xref: /openbmc/linux/fs/jbd2/transaction.c (revision d236d361)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33 
34 #include <trace/events/jbd2.h>
35 
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38 
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42 	J_ASSERT(!transaction_cache);
43 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
44 					sizeof(transaction_t),
45 					0,
46 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47 					NULL);
48 	if (transaction_cache)
49 		return 0;
50 	return -ENOMEM;
51 }
52 
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55 	if (transaction_cache) {
56 		kmem_cache_destroy(transaction_cache);
57 		transaction_cache = NULL;
58 	}
59 }
60 
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64 		return;
65 	kmem_cache_free(transaction_cache, transaction);
66 }
67 
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *	The journal MUST be locked.  We don't perform atomic mallocs on the
78  *	new transaction	and we can't block without protecting against other
79  *	processes trying to touch the journal while it is in transition.
80  *
81  */
82 
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86 	transaction->t_journal = journal;
87 	transaction->t_state = T_RUNNING;
88 	transaction->t_start_time = ktime_get();
89 	transaction->t_tid = journal->j_transaction_sequence++;
90 	transaction->t_expires = jiffies + journal->j_commit_interval;
91 	spin_lock_init(&transaction->t_handle_lock);
92 	atomic_set(&transaction->t_updates, 0);
93 	atomic_set(&transaction->t_outstanding_credits,
94 		   atomic_read(&journal->j_reserved_credits));
95 	atomic_set(&transaction->t_handle_count, 0);
96 	INIT_LIST_HEAD(&transaction->t_inode_list);
97 	INIT_LIST_HEAD(&transaction->t_private_list);
98 
99 	/* Set up the commit timer for the new transaction. */
100 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101 	add_timer(&journal->j_commit_timer);
102 
103 	J_ASSERT(journal->j_running_transaction == NULL);
104 	journal->j_running_transaction = transaction;
105 	transaction->t_max_wait = 0;
106 	transaction->t_start = jiffies;
107 	transaction->t_requested = 0;
108 
109 	return transaction;
110 }
111 
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119 
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131 				     unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134 	if (jbd2_journal_enable_debug &&
135 	    time_after(transaction->t_start, ts)) {
136 		ts = jbd2_time_diff(ts, transaction->t_start);
137 		spin_lock(&transaction->t_handle_lock);
138 		if (ts > transaction->t_max_wait)
139 			transaction->t_max_wait = ts;
140 		spin_unlock(&transaction->t_handle_lock);
141 	}
142 #endif
143 }
144 
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151 	__releases(journal->j_state_lock)
152 {
153 	DEFINE_WAIT(wait);
154 	int need_to_start;
155 	tid_t tid = journal->j_running_transaction->t_tid;
156 
157 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158 			TASK_UNINTERRUPTIBLE);
159 	need_to_start = !tid_geq(journal->j_commit_request, tid);
160 	read_unlock(&journal->j_state_lock);
161 	if (need_to_start)
162 		jbd2_log_start_commit(journal, tid);
163 	jbd2_might_wait_for_commit(journal);
164 	schedule();
165 	finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167 
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170 	atomic_sub(blocks, &journal->j_reserved_credits);
171 	wake_up(&journal->j_wait_reserved);
172 }
173 
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181 				   int rsv_blocks)
182 {
183 	transaction_t *t = journal->j_running_transaction;
184 	int needed;
185 	int total = blocks + rsv_blocks;
186 
187 	/*
188 	 * If the current transaction is locked down for commit, wait
189 	 * for the lock to be released.
190 	 */
191 	if (t->t_state == T_LOCKED) {
192 		wait_transaction_locked(journal);
193 		return 1;
194 	}
195 
196 	/*
197 	 * If there is not enough space left in the log to write all
198 	 * potential buffers requested by this operation, we need to
199 	 * stall pending a log checkpoint to free some more log space.
200 	 */
201 	needed = atomic_add_return(total, &t->t_outstanding_credits);
202 	if (needed > journal->j_max_transaction_buffers) {
203 		/*
204 		 * If the current transaction is already too large,
205 		 * then start to commit it: we can then go back and
206 		 * attach this handle to a new transaction.
207 		 */
208 		atomic_sub(total, &t->t_outstanding_credits);
209 
210 		/*
211 		 * Is the number of reserved credits in the current transaction too
212 		 * big to fit this handle? Wait until reserved credits are freed.
213 		 */
214 		if (atomic_read(&journal->j_reserved_credits) + total >
215 		    journal->j_max_transaction_buffers) {
216 			read_unlock(&journal->j_state_lock);
217 			jbd2_might_wait_for_commit(journal);
218 			wait_event(journal->j_wait_reserved,
219 				   atomic_read(&journal->j_reserved_credits) + total <=
220 				   journal->j_max_transaction_buffers);
221 			return 1;
222 		}
223 
224 		wait_transaction_locked(journal);
225 		return 1;
226 	}
227 
228 	/*
229 	 * The commit code assumes that it can get enough log space
230 	 * without forcing a checkpoint.  This is *critical* for
231 	 * correctness: a checkpoint of a buffer which is also
232 	 * associated with a committing transaction creates a deadlock,
233 	 * so commit simply cannot force through checkpoints.
234 	 *
235 	 * We must therefore ensure the necessary space in the journal
236 	 * *before* starting to dirty potentially checkpointed buffers
237 	 * in the new transaction.
238 	 */
239 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240 		atomic_sub(total, &t->t_outstanding_credits);
241 		read_unlock(&journal->j_state_lock);
242 		jbd2_might_wait_for_commit(journal);
243 		write_lock(&journal->j_state_lock);
244 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245 			__jbd2_log_wait_for_space(journal);
246 		write_unlock(&journal->j_state_lock);
247 		return 1;
248 	}
249 
250 	/* No reservation? We are done... */
251 	if (!rsv_blocks)
252 		return 0;
253 
254 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255 	/* We allow at most half of a transaction to be reserved */
256 	if (needed > journal->j_max_transaction_buffers / 2) {
257 		sub_reserved_credits(journal, rsv_blocks);
258 		atomic_sub(total, &t->t_outstanding_credits);
259 		read_unlock(&journal->j_state_lock);
260 		jbd2_might_wait_for_commit(journal);
261 		wait_event(journal->j_wait_reserved,
262 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
263 			 <= journal->j_max_transaction_buffers / 2);
264 		return 1;
265 	}
266 	return 0;
267 }
268 
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275 
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277 			     gfp_t gfp_mask)
278 {
279 	transaction_t	*transaction, *new_transaction = NULL;
280 	int		blocks = handle->h_buffer_credits;
281 	int		rsv_blocks = 0;
282 	unsigned long ts = jiffies;
283 
284 	if (handle->h_rsv_handle)
285 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286 
287 	/*
288 	 * Limit the number of reserved credits to 1/2 of maximum transaction
289 	 * size and limit the number of total credits to not exceed maximum
290 	 * transaction size per operation.
291 	 */
292 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294 		printk(KERN_ERR "JBD2: %s wants too many credits "
295 		       "credits:%d rsv_credits:%d max:%d\n",
296 		       current->comm, blocks, rsv_blocks,
297 		       journal->j_max_transaction_buffers);
298 		WARN_ON(1);
299 		return -ENOSPC;
300 	}
301 
302 alloc_transaction:
303 	if (!journal->j_running_transaction) {
304 		/*
305 		 * If __GFP_FS is not present, then we may be being called from
306 		 * inside the fs writeback layer, so we MUST NOT fail.
307 		 */
308 		if ((gfp_mask & __GFP_FS) == 0)
309 			gfp_mask |= __GFP_NOFAIL;
310 		new_transaction = kmem_cache_zalloc(transaction_cache,
311 						    gfp_mask);
312 		if (!new_transaction)
313 			return -ENOMEM;
314 	}
315 
316 	jbd_debug(3, "New handle %p going live.\n", handle);
317 
318 	/*
319 	 * We need to hold j_state_lock until t_updates has been incremented,
320 	 * for proper journal barrier handling
321 	 */
322 repeat:
323 	read_lock(&journal->j_state_lock);
324 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325 	if (is_journal_aborted(journal) ||
326 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327 		read_unlock(&journal->j_state_lock);
328 		jbd2_journal_free_transaction(new_transaction);
329 		return -EROFS;
330 	}
331 
332 	/*
333 	 * Wait on the journal's transaction barrier if necessary. Specifically
334 	 * we allow reserved handles to proceed because otherwise commit could
335 	 * deadlock on page writeback not being able to complete.
336 	 */
337 	if (!handle->h_reserved && journal->j_barrier_count) {
338 		read_unlock(&journal->j_state_lock);
339 		wait_event(journal->j_wait_transaction_locked,
340 				journal->j_barrier_count == 0);
341 		goto repeat;
342 	}
343 
344 	if (!journal->j_running_transaction) {
345 		read_unlock(&journal->j_state_lock);
346 		if (!new_transaction)
347 			goto alloc_transaction;
348 		write_lock(&journal->j_state_lock);
349 		if (!journal->j_running_transaction &&
350 		    (handle->h_reserved || !journal->j_barrier_count)) {
351 			jbd2_get_transaction(journal, new_transaction);
352 			new_transaction = NULL;
353 		}
354 		write_unlock(&journal->j_state_lock);
355 		goto repeat;
356 	}
357 
358 	transaction = journal->j_running_transaction;
359 
360 	if (!handle->h_reserved) {
361 		/* We may have dropped j_state_lock - restart in that case */
362 		if (add_transaction_credits(journal, blocks, rsv_blocks))
363 			goto repeat;
364 	} else {
365 		/*
366 		 * We have handle reserved so we are allowed to join T_LOCKED
367 		 * transaction and we don't have to check for transaction size
368 		 * and journal space.
369 		 */
370 		sub_reserved_credits(journal, blocks);
371 		handle->h_reserved = 0;
372 	}
373 
374 	/* OK, account for the buffers that this operation expects to
375 	 * use and add the handle to the running transaction.
376 	 */
377 	update_t_max_wait(transaction, ts);
378 	handle->h_transaction = transaction;
379 	handle->h_requested_credits = blocks;
380 	handle->h_start_jiffies = jiffies;
381 	atomic_inc(&transaction->t_updates);
382 	atomic_inc(&transaction->t_handle_count);
383 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384 		  handle, blocks,
385 		  atomic_read(&transaction->t_outstanding_credits),
386 		  jbd2_log_space_left(journal));
387 	read_unlock(&journal->j_state_lock);
388 	current->journal_info = handle;
389 
390 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391 	jbd2_journal_free_transaction(new_transaction);
392 	/*
393 	 * Ensure that no allocations done while the transaction is open are
394 	 * going to recurse back to the fs layer.
395 	 */
396 	handle->saved_alloc_context = memalloc_nofs_save();
397 	return 0;
398 }
399 
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404 	if (!handle)
405 		return NULL;
406 	handle->h_buffer_credits = nblocks;
407 	handle->h_ref = 1;
408 
409 	return handle;
410 }
411 
412 /**
413  * handle_t *jbd2_journal_start() - Obtain a new handle.
414  * @journal: Journal to start transaction on.
415  * @nblocks: number of block buffer we might modify
416  *
417  * We make sure that the transaction can guarantee at least nblocks of
418  * modified buffers in the log.  We block until the log can guarantee
419  * that much space. Additionally, if rsv_blocks > 0, we also create another
420  * handle with rsv_blocks reserved blocks in the journal. This handle is
421  * is stored in h_rsv_handle. It is not attached to any particular transaction
422  * and thus doesn't block transaction commit. If the caller uses this reserved
423  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
424  * on the parent handle will dispose the reserved one. Reserved handle has to
425  * be converted to a normal handle using jbd2_journal_start_reserved() before
426  * it can be used.
427  *
428  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
429  * on failure.
430  */
431 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
432 			      gfp_t gfp_mask, unsigned int type,
433 			      unsigned int line_no)
434 {
435 	handle_t *handle = journal_current_handle();
436 	int err;
437 
438 	if (!journal)
439 		return ERR_PTR(-EROFS);
440 
441 	if (handle) {
442 		J_ASSERT(handle->h_transaction->t_journal == journal);
443 		handle->h_ref++;
444 		return handle;
445 	}
446 
447 	handle = new_handle(nblocks);
448 	if (!handle)
449 		return ERR_PTR(-ENOMEM);
450 	if (rsv_blocks) {
451 		handle_t *rsv_handle;
452 
453 		rsv_handle = new_handle(rsv_blocks);
454 		if (!rsv_handle) {
455 			jbd2_free_handle(handle);
456 			return ERR_PTR(-ENOMEM);
457 		}
458 		rsv_handle->h_reserved = 1;
459 		rsv_handle->h_journal = journal;
460 		handle->h_rsv_handle = rsv_handle;
461 	}
462 
463 	err = start_this_handle(journal, handle, gfp_mask);
464 	if (err < 0) {
465 		if (handle->h_rsv_handle)
466 			jbd2_free_handle(handle->h_rsv_handle);
467 		jbd2_free_handle(handle);
468 		return ERR_PTR(err);
469 	}
470 	handle->h_type = type;
471 	handle->h_line_no = line_no;
472 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
473 				handle->h_transaction->t_tid, type,
474 				line_no, nblocks);
475 
476 	return handle;
477 }
478 EXPORT_SYMBOL(jbd2__journal_start);
479 
480 
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486 
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489 	journal_t *journal = handle->h_journal;
490 
491 	WARN_ON(!handle->h_reserved);
492 	sub_reserved_credits(journal, handle->h_buffer_credits);
493 	jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496 
497 /**
498  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
499  * @handle: handle to start
500  *
501  * Start handle that has been previously reserved with jbd2_journal_reserve().
502  * This attaches @handle to the running transaction (or creates one if there's
503  * not transaction running). Unlike jbd2_journal_start() this function cannot
504  * block on journal commit, checkpointing, or similar stuff. It can block on
505  * memory allocation or frozen journal though.
506  *
507  * Return 0 on success, non-zero on error - handle is freed in that case.
508  */
509 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
510 				unsigned int line_no)
511 {
512 	journal_t *journal = handle->h_journal;
513 	int ret = -EIO;
514 
515 	if (WARN_ON(!handle->h_reserved)) {
516 		/* Someone passed in normal handle? Just stop it. */
517 		jbd2_journal_stop(handle);
518 		return ret;
519 	}
520 	/*
521 	 * Usefulness of mixing of reserved and unreserved handles is
522 	 * questionable. So far nobody seems to need it so just error out.
523 	 */
524 	if (WARN_ON(current->journal_info)) {
525 		jbd2_journal_free_reserved(handle);
526 		return ret;
527 	}
528 
529 	handle->h_journal = NULL;
530 	/*
531 	 * GFP_NOFS is here because callers are likely from writeback or
532 	 * similarly constrained call sites
533 	 */
534 	ret = start_this_handle(journal, handle, GFP_NOFS);
535 	if (ret < 0) {
536 		jbd2_journal_free_reserved(handle);
537 		return ret;
538 	}
539 	handle->h_type = type;
540 	handle->h_line_no = line_no;
541 	return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544 
545 /**
546  * int jbd2_journal_extend() - extend buffer credits.
547  * @handle:  handle to 'extend'
548  * @nblocks: nr blocks to try to extend by.
549  *
550  * Some transactions, such as large extends and truncates, can be done
551  * atomically all at once or in several stages.  The operation requests
552  * a credit for a number of buffer modifications in advance, but can
553  * extend its credit if it needs more.
554  *
555  * jbd2_journal_extend tries to give the running handle more buffer credits.
556  * It does not guarantee that allocation - this is a best-effort only.
557  * The calling process MUST be able to deal cleanly with a failure to
558  * extend here.
559  *
560  * Return 0 on success, non-zero on failure.
561  *
562  * return code < 0 implies an error
563  * return code > 0 implies normal transaction-full status.
564  */
565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567 	transaction_t *transaction = handle->h_transaction;
568 	journal_t *journal;
569 	int result;
570 	int wanted;
571 
572 	if (is_handle_aborted(handle))
573 		return -EROFS;
574 	journal = transaction->t_journal;
575 
576 	result = 1;
577 
578 	read_lock(&journal->j_state_lock);
579 
580 	/* Don't extend a locked-down transaction! */
581 	if (transaction->t_state != T_RUNNING) {
582 		jbd_debug(3, "denied handle %p %d blocks: "
583 			  "transaction not running\n", handle, nblocks);
584 		goto error_out;
585 	}
586 
587 	spin_lock(&transaction->t_handle_lock);
588 	wanted = atomic_add_return(nblocks,
589 				   &transaction->t_outstanding_credits);
590 
591 	if (wanted > journal->j_max_transaction_buffers) {
592 		jbd_debug(3, "denied handle %p %d blocks: "
593 			  "transaction too large\n", handle, nblocks);
594 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
595 		goto unlock;
596 	}
597 
598 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599 	    jbd2_log_space_left(journal)) {
600 		jbd_debug(3, "denied handle %p %d blocks: "
601 			  "insufficient log space\n", handle, nblocks);
602 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
603 		goto unlock;
604 	}
605 
606 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607 				 transaction->t_tid,
608 				 handle->h_type, handle->h_line_no,
609 				 handle->h_buffer_credits,
610 				 nblocks);
611 
612 	handle->h_buffer_credits += nblocks;
613 	handle->h_requested_credits += nblocks;
614 	result = 0;
615 
616 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618 	spin_unlock(&transaction->t_handle_lock);
619 error_out:
620 	read_unlock(&journal->j_state_lock);
621 	return result;
622 }
623 
624 
625 /**
626  * int jbd2_journal_restart() - restart a handle .
627  * @handle:  handle to restart
628  * @nblocks: nr credits requested
629  *
630  * Restart a handle for a multi-transaction filesystem
631  * operation.
632  *
633  * If the jbd2_journal_extend() call above fails to grant new buffer credits
634  * to a running handle, a call to jbd2_journal_restart will commit the
635  * handle's transaction so far and reattach the handle to a new
636  * transaction capable of guaranteeing the requested number of
637  * credits. We preserve reserved handle if there's any attached to the
638  * passed in handle.
639  */
640 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
641 {
642 	transaction_t *transaction = handle->h_transaction;
643 	journal_t *journal;
644 	tid_t		tid;
645 	int		need_to_start, ret;
646 
647 	/* If we've had an abort of any type, don't even think about
648 	 * actually doing the restart! */
649 	if (is_handle_aborted(handle))
650 		return 0;
651 	journal = transaction->t_journal;
652 
653 	/*
654 	 * First unlink the handle from its current transaction, and start the
655 	 * commit on that.
656 	 */
657 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
658 	J_ASSERT(journal_current_handle() == handle);
659 
660 	read_lock(&journal->j_state_lock);
661 	spin_lock(&transaction->t_handle_lock);
662 	atomic_sub(handle->h_buffer_credits,
663 		   &transaction->t_outstanding_credits);
664 	if (handle->h_rsv_handle) {
665 		sub_reserved_credits(journal,
666 				     handle->h_rsv_handle->h_buffer_credits);
667 	}
668 	if (atomic_dec_and_test(&transaction->t_updates))
669 		wake_up(&journal->j_wait_updates);
670 	tid = transaction->t_tid;
671 	spin_unlock(&transaction->t_handle_lock);
672 	handle->h_transaction = NULL;
673 	current->journal_info = NULL;
674 
675 	jbd_debug(2, "restarting handle %p\n", handle);
676 	need_to_start = !tid_geq(journal->j_commit_request, tid);
677 	read_unlock(&journal->j_state_lock);
678 	if (need_to_start)
679 		jbd2_log_start_commit(journal, tid);
680 
681 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
682 	handle->h_buffer_credits = nblocks;
683 	ret = start_this_handle(journal, handle, gfp_mask);
684 	return ret;
685 }
686 EXPORT_SYMBOL(jbd2__journal_restart);
687 
688 
689 int jbd2_journal_restart(handle_t *handle, int nblocks)
690 {
691 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
692 }
693 EXPORT_SYMBOL(jbd2_journal_restart);
694 
695 /**
696  * void jbd2_journal_lock_updates () - establish a transaction barrier.
697  * @journal:  Journal to establish a barrier on.
698  *
699  * This locks out any further updates from being started, and blocks
700  * until all existing updates have completed, returning only once the
701  * journal is in a quiescent state with no updates running.
702  *
703  * The journal lock should not be held on entry.
704  */
705 void jbd2_journal_lock_updates(journal_t *journal)
706 {
707 	DEFINE_WAIT(wait);
708 
709 	jbd2_might_wait_for_commit(journal);
710 
711 	write_lock(&journal->j_state_lock);
712 	++journal->j_barrier_count;
713 
714 	/* Wait until there are no reserved handles */
715 	if (atomic_read(&journal->j_reserved_credits)) {
716 		write_unlock(&journal->j_state_lock);
717 		wait_event(journal->j_wait_reserved,
718 			   atomic_read(&journal->j_reserved_credits) == 0);
719 		write_lock(&journal->j_state_lock);
720 	}
721 
722 	/* Wait until there are no running updates */
723 	while (1) {
724 		transaction_t *transaction = journal->j_running_transaction;
725 
726 		if (!transaction)
727 			break;
728 
729 		spin_lock(&transaction->t_handle_lock);
730 		prepare_to_wait(&journal->j_wait_updates, &wait,
731 				TASK_UNINTERRUPTIBLE);
732 		if (!atomic_read(&transaction->t_updates)) {
733 			spin_unlock(&transaction->t_handle_lock);
734 			finish_wait(&journal->j_wait_updates, &wait);
735 			break;
736 		}
737 		spin_unlock(&transaction->t_handle_lock);
738 		write_unlock(&journal->j_state_lock);
739 		schedule();
740 		finish_wait(&journal->j_wait_updates, &wait);
741 		write_lock(&journal->j_state_lock);
742 	}
743 	write_unlock(&journal->j_state_lock);
744 
745 	/*
746 	 * We have now established a barrier against other normal updates, but
747 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
748 	 * to make sure that we serialise special journal-locked operations
749 	 * too.
750 	 */
751 	mutex_lock(&journal->j_barrier);
752 }
753 
754 /**
755  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
756  * @journal:  Journal to release the barrier on.
757  *
758  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
759  *
760  * Should be called without the journal lock held.
761  */
762 void jbd2_journal_unlock_updates (journal_t *journal)
763 {
764 	J_ASSERT(journal->j_barrier_count != 0);
765 
766 	mutex_unlock(&journal->j_barrier);
767 	write_lock(&journal->j_state_lock);
768 	--journal->j_barrier_count;
769 	write_unlock(&journal->j_state_lock);
770 	wake_up(&journal->j_wait_transaction_locked);
771 }
772 
773 static void warn_dirty_buffer(struct buffer_head *bh)
774 {
775 	printk(KERN_WARNING
776 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
777 	       "There's a risk of filesystem corruption in case of system "
778 	       "crash.\n",
779 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
780 }
781 
782 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
783 static void jbd2_freeze_jh_data(struct journal_head *jh)
784 {
785 	struct page *page;
786 	int offset;
787 	char *source;
788 	struct buffer_head *bh = jh2bh(jh);
789 
790 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
791 	page = bh->b_page;
792 	offset = offset_in_page(bh->b_data);
793 	source = kmap_atomic(page);
794 	/* Fire data frozen trigger just before we copy the data */
795 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
796 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
797 	kunmap_atomic(source);
798 
799 	/*
800 	 * Now that the frozen data is saved off, we need to store any matching
801 	 * triggers.
802 	 */
803 	jh->b_frozen_triggers = jh->b_triggers;
804 }
805 
806 /*
807  * If the buffer is already part of the current transaction, then there
808  * is nothing we need to do.  If it is already part of a prior
809  * transaction which we are still committing to disk, then we need to
810  * make sure that we do not overwrite the old copy: we do copy-out to
811  * preserve the copy going to disk.  We also account the buffer against
812  * the handle's metadata buffer credits (unless the buffer is already
813  * part of the transaction, that is).
814  *
815  */
816 static int
817 do_get_write_access(handle_t *handle, struct journal_head *jh,
818 			int force_copy)
819 {
820 	struct buffer_head *bh;
821 	transaction_t *transaction = handle->h_transaction;
822 	journal_t *journal;
823 	int error;
824 	char *frozen_buffer = NULL;
825 	unsigned long start_lock, time_lock;
826 
827 	if (is_handle_aborted(handle))
828 		return -EROFS;
829 	journal = transaction->t_journal;
830 
831 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
832 
833 	JBUFFER_TRACE(jh, "entry");
834 repeat:
835 	bh = jh2bh(jh);
836 
837 	/* @@@ Need to check for errors here at some point. */
838 
839  	start_lock = jiffies;
840 	lock_buffer(bh);
841 	jbd_lock_bh_state(bh);
842 
843 	/* If it takes too long to lock the buffer, trace it */
844 	time_lock = jbd2_time_diff(start_lock, jiffies);
845 	if (time_lock > HZ/10)
846 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
847 			jiffies_to_msecs(time_lock));
848 
849 	/* We now hold the buffer lock so it is safe to query the buffer
850 	 * state.  Is the buffer dirty?
851 	 *
852 	 * If so, there are two possibilities.  The buffer may be
853 	 * non-journaled, and undergoing a quite legitimate writeback.
854 	 * Otherwise, it is journaled, and we don't expect dirty buffers
855 	 * in that state (the buffers should be marked JBD_Dirty
856 	 * instead.)  So either the IO is being done under our own
857 	 * control and this is a bug, or it's a third party IO such as
858 	 * dump(8) (which may leave the buffer scheduled for read ---
859 	 * ie. locked but not dirty) or tune2fs (which may actually have
860 	 * the buffer dirtied, ugh.)  */
861 
862 	if (buffer_dirty(bh)) {
863 		/*
864 		 * First question: is this buffer already part of the current
865 		 * transaction or the existing committing transaction?
866 		 */
867 		if (jh->b_transaction) {
868 			J_ASSERT_JH(jh,
869 				jh->b_transaction == transaction ||
870 				jh->b_transaction ==
871 					journal->j_committing_transaction);
872 			if (jh->b_next_transaction)
873 				J_ASSERT_JH(jh, jh->b_next_transaction ==
874 							transaction);
875 			warn_dirty_buffer(bh);
876 		}
877 		/*
878 		 * In any case we need to clean the dirty flag and we must
879 		 * do it under the buffer lock to be sure we don't race
880 		 * with running write-out.
881 		 */
882 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
883 		clear_buffer_dirty(bh);
884 		set_buffer_jbddirty(bh);
885 	}
886 
887 	unlock_buffer(bh);
888 
889 	error = -EROFS;
890 	if (is_handle_aborted(handle)) {
891 		jbd_unlock_bh_state(bh);
892 		goto out;
893 	}
894 	error = 0;
895 
896 	/*
897 	 * The buffer is already part of this transaction if b_transaction or
898 	 * b_next_transaction points to it
899 	 */
900 	if (jh->b_transaction == transaction ||
901 	    jh->b_next_transaction == transaction)
902 		goto done;
903 
904 	/*
905 	 * this is the first time this transaction is touching this buffer,
906 	 * reset the modified flag
907 	 */
908        jh->b_modified = 0;
909 
910 	/*
911 	 * If the buffer is not journaled right now, we need to make sure it
912 	 * doesn't get written to disk before the caller actually commits the
913 	 * new data
914 	 */
915 	if (!jh->b_transaction) {
916 		JBUFFER_TRACE(jh, "no transaction");
917 		J_ASSERT_JH(jh, !jh->b_next_transaction);
918 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
919 		/*
920 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
921 		 * visible before attaching it to the running transaction.
922 		 * Paired with barrier in jbd2_write_access_granted()
923 		 */
924 		smp_wmb();
925 		spin_lock(&journal->j_list_lock);
926 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
927 		spin_unlock(&journal->j_list_lock);
928 		goto done;
929 	}
930 	/*
931 	 * If there is already a copy-out version of this buffer, then we don't
932 	 * need to make another one
933 	 */
934 	if (jh->b_frozen_data) {
935 		JBUFFER_TRACE(jh, "has frozen data");
936 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937 		goto attach_next;
938 	}
939 
940 	JBUFFER_TRACE(jh, "owned by older transaction");
941 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
943 
944 	/*
945 	 * There is one case we have to be very careful about.  If the
946 	 * committing transaction is currently writing this buffer out to disk
947 	 * and has NOT made a copy-out, then we cannot modify the buffer
948 	 * contents at all right now.  The essence of copy-out is that it is
949 	 * the extra copy, not the primary copy, which gets journaled.  If the
950 	 * primary copy is already going to disk then we cannot do copy-out
951 	 * here.
952 	 */
953 	if (buffer_shadow(bh)) {
954 		JBUFFER_TRACE(jh, "on shadow: sleep");
955 		jbd_unlock_bh_state(bh);
956 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
957 		goto repeat;
958 	}
959 
960 	/*
961 	 * Only do the copy if the currently-owning transaction still needs it.
962 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
963 	 * past that stage (here we use the fact that BH_Shadow is set under
964 	 * bh_state lock together with refiling to BJ_Shadow list and at this
965 	 * point we know the buffer doesn't have BH_Shadow set).
966 	 *
967 	 * Subtle point, though: if this is a get_undo_access, then we will be
968 	 * relying on the frozen_data to contain the new value of the
969 	 * committed_data record after the transaction, so we HAVE to force the
970 	 * frozen_data copy in that case.
971 	 */
972 	if (jh->b_jlist == BJ_Metadata || force_copy) {
973 		JBUFFER_TRACE(jh, "generate frozen data");
974 		if (!frozen_buffer) {
975 			JBUFFER_TRACE(jh, "allocate memory for buffer");
976 			jbd_unlock_bh_state(bh);
977 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
978 						   GFP_NOFS | __GFP_NOFAIL);
979 			goto repeat;
980 		}
981 		jh->b_frozen_data = frozen_buffer;
982 		frozen_buffer = NULL;
983 		jbd2_freeze_jh_data(jh);
984 	}
985 attach_next:
986 	/*
987 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
988 	 * before attaching it to the running transaction. Paired with barrier
989 	 * in jbd2_write_access_granted()
990 	 */
991 	smp_wmb();
992 	jh->b_next_transaction = transaction;
993 
994 done:
995 	jbd_unlock_bh_state(bh);
996 
997 	/*
998 	 * If we are about to journal a buffer, then any revoke pending on it is
999 	 * no longer valid
1000 	 */
1001 	jbd2_journal_cancel_revoke(handle, jh);
1002 
1003 out:
1004 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1005 		jbd2_free(frozen_buffer, bh->b_size);
1006 
1007 	JBUFFER_TRACE(jh, "exit");
1008 	return error;
1009 }
1010 
1011 /* Fast check whether buffer is already attached to the required transaction */
1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1013 							bool undo)
1014 {
1015 	struct journal_head *jh;
1016 	bool ret = false;
1017 
1018 	/* Dirty buffers require special handling... */
1019 	if (buffer_dirty(bh))
1020 		return false;
1021 
1022 	/*
1023 	 * RCU protects us from dereferencing freed pages. So the checks we do
1024 	 * are guaranteed not to oops. However the jh slab object can get freed
1025 	 * & reallocated while we work with it. So we have to be careful. When
1026 	 * we see jh attached to the running transaction, we know it must stay
1027 	 * so until the transaction is committed. Thus jh won't be freed and
1028 	 * will be attached to the same bh while we run.  However it can
1029 	 * happen jh gets freed, reallocated, and attached to the transaction
1030 	 * just after we get pointer to it from bh. So we have to be careful
1031 	 * and recheck jh still belongs to our bh before we return success.
1032 	 */
1033 	rcu_read_lock();
1034 	if (!buffer_jbd(bh))
1035 		goto out;
1036 	/* This should be bh2jh() but that doesn't work with inline functions */
1037 	jh = READ_ONCE(bh->b_private);
1038 	if (!jh)
1039 		goto out;
1040 	/* For undo access buffer must have data copied */
1041 	if (undo && !jh->b_committed_data)
1042 		goto out;
1043 	if (jh->b_transaction != handle->h_transaction &&
1044 	    jh->b_next_transaction != handle->h_transaction)
1045 		goto out;
1046 	/*
1047 	 * There are two reasons for the barrier here:
1048 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1049 	 * detect when jh went through free, realloc, attach to transaction
1050 	 * while we were checking. Paired with implicit barrier in that path.
1051 	 * 2) So that access to bh done after jbd2_write_access_granted()
1052 	 * doesn't get reordered and see inconsistent state of concurrent
1053 	 * do_get_write_access().
1054 	 */
1055 	smp_mb();
1056 	if (unlikely(jh->b_bh != bh))
1057 		goto out;
1058 	ret = true;
1059 out:
1060 	rcu_read_unlock();
1061 	return ret;
1062 }
1063 
1064 /**
1065  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1066  * @handle: transaction to add buffer modifications to
1067  * @bh:     bh to be used for metadata writes
1068  *
1069  * Returns an error code or 0 on success.
1070  *
1071  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1072  * because we're write()ing a buffer which is also part of a shared mapping.
1073  */
1074 
1075 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1076 {
1077 	struct journal_head *jh;
1078 	int rc;
1079 
1080 	if (jbd2_write_access_granted(handle, bh, false))
1081 		return 0;
1082 
1083 	jh = jbd2_journal_add_journal_head(bh);
1084 	/* We do not want to get caught playing with fields which the
1085 	 * log thread also manipulates.  Make sure that the buffer
1086 	 * completes any outstanding IO before proceeding. */
1087 	rc = do_get_write_access(handle, jh, 0);
1088 	jbd2_journal_put_journal_head(jh);
1089 	return rc;
1090 }
1091 
1092 
1093 /*
1094  * When the user wants to journal a newly created buffer_head
1095  * (ie. getblk() returned a new buffer and we are going to populate it
1096  * manually rather than reading off disk), then we need to keep the
1097  * buffer_head locked until it has been completely filled with new
1098  * data.  In this case, we should be able to make the assertion that
1099  * the bh is not already part of an existing transaction.
1100  *
1101  * The buffer should already be locked by the caller by this point.
1102  * There is no lock ranking violation: it was a newly created,
1103  * unlocked buffer beforehand. */
1104 
1105 /**
1106  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1107  * @handle: transaction to new buffer to
1108  * @bh: new buffer.
1109  *
1110  * Call this if you create a new bh.
1111  */
1112 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1113 {
1114 	transaction_t *transaction = handle->h_transaction;
1115 	journal_t *journal;
1116 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1117 	int err;
1118 
1119 	jbd_debug(5, "journal_head %p\n", jh);
1120 	err = -EROFS;
1121 	if (is_handle_aborted(handle))
1122 		goto out;
1123 	journal = transaction->t_journal;
1124 	err = 0;
1125 
1126 	JBUFFER_TRACE(jh, "entry");
1127 	/*
1128 	 * The buffer may already belong to this transaction due to pre-zeroing
1129 	 * in the filesystem's new_block code.  It may also be on the previous,
1130 	 * committing transaction's lists, but it HAS to be in Forget state in
1131 	 * that case: the transaction must have deleted the buffer for it to be
1132 	 * reused here.
1133 	 */
1134 	jbd_lock_bh_state(bh);
1135 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1136 		jh->b_transaction == NULL ||
1137 		(jh->b_transaction == journal->j_committing_transaction &&
1138 			  jh->b_jlist == BJ_Forget)));
1139 
1140 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1141 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1142 
1143 	if (jh->b_transaction == NULL) {
1144 		/*
1145 		 * Previous jbd2_journal_forget() could have left the buffer
1146 		 * with jbddirty bit set because it was being committed. When
1147 		 * the commit finished, we've filed the buffer for
1148 		 * checkpointing and marked it dirty. Now we are reallocating
1149 		 * the buffer so the transaction freeing it must have
1150 		 * committed and so it's safe to clear the dirty bit.
1151 		 */
1152 		clear_buffer_dirty(jh2bh(jh));
1153 		/* first access by this transaction */
1154 		jh->b_modified = 0;
1155 
1156 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1157 		spin_lock(&journal->j_list_lock);
1158 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1159 		spin_unlock(&journal->j_list_lock);
1160 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1161 		/* first access by this transaction */
1162 		jh->b_modified = 0;
1163 
1164 		JBUFFER_TRACE(jh, "set next transaction");
1165 		spin_lock(&journal->j_list_lock);
1166 		jh->b_next_transaction = transaction;
1167 		spin_unlock(&journal->j_list_lock);
1168 	}
1169 	jbd_unlock_bh_state(bh);
1170 
1171 	/*
1172 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1173 	 * blocks which contain freed but then revoked metadata.  We need
1174 	 * to cancel the revoke in case we end up freeing it yet again
1175 	 * and the reallocating as data - this would cause a second revoke,
1176 	 * which hits an assertion error.
1177 	 */
1178 	JBUFFER_TRACE(jh, "cancelling revoke");
1179 	jbd2_journal_cancel_revoke(handle, jh);
1180 out:
1181 	jbd2_journal_put_journal_head(jh);
1182 	return err;
1183 }
1184 
1185 /**
1186  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1187  *     non-rewindable consequences
1188  * @handle: transaction
1189  * @bh: buffer to undo
1190  *
1191  * Sometimes there is a need to distinguish between metadata which has
1192  * been committed to disk and that which has not.  The ext3fs code uses
1193  * this for freeing and allocating space, we have to make sure that we
1194  * do not reuse freed space until the deallocation has been committed,
1195  * since if we overwrote that space we would make the delete
1196  * un-rewindable in case of a crash.
1197  *
1198  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1199  * buffer for parts of non-rewindable operations such as delete
1200  * operations on the bitmaps.  The journaling code must keep a copy of
1201  * the buffer's contents prior to the undo_access call until such time
1202  * as we know that the buffer has definitely been committed to disk.
1203  *
1204  * We never need to know which transaction the committed data is part
1205  * of, buffers touched here are guaranteed to be dirtied later and so
1206  * will be committed to a new transaction in due course, at which point
1207  * we can discard the old committed data pointer.
1208  *
1209  * Returns error number or 0 on success.
1210  */
1211 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1212 {
1213 	int err;
1214 	struct journal_head *jh;
1215 	char *committed_data = NULL;
1216 
1217 	JBUFFER_TRACE(jh, "entry");
1218 	if (jbd2_write_access_granted(handle, bh, true))
1219 		return 0;
1220 
1221 	jh = jbd2_journal_add_journal_head(bh);
1222 	/*
1223 	 * Do this first --- it can drop the journal lock, so we want to
1224 	 * make sure that obtaining the committed_data is done
1225 	 * atomically wrt. completion of any outstanding commits.
1226 	 */
1227 	err = do_get_write_access(handle, jh, 1);
1228 	if (err)
1229 		goto out;
1230 
1231 repeat:
1232 	if (!jh->b_committed_data)
1233 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1234 					    GFP_NOFS|__GFP_NOFAIL);
1235 
1236 	jbd_lock_bh_state(bh);
1237 	if (!jh->b_committed_data) {
1238 		/* Copy out the current buffer contents into the
1239 		 * preserved, committed copy. */
1240 		JBUFFER_TRACE(jh, "generate b_committed data");
1241 		if (!committed_data) {
1242 			jbd_unlock_bh_state(bh);
1243 			goto repeat;
1244 		}
1245 
1246 		jh->b_committed_data = committed_data;
1247 		committed_data = NULL;
1248 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1249 	}
1250 	jbd_unlock_bh_state(bh);
1251 out:
1252 	jbd2_journal_put_journal_head(jh);
1253 	if (unlikely(committed_data))
1254 		jbd2_free(committed_data, bh->b_size);
1255 	return err;
1256 }
1257 
1258 /**
1259  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1260  * @bh: buffer to trigger on
1261  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1262  *
1263  * Set any triggers on this journal_head.  This is always safe, because
1264  * triggers for a committing buffer will be saved off, and triggers for
1265  * a running transaction will match the buffer in that transaction.
1266  *
1267  * Call with NULL to clear the triggers.
1268  */
1269 void jbd2_journal_set_triggers(struct buffer_head *bh,
1270 			       struct jbd2_buffer_trigger_type *type)
1271 {
1272 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1273 
1274 	if (WARN_ON(!jh))
1275 		return;
1276 	jh->b_triggers = type;
1277 	jbd2_journal_put_journal_head(jh);
1278 }
1279 
1280 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1281 				struct jbd2_buffer_trigger_type *triggers)
1282 {
1283 	struct buffer_head *bh = jh2bh(jh);
1284 
1285 	if (!triggers || !triggers->t_frozen)
1286 		return;
1287 
1288 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1289 }
1290 
1291 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1292 			       struct jbd2_buffer_trigger_type *triggers)
1293 {
1294 	if (!triggers || !triggers->t_abort)
1295 		return;
1296 
1297 	triggers->t_abort(triggers, jh2bh(jh));
1298 }
1299 
1300 /**
1301  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1302  * @handle: transaction to add buffer to.
1303  * @bh: buffer to mark
1304  *
1305  * mark dirty metadata which needs to be journaled as part of the current
1306  * transaction.
1307  *
1308  * The buffer must have previously had jbd2_journal_get_write_access()
1309  * called so that it has a valid journal_head attached to the buffer
1310  * head.
1311  *
1312  * The buffer is placed on the transaction's metadata list and is marked
1313  * as belonging to the transaction.
1314  *
1315  * Returns error number or 0 on success.
1316  *
1317  * Special care needs to be taken if the buffer already belongs to the
1318  * current committing transaction (in which case we should have frozen
1319  * data present for that commit).  In that case, we don't relink the
1320  * buffer: that only gets done when the old transaction finally
1321  * completes its commit.
1322  */
1323 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1324 {
1325 	transaction_t *transaction = handle->h_transaction;
1326 	journal_t *journal;
1327 	struct journal_head *jh;
1328 	int ret = 0;
1329 
1330 	if (is_handle_aborted(handle))
1331 		return -EROFS;
1332 	if (!buffer_jbd(bh)) {
1333 		ret = -EUCLEAN;
1334 		goto out;
1335 	}
1336 	/*
1337 	 * We don't grab jh reference here since the buffer must be part
1338 	 * of the running transaction.
1339 	 */
1340 	jh = bh2jh(bh);
1341 	/*
1342 	 * This and the following assertions are unreliable since we may see jh
1343 	 * in inconsistent state unless we grab bh_state lock. But this is
1344 	 * crucial to catch bugs so let's do a reliable check until the
1345 	 * lockless handling is fully proven.
1346 	 */
1347 	if (jh->b_transaction != transaction &&
1348 	    jh->b_next_transaction != transaction) {
1349 		jbd_lock_bh_state(bh);
1350 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1351 				jh->b_next_transaction == transaction);
1352 		jbd_unlock_bh_state(bh);
1353 	}
1354 	if (jh->b_modified == 1) {
1355 		/* If it's in our transaction it must be in BJ_Metadata list. */
1356 		if (jh->b_transaction == transaction &&
1357 		    jh->b_jlist != BJ_Metadata) {
1358 			jbd_lock_bh_state(bh);
1359 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1360 					jh->b_jlist == BJ_Metadata);
1361 			jbd_unlock_bh_state(bh);
1362 		}
1363 		goto out;
1364 	}
1365 
1366 	journal = transaction->t_journal;
1367 	jbd_debug(5, "journal_head %p\n", jh);
1368 	JBUFFER_TRACE(jh, "entry");
1369 
1370 	jbd_lock_bh_state(bh);
1371 
1372 	if (jh->b_modified == 0) {
1373 		/*
1374 		 * This buffer's got modified and becoming part
1375 		 * of the transaction. This needs to be done
1376 		 * once a transaction -bzzz
1377 		 */
1378 		jh->b_modified = 1;
1379 		if (handle->h_buffer_credits <= 0) {
1380 			ret = -ENOSPC;
1381 			goto out_unlock_bh;
1382 		}
1383 		handle->h_buffer_credits--;
1384 	}
1385 
1386 	/*
1387 	 * fastpath, to avoid expensive locking.  If this buffer is already
1388 	 * on the running transaction's metadata list there is nothing to do.
1389 	 * Nobody can take it off again because there is a handle open.
1390 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1391 	 * result in this test being false, so we go in and take the locks.
1392 	 */
1393 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1394 		JBUFFER_TRACE(jh, "fastpath");
1395 		if (unlikely(jh->b_transaction !=
1396 			     journal->j_running_transaction)) {
1397 			printk(KERN_ERR "JBD2: %s: "
1398 			       "jh->b_transaction (%llu, %p, %u) != "
1399 			       "journal->j_running_transaction (%p, %u)\n",
1400 			       journal->j_devname,
1401 			       (unsigned long long) bh->b_blocknr,
1402 			       jh->b_transaction,
1403 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1404 			       journal->j_running_transaction,
1405 			       journal->j_running_transaction ?
1406 			       journal->j_running_transaction->t_tid : 0);
1407 			ret = -EINVAL;
1408 		}
1409 		goto out_unlock_bh;
1410 	}
1411 
1412 	set_buffer_jbddirty(bh);
1413 
1414 	/*
1415 	 * Metadata already on the current transaction list doesn't
1416 	 * need to be filed.  Metadata on another transaction's list must
1417 	 * be committing, and will be refiled once the commit completes:
1418 	 * leave it alone for now.
1419 	 */
1420 	if (jh->b_transaction != transaction) {
1421 		JBUFFER_TRACE(jh, "already on other transaction");
1422 		if (unlikely(((jh->b_transaction !=
1423 			       journal->j_committing_transaction)) ||
1424 			     (jh->b_next_transaction != transaction))) {
1425 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1426 			       "bad jh for block %llu: "
1427 			       "transaction (%p, %u), "
1428 			       "jh->b_transaction (%p, %u), "
1429 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1430 			       journal->j_devname,
1431 			       (unsigned long long) bh->b_blocknr,
1432 			       transaction, transaction->t_tid,
1433 			       jh->b_transaction,
1434 			       jh->b_transaction ?
1435 			       jh->b_transaction->t_tid : 0,
1436 			       jh->b_next_transaction,
1437 			       jh->b_next_transaction ?
1438 			       jh->b_next_transaction->t_tid : 0,
1439 			       jh->b_jlist);
1440 			WARN_ON(1);
1441 			ret = -EINVAL;
1442 		}
1443 		/* And this case is illegal: we can't reuse another
1444 		 * transaction's data buffer, ever. */
1445 		goto out_unlock_bh;
1446 	}
1447 
1448 	/* That test should have eliminated the following case: */
1449 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1450 
1451 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1452 	spin_lock(&journal->j_list_lock);
1453 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1454 	spin_unlock(&journal->j_list_lock);
1455 out_unlock_bh:
1456 	jbd_unlock_bh_state(bh);
1457 out:
1458 	JBUFFER_TRACE(jh, "exit");
1459 	return ret;
1460 }
1461 
1462 /**
1463  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1464  * @handle: transaction handle
1465  * @bh:     bh to 'forget'
1466  *
1467  * We can only do the bforget if there are no commits pending against the
1468  * buffer.  If the buffer is dirty in the current running transaction we
1469  * can safely unlink it.
1470  *
1471  * bh may not be a journalled buffer at all - it may be a non-JBD
1472  * buffer which came off the hashtable.  Check for this.
1473  *
1474  * Decrements bh->b_count by one.
1475  *
1476  * Allow this call even if the handle has aborted --- it may be part of
1477  * the caller's cleanup after an abort.
1478  */
1479 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1480 {
1481 	transaction_t *transaction = handle->h_transaction;
1482 	journal_t *journal;
1483 	struct journal_head *jh;
1484 	int drop_reserve = 0;
1485 	int err = 0;
1486 	int was_modified = 0;
1487 
1488 	if (is_handle_aborted(handle))
1489 		return -EROFS;
1490 	journal = transaction->t_journal;
1491 
1492 	BUFFER_TRACE(bh, "entry");
1493 
1494 	jbd_lock_bh_state(bh);
1495 
1496 	if (!buffer_jbd(bh))
1497 		goto not_jbd;
1498 	jh = bh2jh(bh);
1499 
1500 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1501 	 * Don't do any jbd operations, and return an error. */
1502 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1503 			 "inconsistent data on disk")) {
1504 		err = -EIO;
1505 		goto not_jbd;
1506 	}
1507 
1508 	/* keep track of whether or not this transaction modified us */
1509 	was_modified = jh->b_modified;
1510 
1511 	/*
1512 	 * The buffer's going from the transaction, we must drop
1513 	 * all references -bzzz
1514 	 */
1515 	jh->b_modified = 0;
1516 
1517 	if (jh->b_transaction == transaction) {
1518 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1519 
1520 		/* If we are forgetting a buffer which is already part
1521 		 * of this transaction, then we can just drop it from
1522 		 * the transaction immediately. */
1523 		clear_buffer_dirty(bh);
1524 		clear_buffer_jbddirty(bh);
1525 
1526 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1527 
1528 		/*
1529 		 * we only want to drop a reference if this transaction
1530 		 * modified the buffer
1531 		 */
1532 		if (was_modified)
1533 			drop_reserve = 1;
1534 
1535 		/*
1536 		 * We are no longer going to journal this buffer.
1537 		 * However, the commit of this transaction is still
1538 		 * important to the buffer: the delete that we are now
1539 		 * processing might obsolete an old log entry, so by
1540 		 * committing, we can satisfy the buffer's checkpoint.
1541 		 *
1542 		 * So, if we have a checkpoint on the buffer, we should
1543 		 * now refile the buffer on our BJ_Forget list so that
1544 		 * we know to remove the checkpoint after we commit.
1545 		 */
1546 
1547 		spin_lock(&journal->j_list_lock);
1548 		if (jh->b_cp_transaction) {
1549 			__jbd2_journal_temp_unlink_buffer(jh);
1550 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1551 		} else {
1552 			__jbd2_journal_unfile_buffer(jh);
1553 			if (!buffer_jbd(bh)) {
1554 				spin_unlock(&journal->j_list_lock);
1555 				jbd_unlock_bh_state(bh);
1556 				__bforget(bh);
1557 				goto drop;
1558 			}
1559 		}
1560 		spin_unlock(&journal->j_list_lock);
1561 	} else if (jh->b_transaction) {
1562 		J_ASSERT_JH(jh, (jh->b_transaction ==
1563 				 journal->j_committing_transaction));
1564 		/* However, if the buffer is still owned by a prior
1565 		 * (committing) transaction, we can't drop it yet... */
1566 		JBUFFER_TRACE(jh, "belongs to older transaction");
1567 		/* ... but we CAN drop it from the new transaction if we
1568 		 * have also modified it since the original commit. */
1569 
1570 		if (jh->b_next_transaction) {
1571 			J_ASSERT(jh->b_next_transaction == transaction);
1572 			spin_lock(&journal->j_list_lock);
1573 			jh->b_next_transaction = NULL;
1574 			spin_unlock(&journal->j_list_lock);
1575 
1576 			/*
1577 			 * only drop a reference if this transaction modified
1578 			 * the buffer
1579 			 */
1580 			if (was_modified)
1581 				drop_reserve = 1;
1582 		}
1583 	}
1584 
1585 not_jbd:
1586 	jbd_unlock_bh_state(bh);
1587 	__brelse(bh);
1588 drop:
1589 	if (drop_reserve) {
1590 		/* no need to reserve log space for this block -bzzz */
1591 		handle->h_buffer_credits++;
1592 	}
1593 	return err;
1594 }
1595 
1596 /**
1597  * int jbd2_journal_stop() - complete a transaction
1598  * @handle: transaction to complete.
1599  *
1600  * All done for a particular handle.
1601  *
1602  * There is not much action needed here.  We just return any remaining
1603  * buffer credits to the transaction and remove the handle.  The only
1604  * complication is that we need to start a commit operation if the
1605  * filesystem is marked for synchronous update.
1606  *
1607  * jbd2_journal_stop itself will not usually return an error, but it may
1608  * do so in unusual circumstances.  In particular, expect it to
1609  * return -EIO if a jbd2_journal_abort has been executed since the
1610  * transaction began.
1611  */
1612 int jbd2_journal_stop(handle_t *handle)
1613 {
1614 	transaction_t *transaction = handle->h_transaction;
1615 	journal_t *journal;
1616 	int err = 0, wait_for_commit = 0;
1617 	tid_t tid;
1618 	pid_t pid;
1619 
1620 	if (!transaction) {
1621 		/*
1622 		 * Handle is already detached from the transaction so
1623 		 * there is nothing to do other than decrease a refcount,
1624 		 * or free the handle if refcount drops to zero
1625 		 */
1626 		if (--handle->h_ref > 0) {
1627 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1628 							 handle->h_ref);
1629 			return err;
1630 		} else {
1631 			if (handle->h_rsv_handle)
1632 				jbd2_free_handle(handle->h_rsv_handle);
1633 			goto free_and_exit;
1634 		}
1635 	}
1636 	journal = transaction->t_journal;
1637 
1638 	J_ASSERT(journal_current_handle() == handle);
1639 
1640 	if (is_handle_aborted(handle))
1641 		err = -EIO;
1642 	else
1643 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1644 
1645 	if (--handle->h_ref > 0) {
1646 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1647 			  handle->h_ref);
1648 		return err;
1649 	}
1650 
1651 	jbd_debug(4, "Handle %p going down\n", handle);
1652 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1653 				transaction->t_tid,
1654 				handle->h_type, handle->h_line_no,
1655 				jiffies - handle->h_start_jiffies,
1656 				handle->h_sync, handle->h_requested_credits,
1657 				(handle->h_requested_credits -
1658 				 handle->h_buffer_credits));
1659 
1660 	/*
1661 	 * Implement synchronous transaction batching.  If the handle
1662 	 * was synchronous, don't force a commit immediately.  Let's
1663 	 * yield and let another thread piggyback onto this
1664 	 * transaction.  Keep doing that while new threads continue to
1665 	 * arrive.  It doesn't cost much - we're about to run a commit
1666 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1667 	 * operations by 30x or more...
1668 	 *
1669 	 * We try and optimize the sleep time against what the
1670 	 * underlying disk can do, instead of having a static sleep
1671 	 * time.  This is useful for the case where our storage is so
1672 	 * fast that it is more optimal to go ahead and force a flush
1673 	 * and wait for the transaction to be committed than it is to
1674 	 * wait for an arbitrary amount of time for new writers to
1675 	 * join the transaction.  We achieve this by measuring how
1676 	 * long it takes to commit a transaction, and compare it with
1677 	 * how long this transaction has been running, and if run time
1678 	 * < commit time then we sleep for the delta and commit.  This
1679 	 * greatly helps super fast disks that would see slowdowns as
1680 	 * more threads started doing fsyncs.
1681 	 *
1682 	 * But don't do this if this process was the most recent one
1683 	 * to perform a synchronous write.  We do this to detect the
1684 	 * case where a single process is doing a stream of sync
1685 	 * writes.  No point in waiting for joiners in that case.
1686 	 *
1687 	 * Setting max_batch_time to 0 disables this completely.
1688 	 */
1689 	pid = current->pid;
1690 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1691 	    journal->j_max_batch_time) {
1692 		u64 commit_time, trans_time;
1693 
1694 		journal->j_last_sync_writer = pid;
1695 
1696 		read_lock(&journal->j_state_lock);
1697 		commit_time = journal->j_average_commit_time;
1698 		read_unlock(&journal->j_state_lock);
1699 
1700 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1701 						   transaction->t_start_time));
1702 
1703 		commit_time = max_t(u64, commit_time,
1704 				    1000*journal->j_min_batch_time);
1705 		commit_time = min_t(u64, commit_time,
1706 				    1000*journal->j_max_batch_time);
1707 
1708 		if (trans_time < commit_time) {
1709 			ktime_t expires = ktime_add_ns(ktime_get(),
1710 						       commit_time);
1711 			set_current_state(TASK_UNINTERRUPTIBLE);
1712 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1713 		}
1714 	}
1715 
1716 	if (handle->h_sync)
1717 		transaction->t_synchronous_commit = 1;
1718 	current->journal_info = NULL;
1719 	atomic_sub(handle->h_buffer_credits,
1720 		   &transaction->t_outstanding_credits);
1721 
1722 	/*
1723 	 * If the handle is marked SYNC, we need to set another commit
1724 	 * going!  We also want to force a commit if the current
1725 	 * transaction is occupying too much of the log, or if the
1726 	 * transaction is too old now.
1727 	 */
1728 	if (handle->h_sync ||
1729 	    (atomic_read(&transaction->t_outstanding_credits) >
1730 	     journal->j_max_transaction_buffers) ||
1731 	    time_after_eq(jiffies, transaction->t_expires)) {
1732 		/* Do this even for aborted journals: an abort still
1733 		 * completes the commit thread, it just doesn't write
1734 		 * anything to disk. */
1735 
1736 		jbd_debug(2, "transaction too old, requesting commit for "
1737 					"handle %p\n", handle);
1738 		/* This is non-blocking */
1739 		jbd2_log_start_commit(journal, transaction->t_tid);
1740 
1741 		/*
1742 		 * Special case: JBD2_SYNC synchronous updates require us
1743 		 * to wait for the commit to complete.
1744 		 */
1745 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1746 			wait_for_commit = 1;
1747 	}
1748 
1749 	/*
1750 	 * Once we drop t_updates, if it goes to zero the transaction
1751 	 * could start committing on us and eventually disappear.  So
1752 	 * once we do this, we must not dereference transaction
1753 	 * pointer again.
1754 	 */
1755 	tid = transaction->t_tid;
1756 	if (atomic_dec_and_test(&transaction->t_updates)) {
1757 		wake_up(&journal->j_wait_updates);
1758 		if (journal->j_barrier_count)
1759 			wake_up(&journal->j_wait_transaction_locked);
1760 	}
1761 
1762 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1763 
1764 	if (wait_for_commit)
1765 		err = jbd2_log_wait_commit(journal, tid);
1766 
1767 	if (handle->h_rsv_handle)
1768 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1769 free_and_exit:
1770 	/*
1771 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1772 	 * original alloc context.
1773 	 */
1774 	memalloc_nofs_restore(handle->saved_alloc_context);
1775 	jbd2_free_handle(handle);
1776 	return err;
1777 }
1778 
1779 /*
1780  *
1781  * List management code snippets: various functions for manipulating the
1782  * transaction buffer lists.
1783  *
1784  */
1785 
1786 /*
1787  * Append a buffer to a transaction list, given the transaction's list head
1788  * pointer.
1789  *
1790  * j_list_lock is held.
1791  *
1792  * jbd_lock_bh_state(jh2bh(jh)) is held.
1793  */
1794 
1795 static inline void
1796 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1797 {
1798 	if (!*list) {
1799 		jh->b_tnext = jh->b_tprev = jh;
1800 		*list = jh;
1801 	} else {
1802 		/* Insert at the tail of the list to preserve order */
1803 		struct journal_head *first = *list, *last = first->b_tprev;
1804 		jh->b_tprev = last;
1805 		jh->b_tnext = first;
1806 		last->b_tnext = first->b_tprev = jh;
1807 	}
1808 }
1809 
1810 /*
1811  * Remove a buffer from a transaction list, given the transaction's list
1812  * head pointer.
1813  *
1814  * Called with j_list_lock held, and the journal may not be locked.
1815  *
1816  * jbd_lock_bh_state(jh2bh(jh)) is held.
1817  */
1818 
1819 static inline void
1820 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1821 {
1822 	if (*list == jh) {
1823 		*list = jh->b_tnext;
1824 		if (*list == jh)
1825 			*list = NULL;
1826 	}
1827 	jh->b_tprev->b_tnext = jh->b_tnext;
1828 	jh->b_tnext->b_tprev = jh->b_tprev;
1829 }
1830 
1831 /*
1832  * Remove a buffer from the appropriate transaction list.
1833  *
1834  * Note that this function can *change* the value of
1835  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1836  * t_reserved_list.  If the caller is holding onto a copy of one of these
1837  * pointers, it could go bad.  Generally the caller needs to re-read the
1838  * pointer from the transaction_t.
1839  *
1840  * Called under j_list_lock.
1841  */
1842 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1843 {
1844 	struct journal_head **list = NULL;
1845 	transaction_t *transaction;
1846 	struct buffer_head *bh = jh2bh(jh);
1847 
1848 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1849 	transaction = jh->b_transaction;
1850 	if (transaction)
1851 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1852 
1853 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1854 	if (jh->b_jlist != BJ_None)
1855 		J_ASSERT_JH(jh, transaction != NULL);
1856 
1857 	switch (jh->b_jlist) {
1858 	case BJ_None:
1859 		return;
1860 	case BJ_Metadata:
1861 		transaction->t_nr_buffers--;
1862 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1863 		list = &transaction->t_buffers;
1864 		break;
1865 	case BJ_Forget:
1866 		list = &transaction->t_forget;
1867 		break;
1868 	case BJ_Shadow:
1869 		list = &transaction->t_shadow_list;
1870 		break;
1871 	case BJ_Reserved:
1872 		list = &transaction->t_reserved_list;
1873 		break;
1874 	}
1875 
1876 	__blist_del_buffer(list, jh);
1877 	jh->b_jlist = BJ_None;
1878 	if (transaction && is_journal_aborted(transaction->t_journal))
1879 		clear_buffer_jbddirty(bh);
1880 	else if (test_clear_buffer_jbddirty(bh))
1881 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1882 }
1883 
1884 /*
1885  * Remove buffer from all transactions.
1886  *
1887  * Called with bh_state lock and j_list_lock
1888  *
1889  * jh and bh may be already freed when this function returns.
1890  */
1891 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1892 {
1893 	__jbd2_journal_temp_unlink_buffer(jh);
1894 	jh->b_transaction = NULL;
1895 	jbd2_journal_put_journal_head(jh);
1896 }
1897 
1898 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1899 {
1900 	struct buffer_head *bh = jh2bh(jh);
1901 
1902 	/* Get reference so that buffer cannot be freed before we unlock it */
1903 	get_bh(bh);
1904 	jbd_lock_bh_state(bh);
1905 	spin_lock(&journal->j_list_lock);
1906 	__jbd2_journal_unfile_buffer(jh);
1907 	spin_unlock(&journal->j_list_lock);
1908 	jbd_unlock_bh_state(bh);
1909 	__brelse(bh);
1910 }
1911 
1912 /*
1913  * Called from jbd2_journal_try_to_free_buffers().
1914  *
1915  * Called under jbd_lock_bh_state(bh)
1916  */
1917 static void
1918 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1919 {
1920 	struct journal_head *jh;
1921 
1922 	jh = bh2jh(bh);
1923 
1924 	if (buffer_locked(bh) || buffer_dirty(bh))
1925 		goto out;
1926 
1927 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1928 		goto out;
1929 
1930 	spin_lock(&journal->j_list_lock);
1931 	if (jh->b_cp_transaction != NULL) {
1932 		/* written-back checkpointed metadata buffer */
1933 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1934 		__jbd2_journal_remove_checkpoint(jh);
1935 	}
1936 	spin_unlock(&journal->j_list_lock);
1937 out:
1938 	return;
1939 }
1940 
1941 /**
1942  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1943  * @journal: journal for operation
1944  * @page: to try and free
1945  * @gfp_mask: we use the mask to detect how hard should we try to release
1946  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1947  * code to release the buffers.
1948  *
1949  *
1950  * For all the buffers on this page,
1951  * if they are fully written out ordered data, move them onto BUF_CLEAN
1952  * so try_to_free_buffers() can reap them.
1953  *
1954  * This function returns non-zero if we wish try_to_free_buffers()
1955  * to be called. We do this if the page is releasable by try_to_free_buffers().
1956  * We also do it if the page has locked or dirty buffers and the caller wants
1957  * us to perform sync or async writeout.
1958  *
1959  * This complicates JBD locking somewhat.  We aren't protected by the
1960  * BKL here.  We wish to remove the buffer from its committing or
1961  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1962  *
1963  * This may *change* the value of transaction_t->t_datalist, so anyone
1964  * who looks at t_datalist needs to lock against this function.
1965  *
1966  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1967  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1968  * will come out of the lock with the buffer dirty, which makes it
1969  * ineligible for release here.
1970  *
1971  * Who else is affected by this?  hmm...  Really the only contender
1972  * is do_get_write_access() - it could be looking at the buffer while
1973  * journal_try_to_free_buffer() is changing its state.  But that
1974  * cannot happen because we never reallocate freed data as metadata
1975  * while the data is part of a transaction.  Yes?
1976  *
1977  * Return 0 on failure, 1 on success
1978  */
1979 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1980 				struct page *page, gfp_t gfp_mask)
1981 {
1982 	struct buffer_head *head;
1983 	struct buffer_head *bh;
1984 	int ret = 0;
1985 
1986 	J_ASSERT(PageLocked(page));
1987 
1988 	head = page_buffers(page);
1989 	bh = head;
1990 	do {
1991 		struct journal_head *jh;
1992 
1993 		/*
1994 		 * We take our own ref against the journal_head here to avoid
1995 		 * having to add tons of locking around each instance of
1996 		 * jbd2_journal_put_journal_head().
1997 		 */
1998 		jh = jbd2_journal_grab_journal_head(bh);
1999 		if (!jh)
2000 			continue;
2001 
2002 		jbd_lock_bh_state(bh);
2003 		__journal_try_to_free_buffer(journal, bh);
2004 		jbd2_journal_put_journal_head(jh);
2005 		jbd_unlock_bh_state(bh);
2006 		if (buffer_jbd(bh))
2007 			goto busy;
2008 	} while ((bh = bh->b_this_page) != head);
2009 
2010 	ret = try_to_free_buffers(page);
2011 
2012 busy:
2013 	return ret;
2014 }
2015 
2016 /*
2017  * This buffer is no longer needed.  If it is on an older transaction's
2018  * checkpoint list we need to record it on this transaction's forget list
2019  * to pin this buffer (and hence its checkpointing transaction) down until
2020  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2021  * release it.
2022  * Returns non-zero if JBD no longer has an interest in the buffer.
2023  *
2024  * Called under j_list_lock.
2025  *
2026  * Called under jbd_lock_bh_state(bh).
2027  */
2028 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2029 {
2030 	int may_free = 1;
2031 	struct buffer_head *bh = jh2bh(jh);
2032 
2033 	if (jh->b_cp_transaction) {
2034 		JBUFFER_TRACE(jh, "on running+cp transaction");
2035 		__jbd2_journal_temp_unlink_buffer(jh);
2036 		/*
2037 		 * We don't want to write the buffer anymore, clear the
2038 		 * bit so that we don't confuse checks in
2039 		 * __journal_file_buffer
2040 		 */
2041 		clear_buffer_dirty(bh);
2042 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2043 		may_free = 0;
2044 	} else {
2045 		JBUFFER_TRACE(jh, "on running transaction");
2046 		__jbd2_journal_unfile_buffer(jh);
2047 	}
2048 	return may_free;
2049 }
2050 
2051 /*
2052  * jbd2_journal_invalidatepage
2053  *
2054  * This code is tricky.  It has a number of cases to deal with.
2055  *
2056  * There are two invariants which this code relies on:
2057  *
2058  * i_size must be updated on disk before we start calling invalidatepage on the
2059  * data.
2060  *
2061  *  This is done in ext3 by defining an ext3_setattr method which
2062  *  updates i_size before truncate gets going.  By maintaining this
2063  *  invariant, we can be sure that it is safe to throw away any buffers
2064  *  attached to the current transaction: once the transaction commits,
2065  *  we know that the data will not be needed.
2066  *
2067  *  Note however that we can *not* throw away data belonging to the
2068  *  previous, committing transaction!
2069  *
2070  * Any disk blocks which *are* part of the previous, committing
2071  * transaction (and which therefore cannot be discarded immediately) are
2072  * not going to be reused in the new running transaction
2073  *
2074  *  The bitmap committed_data images guarantee this: any block which is
2075  *  allocated in one transaction and removed in the next will be marked
2076  *  as in-use in the committed_data bitmap, so cannot be reused until
2077  *  the next transaction to delete the block commits.  This means that
2078  *  leaving committing buffers dirty is quite safe: the disk blocks
2079  *  cannot be reallocated to a different file and so buffer aliasing is
2080  *  not possible.
2081  *
2082  *
2083  * The above applies mainly to ordered data mode.  In writeback mode we
2084  * don't make guarantees about the order in which data hits disk --- in
2085  * particular we don't guarantee that new dirty data is flushed before
2086  * transaction commit --- so it is always safe just to discard data
2087  * immediately in that mode.  --sct
2088  */
2089 
2090 /*
2091  * The journal_unmap_buffer helper function returns zero if the buffer
2092  * concerned remains pinned as an anonymous buffer belonging to an older
2093  * transaction.
2094  *
2095  * We're outside-transaction here.  Either or both of j_running_transaction
2096  * and j_committing_transaction may be NULL.
2097  */
2098 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2099 				int partial_page)
2100 {
2101 	transaction_t *transaction;
2102 	struct journal_head *jh;
2103 	int may_free = 1;
2104 
2105 	BUFFER_TRACE(bh, "entry");
2106 
2107 	/*
2108 	 * It is safe to proceed here without the j_list_lock because the
2109 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2110 	 * holding the page lock. --sct
2111 	 */
2112 
2113 	if (!buffer_jbd(bh))
2114 		goto zap_buffer_unlocked;
2115 
2116 	/* OK, we have data buffer in journaled mode */
2117 	write_lock(&journal->j_state_lock);
2118 	jbd_lock_bh_state(bh);
2119 	spin_lock(&journal->j_list_lock);
2120 
2121 	jh = jbd2_journal_grab_journal_head(bh);
2122 	if (!jh)
2123 		goto zap_buffer_no_jh;
2124 
2125 	/*
2126 	 * We cannot remove the buffer from checkpoint lists until the
2127 	 * transaction adding inode to orphan list (let's call it T)
2128 	 * is committed.  Otherwise if the transaction changing the
2129 	 * buffer would be cleaned from the journal before T is
2130 	 * committed, a crash will cause that the correct contents of
2131 	 * the buffer will be lost.  On the other hand we have to
2132 	 * clear the buffer dirty bit at latest at the moment when the
2133 	 * transaction marking the buffer as freed in the filesystem
2134 	 * structures is committed because from that moment on the
2135 	 * block can be reallocated and used by a different page.
2136 	 * Since the block hasn't been freed yet but the inode has
2137 	 * already been added to orphan list, it is safe for us to add
2138 	 * the buffer to BJ_Forget list of the newest transaction.
2139 	 *
2140 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2141 	 * because the buffer_head may be attached to the page straddling
2142 	 * i_size (can happen only when blocksize < pagesize) and thus the
2143 	 * buffer_head can be reused when the file is extended again. So we end
2144 	 * up keeping around invalidated buffers attached to transactions'
2145 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2146 	 * the transaction this buffer was modified in.
2147 	 */
2148 	transaction = jh->b_transaction;
2149 	if (transaction == NULL) {
2150 		/* First case: not on any transaction.  If it
2151 		 * has no checkpoint link, then we can zap it:
2152 		 * it's a writeback-mode buffer so we don't care
2153 		 * if it hits disk safely. */
2154 		if (!jh->b_cp_transaction) {
2155 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2156 			goto zap_buffer;
2157 		}
2158 
2159 		if (!buffer_dirty(bh)) {
2160 			/* bdflush has written it.  We can drop it now */
2161 			__jbd2_journal_remove_checkpoint(jh);
2162 			goto zap_buffer;
2163 		}
2164 
2165 		/* OK, it must be in the journal but still not
2166 		 * written fully to disk: it's metadata or
2167 		 * journaled data... */
2168 
2169 		if (journal->j_running_transaction) {
2170 			/* ... and once the current transaction has
2171 			 * committed, the buffer won't be needed any
2172 			 * longer. */
2173 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2174 			may_free = __dispose_buffer(jh,
2175 					journal->j_running_transaction);
2176 			goto zap_buffer;
2177 		} else {
2178 			/* There is no currently-running transaction. So the
2179 			 * orphan record which we wrote for this file must have
2180 			 * passed into commit.  We must attach this buffer to
2181 			 * the committing transaction, if it exists. */
2182 			if (journal->j_committing_transaction) {
2183 				JBUFFER_TRACE(jh, "give to committing trans");
2184 				may_free = __dispose_buffer(jh,
2185 					journal->j_committing_transaction);
2186 				goto zap_buffer;
2187 			} else {
2188 				/* The orphan record's transaction has
2189 				 * committed.  We can cleanse this buffer */
2190 				clear_buffer_jbddirty(bh);
2191 				__jbd2_journal_remove_checkpoint(jh);
2192 				goto zap_buffer;
2193 			}
2194 		}
2195 	} else if (transaction == journal->j_committing_transaction) {
2196 		JBUFFER_TRACE(jh, "on committing transaction");
2197 		/*
2198 		 * The buffer is committing, we simply cannot touch
2199 		 * it. If the page is straddling i_size we have to wait
2200 		 * for commit and try again.
2201 		 */
2202 		if (partial_page) {
2203 			jbd2_journal_put_journal_head(jh);
2204 			spin_unlock(&journal->j_list_lock);
2205 			jbd_unlock_bh_state(bh);
2206 			write_unlock(&journal->j_state_lock);
2207 			return -EBUSY;
2208 		}
2209 		/*
2210 		 * OK, buffer won't be reachable after truncate. We just set
2211 		 * j_next_transaction to the running transaction (if there is
2212 		 * one) and mark buffer as freed so that commit code knows it
2213 		 * should clear dirty bits when it is done with the buffer.
2214 		 */
2215 		set_buffer_freed(bh);
2216 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2217 			jh->b_next_transaction = journal->j_running_transaction;
2218 		jbd2_journal_put_journal_head(jh);
2219 		spin_unlock(&journal->j_list_lock);
2220 		jbd_unlock_bh_state(bh);
2221 		write_unlock(&journal->j_state_lock);
2222 		return 0;
2223 	} else {
2224 		/* Good, the buffer belongs to the running transaction.
2225 		 * We are writing our own transaction's data, not any
2226 		 * previous one's, so it is safe to throw it away
2227 		 * (remember that we expect the filesystem to have set
2228 		 * i_size already for this truncate so recovery will not
2229 		 * expose the disk blocks we are discarding here.) */
2230 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2231 		JBUFFER_TRACE(jh, "on running transaction");
2232 		may_free = __dispose_buffer(jh, transaction);
2233 	}
2234 
2235 zap_buffer:
2236 	/*
2237 	 * This is tricky. Although the buffer is truncated, it may be reused
2238 	 * if blocksize < pagesize and it is attached to the page straddling
2239 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2240 	 * running transaction, journal_get_write_access() won't clear
2241 	 * b_modified and credit accounting gets confused. So clear b_modified
2242 	 * here.
2243 	 */
2244 	jh->b_modified = 0;
2245 	jbd2_journal_put_journal_head(jh);
2246 zap_buffer_no_jh:
2247 	spin_unlock(&journal->j_list_lock);
2248 	jbd_unlock_bh_state(bh);
2249 	write_unlock(&journal->j_state_lock);
2250 zap_buffer_unlocked:
2251 	clear_buffer_dirty(bh);
2252 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2253 	clear_buffer_mapped(bh);
2254 	clear_buffer_req(bh);
2255 	clear_buffer_new(bh);
2256 	clear_buffer_delay(bh);
2257 	clear_buffer_unwritten(bh);
2258 	bh->b_bdev = NULL;
2259 	return may_free;
2260 }
2261 
2262 /**
2263  * void jbd2_journal_invalidatepage()
2264  * @journal: journal to use for flush...
2265  * @page:    page to flush
2266  * @offset:  start of the range to invalidate
2267  * @length:  length of the range to invalidate
2268  *
2269  * Reap page buffers containing data after in the specified range in page.
2270  * Can return -EBUSY if buffers are part of the committing transaction and
2271  * the page is straddling i_size. Caller then has to wait for current commit
2272  * and try again.
2273  */
2274 int jbd2_journal_invalidatepage(journal_t *journal,
2275 				struct page *page,
2276 				unsigned int offset,
2277 				unsigned int length)
2278 {
2279 	struct buffer_head *head, *bh, *next;
2280 	unsigned int stop = offset + length;
2281 	unsigned int curr_off = 0;
2282 	int partial_page = (offset || length < PAGE_SIZE);
2283 	int may_free = 1;
2284 	int ret = 0;
2285 
2286 	if (!PageLocked(page))
2287 		BUG();
2288 	if (!page_has_buffers(page))
2289 		return 0;
2290 
2291 	BUG_ON(stop > PAGE_SIZE || stop < length);
2292 
2293 	/* We will potentially be playing with lists other than just the
2294 	 * data lists (especially for journaled data mode), so be
2295 	 * cautious in our locking. */
2296 
2297 	head = bh = page_buffers(page);
2298 	do {
2299 		unsigned int next_off = curr_off + bh->b_size;
2300 		next = bh->b_this_page;
2301 
2302 		if (next_off > stop)
2303 			return 0;
2304 
2305 		if (offset <= curr_off) {
2306 			/* This block is wholly outside the truncation point */
2307 			lock_buffer(bh);
2308 			ret = journal_unmap_buffer(journal, bh, partial_page);
2309 			unlock_buffer(bh);
2310 			if (ret < 0)
2311 				return ret;
2312 			may_free &= ret;
2313 		}
2314 		curr_off = next_off;
2315 		bh = next;
2316 
2317 	} while (bh != head);
2318 
2319 	if (!partial_page) {
2320 		if (may_free && try_to_free_buffers(page))
2321 			J_ASSERT(!page_has_buffers(page));
2322 	}
2323 	return 0;
2324 }
2325 
2326 /*
2327  * File a buffer on the given transaction list.
2328  */
2329 void __jbd2_journal_file_buffer(struct journal_head *jh,
2330 			transaction_t *transaction, int jlist)
2331 {
2332 	struct journal_head **list = NULL;
2333 	int was_dirty = 0;
2334 	struct buffer_head *bh = jh2bh(jh);
2335 
2336 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2337 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2338 
2339 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2340 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2341 				jh->b_transaction == NULL);
2342 
2343 	if (jh->b_transaction && jh->b_jlist == jlist)
2344 		return;
2345 
2346 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2347 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2348 		/*
2349 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2350 		 * instead of buffer_dirty. We should not see a dirty bit set
2351 		 * here because we clear it in do_get_write_access but e.g.
2352 		 * tune2fs can modify the sb and set the dirty bit at any time
2353 		 * so we try to gracefully handle that.
2354 		 */
2355 		if (buffer_dirty(bh))
2356 			warn_dirty_buffer(bh);
2357 		if (test_clear_buffer_dirty(bh) ||
2358 		    test_clear_buffer_jbddirty(bh))
2359 			was_dirty = 1;
2360 	}
2361 
2362 	if (jh->b_transaction)
2363 		__jbd2_journal_temp_unlink_buffer(jh);
2364 	else
2365 		jbd2_journal_grab_journal_head(bh);
2366 	jh->b_transaction = transaction;
2367 
2368 	switch (jlist) {
2369 	case BJ_None:
2370 		J_ASSERT_JH(jh, !jh->b_committed_data);
2371 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2372 		return;
2373 	case BJ_Metadata:
2374 		transaction->t_nr_buffers++;
2375 		list = &transaction->t_buffers;
2376 		break;
2377 	case BJ_Forget:
2378 		list = &transaction->t_forget;
2379 		break;
2380 	case BJ_Shadow:
2381 		list = &transaction->t_shadow_list;
2382 		break;
2383 	case BJ_Reserved:
2384 		list = &transaction->t_reserved_list;
2385 		break;
2386 	}
2387 
2388 	__blist_add_buffer(list, jh);
2389 	jh->b_jlist = jlist;
2390 
2391 	if (was_dirty)
2392 		set_buffer_jbddirty(bh);
2393 }
2394 
2395 void jbd2_journal_file_buffer(struct journal_head *jh,
2396 				transaction_t *transaction, int jlist)
2397 {
2398 	jbd_lock_bh_state(jh2bh(jh));
2399 	spin_lock(&transaction->t_journal->j_list_lock);
2400 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2401 	spin_unlock(&transaction->t_journal->j_list_lock);
2402 	jbd_unlock_bh_state(jh2bh(jh));
2403 }
2404 
2405 /*
2406  * Remove a buffer from its current buffer list in preparation for
2407  * dropping it from its current transaction entirely.  If the buffer has
2408  * already started to be used by a subsequent transaction, refile the
2409  * buffer on that transaction's metadata list.
2410  *
2411  * Called under j_list_lock
2412  * Called under jbd_lock_bh_state(jh2bh(jh))
2413  *
2414  * jh and bh may be already free when this function returns
2415  */
2416 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2417 {
2418 	int was_dirty, jlist;
2419 	struct buffer_head *bh = jh2bh(jh);
2420 
2421 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2422 	if (jh->b_transaction)
2423 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2424 
2425 	/* If the buffer is now unused, just drop it. */
2426 	if (jh->b_next_transaction == NULL) {
2427 		__jbd2_journal_unfile_buffer(jh);
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * It has been modified by a later transaction: add it to the new
2433 	 * transaction's metadata list.
2434 	 */
2435 
2436 	was_dirty = test_clear_buffer_jbddirty(bh);
2437 	__jbd2_journal_temp_unlink_buffer(jh);
2438 	/*
2439 	 * We set b_transaction here because b_next_transaction will inherit
2440 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2441 	 * take a new one.
2442 	 */
2443 	jh->b_transaction = jh->b_next_transaction;
2444 	jh->b_next_transaction = NULL;
2445 	if (buffer_freed(bh))
2446 		jlist = BJ_Forget;
2447 	else if (jh->b_modified)
2448 		jlist = BJ_Metadata;
2449 	else
2450 		jlist = BJ_Reserved;
2451 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2452 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2453 
2454 	if (was_dirty)
2455 		set_buffer_jbddirty(bh);
2456 }
2457 
2458 /*
2459  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2460  * bh reference so that we can safely unlock bh.
2461  *
2462  * The jh and bh may be freed by this call.
2463  */
2464 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2465 {
2466 	struct buffer_head *bh = jh2bh(jh);
2467 
2468 	/* Get reference so that buffer cannot be freed before we unlock it */
2469 	get_bh(bh);
2470 	jbd_lock_bh_state(bh);
2471 	spin_lock(&journal->j_list_lock);
2472 	__jbd2_journal_refile_buffer(jh);
2473 	jbd_unlock_bh_state(bh);
2474 	spin_unlock(&journal->j_list_lock);
2475 	__brelse(bh);
2476 }
2477 
2478 /*
2479  * File inode in the inode list of the handle's transaction
2480  */
2481 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2482 				   unsigned long flags)
2483 {
2484 	transaction_t *transaction = handle->h_transaction;
2485 	journal_t *journal;
2486 
2487 	if (is_handle_aborted(handle))
2488 		return -EROFS;
2489 	journal = transaction->t_journal;
2490 
2491 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2492 			transaction->t_tid);
2493 
2494 	/*
2495 	 * First check whether inode isn't already on the transaction's
2496 	 * lists without taking the lock. Note that this check is safe
2497 	 * without the lock as we cannot race with somebody removing inode
2498 	 * from the transaction. The reason is that we remove inode from the
2499 	 * transaction only in journal_release_jbd_inode() and when we commit
2500 	 * the transaction. We are guarded from the first case by holding
2501 	 * a reference to the inode. We are safe against the second case
2502 	 * because if jinode->i_transaction == transaction, commit code
2503 	 * cannot touch the transaction because we hold reference to it,
2504 	 * and if jinode->i_next_transaction == transaction, commit code
2505 	 * will only file the inode where we want it.
2506 	 */
2507 	if ((jinode->i_transaction == transaction ||
2508 	    jinode->i_next_transaction == transaction) &&
2509 	    (jinode->i_flags & flags) == flags)
2510 		return 0;
2511 
2512 	spin_lock(&journal->j_list_lock);
2513 	jinode->i_flags |= flags;
2514 	/* Is inode already attached where we need it? */
2515 	if (jinode->i_transaction == transaction ||
2516 	    jinode->i_next_transaction == transaction)
2517 		goto done;
2518 
2519 	/*
2520 	 * We only ever set this variable to 1 so the test is safe. Since
2521 	 * t_need_data_flush is likely to be set, we do the test to save some
2522 	 * cacheline bouncing
2523 	 */
2524 	if (!transaction->t_need_data_flush)
2525 		transaction->t_need_data_flush = 1;
2526 	/* On some different transaction's list - should be
2527 	 * the committing one */
2528 	if (jinode->i_transaction) {
2529 		J_ASSERT(jinode->i_next_transaction == NULL);
2530 		J_ASSERT(jinode->i_transaction ==
2531 					journal->j_committing_transaction);
2532 		jinode->i_next_transaction = transaction;
2533 		goto done;
2534 	}
2535 	/* Not on any transaction list... */
2536 	J_ASSERT(!jinode->i_next_transaction);
2537 	jinode->i_transaction = transaction;
2538 	list_add(&jinode->i_list, &transaction->t_inode_list);
2539 done:
2540 	spin_unlock(&journal->j_list_lock);
2541 
2542 	return 0;
2543 }
2544 
2545 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2546 {
2547 	return jbd2_journal_file_inode(handle, jinode,
2548 				       JI_WRITE_DATA | JI_WAIT_DATA);
2549 }
2550 
2551 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2552 {
2553 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2554 }
2555 
2556 /*
2557  * File truncate and transaction commit interact with each other in a
2558  * non-trivial way.  If a transaction writing data block A is
2559  * committing, we cannot discard the data by truncate until we have
2560  * written them.  Otherwise if we crashed after the transaction with
2561  * write has committed but before the transaction with truncate has
2562  * committed, we could see stale data in block A.  This function is a
2563  * helper to solve this problem.  It starts writeout of the truncated
2564  * part in case it is in the committing transaction.
2565  *
2566  * Filesystem code must call this function when inode is journaled in
2567  * ordered mode before truncation happens and after the inode has been
2568  * placed on orphan list with the new inode size. The second condition
2569  * avoids the race that someone writes new data and we start
2570  * committing the transaction after this function has been called but
2571  * before a transaction for truncate is started (and furthermore it
2572  * allows us to optimize the case where the addition to orphan list
2573  * happens in the same transaction as write --- we don't have to write
2574  * any data in such case).
2575  */
2576 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2577 					struct jbd2_inode *jinode,
2578 					loff_t new_size)
2579 {
2580 	transaction_t *inode_trans, *commit_trans;
2581 	int ret = 0;
2582 
2583 	/* This is a quick check to avoid locking if not necessary */
2584 	if (!jinode->i_transaction)
2585 		goto out;
2586 	/* Locks are here just to force reading of recent values, it is
2587 	 * enough that the transaction was not committing before we started
2588 	 * a transaction adding the inode to orphan list */
2589 	read_lock(&journal->j_state_lock);
2590 	commit_trans = journal->j_committing_transaction;
2591 	read_unlock(&journal->j_state_lock);
2592 	spin_lock(&journal->j_list_lock);
2593 	inode_trans = jinode->i_transaction;
2594 	spin_unlock(&journal->j_list_lock);
2595 	if (inode_trans == commit_trans) {
2596 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2597 			new_size, LLONG_MAX);
2598 		if (ret)
2599 			jbd2_journal_abort(journal, ret);
2600 	}
2601 out:
2602 	return ret;
2603 }
2604