1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 jbd2_might_wait_for_commit(journal); 163 schedule(); 164 finish_wait(&journal->j_wait_transaction_locked, &wait); 165 } 166 167 static void sub_reserved_credits(journal_t *journal, int blocks) 168 { 169 atomic_sub(blocks, &journal->j_reserved_credits); 170 wake_up(&journal->j_wait_reserved); 171 } 172 173 /* 174 * Wait until we can add credits for handle to the running transaction. Called 175 * with j_state_lock held for reading. Returns 0 if handle joined the running 176 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 177 * caller must retry. 178 */ 179 static int add_transaction_credits(journal_t *journal, int blocks, 180 int rsv_blocks) 181 { 182 transaction_t *t = journal->j_running_transaction; 183 int needed; 184 int total = blocks + rsv_blocks; 185 186 /* 187 * If the current transaction is locked down for commit, wait 188 * for the lock to be released. 189 */ 190 if (t->t_state == T_LOCKED) { 191 wait_transaction_locked(journal); 192 return 1; 193 } 194 195 /* 196 * If there is not enough space left in the log to write all 197 * potential buffers requested by this operation, we need to 198 * stall pending a log checkpoint to free some more log space. 199 */ 200 needed = atomic_add_return(total, &t->t_outstanding_credits); 201 if (needed > journal->j_max_transaction_buffers) { 202 /* 203 * If the current transaction is already too large, 204 * then start to commit it: we can then go back and 205 * attach this handle to a new transaction. 206 */ 207 atomic_sub(total, &t->t_outstanding_credits); 208 209 /* 210 * Is the number of reserved credits in the current transaction too 211 * big to fit this handle? Wait until reserved credits are freed. 212 */ 213 if (atomic_read(&journal->j_reserved_credits) + total > 214 journal->j_max_transaction_buffers) { 215 read_unlock(&journal->j_state_lock); 216 jbd2_might_wait_for_commit(journal); 217 wait_event(journal->j_wait_reserved, 218 atomic_read(&journal->j_reserved_credits) + total <= 219 journal->j_max_transaction_buffers); 220 return 1; 221 } 222 223 wait_transaction_locked(journal); 224 return 1; 225 } 226 227 /* 228 * The commit code assumes that it can get enough log space 229 * without forcing a checkpoint. This is *critical* for 230 * correctness: a checkpoint of a buffer which is also 231 * associated with a committing transaction creates a deadlock, 232 * so commit simply cannot force through checkpoints. 233 * 234 * We must therefore ensure the necessary space in the journal 235 * *before* starting to dirty potentially checkpointed buffers 236 * in the new transaction. 237 */ 238 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 239 atomic_sub(total, &t->t_outstanding_credits); 240 read_unlock(&journal->j_state_lock); 241 jbd2_might_wait_for_commit(journal); 242 write_lock(&journal->j_state_lock); 243 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 244 __jbd2_log_wait_for_space(journal); 245 write_unlock(&journal->j_state_lock); 246 return 1; 247 } 248 249 /* No reservation? We are done... */ 250 if (!rsv_blocks) 251 return 0; 252 253 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 254 /* We allow at most half of a transaction to be reserved */ 255 if (needed > journal->j_max_transaction_buffers / 2) { 256 sub_reserved_credits(journal, rsv_blocks); 257 atomic_sub(total, &t->t_outstanding_credits); 258 read_unlock(&journal->j_state_lock); 259 jbd2_might_wait_for_commit(journal); 260 wait_event(journal->j_wait_reserved, 261 atomic_read(&journal->j_reserved_credits) + rsv_blocks 262 <= journal->j_max_transaction_buffers / 2); 263 return 1; 264 } 265 return 0; 266 } 267 268 /* 269 * start_this_handle: Given a handle, deal with any locking or stalling 270 * needed to make sure that there is enough journal space for the handle 271 * to begin. Attach the handle to a transaction and set up the 272 * transaction's buffer credits. 273 */ 274 275 static int start_this_handle(journal_t *journal, handle_t *handle, 276 gfp_t gfp_mask) 277 { 278 transaction_t *transaction, *new_transaction = NULL; 279 int blocks = handle->h_buffer_credits; 280 int rsv_blocks = 0; 281 unsigned long ts = jiffies; 282 283 if (handle->h_rsv_handle) 284 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 285 286 /* 287 * Limit the number of reserved credits to 1/2 of maximum transaction 288 * size and limit the number of total credits to not exceed maximum 289 * transaction size per operation. 290 */ 291 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 292 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 293 printk(KERN_ERR "JBD2: %s wants too many credits " 294 "credits:%d rsv_credits:%d max:%d\n", 295 current->comm, blocks, rsv_blocks, 296 journal->j_max_transaction_buffers); 297 WARN_ON(1); 298 return -ENOSPC; 299 } 300 301 alloc_transaction: 302 if (!journal->j_running_transaction) { 303 /* 304 * If __GFP_FS is not present, then we may be being called from 305 * inside the fs writeback layer, so we MUST NOT fail. 306 */ 307 if ((gfp_mask & __GFP_FS) == 0) 308 gfp_mask |= __GFP_NOFAIL; 309 new_transaction = kmem_cache_zalloc(transaction_cache, 310 gfp_mask); 311 if (!new_transaction) 312 return -ENOMEM; 313 } 314 315 jbd_debug(3, "New handle %p going live.\n", handle); 316 317 /* 318 * We need to hold j_state_lock until t_updates has been incremented, 319 * for proper journal barrier handling 320 */ 321 repeat: 322 read_lock(&journal->j_state_lock); 323 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 324 if (is_journal_aborted(journal) || 325 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 326 read_unlock(&journal->j_state_lock); 327 jbd2_journal_free_transaction(new_transaction); 328 return -EROFS; 329 } 330 331 /* 332 * Wait on the journal's transaction barrier if necessary. Specifically 333 * we allow reserved handles to proceed because otherwise commit could 334 * deadlock on page writeback not being able to complete. 335 */ 336 if (!handle->h_reserved && journal->j_barrier_count) { 337 read_unlock(&journal->j_state_lock); 338 wait_event(journal->j_wait_transaction_locked, 339 journal->j_barrier_count == 0); 340 goto repeat; 341 } 342 343 if (!journal->j_running_transaction) { 344 read_unlock(&journal->j_state_lock); 345 if (!new_transaction) 346 goto alloc_transaction; 347 write_lock(&journal->j_state_lock); 348 if (!journal->j_running_transaction && 349 (handle->h_reserved || !journal->j_barrier_count)) { 350 jbd2_get_transaction(journal, new_transaction); 351 new_transaction = NULL; 352 } 353 write_unlock(&journal->j_state_lock); 354 goto repeat; 355 } 356 357 transaction = journal->j_running_transaction; 358 359 if (!handle->h_reserved) { 360 /* We may have dropped j_state_lock - restart in that case */ 361 if (add_transaction_credits(journal, blocks, rsv_blocks)) 362 goto repeat; 363 } else { 364 /* 365 * We have handle reserved so we are allowed to join T_LOCKED 366 * transaction and we don't have to check for transaction size 367 * and journal space. 368 */ 369 sub_reserved_credits(journal, blocks); 370 handle->h_reserved = 0; 371 } 372 373 /* OK, account for the buffers that this operation expects to 374 * use and add the handle to the running transaction. 375 */ 376 update_t_max_wait(transaction, ts); 377 handle->h_transaction = transaction; 378 handle->h_requested_credits = blocks; 379 handle->h_start_jiffies = jiffies; 380 atomic_inc(&transaction->t_updates); 381 atomic_inc(&transaction->t_handle_count); 382 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 383 handle, blocks, 384 atomic_read(&transaction->t_outstanding_credits), 385 jbd2_log_space_left(journal)); 386 read_unlock(&journal->j_state_lock); 387 current->journal_info = handle; 388 389 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 390 jbd2_journal_free_transaction(new_transaction); 391 return 0; 392 } 393 394 /* Allocate a new handle. This should probably be in a slab... */ 395 static handle_t *new_handle(int nblocks) 396 { 397 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 398 if (!handle) 399 return NULL; 400 handle->h_buffer_credits = nblocks; 401 handle->h_ref = 1; 402 403 return handle; 404 } 405 406 /** 407 * handle_t *jbd2_journal_start() - Obtain a new handle. 408 * @journal: Journal to start transaction on. 409 * @nblocks: number of block buffer we might modify 410 * 411 * We make sure that the transaction can guarantee at least nblocks of 412 * modified buffers in the log. We block until the log can guarantee 413 * that much space. Additionally, if rsv_blocks > 0, we also create another 414 * handle with rsv_blocks reserved blocks in the journal. This handle is 415 * is stored in h_rsv_handle. It is not attached to any particular transaction 416 * and thus doesn't block transaction commit. If the caller uses this reserved 417 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 418 * on the parent handle will dispose the reserved one. Reserved handle has to 419 * be converted to a normal handle using jbd2_journal_start_reserved() before 420 * it can be used. 421 * 422 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 423 * on failure. 424 */ 425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 426 gfp_t gfp_mask, unsigned int type, 427 unsigned int line_no) 428 { 429 handle_t *handle = journal_current_handle(); 430 int err; 431 432 if (!journal) 433 return ERR_PTR(-EROFS); 434 435 if (handle) { 436 J_ASSERT(handle->h_transaction->t_journal == journal); 437 handle->h_ref++; 438 return handle; 439 } 440 441 handle = new_handle(nblocks); 442 if (!handle) 443 return ERR_PTR(-ENOMEM); 444 if (rsv_blocks) { 445 handle_t *rsv_handle; 446 447 rsv_handle = new_handle(rsv_blocks); 448 if (!rsv_handle) { 449 jbd2_free_handle(handle); 450 return ERR_PTR(-ENOMEM); 451 } 452 rsv_handle->h_reserved = 1; 453 rsv_handle->h_journal = journal; 454 handle->h_rsv_handle = rsv_handle; 455 } 456 457 err = start_this_handle(journal, handle, gfp_mask); 458 if (err < 0) { 459 if (handle->h_rsv_handle) 460 jbd2_free_handle(handle->h_rsv_handle); 461 jbd2_free_handle(handle); 462 return ERR_PTR(err); 463 } 464 handle->h_type = type; 465 handle->h_line_no = line_no; 466 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 467 handle->h_transaction->t_tid, type, 468 line_no, nblocks); 469 return handle; 470 } 471 EXPORT_SYMBOL(jbd2__journal_start); 472 473 474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 475 { 476 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 477 } 478 EXPORT_SYMBOL(jbd2_journal_start); 479 480 void jbd2_journal_free_reserved(handle_t *handle) 481 { 482 journal_t *journal = handle->h_journal; 483 484 WARN_ON(!handle->h_reserved); 485 sub_reserved_credits(journal, handle->h_buffer_credits); 486 jbd2_free_handle(handle); 487 } 488 EXPORT_SYMBOL(jbd2_journal_free_reserved); 489 490 /** 491 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 492 * @handle: handle to start 493 * 494 * Start handle that has been previously reserved with jbd2_journal_reserve(). 495 * This attaches @handle to the running transaction (or creates one if there's 496 * not transaction running). Unlike jbd2_journal_start() this function cannot 497 * block on journal commit, checkpointing, or similar stuff. It can block on 498 * memory allocation or frozen journal though. 499 * 500 * Return 0 on success, non-zero on error - handle is freed in that case. 501 */ 502 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 503 unsigned int line_no) 504 { 505 journal_t *journal = handle->h_journal; 506 int ret = -EIO; 507 508 if (WARN_ON(!handle->h_reserved)) { 509 /* Someone passed in normal handle? Just stop it. */ 510 jbd2_journal_stop(handle); 511 return ret; 512 } 513 /* 514 * Usefulness of mixing of reserved and unreserved handles is 515 * questionable. So far nobody seems to need it so just error out. 516 */ 517 if (WARN_ON(current->journal_info)) { 518 jbd2_journal_free_reserved(handle); 519 return ret; 520 } 521 522 handle->h_journal = NULL; 523 /* 524 * GFP_NOFS is here because callers are likely from writeback or 525 * similarly constrained call sites 526 */ 527 ret = start_this_handle(journal, handle, GFP_NOFS); 528 if (ret < 0) { 529 jbd2_journal_free_reserved(handle); 530 return ret; 531 } 532 handle->h_type = type; 533 handle->h_line_no = line_no; 534 return 0; 535 } 536 EXPORT_SYMBOL(jbd2_journal_start_reserved); 537 538 /** 539 * int jbd2_journal_extend() - extend buffer credits. 540 * @handle: handle to 'extend' 541 * @nblocks: nr blocks to try to extend by. 542 * 543 * Some transactions, such as large extends and truncates, can be done 544 * atomically all at once or in several stages. The operation requests 545 * a credit for a number of buffer modifications in advance, but can 546 * extend its credit if it needs more. 547 * 548 * jbd2_journal_extend tries to give the running handle more buffer credits. 549 * It does not guarantee that allocation - this is a best-effort only. 550 * The calling process MUST be able to deal cleanly with a failure to 551 * extend here. 552 * 553 * Return 0 on success, non-zero on failure. 554 * 555 * return code < 0 implies an error 556 * return code > 0 implies normal transaction-full status. 557 */ 558 int jbd2_journal_extend(handle_t *handle, int nblocks) 559 { 560 transaction_t *transaction = handle->h_transaction; 561 journal_t *journal; 562 int result; 563 int wanted; 564 565 if (is_handle_aborted(handle)) 566 return -EROFS; 567 journal = transaction->t_journal; 568 569 result = 1; 570 571 read_lock(&journal->j_state_lock); 572 573 /* Don't extend a locked-down transaction! */ 574 if (transaction->t_state != T_RUNNING) { 575 jbd_debug(3, "denied handle %p %d blocks: " 576 "transaction not running\n", handle, nblocks); 577 goto error_out; 578 } 579 580 spin_lock(&transaction->t_handle_lock); 581 wanted = atomic_add_return(nblocks, 582 &transaction->t_outstanding_credits); 583 584 if (wanted > journal->j_max_transaction_buffers) { 585 jbd_debug(3, "denied handle %p %d blocks: " 586 "transaction too large\n", handle, nblocks); 587 atomic_sub(nblocks, &transaction->t_outstanding_credits); 588 goto unlock; 589 } 590 591 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 592 jbd2_log_space_left(journal)) { 593 jbd_debug(3, "denied handle %p %d blocks: " 594 "insufficient log space\n", handle, nblocks); 595 atomic_sub(nblocks, &transaction->t_outstanding_credits); 596 goto unlock; 597 } 598 599 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 600 transaction->t_tid, 601 handle->h_type, handle->h_line_no, 602 handle->h_buffer_credits, 603 nblocks); 604 605 handle->h_buffer_credits += nblocks; 606 handle->h_requested_credits += nblocks; 607 result = 0; 608 609 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 610 unlock: 611 spin_unlock(&transaction->t_handle_lock); 612 error_out: 613 read_unlock(&journal->j_state_lock); 614 return result; 615 } 616 617 618 /** 619 * int jbd2_journal_restart() - restart a handle . 620 * @handle: handle to restart 621 * @nblocks: nr credits requested 622 * 623 * Restart a handle for a multi-transaction filesystem 624 * operation. 625 * 626 * If the jbd2_journal_extend() call above fails to grant new buffer credits 627 * to a running handle, a call to jbd2_journal_restart will commit the 628 * handle's transaction so far and reattach the handle to a new 629 * transaction capable of guaranteeing the requested number of 630 * credits. We preserve reserved handle if there's any attached to the 631 * passed in handle. 632 */ 633 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 634 { 635 transaction_t *transaction = handle->h_transaction; 636 journal_t *journal; 637 tid_t tid; 638 int need_to_start, ret; 639 640 /* If we've had an abort of any type, don't even think about 641 * actually doing the restart! */ 642 if (is_handle_aborted(handle)) 643 return 0; 644 journal = transaction->t_journal; 645 646 /* 647 * First unlink the handle from its current transaction, and start the 648 * commit on that. 649 */ 650 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 651 J_ASSERT(journal_current_handle() == handle); 652 653 read_lock(&journal->j_state_lock); 654 spin_lock(&transaction->t_handle_lock); 655 atomic_sub(handle->h_buffer_credits, 656 &transaction->t_outstanding_credits); 657 if (handle->h_rsv_handle) { 658 sub_reserved_credits(journal, 659 handle->h_rsv_handle->h_buffer_credits); 660 } 661 if (atomic_dec_and_test(&transaction->t_updates)) 662 wake_up(&journal->j_wait_updates); 663 tid = transaction->t_tid; 664 spin_unlock(&transaction->t_handle_lock); 665 handle->h_transaction = NULL; 666 current->journal_info = NULL; 667 668 jbd_debug(2, "restarting handle %p\n", handle); 669 need_to_start = !tid_geq(journal->j_commit_request, tid); 670 read_unlock(&journal->j_state_lock); 671 if (need_to_start) 672 jbd2_log_start_commit(journal, tid); 673 674 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 675 handle->h_buffer_credits = nblocks; 676 ret = start_this_handle(journal, handle, gfp_mask); 677 return ret; 678 } 679 EXPORT_SYMBOL(jbd2__journal_restart); 680 681 682 int jbd2_journal_restart(handle_t *handle, int nblocks) 683 { 684 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 685 } 686 EXPORT_SYMBOL(jbd2_journal_restart); 687 688 /** 689 * void jbd2_journal_lock_updates () - establish a transaction barrier. 690 * @journal: Journal to establish a barrier on. 691 * 692 * This locks out any further updates from being started, and blocks 693 * until all existing updates have completed, returning only once the 694 * journal is in a quiescent state with no updates running. 695 * 696 * The journal lock should not be held on entry. 697 */ 698 void jbd2_journal_lock_updates(journal_t *journal) 699 { 700 DEFINE_WAIT(wait); 701 702 jbd2_might_wait_for_commit(journal); 703 704 write_lock(&journal->j_state_lock); 705 ++journal->j_barrier_count; 706 707 /* Wait until there are no reserved handles */ 708 if (atomic_read(&journal->j_reserved_credits)) { 709 write_unlock(&journal->j_state_lock); 710 wait_event(journal->j_wait_reserved, 711 atomic_read(&journal->j_reserved_credits) == 0); 712 write_lock(&journal->j_state_lock); 713 } 714 715 /* Wait until there are no running updates */ 716 while (1) { 717 transaction_t *transaction = journal->j_running_transaction; 718 719 if (!transaction) 720 break; 721 722 spin_lock(&transaction->t_handle_lock); 723 prepare_to_wait(&journal->j_wait_updates, &wait, 724 TASK_UNINTERRUPTIBLE); 725 if (!atomic_read(&transaction->t_updates)) { 726 spin_unlock(&transaction->t_handle_lock); 727 finish_wait(&journal->j_wait_updates, &wait); 728 break; 729 } 730 spin_unlock(&transaction->t_handle_lock); 731 write_unlock(&journal->j_state_lock); 732 schedule(); 733 finish_wait(&journal->j_wait_updates, &wait); 734 write_lock(&journal->j_state_lock); 735 } 736 write_unlock(&journal->j_state_lock); 737 738 /* 739 * We have now established a barrier against other normal updates, but 740 * we also need to barrier against other jbd2_journal_lock_updates() calls 741 * to make sure that we serialise special journal-locked operations 742 * too. 743 */ 744 mutex_lock(&journal->j_barrier); 745 } 746 747 /** 748 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 749 * @journal: Journal to release the barrier on. 750 * 751 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 752 * 753 * Should be called without the journal lock held. 754 */ 755 void jbd2_journal_unlock_updates (journal_t *journal) 756 { 757 J_ASSERT(journal->j_barrier_count != 0); 758 759 mutex_unlock(&journal->j_barrier); 760 write_lock(&journal->j_state_lock); 761 --journal->j_barrier_count; 762 write_unlock(&journal->j_state_lock); 763 wake_up(&journal->j_wait_transaction_locked); 764 } 765 766 static void warn_dirty_buffer(struct buffer_head *bh) 767 { 768 printk(KERN_WARNING 769 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 770 "There's a risk of filesystem corruption in case of system " 771 "crash.\n", 772 bh->b_bdev, (unsigned long long)bh->b_blocknr); 773 } 774 775 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 776 static void jbd2_freeze_jh_data(struct journal_head *jh) 777 { 778 struct page *page; 779 int offset; 780 char *source; 781 struct buffer_head *bh = jh2bh(jh); 782 783 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 784 page = bh->b_page; 785 offset = offset_in_page(bh->b_data); 786 source = kmap_atomic(page); 787 /* Fire data frozen trigger just before we copy the data */ 788 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 789 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 790 kunmap_atomic(source); 791 792 /* 793 * Now that the frozen data is saved off, we need to store any matching 794 * triggers. 795 */ 796 jh->b_frozen_triggers = jh->b_triggers; 797 } 798 799 /* 800 * If the buffer is already part of the current transaction, then there 801 * is nothing we need to do. If it is already part of a prior 802 * transaction which we are still committing to disk, then we need to 803 * make sure that we do not overwrite the old copy: we do copy-out to 804 * preserve the copy going to disk. We also account the buffer against 805 * the handle's metadata buffer credits (unless the buffer is already 806 * part of the transaction, that is). 807 * 808 */ 809 static int 810 do_get_write_access(handle_t *handle, struct journal_head *jh, 811 int force_copy) 812 { 813 struct buffer_head *bh; 814 transaction_t *transaction = handle->h_transaction; 815 journal_t *journal; 816 int error; 817 char *frozen_buffer = NULL; 818 unsigned long start_lock, time_lock; 819 820 if (is_handle_aborted(handle)) 821 return -EROFS; 822 journal = transaction->t_journal; 823 824 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 825 826 JBUFFER_TRACE(jh, "entry"); 827 repeat: 828 bh = jh2bh(jh); 829 830 /* @@@ Need to check for errors here at some point. */ 831 832 start_lock = jiffies; 833 lock_buffer(bh); 834 jbd_lock_bh_state(bh); 835 836 /* If it takes too long to lock the buffer, trace it */ 837 time_lock = jbd2_time_diff(start_lock, jiffies); 838 if (time_lock > HZ/10) 839 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 840 jiffies_to_msecs(time_lock)); 841 842 /* We now hold the buffer lock so it is safe to query the buffer 843 * state. Is the buffer dirty? 844 * 845 * If so, there are two possibilities. The buffer may be 846 * non-journaled, and undergoing a quite legitimate writeback. 847 * Otherwise, it is journaled, and we don't expect dirty buffers 848 * in that state (the buffers should be marked JBD_Dirty 849 * instead.) So either the IO is being done under our own 850 * control and this is a bug, or it's a third party IO such as 851 * dump(8) (which may leave the buffer scheduled for read --- 852 * ie. locked but not dirty) or tune2fs (which may actually have 853 * the buffer dirtied, ugh.) */ 854 855 if (buffer_dirty(bh)) { 856 /* 857 * First question: is this buffer already part of the current 858 * transaction or the existing committing transaction? 859 */ 860 if (jh->b_transaction) { 861 J_ASSERT_JH(jh, 862 jh->b_transaction == transaction || 863 jh->b_transaction == 864 journal->j_committing_transaction); 865 if (jh->b_next_transaction) 866 J_ASSERT_JH(jh, jh->b_next_transaction == 867 transaction); 868 warn_dirty_buffer(bh); 869 } 870 /* 871 * In any case we need to clean the dirty flag and we must 872 * do it under the buffer lock to be sure we don't race 873 * with running write-out. 874 */ 875 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 876 clear_buffer_dirty(bh); 877 set_buffer_jbddirty(bh); 878 } 879 880 unlock_buffer(bh); 881 882 error = -EROFS; 883 if (is_handle_aborted(handle)) { 884 jbd_unlock_bh_state(bh); 885 goto out; 886 } 887 error = 0; 888 889 /* 890 * The buffer is already part of this transaction if b_transaction or 891 * b_next_transaction points to it 892 */ 893 if (jh->b_transaction == transaction || 894 jh->b_next_transaction == transaction) 895 goto done; 896 897 /* 898 * this is the first time this transaction is touching this buffer, 899 * reset the modified flag 900 */ 901 jh->b_modified = 0; 902 903 /* 904 * If the buffer is not journaled right now, we need to make sure it 905 * doesn't get written to disk before the caller actually commits the 906 * new data 907 */ 908 if (!jh->b_transaction) { 909 JBUFFER_TRACE(jh, "no transaction"); 910 J_ASSERT_JH(jh, !jh->b_next_transaction); 911 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 912 /* 913 * Make sure all stores to jh (b_modified, b_frozen_data) are 914 * visible before attaching it to the running transaction. 915 * Paired with barrier in jbd2_write_access_granted() 916 */ 917 smp_wmb(); 918 spin_lock(&journal->j_list_lock); 919 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 920 spin_unlock(&journal->j_list_lock); 921 goto done; 922 } 923 /* 924 * If there is already a copy-out version of this buffer, then we don't 925 * need to make another one 926 */ 927 if (jh->b_frozen_data) { 928 JBUFFER_TRACE(jh, "has frozen data"); 929 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 930 goto attach_next; 931 } 932 933 JBUFFER_TRACE(jh, "owned by older transaction"); 934 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 935 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 936 937 /* 938 * There is one case we have to be very careful about. If the 939 * committing transaction is currently writing this buffer out to disk 940 * and has NOT made a copy-out, then we cannot modify the buffer 941 * contents at all right now. The essence of copy-out is that it is 942 * the extra copy, not the primary copy, which gets journaled. If the 943 * primary copy is already going to disk then we cannot do copy-out 944 * here. 945 */ 946 if (buffer_shadow(bh)) { 947 JBUFFER_TRACE(jh, "on shadow: sleep"); 948 jbd_unlock_bh_state(bh); 949 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 950 goto repeat; 951 } 952 953 /* 954 * Only do the copy if the currently-owning transaction still needs it. 955 * If buffer isn't on BJ_Metadata list, the committing transaction is 956 * past that stage (here we use the fact that BH_Shadow is set under 957 * bh_state lock together with refiling to BJ_Shadow list and at this 958 * point we know the buffer doesn't have BH_Shadow set). 959 * 960 * Subtle point, though: if this is a get_undo_access, then we will be 961 * relying on the frozen_data to contain the new value of the 962 * committed_data record after the transaction, so we HAVE to force the 963 * frozen_data copy in that case. 964 */ 965 if (jh->b_jlist == BJ_Metadata || force_copy) { 966 JBUFFER_TRACE(jh, "generate frozen data"); 967 if (!frozen_buffer) { 968 JBUFFER_TRACE(jh, "allocate memory for buffer"); 969 jbd_unlock_bh_state(bh); 970 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 971 GFP_NOFS | __GFP_NOFAIL); 972 goto repeat; 973 } 974 jh->b_frozen_data = frozen_buffer; 975 frozen_buffer = NULL; 976 jbd2_freeze_jh_data(jh); 977 } 978 attach_next: 979 /* 980 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 981 * before attaching it to the running transaction. Paired with barrier 982 * in jbd2_write_access_granted() 983 */ 984 smp_wmb(); 985 jh->b_next_transaction = transaction; 986 987 done: 988 jbd_unlock_bh_state(bh); 989 990 /* 991 * If we are about to journal a buffer, then any revoke pending on it is 992 * no longer valid 993 */ 994 jbd2_journal_cancel_revoke(handle, jh); 995 996 out: 997 if (unlikely(frozen_buffer)) /* It's usually NULL */ 998 jbd2_free(frozen_buffer, bh->b_size); 999 1000 JBUFFER_TRACE(jh, "exit"); 1001 return error; 1002 } 1003 1004 /* Fast check whether buffer is already attached to the required transaction */ 1005 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1006 bool undo) 1007 { 1008 struct journal_head *jh; 1009 bool ret = false; 1010 1011 /* Dirty buffers require special handling... */ 1012 if (buffer_dirty(bh)) 1013 return false; 1014 1015 /* 1016 * RCU protects us from dereferencing freed pages. So the checks we do 1017 * are guaranteed not to oops. However the jh slab object can get freed 1018 * & reallocated while we work with it. So we have to be careful. When 1019 * we see jh attached to the running transaction, we know it must stay 1020 * so until the transaction is committed. Thus jh won't be freed and 1021 * will be attached to the same bh while we run. However it can 1022 * happen jh gets freed, reallocated, and attached to the transaction 1023 * just after we get pointer to it from bh. So we have to be careful 1024 * and recheck jh still belongs to our bh before we return success. 1025 */ 1026 rcu_read_lock(); 1027 if (!buffer_jbd(bh)) 1028 goto out; 1029 /* This should be bh2jh() but that doesn't work with inline functions */ 1030 jh = READ_ONCE(bh->b_private); 1031 if (!jh) 1032 goto out; 1033 /* For undo access buffer must have data copied */ 1034 if (undo && !jh->b_committed_data) 1035 goto out; 1036 if (jh->b_transaction != handle->h_transaction && 1037 jh->b_next_transaction != handle->h_transaction) 1038 goto out; 1039 /* 1040 * There are two reasons for the barrier here: 1041 * 1) Make sure to fetch b_bh after we did previous checks so that we 1042 * detect when jh went through free, realloc, attach to transaction 1043 * while we were checking. Paired with implicit barrier in that path. 1044 * 2) So that access to bh done after jbd2_write_access_granted() 1045 * doesn't get reordered and see inconsistent state of concurrent 1046 * do_get_write_access(). 1047 */ 1048 smp_mb(); 1049 if (unlikely(jh->b_bh != bh)) 1050 goto out; 1051 ret = true; 1052 out: 1053 rcu_read_unlock(); 1054 return ret; 1055 } 1056 1057 /** 1058 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1059 * @handle: transaction to add buffer modifications to 1060 * @bh: bh to be used for metadata writes 1061 * 1062 * Returns an error code or 0 on success. 1063 * 1064 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1065 * because we're write()ing a buffer which is also part of a shared mapping. 1066 */ 1067 1068 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1069 { 1070 struct journal_head *jh; 1071 int rc; 1072 1073 if (jbd2_write_access_granted(handle, bh, false)) 1074 return 0; 1075 1076 jh = jbd2_journal_add_journal_head(bh); 1077 /* We do not want to get caught playing with fields which the 1078 * log thread also manipulates. Make sure that the buffer 1079 * completes any outstanding IO before proceeding. */ 1080 rc = do_get_write_access(handle, jh, 0); 1081 jbd2_journal_put_journal_head(jh); 1082 return rc; 1083 } 1084 1085 1086 /* 1087 * When the user wants to journal a newly created buffer_head 1088 * (ie. getblk() returned a new buffer and we are going to populate it 1089 * manually rather than reading off disk), then we need to keep the 1090 * buffer_head locked until it has been completely filled with new 1091 * data. In this case, we should be able to make the assertion that 1092 * the bh is not already part of an existing transaction. 1093 * 1094 * The buffer should already be locked by the caller by this point. 1095 * There is no lock ranking violation: it was a newly created, 1096 * unlocked buffer beforehand. */ 1097 1098 /** 1099 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1100 * @handle: transaction to new buffer to 1101 * @bh: new buffer. 1102 * 1103 * Call this if you create a new bh. 1104 */ 1105 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1106 { 1107 transaction_t *transaction = handle->h_transaction; 1108 journal_t *journal; 1109 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1110 int err; 1111 1112 jbd_debug(5, "journal_head %p\n", jh); 1113 err = -EROFS; 1114 if (is_handle_aborted(handle)) 1115 goto out; 1116 journal = transaction->t_journal; 1117 err = 0; 1118 1119 JBUFFER_TRACE(jh, "entry"); 1120 /* 1121 * The buffer may already belong to this transaction due to pre-zeroing 1122 * in the filesystem's new_block code. It may also be on the previous, 1123 * committing transaction's lists, but it HAS to be in Forget state in 1124 * that case: the transaction must have deleted the buffer for it to be 1125 * reused here. 1126 */ 1127 jbd_lock_bh_state(bh); 1128 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1129 jh->b_transaction == NULL || 1130 (jh->b_transaction == journal->j_committing_transaction && 1131 jh->b_jlist == BJ_Forget))); 1132 1133 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1134 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1135 1136 if (jh->b_transaction == NULL) { 1137 /* 1138 * Previous jbd2_journal_forget() could have left the buffer 1139 * with jbddirty bit set because it was being committed. When 1140 * the commit finished, we've filed the buffer for 1141 * checkpointing and marked it dirty. Now we are reallocating 1142 * the buffer so the transaction freeing it must have 1143 * committed and so it's safe to clear the dirty bit. 1144 */ 1145 clear_buffer_dirty(jh2bh(jh)); 1146 /* first access by this transaction */ 1147 jh->b_modified = 0; 1148 1149 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1150 spin_lock(&journal->j_list_lock); 1151 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1152 } else if (jh->b_transaction == journal->j_committing_transaction) { 1153 /* first access by this transaction */ 1154 jh->b_modified = 0; 1155 1156 JBUFFER_TRACE(jh, "set next transaction"); 1157 spin_lock(&journal->j_list_lock); 1158 jh->b_next_transaction = transaction; 1159 } 1160 spin_unlock(&journal->j_list_lock); 1161 jbd_unlock_bh_state(bh); 1162 1163 /* 1164 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1165 * blocks which contain freed but then revoked metadata. We need 1166 * to cancel the revoke in case we end up freeing it yet again 1167 * and the reallocating as data - this would cause a second revoke, 1168 * which hits an assertion error. 1169 */ 1170 JBUFFER_TRACE(jh, "cancelling revoke"); 1171 jbd2_journal_cancel_revoke(handle, jh); 1172 out: 1173 jbd2_journal_put_journal_head(jh); 1174 return err; 1175 } 1176 1177 /** 1178 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1179 * non-rewindable consequences 1180 * @handle: transaction 1181 * @bh: buffer to undo 1182 * 1183 * Sometimes there is a need to distinguish between metadata which has 1184 * been committed to disk and that which has not. The ext3fs code uses 1185 * this for freeing and allocating space, we have to make sure that we 1186 * do not reuse freed space until the deallocation has been committed, 1187 * since if we overwrote that space we would make the delete 1188 * un-rewindable in case of a crash. 1189 * 1190 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1191 * buffer for parts of non-rewindable operations such as delete 1192 * operations on the bitmaps. The journaling code must keep a copy of 1193 * the buffer's contents prior to the undo_access call until such time 1194 * as we know that the buffer has definitely been committed to disk. 1195 * 1196 * We never need to know which transaction the committed data is part 1197 * of, buffers touched here are guaranteed to be dirtied later and so 1198 * will be committed to a new transaction in due course, at which point 1199 * we can discard the old committed data pointer. 1200 * 1201 * Returns error number or 0 on success. 1202 */ 1203 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1204 { 1205 int err; 1206 struct journal_head *jh; 1207 char *committed_data = NULL; 1208 1209 JBUFFER_TRACE(jh, "entry"); 1210 if (jbd2_write_access_granted(handle, bh, true)) 1211 return 0; 1212 1213 jh = jbd2_journal_add_journal_head(bh); 1214 /* 1215 * Do this first --- it can drop the journal lock, so we want to 1216 * make sure that obtaining the committed_data is done 1217 * atomically wrt. completion of any outstanding commits. 1218 */ 1219 err = do_get_write_access(handle, jh, 1); 1220 if (err) 1221 goto out; 1222 1223 repeat: 1224 if (!jh->b_committed_data) 1225 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1226 GFP_NOFS|__GFP_NOFAIL); 1227 1228 jbd_lock_bh_state(bh); 1229 if (!jh->b_committed_data) { 1230 /* Copy out the current buffer contents into the 1231 * preserved, committed copy. */ 1232 JBUFFER_TRACE(jh, "generate b_committed data"); 1233 if (!committed_data) { 1234 jbd_unlock_bh_state(bh); 1235 goto repeat; 1236 } 1237 1238 jh->b_committed_data = committed_data; 1239 committed_data = NULL; 1240 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1241 } 1242 jbd_unlock_bh_state(bh); 1243 out: 1244 jbd2_journal_put_journal_head(jh); 1245 if (unlikely(committed_data)) 1246 jbd2_free(committed_data, bh->b_size); 1247 return err; 1248 } 1249 1250 /** 1251 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1252 * @bh: buffer to trigger on 1253 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1254 * 1255 * Set any triggers on this journal_head. This is always safe, because 1256 * triggers for a committing buffer will be saved off, and triggers for 1257 * a running transaction will match the buffer in that transaction. 1258 * 1259 * Call with NULL to clear the triggers. 1260 */ 1261 void jbd2_journal_set_triggers(struct buffer_head *bh, 1262 struct jbd2_buffer_trigger_type *type) 1263 { 1264 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1265 1266 if (WARN_ON(!jh)) 1267 return; 1268 jh->b_triggers = type; 1269 jbd2_journal_put_journal_head(jh); 1270 } 1271 1272 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1273 struct jbd2_buffer_trigger_type *triggers) 1274 { 1275 struct buffer_head *bh = jh2bh(jh); 1276 1277 if (!triggers || !triggers->t_frozen) 1278 return; 1279 1280 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1281 } 1282 1283 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1284 struct jbd2_buffer_trigger_type *triggers) 1285 { 1286 if (!triggers || !triggers->t_abort) 1287 return; 1288 1289 triggers->t_abort(triggers, jh2bh(jh)); 1290 } 1291 1292 /** 1293 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1294 * @handle: transaction to add buffer to. 1295 * @bh: buffer to mark 1296 * 1297 * mark dirty metadata which needs to be journaled as part of the current 1298 * transaction. 1299 * 1300 * The buffer must have previously had jbd2_journal_get_write_access() 1301 * called so that it has a valid journal_head attached to the buffer 1302 * head. 1303 * 1304 * The buffer is placed on the transaction's metadata list and is marked 1305 * as belonging to the transaction. 1306 * 1307 * Returns error number or 0 on success. 1308 * 1309 * Special care needs to be taken if the buffer already belongs to the 1310 * current committing transaction (in which case we should have frozen 1311 * data present for that commit). In that case, we don't relink the 1312 * buffer: that only gets done when the old transaction finally 1313 * completes its commit. 1314 */ 1315 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1316 { 1317 transaction_t *transaction = handle->h_transaction; 1318 journal_t *journal; 1319 struct journal_head *jh; 1320 int ret = 0; 1321 1322 if (is_handle_aborted(handle)) 1323 return -EROFS; 1324 if (!buffer_jbd(bh)) { 1325 ret = -EUCLEAN; 1326 goto out; 1327 } 1328 /* 1329 * We don't grab jh reference here since the buffer must be part 1330 * of the running transaction. 1331 */ 1332 jh = bh2jh(bh); 1333 /* 1334 * This and the following assertions are unreliable since we may see jh 1335 * in inconsistent state unless we grab bh_state lock. But this is 1336 * crucial to catch bugs so let's do a reliable check until the 1337 * lockless handling is fully proven. 1338 */ 1339 if (jh->b_transaction != transaction && 1340 jh->b_next_transaction != transaction) { 1341 jbd_lock_bh_state(bh); 1342 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1343 jh->b_next_transaction == transaction); 1344 jbd_unlock_bh_state(bh); 1345 } 1346 if (jh->b_modified == 1) { 1347 /* If it's in our transaction it must be in BJ_Metadata list. */ 1348 if (jh->b_transaction == transaction && 1349 jh->b_jlist != BJ_Metadata) { 1350 jbd_lock_bh_state(bh); 1351 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1352 jh->b_jlist == BJ_Metadata); 1353 jbd_unlock_bh_state(bh); 1354 } 1355 goto out; 1356 } 1357 1358 journal = transaction->t_journal; 1359 jbd_debug(5, "journal_head %p\n", jh); 1360 JBUFFER_TRACE(jh, "entry"); 1361 1362 jbd_lock_bh_state(bh); 1363 1364 if (jh->b_modified == 0) { 1365 /* 1366 * This buffer's got modified and becoming part 1367 * of the transaction. This needs to be done 1368 * once a transaction -bzzz 1369 */ 1370 jh->b_modified = 1; 1371 if (handle->h_buffer_credits <= 0) { 1372 ret = -ENOSPC; 1373 goto out_unlock_bh; 1374 } 1375 handle->h_buffer_credits--; 1376 } 1377 1378 /* 1379 * fastpath, to avoid expensive locking. If this buffer is already 1380 * on the running transaction's metadata list there is nothing to do. 1381 * Nobody can take it off again because there is a handle open. 1382 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1383 * result in this test being false, so we go in and take the locks. 1384 */ 1385 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1386 JBUFFER_TRACE(jh, "fastpath"); 1387 if (unlikely(jh->b_transaction != 1388 journal->j_running_transaction)) { 1389 printk(KERN_ERR "JBD2: %s: " 1390 "jh->b_transaction (%llu, %p, %u) != " 1391 "journal->j_running_transaction (%p, %u)\n", 1392 journal->j_devname, 1393 (unsigned long long) bh->b_blocknr, 1394 jh->b_transaction, 1395 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1396 journal->j_running_transaction, 1397 journal->j_running_transaction ? 1398 journal->j_running_transaction->t_tid : 0); 1399 ret = -EINVAL; 1400 } 1401 goto out_unlock_bh; 1402 } 1403 1404 set_buffer_jbddirty(bh); 1405 1406 /* 1407 * Metadata already on the current transaction list doesn't 1408 * need to be filed. Metadata on another transaction's list must 1409 * be committing, and will be refiled once the commit completes: 1410 * leave it alone for now. 1411 */ 1412 if (jh->b_transaction != transaction) { 1413 JBUFFER_TRACE(jh, "already on other transaction"); 1414 if (unlikely(((jh->b_transaction != 1415 journal->j_committing_transaction)) || 1416 (jh->b_next_transaction != transaction))) { 1417 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1418 "bad jh for block %llu: " 1419 "transaction (%p, %u), " 1420 "jh->b_transaction (%p, %u), " 1421 "jh->b_next_transaction (%p, %u), jlist %u\n", 1422 journal->j_devname, 1423 (unsigned long long) bh->b_blocknr, 1424 transaction, transaction->t_tid, 1425 jh->b_transaction, 1426 jh->b_transaction ? 1427 jh->b_transaction->t_tid : 0, 1428 jh->b_next_transaction, 1429 jh->b_next_transaction ? 1430 jh->b_next_transaction->t_tid : 0, 1431 jh->b_jlist); 1432 WARN_ON(1); 1433 ret = -EINVAL; 1434 } 1435 /* And this case is illegal: we can't reuse another 1436 * transaction's data buffer, ever. */ 1437 goto out_unlock_bh; 1438 } 1439 1440 /* That test should have eliminated the following case: */ 1441 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1442 1443 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1444 spin_lock(&journal->j_list_lock); 1445 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1446 spin_unlock(&journal->j_list_lock); 1447 out_unlock_bh: 1448 jbd_unlock_bh_state(bh); 1449 out: 1450 JBUFFER_TRACE(jh, "exit"); 1451 return ret; 1452 } 1453 1454 /** 1455 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1456 * @handle: transaction handle 1457 * @bh: bh to 'forget' 1458 * 1459 * We can only do the bforget if there are no commits pending against the 1460 * buffer. If the buffer is dirty in the current running transaction we 1461 * can safely unlink it. 1462 * 1463 * bh may not be a journalled buffer at all - it may be a non-JBD 1464 * buffer which came off the hashtable. Check for this. 1465 * 1466 * Decrements bh->b_count by one. 1467 * 1468 * Allow this call even if the handle has aborted --- it may be part of 1469 * the caller's cleanup after an abort. 1470 */ 1471 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1472 { 1473 transaction_t *transaction = handle->h_transaction; 1474 journal_t *journal; 1475 struct journal_head *jh; 1476 int drop_reserve = 0; 1477 int err = 0; 1478 int was_modified = 0; 1479 1480 if (is_handle_aborted(handle)) 1481 return -EROFS; 1482 journal = transaction->t_journal; 1483 1484 BUFFER_TRACE(bh, "entry"); 1485 1486 jbd_lock_bh_state(bh); 1487 1488 if (!buffer_jbd(bh)) 1489 goto not_jbd; 1490 jh = bh2jh(bh); 1491 1492 /* Critical error: attempting to delete a bitmap buffer, maybe? 1493 * Don't do any jbd operations, and return an error. */ 1494 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1495 "inconsistent data on disk")) { 1496 err = -EIO; 1497 goto not_jbd; 1498 } 1499 1500 /* keep track of whether or not this transaction modified us */ 1501 was_modified = jh->b_modified; 1502 1503 /* 1504 * The buffer's going from the transaction, we must drop 1505 * all references -bzzz 1506 */ 1507 jh->b_modified = 0; 1508 1509 if (jh->b_transaction == transaction) { 1510 J_ASSERT_JH(jh, !jh->b_frozen_data); 1511 1512 /* If we are forgetting a buffer which is already part 1513 * of this transaction, then we can just drop it from 1514 * the transaction immediately. */ 1515 clear_buffer_dirty(bh); 1516 clear_buffer_jbddirty(bh); 1517 1518 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1519 1520 /* 1521 * we only want to drop a reference if this transaction 1522 * modified the buffer 1523 */ 1524 if (was_modified) 1525 drop_reserve = 1; 1526 1527 /* 1528 * We are no longer going to journal this buffer. 1529 * However, the commit of this transaction is still 1530 * important to the buffer: the delete that we are now 1531 * processing might obsolete an old log entry, so by 1532 * committing, we can satisfy the buffer's checkpoint. 1533 * 1534 * So, if we have a checkpoint on the buffer, we should 1535 * now refile the buffer on our BJ_Forget list so that 1536 * we know to remove the checkpoint after we commit. 1537 */ 1538 1539 spin_lock(&journal->j_list_lock); 1540 if (jh->b_cp_transaction) { 1541 __jbd2_journal_temp_unlink_buffer(jh); 1542 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1543 } else { 1544 __jbd2_journal_unfile_buffer(jh); 1545 if (!buffer_jbd(bh)) { 1546 spin_unlock(&journal->j_list_lock); 1547 jbd_unlock_bh_state(bh); 1548 __bforget(bh); 1549 goto drop; 1550 } 1551 } 1552 spin_unlock(&journal->j_list_lock); 1553 } else if (jh->b_transaction) { 1554 J_ASSERT_JH(jh, (jh->b_transaction == 1555 journal->j_committing_transaction)); 1556 /* However, if the buffer is still owned by a prior 1557 * (committing) transaction, we can't drop it yet... */ 1558 JBUFFER_TRACE(jh, "belongs to older transaction"); 1559 /* ... but we CAN drop it from the new transaction if we 1560 * have also modified it since the original commit. */ 1561 1562 if (jh->b_next_transaction) { 1563 J_ASSERT(jh->b_next_transaction == transaction); 1564 spin_lock(&journal->j_list_lock); 1565 jh->b_next_transaction = NULL; 1566 spin_unlock(&journal->j_list_lock); 1567 1568 /* 1569 * only drop a reference if this transaction modified 1570 * the buffer 1571 */ 1572 if (was_modified) 1573 drop_reserve = 1; 1574 } 1575 } 1576 1577 not_jbd: 1578 jbd_unlock_bh_state(bh); 1579 __brelse(bh); 1580 drop: 1581 if (drop_reserve) { 1582 /* no need to reserve log space for this block -bzzz */ 1583 handle->h_buffer_credits++; 1584 } 1585 return err; 1586 } 1587 1588 /** 1589 * int jbd2_journal_stop() - complete a transaction 1590 * @handle: transaction to complete. 1591 * 1592 * All done for a particular handle. 1593 * 1594 * There is not much action needed here. We just return any remaining 1595 * buffer credits to the transaction and remove the handle. The only 1596 * complication is that we need to start a commit operation if the 1597 * filesystem is marked for synchronous update. 1598 * 1599 * jbd2_journal_stop itself will not usually return an error, but it may 1600 * do so in unusual circumstances. In particular, expect it to 1601 * return -EIO if a jbd2_journal_abort has been executed since the 1602 * transaction began. 1603 */ 1604 int jbd2_journal_stop(handle_t *handle) 1605 { 1606 transaction_t *transaction = handle->h_transaction; 1607 journal_t *journal; 1608 int err = 0, wait_for_commit = 0; 1609 tid_t tid; 1610 pid_t pid; 1611 1612 if (!transaction) { 1613 /* 1614 * Handle is already detached from the transaction so 1615 * there is nothing to do other than decrease a refcount, 1616 * or free the handle if refcount drops to zero 1617 */ 1618 if (--handle->h_ref > 0) { 1619 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1620 handle->h_ref); 1621 return err; 1622 } else { 1623 if (handle->h_rsv_handle) 1624 jbd2_free_handle(handle->h_rsv_handle); 1625 goto free_and_exit; 1626 } 1627 } 1628 journal = transaction->t_journal; 1629 1630 J_ASSERT(journal_current_handle() == handle); 1631 1632 if (is_handle_aborted(handle)) 1633 err = -EIO; 1634 else 1635 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1636 1637 if (--handle->h_ref > 0) { 1638 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1639 handle->h_ref); 1640 return err; 1641 } 1642 1643 jbd_debug(4, "Handle %p going down\n", handle); 1644 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1645 transaction->t_tid, 1646 handle->h_type, handle->h_line_no, 1647 jiffies - handle->h_start_jiffies, 1648 handle->h_sync, handle->h_requested_credits, 1649 (handle->h_requested_credits - 1650 handle->h_buffer_credits)); 1651 1652 /* 1653 * Implement synchronous transaction batching. If the handle 1654 * was synchronous, don't force a commit immediately. Let's 1655 * yield and let another thread piggyback onto this 1656 * transaction. Keep doing that while new threads continue to 1657 * arrive. It doesn't cost much - we're about to run a commit 1658 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1659 * operations by 30x or more... 1660 * 1661 * We try and optimize the sleep time against what the 1662 * underlying disk can do, instead of having a static sleep 1663 * time. This is useful for the case where our storage is so 1664 * fast that it is more optimal to go ahead and force a flush 1665 * and wait for the transaction to be committed than it is to 1666 * wait for an arbitrary amount of time for new writers to 1667 * join the transaction. We achieve this by measuring how 1668 * long it takes to commit a transaction, and compare it with 1669 * how long this transaction has been running, and if run time 1670 * < commit time then we sleep for the delta and commit. This 1671 * greatly helps super fast disks that would see slowdowns as 1672 * more threads started doing fsyncs. 1673 * 1674 * But don't do this if this process was the most recent one 1675 * to perform a synchronous write. We do this to detect the 1676 * case where a single process is doing a stream of sync 1677 * writes. No point in waiting for joiners in that case. 1678 * 1679 * Setting max_batch_time to 0 disables this completely. 1680 */ 1681 pid = current->pid; 1682 if (handle->h_sync && journal->j_last_sync_writer != pid && 1683 journal->j_max_batch_time) { 1684 u64 commit_time, trans_time; 1685 1686 journal->j_last_sync_writer = pid; 1687 1688 read_lock(&journal->j_state_lock); 1689 commit_time = journal->j_average_commit_time; 1690 read_unlock(&journal->j_state_lock); 1691 1692 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1693 transaction->t_start_time)); 1694 1695 commit_time = max_t(u64, commit_time, 1696 1000*journal->j_min_batch_time); 1697 commit_time = min_t(u64, commit_time, 1698 1000*journal->j_max_batch_time); 1699 1700 if (trans_time < commit_time) { 1701 ktime_t expires = ktime_add_ns(ktime_get(), 1702 commit_time); 1703 set_current_state(TASK_UNINTERRUPTIBLE); 1704 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1705 } 1706 } 1707 1708 if (handle->h_sync) 1709 transaction->t_synchronous_commit = 1; 1710 current->journal_info = NULL; 1711 atomic_sub(handle->h_buffer_credits, 1712 &transaction->t_outstanding_credits); 1713 1714 /* 1715 * If the handle is marked SYNC, we need to set another commit 1716 * going! We also want to force a commit if the current 1717 * transaction is occupying too much of the log, or if the 1718 * transaction is too old now. 1719 */ 1720 if (handle->h_sync || 1721 (atomic_read(&transaction->t_outstanding_credits) > 1722 journal->j_max_transaction_buffers) || 1723 time_after_eq(jiffies, transaction->t_expires)) { 1724 /* Do this even for aborted journals: an abort still 1725 * completes the commit thread, it just doesn't write 1726 * anything to disk. */ 1727 1728 jbd_debug(2, "transaction too old, requesting commit for " 1729 "handle %p\n", handle); 1730 /* This is non-blocking */ 1731 jbd2_log_start_commit(journal, transaction->t_tid); 1732 1733 /* 1734 * Special case: JBD2_SYNC synchronous updates require us 1735 * to wait for the commit to complete. 1736 */ 1737 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1738 wait_for_commit = 1; 1739 } 1740 1741 /* 1742 * Once we drop t_updates, if it goes to zero the transaction 1743 * could start committing on us and eventually disappear. So 1744 * once we do this, we must not dereference transaction 1745 * pointer again. 1746 */ 1747 tid = transaction->t_tid; 1748 if (atomic_dec_and_test(&transaction->t_updates)) { 1749 wake_up(&journal->j_wait_updates); 1750 if (journal->j_barrier_count) 1751 wake_up(&journal->j_wait_transaction_locked); 1752 } 1753 1754 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1755 1756 if (wait_for_commit) 1757 err = jbd2_log_wait_commit(journal, tid); 1758 1759 if (handle->h_rsv_handle) 1760 jbd2_journal_free_reserved(handle->h_rsv_handle); 1761 free_and_exit: 1762 jbd2_free_handle(handle); 1763 return err; 1764 } 1765 1766 /* 1767 * 1768 * List management code snippets: various functions for manipulating the 1769 * transaction buffer lists. 1770 * 1771 */ 1772 1773 /* 1774 * Append a buffer to a transaction list, given the transaction's list head 1775 * pointer. 1776 * 1777 * j_list_lock is held. 1778 * 1779 * jbd_lock_bh_state(jh2bh(jh)) is held. 1780 */ 1781 1782 static inline void 1783 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1784 { 1785 if (!*list) { 1786 jh->b_tnext = jh->b_tprev = jh; 1787 *list = jh; 1788 } else { 1789 /* Insert at the tail of the list to preserve order */ 1790 struct journal_head *first = *list, *last = first->b_tprev; 1791 jh->b_tprev = last; 1792 jh->b_tnext = first; 1793 last->b_tnext = first->b_tprev = jh; 1794 } 1795 } 1796 1797 /* 1798 * Remove a buffer from a transaction list, given the transaction's list 1799 * head pointer. 1800 * 1801 * Called with j_list_lock held, and the journal may not be locked. 1802 * 1803 * jbd_lock_bh_state(jh2bh(jh)) is held. 1804 */ 1805 1806 static inline void 1807 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1808 { 1809 if (*list == jh) { 1810 *list = jh->b_tnext; 1811 if (*list == jh) 1812 *list = NULL; 1813 } 1814 jh->b_tprev->b_tnext = jh->b_tnext; 1815 jh->b_tnext->b_tprev = jh->b_tprev; 1816 } 1817 1818 /* 1819 * Remove a buffer from the appropriate transaction list. 1820 * 1821 * Note that this function can *change* the value of 1822 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1823 * t_reserved_list. If the caller is holding onto a copy of one of these 1824 * pointers, it could go bad. Generally the caller needs to re-read the 1825 * pointer from the transaction_t. 1826 * 1827 * Called under j_list_lock. 1828 */ 1829 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1830 { 1831 struct journal_head **list = NULL; 1832 transaction_t *transaction; 1833 struct buffer_head *bh = jh2bh(jh); 1834 1835 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1836 transaction = jh->b_transaction; 1837 if (transaction) 1838 assert_spin_locked(&transaction->t_journal->j_list_lock); 1839 1840 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1841 if (jh->b_jlist != BJ_None) 1842 J_ASSERT_JH(jh, transaction != NULL); 1843 1844 switch (jh->b_jlist) { 1845 case BJ_None: 1846 return; 1847 case BJ_Metadata: 1848 transaction->t_nr_buffers--; 1849 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1850 list = &transaction->t_buffers; 1851 break; 1852 case BJ_Forget: 1853 list = &transaction->t_forget; 1854 break; 1855 case BJ_Shadow: 1856 list = &transaction->t_shadow_list; 1857 break; 1858 case BJ_Reserved: 1859 list = &transaction->t_reserved_list; 1860 break; 1861 } 1862 1863 __blist_del_buffer(list, jh); 1864 jh->b_jlist = BJ_None; 1865 if (test_clear_buffer_jbddirty(bh)) 1866 mark_buffer_dirty(bh); /* Expose it to the VM */ 1867 } 1868 1869 /* 1870 * Remove buffer from all transactions. 1871 * 1872 * Called with bh_state lock and j_list_lock 1873 * 1874 * jh and bh may be already freed when this function returns. 1875 */ 1876 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1877 { 1878 __jbd2_journal_temp_unlink_buffer(jh); 1879 jh->b_transaction = NULL; 1880 jbd2_journal_put_journal_head(jh); 1881 } 1882 1883 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1884 { 1885 struct buffer_head *bh = jh2bh(jh); 1886 1887 /* Get reference so that buffer cannot be freed before we unlock it */ 1888 get_bh(bh); 1889 jbd_lock_bh_state(bh); 1890 spin_lock(&journal->j_list_lock); 1891 __jbd2_journal_unfile_buffer(jh); 1892 spin_unlock(&journal->j_list_lock); 1893 jbd_unlock_bh_state(bh); 1894 __brelse(bh); 1895 } 1896 1897 /* 1898 * Called from jbd2_journal_try_to_free_buffers(). 1899 * 1900 * Called under jbd_lock_bh_state(bh) 1901 */ 1902 static void 1903 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1904 { 1905 struct journal_head *jh; 1906 1907 jh = bh2jh(bh); 1908 1909 if (buffer_locked(bh) || buffer_dirty(bh)) 1910 goto out; 1911 1912 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1913 goto out; 1914 1915 spin_lock(&journal->j_list_lock); 1916 if (jh->b_cp_transaction != NULL) { 1917 /* written-back checkpointed metadata buffer */ 1918 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1919 __jbd2_journal_remove_checkpoint(jh); 1920 } 1921 spin_unlock(&journal->j_list_lock); 1922 out: 1923 return; 1924 } 1925 1926 /** 1927 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1928 * @journal: journal for operation 1929 * @page: to try and free 1930 * @gfp_mask: we use the mask to detect how hard should we try to release 1931 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1932 * code to release the buffers. 1933 * 1934 * 1935 * For all the buffers on this page, 1936 * if they are fully written out ordered data, move them onto BUF_CLEAN 1937 * so try_to_free_buffers() can reap them. 1938 * 1939 * This function returns non-zero if we wish try_to_free_buffers() 1940 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1941 * We also do it if the page has locked or dirty buffers and the caller wants 1942 * us to perform sync or async writeout. 1943 * 1944 * This complicates JBD locking somewhat. We aren't protected by the 1945 * BKL here. We wish to remove the buffer from its committing or 1946 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1947 * 1948 * This may *change* the value of transaction_t->t_datalist, so anyone 1949 * who looks at t_datalist needs to lock against this function. 1950 * 1951 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1952 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1953 * will come out of the lock with the buffer dirty, which makes it 1954 * ineligible for release here. 1955 * 1956 * Who else is affected by this? hmm... Really the only contender 1957 * is do_get_write_access() - it could be looking at the buffer while 1958 * journal_try_to_free_buffer() is changing its state. But that 1959 * cannot happen because we never reallocate freed data as metadata 1960 * while the data is part of a transaction. Yes? 1961 * 1962 * Return 0 on failure, 1 on success 1963 */ 1964 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1965 struct page *page, gfp_t gfp_mask) 1966 { 1967 struct buffer_head *head; 1968 struct buffer_head *bh; 1969 int ret = 0; 1970 1971 J_ASSERT(PageLocked(page)); 1972 1973 head = page_buffers(page); 1974 bh = head; 1975 do { 1976 struct journal_head *jh; 1977 1978 /* 1979 * We take our own ref against the journal_head here to avoid 1980 * having to add tons of locking around each instance of 1981 * jbd2_journal_put_journal_head(). 1982 */ 1983 jh = jbd2_journal_grab_journal_head(bh); 1984 if (!jh) 1985 continue; 1986 1987 jbd_lock_bh_state(bh); 1988 __journal_try_to_free_buffer(journal, bh); 1989 jbd2_journal_put_journal_head(jh); 1990 jbd_unlock_bh_state(bh); 1991 if (buffer_jbd(bh)) 1992 goto busy; 1993 } while ((bh = bh->b_this_page) != head); 1994 1995 ret = try_to_free_buffers(page); 1996 1997 busy: 1998 return ret; 1999 } 2000 2001 /* 2002 * This buffer is no longer needed. If it is on an older transaction's 2003 * checkpoint list we need to record it on this transaction's forget list 2004 * to pin this buffer (and hence its checkpointing transaction) down until 2005 * this transaction commits. If the buffer isn't on a checkpoint list, we 2006 * release it. 2007 * Returns non-zero if JBD no longer has an interest in the buffer. 2008 * 2009 * Called under j_list_lock. 2010 * 2011 * Called under jbd_lock_bh_state(bh). 2012 */ 2013 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2014 { 2015 int may_free = 1; 2016 struct buffer_head *bh = jh2bh(jh); 2017 2018 if (jh->b_cp_transaction) { 2019 JBUFFER_TRACE(jh, "on running+cp transaction"); 2020 __jbd2_journal_temp_unlink_buffer(jh); 2021 /* 2022 * We don't want to write the buffer anymore, clear the 2023 * bit so that we don't confuse checks in 2024 * __journal_file_buffer 2025 */ 2026 clear_buffer_dirty(bh); 2027 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2028 may_free = 0; 2029 } else { 2030 JBUFFER_TRACE(jh, "on running transaction"); 2031 __jbd2_journal_unfile_buffer(jh); 2032 } 2033 return may_free; 2034 } 2035 2036 /* 2037 * jbd2_journal_invalidatepage 2038 * 2039 * This code is tricky. It has a number of cases to deal with. 2040 * 2041 * There are two invariants which this code relies on: 2042 * 2043 * i_size must be updated on disk before we start calling invalidatepage on the 2044 * data. 2045 * 2046 * This is done in ext3 by defining an ext3_setattr method which 2047 * updates i_size before truncate gets going. By maintaining this 2048 * invariant, we can be sure that it is safe to throw away any buffers 2049 * attached to the current transaction: once the transaction commits, 2050 * we know that the data will not be needed. 2051 * 2052 * Note however that we can *not* throw away data belonging to the 2053 * previous, committing transaction! 2054 * 2055 * Any disk blocks which *are* part of the previous, committing 2056 * transaction (and which therefore cannot be discarded immediately) are 2057 * not going to be reused in the new running transaction 2058 * 2059 * The bitmap committed_data images guarantee this: any block which is 2060 * allocated in one transaction and removed in the next will be marked 2061 * as in-use in the committed_data bitmap, so cannot be reused until 2062 * the next transaction to delete the block commits. This means that 2063 * leaving committing buffers dirty is quite safe: the disk blocks 2064 * cannot be reallocated to a different file and so buffer aliasing is 2065 * not possible. 2066 * 2067 * 2068 * The above applies mainly to ordered data mode. In writeback mode we 2069 * don't make guarantees about the order in which data hits disk --- in 2070 * particular we don't guarantee that new dirty data is flushed before 2071 * transaction commit --- so it is always safe just to discard data 2072 * immediately in that mode. --sct 2073 */ 2074 2075 /* 2076 * The journal_unmap_buffer helper function returns zero if the buffer 2077 * concerned remains pinned as an anonymous buffer belonging to an older 2078 * transaction. 2079 * 2080 * We're outside-transaction here. Either or both of j_running_transaction 2081 * and j_committing_transaction may be NULL. 2082 */ 2083 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2084 int partial_page) 2085 { 2086 transaction_t *transaction; 2087 struct journal_head *jh; 2088 int may_free = 1; 2089 2090 BUFFER_TRACE(bh, "entry"); 2091 2092 /* 2093 * It is safe to proceed here without the j_list_lock because the 2094 * buffers cannot be stolen by try_to_free_buffers as long as we are 2095 * holding the page lock. --sct 2096 */ 2097 2098 if (!buffer_jbd(bh)) 2099 goto zap_buffer_unlocked; 2100 2101 /* OK, we have data buffer in journaled mode */ 2102 write_lock(&journal->j_state_lock); 2103 jbd_lock_bh_state(bh); 2104 spin_lock(&journal->j_list_lock); 2105 2106 jh = jbd2_journal_grab_journal_head(bh); 2107 if (!jh) 2108 goto zap_buffer_no_jh; 2109 2110 /* 2111 * We cannot remove the buffer from checkpoint lists until the 2112 * transaction adding inode to orphan list (let's call it T) 2113 * is committed. Otherwise if the transaction changing the 2114 * buffer would be cleaned from the journal before T is 2115 * committed, a crash will cause that the correct contents of 2116 * the buffer will be lost. On the other hand we have to 2117 * clear the buffer dirty bit at latest at the moment when the 2118 * transaction marking the buffer as freed in the filesystem 2119 * structures is committed because from that moment on the 2120 * block can be reallocated and used by a different page. 2121 * Since the block hasn't been freed yet but the inode has 2122 * already been added to orphan list, it is safe for us to add 2123 * the buffer to BJ_Forget list of the newest transaction. 2124 * 2125 * Also we have to clear buffer_mapped flag of a truncated buffer 2126 * because the buffer_head may be attached to the page straddling 2127 * i_size (can happen only when blocksize < pagesize) and thus the 2128 * buffer_head can be reused when the file is extended again. So we end 2129 * up keeping around invalidated buffers attached to transactions' 2130 * BJ_Forget list just to stop checkpointing code from cleaning up 2131 * the transaction this buffer was modified in. 2132 */ 2133 transaction = jh->b_transaction; 2134 if (transaction == NULL) { 2135 /* First case: not on any transaction. If it 2136 * has no checkpoint link, then we can zap it: 2137 * it's a writeback-mode buffer so we don't care 2138 * if it hits disk safely. */ 2139 if (!jh->b_cp_transaction) { 2140 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2141 goto zap_buffer; 2142 } 2143 2144 if (!buffer_dirty(bh)) { 2145 /* bdflush has written it. We can drop it now */ 2146 __jbd2_journal_remove_checkpoint(jh); 2147 goto zap_buffer; 2148 } 2149 2150 /* OK, it must be in the journal but still not 2151 * written fully to disk: it's metadata or 2152 * journaled data... */ 2153 2154 if (journal->j_running_transaction) { 2155 /* ... and once the current transaction has 2156 * committed, the buffer won't be needed any 2157 * longer. */ 2158 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2159 may_free = __dispose_buffer(jh, 2160 journal->j_running_transaction); 2161 goto zap_buffer; 2162 } else { 2163 /* There is no currently-running transaction. So the 2164 * orphan record which we wrote for this file must have 2165 * passed into commit. We must attach this buffer to 2166 * the committing transaction, if it exists. */ 2167 if (journal->j_committing_transaction) { 2168 JBUFFER_TRACE(jh, "give to committing trans"); 2169 may_free = __dispose_buffer(jh, 2170 journal->j_committing_transaction); 2171 goto zap_buffer; 2172 } else { 2173 /* The orphan record's transaction has 2174 * committed. We can cleanse this buffer */ 2175 clear_buffer_jbddirty(bh); 2176 __jbd2_journal_remove_checkpoint(jh); 2177 goto zap_buffer; 2178 } 2179 } 2180 } else if (transaction == journal->j_committing_transaction) { 2181 JBUFFER_TRACE(jh, "on committing transaction"); 2182 /* 2183 * The buffer is committing, we simply cannot touch 2184 * it. If the page is straddling i_size we have to wait 2185 * for commit and try again. 2186 */ 2187 if (partial_page) { 2188 jbd2_journal_put_journal_head(jh); 2189 spin_unlock(&journal->j_list_lock); 2190 jbd_unlock_bh_state(bh); 2191 write_unlock(&journal->j_state_lock); 2192 return -EBUSY; 2193 } 2194 /* 2195 * OK, buffer won't be reachable after truncate. We just set 2196 * j_next_transaction to the running transaction (if there is 2197 * one) and mark buffer as freed so that commit code knows it 2198 * should clear dirty bits when it is done with the buffer. 2199 */ 2200 set_buffer_freed(bh); 2201 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2202 jh->b_next_transaction = journal->j_running_transaction; 2203 jbd2_journal_put_journal_head(jh); 2204 spin_unlock(&journal->j_list_lock); 2205 jbd_unlock_bh_state(bh); 2206 write_unlock(&journal->j_state_lock); 2207 return 0; 2208 } else { 2209 /* Good, the buffer belongs to the running transaction. 2210 * We are writing our own transaction's data, not any 2211 * previous one's, so it is safe to throw it away 2212 * (remember that we expect the filesystem to have set 2213 * i_size already for this truncate so recovery will not 2214 * expose the disk blocks we are discarding here.) */ 2215 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2216 JBUFFER_TRACE(jh, "on running transaction"); 2217 may_free = __dispose_buffer(jh, transaction); 2218 } 2219 2220 zap_buffer: 2221 /* 2222 * This is tricky. Although the buffer is truncated, it may be reused 2223 * if blocksize < pagesize and it is attached to the page straddling 2224 * EOF. Since the buffer might have been added to BJ_Forget list of the 2225 * running transaction, journal_get_write_access() won't clear 2226 * b_modified and credit accounting gets confused. So clear b_modified 2227 * here. 2228 */ 2229 jh->b_modified = 0; 2230 jbd2_journal_put_journal_head(jh); 2231 zap_buffer_no_jh: 2232 spin_unlock(&journal->j_list_lock); 2233 jbd_unlock_bh_state(bh); 2234 write_unlock(&journal->j_state_lock); 2235 zap_buffer_unlocked: 2236 clear_buffer_dirty(bh); 2237 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2238 clear_buffer_mapped(bh); 2239 clear_buffer_req(bh); 2240 clear_buffer_new(bh); 2241 clear_buffer_delay(bh); 2242 clear_buffer_unwritten(bh); 2243 bh->b_bdev = NULL; 2244 return may_free; 2245 } 2246 2247 /** 2248 * void jbd2_journal_invalidatepage() 2249 * @journal: journal to use for flush... 2250 * @page: page to flush 2251 * @offset: start of the range to invalidate 2252 * @length: length of the range to invalidate 2253 * 2254 * Reap page buffers containing data after in the specified range in page. 2255 * Can return -EBUSY if buffers are part of the committing transaction and 2256 * the page is straddling i_size. Caller then has to wait for current commit 2257 * and try again. 2258 */ 2259 int jbd2_journal_invalidatepage(journal_t *journal, 2260 struct page *page, 2261 unsigned int offset, 2262 unsigned int length) 2263 { 2264 struct buffer_head *head, *bh, *next; 2265 unsigned int stop = offset + length; 2266 unsigned int curr_off = 0; 2267 int partial_page = (offset || length < PAGE_SIZE); 2268 int may_free = 1; 2269 int ret = 0; 2270 2271 if (!PageLocked(page)) 2272 BUG(); 2273 if (!page_has_buffers(page)) 2274 return 0; 2275 2276 BUG_ON(stop > PAGE_SIZE || stop < length); 2277 2278 /* We will potentially be playing with lists other than just the 2279 * data lists (especially for journaled data mode), so be 2280 * cautious in our locking. */ 2281 2282 head = bh = page_buffers(page); 2283 do { 2284 unsigned int next_off = curr_off + bh->b_size; 2285 next = bh->b_this_page; 2286 2287 if (next_off > stop) 2288 return 0; 2289 2290 if (offset <= curr_off) { 2291 /* This block is wholly outside the truncation point */ 2292 lock_buffer(bh); 2293 ret = journal_unmap_buffer(journal, bh, partial_page); 2294 unlock_buffer(bh); 2295 if (ret < 0) 2296 return ret; 2297 may_free &= ret; 2298 } 2299 curr_off = next_off; 2300 bh = next; 2301 2302 } while (bh != head); 2303 2304 if (!partial_page) { 2305 if (may_free && try_to_free_buffers(page)) 2306 J_ASSERT(!page_has_buffers(page)); 2307 } 2308 return 0; 2309 } 2310 2311 /* 2312 * File a buffer on the given transaction list. 2313 */ 2314 void __jbd2_journal_file_buffer(struct journal_head *jh, 2315 transaction_t *transaction, int jlist) 2316 { 2317 struct journal_head **list = NULL; 2318 int was_dirty = 0; 2319 struct buffer_head *bh = jh2bh(jh); 2320 2321 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2322 assert_spin_locked(&transaction->t_journal->j_list_lock); 2323 2324 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2325 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2326 jh->b_transaction == NULL); 2327 2328 if (jh->b_transaction && jh->b_jlist == jlist) 2329 return; 2330 2331 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2332 jlist == BJ_Shadow || jlist == BJ_Forget) { 2333 /* 2334 * For metadata buffers, we track dirty bit in buffer_jbddirty 2335 * instead of buffer_dirty. We should not see a dirty bit set 2336 * here because we clear it in do_get_write_access but e.g. 2337 * tune2fs can modify the sb and set the dirty bit at any time 2338 * so we try to gracefully handle that. 2339 */ 2340 if (buffer_dirty(bh)) 2341 warn_dirty_buffer(bh); 2342 if (test_clear_buffer_dirty(bh) || 2343 test_clear_buffer_jbddirty(bh)) 2344 was_dirty = 1; 2345 } 2346 2347 if (jh->b_transaction) 2348 __jbd2_journal_temp_unlink_buffer(jh); 2349 else 2350 jbd2_journal_grab_journal_head(bh); 2351 jh->b_transaction = transaction; 2352 2353 switch (jlist) { 2354 case BJ_None: 2355 J_ASSERT_JH(jh, !jh->b_committed_data); 2356 J_ASSERT_JH(jh, !jh->b_frozen_data); 2357 return; 2358 case BJ_Metadata: 2359 transaction->t_nr_buffers++; 2360 list = &transaction->t_buffers; 2361 break; 2362 case BJ_Forget: 2363 list = &transaction->t_forget; 2364 break; 2365 case BJ_Shadow: 2366 list = &transaction->t_shadow_list; 2367 break; 2368 case BJ_Reserved: 2369 list = &transaction->t_reserved_list; 2370 break; 2371 } 2372 2373 __blist_add_buffer(list, jh); 2374 jh->b_jlist = jlist; 2375 2376 if (was_dirty) 2377 set_buffer_jbddirty(bh); 2378 } 2379 2380 void jbd2_journal_file_buffer(struct journal_head *jh, 2381 transaction_t *transaction, int jlist) 2382 { 2383 jbd_lock_bh_state(jh2bh(jh)); 2384 spin_lock(&transaction->t_journal->j_list_lock); 2385 __jbd2_journal_file_buffer(jh, transaction, jlist); 2386 spin_unlock(&transaction->t_journal->j_list_lock); 2387 jbd_unlock_bh_state(jh2bh(jh)); 2388 } 2389 2390 /* 2391 * Remove a buffer from its current buffer list in preparation for 2392 * dropping it from its current transaction entirely. If the buffer has 2393 * already started to be used by a subsequent transaction, refile the 2394 * buffer on that transaction's metadata list. 2395 * 2396 * Called under j_list_lock 2397 * Called under jbd_lock_bh_state(jh2bh(jh)) 2398 * 2399 * jh and bh may be already free when this function returns 2400 */ 2401 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2402 { 2403 int was_dirty, jlist; 2404 struct buffer_head *bh = jh2bh(jh); 2405 2406 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2407 if (jh->b_transaction) 2408 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2409 2410 /* If the buffer is now unused, just drop it. */ 2411 if (jh->b_next_transaction == NULL) { 2412 __jbd2_journal_unfile_buffer(jh); 2413 return; 2414 } 2415 2416 /* 2417 * It has been modified by a later transaction: add it to the new 2418 * transaction's metadata list. 2419 */ 2420 2421 was_dirty = test_clear_buffer_jbddirty(bh); 2422 __jbd2_journal_temp_unlink_buffer(jh); 2423 /* 2424 * We set b_transaction here because b_next_transaction will inherit 2425 * our jh reference and thus __jbd2_journal_file_buffer() must not 2426 * take a new one. 2427 */ 2428 jh->b_transaction = jh->b_next_transaction; 2429 jh->b_next_transaction = NULL; 2430 if (buffer_freed(bh)) 2431 jlist = BJ_Forget; 2432 else if (jh->b_modified) 2433 jlist = BJ_Metadata; 2434 else 2435 jlist = BJ_Reserved; 2436 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2437 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2438 2439 if (was_dirty) 2440 set_buffer_jbddirty(bh); 2441 } 2442 2443 /* 2444 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2445 * bh reference so that we can safely unlock bh. 2446 * 2447 * The jh and bh may be freed by this call. 2448 */ 2449 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2450 { 2451 struct buffer_head *bh = jh2bh(jh); 2452 2453 /* Get reference so that buffer cannot be freed before we unlock it */ 2454 get_bh(bh); 2455 jbd_lock_bh_state(bh); 2456 spin_lock(&journal->j_list_lock); 2457 __jbd2_journal_refile_buffer(jh); 2458 jbd_unlock_bh_state(bh); 2459 spin_unlock(&journal->j_list_lock); 2460 __brelse(bh); 2461 } 2462 2463 /* 2464 * File inode in the inode list of the handle's transaction 2465 */ 2466 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2467 unsigned long flags) 2468 { 2469 transaction_t *transaction = handle->h_transaction; 2470 journal_t *journal; 2471 2472 if (is_handle_aborted(handle)) 2473 return -EROFS; 2474 journal = transaction->t_journal; 2475 2476 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2477 transaction->t_tid); 2478 2479 /* 2480 * First check whether inode isn't already on the transaction's 2481 * lists without taking the lock. Note that this check is safe 2482 * without the lock as we cannot race with somebody removing inode 2483 * from the transaction. The reason is that we remove inode from the 2484 * transaction only in journal_release_jbd_inode() and when we commit 2485 * the transaction. We are guarded from the first case by holding 2486 * a reference to the inode. We are safe against the second case 2487 * because if jinode->i_transaction == transaction, commit code 2488 * cannot touch the transaction because we hold reference to it, 2489 * and if jinode->i_next_transaction == transaction, commit code 2490 * will only file the inode where we want it. 2491 */ 2492 if ((jinode->i_transaction == transaction || 2493 jinode->i_next_transaction == transaction) && 2494 (jinode->i_flags & flags) == flags) 2495 return 0; 2496 2497 spin_lock(&journal->j_list_lock); 2498 jinode->i_flags |= flags; 2499 /* Is inode already attached where we need it? */ 2500 if (jinode->i_transaction == transaction || 2501 jinode->i_next_transaction == transaction) 2502 goto done; 2503 2504 /* 2505 * We only ever set this variable to 1 so the test is safe. Since 2506 * t_need_data_flush is likely to be set, we do the test to save some 2507 * cacheline bouncing 2508 */ 2509 if (!transaction->t_need_data_flush) 2510 transaction->t_need_data_flush = 1; 2511 /* On some different transaction's list - should be 2512 * the committing one */ 2513 if (jinode->i_transaction) { 2514 J_ASSERT(jinode->i_next_transaction == NULL); 2515 J_ASSERT(jinode->i_transaction == 2516 journal->j_committing_transaction); 2517 jinode->i_next_transaction = transaction; 2518 goto done; 2519 } 2520 /* Not on any transaction list... */ 2521 J_ASSERT(!jinode->i_next_transaction); 2522 jinode->i_transaction = transaction; 2523 list_add(&jinode->i_list, &transaction->t_inode_list); 2524 done: 2525 spin_unlock(&journal->j_list_lock); 2526 2527 return 0; 2528 } 2529 2530 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2531 { 2532 return jbd2_journal_file_inode(handle, jinode, 2533 JI_WRITE_DATA | JI_WAIT_DATA); 2534 } 2535 2536 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2537 { 2538 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2539 } 2540 2541 /* 2542 * File truncate and transaction commit interact with each other in a 2543 * non-trivial way. If a transaction writing data block A is 2544 * committing, we cannot discard the data by truncate until we have 2545 * written them. Otherwise if we crashed after the transaction with 2546 * write has committed but before the transaction with truncate has 2547 * committed, we could see stale data in block A. This function is a 2548 * helper to solve this problem. It starts writeout of the truncated 2549 * part in case it is in the committing transaction. 2550 * 2551 * Filesystem code must call this function when inode is journaled in 2552 * ordered mode before truncation happens and after the inode has been 2553 * placed on orphan list with the new inode size. The second condition 2554 * avoids the race that someone writes new data and we start 2555 * committing the transaction after this function has been called but 2556 * before a transaction for truncate is started (and furthermore it 2557 * allows us to optimize the case where the addition to orphan list 2558 * happens in the same transaction as write --- we don't have to write 2559 * any data in such case). 2560 */ 2561 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2562 struct jbd2_inode *jinode, 2563 loff_t new_size) 2564 { 2565 transaction_t *inode_trans, *commit_trans; 2566 int ret = 0; 2567 2568 /* This is a quick check to avoid locking if not necessary */ 2569 if (!jinode->i_transaction) 2570 goto out; 2571 /* Locks are here just to force reading of recent values, it is 2572 * enough that the transaction was not committing before we started 2573 * a transaction adding the inode to orphan list */ 2574 read_lock(&journal->j_state_lock); 2575 commit_trans = journal->j_committing_transaction; 2576 read_unlock(&journal->j_state_lock); 2577 spin_lock(&journal->j_list_lock); 2578 inode_trans = jinode->i_transaction; 2579 spin_unlock(&journal->j_list_lock); 2580 if (inode_trans == commit_trans) { 2581 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2582 new_size, LLONG_MAX); 2583 if (ret) 2584 jbd2_journal_abort(journal, ret); 2585 } 2586 out: 2587 return ret; 2588 } 2589