xref: /openbmc/linux/fs/jbd2/transaction.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 		wait_transaction_locked(journal);
208 		return 1;
209 	}
210 
211 	/*
212 	 * The commit code assumes that it can get enough log space
213 	 * without forcing a checkpoint.  This is *critical* for
214 	 * correctness: a checkpoint of a buffer which is also
215 	 * associated with a committing transaction creates a deadlock,
216 	 * so commit simply cannot force through checkpoints.
217 	 *
218 	 * We must therefore ensure the necessary space in the journal
219 	 * *before* starting to dirty potentially checkpointed buffers
220 	 * in the new transaction.
221 	 */
222 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 		atomic_sub(total, &t->t_outstanding_credits);
224 		read_unlock(&journal->j_state_lock);
225 		write_lock(&journal->j_state_lock);
226 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 			__jbd2_log_wait_for_space(journal);
228 		write_unlock(&journal->j_state_lock);
229 		return 1;
230 	}
231 
232 	/* No reservation? We are done... */
233 	if (!rsv_blocks)
234 		return 0;
235 
236 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 	/* We allow at most half of a transaction to be reserved */
238 	if (needed > journal->j_max_transaction_buffers / 2) {
239 		sub_reserved_credits(journal, rsv_blocks);
240 		atomic_sub(total, &t->t_outstanding_credits);
241 		read_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_reserved,
243 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 			 <= journal->j_max_transaction_buffers / 2);
245 		return 1;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256 
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 			     gfp_t gfp_mask)
259 {
260 	transaction_t	*transaction, *new_transaction = NULL;
261 	int		blocks = handle->h_buffer_credits;
262 	int		rsv_blocks = 0;
263 	unsigned long ts = jiffies;
264 
265 	/*
266 	 * 1/2 of transaction can be reserved so we can practically handle
267 	 * only 1/2 of maximum transaction size per operation
268 	 */
269 	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 		       current->comm, blocks,
272 		       journal->j_max_transaction_buffers / 2);
273 		return -ENOSPC;
274 	}
275 
276 	if (handle->h_rsv_handle)
277 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278 
279 alloc_transaction:
280 	if (!journal->j_running_transaction) {
281 		new_transaction = kmem_cache_zalloc(transaction_cache,
282 						    gfp_mask);
283 		if (!new_transaction) {
284 			/*
285 			 * If __GFP_FS is not present, then we may be
286 			 * being called from inside the fs writeback
287 			 * layer, so we MUST NOT fail.  Since
288 			 * __GFP_NOFAIL is going away, we will arrange
289 			 * to retry the allocation ourselves.
290 			 */
291 			if ((gfp_mask & __GFP_FS) == 0) {
292 				congestion_wait(BLK_RW_ASYNC, HZ/50);
293 				goto alloc_transaction;
294 			}
295 			return -ENOMEM;
296 		}
297 	}
298 
299 	jbd_debug(3, "New handle %p going live.\n", handle);
300 
301 	/*
302 	 * We need to hold j_state_lock until t_updates has been incremented,
303 	 * for proper journal barrier handling
304 	 */
305 repeat:
306 	read_lock(&journal->j_state_lock);
307 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308 	if (is_journal_aborted(journal) ||
309 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310 		read_unlock(&journal->j_state_lock);
311 		jbd2_journal_free_transaction(new_transaction);
312 		return -EROFS;
313 	}
314 
315 	/*
316 	 * Wait on the journal's transaction barrier if necessary. Specifically
317 	 * we allow reserved handles to proceed because otherwise commit could
318 	 * deadlock on page writeback not being able to complete.
319 	 */
320 	if (!handle->h_reserved && journal->j_barrier_count) {
321 		read_unlock(&journal->j_state_lock);
322 		wait_event(journal->j_wait_transaction_locked,
323 				journal->j_barrier_count == 0);
324 		goto repeat;
325 	}
326 
327 	if (!journal->j_running_transaction) {
328 		read_unlock(&journal->j_state_lock);
329 		if (!new_transaction)
330 			goto alloc_transaction;
331 		write_lock(&journal->j_state_lock);
332 		if (!journal->j_running_transaction &&
333 		    (handle->h_reserved || !journal->j_barrier_count)) {
334 			jbd2_get_transaction(journal, new_transaction);
335 			new_transaction = NULL;
336 		}
337 		write_unlock(&journal->j_state_lock);
338 		goto repeat;
339 	}
340 
341 	transaction = journal->j_running_transaction;
342 
343 	if (!handle->h_reserved) {
344 		/* We may have dropped j_state_lock - restart in that case */
345 		if (add_transaction_credits(journal, blocks, rsv_blocks))
346 			goto repeat;
347 	} else {
348 		/*
349 		 * We have handle reserved so we are allowed to join T_LOCKED
350 		 * transaction and we don't have to check for transaction size
351 		 * and journal space.
352 		 */
353 		sub_reserved_credits(journal, blocks);
354 		handle->h_reserved = 0;
355 	}
356 
357 	/* OK, account for the buffers that this operation expects to
358 	 * use and add the handle to the running transaction.
359 	 */
360 	update_t_max_wait(transaction, ts);
361 	handle->h_transaction = transaction;
362 	handle->h_requested_credits = blocks;
363 	handle->h_start_jiffies = jiffies;
364 	atomic_inc(&transaction->t_updates);
365 	atomic_inc(&transaction->t_handle_count);
366 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367 		  handle, blocks,
368 		  atomic_read(&transaction->t_outstanding_credits),
369 		  jbd2_log_space_left(journal));
370 	read_unlock(&journal->j_state_lock);
371 	current->journal_info = handle;
372 
373 	lock_map_acquire(&handle->h_lockdep_map);
374 	jbd2_journal_free_transaction(new_transaction);
375 	return 0;
376 }
377 
378 static struct lock_class_key jbd2_handle_key;
379 
380 /* Allocate a new handle.  This should probably be in a slab... */
381 static handle_t *new_handle(int nblocks)
382 {
383 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
384 	if (!handle)
385 		return NULL;
386 	handle->h_buffer_credits = nblocks;
387 	handle->h_ref = 1;
388 
389 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
390 						&jbd2_handle_key, 0);
391 
392 	return handle;
393 }
394 
395 /**
396  * handle_t *jbd2_journal_start() - Obtain a new handle.
397  * @journal: Journal to start transaction on.
398  * @nblocks: number of block buffer we might modify
399  *
400  * We make sure that the transaction can guarantee at least nblocks of
401  * modified buffers in the log.  We block until the log can guarantee
402  * that much space. Additionally, if rsv_blocks > 0, we also create another
403  * handle with rsv_blocks reserved blocks in the journal. This handle is
404  * is stored in h_rsv_handle. It is not attached to any particular transaction
405  * and thus doesn't block transaction commit. If the caller uses this reserved
406  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
407  * on the parent handle will dispose the reserved one. Reserved handle has to
408  * be converted to a normal handle using jbd2_journal_start_reserved() before
409  * it can be used.
410  *
411  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
412  * on failure.
413  */
414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
415 			      gfp_t gfp_mask, unsigned int type,
416 			      unsigned int line_no)
417 {
418 	handle_t *handle = journal_current_handle();
419 	int err;
420 
421 	if (!journal)
422 		return ERR_PTR(-EROFS);
423 
424 	if (handle) {
425 		J_ASSERT(handle->h_transaction->t_journal == journal);
426 		handle->h_ref++;
427 		return handle;
428 	}
429 
430 	handle = new_handle(nblocks);
431 	if (!handle)
432 		return ERR_PTR(-ENOMEM);
433 	if (rsv_blocks) {
434 		handle_t *rsv_handle;
435 
436 		rsv_handle = new_handle(rsv_blocks);
437 		if (!rsv_handle) {
438 			jbd2_free_handle(handle);
439 			return ERR_PTR(-ENOMEM);
440 		}
441 		rsv_handle->h_reserved = 1;
442 		rsv_handle->h_journal = journal;
443 		handle->h_rsv_handle = rsv_handle;
444 	}
445 
446 	err = start_this_handle(journal, handle, gfp_mask);
447 	if (err < 0) {
448 		if (handle->h_rsv_handle)
449 			jbd2_free_handle(handle->h_rsv_handle);
450 		jbd2_free_handle(handle);
451 		return ERR_PTR(err);
452 	}
453 	handle->h_type = type;
454 	handle->h_line_no = line_no;
455 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
456 				handle->h_transaction->t_tid, type,
457 				line_no, nblocks);
458 	return handle;
459 }
460 EXPORT_SYMBOL(jbd2__journal_start);
461 
462 
463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
464 {
465 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
466 }
467 EXPORT_SYMBOL(jbd2_journal_start);
468 
469 void jbd2_journal_free_reserved(handle_t *handle)
470 {
471 	journal_t *journal = handle->h_journal;
472 
473 	WARN_ON(!handle->h_reserved);
474 	sub_reserved_credits(journal, handle->h_buffer_credits);
475 	jbd2_free_handle(handle);
476 }
477 EXPORT_SYMBOL(jbd2_journal_free_reserved);
478 
479 /**
480  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
481  * @handle: handle to start
482  *
483  * Start handle that has been previously reserved with jbd2_journal_reserve().
484  * This attaches @handle to the running transaction (or creates one if there's
485  * not transaction running). Unlike jbd2_journal_start() this function cannot
486  * block on journal commit, checkpointing, or similar stuff. It can block on
487  * memory allocation or frozen journal though.
488  *
489  * Return 0 on success, non-zero on error - handle is freed in that case.
490  */
491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
492 				unsigned int line_no)
493 {
494 	journal_t *journal = handle->h_journal;
495 	int ret = -EIO;
496 
497 	if (WARN_ON(!handle->h_reserved)) {
498 		/* Someone passed in normal handle? Just stop it. */
499 		jbd2_journal_stop(handle);
500 		return ret;
501 	}
502 	/*
503 	 * Usefulness of mixing of reserved and unreserved handles is
504 	 * questionable. So far nobody seems to need it so just error out.
505 	 */
506 	if (WARN_ON(current->journal_info)) {
507 		jbd2_journal_free_reserved(handle);
508 		return ret;
509 	}
510 
511 	handle->h_journal = NULL;
512 	/*
513 	 * GFP_NOFS is here because callers are likely from writeback or
514 	 * similarly constrained call sites
515 	 */
516 	ret = start_this_handle(journal, handle, GFP_NOFS);
517 	if (ret < 0) {
518 		jbd2_journal_free_reserved(handle);
519 		return ret;
520 	}
521 	handle->h_type = type;
522 	handle->h_line_no = line_no;
523 	return 0;
524 }
525 EXPORT_SYMBOL(jbd2_journal_start_reserved);
526 
527 /**
528  * int jbd2_journal_extend() - extend buffer credits.
529  * @handle:  handle to 'extend'
530  * @nblocks: nr blocks to try to extend by.
531  *
532  * Some transactions, such as large extends and truncates, can be done
533  * atomically all at once or in several stages.  The operation requests
534  * a credit for a number of buffer modications in advance, but can
535  * extend its credit if it needs more.
536  *
537  * jbd2_journal_extend tries to give the running handle more buffer credits.
538  * It does not guarantee that allocation - this is a best-effort only.
539  * The calling process MUST be able to deal cleanly with a failure to
540  * extend here.
541  *
542  * Return 0 on success, non-zero on failure.
543  *
544  * return code < 0 implies an error
545  * return code > 0 implies normal transaction-full status.
546  */
547 int jbd2_journal_extend(handle_t *handle, int nblocks)
548 {
549 	transaction_t *transaction = handle->h_transaction;
550 	journal_t *journal;
551 	int result;
552 	int wanted;
553 
554 	WARN_ON(!transaction);
555 	if (is_handle_aborted(handle))
556 		return -EROFS;
557 	journal = transaction->t_journal;
558 
559 	result = 1;
560 
561 	read_lock(&journal->j_state_lock);
562 
563 	/* Don't extend a locked-down transaction! */
564 	if (transaction->t_state != T_RUNNING) {
565 		jbd_debug(3, "denied handle %p %d blocks: "
566 			  "transaction not running\n", handle, nblocks);
567 		goto error_out;
568 	}
569 
570 	spin_lock(&transaction->t_handle_lock);
571 	wanted = atomic_add_return(nblocks,
572 				   &transaction->t_outstanding_credits);
573 
574 	if (wanted > journal->j_max_transaction_buffers) {
575 		jbd_debug(3, "denied handle %p %d blocks: "
576 			  "transaction too large\n", handle, nblocks);
577 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
578 		goto unlock;
579 	}
580 
581 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
582 	    jbd2_log_space_left(journal)) {
583 		jbd_debug(3, "denied handle %p %d blocks: "
584 			  "insufficient log space\n", handle, nblocks);
585 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
586 		goto unlock;
587 	}
588 
589 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
590 				 transaction->t_tid,
591 				 handle->h_type, handle->h_line_no,
592 				 handle->h_buffer_credits,
593 				 nblocks);
594 
595 	handle->h_buffer_credits += nblocks;
596 	handle->h_requested_credits += nblocks;
597 	result = 0;
598 
599 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
600 unlock:
601 	spin_unlock(&transaction->t_handle_lock);
602 error_out:
603 	read_unlock(&journal->j_state_lock);
604 	return result;
605 }
606 
607 
608 /**
609  * int jbd2_journal_restart() - restart a handle .
610  * @handle:  handle to restart
611  * @nblocks: nr credits requested
612  *
613  * Restart a handle for a multi-transaction filesystem
614  * operation.
615  *
616  * If the jbd2_journal_extend() call above fails to grant new buffer credits
617  * to a running handle, a call to jbd2_journal_restart will commit the
618  * handle's transaction so far and reattach the handle to a new
619  * transaction capabable of guaranteeing the requested number of
620  * credits. We preserve reserved handle if there's any attached to the
621  * passed in handle.
622  */
623 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
624 {
625 	transaction_t *transaction = handle->h_transaction;
626 	journal_t *journal;
627 	tid_t		tid;
628 	int		need_to_start, ret;
629 
630 	WARN_ON(!transaction);
631 	/* If we've had an abort of any type, don't even think about
632 	 * actually doing the restart! */
633 	if (is_handle_aborted(handle))
634 		return 0;
635 	journal = transaction->t_journal;
636 
637 	/*
638 	 * First unlink the handle from its current transaction, and start the
639 	 * commit on that.
640 	 */
641 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
642 	J_ASSERT(journal_current_handle() == handle);
643 
644 	read_lock(&journal->j_state_lock);
645 	spin_lock(&transaction->t_handle_lock);
646 	atomic_sub(handle->h_buffer_credits,
647 		   &transaction->t_outstanding_credits);
648 	if (handle->h_rsv_handle) {
649 		sub_reserved_credits(journal,
650 				     handle->h_rsv_handle->h_buffer_credits);
651 	}
652 	if (atomic_dec_and_test(&transaction->t_updates))
653 		wake_up(&journal->j_wait_updates);
654 	tid = transaction->t_tid;
655 	spin_unlock(&transaction->t_handle_lock);
656 	handle->h_transaction = NULL;
657 	current->journal_info = NULL;
658 
659 	jbd_debug(2, "restarting handle %p\n", handle);
660 	need_to_start = !tid_geq(journal->j_commit_request, tid);
661 	read_unlock(&journal->j_state_lock);
662 	if (need_to_start)
663 		jbd2_log_start_commit(journal, tid);
664 
665 	lock_map_release(&handle->h_lockdep_map);
666 	handle->h_buffer_credits = nblocks;
667 	ret = start_this_handle(journal, handle, gfp_mask);
668 	return ret;
669 }
670 EXPORT_SYMBOL(jbd2__journal_restart);
671 
672 
673 int jbd2_journal_restart(handle_t *handle, int nblocks)
674 {
675 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
676 }
677 EXPORT_SYMBOL(jbd2_journal_restart);
678 
679 /**
680  * void jbd2_journal_lock_updates () - establish a transaction barrier.
681  * @journal:  Journal to establish a barrier on.
682  *
683  * This locks out any further updates from being started, and blocks
684  * until all existing updates have completed, returning only once the
685  * journal is in a quiescent state with no updates running.
686  *
687  * The journal lock should not be held on entry.
688  */
689 void jbd2_journal_lock_updates(journal_t *journal)
690 {
691 	DEFINE_WAIT(wait);
692 
693 	write_lock(&journal->j_state_lock);
694 	++journal->j_barrier_count;
695 
696 	/* Wait until there are no reserved handles */
697 	if (atomic_read(&journal->j_reserved_credits)) {
698 		write_unlock(&journal->j_state_lock);
699 		wait_event(journal->j_wait_reserved,
700 			   atomic_read(&journal->j_reserved_credits) == 0);
701 		write_lock(&journal->j_state_lock);
702 	}
703 
704 	/* Wait until there are no running updates */
705 	while (1) {
706 		transaction_t *transaction = journal->j_running_transaction;
707 
708 		if (!transaction)
709 			break;
710 
711 		spin_lock(&transaction->t_handle_lock);
712 		prepare_to_wait(&journal->j_wait_updates, &wait,
713 				TASK_UNINTERRUPTIBLE);
714 		if (!atomic_read(&transaction->t_updates)) {
715 			spin_unlock(&transaction->t_handle_lock);
716 			finish_wait(&journal->j_wait_updates, &wait);
717 			break;
718 		}
719 		spin_unlock(&transaction->t_handle_lock);
720 		write_unlock(&journal->j_state_lock);
721 		schedule();
722 		finish_wait(&journal->j_wait_updates, &wait);
723 		write_lock(&journal->j_state_lock);
724 	}
725 	write_unlock(&journal->j_state_lock);
726 
727 	/*
728 	 * We have now established a barrier against other normal updates, but
729 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
730 	 * to make sure that we serialise special journal-locked operations
731 	 * too.
732 	 */
733 	mutex_lock(&journal->j_barrier);
734 }
735 
736 /**
737  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
738  * @journal:  Journal to release the barrier on.
739  *
740  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
741  *
742  * Should be called without the journal lock held.
743  */
744 void jbd2_journal_unlock_updates (journal_t *journal)
745 {
746 	J_ASSERT(journal->j_barrier_count != 0);
747 
748 	mutex_unlock(&journal->j_barrier);
749 	write_lock(&journal->j_state_lock);
750 	--journal->j_barrier_count;
751 	write_unlock(&journal->j_state_lock);
752 	wake_up(&journal->j_wait_transaction_locked);
753 }
754 
755 static void warn_dirty_buffer(struct buffer_head *bh)
756 {
757 	char b[BDEVNAME_SIZE];
758 
759 	printk(KERN_WARNING
760 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
761 	       "There's a risk of filesystem corruption in case of system "
762 	       "crash.\n",
763 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
764 }
765 
766 /*
767  * If the buffer is already part of the current transaction, then there
768  * is nothing we need to do.  If it is already part of a prior
769  * transaction which we are still committing to disk, then we need to
770  * make sure that we do not overwrite the old copy: we do copy-out to
771  * preserve the copy going to disk.  We also account the buffer against
772  * the handle's metadata buffer credits (unless the buffer is already
773  * part of the transaction, that is).
774  *
775  */
776 static int
777 do_get_write_access(handle_t *handle, struct journal_head *jh,
778 			int force_copy)
779 {
780 	struct buffer_head *bh;
781 	transaction_t *transaction = handle->h_transaction;
782 	journal_t *journal;
783 	int error;
784 	char *frozen_buffer = NULL;
785 	int need_copy = 0;
786 	unsigned long start_lock, time_lock;
787 
788 	WARN_ON(!transaction);
789 	if (is_handle_aborted(handle))
790 		return -EROFS;
791 	journal = transaction->t_journal;
792 
793 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
794 
795 	JBUFFER_TRACE(jh, "entry");
796 repeat:
797 	bh = jh2bh(jh);
798 
799 	/* @@@ Need to check for errors here at some point. */
800 
801  	start_lock = jiffies;
802 	lock_buffer(bh);
803 	jbd_lock_bh_state(bh);
804 
805 	/* If it takes too long to lock the buffer, trace it */
806 	time_lock = jbd2_time_diff(start_lock, jiffies);
807 	if (time_lock > HZ/10)
808 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
809 			jiffies_to_msecs(time_lock));
810 
811 	/* We now hold the buffer lock so it is safe to query the buffer
812 	 * state.  Is the buffer dirty?
813 	 *
814 	 * If so, there are two possibilities.  The buffer may be
815 	 * non-journaled, and undergoing a quite legitimate writeback.
816 	 * Otherwise, it is journaled, and we don't expect dirty buffers
817 	 * in that state (the buffers should be marked JBD_Dirty
818 	 * instead.)  So either the IO is being done under our own
819 	 * control and this is a bug, or it's a third party IO such as
820 	 * dump(8) (which may leave the buffer scheduled for read ---
821 	 * ie. locked but not dirty) or tune2fs (which may actually have
822 	 * the buffer dirtied, ugh.)  */
823 
824 	if (buffer_dirty(bh)) {
825 		/*
826 		 * First question: is this buffer already part of the current
827 		 * transaction or the existing committing transaction?
828 		 */
829 		if (jh->b_transaction) {
830 			J_ASSERT_JH(jh,
831 				jh->b_transaction == transaction ||
832 				jh->b_transaction ==
833 					journal->j_committing_transaction);
834 			if (jh->b_next_transaction)
835 				J_ASSERT_JH(jh, jh->b_next_transaction ==
836 							transaction);
837 			warn_dirty_buffer(bh);
838 		}
839 		/*
840 		 * In any case we need to clean the dirty flag and we must
841 		 * do it under the buffer lock to be sure we don't race
842 		 * with running write-out.
843 		 */
844 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
845 		clear_buffer_dirty(bh);
846 		set_buffer_jbddirty(bh);
847 	}
848 
849 	unlock_buffer(bh);
850 
851 	error = -EROFS;
852 	if (is_handle_aborted(handle)) {
853 		jbd_unlock_bh_state(bh);
854 		goto out;
855 	}
856 	error = 0;
857 
858 	/*
859 	 * The buffer is already part of this transaction if b_transaction or
860 	 * b_next_transaction points to it
861 	 */
862 	if (jh->b_transaction == transaction ||
863 	    jh->b_next_transaction == transaction)
864 		goto done;
865 
866 	/*
867 	 * this is the first time this transaction is touching this buffer,
868 	 * reset the modified flag
869 	 */
870        jh->b_modified = 0;
871 
872 	/*
873 	 * If there is already a copy-out version of this buffer, then we don't
874 	 * need to make another one
875 	 */
876 	if (jh->b_frozen_data) {
877 		JBUFFER_TRACE(jh, "has frozen data");
878 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
879 		jh->b_next_transaction = transaction;
880 		goto done;
881 	}
882 
883 	/* Is there data here we need to preserve? */
884 
885 	if (jh->b_transaction && jh->b_transaction != transaction) {
886 		JBUFFER_TRACE(jh, "owned by older transaction");
887 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
888 		J_ASSERT_JH(jh, jh->b_transaction ==
889 					journal->j_committing_transaction);
890 
891 		/* There is one case we have to be very careful about.
892 		 * If the committing transaction is currently writing
893 		 * this buffer out to disk and has NOT made a copy-out,
894 		 * then we cannot modify the buffer contents at all
895 		 * right now.  The essence of copy-out is that it is the
896 		 * extra copy, not the primary copy, which gets
897 		 * journaled.  If the primary copy is already going to
898 		 * disk then we cannot do copy-out here. */
899 
900 		if (buffer_shadow(bh)) {
901 			JBUFFER_TRACE(jh, "on shadow: sleep");
902 			jbd_unlock_bh_state(bh);
903 			wait_on_bit_io(&bh->b_state, BH_Shadow,
904 				       TASK_UNINTERRUPTIBLE);
905 			goto repeat;
906 		}
907 
908 		/*
909 		 * Only do the copy if the currently-owning transaction still
910 		 * needs it. If buffer isn't on BJ_Metadata list, the
911 		 * committing transaction is past that stage (here we use the
912 		 * fact that BH_Shadow is set under bh_state lock together with
913 		 * refiling to BJ_Shadow list and at this point we know the
914 		 * buffer doesn't have BH_Shadow set).
915 		 *
916 		 * Subtle point, though: if this is a get_undo_access,
917 		 * then we will be relying on the frozen_data to contain
918 		 * the new value of the committed_data record after the
919 		 * transaction, so we HAVE to force the frozen_data copy
920 		 * in that case.
921 		 */
922 		if (jh->b_jlist == BJ_Metadata || force_copy) {
923 			JBUFFER_TRACE(jh, "generate frozen data");
924 			if (!frozen_buffer) {
925 				JBUFFER_TRACE(jh, "allocate memory for buffer");
926 				jbd_unlock_bh_state(bh);
927 				frozen_buffer =
928 					jbd2_alloc(jh2bh(jh)->b_size,
929 							 GFP_NOFS);
930 				if (!frozen_buffer) {
931 					printk(KERN_ERR
932 					       "%s: OOM for frozen_buffer\n",
933 					       __func__);
934 					JBUFFER_TRACE(jh, "oom!");
935 					error = -ENOMEM;
936 					jbd_lock_bh_state(bh);
937 					goto done;
938 				}
939 				goto repeat;
940 			}
941 			jh->b_frozen_data = frozen_buffer;
942 			frozen_buffer = NULL;
943 			need_copy = 1;
944 		}
945 		jh->b_next_transaction = transaction;
946 	}
947 
948 
949 	/*
950 	 * Finally, if the buffer is not journaled right now, we need to make
951 	 * sure it doesn't get written to disk before the caller actually
952 	 * commits the new data
953 	 */
954 	if (!jh->b_transaction) {
955 		JBUFFER_TRACE(jh, "no transaction");
956 		J_ASSERT_JH(jh, !jh->b_next_transaction);
957 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
958 		spin_lock(&journal->j_list_lock);
959 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
960 		spin_unlock(&journal->j_list_lock);
961 	}
962 
963 done:
964 	if (need_copy) {
965 		struct page *page;
966 		int offset;
967 		char *source;
968 
969 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
970 			    "Possible IO failure.\n");
971 		page = jh2bh(jh)->b_page;
972 		offset = offset_in_page(jh2bh(jh)->b_data);
973 		source = kmap_atomic(page);
974 		/* Fire data frozen trigger just before we copy the data */
975 		jbd2_buffer_frozen_trigger(jh, source + offset,
976 					   jh->b_triggers);
977 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
978 		kunmap_atomic(source);
979 
980 		/*
981 		 * Now that the frozen data is saved off, we need to store
982 		 * any matching triggers.
983 		 */
984 		jh->b_frozen_triggers = jh->b_triggers;
985 	}
986 	jbd_unlock_bh_state(bh);
987 
988 	/*
989 	 * If we are about to journal a buffer, then any revoke pending on it is
990 	 * no longer valid
991 	 */
992 	jbd2_journal_cancel_revoke(handle, jh);
993 
994 out:
995 	if (unlikely(frozen_buffer))	/* It's usually NULL */
996 		jbd2_free(frozen_buffer, bh->b_size);
997 
998 	JBUFFER_TRACE(jh, "exit");
999 	return error;
1000 }
1001 
1002 /**
1003  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1004  * @handle: transaction to add buffer modifications to
1005  * @bh:     bh to be used for metadata writes
1006  *
1007  * Returns an error code or 0 on success.
1008  *
1009  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1010  * because we're write()ing a buffer which is also part of a shared mapping.
1011  */
1012 
1013 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1014 {
1015 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1016 	int rc;
1017 
1018 	/* We do not want to get caught playing with fields which the
1019 	 * log thread also manipulates.  Make sure that the buffer
1020 	 * completes any outstanding IO before proceeding. */
1021 	rc = do_get_write_access(handle, jh, 0);
1022 	jbd2_journal_put_journal_head(jh);
1023 	return rc;
1024 }
1025 
1026 
1027 /*
1028  * When the user wants to journal a newly created buffer_head
1029  * (ie. getblk() returned a new buffer and we are going to populate it
1030  * manually rather than reading off disk), then we need to keep the
1031  * buffer_head locked until it has been completely filled with new
1032  * data.  In this case, we should be able to make the assertion that
1033  * the bh is not already part of an existing transaction.
1034  *
1035  * The buffer should already be locked by the caller by this point.
1036  * There is no lock ranking violation: it was a newly created,
1037  * unlocked buffer beforehand. */
1038 
1039 /**
1040  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1041  * @handle: transaction to new buffer to
1042  * @bh: new buffer.
1043  *
1044  * Call this if you create a new bh.
1045  */
1046 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1047 {
1048 	transaction_t *transaction = handle->h_transaction;
1049 	journal_t *journal;
1050 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1051 	int err;
1052 
1053 	jbd_debug(5, "journal_head %p\n", jh);
1054 	WARN_ON(!transaction);
1055 	err = -EROFS;
1056 	if (is_handle_aborted(handle))
1057 		goto out;
1058 	journal = transaction->t_journal;
1059 	err = 0;
1060 
1061 	JBUFFER_TRACE(jh, "entry");
1062 	/*
1063 	 * The buffer may already belong to this transaction due to pre-zeroing
1064 	 * in the filesystem's new_block code.  It may also be on the previous,
1065 	 * committing transaction's lists, but it HAS to be in Forget state in
1066 	 * that case: the transaction must have deleted the buffer for it to be
1067 	 * reused here.
1068 	 */
1069 	jbd_lock_bh_state(bh);
1070 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1071 		jh->b_transaction == NULL ||
1072 		(jh->b_transaction == journal->j_committing_transaction &&
1073 			  jh->b_jlist == BJ_Forget)));
1074 
1075 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1076 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1077 
1078 	if (jh->b_transaction == NULL) {
1079 		/*
1080 		 * Previous jbd2_journal_forget() could have left the buffer
1081 		 * with jbddirty bit set because it was being committed. When
1082 		 * the commit finished, we've filed the buffer for
1083 		 * checkpointing and marked it dirty. Now we are reallocating
1084 		 * the buffer so the transaction freeing it must have
1085 		 * committed and so it's safe to clear the dirty bit.
1086 		 */
1087 		clear_buffer_dirty(jh2bh(jh));
1088 		/* first access by this transaction */
1089 		jh->b_modified = 0;
1090 
1091 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1092 		spin_lock(&journal->j_list_lock);
1093 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1094 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1095 		/* first access by this transaction */
1096 		jh->b_modified = 0;
1097 
1098 		JBUFFER_TRACE(jh, "set next transaction");
1099 		spin_lock(&journal->j_list_lock);
1100 		jh->b_next_transaction = transaction;
1101 	}
1102 	spin_unlock(&journal->j_list_lock);
1103 	jbd_unlock_bh_state(bh);
1104 
1105 	/*
1106 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1107 	 * blocks which contain freed but then revoked metadata.  We need
1108 	 * to cancel the revoke in case we end up freeing it yet again
1109 	 * and the reallocating as data - this would cause a second revoke,
1110 	 * which hits an assertion error.
1111 	 */
1112 	JBUFFER_TRACE(jh, "cancelling revoke");
1113 	jbd2_journal_cancel_revoke(handle, jh);
1114 out:
1115 	jbd2_journal_put_journal_head(jh);
1116 	return err;
1117 }
1118 
1119 /**
1120  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1121  *     non-rewindable consequences
1122  * @handle: transaction
1123  * @bh: buffer to undo
1124  *
1125  * Sometimes there is a need to distinguish between metadata which has
1126  * been committed to disk and that which has not.  The ext3fs code uses
1127  * this for freeing and allocating space, we have to make sure that we
1128  * do not reuse freed space until the deallocation has been committed,
1129  * since if we overwrote that space we would make the delete
1130  * un-rewindable in case of a crash.
1131  *
1132  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1133  * buffer for parts of non-rewindable operations such as delete
1134  * operations on the bitmaps.  The journaling code must keep a copy of
1135  * the buffer's contents prior to the undo_access call until such time
1136  * as we know that the buffer has definitely been committed to disk.
1137  *
1138  * We never need to know which transaction the committed data is part
1139  * of, buffers touched here are guaranteed to be dirtied later and so
1140  * will be committed to a new transaction in due course, at which point
1141  * we can discard the old committed data pointer.
1142  *
1143  * Returns error number or 0 on success.
1144  */
1145 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1146 {
1147 	int err;
1148 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1149 	char *committed_data = NULL;
1150 
1151 	JBUFFER_TRACE(jh, "entry");
1152 
1153 	/*
1154 	 * Do this first --- it can drop the journal lock, so we want to
1155 	 * make sure that obtaining the committed_data is done
1156 	 * atomically wrt. completion of any outstanding commits.
1157 	 */
1158 	err = do_get_write_access(handle, jh, 1);
1159 	if (err)
1160 		goto out;
1161 
1162 repeat:
1163 	if (!jh->b_committed_data) {
1164 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1165 		if (!committed_data) {
1166 			printk(KERN_ERR "%s: No memory for committed data\n",
1167 				__func__);
1168 			err = -ENOMEM;
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	jbd_lock_bh_state(bh);
1174 	if (!jh->b_committed_data) {
1175 		/* Copy out the current buffer contents into the
1176 		 * preserved, committed copy. */
1177 		JBUFFER_TRACE(jh, "generate b_committed data");
1178 		if (!committed_data) {
1179 			jbd_unlock_bh_state(bh);
1180 			goto repeat;
1181 		}
1182 
1183 		jh->b_committed_data = committed_data;
1184 		committed_data = NULL;
1185 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1186 	}
1187 	jbd_unlock_bh_state(bh);
1188 out:
1189 	jbd2_journal_put_journal_head(jh);
1190 	if (unlikely(committed_data))
1191 		jbd2_free(committed_data, bh->b_size);
1192 	return err;
1193 }
1194 
1195 /**
1196  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1197  * @bh: buffer to trigger on
1198  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1199  *
1200  * Set any triggers on this journal_head.  This is always safe, because
1201  * triggers for a committing buffer will be saved off, and triggers for
1202  * a running transaction will match the buffer in that transaction.
1203  *
1204  * Call with NULL to clear the triggers.
1205  */
1206 void jbd2_journal_set_triggers(struct buffer_head *bh,
1207 			       struct jbd2_buffer_trigger_type *type)
1208 {
1209 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1210 
1211 	if (WARN_ON(!jh))
1212 		return;
1213 	jh->b_triggers = type;
1214 	jbd2_journal_put_journal_head(jh);
1215 }
1216 
1217 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1218 				struct jbd2_buffer_trigger_type *triggers)
1219 {
1220 	struct buffer_head *bh = jh2bh(jh);
1221 
1222 	if (!triggers || !triggers->t_frozen)
1223 		return;
1224 
1225 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1226 }
1227 
1228 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1229 			       struct jbd2_buffer_trigger_type *triggers)
1230 {
1231 	if (!triggers || !triggers->t_abort)
1232 		return;
1233 
1234 	triggers->t_abort(triggers, jh2bh(jh));
1235 }
1236 
1237 
1238 
1239 /**
1240  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1241  * @handle: transaction to add buffer to.
1242  * @bh: buffer to mark
1243  *
1244  * mark dirty metadata which needs to be journaled as part of the current
1245  * transaction.
1246  *
1247  * The buffer must have previously had jbd2_journal_get_write_access()
1248  * called so that it has a valid journal_head attached to the buffer
1249  * head.
1250  *
1251  * The buffer is placed on the transaction's metadata list and is marked
1252  * as belonging to the transaction.
1253  *
1254  * Returns error number or 0 on success.
1255  *
1256  * Special care needs to be taken if the buffer already belongs to the
1257  * current committing transaction (in which case we should have frozen
1258  * data present for that commit).  In that case, we don't relink the
1259  * buffer: that only gets done when the old transaction finally
1260  * completes its commit.
1261  */
1262 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1263 {
1264 	transaction_t *transaction = handle->h_transaction;
1265 	journal_t *journal;
1266 	struct journal_head *jh;
1267 	int ret = 0;
1268 
1269 	WARN_ON(!transaction);
1270 	if (is_handle_aborted(handle))
1271 		return -EROFS;
1272 	journal = transaction->t_journal;
1273 	jh = jbd2_journal_grab_journal_head(bh);
1274 	if (!jh) {
1275 		ret = -EUCLEAN;
1276 		goto out;
1277 	}
1278 	jbd_debug(5, "journal_head %p\n", jh);
1279 	JBUFFER_TRACE(jh, "entry");
1280 
1281 	jbd_lock_bh_state(bh);
1282 
1283 	if (jh->b_modified == 0) {
1284 		/*
1285 		 * This buffer's got modified and becoming part
1286 		 * of the transaction. This needs to be done
1287 		 * once a transaction -bzzz
1288 		 */
1289 		jh->b_modified = 1;
1290 		if (handle->h_buffer_credits <= 0) {
1291 			ret = -ENOSPC;
1292 			goto out_unlock_bh;
1293 		}
1294 		handle->h_buffer_credits--;
1295 	}
1296 
1297 	/*
1298 	 * fastpath, to avoid expensive locking.  If this buffer is already
1299 	 * on the running transaction's metadata list there is nothing to do.
1300 	 * Nobody can take it off again because there is a handle open.
1301 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1302 	 * result in this test being false, so we go in and take the locks.
1303 	 */
1304 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1305 		JBUFFER_TRACE(jh, "fastpath");
1306 		if (unlikely(jh->b_transaction !=
1307 			     journal->j_running_transaction)) {
1308 			printk(KERN_ERR "JBD2: %s: "
1309 			       "jh->b_transaction (%llu, %p, %u) != "
1310 			       "journal->j_running_transaction (%p, %u)\n",
1311 			       journal->j_devname,
1312 			       (unsigned long long) bh->b_blocknr,
1313 			       jh->b_transaction,
1314 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1315 			       journal->j_running_transaction,
1316 			       journal->j_running_transaction ?
1317 			       journal->j_running_transaction->t_tid : 0);
1318 			ret = -EINVAL;
1319 		}
1320 		goto out_unlock_bh;
1321 	}
1322 
1323 	set_buffer_jbddirty(bh);
1324 
1325 	/*
1326 	 * Metadata already on the current transaction list doesn't
1327 	 * need to be filed.  Metadata on another transaction's list must
1328 	 * be committing, and will be refiled once the commit completes:
1329 	 * leave it alone for now.
1330 	 */
1331 	if (jh->b_transaction != transaction) {
1332 		JBUFFER_TRACE(jh, "already on other transaction");
1333 		if (unlikely(((jh->b_transaction !=
1334 			       journal->j_committing_transaction)) ||
1335 			     (jh->b_next_transaction != transaction))) {
1336 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1337 			       "bad jh for block %llu: "
1338 			       "transaction (%p, %u), "
1339 			       "jh->b_transaction (%p, %u), "
1340 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1341 			       journal->j_devname,
1342 			       (unsigned long long) bh->b_blocknr,
1343 			       transaction, transaction->t_tid,
1344 			       jh->b_transaction,
1345 			       jh->b_transaction ?
1346 			       jh->b_transaction->t_tid : 0,
1347 			       jh->b_next_transaction,
1348 			       jh->b_next_transaction ?
1349 			       jh->b_next_transaction->t_tid : 0,
1350 			       jh->b_jlist);
1351 			WARN_ON(1);
1352 			ret = -EINVAL;
1353 		}
1354 		/* And this case is illegal: we can't reuse another
1355 		 * transaction's data buffer, ever. */
1356 		goto out_unlock_bh;
1357 	}
1358 
1359 	/* That test should have eliminated the following case: */
1360 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1361 
1362 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1363 	spin_lock(&journal->j_list_lock);
1364 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1365 	spin_unlock(&journal->j_list_lock);
1366 out_unlock_bh:
1367 	jbd_unlock_bh_state(bh);
1368 	jbd2_journal_put_journal_head(jh);
1369 out:
1370 	JBUFFER_TRACE(jh, "exit");
1371 	return ret;
1372 }
1373 
1374 /**
1375  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1376  * @handle: transaction handle
1377  * @bh:     bh to 'forget'
1378  *
1379  * We can only do the bforget if there are no commits pending against the
1380  * buffer.  If the buffer is dirty in the current running transaction we
1381  * can safely unlink it.
1382  *
1383  * bh may not be a journalled buffer at all - it may be a non-JBD
1384  * buffer which came off the hashtable.  Check for this.
1385  *
1386  * Decrements bh->b_count by one.
1387  *
1388  * Allow this call even if the handle has aborted --- it may be part of
1389  * the caller's cleanup after an abort.
1390  */
1391 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1392 {
1393 	transaction_t *transaction = handle->h_transaction;
1394 	journal_t *journal;
1395 	struct journal_head *jh;
1396 	int drop_reserve = 0;
1397 	int err = 0;
1398 	int was_modified = 0;
1399 
1400 	WARN_ON(!transaction);
1401 	if (is_handle_aborted(handle))
1402 		return -EROFS;
1403 	journal = transaction->t_journal;
1404 
1405 	BUFFER_TRACE(bh, "entry");
1406 
1407 	jbd_lock_bh_state(bh);
1408 
1409 	if (!buffer_jbd(bh))
1410 		goto not_jbd;
1411 	jh = bh2jh(bh);
1412 
1413 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1414 	 * Don't do any jbd operations, and return an error. */
1415 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1416 			 "inconsistent data on disk")) {
1417 		err = -EIO;
1418 		goto not_jbd;
1419 	}
1420 
1421 	/* keep track of whether or not this transaction modified us */
1422 	was_modified = jh->b_modified;
1423 
1424 	/*
1425 	 * The buffer's going from the transaction, we must drop
1426 	 * all references -bzzz
1427 	 */
1428 	jh->b_modified = 0;
1429 
1430 	if (jh->b_transaction == transaction) {
1431 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1432 
1433 		/* If we are forgetting a buffer which is already part
1434 		 * of this transaction, then we can just drop it from
1435 		 * the transaction immediately. */
1436 		clear_buffer_dirty(bh);
1437 		clear_buffer_jbddirty(bh);
1438 
1439 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1440 
1441 		/*
1442 		 * we only want to drop a reference if this transaction
1443 		 * modified the buffer
1444 		 */
1445 		if (was_modified)
1446 			drop_reserve = 1;
1447 
1448 		/*
1449 		 * We are no longer going to journal this buffer.
1450 		 * However, the commit of this transaction is still
1451 		 * important to the buffer: the delete that we are now
1452 		 * processing might obsolete an old log entry, so by
1453 		 * committing, we can satisfy the buffer's checkpoint.
1454 		 *
1455 		 * So, if we have a checkpoint on the buffer, we should
1456 		 * now refile the buffer on our BJ_Forget list so that
1457 		 * we know to remove the checkpoint after we commit.
1458 		 */
1459 
1460 		spin_lock(&journal->j_list_lock);
1461 		if (jh->b_cp_transaction) {
1462 			__jbd2_journal_temp_unlink_buffer(jh);
1463 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1464 		} else {
1465 			__jbd2_journal_unfile_buffer(jh);
1466 			if (!buffer_jbd(bh)) {
1467 				spin_unlock(&journal->j_list_lock);
1468 				jbd_unlock_bh_state(bh);
1469 				__bforget(bh);
1470 				goto drop;
1471 			}
1472 		}
1473 		spin_unlock(&journal->j_list_lock);
1474 	} else if (jh->b_transaction) {
1475 		J_ASSERT_JH(jh, (jh->b_transaction ==
1476 				 journal->j_committing_transaction));
1477 		/* However, if the buffer is still owned by a prior
1478 		 * (committing) transaction, we can't drop it yet... */
1479 		JBUFFER_TRACE(jh, "belongs to older transaction");
1480 		/* ... but we CAN drop it from the new transaction if we
1481 		 * have also modified it since the original commit. */
1482 
1483 		if (jh->b_next_transaction) {
1484 			J_ASSERT(jh->b_next_transaction == transaction);
1485 			spin_lock(&journal->j_list_lock);
1486 			jh->b_next_transaction = NULL;
1487 			spin_unlock(&journal->j_list_lock);
1488 
1489 			/*
1490 			 * only drop a reference if this transaction modified
1491 			 * the buffer
1492 			 */
1493 			if (was_modified)
1494 				drop_reserve = 1;
1495 		}
1496 	}
1497 
1498 not_jbd:
1499 	jbd_unlock_bh_state(bh);
1500 	__brelse(bh);
1501 drop:
1502 	if (drop_reserve) {
1503 		/* no need to reserve log space for this block -bzzz */
1504 		handle->h_buffer_credits++;
1505 	}
1506 	return err;
1507 }
1508 
1509 /**
1510  * int jbd2_journal_stop() - complete a transaction
1511  * @handle: tranaction to complete.
1512  *
1513  * All done for a particular handle.
1514  *
1515  * There is not much action needed here.  We just return any remaining
1516  * buffer credits to the transaction and remove the handle.  The only
1517  * complication is that we need to start a commit operation if the
1518  * filesystem is marked for synchronous update.
1519  *
1520  * jbd2_journal_stop itself will not usually return an error, but it may
1521  * do so in unusual circumstances.  In particular, expect it to
1522  * return -EIO if a jbd2_journal_abort has been executed since the
1523  * transaction began.
1524  */
1525 int jbd2_journal_stop(handle_t *handle)
1526 {
1527 	transaction_t *transaction = handle->h_transaction;
1528 	journal_t *journal;
1529 	int err = 0, wait_for_commit = 0;
1530 	tid_t tid;
1531 	pid_t pid;
1532 
1533 	if (!transaction)
1534 		goto free_and_exit;
1535 	journal = transaction->t_journal;
1536 
1537 	J_ASSERT(journal_current_handle() == handle);
1538 
1539 	if (is_handle_aborted(handle))
1540 		err = -EIO;
1541 	else
1542 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1543 
1544 	if (--handle->h_ref > 0) {
1545 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1546 			  handle->h_ref);
1547 		return err;
1548 	}
1549 
1550 	jbd_debug(4, "Handle %p going down\n", handle);
1551 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1552 				transaction->t_tid,
1553 				handle->h_type, handle->h_line_no,
1554 				jiffies - handle->h_start_jiffies,
1555 				handle->h_sync, handle->h_requested_credits,
1556 				(handle->h_requested_credits -
1557 				 handle->h_buffer_credits));
1558 
1559 	/*
1560 	 * Implement synchronous transaction batching.  If the handle
1561 	 * was synchronous, don't force a commit immediately.  Let's
1562 	 * yield and let another thread piggyback onto this
1563 	 * transaction.  Keep doing that while new threads continue to
1564 	 * arrive.  It doesn't cost much - we're about to run a commit
1565 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1566 	 * operations by 30x or more...
1567 	 *
1568 	 * We try and optimize the sleep time against what the
1569 	 * underlying disk can do, instead of having a static sleep
1570 	 * time.  This is useful for the case where our storage is so
1571 	 * fast that it is more optimal to go ahead and force a flush
1572 	 * and wait for the transaction to be committed than it is to
1573 	 * wait for an arbitrary amount of time for new writers to
1574 	 * join the transaction.  We achieve this by measuring how
1575 	 * long it takes to commit a transaction, and compare it with
1576 	 * how long this transaction has been running, and if run time
1577 	 * < commit time then we sleep for the delta and commit.  This
1578 	 * greatly helps super fast disks that would see slowdowns as
1579 	 * more threads started doing fsyncs.
1580 	 *
1581 	 * But don't do this if this process was the most recent one
1582 	 * to perform a synchronous write.  We do this to detect the
1583 	 * case where a single process is doing a stream of sync
1584 	 * writes.  No point in waiting for joiners in that case.
1585 	 *
1586 	 * Setting max_batch_time to 0 disables this completely.
1587 	 */
1588 	pid = current->pid;
1589 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1590 	    journal->j_max_batch_time) {
1591 		u64 commit_time, trans_time;
1592 
1593 		journal->j_last_sync_writer = pid;
1594 
1595 		read_lock(&journal->j_state_lock);
1596 		commit_time = journal->j_average_commit_time;
1597 		read_unlock(&journal->j_state_lock);
1598 
1599 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1600 						   transaction->t_start_time));
1601 
1602 		commit_time = max_t(u64, commit_time,
1603 				    1000*journal->j_min_batch_time);
1604 		commit_time = min_t(u64, commit_time,
1605 				    1000*journal->j_max_batch_time);
1606 
1607 		if (trans_time < commit_time) {
1608 			ktime_t expires = ktime_add_ns(ktime_get(),
1609 						       commit_time);
1610 			set_current_state(TASK_UNINTERRUPTIBLE);
1611 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1612 		}
1613 	}
1614 
1615 	if (handle->h_sync)
1616 		transaction->t_synchronous_commit = 1;
1617 	current->journal_info = NULL;
1618 	atomic_sub(handle->h_buffer_credits,
1619 		   &transaction->t_outstanding_credits);
1620 
1621 	/*
1622 	 * If the handle is marked SYNC, we need to set another commit
1623 	 * going!  We also want to force a commit if the current
1624 	 * transaction is occupying too much of the log, or if the
1625 	 * transaction is too old now.
1626 	 */
1627 	if (handle->h_sync ||
1628 	    (atomic_read(&transaction->t_outstanding_credits) >
1629 	     journal->j_max_transaction_buffers) ||
1630 	    time_after_eq(jiffies, transaction->t_expires)) {
1631 		/* Do this even for aborted journals: an abort still
1632 		 * completes the commit thread, it just doesn't write
1633 		 * anything to disk. */
1634 
1635 		jbd_debug(2, "transaction too old, requesting commit for "
1636 					"handle %p\n", handle);
1637 		/* This is non-blocking */
1638 		jbd2_log_start_commit(journal, transaction->t_tid);
1639 
1640 		/*
1641 		 * Special case: JBD2_SYNC synchronous updates require us
1642 		 * to wait for the commit to complete.
1643 		 */
1644 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1645 			wait_for_commit = 1;
1646 	}
1647 
1648 	/*
1649 	 * Once we drop t_updates, if it goes to zero the transaction
1650 	 * could start committing on us and eventually disappear.  So
1651 	 * once we do this, we must not dereference transaction
1652 	 * pointer again.
1653 	 */
1654 	tid = transaction->t_tid;
1655 	if (atomic_dec_and_test(&transaction->t_updates)) {
1656 		wake_up(&journal->j_wait_updates);
1657 		if (journal->j_barrier_count)
1658 			wake_up(&journal->j_wait_transaction_locked);
1659 	}
1660 
1661 	if (wait_for_commit)
1662 		err = jbd2_log_wait_commit(journal, tid);
1663 
1664 	lock_map_release(&handle->h_lockdep_map);
1665 
1666 	if (handle->h_rsv_handle)
1667 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1668 free_and_exit:
1669 	jbd2_free_handle(handle);
1670 	return err;
1671 }
1672 
1673 /*
1674  *
1675  * List management code snippets: various functions for manipulating the
1676  * transaction buffer lists.
1677  *
1678  */
1679 
1680 /*
1681  * Append a buffer to a transaction list, given the transaction's list head
1682  * pointer.
1683  *
1684  * j_list_lock is held.
1685  *
1686  * jbd_lock_bh_state(jh2bh(jh)) is held.
1687  */
1688 
1689 static inline void
1690 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1691 {
1692 	if (!*list) {
1693 		jh->b_tnext = jh->b_tprev = jh;
1694 		*list = jh;
1695 	} else {
1696 		/* Insert at the tail of the list to preserve order */
1697 		struct journal_head *first = *list, *last = first->b_tprev;
1698 		jh->b_tprev = last;
1699 		jh->b_tnext = first;
1700 		last->b_tnext = first->b_tprev = jh;
1701 	}
1702 }
1703 
1704 /*
1705  * Remove a buffer from a transaction list, given the transaction's list
1706  * head pointer.
1707  *
1708  * Called with j_list_lock held, and the journal may not be locked.
1709  *
1710  * jbd_lock_bh_state(jh2bh(jh)) is held.
1711  */
1712 
1713 static inline void
1714 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1715 {
1716 	if (*list == jh) {
1717 		*list = jh->b_tnext;
1718 		if (*list == jh)
1719 			*list = NULL;
1720 	}
1721 	jh->b_tprev->b_tnext = jh->b_tnext;
1722 	jh->b_tnext->b_tprev = jh->b_tprev;
1723 }
1724 
1725 /*
1726  * Remove a buffer from the appropriate transaction list.
1727  *
1728  * Note that this function can *change* the value of
1729  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1730  * t_reserved_list.  If the caller is holding onto a copy of one of these
1731  * pointers, it could go bad.  Generally the caller needs to re-read the
1732  * pointer from the transaction_t.
1733  *
1734  * Called under j_list_lock.
1735  */
1736 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1737 {
1738 	struct journal_head **list = NULL;
1739 	transaction_t *transaction;
1740 	struct buffer_head *bh = jh2bh(jh);
1741 
1742 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1743 	transaction = jh->b_transaction;
1744 	if (transaction)
1745 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1746 
1747 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1748 	if (jh->b_jlist != BJ_None)
1749 		J_ASSERT_JH(jh, transaction != NULL);
1750 
1751 	switch (jh->b_jlist) {
1752 	case BJ_None:
1753 		return;
1754 	case BJ_Metadata:
1755 		transaction->t_nr_buffers--;
1756 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1757 		list = &transaction->t_buffers;
1758 		break;
1759 	case BJ_Forget:
1760 		list = &transaction->t_forget;
1761 		break;
1762 	case BJ_Shadow:
1763 		list = &transaction->t_shadow_list;
1764 		break;
1765 	case BJ_Reserved:
1766 		list = &transaction->t_reserved_list;
1767 		break;
1768 	}
1769 
1770 	__blist_del_buffer(list, jh);
1771 	jh->b_jlist = BJ_None;
1772 	if (test_clear_buffer_jbddirty(bh))
1773 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1774 }
1775 
1776 /*
1777  * Remove buffer from all transactions.
1778  *
1779  * Called with bh_state lock and j_list_lock
1780  *
1781  * jh and bh may be already freed when this function returns.
1782  */
1783 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1784 {
1785 	__jbd2_journal_temp_unlink_buffer(jh);
1786 	jh->b_transaction = NULL;
1787 	jbd2_journal_put_journal_head(jh);
1788 }
1789 
1790 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1791 {
1792 	struct buffer_head *bh = jh2bh(jh);
1793 
1794 	/* Get reference so that buffer cannot be freed before we unlock it */
1795 	get_bh(bh);
1796 	jbd_lock_bh_state(bh);
1797 	spin_lock(&journal->j_list_lock);
1798 	__jbd2_journal_unfile_buffer(jh);
1799 	spin_unlock(&journal->j_list_lock);
1800 	jbd_unlock_bh_state(bh);
1801 	__brelse(bh);
1802 }
1803 
1804 /*
1805  * Called from jbd2_journal_try_to_free_buffers().
1806  *
1807  * Called under jbd_lock_bh_state(bh)
1808  */
1809 static void
1810 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1811 {
1812 	struct journal_head *jh;
1813 
1814 	jh = bh2jh(bh);
1815 
1816 	if (buffer_locked(bh) || buffer_dirty(bh))
1817 		goto out;
1818 
1819 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1820 		goto out;
1821 
1822 	spin_lock(&journal->j_list_lock);
1823 	if (jh->b_cp_transaction != NULL) {
1824 		/* written-back checkpointed metadata buffer */
1825 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1826 		__jbd2_journal_remove_checkpoint(jh);
1827 	}
1828 	spin_unlock(&journal->j_list_lock);
1829 out:
1830 	return;
1831 }
1832 
1833 /**
1834  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1835  * @journal: journal for operation
1836  * @page: to try and free
1837  * @gfp_mask: we use the mask to detect how hard should we try to release
1838  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1839  * release the buffers.
1840  *
1841  *
1842  * For all the buffers on this page,
1843  * if they are fully written out ordered data, move them onto BUF_CLEAN
1844  * so try_to_free_buffers() can reap them.
1845  *
1846  * This function returns non-zero if we wish try_to_free_buffers()
1847  * to be called. We do this if the page is releasable by try_to_free_buffers().
1848  * We also do it if the page has locked or dirty buffers and the caller wants
1849  * us to perform sync or async writeout.
1850  *
1851  * This complicates JBD locking somewhat.  We aren't protected by the
1852  * BKL here.  We wish to remove the buffer from its committing or
1853  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1854  *
1855  * This may *change* the value of transaction_t->t_datalist, so anyone
1856  * who looks at t_datalist needs to lock against this function.
1857  *
1858  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1859  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1860  * will come out of the lock with the buffer dirty, which makes it
1861  * ineligible for release here.
1862  *
1863  * Who else is affected by this?  hmm...  Really the only contender
1864  * is do_get_write_access() - it could be looking at the buffer while
1865  * journal_try_to_free_buffer() is changing its state.  But that
1866  * cannot happen because we never reallocate freed data as metadata
1867  * while the data is part of a transaction.  Yes?
1868  *
1869  * Return 0 on failure, 1 on success
1870  */
1871 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1872 				struct page *page, gfp_t gfp_mask)
1873 {
1874 	struct buffer_head *head;
1875 	struct buffer_head *bh;
1876 	int ret = 0;
1877 
1878 	J_ASSERT(PageLocked(page));
1879 
1880 	head = page_buffers(page);
1881 	bh = head;
1882 	do {
1883 		struct journal_head *jh;
1884 
1885 		/*
1886 		 * We take our own ref against the journal_head here to avoid
1887 		 * having to add tons of locking around each instance of
1888 		 * jbd2_journal_put_journal_head().
1889 		 */
1890 		jh = jbd2_journal_grab_journal_head(bh);
1891 		if (!jh)
1892 			continue;
1893 
1894 		jbd_lock_bh_state(bh);
1895 		__journal_try_to_free_buffer(journal, bh);
1896 		jbd2_journal_put_journal_head(jh);
1897 		jbd_unlock_bh_state(bh);
1898 		if (buffer_jbd(bh))
1899 			goto busy;
1900 	} while ((bh = bh->b_this_page) != head);
1901 
1902 	ret = try_to_free_buffers(page);
1903 
1904 busy:
1905 	return ret;
1906 }
1907 
1908 /*
1909  * This buffer is no longer needed.  If it is on an older transaction's
1910  * checkpoint list we need to record it on this transaction's forget list
1911  * to pin this buffer (and hence its checkpointing transaction) down until
1912  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1913  * release it.
1914  * Returns non-zero if JBD no longer has an interest in the buffer.
1915  *
1916  * Called under j_list_lock.
1917  *
1918  * Called under jbd_lock_bh_state(bh).
1919  */
1920 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1921 {
1922 	int may_free = 1;
1923 	struct buffer_head *bh = jh2bh(jh);
1924 
1925 	if (jh->b_cp_transaction) {
1926 		JBUFFER_TRACE(jh, "on running+cp transaction");
1927 		__jbd2_journal_temp_unlink_buffer(jh);
1928 		/*
1929 		 * We don't want to write the buffer anymore, clear the
1930 		 * bit so that we don't confuse checks in
1931 		 * __journal_file_buffer
1932 		 */
1933 		clear_buffer_dirty(bh);
1934 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1935 		may_free = 0;
1936 	} else {
1937 		JBUFFER_TRACE(jh, "on running transaction");
1938 		__jbd2_journal_unfile_buffer(jh);
1939 	}
1940 	return may_free;
1941 }
1942 
1943 /*
1944  * jbd2_journal_invalidatepage
1945  *
1946  * This code is tricky.  It has a number of cases to deal with.
1947  *
1948  * There are two invariants which this code relies on:
1949  *
1950  * i_size must be updated on disk before we start calling invalidatepage on the
1951  * data.
1952  *
1953  *  This is done in ext3 by defining an ext3_setattr method which
1954  *  updates i_size before truncate gets going.  By maintaining this
1955  *  invariant, we can be sure that it is safe to throw away any buffers
1956  *  attached to the current transaction: once the transaction commits,
1957  *  we know that the data will not be needed.
1958  *
1959  *  Note however that we can *not* throw away data belonging to the
1960  *  previous, committing transaction!
1961  *
1962  * Any disk blocks which *are* part of the previous, committing
1963  * transaction (and which therefore cannot be discarded immediately) are
1964  * not going to be reused in the new running transaction
1965  *
1966  *  The bitmap committed_data images guarantee this: any block which is
1967  *  allocated in one transaction and removed in the next will be marked
1968  *  as in-use in the committed_data bitmap, so cannot be reused until
1969  *  the next transaction to delete the block commits.  This means that
1970  *  leaving committing buffers dirty is quite safe: the disk blocks
1971  *  cannot be reallocated to a different file and so buffer aliasing is
1972  *  not possible.
1973  *
1974  *
1975  * The above applies mainly to ordered data mode.  In writeback mode we
1976  * don't make guarantees about the order in which data hits disk --- in
1977  * particular we don't guarantee that new dirty data is flushed before
1978  * transaction commit --- so it is always safe just to discard data
1979  * immediately in that mode.  --sct
1980  */
1981 
1982 /*
1983  * The journal_unmap_buffer helper function returns zero if the buffer
1984  * concerned remains pinned as an anonymous buffer belonging to an older
1985  * transaction.
1986  *
1987  * We're outside-transaction here.  Either or both of j_running_transaction
1988  * and j_committing_transaction may be NULL.
1989  */
1990 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1991 				int partial_page)
1992 {
1993 	transaction_t *transaction;
1994 	struct journal_head *jh;
1995 	int may_free = 1;
1996 
1997 	BUFFER_TRACE(bh, "entry");
1998 
1999 	/*
2000 	 * It is safe to proceed here without the j_list_lock because the
2001 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2002 	 * holding the page lock. --sct
2003 	 */
2004 
2005 	if (!buffer_jbd(bh))
2006 		goto zap_buffer_unlocked;
2007 
2008 	/* OK, we have data buffer in journaled mode */
2009 	write_lock(&journal->j_state_lock);
2010 	jbd_lock_bh_state(bh);
2011 	spin_lock(&journal->j_list_lock);
2012 
2013 	jh = jbd2_journal_grab_journal_head(bh);
2014 	if (!jh)
2015 		goto zap_buffer_no_jh;
2016 
2017 	/*
2018 	 * We cannot remove the buffer from checkpoint lists until the
2019 	 * transaction adding inode to orphan list (let's call it T)
2020 	 * is committed.  Otherwise if the transaction changing the
2021 	 * buffer would be cleaned from the journal before T is
2022 	 * committed, a crash will cause that the correct contents of
2023 	 * the buffer will be lost.  On the other hand we have to
2024 	 * clear the buffer dirty bit at latest at the moment when the
2025 	 * transaction marking the buffer as freed in the filesystem
2026 	 * structures is committed because from that moment on the
2027 	 * block can be reallocated and used by a different page.
2028 	 * Since the block hasn't been freed yet but the inode has
2029 	 * already been added to orphan list, it is safe for us to add
2030 	 * the buffer to BJ_Forget list of the newest transaction.
2031 	 *
2032 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2033 	 * because the buffer_head may be attached to the page straddling
2034 	 * i_size (can happen only when blocksize < pagesize) and thus the
2035 	 * buffer_head can be reused when the file is extended again. So we end
2036 	 * up keeping around invalidated buffers attached to transactions'
2037 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2038 	 * the transaction this buffer was modified in.
2039 	 */
2040 	transaction = jh->b_transaction;
2041 	if (transaction == NULL) {
2042 		/* First case: not on any transaction.  If it
2043 		 * has no checkpoint link, then we can zap it:
2044 		 * it's a writeback-mode buffer so we don't care
2045 		 * if it hits disk safely. */
2046 		if (!jh->b_cp_transaction) {
2047 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2048 			goto zap_buffer;
2049 		}
2050 
2051 		if (!buffer_dirty(bh)) {
2052 			/* bdflush has written it.  We can drop it now */
2053 			goto zap_buffer;
2054 		}
2055 
2056 		/* OK, it must be in the journal but still not
2057 		 * written fully to disk: it's metadata or
2058 		 * journaled data... */
2059 
2060 		if (journal->j_running_transaction) {
2061 			/* ... and once the current transaction has
2062 			 * committed, the buffer won't be needed any
2063 			 * longer. */
2064 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2065 			may_free = __dispose_buffer(jh,
2066 					journal->j_running_transaction);
2067 			goto zap_buffer;
2068 		} else {
2069 			/* There is no currently-running transaction. So the
2070 			 * orphan record which we wrote for this file must have
2071 			 * passed into commit.  We must attach this buffer to
2072 			 * the committing transaction, if it exists. */
2073 			if (journal->j_committing_transaction) {
2074 				JBUFFER_TRACE(jh, "give to committing trans");
2075 				may_free = __dispose_buffer(jh,
2076 					journal->j_committing_transaction);
2077 				goto zap_buffer;
2078 			} else {
2079 				/* The orphan record's transaction has
2080 				 * committed.  We can cleanse this buffer */
2081 				clear_buffer_jbddirty(bh);
2082 				goto zap_buffer;
2083 			}
2084 		}
2085 	} else if (transaction == journal->j_committing_transaction) {
2086 		JBUFFER_TRACE(jh, "on committing transaction");
2087 		/*
2088 		 * The buffer is committing, we simply cannot touch
2089 		 * it. If the page is straddling i_size we have to wait
2090 		 * for commit and try again.
2091 		 */
2092 		if (partial_page) {
2093 			jbd2_journal_put_journal_head(jh);
2094 			spin_unlock(&journal->j_list_lock);
2095 			jbd_unlock_bh_state(bh);
2096 			write_unlock(&journal->j_state_lock);
2097 			return -EBUSY;
2098 		}
2099 		/*
2100 		 * OK, buffer won't be reachable after truncate. We just set
2101 		 * j_next_transaction to the running transaction (if there is
2102 		 * one) and mark buffer as freed so that commit code knows it
2103 		 * should clear dirty bits when it is done with the buffer.
2104 		 */
2105 		set_buffer_freed(bh);
2106 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2107 			jh->b_next_transaction = journal->j_running_transaction;
2108 		jbd2_journal_put_journal_head(jh);
2109 		spin_unlock(&journal->j_list_lock);
2110 		jbd_unlock_bh_state(bh);
2111 		write_unlock(&journal->j_state_lock);
2112 		return 0;
2113 	} else {
2114 		/* Good, the buffer belongs to the running transaction.
2115 		 * We are writing our own transaction's data, not any
2116 		 * previous one's, so it is safe to throw it away
2117 		 * (remember that we expect the filesystem to have set
2118 		 * i_size already for this truncate so recovery will not
2119 		 * expose the disk blocks we are discarding here.) */
2120 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2121 		JBUFFER_TRACE(jh, "on running transaction");
2122 		may_free = __dispose_buffer(jh, transaction);
2123 	}
2124 
2125 zap_buffer:
2126 	/*
2127 	 * This is tricky. Although the buffer is truncated, it may be reused
2128 	 * if blocksize < pagesize and it is attached to the page straddling
2129 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2130 	 * running transaction, journal_get_write_access() won't clear
2131 	 * b_modified and credit accounting gets confused. So clear b_modified
2132 	 * here.
2133 	 */
2134 	jh->b_modified = 0;
2135 	jbd2_journal_put_journal_head(jh);
2136 zap_buffer_no_jh:
2137 	spin_unlock(&journal->j_list_lock);
2138 	jbd_unlock_bh_state(bh);
2139 	write_unlock(&journal->j_state_lock);
2140 zap_buffer_unlocked:
2141 	clear_buffer_dirty(bh);
2142 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2143 	clear_buffer_mapped(bh);
2144 	clear_buffer_req(bh);
2145 	clear_buffer_new(bh);
2146 	clear_buffer_delay(bh);
2147 	clear_buffer_unwritten(bh);
2148 	bh->b_bdev = NULL;
2149 	return may_free;
2150 }
2151 
2152 /**
2153  * void jbd2_journal_invalidatepage()
2154  * @journal: journal to use for flush...
2155  * @page:    page to flush
2156  * @offset:  start of the range to invalidate
2157  * @length:  length of the range to invalidate
2158  *
2159  * Reap page buffers containing data after in the specified range in page.
2160  * Can return -EBUSY if buffers are part of the committing transaction and
2161  * the page is straddling i_size. Caller then has to wait for current commit
2162  * and try again.
2163  */
2164 int jbd2_journal_invalidatepage(journal_t *journal,
2165 				struct page *page,
2166 				unsigned int offset,
2167 				unsigned int length)
2168 {
2169 	struct buffer_head *head, *bh, *next;
2170 	unsigned int stop = offset + length;
2171 	unsigned int curr_off = 0;
2172 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2173 	int may_free = 1;
2174 	int ret = 0;
2175 
2176 	if (!PageLocked(page))
2177 		BUG();
2178 	if (!page_has_buffers(page))
2179 		return 0;
2180 
2181 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2182 
2183 	/* We will potentially be playing with lists other than just the
2184 	 * data lists (especially for journaled data mode), so be
2185 	 * cautious in our locking. */
2186 
2187 	head = bh = page_buffers(page);
2188 	do {
2189 		unsigned int next_off = curr_off + bh->b_size;
2190 		next = bh->b_this_page;
2191 
2192 		if (next_off > stop)
2193 			return 0;
2194 
2195 		if (offset <= curr_off) {
2196 			/* This block is wholly outside the truncation point */
2197 			lock_buffer(bh);
2198 			ret = journal_unmap_buffer(journal, bh, partial_page);
2199 			unlock_buffer(bh);
2200 			if (ret < 0)
2201 				return ret;
2202 			may_free &= ret;
2203 		}
2204 		curr_off = next_off;
2205 		bh = next;
2206 
2207 	} while (bh != head);
2208 
2209 	if (!partial_page) {
2210 		if (may_free && try_to_free_buffers(page))
2211 			J_ASSERT(!page_has_buffers(page));
2212 	}
2213 	return 0;
2214 }
2215 
2216 /*
2217  * File a buffer on the given transaction list.
2218  */
2219 void __jbd2_journal_file_buffer(struct journal_head *jh,
2220 			transaction_t *transaction, int jlist)
2221 {
2222 	struct journal_head **list = NULL;
2223 	int was_dirty = 0;
2224 	struct buffer_head *bh = jh2bh(jh);
2225 
2226 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2227 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2228 
2229 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2230 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2231 				jh->b_transaction == NULL);
2232 
2233 	if (jh->b_transaction && jh->b_jlist == jlist)
2234 		return;
2235 
2236 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2237 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2238 		/*
2239 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2240 		 * instead of buffer_dirty. We should not see a dirty bit set
2241 		 * here because we clear it in do_get_write_access but e.g.
2242 		 * tune2fs can modify the sb and set the dirty bit at any time
2243 		 * so we try to gracefully handle that.
2244 		 */
2245 		if (buffer_dirty(bh))
2246 			warn_dirty_buffer(bh);
2247 		if (test_clear_buffer_dirty(bh) ||
2248 		    test_clear_buffer_jbddirty(bh))
2249 			was_dirty = 1;
2250 	}
2251 
2252 	if (jh->b_transaction)
2253 		__jbd2_journal_temp_unlink_buffer(jh);
2254 	else
2255 		jbd2_journal_grab_journal_head(bh);
2256 	jh->b_transaction = transaction;
2257 
2258 	switch (jlist) {
2259 	case BJ_None:
2260 		J_ASSERT_JH(jh, !jh->b_committed_data);
2261 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2262 		return;
2263 	case BJ_Metadata:
2264 		transaction->t_nr_buffers++;
2265 		list = &transaction->t_buffers;
2266 		break;
2267 	case BJ_Forget:
2268 		list = &transaction->t_forget;
2269 		break;
2270 	case BJ_Shadow:
2271 		list = &transaction->t_shadow_list;
2272 		break;
2273 	case BJ_Reserved:
2274 		list = &transaction->t_reserved_list;
2275 		break;
2276 	}
2277 
2278 	__blist_add_buffer(list, jh);
2279 	jh->b_jlist = jlist;
2280 
2281 	if (was_dirty)
2282 		set_buffer_jbddirty(bh);
2283 }
2284 
2285 void jbd2_journal_file_buffer(struct journal_head *jh,
2286 				transaction_t *transaction, int jlist)
2287 {
2288 	jbd_lock_bh_state(jh2bh(jh));
2289 	spin_lock(&transaction->t_journal->j_list_lock);
2290 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2291 	spin_unlock(&transaction->t_journal->j_list_lock);
2292 	jbd_unlock_bh_state(jh2bh(jh));
2293 }
2294 
2295 /*
2296  * Remove a buffer from its current buffer list in preparation for
2297  * dropping it from its current transaction entirely.  If the buffer has
2298  * already started to be used by a subsequent transaction, refile the
2299  * buffer on that transaction's metadata list.
2300  *
2301  * Called under j_list_lock
2302  * Called under jbd_lock_bh_state(jh2bh(jh))
2303  *
2304  * jh and bh may be already free when this function returns
2305  */
2306 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2307 {
2308 	int was_dirty, jlist;
2309 	struct buffer_head *bh = jh2bh(jh);
2310 
2311 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2312 	if (jh->b_transaction)
2313 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2314 
2315 	/* If the buffer is now unused, just drop it. */
2316 	if (jh->b_next_transaction == NULL) {
2317 		__jbd2_journal_unfile_buffer(jh);
2318 		return;
2319 	}
2320 
2321 	/*
2322 	 * It has been modified by a later transaction: add it to the new
2323 	 * transaction's metadata list.
2324 	 */
2325 
2326 	was_dirty = test_clear_buffer_jbddirty(bh);
2327 	__jbd2_journal_temp_unlink_buffer(jh);
2328 	/*
2329 	 * We set b_transaction here because b_next_transaction will inherit
2330 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2331 	 * take a new one.
2332 	 */
2333 	jh->b_transaction = jh->b_next_transaction;
2334 	jh->b_next_transaction = NULL;
2335 	if (buffer_freed(bh))
2336 		jlist = BJ_Forget;
2337 	else if (jh->b_modified)
2338 		jlist = BJ_Metadata;
2339 	else
2340 		jlist = BJ_Reserved;
2341 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2342 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2343 
2344 	if (was_dirty)
2345 		set_buffer_jbddirty(bh);
2346 }
2347 
2348 /*
2349  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2350  * bh reference so that we can safely unlock bh.
2351  *
2352  * The jh and bh may be freed by this call.
2353  */
2354 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2355 {
2356 	struct buffer_head *bh = jh2bh(jh);
2357 
2358 	/* Get reference so that buffer cannot be freed before we unlock it */
2359 	get_bh(bh);
2360 	jbd_lock_bh_state(bh);
2361 	spin_lock(&journal->j_list_lock);
2362 	__jbd2_journal_refile_buffer(jh);
2363 	jbd_unlock_bh_state(bh);
2364 	spin_unlock(&journal->j_list_lock);
2365 	__brelse(bh);
2366 }
2367 
2368 /*
2369  * File inode in the inode list of the handle's transaction
2370  */
2371 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2372 {
2373 	transaction_t *transaction = handle->h_transaction;
2374 	journal_t *journal;
2375 
2376 	WARN_ON(!transaction);
2377 	if (is_handle_aborted(handle))
2378 		return -EROFS;
2379 	journal = transaction->t_journal;
2380 
2381 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2382 			transaction->t_tid);
2383 
2384 	/*
2385 	 * First check whether inode isn't already on the transaction's
2386 	 * lists without taking the lock. Note that this check is safe
2387 	 * without the lock as we cannot race with somebody removing inode
2388 	 * from the transaction. The reason is that we remove inode from the
2389 	 * transaction only in journal_release_jbd_inode() and when we commit
2390 	 * the transaction. We are guarded from the first case by holding
2391 	 * a reference to the inode. We are safe against the second case
2392 	 * because if jinode->i_transaction == transaction, commit code
2393 	 * cannot touch the transaction because we hold reference to it,
2394 	 * and if jinode->i_next_transaction == transaction, commit code
2395 	 * will only file the inode where we want it.
2396 	 */
2397 	if (jinode->i_transaction == transaction ||
2398 	    jinode->i_next_transaction == transaction)
2399 		return 0;
2400 
2401 	spin_lock(&journal->j_list_lock);
2402 
2403 	if (jinode->i_transaction == transaction ||
2404 	    jinode->i_next_transaction == transaction)
2405 		goto done;
2406 
2407 	/*
2408 	 * We only ever set this variable to 1 so the test is safe. Since
2409 	 * t_need_data_flush is likely to be set, we do the test to save some
2410 	 * cacheline bouncing
2411 	 */
2412 	if (!transaction->t_need_data_flush)
2413 		transaction->t_need_data_flush = 1;
2414 	/* On some different transaction's list - should be
2415 	 * the committing one */
2416 	if (jinode->i_transaction) {
2417 		J_ASSERT(jinode->i_next_transaction == NULL);
2418 		J_ASSERT(jinode->i_transaction ==
2419 					journal->j_committing_transaction);
2420 		jinode->i_next_transaction = transaction;
2421 		goto done;
2422 	}
2423 	/* Not on any transaction list... */
2424 	J_ASSERT(!jinode->i_next_transaction);
2425 	jinode->i_transaction = transaction;
2426 	list_add(&jinode->i_list, &transaction->t_inode_list);
2427 done:
2428 	spin_unlock(&journal->j_list_lock);
2429 
2430 	return 0;
2431 }
2432 
2433 /*
2434  * File truncate and transaction commit interact with each other in a
2435  * non-trivial way.  If a transaction writing data block A is
2436  * committing, we cannot discard the data by truncate until we have
2437  * written them.  Otherwise if we crashed after the transaction with
2438  * write has committed but before the transaction with truncate has
2439  * committed, we could see stale data in block A.  This function is a
2440  * helper to solve this problem.  It starts writeout of the truncated
2441  * part in case it is in the committing transaction.
2442  *
2443  * Filesystem code must call this function when inode is journaled in
2444  * ordered mode before truncation happens and after the inode has been
2445  * placed on orphan list with the new inode size. The second condition
2446  * avoids the race that someone writes new data and we start
2447  * committing the transaction after this function has been called but
2448  * before a transaction for truncate is started (and furthermore it
2449  * allows us to optimize the case where the addition to orphan list
2450  * happens in the same transaction as write --- we don't have to write
2451  * any data in such case).
2452  */
2453 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2454 					struct jbd2_inode *jinode,
2455 					loff_t new_size)
2456 {
2457 	transaction_t *inode_trans, *commit_trans;
2458 	int ret = 0;
2459 
2460 	/* This is a quick check to avoid locking if not necessary */
2461 	if (!jinode->i_transaction)
2462 		goto out;
2463 	/* Locks are here just to force reading of recent values, it is
2464 	 * enough that the transaction was not committing before we started
2465 	 * a transaction adding the inode to orphan list */
2466 	read_lock(&journal->j_state_lock);
2467 	commit_trans = journal->j_committing_transaction;
2468 	read_unlock(&journal->j_state_lock);
2469 	spin_lock(&journal->j_list_lock);
2470 	inode_trans = jinode->i_transaction;
2471 	spin_unlock(&journal->j_list_lock);
2472 	if (inode_trans == commit_trans) {
2473 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2474 			new_size, LLONG_MAX);
2475 		if (ret)
2476 			jbd2_journal_abort(journal, ret);
2477 	}
2478 out:
2479 	return ret;
2480 }
2481