xref: /openbmc/linux/fs/jbd2/transaction.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	jbd2_might_wait_for_commit(journal);
163 	schedule();
164 	finish_wait(&journal->j_wait_transaction_locked, &wait);
165 }
166 
167 static void sub_reserved_credits(journal_t *journal, int blocks)
168 {
169 	atomic_sub(blocks, &journal->j_reserved_credits);
170 	wake_up(&journal->j_wait_reserved);
171 }
172 
173 /*
174  * Wait until we can add credits for handle to the running transaction.  Called
175  * with j_state_lock held for reading. Returns 0 if handle joined the running
176  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
177  * caller must retry.
178  */
179 static int add_transaction_credits(journal_t *journal, int blocks,
180 				   int rsv_blocks)
181 {
182 	transaction_t *t = journal->j_running_transaction;
183 	int needed;
184 	int total = blocks + rsv_blocks;
185 
186 	/*
187 	 * If the current transaction is locked down for commit, wait
188 	 * for the lock to be released.
189 	 */
190 	if (t->t_state == T_LOCKED) {
191 		wait_transaction_locked(journal);
192 		return 1;
193 	}
194 
195 	/*
196 	 * If there is not enough space left in the log to write all
197 	 * potential buffers requested by this operation, we need to
198 	 * stall pending a log checkpoint to free some more log space.
199 	 */
200 	needed = atomic_add_return(total, &t->t_outstanding_credits);
201 	if (needed > journal->j_max_transaction_buffers) {
202 		/*
203 		 * If the current transaction is already too large,
204 		 * then start to commit it: we can then go back and
205 		 * attach this handle to a new transaction.
206 		 */
207 		atomic_sub(total, &t->t_outstanding_credits);
208 
209 		/*
210 		 * Is the number of reserved credits in the current transaction too
211 		 * big to fit this handle? Wait until reserved credits are freed.
212 		 */
213 		if (atomic_read(&journal->j_reserved_credits) + total >
214 		    journal->j_max_transaction_buffers) {
215 			read_unlock(&journal->j_state_lock);
216 			jbd2_might_wait_for_commit(journal);
217 			wait_event(journal->j_wait_reserved,
218 				   atomic_read(&journal->j_reserved_credits) + total <=
219 				   journal->j_max_transaction_buffers);
220 			return 1;
221 		}
222 
223 		wait_transaction_locked(journal);
224 		return 1;
225 	}
226 
227 	/*
228 	 * The commit code assumes that it can get enough log space
229 	 * without forcing a checkpoint.  This is *critical* for
230 	 * correctness: a checkpoint of a buffer which is also
231 	 * associated with a committing transaction creates a deadlock,
232 	 * so commit simply cannot force through checkpoints.
233 	 *
234 	 * We must therefore ensure the necessary space in the journal
235 	 * *before* starting to dirty potentially checkpointed buffers
236 	 * in the new transaction.
237 	 */
238 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239 		atomic_sub(total, &t->t_outstanding_credits);
240 		read_unlock(&journal->j_state_lock);
241 		jbd2_might_wait_for_commit(journal);
242 		write_lock(&journal->j_state_lock);
243 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
244 			__jbd2_log_wait_for_space(journal);
245 		write_unlock(&journal->j_state_lock);
246 		return 1;
247 	}
248 
249 	/* No reservation? We are done... */
250 	if (!rsv_blocks)
251 		return 0;
252 
253 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
254 	/* We allow at most half of a transaction to be reserved */
255 	if (needed > journal->j_max_transaction_buffers / 2) {
256 		sub_reserved_credits(journal, rsv_blocks);
257 		atomic_sub(total, &t->t_outstanding_credits);
258 		read_unlock(&journal->j_state_lock);
259 		jbd2_might_wait_for_commit(journal);
260 		wait_event(journal->j_wait_reserved,
261 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
262 			 <= journal->j_max_transaction_buffers / 2);
263 		return 1;
264 	}
265 	return 0;
266 }
267 
268 /*
269  * start_this_handle: Given a handle, deal with any locking or stalling
270  * needed to make sure that there is enough journal space for the handle
271  * to begin.  Attach the handle to a transaction and set up the
272  * transaction's buffer credits.
273  */
274 
275 static int start_this_handle(journal_t *journal, handle_t *handle,
276 			     gfp_t gfp_mask)
277 {
278 	transaction_t	*transaction, *new_transaction = NULL;
279 	int		blocks = handle->h_buffer_credits;
280 	int		rsv_blocks = 0;
281 	unsigned long ts = jiffies;
282 
283 	if (handle->h_rsv_handle)
284 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
285 
286 	/*
287 	 * Limit the number of reserved credits to 1/2 of maximum transaction
288 	 * size and limit the number of total credits to not exceed maximum
289 	 * transaction size per operation.
290 	 */
291 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
292 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
293 		printk(KERN_ERR "JBD2: %s wants too many credits "
294 		       "credits:%d rsv_credits:%d max:%d\n",
295 		       current->comm, blocks, rsv_blocks,
296 		       journal->j_max_transaction_buffers);
297 		WARN_ON(1);
298 		return -ENOSPC;
299 	}
300 
301 alloc_transaction:
302 	if (!journal->j_running_transaction) {
303 		/*
304 		 * If __GFP_FS is not present, then we may be being called from
305 		 * inside the fs writeback layer, so we MUST NOT fail.
306 		 */
307 		if ((gfp_mask & __GFP_FS) == 0)
308 			gfp_mask |= __GFP_NOFAIL;
309 		new_transaction = kmem_cache_zalloc(transaction_cache,
310 						    gfp_mask);
311 		if (!new_transaction)
312 			return -ENOMEM;
313 	}
314 
315 	jbd_debug(3, "New handle %p going live.\n", handle);
316 
317 	/*
318 	 * We need to hold j_state_lock until t_updates has been incremented,
319 	 * for proper journal barrier handling
320 	 */
321 repeat:
322 	read_lock(&journal->j_state_lock);
323 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
324 	if (is_journal_aborted(journal) ||
325 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
326 		read_unlock(&journal->j_state_lock);
327 		jbd2_journal_free_transaction(new_transaction);
328 		return -EROFS;
329 	}
330 
331 	/*
332 	 * Wait on the journal's transaction barrier if necessary. Specifically
333 	 * we allow reserved handles to proceed because otherwise commit could
334 	 * deadlock on page writeback not being able to complete.
335 	 */
336 	if (!handle->h_reserved && journal->j_barrier_count) {
337 		read_unlock(&journal->j_state_lock);
338 		wait_event(journal->j_wait_transaction_locked,
339 				journal->j_barrier_count == 0);
340 		goto repeat;
341 	}
342 
343 	if (!journal->j_running_transaction) {
344 		read_unlock(&journal->j_state_lock);
345 		if (!new_transaction)
346 			goto alloc_transaction;
347 		write_lock(&journal->j_state_lock);
348 		if (!journal->j_running_transaction &&
349 		    (handle->h_reserved || !journal->j_barrier_count)) {
350 			jbd2_get_transaction(journal, new_transaction);
351 			new_transaction = NULL;
352 		}
353 		write_unlock(&journal->j_state_lock);
354 		goto repeat;
355 	}
356 
357 	transaction = journal->j_running_transaction;
358 
359 	if (!handle->h_reserved) {
360 		/* We may have dropped j_state_lock - restart in that case */
361 		if (add_transaction_credits(journal, blocks, rsv_blocks))
362 			goto repeat;
363 	} else {
364 		/*
365 		 * We have handle reserved so we are allowed to join T_LOCKED
366 		 * transaction and we don't have to check for transaction size
367 		 * and journal space.
368 		 */
369 		sub_reserved_credits(journal, blocks);
370 		handle->h_reserved = 0;
371 	}
372 
373 	/* OK, account for the buffers that this operation expects to
374 	 * use and add the handle to the running transaction.
375 	 */
376 	update_t_max_wait(transaction, ts);
377 	handle->h_transaction = transaction;
378 	handle->h_requested_credits = blocks;
379 	handle->h_start_jiffies = jiffies;
380 	atomic_inc(&transaction->t_updates);
381 	atomic_inc(&transaction->t_handle_count);
382 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
383 		  handle, blocks,
384 		  atomic_read(&transaction->t_outstanding_credits),
385 		  jbd2_log_space_left(journal));
386 	read_unlock(&journal->j_state_lock);
387 	current->journal_info = handle;
388 
389 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
390 	jbd2_journal_free_transaction(new_transaction);
391 	return 0;
392 }
393 
394 /* Allocate a new handle.  This should probably be in a slab... */
395 static handle_t *new_handle(int nblocks)
396 {
397 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
398 	if (!handle)
399 		return NULL;
400 	handle->h_buffer_credits = nblocks;
401 	handle->h_ref = 1;
402 
403 	return handle;
404 }
405 
406 /**
407  * handle_t *jbd2_journal_start() - Obtain a new handle.
408  * @journal: Journal to start transaction on.
409  * @nblocks: number of block buffer we might modify
410  *
411  * We make sure that the transaction can guarantee at least nblocks of
412  * modified buffers in the log.  We block until the log can guarantee
413  * that much space. Additionally, if rsv_blocks > 0, we also create another
414  * handle with rsv_blocks reserved blocks in the journal. This handle is
415  * is stored in h_rsv_handle. It is not attached to any particular transaction
416  * and thus doesn't block transaction commit. If the caller uses this reserved
417  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
418  * on the parent handle will dispose the reserved one. Reserved handle has to
419  * be converted to a normal handle using jbd2_journal_start_reserved() before
420  * it can be used.
421  *
422  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
423  * on failure.
424  */
425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
426 			      gfp_t gfp_mask, unsigned int type,
427 			      unsigned int line_no)
428 {
429 	handle_t *handle = journal_current_handle();
430 	int err;
431 
432 	if (!journal)
433 		return ERR_PTR(-EROFS);
434 
435 	if (handle) {
436 		J_ASSERT(handle->h_transaction->t_journal == journal);
437 		handle->h_ref++;
438 		return handle;
439 	}
440 
441 	handle = new_handle(nblocks);
442 	if (!handle)
443 		return ERR_PTR(-ENOMEM);
444 	if (rsv_blocks) {
445 		handle_t *rsv_handle;
446 
447 		rsv_handle = new_handle(rsv_blocks);
448 		if (!rsv_handle) {
449 			jbd2_free_handle(handle);
450 			return ERR_PTR(-ENOMEM);
451 		}
452 		rsv_handle->h_reserved = 1;
453 		rsv_handle->h_journal = journal;
454 		handle->h_rsv_handle = rsv_handle;
455 	}
456 
457 	err = start_this_handle(journal, handle, gfp_mask);
458 	if (err < 0) {
459 		if (handle->h_rsv_handle)
460 			jbd2_free_handle(handle->h_rsv_handle);
461 		jbd2_free_handle(handle);
462 		return ERR_PTR(err);
463 	}
464 	handle->h_type = type;
465 	handle->h_line_no = line_no;
466 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
467 				handle->h_transaction->t_tid, type,
468 				line_no, nblocks);
469 	return handle;
470 }
471 EXPORT_SYMBOL(jbd2__journal_start);
472 
473 
474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
475 {
476 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
477 }
478 EXPORT_SYMBOL(jbd2_journal_start);
479 
480 void jbd2_journal_free_reserved(handle_t *handle)
481 {
482 	journal_t *journal = handle->h_journal;
483 
484 	WARN_ON(!handle->h_reserved);
485 	sub_reserved_credits(journal, handle->h_buffer_credits);
486 	jbd2_free_handle(handle);
487 }
488 EXPORT_SYMBOL(jbd2_journal_free_reserved);
489 
490 /**
491  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
492  * @handle: handle to start
493  *
494  * Start handle that has been previously reserved with jbd2_journal_reserve().
495  * This attaches @handle to the running transaction (or creates one if there's
496  * not transaction running). Unlike jbd2_journal_start() this function cannot
497  * block on journal commit, checkpointing, or similar stuff. It can block on
498  * memory allocation or frozen journal though.
499  *
500  * Return 0 on success, non-zero on error - handle is freed in that case.
501  */
502 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
503 				unsigned int line_no)
504 {
505 	journal_t *journal = handle->h_journal;
506 	int ret = -EIO;
507 
508 	if (WARN_ON(!handle->h_reserved)) {
509 		/* Someone passed in normal handle? Just stop it. */
510 		jbd2_journal_stop(handle);
511 		return ret;
512 	}
513 	/*
514 	 * Usefulness of mixing of reserved and unreserved handles is
515 	 * questionable. So far nobody seems to need it so just error out.
516 	 */
517 	if (WARN_ON(current->journal_info)) {
518 		jbd2_journal_free_reserved(handle);
519 		return ret;
520 	}
521 
522 	handle->h_journal = NULL;
523 	/*
524 	 * GFP_NOFS is here because callers are likely from writeback or
525 	 * similarly constrained call sites
526 	 */
527 	ret = start_this_handle(journal, handle, GFP_NOFS);
528 	if (ret < 0) {
529 		jbd2_journal_free_reserved(handle);
530 		return ret;
531 	}
532 	handle->h_type = type;
533 	handle->h_line_no = line_no;
534 	return 0;
535 }
536 EXPORT_SYMBOL(jbd2_journal_start_reserved);
537 
538 /**
539  * int jbd2_journal_extend() - extend buffer credits.
540  * @handle:  handle to 'extend'
541  * @nblocks: nr blocks to try to extend by.
542  *
543  * Some transactions, such as large extends and truncates, can be done
544  * atomically all at once or in several stages.  The operation requests
545  * a credit for a number of buffer modifications in advance, but can
546  * extend its credit if it needs more.
547  *
548  * jbd2_journal_extend tries to give the running handle more buffer credits.
549  * It does not guarantee that allocation - this is a best-effort only.
550  * The calling process MUST be able to deal cleanly with a failure to
551  * extend here.
552  *
553  * Return 0 on success, non-zero on failure.
554  *
555  * return code < 0 implies an error
556  * return code > 0 implies normal transaction-full status.
557  */
558 int jbd2_journal_extend(handle_t *handle, int nblocks)
559 {
560 	transaction_t *transaction = handle->h_transaction;
561 	journal_t *journal;
562 	int result;
563 	int wanted;
564 
565 	if (is_handle_aborted(handle))
566 		return -EROFS;
567 	journal = transaction->t_journal;
568 
569 	result = 1;
570 
571 	read_lock(&journal->j_state_lock);
572 
573 	/* Don't extend a locked-down transaction! */
574 	if (transaction->t_state != T_RUNNING) {
575 		jbd_debug(3, "denied handle %p %d blocks: "
576 			  "transaction not running\n", handle, nblocks);
577 		goto error_out;
578 	}
579 
580 	spin_lock(&transaction->t_handle_lock);
581 	wanted = atomic_add_return(nblocks,
582 				   &transaction->t_outstanding_credits);
583 
584 	if (wanted > journal->j_max_transaction_buffers) {
585 		jbd_debug(3, "denied handle %p %d blocks: "
586 			  "transaction too large\n", handle, nblocks);
587 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
588 		goto unlock;
589 	}
590 
591 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
592 	    jbd2_log_space_left(journal)) {
593 		jbd_debug(3, "denied handle %p %d blocks: "
594 			  "insufficient log space\n", handle, nblocks);
595 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
596 		goto unlock;
597 	}
598 
599 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
600 				 transaction->t_tid,
601 				 handle->h_type, handle->h_line_no,
602 				 handle->h_buffer_credits,
603 				 nblocks);
604 
605 	handle->h_buffer_credits += nblocks;
606 	handle->h_requested_credits += nblocks;
607 	result = 0;
608 
609 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
610 unlock:
611 	spin_unlock(&transaction->t_handle_lock);
612 error_out:
613 	read_unlock(&journal->j_state_lock);
614 	return result;
615 }
616 
617 
618 /**
619  * int jbd2_journal_restart() - restart a handle .
620  * @handle:  handle to restart
621  * @nblocks: nr credits requested
622  *
623  * Restart a handle for a multi-transaction filesystem
624  * operation.
625  *
626  * If the jbd2_journal_extend() call above fails to grant new buffer credits
627  * to a running handle, a call to jbd2_journal_restart will commit the
628  * handle's transaction so far and reattach the handle to a new
629  * transaction capable of guaranteeing the requested number of
630  * credits. We preserve reserved handle if there's any attached to the
631  * passed in handle.
632  */
633 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
634 {
635 	transaction_t *transaction = handle->h_transaction;
636 	journal_t *journal;
637 	tid_t		tid;
638 	int		need_to_start, ret;
639 
640 	/* If we've had an abort of any type, don't even think about
641 	 * actually doing the restart! */
642 	if (is_handle_aborted(handle))
643 		return 0;
644 	journal = transaction->t_journal;
645 
646 	/*
647 	 * First unlink the handle from its current transaction, and start the
648 	 * commit on that.
649 	 */
650 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
651 	J_ASSERT(journal_current_handle() == handle);
652 
653 	read_lock(&journal->j_state_lock);
654 	spin_lock(&transaction->t_handle_lock);
655 	atomic_sub(handle->h_buffer_credits,
656 		   &transaction->t_outstanding_credits);
657 	if (handle->h_rsv_handle) {
658 		sub_reserved_credits(journal,
659 				     handle->h_rsv_handle->h_buffer_credits);
660 	}
661 	if (atomic_dec_and_test(&transaction->t_updates))
662 		wake_up(&journal->j_wait_updates);
663 	tid = transaction->t_tid;
664 	spin_unlock(&transaction->t_handle_lock);
665 	handle->h_transaction = NULL;
666 	current->journal_info = NULL;
667 
668 	jbd_debug(2, "restarting handle %p\n", handle);
669 	need_to_start = !tid_geq(journal->j_commit_request, tid);
670 	read_unlock(&journal->j_state_lock);
671 	if (need_to_start)
672 		jbd2_log_start_commit(journal, tid);
673 
674 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
675 	handle->h_buffer_credits = nblocks;
676 	ret = start_this_handle(journal, handle, gfp_mask);
677 	return ret;
678 }
679 EXPORT_SYMBOL(jbd2__journal_restart);
680 
681 
682 int jbd2_journal_restart(handle_t *handle, int nblocks)
683 {
684 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
685 }
686 EXPORT_SYMBOL(jbd2_journal_restart);
687 
688 /**
689  * void jbd2_journal_lock_updates () - establish a transaction barrier.
690  * @journal:  Journal to establish a barrier on.
691  *
692  * This locks out any further updates from being started, and blocks
693  * until all existing updates have completed, returning only once the
694  * journal is in a quiescent state with no updates running.
695  *
696  * The journal lock should not be held on entry.
697  */
698 void jbd2_journal_lock_updates(journal_t *journal)
699 {
700 	DEFINE_WAIT(wait);
701 
702 	jbd2_might_wait_for_commit(journal);
703 
704 	write_lock(&journal->j_state_lock);
705 	++journal->j_barrier_count;
706 
707 	/* Wait until there are no reserved handles */
708 	if (atomic_read(&journal->j_reserved_credits)) {
709 		write_unlock(&journal->j_state_lock);
710 		wait_event(journal->j_wait_reserved,
711 			   atomic_read(&journal->j_reserved_credits) == 0);
712 		write_lock(&journal->j_state_lock);
713 	}
714 
715 	/* Wait until there are no running updates */
716 	while (1) {
717 		transaction_t *transaction = journal->j_running_transaction;
718 
719 		if (!transaction)
720 			break;
721 
722 		spin_lock(&transaction->t_handle_lock);
723 		prepare_to_wait(&journal->j_wait_updates, &wait,
724 				TASK_UNINTERRUPTIBLE);
725 		if (!atomic_read(&transaction->t_updates)) {
726 			spin_unlock(&transaction->t_handle_lock);
727 			finish_wait(&journal->j_wait_updates, &wait);
728 			break;
729 		}
730 		spin_unlock(&transaction->t_handle_lock);
731 		write_unlock(&journal->j_state_lock);
732 		schedule();
733 		finish_wait(&journal->j_wait_updates, &wait);
734 		write_lock(&journal->j_state_lock);
735 	}
736 	write_unlock(&journal->j_state_lock);
737 
738 	/*
739 	 * We have now established a barrier against other normal updates, but
740 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
741 	 * to make sure that we serialise special journal-locked operations
742 	 * too.
743 	 */
744 	mutex_lock(&journal->j_barrier);
745 }
746 
747 /**
748  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
749  * @journal:  Journal to release the barrier on.
750  *
751  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
752  *
753  * Should be called without the journal lock held.
754  */
755 void jbd2_journal_unlock_updates (journal_t *journal)
756 {
757 	J_ASSERT(journal->j_barrier_count != 0);
758 
759 	mutex_unlock(&journal->j_barrier);
760 	write_lock(&journal->j_state_lock);
761 	--journal->j_barrier_count;
762 	write_unlock(&journal->j_state_lock);
763 	wake_up(&journal->j_wait_transaction_locked);
764 }
765 
766 static void warn_dirty_buffer(struct buffer_head *bh)
767 {
768 	printk(KERN_WARNING
769 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
770 	       "There's a risk of filesystem corruption in case of system "
771 	       "crash.\n",
772 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
773 }
774 
775 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
776 static void jbd2_freeze_jh_data(struct journal_head *jh)
777 {
778 	struct page *page;
779 	int offset;
780 	char *source;
781 	struct buffer_head *bh = jh2bh(jh);
782 
783 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
784 	page = bh->b_page;
785 	offset = offset_in_page(bh->b_data);
786 	source = kmap_atomic(page);
787 	/* Fire data frozen trigger just before we copy the data */
788 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
789 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
790 	kunmap_atomic(source);
791 
792 	/*
793 	 * Now that the frozen data is saved off, we need to store any matching
794 	 * triggers.
795 	 */
796 	jh->b_frozen_triggers = jh->b_triggers;
797 }
798 
799 /*
800  * If the buffer is already part of the current transaction, then there
801  * is nothing we need to do.  If it is already part of a prior
802  * transaction which we are still committing to disk, then we need to
803  * make sure that we do not overwrite the old copy: we do copy-out to
804  * preserve the copy going to disk.  We also account the buffer against
805  * the handle's metadata buffer credits (unless the buffer is already
806  * part of the transaction, that is).
807  *
808  */
809 static int
810 do_get_write_access(handle_t *handle, struct journal_head *jh,
811 			int force_copy)
812 {
813 	struct buffer_head *bh;
814 	transaction_t *transaction = handle->h_transaction;
815 	journal_t *journal;
816 	int error;
817 	char *frozen_buffer = NULL;
818 	unsigned long start_lock, time_lock;
819 
820 	if (is_handle_aborted(handle))
821 		return -EROFS;
822 	journal = transaction->t_journal;
823 
824 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
825 
826 	JBUFFER_TRACE(jh, "entry");
827 repeat:
828 	bh = jh2bh(jh);
829 
830 	/* @@@ Need to check for errors here at some point. */
831 
832  	start_lock = jiffies;
833 	lock_buffer(bh);
834 	jbd_lock_bh_state(bh);
835 
836 	/* If it takes too long to lock the buffer, trace it */
837 	time_lock = jbd2_time_diff(start_lock, jiffies);
838 	if (time_lock > HZ/10)
839 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
840 			jiffies_to_msecs(time_lock));
841 
842 	/* We now hold the buffer lock so it is safe to query the buffer
843 	 * state.  Is the buffer dirty?
844 	 *
845 	 * If so, there are two possibilities.  The buffer may be
846 	 * non-journaled, and undergoing a quite legitimate writeback.
847 	 * Otherwise, it is journaled, and we don't expect dirty buffers
848 	 * in that state (the buffers should be marked JBD_Dirty
849 	 * instead.)  So either the IO is being done under our own
850 	 * control and this is a bug, or it's a third party IO such as
851 	 * dump(8) (which may leave the buffer scheduled for read ---
852 	 * ie. locked but not dirty) or tune2fs (which may actually have
853 	 * the buffer dirtied, ugh.)  */
854 
855 	if (buffer_dirty(bh)) {
856 		/*
857 		 * First question: is this buffer already part of the current
858 		 * transaction or the existing committing transaction?
859 		 */
860 		if (jh->b_transaction) {
861 			J_ASSERT_JH(jh,
862 				jh->b_transaction == transaction ||
863 				jh->b_transaction ==
864 					journal->j_committing_transaction);
865 			if (jh->b_next_transaction)
866 				J_ASSERT_JH(jh, jh->b_next_transaction ==
867 							transaction);
868 			warn_dirty_buffer(bh);
869 		}
870 		/*
871 		 * In any case we need to clean the dirty flag and we must
872 		 * do it under the buffer lock to be sure we don't race
873 		 * with running write-out.
874 		 */
875 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
876 		clear_buffer_dirty(bh);
877 		set_buffer_jbddirty(bh);
878 	}
879 
880 	unlock_buffer(bh);
881 
882 	error = -EROFS;
883 	if (is_handle_aborted(handle)) {
884 		jbd_unlock_bh_state(bh);
885 		goto out;
886 	}
887 	error = 0;
888 
889 	/*
890 	 * The buffer is already part of this transaction if b_transaction or
891 	 * b_next_transaction points to it
892 	 */
893 	if (jh->b_transaction == transaction ||
894 	    jh->b_next_transaction == transaction)
895 		goto done;
896 
897 	/*
898 	 * this is the first time this transaction is touching this buffer,
899 	 * reset the modified flag
900 	 */
901        jh->b_modified = 0;
902 
903 	/*
904 	 * If the buffer is not journaled right now, we need to make sure it
905 	 * doesn't get written to disk before the caller actually commits the
906 	 * new data
907 	 */
908 	if (!jh->b_transaction) {
909 		JBUFFER_TRACE(jh, "no transaction");
910 		J_ASSERT_JH(jh, !jh->b_next_transaction);
911 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
912 		/*
913 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
914 		 * visible before attaching it to the running transaction.
915 		 * Paired with barrier in jbd2_write_access_granted()
916 		 */
917 		smp_wmb();
918 		spin_lock(&journal->j_list_lock);
919 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
920 		spin_unlock(&journal->j_list_lock);
921 		goto done;
922 	}
923 	/*
924 	 * If there is already a copy-out version of this buffer, then we don't
925 	 * need to make another one
926 	 */
927 	if (jh->b_frozen_data) {
928 		JBUFFER_TRACE(jh, "has frozen data");
929 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
930 		goto attach_next;
931 	}
932 
933 	JBUFFER_TRACE(jh, "owned by older transaction");
934 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
935 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
936 
937 	/*
938 	 * There is one case we have to be very careful about.  If the
939 	 * committing transaction is currently writing this buffer out to disk
940 	 * and has NOT made a copy-out, then we cannot modify the buffer
941 	 * contents at all right now.  The essence of copy-out is that it is
942 	 * the extra copy, not the primary copy, which gets journaled.  If the
943 	 * primary copy is already going to disk then we cannot do copy-out
944 	 * here.
945 	 */
946 	if (buffer_shadow(bh)) {
947 		JBUFFER_TRACE(jh, "on shadow: sleep");
948 		jbd_unlock_bh_state(bh);
949 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
950 		goto repeat;
951 	}
952 
953 	/*
954 	 * Only do the copy if the currently-owning transaction still needs it.
955 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
956 	 * past that stage (here we use the fact that BH_Shadow is set under
957 	 * bh_state lock together with refiling to BJ_Shadow list and at this
958 	 * point we know the buffer doesn't have BH_Shadow set).
959 	 *
960 	 * Subtle point, though: if this is a get_undo_access, then we will be
961 	 * relying on the frozen_data to contain the new value of the
962 	 * committed_data record after the transaction, so we HAVE to force the
963 	 * frozen_data copy in that case.
964 	 */
965 	if (jh->b_jlist == BJ_Metadata || force_copy) {
966 		JBUFFER_TRACE(jh, "generate frozen data");
967 		if (!frozen_buffer) {
968 			JBUFFER_TRACE(jh, "allocate memory for buffer");
969 			jbd_unlock_bh_state(bh);
970 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
971 						   GFP_NOFS | __GFP_NOFAIL);
972 			goto repeat;
973 		}
974 		jh->b_frozen_data = frozen_buffer;
975 		frozen_buffer = NULL;
976 		jbd2_freeze_jh_data(jh);
977 	}
978 attach_next:
979 	/*
980 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
981 	 * before attaching it to the running transaction. Paired with barrier
982 	 * in jbd2_write_access_granted()
983 	 */
984 	smp_wmb();
985 	jh->b_next_transaction = transaction;
986 
987 done:
988 	jbd_unlock_bh_state(bh);
989 
990 	/*
991 	 * If we are about to journal a buffer, then any revoke pending on it is
992 	 * no longer valid
993 	 */
994 	jbd2_journal_cancel_revoke(handle, jh);
995 
996 out:
997 	if (unlikely(frozen_buffer))	/* It's usually NULL */
998 		jbd2_free(frozen_buffer, bh->b_size);
999 
1000 	JBUFFER_TRACE(jh, "exit");
1001 	return error;
1002 }
1003 
1004 /* Fast check whether buffer is already attached to the required transaction */
1005 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1006 							bool undo)
1007 {
1008 	struct journal_head *jh;
1009 	bool ret = false;
1010 
1011 	/* Dirty buffers require special handling... */
1012 	if (buffer_dirty(bh))
1013 		return false;
1014 
1015 	/*
1016 	 * RCU protects us from dereferencing freed pages. So the checks we do
1017 	 * are guaranteed not to oops. However the jh slab object can get freed
1018 	 * & reallocated while we work with it. So we have to be careful. When
1019 	 * we see jh attached to the running transaction, we know it must stay
1020 	 * so until the transaction is committed. Thus jh won't be freed and
1021 	 * will be attached to the same bh while we run.  However it can
1022 	 * happen jh gets freed, reallocated, and attached to the transaction
1023 	 * just after we get pointer to it from bh. So we have to be careful
1024 	 * and recheck jh still belongs to our bh before we return success.
1025 	 */
1026 	rcu_read_lock();
1027 	if (!buffer_jbd(bh))
1028 		goto out;
1029 	/* This should be bh2jh() but that doesn't work with inline functions */
1030 	jh = READ_ONCE(bh->b_private);
1031 	if (!jh)
1032 		goto out;
1033 	/* For undo access buffer must have data copied */
1034 	if (undo && !jh->b_committed_data)
1035 		goto out;
1036 	if (jh->b_transaction != handle->h_transaction &&
1037 	    jh->b_next_transaction != handle->h_transaction)
1038 		goto out;
1039 	/*
1040 	 * There are two reasons for the barrier here:
1041 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1042 	 * detect when jh went through free, realloc, attach to transaction
1043 	 * while we were checking. Paired with implicit barrier in that path.
1044 	 * 2) So that access to bh done after jbd2_write_access_granted()
1045 	 * doesn't get reordered and see inconsistent state of concurrent
1046 	 * do_get_write_access().
1047 	 */
1048 	smp_mb();
1049 	if (unlikely(jh->b_bh != bh))
1050 		goto out;
1051 	ret = true;
1052 out:
1053 	rcu_read_unlock();
1054 	return ret;
1055 }
1056 
1057 /**
1058  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1059  * @handle: transaction to add buffer modifications to
1060  * @bh:     bh to be used for metadata writes
1061  *
1062  * Returns an error code or 0 on success.
1063  *
1064  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1065  * because we're write()ing a buffer which is also part of a shared mapping.
1066  */
1067 
1068 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1069 {
1070 	struct journal_head *jh;
1071 	int rc;
1072 
1073 	if (jbd2_write_access_granted(handle, bh, false))
1074 		return 0;
1075 
1076 	jh = jbd2_journal_add_journal_head(bh);
1077 	/* We do not want to get caught playing with fields which the
1078 	 * log thread also manipulates.  Make sure that the buffer
1079 	 * completes any outstanding IO before proceeding. */
1080 	rc = do_get_write_access(handle, jh, 0);
1081 	jbd2_journal_put_journal_head(jh);
1082 	return rc;
1083 }
1084 
1085 
1086 /*
1087  * When the user wants to journal a newly created buffer_head
1088  * (ie. getblk() returned a new buffer and we are going to populate it
1089  * manually rather than reading off disk), then we need to keep the
1090  * buffer_head locked until it has been completely filled with new
1091  * data.  In this case, we should be able to make the assertion that
1092  * the bh is not already part of an existing transaction.
1093  *
1094  * The buffer should already be locked by the caller by this point.
1095  * There is no lock ranking violation: it was a newly created,
1096  * unlocked buffer beforehand. */
1097 
1098 /**
1099  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1100  * @handle: transaction to new buffer to
1101  * @bh: new buffer.
1102  *
1103  * Call this if you create a new bh.
1104  */
1105 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1106 {
1107 	transaction_t *transaction = handle->h_transaction;
1108 	journal_t *journal;
1109 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1110 	int err;
1111 
1112 	jbd_debug(5, "journal_head %p\n", jh);
1113 	err = -EROFS;
1114 	if (is_handle_aborted(handle))
1115 		goto out;
1116 	journal = transaction->t_journal;
1117 	err = 0;
1118 
1119 	JBUFFER_TRACE(jh, "entry");
1120 	/*
1121 	 * The buffer may already belong to this transaction due to pre-zeroing
1122 	 * in the filesystem's new_block code.  It may also be on the previous,
1123 	 * committing transaction's lists, but it HAS to be in Forget state in
1124 	 * that case: the transaction must have deleted the buffer for it to be
1125 	 * reused here.
1126 	 */
1127 	jbd_lock_bh_state(bh);
1128 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1129 		jh->b_transaction == NULL ||
1130 		(jh->b_transaction == journal->j_committing_transaction &&
1131 			  jh->b_jlist == BJ_Forget)));
1132 
1133 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1134 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1135 
1136 	if (jh->b_transaction == NULL) {
1137 		/*
1138 		 * Previous jbd2_journal_forget() could have left the buffer
1139 		 * with jbddirty bit set because it was being committed. When
1140 		 * the commit finished, we've filed the buffer for
1141 		 * checkpointing and marked it dirty. Now we are reallocating
1142 		 * the buffer so the transaction freeing it must have
1143 		 * committed and so it's safe to clear the dirty bit.
1144 		 */
1145 		clear_buffer_dirty(jh2bh(jh));
1146 		/* first access by this transaction */
1147 		jh->b_modified = 0;
1148 
1149 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1150 		spin_lock(&journal->j_list_lock);
1151 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1152 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1153 		/* first access by this transaction */
1154 		jh->b_modified = 0;
1155 
1156 		JBUFFER_TRACE(jh, "set next transaction");
1157 		spin_lock(&journal->j_list_lock);
1158 		jh->b_next_transaction = transaction;
1159 	}
1160 	spin_unlock(&journal->j_list_lock);
1161 	jbd_unlock_bh_state(bh);
1162 
1163 	/*
1164 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1165 	 * blocks which contain freed but then revoked metadata.  We need
1166 	 * to cancel the revoke in case we end up freeing it yet again
1167 	 * and the reallocating as data - this would cause a second revoke,
1168 	 * which hits an assertion error.
1169 	 */
1170 	JBUFFER_TRACE(jh, "cancelling revoke");
1171 	jbd2_journal_cancel_revoke(handle, jh);
1172 out:
1173 	jbd2_journal_put_journal_head(jh);
1174 	return err;
1175 }
1176 
1177 /**
1178  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1179  *     non-rewindable consequences
1180  * @handle: transaction
1181  * @bh: buffer to undo
1182  *
1183  * Sometimes there is a need to distinguish between metadata which has
1184  * been committed to disk and that which has not.  The ext3fs code uses
1185  * this for freeing and allocating space, we have to make sure that we
1186  * do not reuse freed space until the deallocation has been committed,
1187  * since if we overwrote that space we would make the delete
1188  * un-rewindable in case of a crash.
1189  *
1190  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1191  * buffer for parts of non-rewindable operations such as delete
1192  * operations on the bitmaps.  The journaling code must keep a copy of
1193  * the buffer's contents prior to the undo_access call until such time
1194  * as we know that the buffer has definitely been committed to disk.
1195  *
1196  * We never need to know which transaction the committed data is part
1197  * of, buffers touched here are guaranteed to be dirtied later and so
1198  * will be committed to a new transaction in due course, at which point
1199  * we can discard the old committed data pointer.
1200  *
1201  * Returns error number or 0 on success.
1202  */
1203 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1204 {
1205 	int err;
1206 	struct journal_head *jh;
1207 	char *committed_data = NULL;
1208 
1209 	JBUFFER_TRACE(jh, "entry");
1210 	if (jbd2_write_access_granted(handle, bh, true))
1211 		return 0;
1212 
1213 	jh = jbd2_journal_add_journal_head(bh);
1214 	/*
1215 	 * Do this first --- it can drop the journal lock, so we want to
1216 	 * make sure that obtaining the committed_data is done
1217 	 * atomically wrt. completion of any outstanding commits.
1218 	 */
1219 	err = do_get_write_access(handle, jh, 1);
1220 	if (err)
1221 		goto out;
1222 
1223 repeat:
1224 	if (!jh->b_committed_data)
1225 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1226 					    GFP_NOFS|__GFP_NOFAIL);
1227 
1228 	jbd_lock_bh_state(bh);
1229 	if (!jh->b_committed_data) {
1230 		/* Copy out the current buffer contents into the
1231 		 * preserved, committed copy. */
1232 		JBUFFER_TRACE(jh, "generate b_committed data");
1233 		if (!committed_data) {
1234 			jbd_unlock_bh_state(bh);
1235 			goto repeat;
1236 		}
1237 
1238 		jh->b_committed_data = committed_data;
1239 		committed_data = NULL;
1240 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1241 	}
1242 	jbd_unlock_bh_state(bh);
1243 out:
1244 	jbd2_journal_put_journal_head(jh);
1245 	if (unlikely(committed_data))
1246 		jbd2_free(committed_data, bh->b_size);
1247 	return err;
1248 }
1249 
1250 /**
1251  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1252  * @bh: buffer to trigger on
1253  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1254  *
1255  * Set any triggers on this journal_head.  This is always safe, because
1256  * triggers for a committing buffer will be saved off, and triggers for
1257  * a running transaction will match the buffer in that transaction.
1258  *
1259  * Call with NULL to clear the triggers.
1260  */
1261 void jbd2_journal_set_triggers(struct buffer_head *bh,
1262 			       struct jbd2_buffer_trigger_type *type)
1263 {
1264 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1265 
1266 	if (WARN_ON(!jh))
1267 		return;
1268 	jh->b_triggers = type;
1269 	jbd2_journal_put_journal_head(jh);
1270 }
1271 
1272 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1273 				struct jbd2_buffer_trigger_type *triggers)
1274 {
1275 	struct buffer_head *bh = jh2bh(jh);
1276 
1277 	if (!triggers || !triggers->t_frozen)
1278 		return;
1279 
1280 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1281 }
1282 
1283 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1284 			       struct jbd2_buffer_trigger_type *triggers)
1285 {
1286 	if (!triggers || !triggers->t_abort)
1287 		return;
1288 
1289 	triggers->t_abort(triggers, jh2bh(jh));
1290 }
1291 
1292 /**
1293  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1294  * @handle: transaction to add buffer to.
1295  * @bh: buffer to mark
1296  *
1297  * mark dirty metadata which needs to be journaled as part of the current
1298  * transaction.
1299  *
1300  * The buffer must have previously had jbd2_journal_get_write_access()
1301  * called so that it has a valid journal_head attached to the buffer
1302  * head.
1303  *
1304  * The buffer is placed on the transaction's metadata list and is marked
1305  * as belonging to the transaction.
1306  *
1307  * Returns error number or 0 on success.
1308  *
1309  * Special care needs to be taken if the buffer already belongs to the
1310  * current committing transaction (in which case we should have frozen
1311  * data present for that commit).  In that case, we don't relink the
1312  * buffer: that only gets done when the old transaction finally
1313  * completes its commit.
1314  */
1315 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1316 {
1317 	transaction_t *transaction = handle->h_transaction;
1318 	journal_t *journal;
1319 	struct journal_head *jh;
1320 	int ret = 0;
1321 
1322 	if (is_handle_aborted(handle))
1323 		return -EROFS;
1324 	if (!buffer_jbd(bh)) {
1325 		ret = -EUCLEAN;
1326 		goto out;
1327 	}
1328 	/*
1329 	 * We don't grab jh reference here since the buffer must be part
1330 	 * of the running transaction.
1331 	 */
1332 	jh = bh2jh(bh);
1333 	/*
1334 	 * This and the following assertions are unreliable since we may see jh
1335 	 * in inconsistent state unless we grab bh_state lock. But this is
1336 	 * crucial to catch bugs so let's do a reliable check until the
1337 	 * lockless handling is fully proven.
1338 	 */
1339 	if (jh->b_transaction != transaction &&
1340 	    jh->b_next_transaction != transaction) {
1341 		jbd_lock_bh_state(bh);
1342 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1343 				jh->b_next_transaction == transaction);
1344 		jbd_unlock_bh_state(bh);
1345 	}
1346 	if (jh->b_modified == 1) {
1347 		/* If it's in our transaction it must be in BJ_Metadata list. */
1348 		if (jh->b_transaction == transaction &&
1349 		    jh->b_jlist != BJ_Metadata) {
1350 			jbd_lock_bh_state(bh);
1351 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1352 					jh->b_jlist == BJ_Metadata);
1353 			jbd_unlock_bh_state(bh);
1354 		}
1355 		goto out;
1356 	}
1357 
1358 	journal = transaction->t_journal;
1359 	jbd_debug(5, "journal_head %p\n", jh);
1360 	JBUFFER_TRACE(jh, "entry");
1361 
1362 	jbd_lock_bh_state(bh);
1363 
1364 	if (jh->b_modified == 0) {
1365 		/*
1366 		 * This buffer's got modified and becoming part
1367 		 * of the transaction. This needs to be done
1368 		 * once a transaction -bzzz
1369 		 */
1370 		jh->b_modified = 1;
1371 		if (handle->h_buffer_credits <= 0) {
1372 			ret = -ENOSPC;
1373 			goto out_unlock_bh;
1374 		}
1375 		handle->h_buffer_credits--;
1376 	}
1377 
1378 	/*
1379 	 * fastpath, to avoid expensive locking.  If this buffer is already
1380 	 * on the running transaction's metadata list there is nothing to do.
1381 	 * Nobody can take it off again because there is a handle open.
1382 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1383 	 * result in this test being false, so we go in and take the locks.
1384 	 */
1385 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1386 		JBUFFER_TRACE(jh, "fastpath");
1387 		if (unlikely(jh->b_transaction !=
1388 			     journal->j_running_transaction)) {
1389 			printk(KERN_ERR "JBD2: %s: "
1390 			       "jh->b_transaction (%llu, %p, %u) != "
1391 			       "journal->j_running_transaction (%p, %u)\n",
1392 			       journal->j_devname,
1393 			       (unsigned long long) bh->b_blocknr,
1394 			       jh->b_transaction,
1395 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1396 			       journal->j_running_transaction,
1397 			       journal->j_running_transaction ?
1398 			       journal->j_running_transaction->t_tid : 0);
1399 			ret = -EINVAL;
1400 		}
1401 		goto out_unlock_bh;
1402 	}
1403 
1404 	set_buffer_jbddirty(bh);
1405 
1406 	/*
1407 	 * Metadata already on the current transaction list doesn't
1408 	 * need to be filed.  Metadata on another transaction's list must
1409 	 * be committing, and will be refiled once the commit completes:
1410 	 * leave it alone for now.
1411 	 */
1412 	if (jh->b_transaction != transaction) {
1413 		JBUFFER_TRACE(jh, "already on other transaction");
1414 		if (unlikely(((jh->b_transaction !=
1415 			       journal->j_committing_transaction)) ||
1416 			     (jh->b_next_transaction != transaction))) {
1417 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1418 			       "bad jh for block %llu: "
1419 			       "transaction (%p, %u), "
1420 			       "jh->b_transaction (%p, %u), "
1421 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1422 			       journal->j_devname,
1423 			       (unsigned long long) bh->b_blocknr,
1424 			       transaction, transaction->t_tid,
1425 			       jh->b_transaction,
1426 			       jh->b_transaction ?
1427 			       jh->b_transaction->t_tid : 0,
1428 			       jh->b_next_transaction,
1429 			       jh->b_next_transaction ?
1430 			       jh->b_next_transaction->t_tid : 0,
1431 			       jh->b_jlist);
1432 			WARN_ON(1);
1433 			ret = -EINVAL;
1434 		}
1435 		/* And this case is illegal: we can't reuse another
1436 		 * transaction's data buffer, ever. */
1437 		goto out_unlock_bh;
1438 	}
1439 
1440 	/* That test should have eliminated the following case: */
1441 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1442 
1443 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1444 	spin_lock(&journal->j_list_lock);
1445 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1446 	spin_unlock(&journal->j_list_lock);
1447 out_unlock_bh:
1448 	jbd_unlock_bh_state(bh);
1449 out:
1450 	JBUFFER_TRACE(jh, "exit");
1451 	return ret;
1452 }
1453 
1454 /**
1455  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1456  * @handle: transaction handle
1457  * @bh:     bh to 'forget'
1458  *
1459  * We can only do the bforget if there are no commits pending against the
1460  * buffer.  If the buffer is dirty in the current running transaction we
1461  * can safely unlink it.
1462  *
1463  * bh may not be a journalled buffer at all - it may be a non-JBD
1464  * buffer which came off the hashtable.  Check for this.
1465  *
1466  * Decrements bh->b_count by one.
1467  *
1468  * Allow this call even if the handle has aborted --- it may be part of
1469  * the caller's cleanup after an abort.
1470  */
1471 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1472 {
1473 	transaction_t *transaction = handle->h_transaction;
1474 	journal_t *journal;
1475 	struct journal_head *jh;
1476 	int drop_reserve = 0;
1477 	int err = 0;
1478 	int was_modified = 0;
1479 
1480 	if (is_handle_aborted(handle))
1481 		return -EROFS;
1482 	journal = transaction->t_journal;
1483 
1484 	BUFFER_TRACE(bh, "entry");
1485 
1486 	jbd_lock_bh_state(bh);
1487 
1488 	if (!buffer_jbd(bh))
1489 		goto not_jbd;
1490 	jh = bh2jh(bh);
1491 
1492 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1493 	 * Don't do any jbd operations, and return an error. */
1494 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1495 			 "inconsistent data on disk")) {
1496 		err = -EIO;
1497 		goto not_jbd;
1498 	}
1499 
1500 	/* keep track of whether or not this transaction modified us */
1501 	was_modified = jh->b_modified;
1502 
1503 	/*
1504 	 * The buffer's going from the transaction, we must drop
1505 	 * all references -bzzz
1506 	 */
1507 	jh->b_modified = 0;
1508 
1509 	if (jh->b_transaction == transaction) {
1510 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1511 
1512 		/* If we are forgetting a buffer which is already part
1513 		 * of this transaction, then we can just drop it from
1514 		 * the transaction immediately. */
1515 		clear_buffer_dirty(bh);
1516 		clear_buffer_jbddirty(bh);
1517 
1518 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1519 
1520 		/*
1521 		 * we only want to drop a reference if this transaction
1522 		 * modified the buffer
1523 		 */
1524 		if (was_modified)
1525 			drop_reserve = 1;
1526 
1527 		/*
1528 		 * We are no longer going to journal this buffer.
1529 		 * However, the commit of this transaction is still
1530 		 * important to the buffer: the delete that we are now
1531 		 * processing might obsolete an old log entry, so by
1532 		 * committing, we can satisfy the buffer's checkpoint.
1533 		 *
1534 		 * So, if we have a checkpoint on the buffer, we should
1535 		 * now refile the buffer on our BJ_Forget list so that
1536 		 * we know to remove the checkpoint after we commit.
1537 		 */
1538 
1539 		spin_lock(&journal->j_list_lock);
1540 		if (jh->b_cp_transaction) {
1541 			__jbd2_journal_temp_unlink_buffer(jh);
1542 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1543 		} else {
1544 			__jbd2_journal_unfile_buffer(jh);
1545 			if (!buffer_jbd(bh)) {
1546 				spin_unlock(&journal->j_list_lock);
1547 				jbd_unlock_bh_state(bh);
1548 				__bforget(bh);
1549 				goto drop;
1550 			}
1551 		}
1552 		spin_unlock(&journal->j_list_lock);
1553 	} else if (jh->b_transaction) {
1554 		J_ASSERT_JH(jh, (jh->b_transaction ==
1555 				 journal->j_committing_transaction));
1556 		/* However, if the buffer is still owned by a prior
1557 		 * (committing) transaction, we can't drop it yet... */
1558 		JBUFFER_TRACE(jh, "belongs to older transaction");
1559 		/* ... but we CAN drop it from the new transaction if we
1560 		 * have also modified it since the original commit. */
1561 
1562 		if (jh->b_next_transaction) {
1563 			J_ASSERT(jh->b_next_transaction == transaction);
1564 			spin_lock(&journal->j_list_lock);
1565 			jh->b_next_transaction = NULL;
1566 			spin_unlock(&journal->j_list_lock);
1567 
1568 			/*
1569 			 * only drop a reference if this transaction modified
1570 			 * the buffer
1571 			 */
1572 			if (was_modified)
1573 				drop_reserve = 1;
1574 		}
1575 	}
1576 
1577 not_jbd:
1578 	jbd_unlock_bh_state(bh);
1579 	__brelse(bh);
1580 drop:
1581 	if (drop_reserve) {
1582 		/* no need to reserve log space for this block -bzzz */
1583 		handle->h_buffer_credits++;
1584 	}
1585 	return err;
1586 }
1587 
1588 /**
1589  * int jbd2_journal_stop() - complete a transaction
1590  * @handle: transaction to complete.
1591  *
1592  * All done for a particular handle.
1593  *
1594  * There is not much action needed here.  We just return any remaining
1595  * buffer credits to the transaction and remove the handle.  The only
1596  * complication is that we need to start a commit operation if the
1597  * filesystem is marked for synchronous update.
1598  *
1599  * jbd2_journal_stop itself will not usually return an error, but it may
1600  * do so in unusual circumstances.  In particular, expect it to
1601  * return -EIO if a jbd2_journal_abort has been executed since the
1602  * transaction began.
1603  */
1604 int jbd2_journal_stop(handle_t *handle)
1605 {
1606 	transaction_t *transaction = handle->h_transaction;
1607 	journal_t *journal;
1608 	int err = 0, wait_for_commit = 0;
1609 	tid_t tid;
1610 	pid_t pid;
1611 
1612 	if (!transaction) {
1613 		/*
1614 		 * Handle is already detached from the transaction so
1615 		 * there is nothing to do other than decrease a refcount,
1616 		 * or free the handle if refcount drops to zero
1617 		 */
1618 		if (--handle->h_ref > 0) {
1619 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1620 							 handle->h_ref);
1621 			return err;
1622 		} else {
1623 			if (handle->h_rsv_handle)
1624 				jbd2_free_handle(handle->h_rsv_handle);
1625 			goto free_and_exit;
1626 		}
1627 	}
1628 	journal = transaction->t_journal;
1629 
1630 	J_ASSERT(journal_current_handle() == handle);
1631 
1632 	if (is_handle_aborted(handle))
1633 		err = -EIO;
1634 	else
1635 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1636 
1637 	if (--handle->h_ref > 0) {
1638 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1639 			  handle->h_ref);
1640 		return err;
1641 	}
1642 
1643 	jbd_debug(4, "Handle %p going down\n", handle);
1644 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1645 				transaction->t_tid,
1646 				handle->h_type, handle->h_line_no,
1647 				jiffies - handle->h_start_jiffies,
1648 				handle->h_sync, handle->h_requested_credits,
1649 				(handle->h_requested_credits -
1650 				 handle->h_buffer_credits));
1651 
1652 	/*
1653 	 * Implement synchronous transaction batching.  If the handle
1654 	 * was synchronous, don't force a commit immediately.  Let's
1655 	 * yield and let another thread piggyback onto this
1656 	 * transaction.  Keep doing that while new threads continue to
1657 	 * arrive.  It doesn't cost much - we're about to run a commit
1658 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1659 	 * operations by 30x or more...
1660 	 *
1661 	 * We try and optimize the sleep time against what the
1662 	 * underlying disk can do, instead of having a static sleep
1663 	 * time.  This is useful for the case where our storage is so
1664 	 * fast that it is more optimal to go ahead and force a flush
1665 	 * and wait for the transaction to be committed than it is to
1666 	 * wait for an arbitrary amount of time for new writers to
1667 	 * join the transaction.  We achieve this by measuring how
1668 	 * long it takes to commit a transaction, and compare it with
1669 	 * how long this transaction has been running, and if run time
1670 	 * < commit time then we sleep for the delta and commit.  This
1671 	 * greatly helps super fast disks that would see slowdowns as
1672 	 * more threads started doing fsyncs.
1673 	 *
1674 	 * But don't do this if this process was the most recent one
1675 	 * to perform a synchronous write.  We do this to detect the
1676 	 * case where a single process is doing a stream of sync
1677 	 * writes.  No point in waiting for joiners in that case.
1678 	 *
1679 	 * Setting max_batch_time to 0 disables this completely.
1680 	 */
1681 	pid = current->pid;
1682 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1683 	    journal->j_max_batch_time) {
1684 		u64 commit_time, trans_time;
1685 
1686 		journal->j_last_sync_writer = pid;
1687 
1688 		read_lock(&journal->j_state_lock);
1689 		commit_time = journal->j_average_commit_time;
1690 		read_unlock(&journal->j_state_lock);
1691 
1692 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1693 						   transaction->t_start_time));
1694 
1695 		commit_time = max_t(u64, commit_time,
1696 				    1000*journal->j_min_batch_time);
1697 		commit_time = min_t(u64, commit_time,
1698 				    1000*journal->j_max_batch_time);
1699 
1700 		if (trans_time < commit_time) {
1701 			ktime_t expires = ktime_add_ns(ktime_get(),
1702 						       commit_time);
1703 			set_current_state(TASK_UNINTERRUPTIBLE);
1704 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1705 		}
1706 	}
1707 
1708 	if (handle->h_sync)
1709 		transaction->t_synchronous_commit = 1;
1710 	current->journal_info = NULL;
1711 	atomic_sub(handle->h_buffer_credits,
1712 		   &transaction->t_outstanding_credits);
1713 
1714 	/*
1715 	 * If the handle is marked SYNC, we need to set another commit
1716 	 * going!  We also want to force a commit if the current
1717 	 * transaction is occupying too much of the log, or if the
1718 	 * transaction is too old now.
1719 	 */
1720 	if (handle->h_sync ||
1721 	    (atomic_read(&transaction->t_outstanding_credits) >
1722 	     journal->j_max_transaction_buffers) ||
1723 	    time_after_eq(jiffies, transaction->t_expires)) {
1724 		/* Do this even for aborted journals: an abort still
1725 		 * completes the commit thread, it just doesn't write
1726 		 * anything to disk. */
1727 
1728 		jbd_debug(2, "transaction too old, requesting commit for "
1729 					"handle %p\n", handle);
1730 		/* This is non-blocking */
1731 		jbd2_log_start_commit(journal, transaction->t_tid);
1732 
1733 		/*
1734 		 * Special case: JBD2_SYNC synchronous updates require us
1735 		 * to wait for the commit to complete.
1736 		 */
1737 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1738 			wait_for_commit = 1;
1739 	}
1740 
1741 	/*
1742 	 * Once we drop t_updates, if it goes to zero the transaction
1743 	 * could start committing on us and eventually disappear.  So
1744 	 * once we do this, we must not dereference transaction
1745 	 * pointer again.
1746 	 */
1747 	tid = transaction->t_tid;
1748 	if (atomic_dec_and_test(&transaction->t_updates)) {
1749 		wake_up(&journal->j_wait_updates);
1750 		if (journal->j_barrier_count)
1751 			wake_up(&journal->j_wait_transaction_locked);
1752 	}
1753 
1754 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1755 
1756 	if (wait_for_commit)
1757 		err = jbd2_log_wait_commit(journal, tid);
1758 
1759 	if (handle->h_rsv_handle)
1760 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1761 free_and_exit:
1762 	jbd2_free_handle(handle);
1763 	return err;
1764 }
1765 
1766 /*
1767  *
1768  * List management code snippets: various functions for manipulating the
1769  * transaction buffer lists.
1770  *
1771  */
1772 
1773 /*
1774  * Append a buffer to a transaction list, given the transaction's list head
1775  * pointer.
1776  *
1777  * j_list_lock is held.
1778  *
1779  * jbd_lock_bh_state(jh2bh(jh)) is held.
1780  */
1781 
1782 static inline void
1783 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1784 {
1785 	if (!*list) {
1786 		jh->b_tnext = jh->b_tprev = jh;
1787 		*list = jh;
1788 	} else {
1789 		/* Insert at the tail of the list to preserve order */
1790 		struct journal_head *first = *list, *last = first->b_tprev;
1791 		jh->b_tprev = last;
1792 		jh->b_tnext = first;
1793 		last->b_tnext = first->b_tprev = jh;
1794 	}
1795 }
1796 
1797 /*
1798  * Remove a buffer from a transaction list, given the transaction's list
1799  * head pointer.
1800  *
1801  * Called with j_list_lock held, and the journal may not be locked.
1802  *
1803  * jbd_lock_bh_state(jh2bh(jh)) is held.
1804  */
1805 
1806 static inline void
1807 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1808 {
1809 	if (*list == jh) {
1810 		*list = jh->b_tnext;
1811 		if (*list == jh)
1812 			*list = NULL;
1813 	}
1814 	jh->b_tprev->b_tnext = jh->b_tnext;
1815 	jh->b_tnext->b_tprev = jh->b_tprev;
1816 }
1817 
1818 /*
1819  * Remove a buffer from the appropriate transaction list.
1820  *
1821  * Note that this function can *change* the value of
1822  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1823  * t_reserved_list.  If the caller is holding onto a copy of one of these
1824  * pointers, it could go bad.  Generally the caller needs to re-read the
1825  * pointer from the transaction_t.
1826  *
1827  * Called under j_list_lock.
1828  */
1829 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1830 {
1831 	struct journal_head **list = NULL;
1832 	transaction_t *transaction;
1833 	struct buffer_head *bh = jh2bh(jh);
1834 
1835 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1836 	transaction = jh->b_transaction;
1837 	if (transaction)
1838 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1839 
1840 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1841 	if (jh->b_jlist != BJ_None)
1842 		J_ASSERT_JH(jh, transaction != NULL);
1843 
1844 	switch (jh->b_jlist) {
1845 	case BJ_None:
1846 		return;
1847 	case BJ_Metadata:
1848 		transaction->t_nr_buffers--;
1849 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1850 		list = &transaction->t_buffers;
1851 		break;
1852 	case BJ_Forget:
1853 		list = &transaction->t_forget;
1854 		break;
1855 	case BJ_Shadow:
1856 		list = &transaction->t_shadow_list;
1857 		break;
1858 	case BJ_Reserved:
1859 		list = &transaction->t_reserved_list;
1860 		break;
1861 	}
1862 
1863 	__blist_del_buffer(list, jh);
1864 	jh->b_jlist = BJ_None;
1865 	if (test_clear_buffer_jbddirty(bh))
1866 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1867 }
1868 
1869 /*
1870  * Remove buffer from all transactions.
1871  *
1872  * Called with bh_state lock and j_list_lock
1873  *
1874  * jh and bh may be already freed when this function returns.
1875  */
1876 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1877 {
1878 	__jbd2_journal_temp_unlink_buffer(jh);
1879 	jh->b_transaction = NULL;
1880 	jbd2_journal_put_journal_head(jh);
1881 }
1882 
1883 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1884 {
1885 	struct buffer_head *bh = jh2bh(jh);
1886 
1887 	/* Get reference so that buffer cannot be freed before we unlock it */
1888 	get_bh(bh);
1889 	jbd_lock_bh_state(bh);
1890 	spin_lock(&journal->j_list_lock);
1891 	__jbd2_journal_unfile_buffer(jh);
1892 	spin_unlock(&journal->j_list_lock);
1893 	jbd_unlock_bh_state(bh);
1894 	__brelse(bh);
1895 }
1896 
1897 /*
1898  * Called from jbd2_journal_try_to_free_buffers().
1899  *
1900  * Called under jbd_lock_bh_state(bh)
1901  */
1902 static void
1903 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1904 {
1905 	struct journal_head *jh;
1906 
1907 	jh = bh2jh(bh);
1908 
1909 	if (buffer_locked(bh) || buffer_dirty(bh))
1910 		goto out;
1911 
1912 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1913 		goto out;
1914 
1915 	spin_lock(&journal->j_list_lock);
1916 	if (jh->b_cp_transaction != NULL) {
1917 		/* written-back checkpointed metadata buffer */
1918 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1919 		__jbd2_journal_remove_checkpoint(jh);
1920 	}
1921 	spin_unlock(&journal->j_list_lock);
1922 out:
1923 	return;
1924 }
1925 
1926 /**
1927  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1928  * @journal: journal for operation
1929  * @page: to try and free
1930  * @gfp_mask: we use the mask to detect how hard should we try to release
1931  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1932  * code to release the buffers.
1933  *
1934  *
1935  * For all the buffers on this page,
1936  * if they are fully written out ordered data, move them onto BUF_CLEAN
1937  * so try_to_free_buffers() can reap them.
1938  *
1939  * This function returns non-zero if we wish try_to_free_buffers()
1940  * to be called. We do this if the page is releasable by try_to_free_buffers().
1941  * We also do it if the page has locked or dirty buffers and the caller wants
1942  * us to perform sync or async writeout.
1943  *
1944  * This complicates JBD locking somewhat.  We aren't protected by the
1945  * BKL here.  We wish to remove the buffer from its committing or
1946  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1947  *
1948  * This may *change* the value of transaction_t->t_datalist, so anyone
1949  * who looks at t_datalist needs to lock against this function.
1950  *
1951  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1952  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1953  * will come out of the lock with the buffer dirty, which makes it
1954  * ineligible for release here.
1955  *
1956  * Who else is affected by this?  hmm...  Really the only contender
1957  * is do_get_write_access() - it could be looking at the buffer while
1958  * journal_try_to_free_buffer() is changing its state.  But that
1959  * cannot happen because we never reallocate freed data as metadata
1960  * while the data is part of a transaction.  Yes?
1961  *
1962  * Return 0 on failure, 1 on success
1963  */
1964 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1965 				struct page *page, gfp_t gfp_mask)
1966 {
1967 	struct buffer_head *head;
1968 	struct buffer_head *bh;
1969 	int ret = 0;
1970 
1971 	J_ASSERT(PageLocked(page));
1972 
1973 	head = page_buffers(page);
1974 	bh = head;
1975 	do {
1976 		struct journal_head *jh;
1977 
1978 		/*
1979 		 * We take our own ref against the journal_head here to avoid
1980 		 * having to add tons of locking around each instance of
1981 		 * jbd2_journal_put_journal_head().
1982 		 */
1983 		jh = jbd2_journal_grab_journal_head(bh);
1984 		if (!jh)
1985 			continue;
1986 
1987 		jbd_lock_bh_state(bh);
1988 		__journal_try_to_free_buffer(journal, bh);
1989 		jbd2_journal_put_journal_head(jh);
1990 		jbd_unlock_bh_state(bh);
1991 		if (buffer_jbd(bh))
1992 			goto busy;
1993 	} while ((bh = bh->b_this_page) != head);
1994 
1995 	ret = try_to_free_buffers(page);
1996 
1997 busy:
1998 	return ret;
1999 }
2000 
2001 /*
2002  * This buffer is no longer needed.  If it is on an older transaction's
2003  * checkpoint list we need to record it on this transaction's forget list
2004  * to pin this buffer (and hence its checkpointing transaction) down until
2005  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2006  * release it.
2007  * Returns non-zero if JBD no longer has an interest in the buffer.
2008  *
2009  * Called under j_list_lock.
2010  *
2011  * Called under jbd_lock_bh_state(bh).
2012  */
2013 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2014 {
2015 	int may_free = 1;
2016 	struct buffer_head *bh = jh2bh(jh);
2017 
2018 	if (jh->b_cp_transaction) {
2019 		JBUFFER_TRACE(jh, "on running+cp transaction");
2020 		__jbd2_journal_temp_unlink_buffer(jh);
2021 		/*
2022 		 * We don't want to write the buffer anymore, clear the
2023 		 * bit so that we don't confuse checks in
2024 		 * __journal_file_buffer
2025 		 */
2026 		clear_buffer_dirty(bh);
2027 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2028 		may_free = 0;
2029 	} else {
2030 		JBUFFER_TRACE(jh, "on running transaction");
2031 		__jbd2_journal_unfile_buffer(jh);
2032 	}
2033 	return may_free;
2034 }
2035 
2036 /*
2037  * jbd2_journal_invalidatepage
2038  *
2039  * This code is tricky.  It has a number of cases to deal with.
2040  *
2041  * There are two invariants which this code relies on:
2042  *
2043  * i_size must be updated on disk before we start calling invalidatepage on the
2044  * data.
2045  *
2046  *  This is done in ext3 by defining an ext3_setattr method which
2047  *  updates i_size before truncate gets going.  By maintaining this
2048  *  invariant, we can be sure that it is safe to throw away any buffers
2049  *  attached to the current transaction: once the transaction commits,
2050  *  we know that the data will not be needed.
2051  *
2052  *  Note however that we can *not* throw away data belonging to the
2053  *  previous, committing transaction!
2054  *
2055  * Any disk blocks which *are* part of the previous, committing
2056  * transaction (and which therefore cannot be discarded immediately) are
2057  * not going to be reused in the new running transaction
2058  *
2059  *  The bitmap committed_data images guarantee this: any block which is
2060  *  allocated in one transaction and removed in the next will be marked
2061  *  as in-use in the committed_data bitmap, so cannot be reused until
2062  *  the next transaction to delete the block commits.  This means that
2063  *  leaving committing buffers dirty is quite safe: the disk blocks
2064  *  cannot be reallocated to a different file and so buffer aliasing is
2065  *  not possible.
2066  *
2067  *
2068  * The above applies mainly to ordered data mode.  In writeback mode we
2069  * don't make guarantees about the order in which data hits disk --- in
2070  * particular we don't guarantee that new dirty data is flushed before
2071  * transaction commit --- so it is always safe just to discard data
2072  * immediately in that mode.  --sct
2073  */
2074 
2075 /*
2076  * The journal_unmap_buffer helper function returns zero if the buffer
2077  * concerned remains pinned as an anonymous buffer belonging to an older
2078  * transaction.
2079  *
2080  * We're outside-transaction here.  Either or both of j_running_transaction
2081  * and j_committing_transaction may be NULL.
2082  */
2083 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2084 				int partial_page)
2085 {
2086 	transaction_t *transaction;
2087 	struct journal_head *jh;
2088 	int may_free = 1;
2089 
2090 	BUFFER_TRACE(bh, "entry");
2091 
2092 	/*
2093 	 * It is safe to proceed here without the j_list_lock because the
2094 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2095 	 * holding the page lock. --sct
2096 	 */
2097 
2098 	if (!buffer_jbd(bh))
2099 		goto zap_buffer_unlocked;
2100 
2101 	/* OK, we have data buffer in journaled mode */
2102 	write_lock(&journal->j_state_lock);
2103 	jbd_lock_bh_state(bh);
2104 	spin_lock(&journal->j_list_lock);
2105 
2106 	jh = jbd2_journal_grab_journal_head(bh);
2107 	if (!jh)
2108 		goto zap_buffer_no_jh;
2109 
2110 	/*
2111 	 * We cannot remove the buffer from checkpoint lists until the
2112 	 * transaction adding inode to orphan list (let's call it T)
2113 	 * is committed.  Otherwise if the transaction changing the
2114 	 * buffer would be cleaned from the journal before T is
2115 	 * committed, a crash will cause that the correct contents of
2116 	 * the buffer will be lost.  On the other hand we have to
2117 	 * clear the buffer dirty bit at latest at the moment when the
2118 	 * transaction marking the buffer as freed in the filesystem
2119 	 * structures is committed because from that moment on the
2120 	 * block can be reallocated and used by a different page.
2121 	 * Since the block hasn't been freed yet but the inode has
2122 	 * already been added to orphan list, it is safe for us to add
2123 	 * the buffer to BJ_Forget list of the newest transaction.
2124 	 *
2125 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2126 	 * because the buffer_head may be attached to the page straddling
2127 	 * i_size (can happen only when blocksize < pagesize) and thus the
2128 	 * buffer_head can be reused when the file is extended again. So we end
2129 	 * up keeping around invalidated buffers attached to transactions'
2130 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2131 	 * the transaction this buffer was modified in.
2132 	 */
2133 	transaction = jh->b_transaction;
2134 	if (transaction == NULL) {
2135 		/* First case: not on any transaction.  If it
2136 		 * has no checkpoint link, then we can zap it:
2137 		 * it's a writeback-mode buffer so we don't care
2138 		 * if it hits disk safely. */
2139 		if (!jh->b_cp_transaction) {
2140 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2141 			goto zap_buffer;
2142 		}
2143 
2144 		if (!buffer_dirty(bh)) {
2145 			/* bdflush has written it.  We can drop it now */
2146 			__jbd2_journal_remove_checkpoint(jh);
2147 			goto zap_buffer;
2148 		}
2149 
2150 		/* OK, it must be in the journal but still not
2151 		 * written fully to disk: it's metadata or
2152 		 * journaled data... */
2153 
2154 		if (journal->j_running_transaction) {
2155 			/* ... and once the current transaction has
2156 			 * committed, the buffer won't be needed any
2157 			 * longer. */
2158 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2159 			may_free = __dispose_buffer(jh,
2160 					journal->j_running_transaction);
2161 			goto zap_buffer;
2162 		} else {
2163 			/* There is no currently-running transaction. So the
2164 			 * orphan record which we wrote for this file must have
2165 			 * passed into commit.  We must attach this buffer to
2166 			 * the committing transaction, if it exists. */
2167 			if (journal->j_committing_transaction) {
2168 				JBUFFER_TRACE(jh, "give to committing trans");
2169 				may_free = __dispose_buffer(jh,
2170 					journal->j_committing_transaction);
2171 				goto zap_buffer;
2172 			} else {
2173 				/* The orphan record's transaction has
2174 				 * committed.  We can cleanse this buffer */
2175 				clear_buffer_jbddirty(bh);
2176 				__jbd2_journal_remove_checkpoint(jh);
2177 				goto zap_buffer;
2178 			}
2179 		}
2180 	} else if (transaction == journal->j_committing_transaction) {
2181 		JBUFFER_TRACE(jh, "on committing transaction");
2182 		/*
2183 		 * The buffer is committing, we simply cannot touch
2184 		 * it. If the page is straddling i_size we have to wait
2185 		 * for commit and try again.
2186 		 */
2187 		if (partial_page) {
2188 			jbd2_journal_put_journal_head(jh);
2189 			spin_unlock(&journal->j_list_lock);
2190 			jbd_unlock_bh_state(bh);
2191 			write_unlock(&journal->j_state_lock);
2192 			return -EBUSY;
2193 		}
2194 		/*
2195 		 * OK, buffer won't be reachable after truncate. We just set
2196 		 * j_next_transaction to the running transaction (if there is
2197 		 * one) and mark buffer as freed so that commit code knows it
2198 		 * should clear dirty bits when it is done with the buffer.
2199 		 */
2200 		set_buffer_freed(bh);
2201 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2202 			jh->b_next_transaction = journal->j_running_transaction;
2203 		jbd2_journal_put_journal_head(jh);
2204 		spin_unlock(&journal->j_list_lock);
2205 		jbd_unlock_bh_state(bh);
2206 		write_unlock(&journal->j_state_lock);
2207 		return 0;
2208 	} else {
2209 		/* Good, the buffer belongs to the running transaction.
2210 		 * We are writing our own transaction's data, not any
2211 		 * previous one's, so it is safe to throw it away
2212 		 * (remember that we expect the filesystem to have set
2213 		 * i_size already for this truncate so recovery will not
2214 		 * expose the disk blocks we are discarding here.) */
2215 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2216 		JBUFFER_TRACE(jh, "on running transaction");
2217 		may_free = __dispose_buffer(jh, transaction);
2218 	}
2219 
2220 zap_buffer:
2221 	/*
2222 	 * This is tricky. Although the buffer is truncated, it may be reused
2223 	 * if blocksize < pagesize and it is attached to the page straddling
2224 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2225 	 * running transaction, journal_get_write_access() won't clear
2226 	 * b_modified and credit accounting gets confused. So clear b_modified
2227 	 * here.
2228 	 */
2229 	jh->b_modified = 0;
2230 	jbd2_journal_put_journal_head(jh);
2231 zap_buffer_no_jh:
2232 	spin_unlock(&journal->j_list_lock);
2233 	jbd_unlock_bh_state(bh);
2234 	write_unlock(&journal->j_state_lock);
2235 zap_buffer_unlocked:
2236 	clear_buffer_dirty(bh);
2237 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2238 	clear_buffer_mapped(bh);
2239 	clear_buffer_req(bh);
2240 	clear_buffer_new(bh);
2241 	clear_buffer_delay(bh);
2242 	clear_buffer_unwritten(bh);
2243 	bh->b_bdev = NULL;
2244 	return may_free;
2245 }
2246 
2247 /**
2248  * void jbd2_journal_invalidatepage()
2249  * @journal: journal to use for flush...
2250  * @page:    page to flush
2251  * @offset:  start of the range to invalidate
2252  * @length:  length of the range to invalidate
2253  *
2254  * Reap page buffers containing data after in the specified range in page.
2255  * Can return -EBUSY if buffers are part of the committing transaction and
2256  * the page is straddling i_size. Caller then has to wait for current commit
2257  * and try again.
2258  */
2259 int jbd2_journal_invalidatepage(journal_t *journal,
2260 				struct page *page,
2261 				unsigned int offset,
2262 				unsigned int length)
2263 {
2264 	struct buffer_head *head, *bh, *next;
2265 	unsigned int stop = offset + length;
2266 	unsigned int curr_off = 0;
2267 	int partial_page = (offset || length < PAGE_SIZE);
2268 	int may_free = 1;
2269 	int ret = 0;
2270 
2271 	if (!PageLocked(page))
2272 		BUG();
2273 	if (!page_has_buffers(page))
2274 		return 0;
2275 
2276 	BUG_ON(stop > PAGE_SIZE || stop < length);
2277 
2278 	/* We will potentially be playing with lists other than just the
2279 	 * data lists (especially for journaled data mode), so be
2280 	 * cautious in our locking. */
2281 
2282 	head = bh = page_buffers(page);
2283 	do {
2284 		unsigned int next_off = curr_off + bh->b_size;
2285 		next = bh->b_this_page;
2286 
2287 		if (next_off > stop)
2288 			return 0;
2289 
2290 		if (offset <= curr_off) {
2291 			/* This block is wholly outside the truncation point */
2292 			lock_buffer(bh);
2293 			ret = journal_unmap_buffer(journal, bh, partial_page);
2294 			unlock_buffer(bh);
2295 			if (ret < 0)
2296 				return ret;
2297 			may_free &= ret;
2298 		}
2299 		curr_off = next_off;
2300 		bh = next;
2301 
2302 	} while (bh != head);
2303 
2304 	if (!partial_page) {
2305 		if (may_free && try_to_free_buffers(page))
2306 			J_ASSERT(!page_has_buffers(page));
2307 	}
2308 	return 0;
2309 }
2310 
2311 /*
2312  * File a buffer on the given transaction list.
2313  */
2314 void __jbd2_journal_file_buffer(struct journal_head *jh,
2315 			transaction_t *transaction, int jlist)
2316 {
2317 	struct journal_head **list = NULL;
2318 	int was_dirty = 0;
2319 	struct buffer_head *bh = jh2bh(jh);
2320 
2321 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2322 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2323 
2324 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2325 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2326 				jh->b_transaction == NULL);
2327 
2328 	if (jh->b_transaction && jh->b_jlist == jlist)
2329 		return;
2330 
2331 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2332 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2333 		/*
2334 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2335 		 * instead of buffer_dirty. We should not see a dirty bit set
2336 		 * here because we clear it in do_get_write_access but e.g.
2337 		 * tune2fs can modify the sb and set the dirty bit at any time
2338 		 * so we try to gracefully handle that.
2339 		 */
2340 		if (buffer_dirty(bh))
2341 			warn_dirty_buffer(bh);
2342 		if (test_clear_buffer_dirty(bh) ||
2343 		    test_clear_buffer_jbddirty(bh))
2344 			was_dirty = 1;
2345 	}
2346 
2347 	if (jh->b_transaction)
2348 		__jbd2_journal_temp_unlink_buffer(jh);
2349 	else
2350 		jbd2_journal_grab_journal_head(bh);
2351 	jh->b_transaction = transaction;
2352 
2353 	switch (jlist) {
2354 	case BJ_None:
2355 		J_ASSERT_JH(jh, !jh->b_committed_data);
2356 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2357 		return;
2358 	case BJ_Metadata:
2359 		transaction->t_nr_buffers++;
2360 		list = &transaction->t_buffers;
2361 		break;
2362 	case BJ_Forget:
2363 		list = &transaction->t_forget;
2364 		break;
2365 	case BJ_Shadow:
2366 		list = &transaction->t_shadow_list;
2367 		break;
2368 	case BJ_Reserved:
2369 		list = &transaction->t_reserved_list;
2370 		break;
2371 	}
2372 
2373 	__blist_add_buffer(list, jh);
2374 	jh->b_jlist = jlist;
2375 
2376 	if (was_dirty)
2377 		set_buffer_jbddirty(bh);
2378 }
2379 
2380 void jbd2_journal_file_buffer(struct journal_head *jh,
2381 				transaction_t *transaction, int jlist)
2382 {
2383 	jbd_lock_bh_state(jh2bh(jh));
2384 	spin_lock(&transaction->t_journal->j_list_lock);
2385 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2386 	spin_unlock(&transaction->t_journal->j_list_lock);
2387 	jbd_unlock_bh_state(jh2bh(jh));
2388 }
2389 
2390 /*
2391  * Remove a buffer from its current buffer list in preparation for
2392  * dropping it from its current transaction entirely.  If the buffer has
2393  * already started to be used by a subsequent transaction, refile the
2394  * buffer on that transaction's metadata list.
2395  *
2396  * Called under j_list_lock
2397  * Called under jbd_lock_bh_state(jh2bh(jh))
2398  *
2399  * jh and bh may be already free when this function returns
2400  */
2401 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2402 {
2403 	int was_dirty, jlist;
2404 	struct buffer_head *bh = jh2bh(jh);
2405 
2406 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2407 	if (jh->b_transaction)
2408 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2409 
2410 	/* If the buffer is now unused, just drop it. */
2411 	if (jh->b_next_transaction == NULL) {
2412 		__jbd2_journal_unfile_buffer(jh);
2413 		return;
2414 	}
2415 
2416 	/*
2417 	 * It has been modified by a later transaction: add it to the new
2418 	 * transaction's metadata list.
2419 	 */
2420 
2421 	was_dirty = test_clear_buffer_jbddirty(bh);
2422 	__jbd2_journal_temp_unlink_buffer(jh);
2423 	/*
2424 	 * We set b_transaction here because b_next_transaction will inherit
2425 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2426 	 * take a new one.
2427 	 */
2428 	jh->b_transaction = jh->b_next_transaction;
2429 	jh->b_next_transaction = NULL;
2430 	if (buffer_freed(bh))
2431 		jlist = BJ_Forget;
2432 	else if (jh->b_modified)
2433 		jlist = BJ_Metadata;
2434 	else
2435 		jlist = BJ_Reserved;
2436 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2437 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2438 
2439 	if (was_dirty)
2440 		set_buffer_jbddirty(bh);
2441 }
2442 
2443 /*
2444  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2445  * bh reference so that we can safely unlock bh.
2446  *
2447  * The jh and bh may be freed by this call.
2448  */
2449 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2450 {
2451 	struct buffer_head *bh = jh2bh(jh);
2452 
2453 	/* Get reference so that buffer cannot be freed before we unlock it */
2454 	get_bh(bh);
2455 	jbd_lock_bh_state(bh);
2456 	spin_lock(&journal->j_list_lock);
2457 	__jbd2_journal_refile_buffer(jh);
2458 	jbd_unlock_bh_state(bh);
2459 	spin_unlock(&journal->j_list_lock);
2460 	__brelse(bh);
2461 }
2462 
2463 /*
2464  * File inode in the inode list of the handle's transaction
2465  */
2466 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2467 				   unsigned long flags)
2468 {
2469 	transaction_t *transaction = handle->h_transaction;
2470 	journal_t *journal;
2471 
2472 	if (is_handle_aborted(handle))
2473 		return -EROFS;
2474 	journal = transaction->t_journal;
2475 
2476 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2477 			transaction->t_tid);
2478 
2479 	/*
2480 	 * First check whether inode isn't already on the transaction's
2481 	 * lists without taking the lock. Note that this check is safe
2482 	 * without the lock as we cannot race with somebody removing inode
2483 	 * from the transaction. The reason is that we remove inode from the
2484 	 * transaction only in journal_release_jbd_inode() and when we commit
2485 	 * the transaction. We are guarded from the first case by holding
2486 	 * a reference to the inode. We are safe against the second case
2487 	 * because if jinode->i_transaction == transaction, commit code
2488 	 * cannot touch the transaction because we hold reference to it,
2489 	 * and if jinode->i_next_transaction == transaction, commit code
2490 	 * will only file the inode where we want it.
2491 	 */
2492 	if ((jinode->i_transaction == transaction ||
2493 	    jinode->i_next_transaction == transaction) &&
2494 	    (jinode->i_flags & flags) == flags)
2495 		return 0;
2496 
2497 	spin_lock(&journal->j_list_lock);
2498 	jinode->i_flags |= flags;
2499 	/* Is inode already attached where we need it? */
2500 	if (jinode->i_transaction == transaction ||
2501 	    jinode->i_next_transaction == transaction)
2502 		goto done;
2503 
2504 	/*
2505 	 * We only ever set this variable to 1 so the test is safe. Since
2506 	 * t_need_data_flush is likely to be set, we do the test to save some
2507 	 * cacheline bouncing
2508 	 */
2509 	if (!transaction->t_need_data_flush)
2510 		transaction->t_need_data_flush = 1;
2511 	/* On some different transaction's list - should be
2512 	 * the committing one */
2513 	if (jinode->i_transaction) {
2514 		J_ASSERT(jinode->i_next_transaction == NULL);
2515 		J_ASSERT(jinode->i_transaction ==
2516 					journal->j_committing_transaction);
2517 		jinode->i_next_transaction = transaction;
2518 		goto done;
2519 	}
2520 	/* Not on any transaction list... */
2521 	J_ASSERT(!jinode->i_next_transaction);
2522 	jinode->i_transaction = transaction;
2523 	list_add(&jinode->i_list, &transaction->t_inode_list);
2524 done:
2525 	spin_unlock(&journal->j_list_lock);
2526 
2527 	return 0;
2528 }
2529 
2530 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2531 {
2532 	return jbd2_journal_file_inode(handle, jinode,
2533 				       JI_WRITE_DATA | JI_WAIT_DATA);
2534 }
2535 
2536 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2537 {
2538 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2539 }
2540 
2541 /*
2542  * File truncate and transaction commit interact with each other in a
2543  * non-trivial way.  If a transaction writing data block A is
2544  * committing, we cannot discard the data by truncate until we have
2545  * written them.  Otherwise if we crashed after the transaction with
2546  * write has committed but before the transaction with truncate has
2547  * committed, we could see stale data in block A.  This function is a
2548  * helper to solve this problem.  It starts writeout of the truncated
2549  * part in case it is in the committing transaction.
2550  *
2551  * Filesystem code must call this function when inode is journaled in
2552  * ordered mode before truncation happens and after the inode has been
2553  * placed on orphan list with the new inode size. The second condition
2554  * avoids the race that someone writes new data and we start
2555  * committing the transaction after this function has been called but
2556  * before a transaction for truncate is started (and furthermore it
2557  * allows us to optimize the case where the addition to orphan list
2558  * happens in the same transaction as write --- we don't have to write
2559  * any data in such case).
2560  */
2561 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2562 					struct jbd2_inode *jinode,
2563 					loff_t new_size)
2564 {
2565 	transaction_t *inode_trans, *commit_trans;
2566 	int ret = 0;
2567 
2568 	/* This is a quick check to avoid locking if not necessary */
2569 	if (!jinode->i_transaction)
2570 		goto out;
2571 	/* Locks are here just to force reading of recent values, it is
2572 	 * enough that the transaction was not committing before we started
2573 	 * a transaction adding the inode to orphan list */
2574 	read_lock(&journal->j_state_lock);
2575 	commit_trans = journal->j_committing_transaction;
2576 	read_unlock(&journal->j_state_lock);
2577 	spin_lock(&journal->j_list_lock);
2578 	inode_trans = jinode->i_transaction;
2579 	spin_unlock(&journal->j_list_lock);
2580 	if (inode_trans == commit_trans) {
2581 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2582 			new_size, LLONG_MAX);
2583 		if (ret)
2584 			jbd2_journal_abort(journal, ret);
2585 	}
2586 out:
2587 	return ret;
2588 }
2589