1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) 199 return; 200 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 201 TASK_UNINTERRUPTIBLE); 202 read_unlock(&journal->j_state_lock); 203 /* 204 * We don't call jbd2_might_wait_for_commit() here as there's no 205 * waiting for outstanding handles happening anymore in T_SWITCH state 206 * and handling of reserved handles actually relies on that for 207 * correctness. 208 */ 209 schedule(); 210 finish_wait(&journal->j_wait_transaction_locked, &wait); 211 } 212 213 static void sub_reserved_credits(journal_t *journal, int blocks) 214 { 215 atomic_sub(blocks, &journal->j_reserved_credits); 216 wake_up(&journal->j_wait_reserved); 217 } 218 219 /* 220 * Wait until we can add credits for handle to the running transaction. Called 221 * with j_state_lock held for reading. Returns 0 if handle joined the running 222 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 223 * caller must retry. 224 */ 225 static int add_transaction_credits(journal_t *journal, int blocks, 226 int rsv_blocks) 227 { 228 transaction_t *t = journal->j_running_transaction; 229 int needed; 230 int total = blocks + rsv_blocks; 231 232 /* 233 * If the current transaction is locked down for commit, wait 234 * for the lock to be released. 235 */ 236 if (t->t_state != T_RUNNING) { 237 WARN_ON_ONCE(t->t_state >= T_FLUSH); 238 wait_transaction_locked(journal); 239 return 1; 240 } 241 242 /* 243 * If there is not enough space left in the log to write all 244 * potential buffers requested by this operation, we need to 245 * stall pending a log checkpoint to free some more log space. 246 */ 247 needed = atomic_add_return(total, &t->t_outstanding_credits); 248 if (needed > journal->j_max_transaction_buffers) { 249 /* 250 * If the current transaction is already too large, 251 * then start to commit it: we can then go back and 252 * attach this handle to a new transaction. 253 */ 254 atomic_sub(total, &t->t_outstanding_credits); 255 256 /* 257 * Is the number of reserved credits in the current transaction too 258 * big to fit this handle? Wait until reserved credits are freed. 259 */ 260 if (atomic_read(&journal->j_reserved_credits) + total > 261 journal->j_max_transaction_buffers) { 262 read_unlock(&journal->j_state_lock); 263 jbd2_might_wait_for_commit(journal); 264 wait_event(journal->j_wait_reserved, 265 atomic_read(&journal->j_reserved_credits) + total <= 266 journal->j_max_transaction_buffers); 267 return 1; 268 } 269 270 wait_transaction_locked(journal); 271 return 1; 272 } 273 274 /* 275 * The commit code assumes that it can get enough log space 276 * without forcing a checkpoint. This is *critical* for 277 * correctness: a checkpoint of a buffer which is also 278 * associated with a committing transaction creates a deadlock, 279 * so commit simply cannot force through checkpoints. 280 * 281 * We must therefore ensure the necessary space in the journal 282 * *before* starting to dirty potentially checkpointed buffers 283 * in the new transaction. 284 */ 285 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 286 atomic_sub(total, &t->t_outstanding_credits); 287 read_unlock(&journal->j_state_lock); 288 jbd2_might_wait_for_commit(journal); 289 write_lock(&journal->j_state_lock); 290 if (jbd2_log_space_left(journal) < 291 journal->j_max_transaction_buffers) 292 __jbd2_log_wait_for_space(journal); 293 write_unlock(&journal->j_state_lock); 294 return 1; 295 } 296 297 /* No reservation? We are done... */ 298 if (!rsv_blocks) 299 return 0; 300 301 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 302 /* We allow at most half of a transaction to be reserved */ 303 if (needed > journal->j_max_transaction_buffers / 2) { 304 sub_reserved_credits(journal, rsv_blocks); 305 atomic_sub(total, &t->t_outstanding_credits); 306 read_unlock(&journal->j_state_lock); 307 jbd2_might_wait_for_commit(journal); 308 wait_event(journal->j_wait_reserved, 309 atomic_read(&journal->j_reserved_credits) + rsv_blocks 310 <= journal->j_max_transaction_buffers / 2); 311 return 1; 312 } 313 return 0; 314 } 315 316 /* 317 * start_this_handle: Given a handle, deal with any locking or stalling 318 * needed to make sure that there is enough journal space for the handle 319 * to begin. Attach the handle to a transaction and set up the 320 * transaction's buffer credits. 321 */ 322 323 static int start_this_handle(journal_t *journal, handle_t *handle, 324 gfp_t gfp_mask) 325 { 326 transaction_t *transaction, *new_transaction = NULL; 327 int blocks = handle->h_total_credits; 328 int rsv_blocks = 0; 329 unsigned long ts = jiffies; 330 331 if (handle->h_rsv_handle) 332 rsv_blocks = handle->h_rsv_handle->h_total_credits; 333 334 /* 335 * Limit the number of reserved credits to 1/2 of maximum transaction 336 * size and limit the number of total credits to not exceed maximum 337 * transaction size per operation. 338 */ 339 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 340 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 341 printk(KERN_ERR "JBD2: %s wants too many credits " 342 "credits:%d rsv_credits:%d max:%d\n", 343 current->comm, blocks, rsv_blocks, 344 journal->j_max_transaction_buffers); 345 WARN_ON(1); 346 return -ENOSPC; 347 } 348 349 alloc_transaction: 350 if (!journal->j_running_transaction) { 351 /* 352 * If __GFP_FS is not present, then we may be being called from 353 * inside the fs writeback layer, so we MUST NOT fail. 354 */ 355 if ((gfp_mask & __GFP_FS) == 0) 356 gfp_mask |= __GFP_NOFAIL; 357 new_transaction = kmem_cache_zalloc(transaction_cache, 358 gfp_mask); 359 if (!new_transaction) 360 return -ENOMEM; 361 } 362 363 jbd_debug(3, "New handle %p going live.\n", handle); 364 365 /* 366 * We need to hold j_state_lock until t_updates has been incremented, 367 * for proper journal barrier handling 368 */ 369 repeat: 370 read_lock(&journal->j_state_lock); 371 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 372 if (is_journal_aborted(journal) || 373 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 374 read_unlock(&journal->j_state_lock); 375 jbd2_journal_free_transaction(new_transaction); 376 return -EROFS; 377 } 378 379 /* 380 * Wait on the journal's transaction barrier if necessary. Specifically 381 * we allow reserved handles to proceed because otherwise commit could 382 * deadlock on page writeback not being able to complete. 383 */ 384 if (!handle->h_reserved && journal->j_barrier_count) { 385 read_unlock(&journal->j_state_lock); 386 wait_event(journal->j_wait_transaction_locked, 387 journal->j_barrier_count == 0); 388 goto repeat; 389 } 390 391 if (!journal->j_running_transaction) { 392 read_unlock(&journal->j_state_lock); 393 if (!new_transaction) 394 goto alloc_transaction; 395 write_lock(&journal->j_state_lock); 396 if (!journal->j_running_transaction && 397 (handle->h_reserved || !journal->j_barrier_count)) { 398 jbd2_get_transaction(journal, new_transaction); 399 new_transaction = NULL; 400 } 401 write_unlock(&journal->j_state_lock); 402 goto repeat; 403 } 404 405 transaction = journal->j_running_transaction; 406 407 if (!handle->h_reserved) { 408 /* We may have dropped j_state_lock - restart in that case */ 409 if (add_transaction_credits(journal, blocks, rsv_blocks)) 410 goto repeat; 411 } else { 412 /* 413 * We have handle reserved so we are allowed to join T_LOCKED 414 * transaction and we don't have to check for transaction size 415 * and journal space. But we still have to wait while running 416 * transaction is being switched to a committing one as it 417 * won't wait for any handles anymore. 418 */ 419 if (transaction->t_state == T_SWITCH) { 420 wait_transaction_switching(journal); 421 goto repeat; 422 } 423 sub_reserved_credits(journal, blocks); 424 handle->h_reserved = 0; 425 } 426 427 /* OK, account for the buffers that this operation expects to 428 * use and add the handle to the running transaction. 429 */ 430 update_t_max_wait(transaction, ts); 431 handle->h_transaction = transaction; 432 handle->h_requested_credits = blocks; 433 handle->h_revoke_credits_requested = handle->h_revoke_credits; 434 handle->h_start_jiffies = jiffies; 435 atomic_inc(&transaction->t_updates); 436 atomic_inc(&transaction->t_handle_count); 437 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 438 handle, blocks, 439 atomic_read(&transaction->t_outstanding_credits), 440 jbd2_log_space_left(journal)); 441 read_unlock(&journal->j_state_lock); 442 current->journal_info = handle; 443 444 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 445 jbd2_journal_free_transaction(new_transaction); 446 /* 447 * Ensure that no allocations done while the transaction is open are 448 * going to recurse back to the fs layer. 449 */ 450 handle->saved_alloc_context = memalloc_nofs_save(); 451 return 0; 452 } 453 454 /* Allocate a new handle. This should probably be in a slab... */ 455 static handle_t *new_handle(int nblocks) 456 { 457 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 458 if (!handle) 459 return NULL; 460 handle->h_total_credits = nblocks; 461 handle->h_ref = 1; 462 463 return handle; 464 } 465 466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 467 int revoke_records, gfp_t gfp_mask, 468 unsigned int type, unsigned int line_no) 469 { 470 handle_t *handle = journal_current_handle(); 471 int err; 472 473 if (!journal) 474 return ERR_PTR(-EROFS); 475 476 if (handle) { 477 J_ASSERT(handle->h_transaction->t_journal == journal); 478 handle->h_ref++; 479 return handle; 480 } 481 482 nblocks += DIV_ROUND_UP(revoke_records, 483 journal->j_revoke_records_per_block); 484 handle = new_handle(nblocks); 485 if (!handle) 486 return ERR_PTR(-ENOMEM); 487 if (rsv_blocks) { 488 handle_t *rsv_handle; 489 490 rsv_handle = new_handle(rsv_blocks); 491 if (!rsv_handle) { 492 jbd2_free_handle(handle); 493 return ERR_PTR(-ENOMEM); 494 } 495 rsv_handle->h_reserved = 1; 496 rsv_handle->h_journal = journal; 497 handle->h_rsv_handle = rsv_handle; 498 } 499 handle->h_revoke_credits = revoke_records; 500 501 err = start_this_handle(journal, handle, gfp_mask); 502 if (err < 0) { 503 if (handle->h_rsv_handle) 504 jbd2_free_handle(handle->h_rsv_handle); 505 jbd2_free_handle(handle); 506 return ERR_PTR(err); 507 } 508 handle->h_type = type; 509 handle->h_line_no = line_no; 510 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 511 handle->h_transaction->t_tid, type, 512 line_no, nblocks); 513 514 return handle; 515 } 516 EXPORT_SYMBOL(jbd2__journal_start); 517 518 519 /** 520 * handle_t *jbd2_journal_start() - Obtain a new handle. 521 * @journal: Journal to start transaction on. 522 * @nblocks: number of block buffer we might modify 523 * 524 * We make sure that the transaction can guarantee at least nblocks of 525 * modified buffers in the log. We block until the log can guarantee 526 * that much space. Additionally, if rsv_blocks > 0, we also create another 527 * handle with rsv_blocks reserved blocks in the journal. This handle is 528 * is stored in h_rsv_handle. It is not attached to any particular transaction 529 * and thus doesn't block transaction commit. If the caller uses this reserved 530 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 531 * on the parent handle will dispose the reserved one. Reserved handle has to 532 * be converted to a normal handle using jbd2_journal_start_reserved() before 533 * it can be used. 534 * 535 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 536 * on failure. 537 */ 538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 539 { 540 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 541 } 542 EXPORT_SYMBOL(jbd2_journal_start); 543 544 static void __jbd2_journal_unreserve_handle(handle_t *handle) 545 { 546 journal_t *journal = handle->h_journal; 547 548 WARN_ON(!handle->h_reserved); 549 sub_reserved_credits(journal, handle->h_total_credits); 550 } 551 552 void jbd2_journal_free_reserved(handle_t *handle) 553 { 554 __jbd2_journal_unreserve_handle(handle); 555 jbd2_free_handle(handle); 556 } 557 EXPORT_SYMBOL(jbd2_journal_free_reserved); 558 559 /** 560 * int jbd2_journal_start_reserved() - start reserved handle 561 * @handle: handle to start 562 * @type: for handle statistics 563 * @line_no: for handle statistics 564 * 565 * Start handle that has been previously reserved with jbd2_journal_reserve(). 566 * This attaches @handle to the running transaction (or creates one if there's 567 * not transaction running). Unlike jbd2_journal_start() this function cannot 568 * block on journal commit, checkpointing, or similar stuff. It can block on 569 * memory allocation or frozen journal though. 570 * 571 * Return 0 on success, non-zero on error - handle is freed in that case. 572 */ 573 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 574 unsigned int line_no) 575 { 576 journal_t *journal = handle->h_journal; 577 int ret = -EIO; 578 579 if (WARN_ON(!handle->h_reserved)) { 580 /* Someone passed in normal handle? Just stop it. */ 581 jbd2_journal_stop(handle); 582 return ret; 583 } 584 /* 585 * Usefulness of mixing of reserved and unreserved handles is 586 * questionable. So far nobody seems to need it so just error out. 587 */ 588 if (WARN_ON(current->journal_info)) { 589 jbd2_journal_free_reserved(handle); 590 return ret; 591 } 592 593 handle->h_journal = NULL; 594 /* 595 * GFP_NOFS is here because callers are likely from writeback or 596 * similarly constrained call sites 597 */ 598 ret = start_this_handle(journal, handle, GFP_NOFS); 599 if (ret < 0) { 600 handle->h_journal = journal; 601 jbd2_journal_free_reserved(handle); 602 return ret; 603 } 604 handle->h_type = type; 605 handle->h_line_no = line_no; 606 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 607 handle->h_transaction->t_tid, type, 608 line_no, handle->h_total_credits); 609 return 0; 610 } 611 EXPORT_SYMBOL(jbd2_journal_start_reserved); 612 613 /** 614 * int jbd2_journal_extend() - extend buffer credits. 615 * @handle: handle to 'extend' 616 * @nblocks: nr blocks to try to extend by. 617 * @revoke_records: number of revoke records to try to extend by. 618 * 619 * Some transactions, such as large extends and truncates, can be done 620 * atomically all at once or in several stages. The operation requests 621 * a credit for a number of buffer modifications in advance, but can 622 * extend its credit if it needs more. 623 * 624 * jbd2_journal_extend tries to give the running handle more buffer credits. 625 * It does not guarantee that allocation - this is a best-effort only. 626 * The calling process MUST be able to deal cleanly with a failure to 627 * extend here. 628 * 629 * Return 0 on success, non-zero on failure. 630 * 631 * return code < 0 implies an error 632 * return code > 0 implies normal transaction-full status. 633 */ 634 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 635 { 636 transaction_t *transaction = handle->h_transaction; 637 journal_t *journal; 638 int result; 639 int wanted; 640 641 if (is_handle_aborted(handle)) 642 return -EROFS; 643 journal = transaction->t_journal; 644 645 result = 1; 646 647 read_lock(&journal->j_state_lock); 648 649 /* Don't extend a locked-down transaction! */ 650 if (transaction->t_state != T_RUNNING) { 651 jbd_debug(3, "denied handle %p %d blocks: " 652 "transaction not running\n", handle, nblocks); 653 goto error_out; 654 } 655 656 nblocks += DIV_ROUND_UP( 657 handle->h_revoke_credits_requested + revoke_records, 658 journal->j_revoke_records_per_block) - 659 DIV_ROUND_UP( 660 handle->h_revoke_credits_requested, 661 journal->j_revoke_records_per_block); 662 spin_lock(&transaction->t_handle_lock); 663 wanted = atomic_add_return(nblocks, 664 &transaction->t_outstanding_credits); 665 666 if (wanted > journal->j_max_transaction_buffers) { 667 jbd_debug(3, "denied handle %p %d blocks: " 668 "transaction too large\n", handle, nblocks); 669 atomic_sub(nblocks, &transaction->t_outstanding_credits); 670 goto unlock; 671 } 672 673 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 674 transaction->t_tid, 675 handle->h_type, handle->h_line_no, 676 handle->h_total_credits, 677 nblocks); 678 679 handle->h_total_credits += nblocks; 680 handle->h_requested_credits += nblocks; 681 handle->h_revoke_credits += revoke_records; 682 handle->h_revoke_credits_requested += revoke_records; 683 result = 0; 684 685 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 686 unlock: 687 spin_unlock(&transaction->t_handle_lock); 688 error_out: 689 read_unlock(&journal->j_state_lock); 690 return result; 691 } 692 693 static void stop_this_handle(handle_t *handle) 694 { 695 transaction_t *transaction = handle->h_transaction; 696 journal_t *journal = transaction->t_journal; 697 int revokes; 698 699 J_ASSERT(journal_current_handle() == handle); 700 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 701 current->journal_info = NULL; 702 /* 703 * Subtract necessary revoke descriptor blocks from handle credits. We 704 * take care to account only for revoke descriptor blocks the 705 * transaction will really need as large sequences of transactions with 706 * small numbers of revokes are relatively common. 707 */ 708 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 709 if (revokes) { 710 int t_revokes, revoke_descriptors; 711 int rr_per_blk = journal->j_revoke_records_per_block; 712 713 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 714 > handle->h_total_credits); 715 t_revokes = atomic_add_return(revokes, 716 &transaction->t_outstanding_revokes); 717 revoke_descriptors = 718 DIV_ROUND_UP(t_revokes, rr_per_blk) - 719 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 720 handle->h_total_credits -= revoke_descriptors; 721 } 722 atomic_sub(handle->h_total_credits, 723 &transaction->t_outstanding_credits); 724 if (handle->h_rsv_handle) 725 __jbd2_journal_unreserve_handle(handle->h_rsv_handle); 726 if (atomic_dec_and_test(&transaction->t_updates)) 727 wake_up(&journal->j_wait_updates); 728 729 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 730 /* 731 * Scope of the GFP_NOFS context is over here and so we can restore the 732 * original alloc context. 733 */ 734 memalloc_nofs_restore(handle->saved_alloc_context); 735 } 736 737 /** 738 * int jbd2_journal_restart() - restart a handle . 739 * @handle: handle to restart 740 * @nblocks: nr credits requested 741 * @revoke_records: number of revoke record credits requested 742 * @gfp_mask: memory allocation flags (for start_this_handle) 743 * 744 * Restart a handle for a multi-transaction filesystem 745 * operation. 746 * 747 * If the jbd2_journal_extend() call above fails to grant new buffer credits 748 * to a running handle, a call to jbd2_journal_restart will commit the 749 * handle's transaction so far and reattach the handle to a new 750 * transaction capable of guaranteeing the requested number of 751 * credits. We preserve reserved handle if there's any attached to the 752 * passed in handle. 753 */ 754 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 755 gfp_t gfp_mask) 756 { 757 transaction_t *transaction = handle->h_transaction; 758 journal_t *journal; 759 tid_t tid; 760 int need_to_start; 761 int ret; 762 763 /* If we've had an abort of any type, don't even think about 764 * actually doing the restart! */ 765 if (is_handle_aborted(handle)) 766 return 0; 767 journal = transaction->t_journal; 768 tid = transaction->t_tid; 769 770 /* 771 * First unlink the handle from its current transaction, and start the 772 * commit on that. 773 */ 774 jbd_debug(2, "restarting handle %p\n", handle); 775 stop_this_handle(handle); 776 handle->h_transaction = NULL; 777 778 /* 779 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 780 * get rid of pointless j_state_lock traffic like this. 781 */ 782 read_lock(&journal->j_state_lock); 783 need_to_start = !tid_geq(journal->j_commit_request, tid); 784 read_unlock(&journal->j_state_lock); 785 if (need_to_start) 786 jbd2_log_start_commit(journal, tid); 787 handle->h_total_credits = nblocks + 788 DIV_ROUND_UP(revoke_records, 789 journal->j_revoke_records_per_block); 790 handle->h_revoke_credits = revoke_records; 791 ret = start_this_handle(journal, handle, gfp_mask); 792 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 793 ret ? 0 : handle->h_transaction->t_tid, 794 handle->h_type, handle->h_line_no, 795 handle->h_total_credits); 796 return ret; 797 } 798 EXPORT_SYMBOL(jbd2__journal_restart); 799 800 801 int jbd2_journal_restart(handle_t *handle, int nblocks) 802 { 803 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 804 } 805 EXPORT_SYMBOL(jbd2_journal_restart); 806 807 /** 808 * void jbd2_journal_lock_updates () - establish a transaction barrier. 809 * @journal: Journal to establish a barrier on. 810 * 811 * This locks out any further updates from being started, and blocks 812 * until all existing updates have completed, returning only once the 813 * journal is in a quiescent state with no updates running. 814 * 815 * The journal lock should not be held on entry. 816 */ 817 void jbd2_journal_lock_updates(journal_t *journal) 818 { 819 DEFINE_WAIT(wait); 820 821 jbd2_might_wait_for_commit(journal); 822 823 write_lock(&journal->j_state_lock); 824 ++journal->j_barrier_count; 825 826 /* Wait until there are no reserved handles */ 827 if (atomic_read(&journal->j_reserved_credits)) { 828 write_unlock(&journal->j_state_lock); 829 wait_event(journal->j_wait_reserved, 830 atomic_read(&journal->j_reserved_credits) == 0); 831 write_lock(&journal->j_state_lock); 832 } 833 834 /* Wait until there are no running updates */ 835 while (1) { 836 transaction_t *transaction = journal->j_running_transaction; 837 838 if (!transaction) 839 break; 840 841 spin_lock(&transaction->t_handle_lock); 842 prepare_to_wait(&journal->j_wait_updates, &wait, 843 TASK_UNINTERRUPTIBLE); 844 if (!atomic_read(&transaction->t_updates)) { 845 spin_unlock(&transaction->t_handle_lock); 846 finish_wait(&journal->j_wait_updates, &wait); 847 break; 848 } 849 spin_unlock(&transaction->t_handle_lock); 850 write_unlock(&journal->j_state_lock); 851 schedule(); 852 finish_wait(&journal->j_wait_updates, &wait); 853 write_lock(&journal->j_state_lock); 854 } 855 write_unlock(&journal->j_state_lock); 856 857 /* 858 * We have now established a barrier against other normal updates, but 859 * we also need to barrier against other jbd2_journal_lock_updates() calls 860 * to make sure that we serialise special journal-locked operations 861 * too. 862 */ 863 mutex_lock(&journal->j_barrier); 864 } 865 866 /** 867 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 868 * @journal: Journal to release the barrier on. 869 * 870 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 871 * 872 * Should be called without the journal lock held. 873 */ 874 void jbd2_journal_unlock_updates (journal_t *journal) 875 { 876 J_ASSERT(journal->j_barrier_count != 0); 877 878 mutex_unlock(&journal->j_barrier); 879 write_lock(&journal->j_state_lock); 880 --journal->j_barrier_count; 881 write_unlock(&journal->j_state_lock); 882 wake_up(&journal->j_wait_transaction_locked); 883 } 884 885 static void warn_dirty_buffer(struct buffer_head *bh) 886 { 887 printk(KERN_WARNING 888 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 889 "There's a risk of filesystem corruption in case of system " 890 "crash.\n", 891 bh->b_bdev, (unsigned long long)bh->b_blocknr); 892 } 893 894 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 895 static void jbd2_freeze_jh_data(struct journal_head *jh) 896 { 897 struct page *page; 898 int offset; 899 char *source; 900 struct buffer_head *bh = jh2bh(jh); 901 902 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 903 page = bh->b_page; 904 offset = offset_in_page(bh->b_data); 905 source = kmap_atomic(page); 906 /* Fire data frozen trigger just before we copy the data */ 907 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 908 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 909 kunmap_atomic(source); 910 911 /* 912 * Now that the frozen data is saved off, we need to store any matching 913 * triggers. 914 */ 915 jh->b_frozen_triggers = jh->b_triggers; 916 } 917 918 /* 919 * If the buffer is already part of the current transaction, then there 920 * is nothing we need to do. If it is already part of a prior 921 * transaction which we are still committing to disk, then we need to 922 * make sure that we do not overwrite the old copy: we do copy-out to 923 * preserve the copy going to disk. We also account the buffer against 924 * the handle's metadata buffer credits (unless the buffer is already 925 * part of the transaction, that is). 926 * 927 */ 928 static int 929 do_get_write_access(handle_t *handle, struct journal_head *jh, 930 int force_copy) 931 { 932 struct buffer_head *bh; 933 transaction_t *transaction = handle->h_transaction; 934 journal_t *journal; 935 int error; 936 char *frozen_buffer = NULL; 937 unsigned long start_lock, time_lock; 938 939 if (is_handle_aborted(handle)) 940 return -EROFS; 941 journal = transaction->t_journal; 942 943 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 944 945 JBUFFER_TRACE(jh, "entry"); 946 repeat: 947 bh = jh2bh(jh); 948 949 /* @@@ Need to check for errors here at some point. */ 950 951 start_lock = jiffies; 952 lock_buffer(bh); 953 spin_lock(&jh->b_state_lock); 954 955 /* If it takes too long to lock the buffer, trace it */ 956 time_lock = jbd2_time_diff(start_lock, jiffies); 957 if (time_lock > HZ/10) 958 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 959 jiffies_to_msecs(time_lock)); 960 961 /* We now hold the buffer lock so it is safe to query the buffer 962 * state. Is the buffer dirty? 963 * 964 * If so, there are two possibilities. The buffer may be 965 * non-journaled, and undergoing a quite legitimate writeback. 966 * Otherwise, it is journaled, and we don't expect dirty buffers 967 * in that state (the buffers should be marked JBD_Dirty 968 * instead.) So either the IO is being done under our own 969 * control and this is a bug, or it's a third party IO such as 970 * dump(8) (which may leave the buffer scheduled for read --- 971 * ie. locked but not dirty) or tune2fs (which may actually have 972 * the buffer dirtied, ugh.) */ 973 974 if (buffer_dirty(bh)) { 975 /* 976 * First question: is this buffer already part of the current 977 * transaction or the existing committing transaction? 978 */ 979 if (jh->b_transaction) { 980 J_ASSERT_JH(jh, 981 jh->b_transaction == transaction || 982 jh->b_transaction == 983 journal->j_committing_transaction); 984 if (jh->b_next_transaction) 985 J_ASSERT_JH(jh, jh->b_next_transaction == 986 transaction); 987 warn_dirty_buffer(bh); 988 } 989 /* 990 * In any case we need to clean the dirty flag and we must 991 * do it under the buffer lock to be sure we don't race 992 * with running write-out. 993 */ 994 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 995 clear_buffer_dirty(bh); 996 set_buffer_jbddirty(bh); 997 } 998 999 unlock_buffer(bh); 1000 1001 error = -EROFS; 1002 if (is_handle_aborted(handle)) { 1003 spin_unlock(&jh->b_state_lock); 1004 goto out; 1005 } 1006 error = 0; 1007 1008 /* 1009 * The buffer is already part of this transaction if b_transaction or 1010 * b_next_transaction points to it 1011 */ 1012 if (jh->b_transaction == transaction || 1013 jh->b_next_transaction == transaction) 1014 goto done; 1015 1016 /* 1017 * this is the first time this transaction is touching this buffer, 1018 * reset the modified flag 1019 */ 1020 jh->b_modified = 0; 1021 1022 /* 1023 * If the buffer is not journaled right now, we need to make sure it 1024 * doesn't get written to disk before the caller actually commits the 1025 * new data 1026 */ 1027 if (!jh->b_transaction) { 1028 JBUFFER_TRACE(jh, "no transaction"); 1029 J_ASSERT_JH(jh, !jh->b_next_transaction); 1030 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1031 /* 1032 * Make sure all stores to jh (b_modified, b_frozen_data) are 1033 * visible before attaching it to the running transaction. 1034 * Paired with barrier in jbd2_write_access_granted() 1035 */ 1036 smp_wmb(); 1037 spin_lock(&journal->j_list_lock); 1038 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1039 spin_unlock(&journal->j_list_lock); 1040 goto done; 1041 } 1042 /* 1043 * If there is already a copy-out version of this buffer, then we don't 1044 * need to make another one 1045 */ 1046 if (jh->b_frozen_data) { 1047 JBUFFER_TRACE(jh, "has frozen data"); 1048 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1049 goto attach_next; 1050 } 1051 1052 JBUFFER_TRACE(jh, "owned by older transaction"); 1053 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1054 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1055 1056 /* 1057 * There is one case we have to be very careful about. If the 1058 * committing transaction is currently writing this buffer out to disk 1059 * and has NOT made a copy-out, then we cannot modify the buffer 1060 * contents at all right now. The essence of copy-out is that it is 1061 * the extra copy, not the primary copy, which gets journaled. If the 1062 * primary copy is already going to disk then we cannot do copy-out 1063 * here. 1064 */ 1065 if (buffer_shadow(bh)) { 1066 JBUFFER_TRACE(jh, "on shadow: sleep"); 1067 spin_unlock(&jh->b_state_lock); 1068 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1069 goto repeat; 1070 } 1071 1072 /* 1073 * Only do the copy if the currently-owning transaction still needs it. 1074 * If buffer isn't on BJ_Metadata list, the committing transaction is 1075 * past that stage (here we use the fact that BH_Shadow is set under 1076 * bh_state lock together with refiling to BJ_Shadow list and at this 1077 * point we know the buffer doesn't have BH_Shadow set). 1078 * 1079 * Subtle point, though: if this is a get_undo_access, then we will be 1080 * relying on the frozen_data to contain the new value of the 1081 * committed_data record after the transaction, so we HAVE to force the 1082 * frozen_data copy in that case. 1083 */ 1084 if (jh->b_jlist == BJ_Metadata || force_copy) { 1085 JBUFFER_TRACE(jh, "generate frozen data"); 1086 if (!frozen_buffer) { 1087 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1088 spin_unlock(&jh->b_state_lock); 1089 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1090 GFP_NOFS | __GFP_NOFAIL); 1091 goto repeat; 1092 } 1093 jh->b_frozen_data = frozen_buffer; 1094 frozen_buffer = NULL; 1095 jbd2_freeze_jh_data(jh); 1096 } 1097 attach_next: 1098 /* 1099 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1100 * before attaching it to the running transaction. Paired with barrier 1101 * in jbd2_write_access_granted() 1102 */ 1103 smp_wmb(); 1104 jh->b_next_transaction = transaction; 1105 1106 done: 1107 spin_unlock(&jh->b_state_lock); 1108 1109 /* 1110 * If we are about to journal a buffer, then any revoke pending on it is 1111 * no longer valid 1112 */ 1113 jbd2_journal_cancel_revoke(handle, jh); 1114 1115 out: 1116 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1117 jbd2_free(frozen_buffer, bh->b_size); 1118 1119 JBUFFER_TRACE(jh, "exit"); 1120 return error; 1121 } 1122 1123 /* Fast check whether buffer is already attached to the required transaction */ 1124 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1125 bool undo) 1126 { 1127 struct journal_head *jh; 1128 bool ret = false; 1129 1130 /* Dirty buffers require special handling... */ 1131 if (buffer_dirty(bh)) 1132 return false; 1133 1134 /* 1135 * RCU protects us from dereferencing freed pages. So the checks we do 1136 * are guaranteed not to oops. However the jh slab object can get freed 1137 * & reallocated while we work with it. So we have to be careful. When 1138 * we see jh attached to the running transaction, we know it must stay 1139 * so until the transaction is committed. Thus jh won't be freed and 1140 * will be attached to the same bh while we run. However it can 1141 * happen jh gets freed, reallocated, and attached to the transaction 1142 * just after we get pointer to it from bh. So we have to be careful 1143 * and recheck jh still belongs to our bh before we return success. 1144 */ 1145 rcu_read_lock(); 1146 if (!buffer_jbd(bh)) 1147 goto out; 1148 /* This should be bh2jh() but that doesn't work with inline functions */ 1149 jh = READ_ONCE(bh->b_private); 1150 if (!jh) 1151 goto out; 1152 /* For undo access buffer must have data copied */ 1153 if (undo && !jh->b_committed_data) 1154 goto out; 1155 if (jh->b_transaction != handle->h_transaction && 1156 jh->b_next_transaction != handle->h_transaction) 1157 goto out; 1158 /* 1159 * There are two reasons for the barrier here: 1160 * 1) Make sure to fetch b_bh after we did previous checks so that we 1161 * detect when jh went through free, realloc, attach to transaction 1162 * while we were checking. Paired with implicit barrier in that path. 1163 * 2) So that access to bh done after jbd2_write_access_granted() 1164 * doesn't get reordered and see inconsistent state of concurrent 1165 * do_get_write_access(). 1166 */ 1167 smp_mb(); 1168 if (unlikely(jh->b_bh != bh)) 1169 goto out; 1170 ret = true; 1171 out: 1172 rcu_read_unlock(); 1173 return ret; 1174 } 1175 1176 /** 1177 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1178 * @handle: transaction to add buffer modifications to 1179 * @bh: bh to be used for metadata writes 1180 * 1181 * Returns: error code or 0 on success. 1182 * 1183 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1184 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1185 */ 1186 1187 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1188 { 1189 struct journal_head *jh; 1190 int rc; 1191 1192 if (jbd2_write_access_granted(handle, bh, false)) 1193 return 0; 1194 1195 jh = jbd2_journal_add_journal_head(bh); 1196 /* We do not want to get caught playing with fields which the 1197 * log thread also manipulates. Make sure that the buffer 1198 * completes any outstanding IO before proceeding. */ 1199 rc = do_get_write_access(handle, jh, 0); 1200 jbd2_journal_put_journal_head(jh); 1201 return rc; 1202 } 1203 1204 1205 /* 1206 * When the user wants to journal a newly created buffer_head 1207 * (ie. getblk() returned a new buffer and we are going to populate it 1208 * manually rather than reading off disk), then we need to keep the 1209 * buffer_head locked until it has been completely filled with new 1210 * data. In this case, we should be able to make the assertion that 1211 * the bh is not already part of an existing transaction. 1212 * 1213 * The buffer should already be locked by the caller by this point. 1214 * There is no lock ranking violation: it was a newly created, 1215 * unlocked buffer beforehand. */ 1216 1217 /** 1218 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1219 * @handle: transaction to new buffer to 1220 * @bh: new buffer. 1221 * 1222 * Call this if you create a new bh. 1223 */ 1224 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1225 { 1226 transaction_t *transaction = handle->h_transaction; 1227 journal_t *journal; 1228 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1229 int err; 1230 1231 jbd_debug(5, "journal_head %p\n", jh); 1232 err = -EROFS; 1233 if (is_handle_aborted(handle)) 1234 goto out; 1235 journal = transaction->t_journal; 1236 err = 0; 1237 1238 JBUFFER_TRACE(jh, "entry"); 1239 /* 1240 * The buffer may already belong to this transaction due to pre-zeroing 1241 * in the filesystem's new_block code. It may also be on the previous, 1242 * committing transaction's lists, but it HAS to be in Forget state in 1243 * that case: the transaction must have deleted the buffer for it to be 1244 * reused here. 1245 */ 1246 spin_lock(&jh->b_state_lock); 1247 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1248 jh->b_transaction == NULL || 1249 (jh->b_transaction == journal->j_committing_transaction && 1250 jh->b_jlist == BJ_Forget))); 1251 1252 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1253 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1254 1255 if (jh->b_transaction == NULL) { 1256 /* 1257 * Previous jbd2_journal_forget() could have left the buffer 1258 * with jbddirty bit set because it was being committed. When 1259 * the commit finished, we've filed the buffer for 1260 * checkpointing and marked it dirty. Now we are reallocating 1261 * the buffer so the transaction freeing it must have 1262 * committed and so it's safe to clear the dirty bit. 1263 */ 1264 clear_buffer_dirty(jh2bh(jh)); 1265 /* first access by this transaction */ 1266 jh->b_modified = 0; 1267 1268 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1269 spin_lock(&journal->j_list_lock); 1270 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1271 spin_unlock(&journal->j_list_lock); 1272 } else if (jh->b_transaction == journal->j_committing_transaction) { 1273 /* first access by this transaction */ 1274 jh->b_modified = 0; 1275 1276 JBUFFER_TRACE(jh, "set next transaction"); 1277 spin_lock(&journal->j_list_lock); 1278 jh->b_next_transaction = transaction; 1279 spin_unlock(&journal->j_list_lock); 1280 } 1281 spin_unlock(&jh->b_state_lock); 1282 1283 /* 1284 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1285 * blocks which contain freed but then revoked metadata. We need 1286 * to cancel the revoke in case we end up freeing it yet again 1287 * and the reallocating as data - this would cause a second revoke, 1288 * which hits an assertion error. 1289 */ 1290 JBUFFER_TRACE(jh, "cancelling revoke"); 1291 jbd2_journal_cancel_revoke(handle, jh); 1292 out: 1293 jbd2_journal_put_journal_head(jh); 1294 return err; 1295 } 1296 1297 /** 1298 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1299 * non-rewindable consequences 1300 * @handle: transaction 1301 * @bh: buffer to undo 1302 * 1303 * Sometimes there is a need to distinguish between metadata which has 1304 * been committed to disk and that which has not. The ext3fs code uses 1305 * this for freeing and allocating space, we have to make sure that we 1306 * do not reuse freed space until the deallocation has been committed, 1307 * since if we overwrote that space we would make the delete 1308 * un-rewindable in case of a crash. 1309 * 1310 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1311 * buffer for parts of non-rewindable operations such as delete 1312 * operations on the bitmaps. The journaling code must keep a copy of 1313 * the buffer's contents prior to the undo_access call until such time 1314 * as we know that the buffer has definitely been committed to disk. 1315 * 1316 * We never need to know which transaction the committed data is part 1317 * of, buffers touched here are guaranteed to be dirtied later and so 1318 * will be committed to a new transaction in due course, at which point 1319 * we can discard the old committed data pointer. 1320 * 1321 * Returns error number or 0 on success. 1322 */ 1323 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1324 { 1325 int err; 1326 struct journal_head *jh; 1327 char *committed_data = NULL; 1328 1329 if (jbd2_write_access_granted(handle, bh, true)) 1330 return 0; 1331 1332 jh = jbd2_journal_add_journal_head(bh); 1333 JBUFFER_TRACE(jh, "entry"); 1334 1335 /* 1336 * Do this first --- it can drop the journal lock, so we want to 1337 * make sure that obtaining the committed_data is done 1338 * atomically wrt. completion of any outstanding commits. 1339 */ 1340 err = do_get_write_access(handle, jh, 1); 1341 if (err) 1342 goto out; 1343 1344 repeat: 1345 if (!jh->b_committed_data) 1346 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1347 GFP_NOFS|__GFP_NOFAIL); 1348 1349 spin_lock(&jh->b_state_lock); 1350 if (!jh->b_committed_data) { 1351 /* Copy out the current buffer contents into the 1352 * preserved, committed copy. */ 1353 JBUFFER_TRACE(jh, "generate b_committed data"); 1354 if (!committed_data) { 1355 spin_unlock(&jh->b_state_lock); 1356 goto repeat; 1357 } 1358 1359 jh->b_committed_data = committed_data; 1360 committed_data = NULL; 1361 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1362 } 1363 spin_unlock(&jh->b_state_lock); 1364 out: 1365 jbd2_journal_put_journal_head(jh); 1366 if (unlikely(committed_data)) 1367 jbd2_free(committed_data, bh->b_size); 1368 return err; 1369 } 1370 1371 /** 1372 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1373 * @bh: buffer to trigger on 1374 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1375 * 1376 * Set any triggers on this journal_head. This is always safe, because 1377 * triggers for a committing buffer will be saved off, and triggers for 1378 * a running transaction will match the buffer in that transaction. 1379 * 1380 * Call with NULL to clear the triggers. 1381 */ 1382 void jbd2_journal_set_triggers(struct buffer_head *bh, 1383 struct jbd2_buffer_trigger_type *type) 1384 { 1385 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1386 1387 if (WARN_ON(!jh)) 1388 return; 1389 jh->b_triggers = type; 1390 jbd2_journal_put_journal_head(jh); 1391 } 1392 1393 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1394 struct jbd2_buffer_trigger_type *triggers) 1395 { 1396 struct buffer_head *bh = jh2bh(jh); 1397 1398 if (!triggers || !triggers->t_frozen) 1399 return; 1400 1401 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1402 } 1403 1404 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1405 struct jbd2_buffer_trigger_type *triggers) 1406 { 1407 if (!triggers || !triggers->t_abort) 1408 return; 1409 1410 triggers->t_abort(triggers, jh2bh(jh)); 1411 } 1412 1413 /** 1414 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1415 * @handle: transaction to add buffer to. 1416 * @bh: buffer to mark 1417 * 1418 * mark dirty metadata which needs to be journaled as part of the current 1419 * transaction. 1420 * 1421 * The buffer must have previously had jbd2_journal_get_write_access() 1422 * called so that it has a valid journal_head attached to the buffer 1423 * head. 1424 * 1425 * The buffer is placed on the transaction's metadata list and is marked 1426 * as belonging to the transaction. 1427 * 1428 * Returns error number or 0 on success. 1429 * 1430 * Special care needs to be taken if the buffer already belongs to the 1431 * current committing transaction (in which case we should have frozen 1432 * data present for that commit). In that case, we don't relink the 1433 * buffer: that only gets done when the old transaction finally 1434 * completes its commit. 1435 */ 1436 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1437 { 1438 transaction_t *transaction = handle->h_transaction; 1439 journal_t *journal; 1440 struct journal_head *jh; 1441 int ret = 0; 1442 1443 if (is_handle_aborted(handle)) 1444 return -EROFS; 1445 if (!buffer_jbd(bh)) 1446 return -EUCLEAN; 1447 1448 /* 1449 * We don't grab jh reference here since the buffer must be part 1450 * of the running transaction. 1451 */ 1452 jh = bh2jh(bh); 1453 jbd_debug(5, "journal_head %p\n", jh); 1454 JBUFFER_TRACE(jh, "entry"); 1455 1456 /* 1457 * This and the following assertions are unreliable since we may see jh 1458 * in inconsistent state unless we grab bh_state lock. But this is 1459 * crucial to catch bugs so let's do a reliable check until the 1460 * lockless handling is fully proven. 1461 */ 1462 if (jh->b_transaction != transaction && 1463 jh->b_next_transaction != transaction) { 1464 spin_lock(&jh->b_state_lock); 1465 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1466 jh->b_next_transaction == transaction); 1467 spin_unlock(&jh->b_state_lock); 1468 } 1469 if (jh->b_modified == 1) { 1470 /* If it's in our transaction it must be in BJ_Metadata list. */ 1471 if (jh->b_transaction == transaction && 1472 jh->b_jlist != BJ_Metadata) { 1473 spin_lock(&jh->b_state_lock); 1474 if (jh->b_transaction == transaction && 1475 jh->b_jlist != BJ_Metadata) 1476 pr_err("JBD2: assertion failure: h_type=%u " 1477 "h_line_no=%u block_no=%llu jlist=%u\n", 1478 handle->h_type, handle->h_line_no, 1479 (unsigned long long) bh->b_blocknr, 1480 jh->b_jlist); 1481 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1482 jh->b_jlist == BJ_Metadata); 1483 spin_unlock(&jh->b_state_lock); 1484 } 1485 goto out; 1486 } 1487 1488 journal = transaction->t_journal; 1489 spin_lock(&jh->b_state_lock); 1490 1491 if (jh->b_modified == 0) { 1492 /* 1493 * This buffer's got modified and becoming part 1494 * of the transaction. This needs to be done 1495 * once a transaction -bzzz 1496 */ 1497 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1498 ret = -ENOSPC; 1499 goto out_unlock_bh; 1500 } 1501 jh->b_modified = 1; 1502 handle->h_total_credits--; 1503 } 1504 1505 /* 1506 * fastpath, to avoid expensive locking. If this buffer is already 1507 * on the running transaction's metadata list there is nothing to do. 1508 * Nobody can take it off again because there is a handle open. 1509 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1510 * result in this test being false, so we go in and take the locks. 1511 */ 1512 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1513 JBUFFER_TRACE(jh, "fastpath"); 1514 if (unlikely(jh->b_transaction != 1515 journal->j_running_transaction)) { 1516 printk(KERN_ERR "JBD2: %s: " 1517 "jh->b_transaction (%llu, %p, %u) != " 1518 "journal->j_running_transaction (%p, %u)\n", 1519 journal->j_devname, 1520 (unsigned long long) bh->b_blocknr, 1521 jh->b_transaction, 1522 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1523 journal->j_running_transaction, 1524 journal->j_running_transaction ? 1525 journal->j_running_transaction->t_tid : 0); 1526 ret = -EINVAL; 1527 } 1528 goto out_unlock_bh; 1529 } 1530 1531 set_buffer_jbddirty(bh); 1532 1533 /* 1534 * Metadata already on the current transaction list doesn't 1535 * need to be filed. Metadata on another transaction's list must 1536 * be committing, and will be refiled once the commit completes: 1537 * leave it alone for now. 1538 */ 1539 if (jh->b_transaction != transaction) { 1540 JBUFFER_TRACE(jh, "already on other transaction"); 1541 if (unlikely(((jh->b_transaction != 1542 journal->j_committing_transaction)) || 1543 (jh->b_next_transaction != transaction))) { 1544 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1545 "bad jh for block %llu: " 1546 "transaction (%p, %u), " 1547 "jh->b_transaction (%p, %u), " 1548 "jh->b_next_transaction (%p, %u), jlist %u\n", 1549 journal->j_devname, 1550 (unsigned long long) bh->b_blocknr, 1551 transaction, transaction->t_tid, 1552 jh->b_transaction, 1553 jh->b_transaction ? 1554 jh->b_transaction->t_tid : 0, 1555 jh->b_next_transaction, 1556 jh->b_next_transaction ? 1557 jh->b_next_transaction->t_tid : 0, 1558 jh->b_jlist); 1559 WARN_ON(1); 1560 ret = -EINVAL; 1561 } 1562 /* And this case is illegal: we can't reuse another 1563 * transaction's data buffer, ever. */ 1564 goto out_unlock_bh; 1565 } 1566 1567 /* That test should have eliminated the following case: */ 1568 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1569 1570 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1571 spin_lock(&journal->j_list_lock); 1572 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1573 spin_unlock(&journal->j_list_lock); 1574 out_unlock_bh: 1575 spin_unlock(&jh->b_state_lock); 1576 out: 1577 JBUFFER_TRACE(jh, "exit"); 1578 return ret; 1579 } 1580 1581 /** 1582 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1583 * @handle: transaction handle 1584 * @bh: bh to 'forget' 1585 * 1586 * We can only do the bforget if there are no commits pending against the 1587 * buffer. If the buffer is dirty in the current running transaction we 1588 * can safely unlink it. 1589 * 1590 * bh may not be a journalled buffer at all - it may be a non-JBD 1591 * buffer which came off the hashtable. Check for this. 1592 * 1593 * Decrements bh->b_count by one. 1594 * 1595 * Allow this call even if the handle has aborted --- it may be part of 1596 * the caller's cleanup after an abort. 1597 */ 1598 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1599 { 1600 transaction_t *transaction = handle->h_transaction; 1601 journal_t *journal; 1602 struct journal_head *jh; 1603 int drop_reserve = 0; 1604 int err = 0; 1605 int was_modified = 0; 1606 1607 if (is_handle_aborted(handle)) 1608 return -EROFS; 1609 journal = transaction->t_journal; 1610 1611 BUFFER_TRACE(bh, "entry"); 1612 1613 jh = jbd2_journal_grab_journal_head(bh); 1614 if (!jh) { 1615 __bforget(bh); 1616 return 0; 1617 } 1618 1619 spin_lock(&jh->b_state_lock); 1620 1621 /* Critical error: attempting to delete a bitmap buffer, maybe? 1622 * Don't do any jbd operations, and return an error. */ 1623 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1624 "inconsistent data on disk")) { 1625 err = -EIO; 1626 goto drop; 1627 } 1628 1629 /* keep track of whether or not this transaction modified us */ 1630 was_modified = jh->b_modified; 1631 1632 /* 1633 * The buffer's going from the transaction, we must drop 1634 * all references -bzzz 1635 */ 1636 jh->b_modified = 0; 1637 1638 if (jh->b_transaction == transaction) { 1639 J_ASSERT_JH(jh, !jh->b_frozen_data); 1640 1641 /* If we are forgetting a buffer which is already part 1642 * of this transaction, then we can just drop it from 1643 * the transaction immediately. */ 1644 clear_buffer_dirty(bh); 1645 clear_buffer_jbddirty(bh); 1646 1647 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1648 1649 /* 1650 * we only want to drop a reference if this transaction 1651 * modified the buffer 1652 */ 1653 if (was_modified) 1654 drop_reserve = 1; 1655 1656 /* 1657 * We are no longer going to journal this buffer. 1658 * However, the commit of this transaction is still 1659 * important to the buffer: the delete that we are now 1660 * processing might obsolete an old log entry, so by 1661 * committing, we can satisfy the buffer's checkpoint. 1662 * 1663 * So, if we have a checkpoint on the buffer, we should 1664 * now refile the buffer on our BJ_Forget list so that 1665 * we know to remove the checkpoint after we commit. 1666 */ 1667 1668 spin_lock(&journal->j_list_lock); 1669 if (jh->b_cp_transaction) { 1670 __jbd2_journal_temp_unlink_buffer(jh); 1671 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1672 } else { 1673 __jbd2_journal_unfile_buffer(jh); 1674 jbd2_journal_put_journal_head(jh); 1675 } 1676 spin_unlock(&journal->j_list_lock); 1677 } else if (jh->b_transaction) { 1678 J_ASSERT_JH(jh, (jh->b_transaction == 1679 journal->j_committing_transaction)); 1680 /* However, if the buffer is still owned by a prior 1681 * (committing) transaction, we can't drop it yet... */ 1682 JBUFFER_TRACE(jh, "belongs to older transaction"); 1683 /* ... but we CAN drop it from the new transaction through 1684 * marking the buffer as freed and set j_next_transaction to 1685 * the new transaction, so that not only the commit code 1686 * knows it should clear dirty bits when it is done with the 1687 * buffer, but also the buffer can be checkpointed only 1688 * after the new transaction commits. */ 1689 1690 set_buffer_freed(bh); 1691 1692 if (!jh->b_next_transaction) { 1693 spin_lock(&journal->j_list_lock); 1694 jh->b_next_transaction = transaction; 1695 spin_unlock(&journal->j_list_lock); 1696 } else { 1697 J_ASSERT(jh->b_next_transaction == transaction); 1698 1699 /* 1700 * only drop a reference if this transaction modified 1701 * the buffer 1702 */ 1703 if (was_modified) 1704 drop_reserve = 1; 1705 } 1706 } else { 1707 /* 1708 * Finally, if the buffer is not belongs to any 1709 * transaction, we can just drop it now if it has no 1710 * checkpoint. 1711 */ 1712 spin_lock(&journal->j_list_lock); 1713 if (!jh->b_cp_transaction) { 1714 JBUFFER_TRACE(jh, "belongs to none transaction"); 1715 spin_unlock(&journal->j_list_lock); 1716 goto drop; 1717 } 1718 1719 /* 1720 * Otherwise, if the buffer has been written to disk, 1721 * it is safe to remove the checkpoint and drop it. 1722 */ 1723 if (!buffer_dirty(bh)) { 1724 __jbd2_journal_remove_checkpoint(jh); 1725 spin_unlock(&journal->j_list_lock); 1726 goto drop; 1727 } 1728 1729 /* 1730 * The buffer is still not written to disk, we should 1731 * attach this buffer to current transaction so that the 1732 * buffer can be checkpointed only after the current 1733 * transaction commits. 1734 */ 1735 clear_buffer_dirty(bh); 1736 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1737 spin_unlock(&journal->j_list_lock); 1738 } 1739 drop: 1740 __brelse(bh); 1741 spin_unlock(&jh->b_state_lock); 1742 jbd2_journal_put_journal_head(jh); 1743 if (drop_reserve) { 1744 /* no need to reserve log space for this block -bzzz */ 1745 handle->h_total_credits++; 1746 } 1747 return err; 1748 } 1749 1750 /** 1751 * int jbd2_journal_stop() - complete a transaction 1752 * @handle: transaction to complete. 1753 * 1754 * All done for a particular handle. 1755 * 1756 * There is not much action needed here. We just return any remaining 1757 * buffer credits to the transaction and remove the handle. The only 1758 * complication is that we need to start a commit operation if the 1759 * filesystem is marked for synchronous update. 1760 * 1761 * jbd2_journal_stop itself will not usually return an error, but it may 1762 * do so in unusual circumstances. In particular, expect it to 1763 * return -EIO if a jbd2_journal_abort has been executed since the 1764 * transaction began. 1765 */ 1766 int jbd2_journal_stop(handle_t *handle) 1767 { 1768 transaction_t *transaction = handle->h_transaction; 1769 journal_t *journal; 1770 int err = 0, wait_for_commit = 0; 1771 tid_t tid; 1772 pid_t pid; 1773 1774 if (--handle->h_ref > 0) { 1775 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1776 handle->h_ref); 1777 if (is_handle_aborted(handle)) 1778 return -EIO; 1779 return 0; 1780 } 1781 if (!transaction) { 1782 /* 1783 * Handle is already detached from the transaction so there is 1784 * nothing to do other than free the handle. 1785 */ 1786 memalloc_nofs_restore(handle->saved_alloc_context); 1787 goto free_and_exit; 1788 } 1789 journal = transaction->t_journal; 1790 tid = transaction->t_tid; 1791 1792 if (is_handle_aborted(handle)) 1793 err = -EIO; 1794 1795 jbd_debug(4, "Handle %p going down\n", handle); 1796 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1797 tid, handle->h_type, handle->h_line_no, 1798 jiffies - handle->h_start_jiffies, 1799 handle->h_sync, handle->h_requested_credits, 1800 (handle->h_requested_credits - 1801 handle->h_total_credits)); 1802 1803 /* 1804 * Implement synchronous transaction batching. If the handle 1805 * was synchronous, don't force a commit immediately. Let's 1806 * yield and let another thread piggyback onto this 1807 * transaction. Keep doing that while new threads continue to 1808 * arrive. It doesn't cost much - we're about to run a commit 1809 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1810 * operations by 30x or more... 1811 * 1812 * We try and optimize the sleep time against what the 1813 * underlying disk can do, instead of having a static sleep 1814 * time. This is useful for the case where our storage is so 1815 * fast that it is more optimal to go ahead and force a flush 1816 * and wait for the transaction to be committed than it is to 1817 * wait for an arbitrary amount of time for new writers to 1818 * join the transaction. We achieve this by measuring how 1819 * long it takes to commit a transaction, and compare it with 1820 * how long this transaction has been running, and if run time 1821 * < commit time then we sleep for the delta and commit. This 1822 * greatly helps super fast disks that would see slowdowns as 1823 * more threads started doing fsyncs. 1824 * 1825 * But don't do this if this process was the most recent one 1826 * to perform a synchronous write. We do this to detect the 1827 * case where a single process is doing a stream of sync 1828 * writes. No point in waiting for joiners in that case. 1829 * 1830 * Setting max_batch_time to 0 disables this completely. 1831 */ 1832 pid = current->pid; 1833 if (handle->h_sync && journal->j_last_sync_writer != pid && 1834 journal->j_max_batch_time) { 1835 u64 commit_time, trans_time; 1836 1837 journal->j_last_sync_writer = pid; 1838 1839 read_lock(&journal->j_state_lock); 1840 commit_time = journal->j_average_commit_time; 1841 read_unlock(&journal->j_state_lock); 1842 1843 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1844 transaction->t_start_time)); 1845 1846 commit_time = max_t(u64, commit_time, 1847 1000*journal->j_min_batch_time); 1848 commit_time = min_t(u64, commit_time, 1849 1000*journal->j_max_batch_time); 1850 1851 if (trans_time < commit_time) { 1852 ktime_t expires = ktime_add_ns(ktime_get(), 1853 commit_time); 1854 set_current_state(TASK_UNINTERRUPTIBLE); 1855 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1856 } 1857 } 1858 1859 if (handle->h_sync) 1860 transaction->t_synchronous_commit = 1; 1861 1862 /* 1863 * If the handle is marked SYNC, we need to set another commit 1864 * going! We also want to force a commit if the transaction is too 1865 * old now. 1866 */ 1867 if (handle->h_sync || 1868 time_after_eq(jiffies, transaction->t_expires)) { 1869 /* Do this even for aborted journals: an abort still 1870 * completes the commit thread, it just doesn't write 1871 * anything to disk. */ 1872 1873 jbd_debug(2, "transaction too old, requesting commit for " 1874 "handle %p\n", handle); 1875 /* This is non-blocking */ 1876 jbd2_log_start_commit(journal, tid); 1877 1878 /* 1879 * Special case: JBD2_SYNC synchronous updates require us 1880 * to wait for the commit to complete. 1881 */ 1882 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1883 wait_for_commit = 1; 1884 } 1885 1886 /* 1887 * Once stop_this_handle() drops t_updates, the transaction could start 1888 * committing on us and eventually disappear. So we must not 1889 * dereference transaction pointer again after calling 1890 * stop_this_handle(). 1891 */ 1892 stop_this_handle(handle); 1893 1894 if (wait_for_commit) 1895 err = jbd2_log_wait_commit(journal, tid); 1896 1897 free_and_exit: 1898 if (handle->h_rsv_handle) 1899 jbd2_free_handle(handle->h_rsv_handle); 1900 jbd2_free_handle(handle); 1901 return err; 1902 } 1903 1904 /* 1905 * 1906 * List management code snippets: various functions for manipulating the 1907 * transaction buffer lists. 1908 * 1909 */ 1910 1911 /* 1912 * Append a buffer to a transaction list, given the transaction's list head 1913 * pointer. 1914 * 1915 * j_list_lock is held. 1916 * 1917 * jh->b_state_lock is held. 1918 */ 1919 1920 static inline void 1921 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1922 { 1923 if (!*list) { 1924 jh->b_tnext = jh->b_tprev = jh; 1925 *list = jh; 1926 } else { 1927 /* Insert at the tail of the list to preserve order */ 1928 struct journal_head *first = *list, *last = first->b_tprev; 1929 jh->b_tprev = last; 1930 jh->b_tnext = first; 1931 last->b_tnext = first->b_tprev = jh; 1932 } 1933 } 1934 1935 /* 1936 * Remove a buffer from a transaction list, given the transaction's list 1937 * head pointer. 1938 * 1939 * Called with j_list_lock held, and the journal may not be locked. 1940 * 1941 * jh->b_state_lock is held. 1942 */ 1943 1944 static inline void 1945 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1946 { 1947 if (*list == jh) { 1948 *list = jh->b_tnext; 1949 if (*list == jh) 1950 *list = NULL; 1951 } 1952 jh->b_tprev->b_tnext = jh->b_tnext; 1953 jh->b_tnext->b_tprev = jh->b_tprev; 1954 } 1955 1956 /* 1957 * Remove a buffer from the appropriate transaction list. 1958 * 1959 * Note that this function can *change* the value of 1960 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1961 * t_reserved_list. If the caller is holding onto a copy of one of these 1962 * pointers, it could go bad. Generally the caller needs to re-read the 1963 * pointer from the transaction_t. 1964 * 1965 * Called under j_list_lock. 1966 */ 1967 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1968 { 1969 struct journal_head **list = NULL; 1970 transaction_t *transaction; 1971 struct buffer_head *bh = jh2bh(jh); 1972 1973 lockdep_assert_held(&jh->b_state_lock); 1974 transaction = jh->b_transaction; 1975 if (transaction) 1976 assert_spin_locked(&transaction->t_journal->j_list_lock); 1977 1978 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1979 if (jh->b_jlist != BJ_None) 1980 J_ASSERT_JH(jh, transaction != NULL); 1981 1982 switch (jh->b_jlist) { 1983 case BJ_None: 1984 return; 1985 case BJ_Metadata: 1986 transaction->t_nr_buffers--; 1987 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1988 list = &transaction->t_buffers; 1989 break; 1990 case BJ_Forget: 1991 list = &transaction->t_forget; 1992 break; 1993 case BJ_Shadow: 1994 list = &transaction->t_shadow_list; 1995 break; 1996 case BJ_Reserved: 1997 list = &transaction->t_reserved_list; 1998 break; 1999 } 2000 2001 __blist_del_buffer(list, jh); 2002 jh->b_jlist = BJ_None; 2003 if (transaction && is_journal_aborted(transaction->t_journal)) 2004 clear_buffer_jbddirty(bh); 2005 else if (test_clear_buffer_jbddirty(bh)) 2006 mark_buffer_dirty(bh); /* Expose it to the VM */ 2007 } 2008 2009 /* 2010 * Remove buffer from all transactions. The caller is responsible for dropping 2011 * the jh reference that belonged to the transaction. 2012 * 2013 * Called with bh_state lock and j_list_lock 2014 */ 2015 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2016 { 2017 __jbd2_journal_temp_unlink_buffer(jh); 2018 jh->b_transaction = NULL; 2019 } 2020 2021 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2022 { 2023 struct buffer_head *bh = jh2bh(jh); 2024 2025 /* Get reference so that buffer cannot be freed before we unlock it */ 2026 get_bh(bh); 2027 spin_lock(&jh->b_state_lock); 2028 spin_lock(&journal->j_list_lock); 2029 __jbd2_journal_unfile_buffer(jh); 2030 spin_unlock(&journal->j_list_lock); 2031 spin_unlock(&jh->b_state_lock); 2032 jbd2_journal_put_journal_head(jh); 2033 __brelse(bh); 2034 } 2035 2036 /* 2037 * Called from jbd2_journal_try_to_free_buffers(). 2038 * 2039 * Called under jh->b_state_lock 2040 */ 2041 static void 2042 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2043 { 2044 struct journal_head *jh; 2045 2046 jh = bh2jh(bh); 2047 2048 if (buffer_locked(bh) || buffer_dirty(bh)) 2049 goto out; 2050 2051 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2052 goto out; 2053 2054 spin_lock(&journal->j_list_lock); 2055 if (jh->b_cp_transaction != NULL) { 2056 /* written-back checkpointed metadata buffer */ 2057 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2058 __jbd2_journal_remove_checkpoint(jh); 2059 } 2060 spin_unlock(&journal->j_list_lock); 2061 out: 2062 return; 2063 } 2064 2065 /** 2066 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 2067 * @journal: journal for operation 2068 * @page: to try and free 2069 * @gfp_mask: we use the mask to detect how hard should we try to release 2070 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 2071 * code to release the buffers. 2072 * 2073 * 2074 * For all the buffers on this page, 2075 * if they are fully written out ordered data, move them onto BUF_CLEAN 2076 * so try_to_free_buffers() can reap them. 2077 * 2078 * This function returns non-zero if we wish try_to_free_buffers() 2079 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2080 * We also do it if the page has locked or dirty buffers and the caller wants 2081 * us to perform sync or async writeout. 2082 * 2083 * This complicates JBD locking somewhat. We aren't protected by the 2084 * BKL here. We wish to remove the buffer from its committing or 2085 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2086 * 2087 * This may *change* the value of transaction_t->t_datalist, so anyone 2088 * who looks at t_datalist needs to lock against this function. 2089 * 2090 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2091 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2092 * will come out of the lock with the buffer dirty, which makes it 2093 * ineligible for release here. 2094 * 2095 * Who else is affected by this? hmm... Really the only contender 2096 * is do_get_write_access() - it could be looking at the buffer while 2097 * journal_try_to_free_buffer() is changing its state. But that 2098 * cannot happen because we never reallocate freed data as metadata 2099 * while the data is part of a transaction. Yes? 2100 * 2101 * Return 0 on failure, 1 on success 2102 */ 2103 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2104 struct page *page, gfp_t gfp_mask) 2105 { 2106 struct buffer_head *head; 2107 struct buffer_head *bh; 2108 int ret = 0; 2109 2110 J_ASSERT(PageLocked(page)); 2111 2112 head = page_buffers(page); 2113 bh = head; 2114 do { 2115 struct journal_head *jh; 2116 2117 /* 2118 * We take our own ref against the journal_head here to avoid 2119 * having to add tons of locking around each instance of 2120 * jbd2_journal_put_journal_head(). 2121 */ 2122 jh = jbd2_journal_grab_journal_head(bh); 2123 if (!jh) 2124 continue; 2125 2126 spin_lock(&jh->b_state_lock); 2127 __journal_try_to_free_buffer(journal, bh); 2128 spin_unlock(&jh->b_state_lock); 2129 jbd2_journal_put_journal_head(jh); 2130 if (buffer_jbd(bh)) 2131 goto busy; 2132 } while ((bh = bh->b_this_page) != head); 2133 2134 ret = try_to_free_buffers(page); 2135 2136 busy: 2137 return ret; 2138 } 2139 2140 /* 2141 * This buffer is no longer needed. If it is on an older transaction's 2142 * checkpoint list we need to record it on this transaction's forget list 2143 * to pin this buffer (and hence its checkpointing transaction) down until 2144 * this transaction commits. If the buffer isn't on a checkpoint list, we 2145 * release it. 2146 * Returns non-zero if JBD no longer has an interest in the buffer. 2147 * 2148 * Called under j_list_lock. 2149 * 2150 * Called under jh->b_state_lock. 2151 */ 2152 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2153 { 2154 int may_free = 1; 2155 struct buffer_head *bh = jh2bh(jh); 2156 2157 if (jh->b_cp_transaction) { 2158 JBUFFER_TRACE(jh, "on running+cp transaction"); 2159 __jbd2_journal_temp_unlink_buffer(jh); 2160 /* 2161 * We don't want to write the buffer anymore, clear the 2162 * bit so that we don't confuse checks in 2163 * __journal_file_buffer 2164 */ 2165 clear_buffer_dirty(bh); 2166 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2167 may_free = 0; 2168 } else { 2169 JBUFFER_TRACE(jh, "on running transaction"); 2170 __jbd2_journal_unfile_buffer(jh); 2171 jbd2_journal_put_journal_head(jh); 2172 } 2173 return may_free; 2174 } 2175 2176 /* 2177 * jbd2_journal_invalidatepage 2178 * 2179 * This code is tricky. It has a number of cases to deal with. 2180 * 2181 * There are two invariants which this code relies on: 2182 * 2183 * i_size must be updated on disk before we start calling invalidatepage on the 2184 * data. 2185 * 2186 * This is done in ext3 by defining an ext3_setattr method which 2187 * updates i_size before truncate gets going. By maintaining this 2188 * invariant, we can be sure that it is safe to throw away any buffers 2189 * attached to the current transaction: once the transaction commits, 2190 * we know that the data will not be needed. 2191 * 2192 * Note however that we can *not* throw away data belonging to the 2193 * previous, committing transaction! 2194 * 2195 * Any disk blocks which *are* part of the previous, committing 2196 * transaction (and which therefore cannot be discarded immediately) are 2197 * not going to be reused in the new running transaction 2198 * 2199 * The bitmap committed_data images guarantee this: any block which is 2200 * allocated in one transaction and removed in the next will be marked 2201 * as in-use in the committed_data bitmap, so cannot be reused until 2202 * the next transaction to delete the block commits. This means that 2203 * leaving committing buffers dirty is quite safe: the disk blocks 2204 * cannot be reallocated to a different file and so buffer aliasing is 2205 * not possible. 2206 * 2207 * 2208 * The above applies mainly to ordered data mode. In writeback mode we 2209 * don't make guarantees about the order in which data hits disk --- in 2210 * particular we don't guarantee that new dirty data is flushed before 2211 * transaction commit --- so it is always safe just to discard data 2212 * immediately in that mode. --sct 2213 */ 2214 2215 /* 2216 * The journal_unmap_buffer helper function returns zero if the buffer 2217 * concerned remains pinned as an anonymous buffer belonging to an older 2218 * transaction. 2219 * 2220 * We're outside-transaction here. Either or both of j_running_transaction 2221 * and j_committing_transaction may be NULL. 2222 */ 2223 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2224 int partial_page) 2225 { 2226 transaction_t *transaction; 2227 struct journal_head *jh; 2228 int may_free = 1; 2229 2230 BUFFER_TRACE(bh, "entry"); 2231 2232 /* 2233 * It is safe to proceed here without the j_list_lock because the 2234 * buffers cannot be stolen by try_to_free_buffers as long as we are 2235 * holding the page lock. --sct 2236 */ 2237 2238 jh = jbd2_journal_grab_journal_head(bh); 2239 if (!jh) 2240 goto zap_buffer_unlocked; 2241 2242 /* OK, we have data buffer in journaled mode */ 2243 write_lock(&journal->j_state_lock); 2244 spin_lock(&jh->b_state_lock); 2245 spin_lock(&journal->j_list_lock); 2246 2247 /* 2248 * We cannot remove the buffer from checkpoint lists until the 2249 * transaction adding inode to orphan list (let's call it T) 2250 * is committed. Otherwise if the transaction changing the 2251 * buffer would be cleaned from the journal before T is 2252 * committed, a crash will cause that the correct contents of 2253 * the buffer will be lost. On the other hand we have to 2254 * clear the buffer dirty bit at latest at the moment when the 2255 * transaction marking the buffer as freed in the filesystem 2256 * structures is committed because from that moment on the 2257 * block can be reallocated and used by a different page. 2258 * Since the block hasn't been freed yet but the inode has 2259 * already been added to orphan list, it is safe for us to add 2260 * the buffer to BJ_Forget list of the newest transaction. 2261 * 2262 * Also we have to clear buffer_mapped flag of a truncated buffer 2263 * because the buffer_head may be attached to the page straddling 2264 * i_size (can happen only when blocksize < pagesize) and thus the 2265 * buffer_head can be reused when the file is extended again. So we end 2266 * up keeping around invalidated buffers attached to transactions' 2267 * BJ_Forget list just to stop checkpointing code from cleaning up 2268 * the transaction this buffer was modified in. 2269 */ 2270 transaction = jh->b_transaction; 2271 if (transaction == NULL) { 2272 /* First case: not on any transaction. If it 2273 * has no checkpoint link, then we can zap it: 2274 * it's a writeback-mode buffer so we don't care 2275 * if it hits disk safely. */ 2276 if (!jh->b_cp_transaction) { 2277 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2278 goto zap_buffer; 2279 } 2280 2281 if (!buffer_dirty(bh)) { 2282 /* bdflush has written it. We can drop it now */ 2283 __jbd2_journal_remove_checkpoint(jh); 2284 goto zap_buffer; 2285 } 2286 2287 /* OK, it must be in the journal but still not 2288 * written fully to disk: it's metadata or 2289 * journaled data... */ 2290 2291 if (journal->j_running_transaction) { 2292 /* ... and once the current transaction has 2293 * committed, the buffer won't be needed any 2294 * longer. */ 2295 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2296 may_free = __dispose_buffer(jh, 2297 journal->j_running_transaction); 2298 goto zap_buffer; 2299 } else { 2300 /* There is no currently-running transaction. So the 2301 * orphan record which we wrote for this file must have 2302 * passed into commit. We must attach this buffer to 2303 * the committing transaction, if it exists. */ 2304 if (journal->j_committing_transaction) { 2305 JBUFFER_TRACE(jh, "give to committing trans"); 2306 may_free = __dispose_buffer(jh, 2307 journal->j_committing_transaction); 2308 goto zap_buffer; 2309 } else { 2310 /* The orphan record's transaction has 2311 * committed. We can cleanse this buffer */ 2312 clear_buffer_jbddirty(bh); 2313 __jbd2_journal_remove_checkpoint(jh); 2314 goto zap_buffer; 2315 } 2316 } 2317 } else if (transaction == journal->j_committing_transaction) { 2318 JBUFFER_TRACE(jh, "on committing transaction"); 2319 /* 2320 * The buffer is committing, we simply cannot touch 2321 * it. If the page is straddling i_size we have to wait 2322 * for commit and try again. 2323 */ 2324 if (partial_page) { 2325 spin_unlock(&journal->j_list_lock); 2326 spin_unlock(&jh->b_state_lock); 2327 write_unlock(&journal->j_state_lock); 2328 jbd2_journal_put_journal_head(jh); 2329 return -EBUSY; 2330 } 2331 /* 2332 * OK, buffer won't be reachable after truncate. We just set 2333 * j_next_transaction to the running transaction (if there is 2334 * one) and mark buffer as freed so that commit code knows it 2335 * should clear dirty bits when it is done with the buffer. 2336 */ 2337 set_buffer_freed(bh); 2338 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2339 jh->b_next_transaction = journal->j_running_transaction; 2340 spin_unlock(&journal->j_list_lock); 2341 spin_unlock(&jh->b_state_lock); 2342 write_unlock(&journal->j_state_lock); 2343 jbd2_journal_put_journal_head(jh); 2344 return 0; 2345 } else { 2346 /* Good, the buffer belongs to the running transaction. 2347 * We are writing our own transaction's data, not any 2348 * previous one's, so it is safe to throw it away 2349 * (remember that we expect the filesystem to have set 2350 * i_size already for this truncate so recovery will not 2351 * expose the disk blocks we are discarding here.) */ 2352 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2353 JBUFFER_TRACE(jh, "on running transaction"); 2354 may_free = __dispose_buffer(jh, transaction); 2355 } 2356 2357 zap_buffer: 2358 /* 2359 * This is tricky. Although the buffer is truncated, it may be reused 2360 * if blocksize < pagesize and it is attached to the page straddling 2361 * EOF. Since the buffer might have been added to BJ_Forget list of the 2362 * running transaction, journal_get_write_access() won't clear 2363 * b_modified and credit accounting gets confused. So clear b_modified 2364 * here. 2365 */ 2366 jh->b_modified = 0; 2367 spin_unlock(&journal->j_list_lock); 2368 spin_unlock(&jh->b_state_lock); 2369 write_unlock(&journal->j_state_lock); 2370 jbd2_journal_put_journal_head(jh); 2371 zap_buffer_unlocked: 2372 clear_buffer_dirty(bh); 2373 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2374 clear_buffer_mapped(bh); 2375 clear_buffer_req(bh); 2376 clear_buffer_new(bh); 2377 clear_buffer_delay(bh); 2378 clear_buffer_unwritten(bh); 2379 bh->b_bdev = NULL; 2380 return may_free; 2381 } 2382 2383 /** 2384 * void jbd2_journal_invalidatepage() 2385 * @journal: journal to use for flush... 2386 * @page: page to flush 2387 * @offset: start of the range to invalidate 2388 * @length: length of the range to invalidate 2389 * 2390 * Reap page buffers containing data after in the specified range in page. 2391 * Can return -EBUSY if buffers are part of the committing transaction and 2392 * the page is straddling i_size. Caller then has to wait for current commit 2393 * and try again. 2394 */ 2395 int jbd2_journal_invalidatepage(journal_t *journal, 2396 struct page *page, 2397 unsigned int offset, 2398 unsigned int length) 2399 { 2400 struct buffer_head *head, *bh, *next; 2401 unsigned int stop = offset + length; 2402 unsigned int curr_off = 0; 2403 int partial_page = (offset || length < PAGE_SIZE); 2404 int may_free = 1; 2405 int ret = 0; 2406 2407 if (!PageLocked(page)) 2408 BUG(); 2409 if (!page_has_buffers(page)) 2410 return 0; 2411 2412 BUG_ON(stop > PAGE_SIZE || stop < length); 2413 2414 /* We will potentially be playing with lists other than just the 2415 * data lists (especially for journaled data mode), so be 2416 * cautious in our locking. */ 2417 2418 head = bh = page_buffers(page); 2419 do { 2420 unsigned int next_off = curr_off + bh->b_size; 2421 next = bh->b_this_page; 2422 2423 if (next_off > stop) 2424 return 0; 2425 2426 if (offset <= curr_off) { 2427 /* This block is wholly outside the truncation point */ 2428 lock_buffer(bh); 2429 ret = journal_unmap_buffer(journal, bh, partial_page); 2430 unlock_buffer(bh); 2431 if (ret < 0) 2432 return ret; 2433 may_free &= ret; 2434 } 2435 curr_off = next_off; 2436 bh = next; 2437 2438 } while (bh != head); 2439 2440 if (!partial_page) { 2441 if (may_free && try_to_free_buffers(page)) 2442 J_ASSERT(!page_has_buffers(page)); 2443 } 2444 return 0; 2445 } 2446 2447 /* 2448 * File a buffer on the given transaction list. 2449 */ 2450 void __jbd2_journal_file_buffer(struct journal_head *jh, 2451 transaction_t *transaction, int jlist) 2452 { 2453 struct journal_head **list = NULL; 2454 int was_dirty = 0; 2455 struct buffer_head *bh = jh2bh(jh); 2456 2457 lockdep_assert_held(&jh->b_state_lock); 2458 assert_spin_locked(&transaction->t_journal->j_list_lock); 2459 2460 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2461 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2462 jh->b_transaction == NULL); 2463 2464 if (jh->b_transaction && jh->b_jlist == jlist) 2465 return; 2466 2467 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2468 jlist == BJ_Shadow || jlist == BJ_Forget) { 2469 /* 2470 * For metadata buffers, we track dirty bit in buffer_jbddirty 2471 * instead of buffer_dirty. We should not see a dirty bit set 2472 * here because we clear it in do_get_write_access but e.g. 2473 * tune2fs can modify the sb and set the dirty bit at any time 2474 * so we try to gracefully handle that. 2475 */ 2476 if (buffer_dirty(bh)) 2477 warn_dirty_buffer(bh); 2478 if (test_clear_buffer_dirty(bh) || 2479 test_clear_buffer_jbddirty(bh)) 2480 was_dirty = 1; 2481 } 2482 2483 if (jh->b_transaction) 2484 __jbd2_journal_temp_unlink_buffer(jh); 2485 else 2486 jbd2_journal_grab_journal_head(bh); 2487 jh->b_transaction = transaction; 2488 2489 switch (jlist) { 2490 case BJ_None: 2491 J_ASSERT_JH(jh, !jh->b_committed_data); 2492 J_ASSERT_JH(jh, !jh->b_frozen_data); 2493 return; 2494 case BJ_Metadata: 2495 transaction->t_nr_buffers++; 2496 list = &transaction->t_buffers; 2497 break; 2498 case BJ_Forget: 2499 list = &transaction->t_forget; 2500 break; 2501 case BJ_Shadow: 2502 list = &transaction->t_shadow_list; 2503 break; 2504 case BJ_Reserved: 2505 list = &transaction->t_reserved_list; 2506 break; 2507 } 2508 2509 __blist_add_buffer(list, jh); 2510 jh->b_jlist = jlist; 2511 2512 if (was_dirty) 2513 set_buffer_jbddirty(bh); 2514 } 2515 2516 void jbd2_journal_file_buffer(struct journal_head *jh, 2517 transaction_t *transaction, int jlist) 2518 { 2519 spin_lock(&jh->b_state_lock); 2520 spin_lock(&transaction->t_journal->j_list_lock); 2521 __jbd2_journal_file_buffer(jh, transaction, jlist); 2522 spin_unlock(&transaction->t_journal->j_list_lock); 2523 spin_unlock(&jh->b_state_lock); 2524 } 2525 2526 /* 2527 * Remove a buffer from its current buffer list in preparation for 2528 * dropping it from its current transaction entirely. If the buffer has 2529 * already started to be used by a subsequent transaction, refile the 2530 * buffer on that transaction's metadata list. 2531 * 2532 * Called under j_list_lock 2533 * Called under jh->b_state_lock 2534 * 2535 * When this function returns true, there's no next transaction to refile to 2536 * and the caller has to drop jh reference through 2537 * jbd2_journal_put_journal_head(). 2538 */ 2539 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2540 { 2541 int was_dirty, jlist; 2542 struct buffer_head *bh = jh2bh(jh); 2543 2544 lockdep_assert_held(&jh->b_state_lock); 2545 if (jh->b_transaction) 2546 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2547 2548 /* If the buffer is now unused, just drop it. */ 2549 if (jh->b_next_transaction == NULL) { 2550 __jbd2_journal_unfile_buffer(jh); 2551 return true; 2552 } 2553 2554 /* 2555 * It has been modified by a later transaction: add it to the new 2556 * transaction's metadata list. 2557 */ 2558 2559 was_dirty = test_clear_buffer_jbddirty(bh); 2560 __jbd2_journal_temp_unlink_buffer(jh); 2561 /* 2562 * We set b_transaction here because b_next_transaction will inherit 2563 * our jh reference and thus __jbd2_journal_file_buffer() must not 2564 * take a new one. 2565 */ 2566 jh->b_transaction = jh->b_next_transaction; 2567 jh->b_next_transaction = NULL; 2568 if (buffer_freed(bh)) 2569 jlist = BJ_Forget; 2570 else if (jh->b_modified) 2571 jlist = BJ_Metadata; 2572 else 2573 jlist = BJ_Reserved; 2574 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2575 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2576 2577 if (was_dirty) 2578 set_buffer_jbddirty(bh); 2579 return false; 2580 } 2581 2582 /* 2583 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2584 * bh reference so that we can safely unlock bh. 2585 * 2586 * The jh and bh may be freed by this call. 2587 */ 2588 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2589 { 2590 bool drop; 2591 2592 spin_lock(&jh->b_state_lock); 2593 spin_lock(&journal->j_list_lock); 2594 drop = __jbd2_journal_refile_buffer(jh); 2595 spin_unlock(&jh->b_state_lock); 2596 spin_unlock(&journal->j_list_lock); 2597 if (drop) 2598 jbd2_journal_put_journal_head(jh); 2599 } 2600 2601 /* 2602 * File inode in the inode list of the handle's transaction 2603 */ 2604 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2605 unsigned long flags, loff_t start_byte, loff_t end_byte) 2606 { 2607 transaction_t *transaction = handle->h_transaction; 2608 journal_t *journal; 2609 2610 if (is_handle_aborted(handle)) 2611 return -EROFS; 2612 journal = transaction->t_journal; 2613 2614 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2615 transaction->t_tid); 2616 2617 spin_lock(&journal->j_list_lock); 2618 jinode->i_flags |= flags; 2619 2620 if (jinode->i_dirty_end) { 2621 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2622 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2623 } else { 2624 jinode->i_dirty_start = start_byte; 2625 jinode->i_dirty_end = end_byte; 2626 } 2627 2628 /* Is inode already attached where we need it? */ 2629 if (jinode->i_transaction == transaction || 2630 jinode->i_next_transaction == transaction) 2631 goto done; 2632 2633 /* 2634 * We only ever set this variable to 1 so the test is safe. Since 2635 * t_need_data_flush is likely to be set, we do the test to save some 2636 * cacheline bouncing 2637 */ 2638 if (!transaction->t_need_data_flush) 2639 transaction->t_need_data_flush = 1; 2640 /* On some different transaction's list - should be 2641 * the committing one */ 2642 if (jinode->i_transaction) { 2643 J_ASSERT(jinode->i_next_transaction == NULL); 2644 J_ASSERT(jinode->i_transaction == 2645 journal->j_committing_transaction); 2646 jinode->i_next_transaction = transaction; 2647 goto done; 2648 } 2649 /* Not on any transaction list... */ 2650 J_ASSERT(!jinode->i_next_transaction); 2651 jinode->i_transaction = transaction; 2652 list_add(&jinode->i_list, &transaction->t_inode_list); 2653 done: 2654 spin_unlock(&journal->j_list_lock); 2655 2656 return 0; 2657 } 2658 2659 int jbd2_journal_inode_ranged_write(handle_t *handle, 2660 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2661 { 2662 return jbd2_journal_file_inode(handle, jinode, 2663 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2664 start_byte + length - 1); 2665 } 2666 2667 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2668 loff_t start_byte, loff_t length) 2669 { 2670 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2671 start_byte, start_byte + length - 1); 2672 } 2673 2674 /* 2675 * File truncate and transaction commit interact with each other in a 2676 * non-trivial way. If a transaction writing data block A is 2677 * committing, we cannot discard the data by truncate until we have 2678 * written them. Otherwise if we crashed after the transaction with 2679 * write has committed but before the transaction with truncate has 2680 * committed, we could see stale data in block A. This function is a 2681 * helper to solve this problem. It starts writeout of the truncated 2682 * part in case it is in the committing transaction. 2683 * 2684 * Filesystem code must call this function when inode is journaled in 2685 * ordered mode before truncation happens and after the inode has been 2686 * placed on orphan list with the new inode size. The second condition 2687 * avoids the race that someone writes new data and we start 2688 * committing the transaction after this function has been called but 2689 * before a transaction for truncate is started (and furthermore it 2690 * allows us to optimize the case where the addition to orphan list 2691 * happens in the same transaction as write --- we don't have to write 2692 * any data in such case). 2693 */ 2694 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2695 struct jbd2_inode *jinode, 2696 loff_t new_size) 2697 { 2698 transaction_t *inode_trans, *commit_trans; 2699 int ret = 0; 2700 2701 /* This is a quick check to avoid locking if not necessary */ 2702 if (!jinode->i_transaction) 2703 goto out; 2704 /* Locks are here just to force reading of recent values, it is 2705 * enough that the transaction was not committing before we started 2706 * a transaction adding the inode to orphan list */ 2707 read_lock(&journal->j_state_lock); 2708 commit_trans = journal->j_committing_transaction; 2709 read_unlock(&journal->j_state_lock); 2710 spin_lock(&journal->j_list_lock); 2711 inode_trans = jinode->i_transaction; 2712 spin_unlock(&journal->j_list_lock); 2713 if (inode_trans == commit_trans) { 2714 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2715 new_size, LLONG_MAX); 2716 if (ret) 2717 jbd2_journal_abort(journal, ret); 2718 } 2719 out: 2720 return ret; 2721 } 2722