157 		if (ts > transaction->t_max_wait)
158 			transaction->t_max_wait = ts;
159 		spin_unlock(&transaction->t_handle_lock);
160 	}
161 #endif
162 }
163 
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170 	__releases(journal->j_state_lock)
171 {
172 	DEFINE_WAIT(wait);
173 	int need_to_start;
174 	tid_t tid = journal->j_running_transaction->t_tid;
175 
176 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	need_to_start = !tid_geq(journal->j_commit_request, tid);
179 	read_unlock(&journal->j_state_lock);
180 	if (need_to_start)
181 		jbd2_log_start_commit(journal, tid);
182 	jbd2_might_wait_for_commit(journal);
183 	schedule();
184 	finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186 
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193 	__releases(journal->j_state_lock)
194 {
195 	DEFINE_WAIT(wait);
196 
197 	if (WARN_ON(!journal->j_running_transaction ||
198 		    journal->j_running_transaction->t_state != T_SWITCH))
199 		return;
200 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
201 			TASK_UNINTERRUPTIBLE);
202 	read_unlock(&journal->j_state_lock);
203 	/*
204 	 * We don't call jbd2_might_wait_for_commit() here as there's no
205 	 * waiting for outstanding handles happening anymore in T_SWITCH state
206 	 * and handling of reserved handles actually relies on that for
207 	 * correctness.
208 	 */
209 	schedule();
210 	finish_wait(&journal->j_wait_transaction_locked, &wait);
211 }
212 
213 static void sub_reserved_credits(journal_t *journal, int blocks)
214 {
215 	atomic_sub(blocks, &journal->j_reserved_credits);
216 	wake_up(&journal->j_wait_reserved);
217 }
218 
219 /*
220  * Wait until we can add credits for handle to the running transaction.  Called
221  * with j_state_lock held for reading. Returns 0 if handle joined the running
222  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
223  * caller must retry.
224  */
225 static int add_transaction_credits(journal_t *journal, int blocks,
226 				   int rsv_blocks)
227 {
228 	transaction_t *t = journal->j_running_transaction;
229 	int needed;
230 	int total = blocks + rsv_blocks;
231 
232 	/*
233 	 * If the current transaction is locked down for commit, wait
234 	 * for the lock to be released.
235 	 */
236 	if (t->t_state != T_RUNNING) {
237 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
238 		wait_transaction_locked(journal);
239 		return 1;
240 	}
241 
242 	/*
243 	 * If there is not enough space left in the log to write all
244 	 * potential buffers requested by this operation, we need to
245 	 * stall pending a log checkpoint to free some more log space.
246 	 */
247 	needed = atomic_add_return(total, &t->t_outstanding_credits);
248 	if (needed > journal->j_max_transaction_buffers) {
249 		/*
250 		 * If the current transaction is already too large,
251 		 * then start to commit it: we can then go back and
252 		 * attach this handle to a new transaction.
253 		 */
254 		atomic_sub(total, &t->t_outstanding_credits);
255 
256 		/*
257 		 * Is the number of reserved credits in the current transaction too
258 		 * big to fit this handle? Wait until reserved credits are freed.
259 		 */
260 		if (atomic_read(&journal->j_reserved_credits) + total >
261 		    journal->j_max_transaction_buffers) {
262 			read_unlock(&journal->j_state_lock);
263 			jbd2_might_wait_for_commit(journal);
264 			wait_event(journal->j_wait_reserved,
265 				   atomic_read(&journal->j_reserved_credits) + total <=
266 				   journal->j_max_transaction_buffers);
267 			return 1;
268 		}
269 
270 		wait_transaction_locked(journal);
271 		return 1;
272 	}
273 
274 	/*
275 	 * The commit code assumes that it can get enough log space
276 	 * without forcing a checkpoint.  This is *critical* for
277 	 * correctness: a checkpoint of a buffer which is also
278 	 * associated with a committing transaction creates a deadlock,
279 	 * so commit simply cannot force through checkpoints.
280 	 *
281 	 * We must therefore ensure the necessary space in the journal
282 	 * *before* starting to dirty potentially checkpointed buffers
283 	 * in the new transaction.
284 	 */
285 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
286 		atomic_sub(total, &t->t_outstanding_credits);
287 		read_unlock(&journal->j_state_lock);
288 		jbd2_might_wait_for_commit(journal);
289 		write_lock(&journal->j_state_lock);
290 		if (jbd2_log_space_left(journal) <
291 					journal->j_max_transaction_buffers)
292 			__jbd2_log_wait_for_space(journal);
293 		write_unlock(&journal->j_state_lock);
294 		return 1;
295 	}
296 
297 	/* No reservation? We are done... */
298 	if (!rsv_blocks)
299 		return 0;
300 
301 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
302 	/* We allow at most half of a transaction to be reserved */
303 	if (needed > journal->j_max_transaction_buffers / 2) {
304 		sub_reserved_credits(journal, rsv_blocks);
305 		atomic_sub(total, &t->t_outstanding_credits);
306 		read_unlock(&journal->j_state_lock);
307 		jbd2_might_wait_for_commit(journal);
308 		wait_event(journal->j_wait_reserved,
309 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
310 			 <= journal->j_max_transaction_buffers / 2);
311 		return 1;
312 	}
313 	return 0;
314 }
315 
316 /*
317  * start_this_handle: Given a handle, deal with any locking or stalling
318  * needed to make sure that there is enough journal space for the handle
319  * to begin.  Attach the handle to a transaction and set up the
320  * transaction's buffer credits.
321  */
322 
323 static int start_this_handle(journal_t *journal, handle_t *handle,
324 			     gfp_t gfp_mask)
325 {
326 	transaction_t	*transaction, *new_transaction = NULL;
327 	int		blocks = handle->h_total_credits;
328 	int		rsv_blocks = 0;
329 	unsigned long ts = jiffies;
330 
331 	if (handle->h_rsv_handle)
332 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
333 
334 	/*
335 	 * Limit the number of reserved credits to 1/2 of maximum transaction
336 	 * size and limit the number of total credits to not exceed maximum
337 	 * transaction size per operation.
338 	 */
339 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
340 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
341 		printk(KERN_ERR "JBD2: %s wants too many credits "
342 		       "credits:%d rsv_credits:%d max:%d\n",
343 		       current->comm, blocks, rsv_blocks,
344 		       journal->j_max_transaction_buffers);
345 		WARN_ON(1);
346 		return -ENOSPC;
347 	}
348 
349 alloc_transaction:
350 	if (!journal->j_running_transaction) {
351 		/*
352 		 * If __GFP_FS is not present, then we may be being called from
353 		 * inside the fs writeback layer, so we MUST NOT fail.
354 		 */
355 		if ((gfp_mask & __GFP_FS) == 0)
356 			gfp_mask |= __GFP_NOFAIL;
357 		new_transaction = kmem_cache_zalloc(transaction_cache,
358 						    gfp_mask);
359 		if (!new_transaction)
360 			return -ENOMEM;
361 	}
362 
363 	jbd_debug(3, "New handle %p going live.\n", handle);
364 
365 	/*
366 	 * We need to hold j_state_lock until t_updates has been incremented,
367 	 * for proper journal barrier handling
368 	 */
369 repeat:
370 	read_lock(&journal->j_state_lock);
371 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
372 	if (is_journal_aborted(journal) ||
373 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
374 		read_unlock(&journal->j_state_lock);
375 		jbd2_journal_free_transaction(new_transaction);
376 		return -EROFS;
377 	}
378 
379 	/*
380 	 * Wait on the journal's transaction barrier if necessary. Specifically
381 	 * we allow reserved handles to proceed because otherwise commit could
382 	 * deadlock on page writeback not being able to complete.
383 	 */
384 	if (!handle->h_reserved && journal->j_barrier_count) {
385 		read_unlock(&journal->j_state_lock);
386 		wait_event(journal->j_wait_transaction_locked,
387 				journal->j_barrier_count == 0);
388 		goto repeat;
389 	}
390 
391 	if (!journal->j_running_transaction) {
392 		read_unlock(&journal->j_state_lock);
393 		if (!new_transaction)
394 			goto alloc_transaction;
395 		write_lock(&journal->j_state_lock);
396 		if (!journal->j_running_transaction &&
397 		    (handle->h_reserved || !journal->j_barrier_count)) {
398 			jbd2_get_transaction(journal, new_transaction);
399 			new_transaction = NULL;
400 		}
401 		write_unlock(&journal->j_state_lock);
402 		goto repeat;
403 	}
404 
405 	transaction = journal->j_running_transaction;
406 
407 	if (!handle->h_reserved) {
408 		/* We may have dropped j_state_lock - restart in that case */
409 		if (add_transaction_credits(journal, blocks, rsv_blocks))
410 			goto repeat;
411 	} else {
412 		/*
413 		 * We have handle reserved so we are allowed to join T_LOCKED
414 		 * transaction and we don't have to check for transaction size
415 		 * and journal space. But we still have to wait while running
416 		 * transaction is being switched to a committing one as it
417 		 * won't wait for any handles anymore.
418 		 */
419 		if (transaction->t_state == T_SWITCH) {
420 			wait_transaction_switching(journal);
421 			goto repeat;
422 		}
423 		sub_reserved_credits(journal, blocks);
424 		handle->h_reserved = 0;
425 	}
426 
427 	/* OK, account for the buffers that this operation expects to
428 	 * use and add the handle to the running transaction.
429 	 */
430 	update_t_max_wait(transaction, ts);
431 	handle->h_transaction = transaction;
432 	handle->h_requested_credits = blocks;
433 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
434 	handle->h_start_jiffies = jiffies;
435 	atomic_inc(&transaction->t_updates);
436 	atomic_inc(&transaction->t_handle_count);
437 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
438 		  handle, blocks,
439 		  atomic_read(&transaction->t_outstanding_credits),
440 		  jbd2_log_space_left(journal));
441 	read_unlock(&journal->j_state_lock);
442 	current->journal_info = handle;
443 
444 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
445 	jbd2_journal_free_transaction(new_transaction);
446 	/*
447 	 * Ensure that no allocations done while the transaction is open are
448 	 * going to recurse back to the fs layer.
449 	 */
450 	handle->saved_alloc_context = memalloc_nofs_save();
451 	return 0;
452 }
453 
454 /* Allocate a new handle.  This should probably be in a slab... */
455 static handle_t *new_handle(int nblocks)
456 {
457 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
458 	if (!handle)
459 		return NULL;
460 	handle->h_total_credits = nblocks;
461 	handle->h_ref = 1;
462 
463 	return handle;
464 }
465 
466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
467 			      int revoke_records, gfp_t gfp_mask,
468 			      unsigned int type, unsigned int line_no)
469 {
470 	handle_t *handle = journal_current_handle();
471 	int err;
472 
473 	if (!journal)
474 		return ERR_PTR(-EROFS);
475 
476 	if (handle) {
477 		J_ASSERT(handle->h_transaction->t_journal == journal);
478 		handle->h_ref++;
479 		return handle;
480 	}
481 
482 	nblocks += DIV_ROUND_UP(revoke_records,
483 				journal->j_revoke_records_per_block);
484 	handle = new_handle(nblocks);
485 	if (!handle)
486 		return ERR_PTR(-ENOMEM);
487 	if (rsv_blocks) {
488 		handle_t *rsv_handle;
489 
490 		rsv_handle = new_handle(rsv_blocks);
491 		if (!rsv_handle) {
492 			jbd2_free_handle(handle);
493 			return ERR_PTR(-ENOMEM);
494 		}
495 		rsv_handle->h_reserved = 1;
496 		rsv_handle->h_journal = journal;
497 		handle->h_rsv_handle = rsv_handle;
498 	}
499 	handle->h_revoke_credits = revoke_records;
500 
501 	err = start_this_handle(journal, handle, gfp_mask);
502 	if (err < 0) {
503 		if (handle->h_rsv_handle)
504 			jbd2_free_handle(handle->h_rsv_handle);
505 		jbd2_free_handle(handle);
506 		return ERR_PTR(err);
507 	}
508 	handle->h_type = type;
509 	handle->h_line_no = line_no;
510 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
511 				handle->h_transaction->t_tid, type,
512 				line_no, nblocks);
513 
514 	return handle;
515 }
516 EXPORT_SYMBOL(jbd2__journal_start);
517 
518 
519 /**
520  * handle_t *jbd2_journal_start() - Obtain a new handle.
521  * @journal: Journal to start transaction on.
522  * @nblocks: number of block buffer we might modify
523  *
524  * We make sure that the transaction can guarantee at least nblocks of
525  * modified buffers in the log.  We block until the log can guarantee
526  * that much space. Additionally, if rsv_blocks > 0, we also create another
527  * handle with rsv_blocks reserved blocks in the journal. This handle is
528  * stored in h_rsv_handle. It is not attached to any particular transaction
529  * and thus doesn't block transaction commit. If the caller uses this reserved
530  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
531  * on the parent handle will dispose the reserved one. Reserved handle has to
532  * be converted to a normal handle using jbd2_journal_start_reserved() before
533  * it can be used.
534  *
535  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
536  * on failure.
537  */
538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
539 {
540 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
541 }
542 EXPORT_SYMBOL(jbd2_journal_start);
543 
544 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
545 {
546 	journal_t *journal = handle->h_journal;
547 
548 	WARN_ON(!handle->h_reserved);
549 	sub_reserved_credits(journal, handle->h_total_credits);
550 	if (t)
551 		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
552 }
553 
554 void jbd2_journal_free_reserved(handle_t *handle)
555 {
556 	journal_t *journal = handle->h_journal;
557 
558 	/* Get j_state_lock to pin running transaction if it exists */
559 	read_lock(&journal->j_state_lock);
560 	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
561 	read_unlock(&journal->j_state_lock);
562 	jbd2_free_handle(handle);
563 }
564 EXPORT_SYMBOL(jbd2_journal_free_reserved);
565 
566 /**
567  * int jbd2_journal_start_reserved() - start reserved handle
568  * @handle: handle to start
569  * @type: for handle statistics
570  * @line_no: for handle statistics
571  *
572  * Start handle that has been previously reserved with jbd2_journal_reserve().
573  * This attaches @handle to the running transaction (or creates one if there's
574  * not transaction running). Unlike jbd2_journal_start() this function cannot
575  * block on journal commit, checkpointing, or similar stuff. It can block on
576  * memory allocation or frozen journal though.
577  *
578  * Return 0 on success, non-zero on error - handle is freed in that case.
579  */
580 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
581 				unsigned int line_no)
582 {
583 	journal_t *journal = handle->h_journal;
584 	int ret = -EIO;
585 
586 	if (WARN_ON(!handle->h_reserved)) {
587 		/* Someone passed in normal handle? Just stop it. */
588 		jbd2_journal_stop(handle);
589 		return ret;
590 	}
591 	/*
592 	 * Usefulness of mixing of reserved and unreserved handles is
593 	 * questionable. So far nobody seems to need it so just error out.
594 	 */
595 	if (WARN_ON(current->journal_info)) {
596 		jbd2_journal_free_reserved(handle);
597 		return ret;
598 	}
599 
600 	handle->h_journal = NULL;
601 	/*
602 	 * GFP_NOFS is here because callers are likely from writeback or
603 	 * similarly constrained call sites
604 	 */
605 	ret = start_this_handle(journal, handle, GFP_NOFS);
606 	if (ret < 0) {
607 		handle->h_journal = journal;
608 		jbd2_journal_free_reserved(handle);
609 		return ret;
610 	}
611 	handle->h_type = type;
612 	handle->h_line_no = line_no;
613 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
614 				handle->h_transaction->t_tid, type,
615 				line_no, handle->h_total_credits);
616 	return 0;
617 }
618 EXPORT_SYMBOL(jbd2_journal_start_reserved);
619 
620 /**
621  * int jbd2_journal_extend() - extend buffer credits.
622  * @handle:  handle to 'extend'
623  * @nblocks: nr blocks to try to extend by.
624  * @revoke_records: number of revoke records to try to extend by.
625  *
626  * Some transactions, such as large extends and truncates, can be done
627  * atomically all at once or in several stages.  The operation requests
628  * a credit for a number of buffer modifications in advance, but can
629  * extend its credit if it needs more.
630  *
631  * jbd2_journal_extend tries to give the running handle more buffer credits.
632  * It does not guarantee that allocation - this is a best-effort only.
633  * The calling process MUST be able to deal cleanly with a failure to
634  * extend here.
635  *
636  * Return 0 on success, non-zero on failure.
637  *
638  * return code < 0 implies an error
639  * return code > 0 implies normal transaction-full status.
640  */
641 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
642 {
643 	transaction_t *transaction = handle->h_transaction;
644 	journal_t *journal;
645 	int result;
646 	int wanted;
647 
648 	if (is_handle_aborted(handle))
649 		return -EROFS;
650 	journal = transaction->t_journal;
651 
652 	result = 1;
653 
654 	read_lock(&journal->j_state_lock);
655 
656 	/* Don't extend a locked-down transaction! */
657 	if (transaction->t_state != T_RUNNING) {
658 		jbd_debug(3, "denied handle %p %d blocks: "
659 			  "transaction not running\n", handle, nblocks);
660 		goto error_out;
661 	}
662 
663 	nblocks += DIV_ROUND_UP(
664 			handle->h_revoke_credits_requested + revoke_records,
665 			journal->j_revoke_records_per_block) -
666 		DIV_ROUND_UP(
667 			handle->h_revoke_credits_requested,
668 			journal->j_revoke_records_per_block);
669 	spin_lock(&transaction->t_handle_lock);
670 	wanted = atomic_add_return(nblocks,
671 				   &transaction->t_outstanding_credits);
672 
673 	if (wanted > journal->j_max_transaction_buffers) {
674 		jbd_debug(3, "denied handle %p %d blocks: "
675 			  "transaction too large\n", handle, nblocks);
676 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
677 		goto unlock;
678 	}
679 
680 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
681 				 transaction->t_tid,
682 				 handle->h_type, handle->h_line_no,
683 				 handle->h_total_credits,
684 				 nblocks);
685 
686 	handle->h_total_credits += nblocks;
687 	handle->h_requested_credits += nblocks;
688 	handle->h_revoke_credits += revoke_records;
689 	handle->h_revoke_credits_requested += revoke_records;
690 	result = 0;
691 
692 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
693 unlock:
694 	spin_unlock(&transaction->t_handle_lock);
695 error_out:
696 	read_unlock(&journal->j_state_lock);
697 	return result;
698 }
699 
700 static void stop_this_handle(handle_t *handle)
701 {
702 	transaction_t *transaction = handle->h_transaction;
703 	journal_t *journal = transaction->t_journal;
704 	int revokes;
705 
706 	J_ASSERT(journal_current_handle() == handle);
707 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
708 	current->journal_info = NULL;
709 	/*
710 	 * Subtract necessary revoke descriptor blocks from handle credits. We
711 	 * take care to account only for revoke descriptor blocks the
712 	 * transaction will really need as large sequences of transactions with
713 	 * small numbers of revokes are relatively common.
714 	 */
715 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
716 	if (revokes) {
717 		int t_revokes, revoke_descriptors;
718 		int rr_per_blk = journal->j_revoke_records_per_block;
719 
720 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
721 				> handle->h_total_credits);
722 		t_revokes = atomic_add_return(revokes,
723 				&transaction->t_outstanding_revokes);
724 		revoke_descriptors =
725 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
726 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
727 		handle->h_total_credits -= revoke_descriptors;
728 	}
729 	atomic_sub(handle->h_total_credits,
730 		   &transaction->t_outstanding_credits);
731 	if (handle->h_rsv_handle)
732 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
733 						transaction);
734 	if (atomic_dec_and_test(&transaction->t_updates))
735 		wake_up(&journal->j_wait_updates);
736 
737 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
738 	/*
739 	 * Scope of the GFP_NOFS context is over here and so we can restore the
740 	 * original alloc context.
741 	 */
742 	memalloc_nofs_restore(handle->saved_alloc_context);
743 }
744 
745 /**
746  * int jbd2_journal_restart() - restart a handle .
747  * @handle:  handle to restart
748  * @nblocks: nr credits requested
749  * @revoke_records: number of revoke record credits requested
750  * @gfp_mask: memory allocation flags (for start_this_handle)
751  *
752  * Restart a handle for a multi-transaction filesystem
753  * operation.
754  *
755  * If the jbd2_journal_extend() call above fails to grant new buffer credits
756  * to a running handle, a call to jbd2_journal_restart will commit the
757  * handle's transaction so far and reattach the handle to a new
758  * transaction capable of guaranteeing the requested number of
759  * credits. We preserve reserved handle if there's any attached to the
760  * passed in handle.
761  */
762 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
763 			  gfp_t gfp_mask)
764 {
765 	transaction_t *transaction = handle->h_transaction;
766 	journal_t *journal;
767 	tid_t		tid;
768 	int		need_to_start;
769 	int		ret;
770 
771 	/* If we've had an abort of any type, don't even think about
772 	 * actually doing the restart! */
773 	if (is_handle_aborted(handle))
774 		return 0;
775 	journal = transaction->t_journal;
776 	tid = transaction->t_tid;
777 
778 	/*
779 	 * First unlink the handle from its current transaction, and start the
780 	 * commit on that.
781 	 */
782 	jbd_debug(2, "restarting handle %p\n", handle);
783 	stop_this_handle(handle);
784 	handle->h_transaction = NULL;
785 
786 	/*
787 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
788  	 * get rid of pointless j_state_lock traffic like this.
789 	 */
790 	read_lock(&journal->j_state_lock);
791 	need_to_start = !tid_geq(journal->j_commit_request, tid);
792 	read_unlock(&journal->j_state_lock);
793 	if (need_to_start)
794 		jbd2_log_start_commit(journal, tid);
795 	handle->h_total_credits = nblocks +
796 		DIV_ROUND_UP(revoke_records,
797 			     journal->j_revoke_records_per_block);
798 	handle->h_revoke_credits = revoke_records;
799 	ret = start_this_handle(journal, handle, gfp_mask);
800 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
801 				 ret ? 0 : handle->h_transaction->t_tid,
802 				 handle->h_type, handle->h_line_no,
803 				 handle->h_total_credits);
804 	return ret;
805 }
806 EXPORT_SYMBOL(jbd2__journal_restart);
807 
808 
809 int jbd2_journal_restart(handle_t *handle, int nblocks)
810 {
811 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
812 }
813 EXPORT_SYMBOL(jbd2_journal_restart);
814 
815 /**
816  * void jbd2_journal_lock_updates () - establish a transaction barrier.
817  * @journal:  Journal to establish a barrier on.
818  *
819  * This locks out any further updates from being started, and blocks
820  * until all existing updates have completed, returning only once the
821  * journal is in a quiescent state with no updates running.
822  *
823  * The journal lock should not be held on entry.
824  */
825 void jbd2_journal_lock_updates(journal_t *journal)
826 {
827 	DEFINE_WAIT(wait);
828 
829 	jbd2_might_wait_for_commit(journal);
830 
831 	write_lock(&journal->j_state_lock);
832 	++journal->j_barrier_count;
833 
834 	/* Wait until there are no reserved handles */
835 	if (atomic_read(&journal->j_reserved_credits)) {
836 		write_unlock(&journal->j_state_lock);
837 		wait_event(journal->j_wait_reserved,
838 			   atomic_read(&journal->j_reserved_credits) == 0);
839 		write_lock(&journal->j_state_lock);
840 	}
841 
842 	/* Wait until there are no running updates */
843 	while (1) {
844 		transaction_t *transaction = journal->j_running_transaction;
845 
846 		if (!transaction)
847 			break;
848 
849 		spin_lock(&transaction->t_handle_lock);
850 		prepare_to_wait(&journal->j_wait_updates, &wait,
851 				TASK_UNINTERRUPTIBLE);
852 		if (!atomic_read(&transaction->t_updates)) {
853 			spin_unlock(&transaction->t_handle_lock);
854 			finish_wait(&journal->j_wait_updates, &wait);
855 			break;
856 		}
857 		spin_unlock(&transaction->t_handle_lock);
858 		write_unlock(&journal->j_state_lock);
859 		schedule();
860 		finish_wait(&journal->j_wait_updates, &wait);
861 		write_lock(&journal->j_state_lock);
862 	}
863 	write_unlock(&journal->j_state_lock);
864 
865 	/*
866 	 * We have now established a barrier against other normal updates, but
867 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
868 	 * to make sure that we serialise special journal-locked operations
869 	 * too.
870 	 */
871 	mutex_lock(&journal->j_barrier);
872 }
873 
874 /**
875  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
876  * @journal:  Journal to release the barrier on.
877  *
878  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
879  *
880  * Should be called without the journal lock held.
881  */
882 void jbd2_journal_unlock_updates (journal_t *journal)
883 {
884 	J_ASSERT(journal->j_barrier_count != 0);
885 
886 	mutex_unlock(&journal->j_barrier);
887 	write_lock(&journal->j_state_lock);
888 	--journal->j_barrier_count;
889 	write_unlock(&journal->j_state_lock);
890 	wake_up(&journal->j_wait_transaction_locked);
891 }
892 
893 static void warn_dirty_buffer(struct buffer_head *bh)
894 {
895 	printk(KERN_WARNING
896 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
897 	       "There's a risk of filesystem corruption in case of system "
898 	       "crash.\n",
899 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
900 }
901 
902 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
903 static void jbd2_freeze_jh_data(struct journal_head *jh)
904 {
905 	struct page *page;
906 	int offset;
907 	char *source;
908 	struct buffer_head *bh = jh2bh(jh);
909 
910 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
911 	page = bh->b_page;
912 	offset = offset_in_page(bh->b_data);
913 	source = kmap_atomic(page);
914 	/* Fire data frozen trigger just before we copy the data */
915 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
916 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
917 	kunmap_atomic(source);
918 
919 	/*
920 	 * Now that the frozen data is saved off, we need to store any matching
921 	 * triggers.
922 	 */
923 	jh->b_frozen_triggers = jh->b_triggers;
924 }
925 
926 /*
927  * If the buffer is already part of the current transaction, then there
928  * is nothing we need to do.  If it is already part of a prior
929  * transaction which we are still committing to disk, then we need to
930  * make sure that we do not overwrite the old copy: we do copy-out to
931  * preserve the copy going to disk.  We also account the buffer against
932  * the handle's metadata buffer credits (unless the buffer is already
933  * part of the transaction, that is).
934  *
935  */
936 static int
937 do_get_write_access(handle_t *handle, struct journal_head *jh,
938 			int force_copy)
939 {
940 	struct buffer_head *bh;
941 	transaction_t *transaction = handle->h_transaction;
942 	journal_t *journal;
943 	int error;
944 	char *frozen_buffer = NULL;
945 	unsigned long start_lock, time_lock;
946 
947 	journal = transaction->t_journal;
948 
949 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
950 
951 	JBUFFER_TRACE(jh, "entry");
952 repeat:
953 	bh = jh2bh(jh);
954 
955 	/* @@@ Need to check for errors here at some point. */
956 
957  	start_lock = jiffies;
958 	lock_buffer(bh);
959 	spin_lock(&jh->b_state_lock);
960 
961 	/* If it takes too long to lock the buffer, trace it */
962 	time_lock = jbd2_time_diff(start_lock, jiffies);
963 	if (time_lock > HZ/10)
964 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
965 			jiffies_to_msecs(time_lock));
966 
967 	/* We now hold the buffer lock so it is safe to query the buffer
968 	 * state.  Is the buffer dirty?
969 	 *
970 	 * If so, there are two possibilities.  The buffer may be
971 	 * non-journaled, and undergoing a quite legitimate writeback.
972 	 * Otherwise, it is journaled, and we don't expect dirty buffers
973 	 * in that state (the buffers should be marked JBD_Dirty
974 	 * instead.)  So either the IO is being done under our own
975 	 * control and this is a bug, or it's a third party IO such as
976 	 * dump(8) (which may leave the buffer scheduled for read ---
977 	 * ie. locked but not dirty) or tune2fs (which may actually have
978 	 * the buffer dirtied, ugh.)  */
979 
980 	if (buffer_dirty(bh)) {
981 		/*
982 		 * First question: is this buffer already part of the current
983 		 * transaction or the existing committing transaction?
984 		 */
985 		if (jh->b_transaction) {
986 			J_ASSERT_JH(jh,
987 				jh->b_transaction == transaction ||
988 				jh->b_transaction ==
989 					journal->j_committing_transaction);
990 			if (jh->b_next_transaction)
991 				J_ASSERT_JH(jh, jh->b_next_transaction ==
992 							transaction);
993 			warn_dirty_buffer(bh);
994 		}
995 		/*
996 		 * In any case we need to clean the dirty flag and we must
997 		 * do it under the buffer lock to be sure we don't race
998 		 * with running write-out.
999 		 */
1000 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001 		clear_buffer_dirty(bh);
1002 		set_buffer_jbddirty(bh);
1003 	}
1004 
1005 	unlock_buffer(bh);
1006 
1007 	error = -EROFS;
1008 	if (is_handle_aborted(handle)) {
1009 		spin_unlock(&jh->b_state_lock);
1010 		goto out;
1011 	}
1012 	error = 0;
1013 
1014 	/*
1015 	 * The buffer is already part of this transaction if b_transaction or
1016 	 * b_next_transaction points to it
1017 	 */
1018 	if (jh->b_transaction == transaction ||
1019 	    jh->b_next_transaction == transaction)
1020 		goto done;
1021 
1022 	/*
1023 	 * this is the first time this transaction is touching this buffer,
1024 	 * reset the modified flag
1025 	 */
1026 	jh->b_modified = 0;
1027 
1028 	/*
1029 	 * If the buffer is not journaled right now, we need to make sure it
1030 	 * doesn't get written to disk before the caller actually commits the
1031 	 * new data
1032 	 */
1033 	if (!jh->b_transaction) {
1034 		JBUFFER_TRACE(jh, "no transaction");
1035 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1036 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1037 		/*
1038 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1039 		 * visible before attaching it to the running transaction.
1040 		 * Paired with barrier in jbd2_write_access_granted()
1041 		 */
1042 		smp_wmb();
1043 		spin_lock(&journal->j_list_lock);
1044 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1045 		spin_unlock(&journal->j_list_lock);
1046 		goto done;
1047 	}
1048 	/*
1049 	 * If there is already a copy-out version of this buffer, then we don't
1050 	 * need to make another one
1051 	 */
1052 	if (jh->b_frozen_data) {
1053 		JBUFFER_TRACE(jh, "has frozen data");
1054 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1055 		goto attach_next;
1056 	}
1057 
1058 	JBUFFER_TRACE(jh, "owned by older transaction");
1059 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1060 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1061 
1062 	/*
1063 	 * There is one case we have to be very careful about.  If the
1064 	 * committing transaction is currently writing this buffer out to disk
1065 	 * and has NOT made a copy-out, then we cannot modify the buffer
1066 	 * contents at all right now.  The essence of copy-out is that it is
1067 	 * the extra copy, not the primary copy, which gets journaled.  If the
1068 	 * primary copy is already going to disk then we cannot do copy-out
1069 	 * here.
1070 	 */
1071 	if (buffer_shadow(bh)) {
1072 		JBUFFER_TRACE(jh, "on shadow: sleep");
1073 		spin_unlock(&jh->b_state_lock);
1074 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1075 		goto repeat;
1076 	}
1077 
1078 	/*
1079 	 * Only do the copy if the currently-owning transaction still needs it.
1080 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1081 	 * past that stage (here we use the fact that BH_Shadow is set under
1082 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1083 	 * point we know the buffer doesn't have BH_Shadow set).
1084 	 *
1085 	 * Subtle point, though: if this is a get_undo_access, then we will be
1086 	 * relying on the frozen_data to contain the new value of the
1087 	 * committed_data record after the transaction, so we HAVE to force the
1088 	 * frozen_data copy in that case.
1089 	 */
1090 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1091 		JBUFFER_TRACE(jh, "generate frozen data");
1092 		if (!frozen_buffer) {
1093 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1094 			spin_unlock(&jh->b_state_lock);
1095 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1096 						   GFP_NOFS | __GFP_NOFAIL);
1097 			goto repeat;
1098 		}
1099 		jh->b_frozen_data = frozen_buffer;
1100 		frozen_buffer = NULL;
1101 		jbd2_freeze_jh_data(jh);
1102 	}
1103 attach_next:
1104 	/*
1105 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1106 	 * before attaching it to the running transaction. Paired with barrier
1107 	 * in jbd2_write_access_granted()
1108 	 */
1109 	smp_wmb();
1110 	jh->b_next_transaction = transaction;
1111 
1112 done:
1113 	spin_unlock(&jh->b_state_lock);
1114 
1115 	/*
1116 	 * If we are about to journal a buffer, then any revoke pending on it is
1117 	 * no longer valid
1118 	 */
1119 	jbd2_journal_cancel_revoke(handle, jh);
1120 
1121 out:
1122 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1123 		jbd2_free(frozen_buffer, bh->b_size);
1124 
1125 	JBUFFER_TRACE(jh, "exit");
1126 	return error;
1127 }
1128 
1129 /* Fast check whether buffer is already attached to the required transaction */
1130 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1131 							bool undo)
1132 {
1133 	struct journal_head *jh;
1134 	bool ret = false;
1135 
1136 	/* Dirty buffers require special handling... */
1137 	if (buffer_dirty(bh))
1138 		return false;
1139 
1140 	/*
1141 	 * RCU protects us from dereferencing freed pages. So the checks we do
1142 	 * are guaranteed not to oops. However the jh slab object can get freed
1143 	 * & reallocated while we work with it. So we have to be careful. When
1144 	 * we see jh attached to the running transaction, we know it must stay
1145 	 * so until the transaction is committed. Thus jh won't be freed and
1146 	 * will be attached to the same bh while we run.  However it can
1147 	 * happen jh gets freed, reallocated, and attached to the transaction
1148 	 * just after we get pointer to it from bh. So we have to be careful
1149 	 * and recheck jh still belongs to our bh before we return success.
1150 	 */
1151 	rcu_read_lock();
1152 	if (!buffer_jbd(bh))
1153 		goto out;
1154 	/* This should be bh2jh() but that doesn't work with inline functions */
1155 	jh = READ_ONCE(bh->b_private);
1156 	if (!jh)
1157 		goto out;
1158 	/* For undo access buffer must have data copied */
1159 	if (undo && !jh->b_committed_data)
1160 		goto out;
1161 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1162 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1163 		goto out;
1164 	/*
1165 	 * There are two reasons for the barrier here:
1166 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1167 	 * detect when jh went through free, realloc, attach to transaction
1168 	 * while we were checking. Paired with implicit barrier in that path.
1169 	 * 2) So that access to bh done after jbd2_write_access_granted()
1170 	 * doesn't get reordered and see inconsistent state of concurrent
1171 	 * do_get_write_access().
1172 	 */
1173 	smp_mb();
1174 	if (unlikely(jh->b_bh != bh))
1175 		goto out;
1176 	ret = true;
1177 out:
1178 	rcu_read_unlock();
1179 	return ret;
1180 }
1181 
1182 /**
1183  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1184  * @handle: transaction to add buffer modifications to
1185  * @bh:     bh to be used for metadata writes
1186  *
1187  * Returns: error code or 0 on success.
1188  *
1189  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1190  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1191  */
1192 
1193 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1194 {
1195 	struct journal_head *jh;
1196 	int rc;
1197 
1198 	if (is_handle_aborted(handle))
1199 		return -EROFS;
1200 
1201 	if (jbd2_write_access_granted(handle, bh, false))
1202 		return 0;
1203 
1204 	jh = jbd2_journal_add_journal_head(bh);
1205 	/* We do not want to get caught playing with fields which the
1206 	 * log thread also manipulates.  Make sure that the buffer
1207 	 * completes any outstanding IO before proceeding. */
1208 	rc = do_get_write_access(handle, jh, 0);
1209 	jbd2_journal_put_journal_head(jh);
1210 	return rc;
1211 }
1212 
1213 
1214 /*
1215  * When the user wants to journal a newly created buffer_head
1216  * (ie. getblk() returned a new buffer and we are going to populate it
1217  * manually rather than reading off disk), then we need to keep the
1218  * buffer_head locked until it has been completely filled with new
1219  * data.  In this case, we should be able to make the assertion that
1220  * the bh is not already part of an existing transaction.
1221  *
1222  * The buffer should already be locked by the caller by this point.
1223  * There is no lock ranking violation: it was a newly created,
1224  * unlocked buffer beforehand. */
1225 
1226 /**
1227  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1228  * @handle: transaction to new buffer to
1229  * @bh: new buffer.
1230  *
1231  * Call this if you create a new bh.
1232  */
1233 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1234 {
1235 	transaction_t *transaction = handle->h_transaction;
1236 	journal_t *journal;
1237 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1238 	int err;
1239 
1240 	jbd_debug(5, "journal_head %p\n", jh);
1241 	err = -EROFS;
1242 	if (is_handle_aborted(handle))
1243 		goto out;
1244 	journal = transaction->t_journal;
1245 	err = 0;
1246 
1247 	JBUFFER_TRACE(jh, "entry");
1248 	/*
1249 	 * The buffer may already belong to this transaction due to pre-zeroing
1250 	 * in the filesystem's new_block code.  It may also be on the previous,
1251 	 * committing transaction's lists, but it HAS to be in Forget state in
1252 	 * that case: the transaction must have deleted the buffer for it to be
1253 	 * reused here.
1254 	 */
1255 	spin_lock(&jh->b_state_lock);
1256 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1257 		jh->b_transaction == NULL ||
1258 		(jh->b_transaction == journal->j_committing_transaction &&
1259 			  jh->b_jlist == BJ_Forget)));
1260 
1261 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1262 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1263 
1264 	if (jh->b_transaction == NULL) {
1265 		/*
1266 		 * Previous jbd2_journal_forget() could have left the buffer
1267 		 * with jbddirty bit set because it was being committed. When
1268 		 * the commit finished, we've filed the buffer for
1269 		 * checkpointing and marked it dirty. Now we are reallocating
1270 		 * the buffer so the transaction freeing it must have
1271 		 * committed and so it's safe to clear the dirty bit.
1272 		 */
1273 		clear_buffer_dirty(jh2bh(jh));
1274 		/* first access by this transaction */
1275 		jh->b_modified = 0;
1276 
1277 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1278 		spin_lock(&journal->j_list_lock);
1279 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1280 		spin_unlock(&journal->j_list_lock);
1281 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1282 		/* first access by this transaction */
1283 		jh->b_modified = 0;
1284 
1285 		JBUFFER_TRACE(jh, "set next transaction");
1286 		spin_lock(&journal->j_list_lock);
1287 		jh->b_next_transaction = transaction;
1288 		spin_unlock(&journal->j_list_lock);
1289 	}
1290 	spin_unlock(&jh->b_state_lock);
1291 
1292 	/*
1293 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1294 	 * blocks which contain freed but then revoked metadata.  We need
1295 	 * to cancel the revoke in case we end up freeing it yet again
1296 	 * and the reallocating as data - this would cause a second revoke,
1297 	 * which hits an assertion error.
1298 	 */
1299 	JBUFFER_TRACE(jh, "cancelling revoke");
1300 	jbd2_journal_cancel_revoke(handle, jh);
1301 out:
1302 	jbd2_journal_put_journal_head(jh);
1303 	return err;
1304 }
1305 
1306 /**
1307  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1308  *     non-rewindable consequences
1309  * @handle: transaction
1310  * @bh: buffer to undo
1311  *
1312  * Sometimes there is a need to distinguish between metadata which has
1313  * been committed to disk and that which has not.  The ext3fs code uses
1314  * this for freeing and allocating space, we have to make sure that we
1315  * do not reuse freed space until the deallocation has been committed,
1316  * since if we overwrote that space we would make the delete
1317  * un-rewindable in case of a crash.
1318  *
1319  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1320  * buffer for parts of non-rewindable operations such as delete
1321  * operations on the bitmaps.  The journaling code must keep a copy of
1322  * the buffer's contents prior to the undo_access call until such time
1323  * as we know that the buffer has definitely been committed to disk.
1324  *
1325  * We never need to know which transaction the committed data is part
1326  * of, buffers touched here are guaranteed to be dirtied later and so
1327  * will be committed to a new transaction in due course, at which point
1328  * we can discard the old committed data pointer.
1329  *
1330  * Returns error number or 0 on success.
1331  */
1332 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1333 {
1334 	int err;
1335 	struct journal_head *jh;
1336 	char *committed_data = NULL;
1337 
1338 	if (is_handle_aborted(handle))
1339 		return -EROFS;
1340 
1341 	if (jbd2_write_access_granted(handle, bh, true))
1342 		return 0;
1343 
1344 	jh = jbd2_journal_add_journal_head(bh);
1345 	JBUFFER_TRACE(jh, "entry");
1346 
1347 	/*
1348 	 * Do this first --- it can drop the journal lock, so we want to
1349 	 * make sure that obtaining the committed_data is done
1350 	 * atomically wrt. completion of any outstanding commits.
1351 	 */
1352 	err = do_get_write_access(handle, jh, 1);
1353 	if (err)
1354 		goto out;
1355 
1356 repeat:
1357 	if (!jh->b_committed_data)
1358 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1359 					    GFP_NOFS|__GFP_NOFAIL);
1360 
1361 	spin_lock(&jh->b_state_lock);
1362 	if (!jh->b_committed_data) {
1363 		/* Copy out the current buffer contents into the
1364 		 * preserved, committed copy. */
1365 		JBUFFER_TRACE(jh, "generate b_committed data");
1366 		if (!committed_data) {
1367 			spin_unlock(&jh->b_state_lock);
1368 			goto repeat;
1369 		}
1370 
1371 		jh->b_committed_data = committed_data;
1372 		committed_data = NULL;
1373 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1374 	}
1375 	spin_unlock(&jh->b_state_lock);
1376 out:
1377 	jbd2_journal_put_journal_head(jh);
1378 	if (unlikely(committed_data))
1379 		jbd2_free(committed_data, bh->b_size);
1380 	return err;
1381 }
1382 
1383 /**
1384  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1385  * @bh: buffer to trigger on
1386  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1387  *
1388  * Set any triggers on this journal_head.  This is always safe, because
1389  * triggers for a committing buffer will be saved off, and triggers for
1390  * a running transaction will match the buffer in that transaction.
1391  *
1392  * Call with NULL to clear the triggers.
1393  */
1394 void jbd2_journal_set_triggers(struct buffer_head *bh,
1395 			       struct jbd2_buffer_trigger_type *type)
1396 {
1397 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1398 
1399 	if (WARN_ON(!jh))
1400 		return;
1401 	jh->b_triggers = type;
1402 	jbd2_journal_put_journal_head(jh);
1403 }
1404 
1405 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1406 				struct jbd2_buffer_trigger_type *triggers)
1407 {
1408 	struct buffer_head *bh = jh2bh(jh);
1409 
1410 	if (!triggers || !triggers->t_frozen)
1411 		return;
1412 
1413 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1414 }
1415 
1416 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1417 			       struct jbd2_buffer_trigger_type *triggers)
1418 {
1419 	if (!triggers || !triggers->t_abort)
1420 		return;
1421 
1422 	triggers->t_abort(triggers, jh2bh(jh));
1423 }
1424 
1425 /**
1426  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1427  * @handle: transaction to add buffer to.
1428  * @bh: buffer to mark
1429  *
1430  * mark dirty metadata which needs to be journaled as part of the current
1431  * transaction.
1432  *
1433  * The buffer must have previously had jbd2_journal_get_write_access()
1434  * called so that it has a valid journal_head attached to the buffer
1435  * head.
1436  *
1437  * The buffer is placed on the transaction's metadata list and is marked
1438  * as belonging to the transaction.
1439  *
1440  * Returns error number or 0 on success.
1441  *
1442  * Special care needs to be taken if the buffer already belongs to the
1443  * current committing transaction (in which case we should have frozen
1444  * data present for that commit).  In that case, we don't relink the
1445  * buffer: that only gets done when the old transaction finally
1446  * completes its commit.
1447  */
1448 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1449 {
1450 	transaction_t *transaction = handle->h_transaction;
1451 	journal_t *journal;
1452 	struct journal_head *jh;
1453 	int ret = 0;
1454 
1455 	if (is_handle_aborted(handle))
1456 		return -EROFS;
1457 	if (!buffer_jbd(bh))
1458 		return -EUCLEAN;
1459 
1460 	/*
1461 	 * We don't grab jh reference here since the buffer must be part
1462 	 * of the running transaction.
1463 	 */
1464 	jh = bh2jh(bh);
1465 	jbd_debug(5, "journal_head %p\n", jh);
1466 	JBUFFER_TRACE(jh, "entry");
1467 
1468 	/*
1469 	 * This and the following assertions are unreliable since we may see jh
1470 	 * in inconsistent state unless we grab bh_state lock. But this is
1471 	 * crucial to catch bugs so let's do a reliable check until the
1472 	 * lockless handling is fully proven.
1473 	 */
1474 	if (jh->b_transaction != transaction &&
1475 	    jh->b_next_transaction != transaction) {
1476 		spin_lock(&jh->b_state_lock);
1477 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1478 				jh->b_next_transaction == transaction);
1479 		spin_unlock(&jh->b_state_lock);
1480 	}
1481 	if (jh->b_modified == 1) {
1482 		/* If it's in our transaction it must be in BJ_Metadata list. */
1483 		if (jh->b_transaction == transaction &&
1484 		    jh->b_jlist != BJ_Metadata) {
1485 			spin_lock(&jh->b_state_lock);
1486 			if (jh->b_transaction == transaction &&
1487 			    jh->b_jlist != BJ_Metadata)
1488 				pr_err("JBD2: assertion failure: h_type=%u "
1489 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1490 				       handle->h_type, handle->h_line_no,
1491 				       (unsigned long long) bh->b_blocknr,
1492 				       jh->b_jlist);
1493 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1494 					jh->b_jlist == BJ_Metadata);
1495 			spin_unlock(&jh->b_state_lock);
1496 		}
1497 		goto out;
1498 	}
1499 
1500 	journal = transaction->t_journal;
1501 	spin_lock(&jh->b_state_lock);
1502 
1503 	if (jh->b_modified == 0) {
1504 		/*
1505 		 * This buffer's got modified and becoming part
1506 		 * of the transaction. This needs to be done
1507 		 * once a transaction -bzzz
1508 		 */
1509 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1510 			ret = -ENOSPC;
1511 			goto out_unlock_bh;
1512 		}
1513 		jh->b_modified = 1;
1514 		handle->h_total_credits--;
1515 	}
1516 
1517 	/*
1518 	 * fastpath, to avoid expensive locking.  If this buffer is already
1519 	 * on the running transaction's metadata list there is nothing to do.
1520 	 * Nobody can take it off again because there is a handle open.
1521 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1522 	 * result in this test being false, so we go in and take the locks.
1523 	 */
1524 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1525 		JBUFFER_TRACE(jh, "fastpath");
1526 		if (unlikely(jh->b_transaction !=
1527 			     journal->j_running_transaction)) {
1528 			printk(KERN_ERR "JBD2: %s: "
1529 			       "jh->b_transaction (%llu, %p, %u) != "
1530 			       "journal->j_running_transaction (%p, %u)\n",
1531 			       journal->j_devname,
1532 			       (unsigned long long) bh->b_blocknr,
1533 			       jh->b_transaction,
1534 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1535 			       journal->j_running_transaction,
1536 			       journal->j_running_transaction ?
1537 			       journal->j_running_transaction->t_tid : 0);
1538 			ret = -EINVAL;
1539 		}
1540 		goto out_unlock_bh;
1541 	}
1542 
1543 	set_buffer_jbddirty(bh);
1544 
1545 	/*
1546 	 * Metadata already on the current transaction list doesn't
1547 	 * need to be filed.  Metadata on another transaction's list must
1548 	 * be committing, and will be refiled once the commit completes:
1549 	 * leave it alone for now.
1550 	 */
1551 	if (jh->b_transaction != transaction) {
1552 		JBUFFER_TRACE(jh, "already on other transaction");
1553 		if (unlikely(((jh->b_transaction !=
1554 			       journal->j_committing_transaction)) ||
1555 			     (jh->b_next_transaction != transaction))) {
1556 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1557 			       "bad jh for block %llu: "
1558 			       "transaction (%p, %u), "
1559 			       "jh->b_transaction (%p, %u), "
1560 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1561 			       journal->j_devname,
1562 			       (unsigned long long) bh->b_blocknr,
1563 			       transaction, transaction->t_tid,
1564 			       jh->b_transaction,
1565 			       jh->b_transaction ?
1566 			       jh->b_transaction->t_tid : 0,
1567 			       jh->b_next_transaction,
1568 			       jh->b_next_transaction ?
1569 			       jh->b_next_transaction->t_tid : 0,
1570 			       jh->b_jlist);
1571 			WARN_ON(1);
1572 			ret = -EINVAL;
1573 		}
1574 		/* And this case is illegal: we can't reuse another
1575 		 * transaction's data buffer, ever. */
1576 		goto out_unlock_bh;
1577 	}
1578 
1579 	/* That test should have eliminated the following case: */
1580 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1581 
1582 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1583 	spin_lock(&journal->j_list_lock);
1584 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1585 	spin_unlock(&journal->j_list_lock);
1586 out_unlock_bh:
1587 	spin_unlock(&jh->b_state_lock);
1588 out:
1589 	JBUFFER_TRACE(jh, "exit");
1590 	return ret;
1591 }
1592 
1593 /**
1594  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1595  * @handle: transaction handle
1596  * @bh:     bh to 'forget'
1597  *
1598  * We can only do the bforget if there are no commits pending against the
1599  * buffer.  If the buffer is dirty in the current running transaction we
1600  * can safely unlink it.
1601  *
1602  * bh may not be a journalled buffer at all - it may be a non-JBD
1603  * buffer which came off the hashtable.  Check for this.
1604  *
1605  * Decrements bh->b_count by one.
1606  *
1607  * Allow this call even if the handle has aborted --- it may be part of
1608  * the caller's cleanup after an abort.
1609  */
1610 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1611 {
1612 	transaction_t *transaction = handle->h_transaction;
1613 	journal_t *journal;
1614 	struct journal_head *jh;
1615 	int drop_reserve = 0;
1616 	int err = 0;
1617 	int was_modified = 0;
1618 
1619 	if (is_handle_aborted(handle))
1620 		return -EROFS;
1621 	journal = transaction->t_journal;
1622 
1623 	BUFFER_TRACE(bh, "entry");
1624 
1625 	jh = jbd2_journal_grab_journal_head(bh);
1626 	if (!jh) {
1627 		__bforget(bh);
1628 		return 0;
1629 	}
1630 
1631 	spin_lock(&jh->b_state_lock);
1632 
1633 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1634 	 * Don't do any jbd operations, and return an error. */
1635 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1636 			 "inconsistent data on disk")) {
1637 		err = -EIO;
1638 		goto drop;
1639 	}
1640 
1641 	/* keep track of whether or not this transaction modified us */
1642 	was_modified = jh->b_modified;
1643 
1644 	/*
1645 	 * The buffer's going from the transaction, we must drop
1646 	 * all references -bzzz
1647 	 */
1648 	jh->b_modified = 0;
1649 
1650 	if (jh->b_transaction == transaction) {
1651 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1652 
1653 		/* If we are forgetting a buffer which is already part
1654 		 * of this transaction, then we can just drop it from
1655 		 * the transaction immediately. */
1656 		clear_buffer_dirty(bh);
1657 		clear_buffer_jbddirty(bh);
1658 
1659 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1660 
1661 		/*
1662 		 * we only want to drop a reference if this transaction
1663 		 * modified the buffer
1664 		 */
1665 		if (was_modified)
1666 			drop_reserve = 1;
1667 
1668 		/*
1669 		 * We are no longer going to journal this buffer.
1670 		 * However, the commit of this transaction is still
1671 		 * important to the buffer: the delete that we are now
1672 		 * processing might obsolete an old log entry, so by
1673 		 * committing, we can satisfy the buffer's checkpoint.
1674 		 *
1675 		 * So, if we have a checkpoint on the buffer, we should
1676 		 * now refile the buffer on our BJ_Forget list so that
1677 		 * we know to remove the checkpoint after we commit.
1678 		 */
1679 
1680 		spin_lock(&journal->j_list_lock);
1681 		if (jh->b_cp_transaction) {
1682 			__jbd2_journal_temp_unlink_buffer(jh);
1683 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1684 		} else {
1685 			__jbd2_journal_unfile_buffer(jh);
1686 			jbd2_journal_put_journal_head(jh);
1687 		}
1688 		spin_unlock(&journal->j_list_lock);
1689 	} else if (jh->b_transaction) {
1690 		J_ASSERT_JH(jh, (jh->b_transaction ==
1691 				 journal->j_committing_transaction));
1692 		/* However, if the buffer is still owned by a prior
1693 		 * (committing) transaction, we can't drop it yet... */
1694 		JBUFFER_TRACE(jh, "belongs to older transaction");
1695 		/* ... but we CAN drop it from the new transaction through
1696 		 * marking the buffer as freed and set j_next_transaction to
1697 		 * the new transaction, so that not only the commit code
1698 		 * knows it should clear dirty bits when it is done with the
1699 		 * buffer, but also the buffer can be checkpointed only
1700 		 * after the new transaction commits. */
1701 
1702 		set_buffer_freed(bh);
1703 
1704 		if (!jh->b_next_transaction) {
1705 			spin_lock(&journal->j_list_lock);
1706 			jh->b_next_transaction = transaction;
1707 			spin_unlock(&journal->j_list_lock);
1708 		} else {
1709 			J_ASSERT(jh->b_next_transaction == transaction);
1710 
1711 			/*
1712 			 * only drop a reference if this transaction modified
1713 			 * the buffer
1714 			 */
1715 			if (was_modified)
1716 				drop_reserve = 1;
1717 		}
1718 	} else {
1719 		/*
1720 		 * Finally, if the buffer is not belongs to any
1721 		 * transaction, we can just drop it now if it has no
1722 		 * checkpoint.
1723 		 */
1724 		spin_lock(&journal->j_list_lock);
1725 		if (!jh->b_cp_transaction) {
1726 			JBUFFER_TRACE(jh, "belongs to none transaction");
1727 			spin_unlock(&journal->j_list_lock);
1728 			goto drop;
1729 		}
1730 
1731 		/*
1732 		 * Otherwise, if the buffer has been written to disk,
1733 		 * it is safe to remove the checkpoint and drop it.
1734 		 */
1735 		if (!buffer_dirty(bh)) {
1736 			__jbd2_journal_remove_checkpoint(jh);
1737 			spin_unlock(&journal->j_list_lock);
1738 			goto drop;
1739 		}
1740 
1741 		/*
1742 		 * The buffer is still not written to disk, we should
1743 		 * attach this buffer to current transaction so that the
1744 		 * buffer can be checkpointed only after the current
1745 		 * transaction commits.
1746 		 */
1747 		clear_buffer_dirty(bh);
1748 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1749 		spin_unlock(&journal->j_list_lock);
1750 	}
1751 drop:
1752 	__brelse(bh);
1753 	spin_unlock(&jh->b_state_lock);
1754 	jbd2_journal_put_journal_head(jh);
1755 	if (drop_reserve) {
1756 		/* no need to reserve log space for this block -bzzz */
1757 		handle->h_total_credits++;
1758 	}
1759 	return err;
1760 }
1761 
1762 /**
1763  * int jbd2_journal_stop() - complete a transaction
1764  * @handle: transaction to complete.
1765  *
1766  * All done for a particular handle.
1767  *
1768  * There is not much action needed here.  We just return any remaining
1769  * buffer credits to the transaction and remove the handle.  The only
1770  * complication is that we need to start a commit operation if the
1771  * filesystem is marked for synchronous update.
1772  *
1773  * jbd2_journal_stop itself will not usually return an error, but it may
1774  * do so in unusual circumstances.  In particular, expect it to
1775  * return -EIO if a jbd2_journal_abort has been executed since the
1776  * transaction began.
1777  */
1778 int jbd2_journal_stop(handle_t *handle)
1779 {
1780 	transaction_t *transaction = handle->h_transaction;
1781 	journal_t *journal;
1782 	int err = 0, wait_for_commit = 0;
1783 	tid_t tid;
1784 	pid_t pid;
1785 
1786 	if (--handle->h_ref > 0) {
1787 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1788 						 handle->h_ref);
1789 		if (is_handle_aborted(handle))
1790 			return -EIO;
1791 		return 0;
1792 	}
1793 	if (!transaction) {
1794 		/*
1795 		 * Handle is already detached from the transaction so there is
1796 		 * nothing to do other than free the handle.
1797 		 */
1798 		memalloc_nofs_restore(handle->saved_alloc_context);
1799 		goto free_and_exit;
1800 	}
1801 	journal = transaction->t_journal;
1802 	tid = transaction->t_tid;
1803 
1804 	if (is_handle_aborted(handle))
1805 		err = -EIO;
1806 
1807 	jbd_debug(4, "Handle %p going down\n", handle);
1808 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1809 				tid, handle->h_type, handle->h_line_no,
1810 				jiffies - handle->h_start_jiffies,
1811 				handle->h_sync, handle->h_requested_credits,
1812 				(handle->h_requested_credits -
1813 				 handle->h_total_credits));
1814 
1815 	/*
1816 	 * Implement synchronous transaction batching.  If the handle
1817 	 * was synchronous, don't force a commit immediately.  Let's
1818 	 * yield and let another thread piggyback onto this
1819 	 * transaction.  Keep doing that while new threads continue to
1820 	 * arrive.  It doesn't cost much - we're about to run a commit
1821 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1822 	 * operations by 30x or more...
1823 	 *
1824 	 * We try and optimize the sleep time against what the
1825 	 * underlying disk can do, instead of having a static sleep
1826 	 * time.  This is useful for the case where our storage is so
1827 	 * fast that it is more optimal to go ahead and force a flush
1828 	 * and wait for the transaction to be committed than it is to
1829 	 * wait for an arbitrary amount of time for new writers to
1830 	 * join the transaction.  We achieve this by measuring how
1831 	 * long it takes to commit a transaction, and compare it with
1832 	 * how long this transaction has been running, and if run time
1833 	 * < commit time then we sleep for the delta and commit.  This
1834 	 * greatly helps super fast disks that would see slowdowns as
1835 	 * more threads started doing fsyncs.
1836 	 *
1837 	 * But don't do this if this process was the most recent one
1838 	 * to perform a synchronous write.  We do this to detect the
1839 	 * case where a single process is doing a stream of sync
1840 	 * writes.  No point in waiting for joiners in that case.
1841 	 *
1842 	 * Setting max_batch_time to 0 disables this completely.
1843 	 */
1844 	pid = current->pid;
1845 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1846 	    journal->j_max_batch_time) {
1847 		u64 commit_time, trans_time;
1848 
1849 		journal->j_last_sync_writer = pid;
1850 
1851 		read_lock(&journal->j_state_lock);
1852 		commit_time = journal->j_average_commit_time;
1853 		read_unlock(&journal->j_state_lock);
1854 
1855 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1856 						   transaction->t_start_time));
1857 
1858 		commit_time = max_t(u64, commit_time,
1859 				    1000*journal->j_min_batch_time);
1860 		commit_time = min_t(u64, commit_time,
1861 				    1000*journal->j_max_batch_time);
1862 
1863 		if (trans_time < commit_time) {
1864 			ktime_t expires = ktime_add_ns(ktime_get(),
1865 						       commit_time);
1866 			set_current_state(TASK_UNINTERRUPTIBLE);
1867 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1868 		}
1869 	}
1870 
1871 	if (handle->h_sync)
1872 		transaction->t_synchronous_commit = 1;
1873 
1874 	/*
1875 	 * If the handle is marked SYNC, we need to set another commit
1876 	 * going!  We also want to force a commit if the transaction is too
1877 	 * old now.
1878 	 */
1879 	if (handle->h_sync ||
1880 	    time_after_eq(jiffies, transaction->t_expires)) {
1881 		/* Do this even for aborted journals: an abort still
1882 		 * completes the commit thread, it just doesn't write
1883 		 * anything to disk. */
1884 
1885 		jbd_debug(2, "transaction too old, requesting commit for "
1886 					"handle %p\n", handle);
1887 		/* This is non-blocking */
1888 		jbd2_log_start_commit(journal, tid);
1889 
1890 		/*
1891 		 * Special case: JBD2_SYNC synchronous updates require us
1892 		 * to wait for the commit to complete.
1893 		 */
1894 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1895 			wait_for_commit = 1;
1896 	}
1897 
1898 	/*
1899 	 * Once stop_this_handle() drops t_updates, the transaction could start
1900 	 * committing on us and eventually disappear.  So we must not
1901 	 * dereference transaction pointer again after calling
1902 	 * stop_this_handle().
1903 	 */
1904 	stop_this_handle(handle);
1905 
1906 	if (wait_for_commit)
1907 		err = jbd2_log_wait_commit(journal, tid);
1908 
1909 free_and_exit:
1910 	if (handle->h_rsv_handle)
1911 		jbd2_free_handle(handle->h_rsv_handle);
1912 	jbd2_free_handle(handle);
1913 	return err;
1914 }
1915 
1916 /*
1917  *
1918  * List management code snippets: various functions for manipulating the
1919  * transaction buffer lists.
1920  *
1921  */
1922 
1923 /*
1924  * Append a buffer to a transaction list, given the transaction's list head
1925  * pointer.
1926  *
1927  * j_list_lock is held.
1928  *
1929  * jh->b_state_lock is held.
1930  */
1931 
1932 static inline void
1933 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1934 {
1935 	if (!*list) {
1936 		jh->b_tnext = jh->b_tprev = jh;
1937 		*list = jh;
1938 	} else {
1939 		/* Insert at the tail of the list to preserve order */
1940 		struct journal_head *first = *list, *last = first->b_tprev;
1941 		jh->b_tprev = last;
1942 		jh->b_tnext = first;
1943 		last->b_tnext = first->b_tprev = jh;
1944 	}
1945 }
1946 
1947 /*
1948  * Remove a buffer from a transaction list, given the transaction's list
1949  * head pointer.
1950  *
1951  * Called with j_list_lock held, and the journal may not be locked.
1952  *
1953  * jh->b_state_lock is held.
1954  */
1955 
1956 static inline void
1957 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1958 {
1959 	if (*list == jh) {
1960 		*list = jh->b_tnext;
1961 		if (*list == jh)
1962 			*list = NULL;
1963 	}
1964 	jh->b_tprev->b_tnext = jh->b_tnext;
1965 	jh->b_tnext->b_tprev = jh->b_tprev;
1966 }
1967 
1968 /*
1969  * Remove a buffer from the appropriate transaction list.
1970  *
1971  * Note that this function can *change* the value of
1972  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1973  * t_reserved_list.  If the caller is holding onto a copy of one of these
1974  * pointers, it could go bad.  Generally the caller needs to re-read the
1975  * pointer from the transaction_t.
1976  *
1977  * Called under j_list_lock.
1978  */
1979 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1980 {
1981 	struct journal_head **list = NULL;
1982 	transaction_t *transaction;
1983 	struct buffer_head *bh = jh2bh(jh);
1984 
1985 	lockdep_assert_held(&jh->b_state_lock);
1986 	transaction = jh->b_transaction;
1987 	if (transaction)
1988 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1989 
1990 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1991 	if (jh->b_jlist != BJ_None)
1992 		J_ASSERT_JH(jh, transaction != NULL);
1993 
1994 	switch (jh->b_jlist) {
1995 	case BJ_None:
1996 		return;
1997 	case BJ_Metadata:
1998 		transaction->t_nr_buffers--;
1999 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2000 		list = &transaction->t_buffers;
2001 		break;
2002 	case BJ_Forget:
2003 		list = &transaction->t_forget;
2004 		break;
2005 	case BJ_Shadow:
2006 		list = &transaction->t_shadow_list;
2007 		break;
2008 	case BJ_Reserved:
2009 		list = &transaction->t_reserved_list;
2010 		break;
2011 	}
2012 
2013 	__blist_del_buffer(list, jh);
2014 	jh->b_jlist = BJ_None;
2015 	if (transaction && is_journal_aborted(transaction->t_journal))
2016 		clear_buffer_jbddirty(bh);
2017 	else if (test_clear_buffer_jbddirty(bh))
2018 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2019 }
2020 
2021 /*
2022  * Remove buffer from all transactions. The caller is responsible for dropping
2023  * the jh reference that belonged to the transaction.
2024  *
2025  * Called with bh_state lock and j_list_lock
2026  */
2027 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2028 {
2029 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2030 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2031 
2032 	__jbd2_journal_temp_unlink_buffer(jh);
2033 	jh->b_transaction = NULL;
2034 }
2035 
2036 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2037 {
2038 	struct buffer_head *bh = jh2bh(jh);
2039 
2040 	/* Get reference so that buffer cannot be freed before we unlock it */
2041 	get_bh(bh);
2042 	spin_lock(&jh->b_state_lock);
2043 	spin_lock(&journal->j_list_lock);
2044 	__jbd2_journal_unfile_buffer(jh);
2045 	spin_unlock(&journal->j_list_lock);
2046 	spin_unlock(&jh->b_state_lock);
2047 	jbd2_journal_put_journal_head(jh);
2048 	__brelse(bh);
2049 }
2050 
2051 /*
2052  * Called from jbd2_journal_try_to_free_buffers().
2053  *
2054  * Called under jh->b_state_lock
2055  */
2056 static void
2057 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2058 {
2059 	struct journal_head *jh;
2060 
2061 	jh = bh2jh(bh);
2062 
2063 	if (buffer_locked(bh) || buffer_dirty(bh))
2064 		goto out;
2065 
2066 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2067 		goto out;
2068 
2069 	spin_lock(&journal->j_list_lock);
2070 	if (jh->b_cp_transaction != NULL) {
2071 		/* written-back checkpointed metadata buffer */
2072 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2073 		__jbd2_journal_remove_checkpoint(jh);
2074 	}
2075 	spin_unlock(&journal->j_list_lock);
2076 out:
2077 	return;
2078 }
2079 
2080 /**
2081  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2082  * @journal: journal for operation
2083  * @page: to try and free
2084  *
2085  * For all the buffers on this page,
2086  * if they are fully written out ordered data, move them onto BUF_CLEAN
2087  * so try_to_free_buffers() can reap them.
2088  *
2089  * This function returns non-zero if we wish try_to_free_buffers()
2090  * to be called. We do this if the page is releasable by try_to_free_buffers().
2091  * We also do it if the page has locked or dirty buffers and the caller wants
2092  * us to perform sync or async writeout.
2093  *
2094  * This complicates JBD locking somewhat.  We aren't protected by the
2095  * BKL here.  We wish to remove the buffer from its committing or
2096  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2097  *
2098  * This may *change* the value of transaction_t->t_datalist, so anyone
2099  * who looks at t_datalist needs to lock against this function.
2100  *
2101  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2102  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2103  * will come out of the lock with the buffer dirty, which makes it
2104  * ineligible for release here.
2105  *
2106  * Who else is affected by this?  hmm...  Really the only contender
2107  * is do_get_write_access() - it could be looking at the buffer while
2108  * journal_try_to_free_buffer() is changing its state.  But that
2109  * cannot happen because we never reallocate freed data as metadata
2110  * while the data is part of a transaction.  Yes?
2111  *
2112  * Return 0 on failure, 1 on success
2113  */
2114 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2115 {
2116 	struct buffer_head *head;
2117 	struct buffer_head *bh;
2118 	bool has_write_io_error = false;
2119 	int ret = 0;
2120 
2121 	J_ASSERT(PageLocked(page));
2122 
2123 	head = page_buffers(page);
2124 	bh = head;
2125 	do {
2126 		struct journal_head *jh;
2127 
2128 		/*
2129 		 * We take our own ref against the journal_head here to avoid
2130 		 * having to add tons of locking around each instance of
2131 		 * jbd2_journal_put_journal_head().
2132 		 */
2133 		jh = jbd2_journal_grab_journal_head(bh);
2134 		if (!jh)
2135 			continue;
2136 
2137 		spin_lock(&jh->b_state_lock);
2138 		__journal_try_to_free_buffer(journal, bh);
2139 		spin_unlock(&jh->b_state_lock);
2140 		jbd2_journal_put_journal_head(jh);
2141 		if (buffer_jbd(bh))
2142 			goto busy;
2143 
2144 		/*
2145 		 * If we free a metadata buffer which has been failed to
2146 		 * write out, the jbd2 checkpoint procedure will not detect
2147 		 * this failure and may lead to filesystem inconsistency
2148 		 * after cleanup journal tail.
2149 		 */
2150 		if (buffer_write_io_error(bh)) {
2151 			pr_err("JBD2: Error while async write back metadata bh %llu.",
2152 			       (unsigned long long)bh->b_blocknr);
2153 			has_write_io_error = true;
2154 		}
2155 	} while ((bh = bh->b_this_page) != head);
2156 
2157 	ret = try_to_free_buffers(page);
2158 
2159 busy:
2160 	if (has_write_io_error)
2161 		jbd2_journal_abort(journal, -EIO);
2162 
2163 	return ret;
2164 }
2165 
2166 /*
2167  * This buffer is no longer needed.  If it is on an older transaction's
2168  * checkpoint list we need to record it on this transaction's forget list
2169  * to pin this buffer (and hence its checkpointing transaction) down until
2170  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2171  * release it.
2172  * Returns non-zero if JBD no longer has an interest in the buffer.
2173  *
2174  * Called under j_list_lock.
2175  *
2176  * Called under jh->b_state_lock.
2177  */
2178 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2179 {
2180 	int may_free = 1;
2181 	struct buffer_head *bh = jh2bh(jh);
2182 
2183 	if (jh->b_cp_transaction) {
2184 		JBUFFER_TRACE(jh, "on running+cp transaction");
2185 		__jbd2_journal_temp_unlink_buffer(jh);
2186 		/*
2187 		 * We don't want to write the buffer anymore, clear the
2188 		 * bit so that we don't confuse checks in
2189 		 * __journal_file_buffer
2190 		 */
2191 		clear_buffer_dirty(bh);
2192 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2193 		may_free = 0;
2194 	} else {
2195 		JBUFFER_TRACE(jh, "on running transaction");
2196 		__jbd2_journal_unfile_buffer(jh);
2197 		jbd2_journal_put_journal_head(jh);
2198 	}
2199 	return may_free;
2200 }
2201 
2202 /*
2203  * jbd2_journal_invalidatepage
2204  *
2205  * This code is tricky.  It has a number of cases to deal with.
2206  *
2207  * There are two invariants which this code relies on:
2208  *
2209  * i_size must be updated on disk before we start calling invalidatepage on the
2210  * data.
2211  *
2212  *  This is done in ext3 by defining an ext3_setattr method which
2213  *  updates i_size before truncate gets going.  By maintaining this
2214  *  invariant, we can be sure that it is safe to throw away any buffers
2215  *  attached to the current transaction: once the transaction commits,
2216  *  we know that the data will not be needed.
2217  *
2218  *  Note however that we can *not* throw away data belonging to the
2219  *  previous, committing transaction!
2220  *
2221  * Any disk blocks which *are* part of the previous, committing
2222  * transaction (and which therefore cannot be discarded immediately) are
2223  * not going to be reused in the new running transaction
2224  *
2225  *  The bitmap committed_data images guarantee this: any block which is
2226  *  allocated in one transaction and removed in the next will be marked
2227  *  as in-use in the committed_data bitmap, so cannot be reused until
2228  *  the next transaction to delete the block commits.  This means that
2229  *  leaving committing buffers dirty is quite safe: the disk blocks
2230  *  cannot be reallocated to a different file and so buffer aliasing is
2231  *  not possible.
2232  *
2233  *
2234  * The above applies mainly to ordered data mode.  In writeback mode we
2235  * don't make guarantees about the order in which data hits disk --- in
2236  * particular we don't guarantee that new dirty data is flushed before
2237  * transaction commit --- so it is always safe just to discard data
2238  * immediately in that mode.  --sct
2239  */
2240 
2241 /*
2242  * The journal_unmap_buffer helper function returns zero if the buffer
2243  * concerned remains pinned as an anonymous buffer belonging to an older
2244  * transaction.
2245  *
2246  * We're outside-transaction here.  Either or both of j_running_transaction
2247  * and j_committing_transaction may be NULL.
2248  */
2249 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2250 				int partial_page)
2251 {
2252 	transaction_t *transaction;
2253 	struct journal_head *jh;
2254 	int may_free = 1;
2255 
2256 	BUFFER_TRACE(bh, "entry");
2257 
2258 	/*
2259 	 * It is safe to proceed here without the j_list_lock because the
2260 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2261 	 * holding the page lock. --sct
2262 	 */
2263 
2264 	jh = jbd2_journal_grab_journal_head(bh);
2265 	if (!jh)
2266 		goto zap_buffer_unlocked;
2267 
2268 	/* OK, we have data buffer in journaled mode */
2269 	write_lock(&journal->j_state_lock);
2270 	spin_lock(&jh->b_state_lock);
2271 	spin_lock(&journal->j_list_lock);
2272 
2273 	/*
2274 	 * We cannot remove the buffer from checkpoint lists until the
2275 	 * transaction adding inode to orphan list (let's call it T)
2276 	 * is committed.  Otherwise if the transaction changing the
2277 	 * buffer would be cleaned from the journal before T is
2278 	 * committed, a crash will cause that the correct contents of
2279 	 * the buffer will be lost.  On the other hand we have to
2280 	 * clear the buffer dirty bit at latest at the moment when the
2281 	 * transaction marking the buffer as freed in the filesystem
2282 	 * structures is committed because from that moment on the
2283 	 * block can be reallocated and used by a different page.
2284 	 * Since the block hasn't been freed yet but the inode has
2285 	 * already been added to orphan list, it is safe for us to add
2286 	 * the buffer to BJ_Forget list of the newest transaction.
2287 	 *
2288 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2289 	 * because the buffer_head may be attached to the page straddling
2290 	 * i_size (can happen only when blocksize < pagesize) and thus the
2291 	 * buffer_head can be reused when the file is extended again. So we end
2292 	 * up keeping around invalidated buffers attached to transactions'
2293 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2294 	 * the transaction this buffer was modified in.
2295 	 */
2296 	transaction = jh->b_transaction;
2297 	if (transaction == NULL) {
2298 		/* First case: not on any transaction.  If it
2299 		 * has no checkpoint link, then we can zap it:
2300 		 * it's a writeback-mode buffer so we don't care
2301 		 * if it hits disk safely. */
2302 		if (!jh->b_cp_transaction) {
2303 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2304 			goto zap_buffer;
2305 		}
2306 
2307 		if (!buffer_dirty(bh)) {
2308 			/* bdflush has written it.  We can drop it now */
2309 			__jbd2_journal_remove_checkpoint(jh);
2310 			goto zap_buffer;
2311 		}
2312 
2313 		/* OK, it must be in the journal but still not
2314 		 * written fully to disk: it's metadata or
2315 		 * journaled data... */
2316 
2317 		if (journal->j_running_transaction) {
2318 			/* ... and once the current transaction has
2319 			 * committed, the buffer won't be needed any
2320 			 * longer. */
2321 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2322 			may_free = __dispose_buffer(jh,
2323 					journal->j_running_transaction);
2324 			goto zap_buffer;
2325 		} else {
2326 			/* There is no currently-running transaction. So the
2327 			 * orphan record which we wrote for this file must have
2328 			 * passed into commit.  We must attach this buffer to
2329 			 * the committing transaction, if it exists. */
2330 			if (journal->j_committing_transaction) {
2331 				JBUFFER_TRACE(jh, "give to committing trans");
2332 				may_free = __dispose_buffer(jh,
2333 					journal->j_committing_transaction);
2334 				goto zap_buffer;
2335 			} else {
2336 				/* The orphan record's transaction has
2337 				 * committed.  We can cleanse this buffer */
2338 				clear_buffer_jbddirty(bh);
2339 				__jbd2_journal_remove_checkpoint(jh);
2340 				goto zap_buffer;
2341 			}
2342 		}
2343 	} else if (transaction == journal->j_committing_transaction) {
2344 		JBUFFER_TRACE(jh, "on committing transaction");
2345 		/*
2346 		 * The buffer is committing, we simply cannot touch
2347 		 * it. If the page is straddling i_size we have to wait
2348 		 * for commit and try again.
2349 		 */
2350 		if (partial_page) {
2351 			spin_unlock(&journal->j_list_lock);
2352 			spin_unlock(&jh->b_state_lock);
2353 			write_unlock(&journal->j_state_lock);
2354 			jbd2_journal_put_journal_head(jh);
2355 			return -EBUSY;
2356 		}
2357 		/*
2358 		 * OK, buffer won't be reachable after truncate. We just clear
2359 		 * b_modified to not confuse transaction credit accounting, and
2360 		 * set j_next_transaction to the running transaction (if there
2361 		 * is one) and mark buffer as freed so that commit code knows
2362 		 * it should clear dirty bits when it is done with the buffer.
2363 		 */
2364 		set_buffer_freed(bh);
2365 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2366 			jh->b_next_transaction = journal->j_running_transaction;
2367 		jh->b_modified = 0;
2368 		spin_unlock(&journal->j_list_lock);
2369 		spin_unlock(&jh->b_state_lock);
2370 		write_unlock(&journal->j_state_lock);
2371 		jbd2_journal_put_journal_head(jh);
2372 		return 0;
2373 	} else {
2374 		/* Good, the buffer belongs to the running transaction.
2375 		 * We are writing our own transaction's data, not any
2376 		 * previous one's, so it is safe to throw it away
2377 		 * (remember that we expect the filesystem to have set
2378 		 * i_size already for this truncate so recovery will not
2379 		 * expose the disk blocks we are discarding here.) */
2380 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2381 		JBUFFER_TRACE(jh, "on running transaction");
2382 		may_free = __dispose_buffer(jh, transaction);
2383 	}
2384 
2385 zap_buffer:
2386 	/*
2387 	 * This is tricky. Although the buffer is truncated, it may be reused
2388 	 * if blocksize < pagesize and it is attached to the page straddling
2389 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2390 	 * running transaction, journal_get_write_access() won't clear
2391 	 * b_modified and credit accounting gets confused. So clear b_modified
2392 	 * here.
2393 	 */
2394 	jh->b_modified = 0;
2395 	spin_unlock(&journal->j_list_lock);
2396 	spin_unlock(&jh->b_state_lock);
2397 	write_unlock(&journal->j_state_lock);
2398 	jbd2_journal_put_journal_head(jh);
2399 zap_buffer_unlocked:
2400 	clear_buffer_dirty(bh);
2401 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2402 	clear_buffer_mapped(bh);
2403 	clear_buffer_req(bh);
2404 	clear_buffer_new(bh);
2405 	clear_buffer_delay(bh);
2406 	clear_buffer_unwritten(bh);
2407 	bh->b_bdev = NULL;
2408 	return may_free;
2409 }
2410 
2411 /**
2412  * void jbd2_journal_invalidatepage()
2413  * @journal: journal to use for flush...
2414  * @page:    page to flush
2415  * @offset:  start of the range to invalidate
2416  * @length:  length of the range to invalidate
2417  *
2418  * Reap page buffers containing data after in the specified range in page.
2419  * Can return -EBUSY if buffers are part of the committing transaction and
2420  * the page is straddling i_size. Caller then has to wait for current commit
2421  * and try again.
2422  */
2423 int jbd2_journal_invalidatepage(journal_t *journal,
2424 				struct page *page,
2425 				unsigned int offset,
2426 				unsigned int length)
2427 {
2428 	struct buffer_head *head, *bh, *next;
2429 	unsigned int stop = offset + length;
2430 	unsigned int curr_off = 0;
2431 	int partial_page = (offset || length < PAGE_SIZE);
2432 	int may_free = 1;
2433 	int ret = 0;
2434 
2435 	if (!PageLocked(page))
2436 		BUG();
2437 	if (!page_has_buffers(page))
2438 		return 0;
2439 
2440 	BUG_ON(stop > PAGE_SIZE || stop < length);
2441 
2442 	/* We will potentially be playing with lists other than just the
2443 	 * data lists (especially for journaled data mode), so be
2444 	 * cautious in our locking. */
2445 
2446 	head = bh = page_buffers(page);
2447 	do {
2448 		unsigned int next_off = curr_off + bh->b_size;
2449 		next = bh->b_this_page;
2450 
2451 		if (next_off > stop)
2452 			return 0;
2453 
2454 		if (offset <= curr_off) {
2455 			/* This block is wholly outside the truncation point */
2456 			lock_buffer(bh);
2457 			ret = journal_unmap_buffer(journal, bh, partial_page);
2458 			unlock_buffer(bh);
2459 			if (ret < 0)
2460 				return ret;
2461 			may_free &= ret;
2462 		}
2463 		curr_off = next_off;
2464 		bh = next;
2465 
2466 	} while (bh != head);
2467 
2468 	if (!partial_page) {
2469 		if (may_free && try_to_free_buffers(page))
2470 			J_ASSERT(!page_has_buffers(page));
2471 	}
2472 	return 0;
2473 }
2474 
2475 /*
2476  * File a buffer on the given transaction list.
2477  */
2478 void __jbd2_journal_file_buffer(struct journal_head *jh,
2479 			transaction_t *transaction, int jlist)
2480 {
2481 	struct journal_head **list = NULL;
2482 	int was_dirty = 0;
2483 	struct buffer_head *bh = jh2bh(jh);
2484 
2485 	lockdep_assert_held(&jh->b_state_lock);
2486 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2487 
2488 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2489 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2490 				jh->b_transaction == NULL);
2491 
2492 	if (jh->b_transaction && jh->b_jlist == jlist)
2493 		return;
2494 
2495 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2496 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2497 		/*
2498 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2499 		 * instead of buffer_dirty. We should not see a dirty bit set
2500 		 * here because we clear it in do_get_write_access but e.g.
2501 		 * tune2fs can modify the sb and set the dirty bit at any time
2502 		 * so we try to gracefully handle that.
2503 		 */
2504 		if (buffer_dirty(bh))
2505 			warn_dirty_buffer(bh);
2506 		if (test_clear_buffer_dirty(bh) ||
2507 		    test_clear_buffer_jbddirty(bh))
2508 			was_dirty = 1;
2509 	}
2510 
2511 	if (jh->b_transaction)
2512 		__jbd2_journal_temp_unlink_buffer(jh);
2513 	else
2514 		jbd2_journal_grab_journal_head(bh);
2515 	jh->b_transaction = transaction;
2516 
2517 	switch (jlist) {
2518 	case BJ_None:
2519 		J_ASSERT_JH(jh, !jh->b_committed_data);
2520 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2521 		return;
2522 	case BJ_Metadata:
2523 		transaction->t_nr_buffers++;
2524 		list = &transaction->t_buffers;
2525 		break;
2526 	case BJ_Forget:
2527 		list = &transaction->t_forget;
2528 		break;
2529 	case BJ_Shadow:
2530 		list = &transaction->t_shadow_list;
2531 		break;
2532 	case BJ_Reserved:
2533 		list = &transaction->t_reserved_list;
2534 		break;
2535 	}
2536 
2537 	__blist_add_buffer(list, jh);
2538 	jh->b_jlist = jlist;
2539 
2540 	if (was_dirty)
2541 		set_buffer_jbddirty(bh);
2542 }
2543 
2544 void jbd2_journal_file_buffer(struct journal_head *jh,
2545 				transaction_t *transaction, int jlist)
2546 {
2547 	spin_lock(&jh->b_state_lock);
2548 	spin_lock(&transaction->t_journal->j_list_lock);
2549 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2550 	spin_unlock(&transaction->t_journal->j_list_lock);
2551 	spin_unlock(&jh->b_state_lock);
2552 }
2553 
2554 /*
2555  * Remove a buffer from its current buffer list in preparation for
2556  * dropping it from its current transaction entirely.  If the buffer has
2557  * already started to be used by a subsequent transaction, refile the
2558  * buffer on that transaction's metadata list.
2559  *
2560  * Called under j_list_lock
2561  * Called under jh->b_state_lock
2562  *
2563  * When this function returns true, there's no next transaction to refile to
2564  * and the caller has to drop jh reference through
2565  * jbd2_journal_put_journal_head().
2566  */
2567 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2568 {
2569 	int was_dirty, jlist;
2570 	struct buffer_head *bh = jh2bh(jh);
2571 
2572 	lockdep_assert_held(&jh->b_state_lock);
2573 	if (jh->b_transaction)
2574 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2575 
2576 	/* If the buffer is now unused, just drop it. */
2577 	if (jh->b_next_transaction == NULL) {
2578 		__jbd2_journal_unfile_buffer(jh);
2579 		return true;
2580 	}
2581 
2582 	/*
2583 	 * It has been modified by a later transaction: add it to the new
2584 	 * transaction's metadata list.
2585 	 */
2586 
2587 	was_dirty = test_clear_buffer_jbddirty(bh);
2588 	__jbd2_journal_temp_unlink_buffer(jh);
2589 
2590 	/*
2591 	 * b_transaction must be set, otherwise the new b_transaction won't
2592 	 * be holding jh reference
2593 	 */
2594 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2595 
2596 	/*
2597 	 * We set b_transaction here because b_next_transaction will inherit
2598 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2599 	 * take a new one.
2600 	 */
2601 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2602 	WRITE_ONCE(jh->b_next_transaction, NULL);
2603 	if (buffer_freed(bh))
2604 		jlist = BJ_Forget;
2605 	else if (jh->b_modified)
2606 		jlist = BJ_Metadata;
2607 	else
2608 		jlist = BJ_Reserved;
2609 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2610 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2611 
2612 	if (was_dirty)
2613 		set_buffer_jbddirty(bh);
2614 	return false;
2615 }
2616 
2617 /*
2618  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2619  * bh reference so that we can safely unlock bh.
2620  *
2621  * The jh and bh may be freed by this call.
2622  */
2623 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2624 {
2625 	bool drop;
2626 
2627 	spin_lock(&jh->b_state_lock);
2628 	spin_lock(&journal->j_list_lock);
2629 	drop = __jbd2_journal_refile_buffer(jh);
2630 	spin_unlock(&jh->b_state_lock);
2631 	spin_unlock(&journal->j_list_lock);
2632 	if (drop)
2633 		jbd2_journal_put_journal_head(jh);
2634 }
2635 
2636 /*
2637  * File inode in the inode list of the handle's transaction
2638  */
2639 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2640 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2641 {
2642 	transaction_t *transaction = handle->h_transaction;
2643 	journal_t *journal;
2644 
2645 	if (is_handle_aborted(handle))
2646 		return -EROFS;
2647 	journal = transaction->t_journal;
2648 
2649 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2650 			transaction->t_tid);
2651 
2652 	spin_lock(&journal->j_list_lock);
2653 	jinode->i_flags |= flags;
2654 
2655 	if (jinode->i_dirty_end) {
2656 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2657 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2658 	} else {
2659 		jinode->i_dirty_start = start_byte;
2660 		jinode->i_dirty_end = end_byte;
2661 	}
2662 
2663 	/* Is inode already attached where we need it? */
2664 	if (jinode->i_transaction == transaction ||
2665 	    jinode->i_next_transaction == transaction)
2666 		goto done;
2667 
2668 	/*
2669 	 * We only ever set this variable to 1 so the test is safe. Since
2670 	 * t_need_data_flush is likely to be set, we do the test to save some
2671 	 * cacheline bouncing
2672 	 */
2673 	if (!transaction->t_need_data_flush)
2674 		transaction->t_need_data_flush = 1;
2675 	/* On some different transaction's list - should be
2676 	 * the committing one */
2677 	if (jinode->i_transaction) {
2678 		J_ASSERT(jinode->i_next_transaction == NULL);
2679 		J_ASSERT(jinode->i_transaction ==
2680 					journal->j_committing_transaction);
2681 		jinode->i_next_transaction = transaction;
2682 		goto done;
2683 	}
2684 	/* Not on any transaction list... */
2685 	J_ASSERT(!jinode->i_next_transaction);
2686 	jinode->i_transaction = transaction;
2687 	list_add(&jinode->i_list, &transaction->t_inode_list);
2688 done:
2689 	spin_unlock(&journal->j_list_lock);
2690 
2691 	return 0;
2692 }
2693 
2694 int jbd2_journal_inode_ranged_write(handle_t *handle,
2695 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2696 {
2697 	return jbd2_journal_file_inode(handle, jinode,
2698 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2699 			start_byte + length - 1);
2700 }
2701 
2702 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2703 		loff_t start_byte, loff_t length)
2704 {
2705 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2706 			start_byte, start_byte + length - 1);
2707 }
2708 
2709 /*
2710  * File truncate and transaction commit interact with each other in a
2711  * non-trivial way.  If a transaction writing data block A is
2712  * committing, we cannot discard the data by truncate until we have
2713  * written them.  Otherwise if we crashed after the transaction with
2714  * write has committed but before the transaction with truncate has
2715  * committed, we could see stale data in block A.  This function is a
2716  * helper to solve this problem.  It starts writeout of the truncated
2717  * part in case it is in the committing transaction.
2718  *
2719  * Filesystem code must call this function when inode is journaled in
2720  * ordered mode before truncation happens and after the inode has been
2721  * placed on orphan list with the new inode size. The second condition
2722  * avoids the race that someone writes new data and we start
2723  * committing the transaction after this function has been called but
2724  * before a transaction for truncate is started (and furthermore it
2725  * allows us to optimize the case where the addition to orphan list
2726  * happens in the same transaction as write --- we don't have to write
2727  * any data in such case).
2728  */
2729 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2730 					struct jbd2_inode *jinode,
2731 					loff_t new_size)
2732 {
2733 	transaction_t *inode_trans, *commit_trans;
2734 	int ret = 0;
2735 
2736 	/* This is a quick check to avoid locking if not necessary */
2737 	if (!jinode->i_transaction)
2738 		goto out;
2739 	/* Locks are here just to force reading of recent values, it is
2740 	 * enough that the transaction was not committing before we started
2741 	 * a transaction adding the inode to orphan list */
2742 	read_lock(&journal->j_state_lock);
2743 	commit_trans = journal->j_committing_transaction;
2744 	read_unlock(&journal->j_state_lock);
2745 	spin_lock(&journal->j_list_lock);
2746 	inode_trans = jinode->i_transaction;
2747 	spin_unlock(&journal->j_list_lock);
2748 	if (inode_trans == commit_trans) {
2749 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2750 			new_size, LLONG_MAX);
2751 		if (ret)
2752 			jbd2_journal_abort(journal, ret);
2753 	}
2754 out:
2755 	return ret;
2756 }
2757