1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 #include <linux/sched/mm.h> 33 34 #include <trace/events/jbd2.h> 35 36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 38 39 static struct kmem_cache *transaction_cache; 40 int __init jbd2_journal_init_transaction_cache(void) 41 { 42 J_ASSERT(!transaction_cache); 43 transaction_cache = kmem_cache_create("jbd2_transaction_s", 44 sizeof(transaction_t), 45 0, 46 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 47 NULL); 48 if (transaction_cache) 49 return 0; 50 return -ENOMEM; 51 } 52 53 void jbd2_journal_destroy_transaction_cache(void) 54 { 55 if (transaction_cache) { 56 kmem_cache_destroy(transaction_cache); 57 transaction_cache = NULL; 58 } 59 } 60 61 void jbd2_journal_free_transaction(transaction_t *transaction) 62 { 63 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 64 return; 65 kmem_cache_free(transaction_cache, transaction); 66 } 67 68 /* 69 * jbd2_get_transaction: obtain a new transaction_t object. 70 * 71 * Simply allocate and initialise a new transaction. Create it in 72 * RUNNING state and add it to the current journal (which should not 73 * have an existing running transaction: we only make a new transaction 74 * once we have started to commit the old one). 75 * 76 * Preconditions: 77 * The journal MUST be locked. We don't perform atomic mallocs on the 78 * new transaction and we can't block without protecting against other 79 * processes trying to touch the journal while it is in transition. 80 * 81 */ 82 83 static transaction_t * 84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 85 { 86 transaction->t_journal = journal; 87 transaction->t_state = T_RUNNING; 88 transaction->t_start_time = ktime_get(); 89 transaction->t_tid = journal->j_transaction_sequence++; 90 transaction->t_expires = jiffies + journal->j_commit_interval; 91 spin_lock_init(&transaction->t_handle_lock); 92 atomic_set(&transaction->t_updates, 0); 93 atomic_set(&transaction->t_outstanding_credits, 94 atomic_read(&journal->j_reserved_credits)); 95 atomic_set(&transaction->t_handle_count, 0); 96 INIT_LIST_HEAD(&transaction->t_inode_list); 97 INIT_LIST_HEAD(&transaction->t_private_list); 98 99 /* Set up the commit timer for the new transaction. */ 100 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 101 add_timer(&journal->j_commit_timer); 102 103 J_ASSERT(journal->j_running_transaction == NULL); 104 journal->j_running_transaction = transaction; 105 transaction->t_max_wait = 0; 106 transaction->t_start = jiffies; 107 transaction->t_requested = 0; 108 109 return transaction; 110 } 111 112 /* 113 * Handle management. 114 * 115 * A handle_t is an object which represents a single atomic update to a 116 * filesystem, and which tracks all of the modifications which form part 117 * of that one update. 118 */ 119 120 /* 121 * Update transaction's maximum wait time, if debugging is enabled. 122 * 123 * In order for t_max_wait to be reliable, it must be protected by a 124 * lock. But doing so will mean that start_this_handle() can not be 125 * run in parallel on SMP systems, which limits our scalability. So 126 * unless debugging is enabled, we no longer update t_max_wait, which 127 * means that maximum wait time reported by the jbd2_run_stats 128 * tracepoint will always be zero. 129 */ 130 static inline void update_t_max_wait(transaction_t *transaction, 131 unsigned long ts) 132 { 133 #ifdef CONFIG_JBD2_DEBUG 134 if (jbd2_journal_enable_debug && 135 time_after(transaction->t_start, ts)) { 136 ts = jbd2_time_diff(ts, transaction->t_start); 137 spin_lock(&transaction->t_handle_lock); 138 if (ts > transaction->t_max_wait) 139 transaction->t_max_wait = ts; 140 spin_unlock(&transaction->t_handle_lock); 141 } 142 #endif 143 } 144 145 /* 146 * Wait until running transaction passes T_LOCKED state. Also starts the commit 147 * if needed. The function expects running transaction to exist and releases 148 * j_state_lock. 149 */ 150 static void wait_transaction_locked(journal_t *journal) 151 __releases(journal->j_state_lock) 152 { 153 DEFINE_WAIT(wait); 154 int need_to_start; 155 tid_t tid = journal->j_running_transaction->t_tid; 156 157 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 158 TASK_UNINTERRUPTIBLE); 159 need_to_start = !tid_geq(journal->j_commit_request, tid); 160 read_unlock(&journal->j_state_lock); 161 if (need_to_start) 162 jbd2_log_start_commit(journal, tid); 163 jbd2_might_wait_for_commit(journal); 164 schedule(); 165 finish_wait(&journal->j_wait_transaction_locked, &wait); 166 } 167 168 static void sub_reserved_credits(journal_t *journal, int blocks) 169 { 170 atomic_sub(blocks, &journal->j_reserved_credits); 171 wake_up(&journal->j_wait_reserved); 172 } 173 174 /* 175 * Wait until we can add credits for handle to the running transaction. Called 176 * with j_state_lock held for reading. Returns 0 if handle joined the running 177 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 178 * caller must retry. 179 */ 180 static int add_transaction_credits(journal_t *journal, int blocks, 181 int rsv_blocks) 182 { 183 transaction_t *t = journal->j_running_transaction; 184 int needed; 185 int total = blocks + rsv_blocks; 186 187 /* 188 * If the current transaction is locked down for commit, wait 189 * for the lock to be released. 190 */ 191 if (t->t_state == T_LOCKED) { 192 wait_transaction_locked(journal); 193 return 1; 194 } 195 196 /* 197 * If there is not enough space left in the log to write all 198 * potential buffers requested by this operation, we need to 199 * stall pending a log checkpoint to free some more log space. 200 */ 201 needed = atomic_add_return(total, &t->t_outstanding_credits); 202 if (needed > journal->j_max_transaction_buffers) { 203 /* 204 * If the current transaction is already too large, 205 * then start to commit it: we can then go back and 206 * attach this handle to a new transaction. 207 */ 208 atomic_sub(total, &t->t_outstanding_credits); 209 210 /* 211 * Is the number of reserved credits in the current transaction too 212 * big to fit this handle? Wait until reserved credits are freed. 213 */ 214 if (atomic_read(&journal->j_reserved_credits) + total > 215 journal->j_max_transaction_buffers) { 216 read_unlock(&journal->j_state_lock); 217 jbd2_might_wait_for_commit(journal); 218 wait_event(journal->j_wait_reserved, 219 atomic_read(&journal->j_reserved_credits) + total <= 220 journal->j_max_transaction_buffers); 221 return 1; 222 } 223 224 wait_transaction_locked(journal); 225 return 1; 226 } 227 228 /* 229 * The commit code assumes that it can get enough log space 230 * without forcing a checkpoint. This is *critical* for 231 * correctness: a checkpoint of a buffer which is also 232 * associated with a committing transaction creates a deadlock, 233 * so commit simply cannot force through checkpoints. 234 * 235 * We must therefore ensure the necessary space in the journal 236 * *before* starting to dirty potentially checkpointed buffers 237 * in the new transaction. 238 */ 239 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 jbd2_might_wait_for_commit(journal); 243 write_lock(&journal->j_state_lock); 244 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 245 __jbd2_log_wait_for_space(journal); 246 write_unlock(&journal->j_state_lock); 247 return 1; 248 } 249 250 /* No reservation? We are done... */ 251 if (!rsv_blocks) 252 return 0; 253 254 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 255 /* We allow at most half of a transaction to be reserved */ 256 if (needed > journal->j_max_transaction_buffers / 2) { 257 sub_reserved_credits(journal, rsv_blocks); 258 atomic_sub(total, &t->t_outstanding_credits); 259 read_unlock(&journal->j_state_lock); 260 jbd2_might_wait_for_commit(journal); 261 wait_event(journal->j_wait_reserved, 262 atomic_read(&journal->j_reserved_credits) + rsv_blocks 263 <= journal->j_max_transaction_buffers / 2); 264 return 1; 265 } 266 return 0; 267 } 268 269 /* 270 * start_this_handle: Given a handle, deal with any locking or stalling 271 * needed to make sure that there is enough journal space for the handle 272 * to begin. Attach the handle to a transaction and set up the 273 * transaction's buffer credits. 274 */ 275 276 static int start_this_handle(journal_t *journal, handle_t *handle, 277 gfp_t gfp_mask) 278 { 279 transaction_t *transaction, *new_transaction = NULL; 280 int blocks = handle->h_buffer_credits; 281 int rsv_blocks = 0; 282 unsigned long ts = jiffies; 283 284 if (handle->h_rsv_handle) 285 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 286 287 /* 288 * Limit the number of reserved credits to 1/2 of maximum transaction 289 * size and limit the number of total credits to not exceed maximum 290 * transaction size per operation. 291 */ 292 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 293 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 294 printk(KERN_ERR "JBD2: %s wants too many credits " 295 "credits:%d rsv_credits:%d max:%d\n", 296 current->comm, blocks, rsv_blocks, 297 journal->j_max_transaction_buffers); 298 WARN_ON(1); 299 return -ENOSPC; 300 } 301 302 alloc_transaction: 303 if (!journal->j_running_transaction) { 304 /* 305 * If __GFP_FS is not present, then we may be being called from 306 * inside the fs writeback layer, so we MUST NOT fail. 307 */ 308 if ((gfp_mask & __GFP_FS) == 0) 309 gfp_mask |= __GFP_NOFAIL; 310 new_transaction = kmem_cache_zalloc(transaction_cache, 311 gfp_mask); 312 if (!new_transaction) 313 return -ENOMEM; 314 } 315 316 jbd_debug(3, "New handle %p going live.\n", handle); 317 318 /* 319 * We need to hold j_state_lock until t_updates has been incremented, 320 * for proper journal barrier handling 321 */ 322 repeat: 323 read_lock(&journal->j_state_lock); 324 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 325 if (is_journal_aborted(journal) || 326 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 327 read_unlock(&journal->j_state_lock); 328 jbd2_journal_free_transaction(new_transaction); 329 return -EROFS; 330 } 331 332 /* 333 * Wait on the journal's transaction barrier if necessary. Specifically 334 * we allow reserved handles to proceed because otherwise commit could 335 * deadlock on page writeback not being able to complete. 336 */ 337 if (!handle->h_reserved && journal->j_barrier_count) { 338 read_unlock(&journal->j_state_lock); 339 wait_event(journal->j_wait_transaction_locked, 340 journal->j_barrier_count == 0); 341 goto repeat; 342 } 343 344 if (!journal->j_running_transaction) { 345 read_unlock(&journal->j_state_lock); 346 if (!new_transaction) 347 goto alloc_transaction; 348 write_lock(&journal->j_state_lock); 349 if (!journal->j_running_transaction && 350 (handle->h_reserved || !journal->j_barrier_count)) { 351 jbd2_get_transaction(journal, new_transaction); 352 new_transaction = NULL; 353 } 354 write_unlock(&journal->j_state_lock); 355 goto repeat; 356 } 357 358 transaction = journal->j_running_transaction; 359 360 if (!handle->h_reserved) { 361 /* We may have dropped j_state_lock - restart in that case */ 362 if (add_transaction_credits(journal, blocks, rsv_blocks)) 363 goto repeat; 364 } else { 365 /* 366 * We have handle reserved so we are allowed to join T_LOCKED 367 * transaction and we don't have to check for transaction size 368 * and journal space. 369 */ 370 sub_reserved_credits(journal, blocks); 371 handle->h_reserved = 0; 372 } 373 374 /* OK, account for the buffers that this operation expects to 375 * use and add the handle to the running transaction. 376 */ 377 update_t_max_wait(transaction, ts); 378 handle->h_transaction = transaction; 379 handle->h_requested_credits = blocks; 380 handle->h_start_jiffies = jiffies; 381 atomic_inc(&transaction->t_updates); 382 atomic_inc(&transaction->t_handle_count); 383 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 384 handle, blocks, 385 atomic_read(&transaction->t_outstanding_credits), 386 jbd2_log_space_left(journal)); 387 read_unlock(&journal->j_state_lock); 388 current->journal_info = handle; 389 390 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 391 jbd2_journal_free_transaction(new_transaction); 392 /* 393 * Ensure that no allocations done while the transaction is open are 394 * going to recurse back to the fs layer. 395 */ 396 handle->saved_alloc_context = memalloc_nofs_save(); 397 return 0; 398 } 399 400 /* Allocate a new handle. This should probably be in a slab... */ 401 static handle_t *new_handle(int nblocks) 402 { 403 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 404 if (!handle) 405 return NULL; 406 handle->h_buffer_credits = nblocks; 407 handle->h_ref = 1; 408 409 return handle; 410 } 411 412 /** 413 * handle_t *jbd2_journal_start() - Obtain a new handle. 414 * @journal: Journal to start transaction on. 415 * @nblocks: number of block buffer we might modify 416 * 417 * We make sure that the transaction can guarantee at least nblocks of 418 * modified buffers in the log. We block until the log can guarantee 419 * that much space. Additionally, if rsv_blocks > 0, we also create another 420 * handle with rsv_blocks reserved blocks in the journal. This handle is 421 * is stored in h_rsv_handle. It is not attached to any particular transaction 422 * and thus doesn't block transaction commit. If the caller uses this reserved 423 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 424 * on the parent handle will dispose the reserved one. Reserved handle has to 425 * be converted to a normal handle using jbd2_journal_start_reserved() before 426 * it can be used. 427 * 428 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 429 * on failure. 430 */ 431 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 432 gfp_t gfp_mask, unsigned int type, 433 unsigned int line_no) 434 { 435 handle_t *handle = journal_current_handle(); 436 int err; 437 438 if (!journal) 439 return ERR_PTR(-EROFS); 440 441 if (handle) { 442 J_ASSERT(handle->h_transaction->t_journal == journal); 443 handle->h_ref++; 444 return handle; 445 } 446 447 handle = new_handle(nblocks); 448 if (!handle) 449 return ERR_PTR(-ENOMEM); 450 if (rsv_blocks) { 451 handle_t *rsv_handle; 452 453 rsv_handle = new_handle(rsv_blocks); 454 if (!rsv_handle) { 455 jbd2_free_handle(handle); 456 return ERR_PTR(-ENOMEM); 457 } 458 rsv_handle->h_reserved = 1; 459 rsv_handle->h_journal = journal; 460 handle->h_rsv_handle = rsv_handle; 461 } 462 463 err = start_this_handle(journal, handle, gfp_mask); 464 if (err < 0) { 465 if (handle->h_rsv_handle) 466 jbd2_free_handle(handle->h_rsv_handle); 467 jbd2_free_handle(handle); 468 return ERR_PTR(err); 469 } 470 handle->h_type = type; 471 handle->h_line_no = line_no; 472 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 473 handle->h_transaction->t_tid, type, 474 line_no, nblocks); 475 476 return handle; 477 } 478 EXPORT_SYMBOL(jbd2__journal_start); 479 480 481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 482 { 483 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 484 } 485 EXPORT_SYMBOL(jbd2_journal_start); 486 487 void jbd2_journal_free_reserved(handle_t *handle) 488 { 489 journal_t *journal = handle->h_journal; 490 491 WARN_ON(!handle->h_reserved); 492 sub_reserved_credits(journal, handle->h_buffer_credits); 493 jbd2_free_handle(handle); 494 } 495 EXPORT_SYMBOL(jbd2_journal_free_reserved); 496 497 /** 498 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 499 * @handle: handle to start 500 * 501 * Start handle that has been previously reserved with jbd2_journal_reserve(). 502 * This attaches @handle to the running transaction (or creates one if there's 503 * not transaction running). Unlike jbd2_journal_start() this function cannot 504 * block on journal commit, checkpointing, or similar stuff. It can block on 505 * memory allocation or frozen journal though. 506 * 507 * Return 0 on success, non-zero on error - handle is freed in that case. 508 */ 509 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 510 unsigned int line_no) 511 { 512 journal_t *journal = handle->h_journal; 513 int ret = -EIO; 514 515 if (WARN_ON(!handle->h_reserved)) { 516 /* Someone passed in normal handle? Just stop it. */ 517 jbd2_journal_stop(handle); 518 return ret; 519 } 520 /* 521 * Usefulness of mixing of reserved and unreserved handles is 522 * questionable. So far nobody seems to need it so just error out. 523 */ 524 if (WARN_ON(current->journal_info)) { 525 jbd2_journal_free_reserved(handle); 526 return ret; 527 } 528 529 handle->h_journal = NULL; 530 /* 531 * GFP_NOFS is here because callers are likely from writeback or 532 * similarly constrained call sites 533 */ 534 ret = start_this_handle(journal, handle, GFP_NOFS); 535 if (ret < 0) { 536 jbd2_journal_free_reserved(handle); 537 return ret; 538 } 539 handle->h_type = type; 540 handle->h_line_no = line_no; 541 return 0; 542 } 543 EXPORT_SYMBOL(jbd2_journal_start_reserved); 544 545 /** 546 * int jbd2_journal_extend() - extend buffer credits. 547 * @handle: handle to 'extend' 548 * @nblocks: nr blocks to try to extend by. 549 * 550 * Some transactions, such as large extends and truncates, can be done 551 * atomically all at once or in several stages. The operation requests 552 * a credit for a number of buffer modifications in advance, but can 553 * extend its credit if it needs more. 554 * 555 * jbd2_journal_extend tries to give the running handle more buffer credits. 556 * It does not guarantee that allocation - this is a best-effort only. 557 * The calling process MUST be able to deal cleanly with a failure to 558 * extend here. 559 * 560 * Return 0 on success, non-zero on failure. 561 * 562 * return code < 0 implies an error 563 * return code > 0 implies normal transaction-full status. 564 */ 565 int jbd2_journal_extend(handle_t *handle, int nblocks) 566 { 567 transaction_t *transaction = handle->h_transaction; 568 journal_t *journal; 569 int result; 570 int wanted; 571 572 if (is_handle_aborted(handle)) 573 return -EROFS; 574 journal = transaction->t_journal; 575 576 result = 1; 577 578 read_lock(&journal->j_state_lock); 579 580 /* Don't extend a locked-down transaction! */ 581 if (transaction->t_state != T_RUNNING) { 582 jbd_debug(3, "denied handle %p %d blocks: " 583 "transaction not running\n", handle, nblocks); 584 goto error_out; 585 } 586 587 spin_lock(&transaction->t_handle_lock); 588 wanted = atomic_add_return(nblocks, 589 &transaction->t_outstanding_credits); 590 591 if (wanted > journal->j_max_transaction_buffers) { 592 jbd_debug(3, "denied handle %p %d blocks: " 593 "transaction too large\n", handle, nblocks); 594 atomic_sub(nblocks, &transaction->t_outstanding_credits); 595 goto unlock; 596 } 597 598 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 599 jbd2_log_space_left(journal)) { 600 jbd_debug(3, "denied handle %p %d blocks: " 601 "insufficient log space\n", handle, nblocks); 602 atomic_sub(nblocks, &transaction->t_outstanding_credits); 603 goto unlock; 604 } 605 606 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 607 transaction->t_tid, 608 handle->h_type, handle->h_line_no, 609 handle->h_buffer_credits, 610 nblocks); 611 612 handle->h_buffer_credits += nblocks; 613 handle->h_requested_credits += nblocks; 614 result = 0; 615 616 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 617 unlock: 618 spin_unlock(&transaction->t_handle_lock); 619 error_out: 620 read_unlock(&journal->j_state_lock); 621 return result; 622 } 623 624 625 /** 626 * int jbd2_journal_restart() - restart a handle . 627 * @handle: handle to restart 628 * @nblocks: nr credits requested 629 * 630 * Restart a handle for a multi-transaction filesystem 631 * operation. 632 * 633 * If the jbd2_journal_extend() call above fails to grant new buffer credits 634 * to a running handle, a call to jbd2_journal_restart will commit the 635 * handle's transaction so far and reattach the handle to a new 636 * transaction capable of guaranteeing the requested number of 637 * credits. We preserve reserved handle if there's any attached to the 638 * passed in handle. 639 */ 640 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 641 { 642 transaction_t *transaction = handle->h_transaction; 643 journal_t *journal; 644 tid_t tid; 645 int need_to_start, ret; 646 647 /* If we've had an abort of any type, don't even think about 648 * actually doing the restart! */ 649 if (is_handle_aborted(handle)) 650 return 0; 651 journal = transaction->t_journal; 652 653 /* 654 * First unlink the handle from its current transaction, and start the 655 * commit on that. 656 */ 657 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 658 J_ASSERT(journal_current_handle() == handle); 659 660 read_lock(&journal->j_state_lock); 661 spin_lock(&transaction->t_handle_lock); 662 atomic_sub(handle->h_buffer_credits, 663 &transaction->t_outstanding_credits); 664 if (handle->h_rsv_handle) { 665 sub_reserved_credits(journal, 666 handle->h_rsv_handle->h_buffer_credits); 667 } 668 if (atomic_dec_and_test(&transaction->t_updates)) 669 wake_up(&journal->j_wait_updates); 670 tid = transaction->t_tid; 671 spin_unlock(&transaction->t_handle_lock); 672 handle->h_transaction = NULL; 673 current->journal_info = NULL; 674 675 jbd_debug(2, "restarting handle %p\n", handle); 676 need_to_start = !tid_geq(journal->j_commit_request, tid); 677 read_unlock(&journal->j_state_lock); 678 if (need_to_start) 679 jbd2_log_start_commit(journal, tid); 680 681 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 682 handle->h_buffer_credits = nblocks; 683 ret = start_this_handle(journal, handle, gfp_mask); 684 return ret; 685 } 686 EXPORT_SYMBOL(jbd2__journal_restart); 687 688 689 int jbd2_journal_restart(handle_t *handle, int nblocks) 690 { 691 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 692 } 693 EXPORT_SYMBOL(jbd2_journal_restart); 694 695 /** 696 * void jbd2_journal_lock_updates () - establish a transaction barrier. 697 * @journal: Journal to establish a barrier on. 698 * 699 * This locks out any further updates from being started, and blocks 700 * until all existing updates have completed, returning only once the 701 * journal is in a quiescent state with no updates running. 702 * 703 * The journal lock should not be held on entry. 704 */ 705 void jbd2_journal_lock_updates(journal_t *journal) 706 { 707 DEFINE_WAIT(wait); 708 709 jbd2_might_wait_for_commit(journal); 710 711 write_lock(&journal->j_state_lock); 712 ++journal->j_barrier_count; 713 714 /* Wait until there are no reserved handles */ 715 if (atomic_read(&journal->j_reserved_credits)) { 716 write_unlock(&journal->j_state_lock); 717 wait_event(journal->j_wait_reserved, 718 atomic_read(&journal->j_reserved_credits) == 0); 719 write_lock(&journal->j_state_lock); 720 } 721 722 /* Wait until there are no running updates */ 723 while (1) { 724 transaction_t *transaction = journal->j_running_transaction; 725 726 if (!transaction) 727 break; 728 729 spin_lock(&transaction->t_handle_lock); 730 prepare_to_wait(&journal->j_wait_updates, &wait, 731 TASK_UNINTERRUPTIBLE); 732 if (!atomic_read(&transaction->t_updates)) { 733 spin_unlock(&transaction->t_handle_lock); 734 finish_wait(&journal->j_wait_updates, &wait); 735 break; 736 } 737 spin_unlock(&transaction->t_handle_lock); 738 write_unlock(&journal->j_state_lock); 739 schedule(); 740 finish_wait(&journal->j_wait_updates, &wait); 741 write_lock(&journal->j_state_lock); 742 } 743 write_unlock(&journal->j_state_lock); 744 745 /* 746 * We have now established a barrier against other normal updates, but 747 * we also need to barrier against other jbd2_journal_lock_updates() calls 748 * to make sure that we serialise special journal-locked operations 749 * too. 750 */ 751 mutex_lock(&journal->j_barrier); 752 } 753 754 /** 755 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 756 * @journal: Journal to release the barrier on. 757 * 758 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 759 * 760 * Should be called without the journal lock held. 761 */ 762 void jbd2_journal_unlock_updates (journal_t *journal) 763 { 764 J_ASSERT(journal->j_barrier_count != 0); 765 766 mutex_unlock(&journal->j_barrier); 767 write_lock(&journal->j_state_lock); 768 --journal->j_barrier_count; 769 write_unlock(&journal->j_state_lock); 770 wake_up(&journal->j_wait_transaction_locked); 771 } 772 773 static void warn_dirty_buffer(struct buffer_head *bh) 774 { 775 printk(KERN_WARNING 776 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 777 "There's a risk of filesystem corruption in case of system " 778 "crash.\n", 779 bh->b_bdev, (unsigned long long)bh->b_blocknr); 780 } 781 782 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 783 static void jbd2_freeze_jh_data(struct journal_head *jh) 784 { 785 struct page *page; 786 int offset; 787 char *source; 788 struct buffer_head *bh = jh2bh(jh); 789 790 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 791 page = bh->b_page; 792 offset = offset_in_page(bh->b_data); 793 source = kmap_atomic(page); 794 /* Fire data frozen trigger just before we copy the data */ 795 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 796 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 797 kunmap_atomic(source); 798 799 /* 800 * Now that the frozen data is saved off, we need to store any matching 801 * triggers. 802 */ 803 jh->b_frozen_triggers = jh->b_triggers; 804 } 805 806 /* 807 * If the buffer is already part of the current transaction, then there 808 * is nothing we need to do. If it is already part of a prior 809 * transaction which we are still committing to disk, then we need to 810 * make sure that we do not overwrite the old copy: we do copy-out to 811 * preserve the copy going to disk. We also account the buffer against 812 * the handle's metadata buffer credits (unless the buffer is already 813 * part of the transaction, that is). 814 * 815 */ 816 static int 817 do_get_write_access(handle_t *handle, struct journal_head *jh, 818 int force_copy) 819 { 820 struct buffer_head *bh; 821 transaction_t *transaction = handle->h_transaction; 822 journal_t *journal; 823 int error; 824 char *frozen_buffer = NULL; 825 unsigned long start_lock, time_lock; 826 827 if (is_handle_aborted(handle)) 828 return -EROFS; 829 journal = transaction->t_journal; 830 831 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 832 833 JBUFFER_TRACE(jh, "entry"); 834 repeat: 835 bh = jh2bh(jh); 836 837 /* @@@ Need to check for errors here at some point. */ 838 839 start_lock = jiffies; 840 lock_buffer(bh); 841 jbd_lock_bh_state(bh); 842 843 /* If it takes too long to lock the buffer, trace it */ 844 time_lock = jbd2_time_diff(start_lock, jiffies); 845 if (time_lock > HZ/10) 846 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 847 jiffies_to_msecs(time_lock)); 848 849 /* We now hold the buffer lock so it is safe to query the buffer 850 * state. Is the buffer dirty? 851 * 852 * If so, there are two possibilities. The buffer may be 853 * non-journaled, and undergoing a quite legitimate writeback. 854 * Otherwise, it is journaled, and we don't expect dirty buffers 855 * in that state (the buffers should be marked JBD_Dirty 856 * instead.) So either the IO is being done under our own 857 * control and this is a bug, or it's a third party IO such as 858 * dump(8) (which may leave the buffer scheduled for read --- 859 * ie. locked but not dirty) or tune2fs (which may actually have 860 * the buffer dirtied, ugh.) */ 861 862 if (buffer_dirty(bh)) { 863 /* 864 * First question: is this buffer already part of the current 865 * transaction or the existing committing transaction? 866 */ 867 if (jh->b_transaction) { 868 J_ASSERT_JH(jh, 869 jh->b_transaction == transaction || 870 jh->b_transaction == 871 journal->j_committing_transaction); 872 if (jh->b_next_transaction) 873 J_ASSERT_JH(jh, jh->b_next_transaction == 874 transaction); 875 warn_dirty_buffer(bh); 876 } 877 /* 878 * In any case we need to clean the dirty flag and we must 879 * do it under the buffer lock to be sure we don't race 880 * with running write-out. 881 */ 882 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 883 clear_buffer_dirty(bh); 884 set_buffer_jbddirty(bh); 885 } 886 887 unlock_buffer(bh); 888 889 error = -EROFS; 890 if (is_handle_aborted(handle)) { 891 jbd_unlock_bh_state(bh); 892 goto out; 893 } 894 error = 0; 895 896 /* 897 * The buffer is already part of this transaction if b_transaction or 898 * b_next_transaction points to it 899 */ 900 if (jh->b_transaction == transaction || 901 jh->b_next_transaction == transaction) 902 goto done; 903 904 /* 905 * this is the first time this transaction is touching this buffer, 906 * reset the modified flag 907 */ 908 jh->b_modified = 0; 909 910 /* 911 * If the buffer is not journaled right now, we need to make sure it 912 * doesn't get written to disk before the caller actually commits the 913 * new data 914 */ 915 if (!jh->b_transaction) { 916 JBUFFER_TRACE(jh, "no transaction"); 917 J_ASSERT_JH(jh, !jh->b_next_transaction); 918 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 919 /* 920 * Make sure all stores to jh (b_modified, b_frozen_data) are 921 * visible before attaching it to the running transaction. 922 * Paired with barrier in jbd2_write_access_granted() 923 */ 924 smp_wmb(); 925 spin_lock(&journal->j_list_lock); 926 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 927 spin_unlock(&journal->j_list_lock); 928 goto done; 929 } 930 /* 931 * If there is already a copy-out version of this buffer, then we don't 932 * need to make another one 933 */ 934 if (jh->b_frozen_data) { 935 JBUFFER_TRACE(jh, "has frozen data"); 936 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 937 goto attach_next; 938 } 939 940 JBUFFER_TRACE(jh, "owned by older transaction"); 941 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 942 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 943 944 /* 945 * There is one case we have to be very careful about. If the 946 * committing transaction is currently writing this buffer out to disk 947 * and has NOT made a copy-out, then we cannot modify the buffer 948 * contents at all right now. The essence of copy-out is that it is 949 * the extra copy, not the primary copy, which gets journaled. If the 950 * primary copy is already going to disk then we cannot do copy-out 951 * here. 952 */ 953 if (buffer_shadow(bh)) { 954 JBUFFER_TRACE(jh, "on shadow: sleep"); 955 jbd_unlock_bh_state(bh); 956 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 957 goto repeat; 958 } 959 960 /* 961 * Only do the copy if the currently-owning transaction still needs it. 962 * If buffer isn't on BJ_Metadata list, the committing transaction is 963 * past that stage (here we use the fact that BH_Shadow is set under 964 * bh_state lock together with refiling to BJ_Shadow list and at this 965 * point we know the buffer doesn't have BH_Shadow set). 966 * 967 * Subtle point, though: if this is a get_undo_access, then we will be 968 * relying on the frozen_data to contain the new value of the 969 * committed_data record after the transaction, so we HAVE to force the 970 * frozen_data copy in that case. 971 */ 972 if (jh->b_jlist == BJ_Metadata || force_copy) { 973 JBUFFER_TRACE(jh, "generate frozen data"); 974 if (!frozen_buffer) { 975 JBUFFER_TRACE(jh, "allocate memory for buffer"); 976 jbd_unlock_bh_state(bh); 977 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 978 GFP_NOFS | __GFP_NOFAIL); 979 goto repeat; 980 } 981 jh->b_frozen_data = frozen_buffer; 982 frozen_buffer = NULL; 983 jbd2_freeze_jh_data(jh); 984 } 985 attach_next: 986 /* 987 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 988 * before attaching it to the running transaction. Paired with barrier 989 * in jbd2_write_access_granted() 990 */ 991 smp_wmb(); 992 jh->b_next_transaction = transaction; 993 994 done: 995 jbd_unlock_bh_state(bh); 996 997 /* 998 * If we are about to journal a buffer, then any revoke pending on it is 999 * no longer valid 1000 */ 1001 jbd2_journal_cancel_revoke(handle, jh); 1002 1003 out: 1004 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1005 jbd2_free(frozen_buffer, bh->b_size); 1006 1007 JBUFFER_TRACE(jh, "exit"); 1008 return error; 1009 } 1010 1011 /* Fast check whether buffer is already attached to the required transaction */ 1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1013 bool undo) 1014 { 1015 struct journal_head *jh; 1016 bool ret = false; 1017 1018 /* Dirty buffers require special handling... */ 1019 if (buffer_dirty(bh)) 1020 return false; 1021 1022 /* 1023 * RCU protects us from dereferencing freed pages. So the checks we do 1024 * are guaranteed not to oops. However the jh slab object can get freed 1025 * & reallocated while we work with it. So we have to be careful. When 1026 * we see jh attached to the running transaction, we know it must stay 1027 * so until the transaction is committed. Thus jh won't be freed and 1028 * will be attached to the same bh while we run. However it can 1029 * happen jh gets freed, reallocated, and attached to the transaction 1030 * just after we get pointer to it from bh. So we have to be careful 1031 * and recheck jh still belongs to our bh before we return success. 1032 */ 1033 rcu_read_lock(); 1034 if (!buffer_jbd(bh)) 1035 goto out; 1036 /* This should be bh2jh() but that doesn't work with inline functions */ 1037 jh = READ_ONCE(bh->b_private); 1038 if (!jh) 1039 goto out; 1040 /* For undo access buffer must have data copied */ 1041 if (undo && !jh->b_committed_data) 1042 goto out; 1043 if (jh->b_transaction != handle->h_transaction && 1044 jh->b_next_transaction != handle->h_transaction) 1045 goto out; 1046 /* 1047 * There are two reasons for the barrier here: 1048 * 1) Make sure to fetch b_bh after we did previous checks so that we 1049 * detect when jh went through free, realloc, attach to transaction 1050 * while we were checking. Paired with implicit barrier in that path. 1051 * 2) So that access to bh done after jbd2_write_access_granted() 1052 * doesn't get reordered and see inconsistent state of concurrent 1053 * do_get_write_access(). 1054 */ 1055 smp_mb(); 1056 if (unlikely(jh->b_bh != bh)) 1057 goto out; 1058 ret = true; 1059 out: 1060 rcu_read_unlock(); 1061 return ret; 1062 } 1063 1064 /** 1065 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1066 * @handle: transaction to add buffer modifications to 1067 * @bh: bh to be used for metadata writes 1068 * 1069 * Returns an error code or 0 on success. 1070 * 1071 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1072 * because we're write()ing a buffer which is also part of a shared mapping. 1073 */ 1074 1075 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1076 { 1077 struct journal_head *jh; 1078 int rc; 1079 1080 if (jbd2_write_access_granted(handle, bh, false)) 1081 return 0; 1082 1083 jh = jbd2_journal_add_journal_head(bh); 1084 /* We do not want to get caught playing with fields which the 1085 * log thread also manipulates. Make sure that the buffer 1086 * completes any outstanding IO before proceeding. */ 1087 rc = do_get_write_access(handle, jh, 0); 1088 jbd2_journal_put_journal_head(jh); 1089 return rc; 1090 } 1091 1092 1093 /* 1094 * When the user wants to journal a newly created buffer_head 1095 * (ie. getblk() returned a new buffer and we are going to populate it 1096 * manually rather than reading off disk), then we need to keep the 1097 * buffer_head locked until it has been completely filled with new 1098 * data. In this case, we should be able to make the assertion that 1099 * the bh is not already part of an existing transaction. 1100 * 1101 * The buffer should already be locked by the caller by this point. 1102 * There is no lock ranking violation: it was a newly created, 1103 * unlocked buffer beforehand. */ 1104 1105 /** 1106 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1107 * @handle: transaction to new buffer to 1108 * @bh: new buffer. 1109 * 1110 * Call this if you create a new bh. 1111 */ 1112 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1113 { 1114 transaction_t *transaction = handle->h_transaction; 1115 journal_t *journal; 1116 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1117 int err; 1118 1119 jbd_debug(5, "journal_head %p\n", jh); 1120 err = -EROFS; 1121 if (is_handle_aborted(handle)) 1122 goto out; 1123 journal = transaction->t_journal; 1124 err = 0; 1125 1126 JBUFFER_TRACE(jh, "entry"); 1127 /* 1128 * The buffer may already belong to this transaction due to pre-zeroing 1129 * in the filesystem's new_block code. It may also be on the previous, 1130 * committing transaction's lists, but it HAS to be in Forget state in 1131 * that case: the transaction must have deleted the buffer for it to be 1132 * reused here. 1133 */ 1134 jbd_lock_bh_state(bh); 1135 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1136 jh->b_transaction == NULL || 1137 (jh->b_transaction == journal->j_committing_transaction && 1138 jh->b_jlist == BJ_Forget))); 1139 1140 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1141 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1142 1143 if (jh->b_transaction == NULL) { 1144 /* 1145 * Previous jbd2_journal_forget() could have left the buffer 1146 * with jbddirty bit set because it was being committed. When 1147 * the commit finished, we've filed the buffer for 1148 * checkpointing and marked it dirty. Now we are reallocating 1149 * the buffer so the transaction freeing it must have 1150 * committed and so it's safe to clear the dirty bit. 1151 */ 1152 clear_buffer_dirty(jh2bh(jh)); 1153 /* first access by this transaction */ 1154 jh->b_modified = 0; 1155 1156 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1157 spin_lock(&journal->j_list_lock); 1158 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1159 spin_unlock(&journal->j_list_lock); 1160 } else if (jh->b_transaction == journal->j_committing_transaction) { 1161 /* first access by this transaction */ 1162 jh->b_modified = 0; 1163 1164 JBUFFER_TRACE(jh, "set next transaction"); 1165 spin_lock(&journal->j_list_lock); 1166 jh->b_next_transaction = transaction; 1167 spin_unlock(&journal->j_list_lock); 1168 } 1169 jbd_unlock_bh_state(bh); 1170 1171 /* 1172 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1173 * blocks which contain freed but then revoked metadata. We need 1174 * to cancel the revoke in case we end up freeing it yet again 1175 * and the reallocating as data - this would cause a second revoke, 1176 * which hits an assertion error. 1177 */ 1178 JBUFFER_TRACE(jh, "cancelling revoke"); 1179 jbd2_journal_cancel_revoke(handle, jh); 1180 out: 1181 jbd2_journal_put_journal_head(jh); 1182 return err; 1183 } 1184 1185 /** 1186 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1187 * non-rewindable consequences 1188 * @handle: transaction 1189 * @bh: buffer to undo 1190 * 1191 * Sometimes there is a need to distinguish between metadata which has 1192 * been committed to disk and that which has not. The ext3fs code uses 1193 * this for freeing and allocating space, we have to make sure that we 1194 * do not reuse freed space until the deallocation has been committed, 1195 * since if we overwrote that space we would make the delete 1196 * un-rewindable in case of a crash. 1197 * 1198 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1199 * buffer for parts of non-rewindable operations such as delete 1200 * operations on the bitmaps. The journaling code must keep a copy of 1201 * the buffer's contents prior to the undo_access call until such time 1202 * as we know that the buffer has definitely been committed to disk. 1203 * 1204 * We never need to know which transaction the committed data is part 1205 * of, buffers touched here are guaranteed to be dirtied later and so 1206 * will be committed to a new transaction in due course, at which point 1207 * we can discard the old committed data pointer. 1208 * 1209 * Returns error number or 0 on success. 1210 */ 1211 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1212 { 1213 int err; 1214 struct journal_head *jh; 1215 char *committed_data = NULL; 1216 1217 JBUFFER_TRACE(jh, "entry"); 1218 if (jbd2_write_access_granted(handle, bh, true)) 1219 return 0; 1220 1221 jh = jbd2_journal_add_journal_head(bh); 1222 /* 1223 * Do this first --- it can drop the journal lock, so we want to 1224 * make sure that obtaining the committed_data is done 1225 * atomically wrt. completion of any outstanding commits. 1226 */ 1227 err = do_get_write_access(handle, jh, 1); 1228 if (err) 1229 goto out; 1230 1231 repeat: 1232 if (!jh->b_committed_data) 1233 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1234 GFP_NOFS|__GFP_NOFAIL); 1235 1236 jbd_lock_bh_state(bh); 1237 if (!jh->b_committed_data) { 1238 /* Copy out the current buffer contents into the 1239 * preserved, committed copy. */ 1240 JBUFFER_TRACE(jh, "generate b_committed data"); 1241 if (!committed_data) { 1242 jbd_unlock_bh_state(bh); 1243 goto repeat; 1244 } 1245 1246 jh->b_committed_data = committed_data; 1247 committed_data = NULL; 1248 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1249 } 1250 jbd_unlock_bh_state(bh); 1251 out: 1252 jbd2_journal_put_journal_head(jh); 1253 if (unlikely(committed_data)) 1254 jbd2_free(committed_data, bh->b_size); 1255 return err; 1256 } 1257 1258 /** 1259 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1260 * @bh: buffer to trigger on 1261 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1262 * 1263 * Set any triggers on this journal_head. This is always safe, because 1264 * triggers for a committing buffer will be saved off, and triggers for 1265 * a running transaction will match the buffer in that transaction. 1266 * 1267 * Call with NULL to clear the triggers. 1268 */ 1269 void jbd2_journal_set_triggers(struct buffer_head *bh, 1270 struct jbd2_buffer_trigger_type *type) 1271 { 1272 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1273 1274 if (WARN_ON(!jh)) 1275 return; 1276 jh->b_triggers = type; 1277 jbd2_journal_put_journal_head(jh); 1278 } 1279 1280 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1281 struct jbd2_buffer_trigger_type *triggers) 1282 { 1283 struct buffer_head *bh = jh2bh(jh); 1284 1285 if (!triggers || !triggers->t_frozen) 1286 return; 1287 1288 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1289 } 1290 1291 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1292 struct jbd2_buffer_trigger_type *triggers) 1293 { 1294 if (!triggers || !triggers->t_abort) 1295 return; 1296 1297 triggers->t_abort(triggers, jh2bh(jh)); 1298 } 1299 1300 /** 1301 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1302 * @handle: transaction to add buffer to. 1303 * @bh: buffer to mark 1304 * 1305 * mark dirty metadata which needs to be journaled as part of the current 1306 * transaction. 1307 * 1308 * The buffer must have previously had jbd2_journal_get_write_access() 1309 * called so that it has a valid journal_head attached to the buffer 1310 * head. 1311 * 1312 * The buffer is placed on the transaction's metadata list and is marked 1313 * as belonging to the transaction. 1314 * 1315 * Returns error number or 0 on success. 1316 * 1317 * Special care needs to be taken if the buffer already belongs to the 1318 * current committing transaction (in which case we should have frozen 1319 * data present for that commit). In that case, we don't relink the 1320 * buffer: that only gets done when the old transaction finally 1321 * completes its commit. 1322 */ 1323 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1324 { 1325 transaction_t *transaction = handle->h_transaction; 1326 journal_t *journal; 1327 struct journal_head *jh; 1328 int ret = 0; 1329 1330 if (is_handle_aborted(handle)) 1331 return -EROFS; 1332 if (!buffer_jbd(bh)) { 1333 ret = -EUCLEAN; 1334 goto out; 1335 } 1336 /* 1337 * We don't grab jh reference here since the buffer must be part 1338 * of the running transaction. 1339 */ 1340 jh = bh2jh(bh); 1341 /* 1342 * This and the following assertions are unreliable since we may see jh 1343 * in inconsistent state unless we grab bh_state lock. But this is 1344 * crucial to catch bugs so let's do a reliable check until the 1345 * lockless handling is fully proven. 1346 */ 1347 if (jh->b_transaction != transaction && 1348 jh->b_next_transaction != transaction) { 1349 jbd_lock_bh_state(bh); 1350 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1351 jh->b_next_transaction == transaction); 1352 jbd_unlock_bh_state(bh); 1353 } 1354 if (jh->b_modified == 1) { 1355 /* If it's in our transaction it must be in BJ_Metadata list. */ 1356 if (jh->b_transaction == transaction && 1357 jh->b_jlist != BJ_Metadata) { 1358 jbd_lock_bh_state(bh); 1359 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1360 jh->b_jlist == BJ_Metadata); 1361 jbd_unlock_bh_state(bh); 1362 } 1363 goto out; 1364 } 1365 1366 journal = transaction->t_journal; 1367 jbd_debug(5, "journal_head %p\n", jh); 1368 JBUFFER_TRACE(jh, "entry"); 1369 1370 jbd_lock_bh_state(bh); 1371 1372 if (jh->b_modified == 0) { 1373 /* 1374 * This buffer's got modified and becoming part 1375 * of the transaction. This needs to be done 1376 * once a transaction -bzzz 1377 */ 1378 jh->b_modified = 1; 1379 if (handle->h_buffer_credits <= 0) { 1380 ret = -ENOSPC; 1381 goto out_unlock_bh; 1382 } 1383 handle->h_buffer_credits--; 1384 } 1385 1386 /* 1387 * fastpath, to avoid expensive locking. If this buffer is already 1388 * on the running transaction's metadata list there is nothing to do. 1389 * Nobody can take it off again because there is a handle open. 1390 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1391 * result in this test being false, so we go in and take the locks. 1392 */ 1393 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1394 JBUFFER_TRACE(jh, "fastpath"); 1395 if (unlikely(jh->b_transaction != 1396 journal->j_running_transaction)) { 1397 printk(KERN_ERR "JBD2: %s: " 1398 "jh->b_transaction (%llu, %p, %u) != " 1399 "journal->j_running_transaction (%p, %u)\n", 1400 journal->j_devname, 1401 (unsigned long long) bh->b_blocknr, 1402 jh->b_transaction, 1403 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1404 journal->j_running_transaction, 1405 journal->j_running_transaction ? 1406 journal->j_running_transaction->t_tid : 0); 1407 ret = -EINVAL; 1408 } 1409 goto out_unlock_bh; 1410 } 1411 1412 set_buffer_jbddirty(bh); 1413 1414 /* 1415 * Metadata already on the current transaction list doesn't 1416 * need to be filed. Metadata on another transaction's list must 1417 * be committing, and will be refiled once the commit completes: 1418 * leave it alone for now. 1419 */ 1420 if (jh->b_transaction != transaction) { 1421 JBUFFER_TRACE(jh, "already on other transaction"); 1422 if (unlikely(((jh->b_transaction != 1423 journal->j_committing_transaction)) || 1424 (jh->b_next_transaction != transaction))) { 1425 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1426 "bad jh for block %llu: " 1427 "transaction (%p, %u), " 1428 "jh->b_transaction (%p, %u), " 1429 "jh->b_next_transaction (%p, %u), jlist %u\n", 1430 journal->j_devname, 1431 (unsigned long long) bh->b_blocknr, 1432 transaction, transaction->t_tid, 1433 jh->b_transaction, 1434 jh->b_transaction ? 1435 jh->b_transaction->t_tid : 0, 1436 jh->b_next_transaction, 1437 jh->b_next_transaction ? 1438 jh->b_next_transaction->t_tid : 0, 1439 jh->b_jlist); 1440 WARN_ON(1); 1441 ret = -EINVAL; 1442 } 1443 /* And this case is illegal: we can't reuse another 1444 * transaction's data buffer, ever. */ 1445 goto out_unlock_bh; 1446 } 1447 1448 /* That test should have eliminated the following case: */ 1449 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1450 1451 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1452 spin_lock(&journal->j_list_lock); 1453 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1454 spin_unlock(&journal->j_list_lock); 1455 out_unlock_bh: 1456 jbd_unlock_bh_state(bh); 1457 out: 1458 JBUFFER_TRACE(jh, "exit"); 1459 return ret; 1460 } 1461 1462 /** 1463 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1464 * @handle: transaction handle 1465 * @bh: bh to 'forget' 1466 * 1467 * We can only do the bforget if there are no commits pending against the 1468 * buffer. If the buffer is dirty in the current running transaction we 1469 * can safely unlink it. 1470 * 1471 * bh may not be a journalled buffer at all - it may be a non-JBD 1472 * buffer which came off the hashtable. Check for this. 1473 * 1474 * Decrements bh->b_count by one. 1475 * 1476 * Allow this call even if the handle has aborted --- it may be part of 1477 * the caller's cleanup after an abort. 1478 */ 1479 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1480 { 1481 transaction_t *transaction = handle->h_transaction; 1482 journal_t *journal; 1483 struct journal_head *jh; 1484 int drop_reserve = 0; 1485 int err = 0; 1486 int was_modified = 0; 1487 1488 if (is_handle_aborted(handle)) 1489 return -EROFS; 1490 journal = transaction->t_journal; 1491 1492 BUFFER_TRACE(bh, "entry"); 1493 1494 jbd_lock_bh_state(bh); 1495 1496 if (!buffer_jbd(bh)) 1497 goto not_jbd; 1498 jh = bh2jh(bh); 1499 1500 /* Critical error: attempting to delete a bitmap buffer, maybe? 1501 * Don't do any jbd operations, and return an error. */ 1502 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1503 "inconsistent data on disk")) { 1504 err = -EIO; 1505 goto not_jbd; 1506 } 1507 1508 /* keep track of whether or not this transaction modified us */ 1509 was_modified = jh->b_modified; 1510 1511 /* 1512 * The buffer's going from the transaction, we must drop 1513 * all references -bzzz 1514 */ 1515 jh->b_modified = 0; 1516 1517 if (jh->b_transaction == transaction) { 1518 J_ASSERT_JH(jh, !jh->b_frozen_data); 1519 1520 /* If we are forgetting a buffer which is already part 1521 * of this transaction, then we can just drop it from 1522 * the transaction immediately. */ 1523 clear_buffer_dirty(bh); 1524 clear_buffer_jbddirty(bh); 1525 1526 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1527 1528 /* 1529 * we only want to drop a reference if this transaction 1530 * modified the buffer 1531 */ 1532 if (was_modified) 1533 drop_reserve = 1; 1534 1535 /* 1536 * We are no longer going to journal this buffer. 1537 * However, the commit of this transaction is still 1538 * important to the buffer: the delete that we are now 1539 * processing might obsolete an old log entry, so by 1540 * committing, we can satisfy the buffer's checkpoint. 1541 * 1542 * So, if we have a checkpoint on the buffer, we should 1543 * now refile the buffer on our BJ_Forget list so that 1544 * we know to remove the checkpoint after we commit. 1545 */ 1546 1547 spin_lock(&journal->j_list_lock); 1548 if (jh->b_cp_transaction) { 1549 __jbd2_journal_temp_unlink_buffer(jh); 1550 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1551 } else { 1552 __jbd2_journal_unfile_buffer(jh); 1553 if (!buffer_jbd(bh)) { 1554 spin_unlock(&journal->j_list_lock); 1555 jbd_unlock_bh_state(bh); 1556 __bforget(bh); 1557 goto drop; 1558 } 1559 } 1560 spin_unlock(&journal->j_list_lock); 1561 } else if (jh->b_transaction) { 1562 J_ASSERT_JH(jh, (jh->b_transaction == 1563 journal->j_committing_transaction)); 1564 /* However, if the buffer is still owned by a prior 1565 * (committing) transaction, we can't drop it yet... */ 1566 JBUFFER_TRACE(jh, "belongs to older transaction"); 1567 /* ... but we CAN drop it from the new transaction if we 1568 * have also modified it since the original commit. */ 1569 1570 if (jh->b_next_transaction) { 1571 J_ASSERT(jh->b_next_transaction == transaction); 1572 spin_lock(&journal->j_list_lock); 1573 jh->b_next_transaction = NULL; 1574 spin_unlock(&journal->j_list_lock); 1575 1576 /* 1577 * only drop a reference if this transaction modified 1578 * the buffer 1579 */ 1580 if (was_modified) 1581 drop_reserve = 1; 1582 } 1583 } 1584 1585 not_jbd: 1586 jbd_unlock_bh_state(bh); 1587 __brelse(bh); 1588 drop: 1589 if (drop_reserve) { 1590 /* no need to reserve log space for this block -bzzz */ 1591 handle->h_buffer_credits++; 1592 } 1593 return err; 1594 } 1595 1596 /** 1597 * int jbd2_journal_stop() - complete a transaction 1598 * @handle: transaction to complete. 1599 * 1600 * All done for a particular handle. 1601 * 1602 * There is not much action needed here. We just return any remaining 1603 * buffer credits to the transaction and remove the handle. The only 1604 * complication is that we need to start a commit operation if the 1605 * filesystem is marked for synchronous update. 1606 * 1607 * jbd2_journal_stop itself will not usually return an error, but it may 1608 * do so in unusual circumstances. In particular, expect it to 1609 * return -EIO if a jbd2_journal_abort has been executed since the 1610 * transaction began. 1611 */ 1612 int jbd2_journal_stop(handle_t *handle) 1613 { 1614 transaction_t *transaction = handle->h_transaction; 1615 journal_t *journal; 1616 int err = 0, wait_for_commit = 0; 1617 tid_t tid; 1618 pid_t pid; 1619 1620 if (!transaction) { 1621 /* 1622 * Handle is already detached from the transaction so 1623 * there is nothing to do other than decrease a refcount, 1624 * or free the handle if refcount drops to zero 1625 */ 1626 if (--handle->h_ref > 0) { 1627 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1628 handle->h_ref); 1629 return err; 1630 } else { 1631 if (handle->h_rsv_handle) 1632 jbd2_free_handle(handle->h_rsv_handle); 1633 goto free_and_exit; 1634 } 1635 } 1636 journal = transaction->t_journal; 1637 1638 J_ASSERT(journal_current_handle() == handle); 1639 1640 if (is_handle_aborted(handle)) 1641 err = -EIO; 1642 else 1643 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1644 1645 if (--handle->h_ref > 0) { 1646 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1647 handle->h_ref); 1648 return err; 1649 } 1650 1651 jbd_debug(4, "Handle %p going down\n", handle); 1652 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1653 transaction->t_tid, 1654 handle->h_type, handle->h_line_no, 1655 jiffies - handle->h_start_jiffies, 1656 handle->h_sync, handle->h_requested_credits, 1657 (handle->h_requested_credits - 1658 handle->h_buffer_credits)); 1659 1660 /* 1661 * Implement synchronous transaction batching. If the handle 1662 * was synchronous, don't force a commit immediately. Let's 1663 * yield and let another thread piggyback onto this 1664 * transaction. Keep doing that while new threads continue to 1665 * arrive. It doesn't cost much - we're about to run a commit 1666 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1667 * operations by 30x or more... 1668 * 1669 * We try and optimize the sleep time against what the 1670 * underlying disk can do, instead of having a static sleep 1671 * time. This is useful for the case where our storage is so 1672 * fast that it is more optimal to go ahead and force a flush 1673 * and wait for the transaction to be committed than it is to 1674 * wait for an arbitrary amount of time for new writers to 1675 * join the transaction. We achieve this by measuring how 1676 * long it takes to commit a transaction, and compare it with 1677 * how long this transaction has been running, and if run time 1678 * < commit time then we sleep for the delta and commit. This 1679 * greatly helps super fast disks that would see slowdowns as 1680 * more threads started doing fsyncs. 1681 * 1682 * But don't do this if this process was the most recent one 1683 * to perform a synchronous write. We do this to detect the 1684 * case where a single process is doing a stream of sync 1685 * writes. No point in waiting for joiners in that case. 1686 * 1687 * Setting max_batch_time to 0 disables this completely. 1688 */ 1689 pid = current->pid; 1690 if (handle->h_sync && journal->j_last_sync_writer != pid && 1691 journal->j_max_batch_time) { 1692 u64 commit_time, trans_time; 1693 1694 journal->j_last_sync_writer = pid; 1695 1696 read_lock(&journal->j_state_lock); 1697 commit_time = journal->j_average_commit_time; 1698 read_unlock(&journal->j_state_lock); 1699 1700 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1701 transaction->t_start_time)); 1702 1703 commit_time = max_t(u64, commit_time, 1704 1000*journal->j_min_batch_time); 1705 commit_time = min_t(u64, commit_time, 1706 1000*journal->j_max_batch_time); 1707 1708 if (trans_time < commit_time) { 1709 ktime_t expires = ktime_add_ns(ktime_get(), 1710 commit_time); 1711 set_current_state(TASK_UNINTERRUPTIBLE); 1712 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1713 } 1714 } 1715 1716 if (handle->h_sync) 1717 transaction->t_synchronous_commit = 1; 1718 current->journal_info = NULL; 1719 atomic_sub(handle->h_buffer_credits, 1720 &transaction->t_outstanding_credits); 1721 1722 /* 1723 * If the handle is marked SYNC, we need to set another commit 1724 * going! We also want to force a commit if the current 1725 * transaction is occupying too much of the log, or if the 1726 * transaction is too old now. 1727 */ 1728 if (handle->h_sync || 1729 (atomic_read(&transaction->t_outstanding_credits) > 1730 journal->j_max_transaction_buffers) || 1731 time_after_eq(jiffies, transaction->t_expires)) { 1732 /* Do this even for aborted journals: an abort still 1733 * completes the commit thread, it just doesn't write 1734 * anything to disk. */ 1735 1736 jbd_debug(2, "transaction too old, requesting commit for " 1737 "handle %p\n", handle); 1738 /* This is non-blocking */ 1739 jbd2_log_start_commit(journal, transaction->t_tid); 1740 1741 /* 1742 * Special case: JBD2_SYNC synchronous updates require us 1743 * to wait for the commit to complete. 1744 */ 1745 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1746 wait_for_commit = 1; 1747 } 1748 1749 /* 1750 * Once we drop t_updates, if it goes to zero the transaction 1751 * could start committing on us and eventually disappear. So 1752 * once we do this, we must not dereference transaction 1753 * pointer again. 1754 */ 1755 tid = transaction->t_tid; 1756 if (atomic_dec_and_test(&transaction->t_updates)) { 1757 wake_up(&journal->j_wait_updates); 1758 if (journal->j_barrier_count) 1759 wake_up(&journal->j_wait_transaction_locked); 1760 } 1761 1762 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1763 1764 if (wait_for_commit) 1765 err = jbd2_log_wait_commit(journal, tid); 1766 1767 if (handle->h_rsv_handle) 1768 jbd2_journal_free_reserved(handle->h_rsv_handle); 1769 free_and_exit: 1770 /* 1771 * Scope of the GFP_NOFS context is over here and so we can restore the 1772 * original alloc context. 1773 */ 1774 memalloc_nofs_restore(handle->saved_alloc_context); 1775 jbd2_free_handle(handle); 1776 return err; 1777 } 1778 1779 /* 1780 * 1781 * List management code snippets: various functions for manipulating the 1782 * transaction buffer lists. 1783 * 1784 */ 1785 1786 /* 1787 * Append a buffer to a transaction list, given the transaction's list head 1788 * pointer. 1789 * 1790 * j_list_lock is held. 1791 * 1792 * jbd_lock_bh_state(jh2bh(jh)) is held. 1793 */ 1794 1795 static inline void 1796 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1797 { 1798 if (!*list) { 1799 jh->b_tnext = jh->b_tprev = jh; 1800 *list = jh; 1801 } else { 1802 /* Insert at the tail of the list to preserve order */ 1803 struct journal_head *first = *list, *last = first->b_tprev; 1804 jh->b_tprev = last; 1805 jh->b_tnext = first; 1806 last->b_tnext = first->b_tprev = jh; 1807 } 1808 } 1809 1810 /* 1811 * Remove a buffer from a transaction list, given the transaction's list 1812 * head pointer. 1813 * 1814 * Called with j_list_lock held, and the journal may not be locked. 1815 * 1816 * jbd_lock_bh_state(jh2bh(jh)) is held. 1817 */ 1818 1819 static inline void 1820 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1821 { 1822 if (*list == jh) { 1823 *list = jh->b_tnext; 1824 if (*list == jh) 1825 *list = NULL; 1826 } 1827 jh->b_tprev->b_tnext = jh->b_tnext; 1828 jh->b_tnext->b_tprev = jh->b_tprev; 1829 } 1830 1831 /* 1832 * Remove a buffer from the appropriate transaction list. 1833 * 1834 * Note that this function can *change* the value of 1835 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1836 * t_reserved_list. If the caller is holding onto a copy of one of these 1837 * pointers, it could go bad. Generally the caller needs to re-read the 1838 * pointer from the transaction_t. 1839 * 1840 * Called under j_list_lock. 1841 */ 1842 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1843 { 1844 struct journal_head **list = NULL; 1845 transaction_t *transaction; 1846 struct buffer_head *bh = jh2bh(jh); 1847 1848 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1849 transaction = jh->b_transaction; 1850 if (transaction) 1851 assert_spin_locked(&transaction->t_journal->j_list_lock); 1852 1853 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1854 if (jh->b_jlist != BJ_None) 1855 J_ASSERT_JH(jh, transaction != NULL); 1856 1857 switch (jh->b_jlist) { 1858 case BJ_None: 1859 return; 1860 case BJ_Metadata: 1861 transaction->t_nr_buffers--; 1862 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1863 list = &transaction->t_buffers; 1864 break; 1865 case BJ_Forget: 1866 list = &transaction->t_forget; 1867 break; 1868 case BJ_Shadow: 1869 list = &transaction->t_shadow_list; 1870 break; 1871 case BJ_Reserved: 1872 list = &transaction->t_reserved_list; 1873 break; 1874 } 1875 1876 __blist_del_buffer(list, jh); 1877 jh->b_jlist = BJ_None; 1878 if (transaction && is_journal_aborted(transaction->t_journal)) 1879 clear_buffer_jbddirty(bh); 1880 else if (test_clear_buffer_jbddirty(bh)) 1881 mark_buffer_dirty(bh); /* Expose it to the VM */ 1882 } 1883 1884 /* 1885 * Remove buffer from all transactions. 1886 * 1887 * Called with bh_state lock and j_list_lock 1888 * 1889 * jh and bh may be already freed when this function returns. 1890 */ 1891 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1892 { 1893 __jbd2_journal_temp_unlink_buffer(jh); 1894 jh->b_transaction = NULL; 1895 jbd2_journal_put_journal_head(jh); 1896 } 1897 1898 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1899 { 1900 struct buffer_head *bh = jh2bh(jh); 1901 1902 /* Get reference so that buffer cannot be freed before we unlock it */ 1903 get_bh(bh); 1904 jbd_lock_bh_state(bh); 1905 spin_lock(&journal->j_list_lock); 1906 __jbd2_journal_unfile_buffer(jh); 1907 spin_unlock(&journal->j_list_lock); 1908 jbd_unlock_bh_state(bh); 1909 __brelse(bh); 1910 } 1911 1912 /* 1913 * Called from jbd2_journal_try_to_free_buffers(). 1914 * 1915 * Called under jbd_lock_bh_state(bh) 1916 */ 1917 static void 1918 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1919 { 1920 struct journal_head *jh; 1921 1922 jh = bh2jh(bh); 1923 1924 if (buffer_locked(bh) || buffer_dirty(bh)) 1925 goto out; 1926 1927 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1928 goto out; 1929 1930 spin_lock(&journal->j_list_lock); 1931 if (jh->b_cp_transaction != NULL) { 1932 /* written-back checkpointed metadata buffer */ 1933 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1934 __jbd2_journal_remove_checkpoint(jh); 1935 } 1936 spin_unlock(&journal->j_list_lock); 1937 out: 1938 return; 1939 } 1940 1941 /** 1942 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1943 * @journal: journal for operation 1944 * @page: to try and free 1945 * @gfp_mask: we use the mask to detect how hard should we try to release 1946 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1947 * code to release the buffers. 1948 * 1949 * 1950 * For all the buffers on this page, 1951 * if they are fully written out ordered data, move them onto BUF_CLEAN 1952 * so try_to_free_buffers() can reap them. 1953 * 1954 * This function returns non-zero if we wish try_to_free_buffers() 1955 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1956 * We also do it if the page has locked or dirty buffers and the caller wants 1957 * us to perform sync or async writeout. 1958 * 1959 * This complicates JBD locking somewhat. We aren't protected by the 1960 * BKL here. We wish to remove the buffer from its committing or 1961 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1962 * 1963 * This may *change* the value of transaction_t->t_datalist, so anyone 1964 * who looks at t_datalist needs to lock against this function. 1965 * 1966 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1967 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1968 * will come out of the lock with the buffer dirty, which makes it 1969 * ineligible for release here. 1970 * 1971 * Who else is affected by this? hmm... Really the only contender 1972 * is do_get_write_access() - it could be looking at the buffer while 1973 * journal_try_to_free_buffer() is changing its state. But that 1974 * cannot happen because we never reallocate freed data as metadata 1975 * while the data is part of a transaction. Yes? 1976 * 1977 * Return 0 on failure, 1 on success 1978 */ 1979 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1980 struct page *page, gfp_t gfp_mask) 1981 { 1982 struct buffer_head *head; 1983 struct buffer_head *bh; 1984 int ret = 0; 1985 1986 J_ASSERT(PageLocked(page)); 1987 1988 head = page_buffers(page); 1989 bh = head; 1990 do { 1991 struct journal_head *jh; 1992 1993 /* 1994 * We take our own ref against the journal_head here to avoid 1995 * having to add tons of locking around each instance of 1996 * jbd2_journal_put_journal_head(). 1997 */ 1998 jh = jbd2_journal_grab_journal_head(bh); 1999 if (!jh) 2000 continue; 2001 2002 jbd_lock_bh_state(bh); 2003 __journal_try_to_free_buffer(journal, bh); 2004 jbd2_journal_put_journal_head(jh); 2005 jbd_unlock_bh_state(bh); 2006 if (buffer_jbd(bh)) 2007 goto busy; 2008 } while ((bh = bh->b_this_page) != head); 2009 2010 ret = try_to_free_buffers(page); 2011 2012 busy: 2013 return ret; 2014 } 2015 2016 /* 2017 * This buffer is no longer needed. If it is on an older transaction's 2018 * checkpoint list we need to record it on this transaction's forget list 2019 * to pin this buffer (and hence its checkpointing transaction) down until 2020 * this transaction commits. If the buffer isn't on a checkpoint list, we 2021 * release it. 2022 * Returns non-zero if JBD no longer has an interest in the buffer. 2023 * 2024 * Called under j_list_lock. 2025 * 2026 * Called under jbd_lock_bh_state(bh). 2027 */ 2028 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2029 { 2030 int may_free = 1; 2031 struct buffer_head *bh = jh2bh(jh); 2032 2033 if (jh->b_cp_transaction) { 2034 JBUFFER_TRACE(jh, "on running+cp transaction"); 2035 __jbd2_journal_temp_unlink_buffer(jh); 2036 /* 2037 * We don't want to write the buffer anymore, clear the 2038 * bit so that we don't confuse checks in 2039 * __journal_file_buffer 2040 */ 2041 clear_buffer_dirty(bh); 2042 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2043 may_free = 0; 2044 } else { 2045 JBUFFER_TRACE(jh, "on running transaction"); 2046 __jbd2_journal_unfile_buffer(jh); 2047 } 2048 return may_free; 2049 } 2050 2051 /* 2052 * jbd2_journal_invalidatepage 2053 * 2054 * This code is tricky. It has a number of cases to deal with. 2055 * 2056 * There are two invariants which this code relies on: 2057 * 2058 * i_size must be updated on disk before we start calling invalidatepage on the 2059 * data. 2060 * 2061 * This is done in ext3 by defining an ext3_setattr method which 2062 * updates i_size before truncate gets going. By maintaining this 2063 * invariant, we can be sure that it is safe to throw away any buffers 2064 * attached to the current transaction: once the transaction commits, 2065 * we know that the data will not be needed. 2066 * 2067 * Note however that we can *not* throw away data belonging to the 2068 * previous, committing transaction! 2069 * 2070 * Any disk blocks which *are* part of the previous, committing 2071 * transaction (and which therefore cannot be discarded immediately) are 2072 * not going to be reused in the new running transaction 2073 * 2074 * The bitmap committed_data images guarantee this: any block which is 2075 * allocated in one transaction and removed in the next will be marked 2076 * as in-use in the committed_data bitmap, so cannot be reused until 2077 * the next transaction to delete the block commits. This means that 2078 * leaving committing buffers dirty is quite safe: the disk blocks 2079 * cannot be reallocated to a different file and so buffer aliasing is 2080 * not possible. 2081 * 2082 * 2083 * The above applies mainly to ordered data mode. In writeback mode we 2084 * don't make guarantees about the order in which data hits disk --- in 2085 * particular we don't guarantee that new dirty data is flushed before 2086 * transaction commit --- so it is always safe just to discard data 2087 * immediately in that mode. --sct 2088 */ 2089 2090 /* 2091 * The journal_unmap_buffer helper function returns zero if the buffer 2092 * concerned remains pinned as an anonymous buffer belonging to an older 2093 * transaction. 2094 * 2095 * We're outside-transaction here. Either or both of j_running_transaction 2096 * and j_committing_transaction may be NULL. 2097 */ 2098 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2099 int partial_page) 2100 { 2101 transaction_t *transaction; 2102 struct journal_head *jh; 2103 int may_free = 1; 2104 2105 BUFFER_TRACE(bh, "entry"); 2106 2107 /* 2108 * It is safe to proceed here without the j_list_lock because the 2109 * buffers cannot be stolen by try_to_free_buffers as long as we are 2110 * holding the page lock. --sct 2111 */ 2112 2113 if (!buffer_jbd(bh)) 2114 goto zap_buffer_unlocked; 2115 2116 /* OK, we have data buffer in journaled mode */ 2117 write_lock(&journal->j_state_lock); 2118 jbd_lock_bh_state(bh); 2119 spin_lock(&journal->j_list_lock); 2120 2121 jh = jbd2_journal_grab_journal_head(bh); 2122 if (!jh) 2123 goto zap_buffer_no_jh; 2124 2125 /* 2126 * We cannot remove the buffer from checkpoint lists until the 2127 * transaction adding inode to orphan list (let's call it T) 2128 * is committed. Otherwise if the transaction changing the 2129 * buffer would be cleaned from the journal before T is 2130 * committed, a crash will cause that the correct contents of 2131 * the buffer will be lost. On the other hand we have to 2132 * clear the buffer dirty bit at latest at the moment when the 2133 * transaction marking the buffer as freed in the filesystem 2134 * structures is committed because from that moment on the 2135 * block can be reallocated and used by a different page. 2136 * Since the block hasn't been freed yet but the inode has 2137 * already been added to orphan list, it is safe for us to add 2138 * the buffer to BJ_Forget list of the newest transaction. 2139 * 2140 * Also we have to clear buffer_mapped flag of a truncated buffer 2141 * because the buffer_head may be attached to the page straddling 2142 * i_size (can happen only when blocksize < pagesize) and thus the 2143 * buffer_head can be reused when the file is extended again. So we end 2144 * up keeping around invalidated buffers attached to transactions' 2145 * BJ_Forget list just to stop checkpointing code from cleaning up 2146 * the transaction this buffer was modified in. 2147 */ 2148 transaction = jh->b_transaction; 2149 if (transaction == NULL) { 2150 /* First case: not on any transaction. If it 2151 * has no checkpoint link, then we can zap it: 2152 * it's a writeback-mode buffer so we don't care 2153 * if it hits disk safely. */ 2154 if (!jh->b_cp_transaction) { 2155 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2156 goto zap_buffer; 2157 } 2158 2159 if (!buffer_dirty(bh)) { 2160 /* bdflush has written it. We can drop it now */ 2161 __jbd2_journal_remove_checkpoint(jh); 2162 goto zap_buffer; 2163 } 2164 2165 /* OK, it must be in the journal but still not 2166 * written fully to disk: it's metadata or 2167 * journaled data... */ 2168 2169 if (journal->j_running_transaction) { 2170 /* ... and once the current transaction has 2171 * committed, the buffer won't be needed any 2172 * longer. */ 2173 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2174 may_free = __dispose_buffer(jh, 2175 journal->j_running_transaction); 2176 goto zap_buffer; 2177 } else { 2178 /* There is no currently-running transaction. So the 2179 * orphan record which we wrote for this file must have 2180 * passed into commit. We must attach this buffer to 2181 * the committing transaction, if it exists. */ 2182 if (journal->j_committing_transaction) { 2183 JBUFFER_TRACE(jh, "give to committing trans"); 2184 may_free = __dispose_buffer(jh, 2185 journal->j_committing_transaction); 2186 goto zap_buffer; 2187 } else { 2188 /* The orphan record's transaction has 2189 * committed. We can cleanse this buffer */ 2190 clear_buffer_jbddirty(bh); 2191 __jbd2_journal_remove_checkpoint(jh); 2192 goto zap_buffer; 2193 } 2194 } 2195 } else if (transaction == journal->j_committing_transaction) { 2196 JBUFFER_TRACE(jh, "on committing transaction"); 2197 /* 2198 * The buffer is committing, we simply cannot touch 2199 * it. If the page is straddling i_size we have to wait 2200 * for commit and try again. 2201 */ 2202 if (partial_page) { 2203 jbd2_journal_put_journal_head(jh); 2204 spin_unlock(&journal->j_list_lock); 2205 jbd_unlock_bh_state(bh); 2206 write_unlock(&journal->j_state_lock); 2207 return -EBUSY; 2208 } 2209 /* 2210 * OK, buffer won't be reachable after truncate. We just set 2211 * j_next_transaction to the running transaction (if there is 2212 * one) and mark buffer as freed so that commit code knows it 2213 * should clear dirty bits when it is done with the buffer. 2214 */ 2215 set_buffer_freed(bh); 2216 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2217 jh->b_next_transaction = journal->j_running_transaction; 2218 jbd2_journal_put_journal_head(jh); 2219 spin_unlock(&journal->j_list_lock); 2220 jbd_unlock_bh_state(bh); 2221 write_unlock(&journal->j_state_lock); 2222 return 0; 2223 } else { 2224 /* Good, the buffer belongs to the running transaction. 2225 * We are writing our own transaction's data, not any 2226 * previous one's, so it is safe to throw it away 2227 * (remember that we expect the filesystem to have set 2228 * i_size already for this truncate so recovery will not 2229 * expose the disk blocks we are discarding here.) */ 2230 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2231 JBUFFER_TRACE(jh, "on running transaction"); 2232 may_free = __dispose_buffer(jh, transaction); 2233 } 2234 2235 zap_buffer: 2236 /* 2237 * This is tricky. Although the buffer is truncated, it may be reused 2238 * if blocksize < pagesize and it is attached to the page straddling 2239 * EOF. Since the buffer might have been added to BJ_Forget list of the 2240 * running transaction, journal_get_write_access() won't clear 2241 * b_modified and credit accounting gets confused. So clear b_modified 2242 * here. 2243 */ 2244 jh->b_modified = 0; 2245 jbd2_journal_put_journal_head(jh); 2246 zap_buffer_no_jh: 2247 spin_unlock(&journal->j_list_lock); 2248 jbd_unlock_bh_state(bh); 2249 write_unlock(&journal->j_state_lock); 2250 zap_buffer_unlocked: 2251 clear_buffer_dirty(bh); 2252 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2253 clear_buffer_mapped(bh); 2254 clear_buffer_req(bh); 2255 clear_buffer_new(bh); 2256 clear_buffer_delay(bh); 2257 clear_buffer_unwritten(bh); 2258 bh->b_bdev = NULL; 2259 return may_free; 2260 } 2261 2262 /** 2263 * void jbd2_journal_invalidatepage() 2264 * @journal: journal to use for flush... 2265 * @page: page to flush 2266 * @offset: start of the range to invalidate 2267 * @length: length of the range to invalidate 2268 * 2269 * Reap page buffers containing data after in the specified range in page. 2270 * Can return -EBUSY if buffers are part of the committing transaction and 2271 * the page is straddling i_size. Caller then has to wait for current commit 2272 * and try again. 2273 */ 2274 int jbd2_journal_invalidatepage(journal_t *journal, 2275 struct page *page, 2276 unsigned int offset, 2277 unsigned int length) 2278 { 2279 struct buffer_head *head, *bh, *next; 2280 unsigned int stop = offset + length; 2281 unsigned int curr_off = 0; 2282 int partial_page = (offset || length < PAGE_SIZE); 2283 int may_free = 1; 2284 int ret = 0; 2285 2286 if (!PageLocked(page)) 2287 BUG(); 2288 if (!page_has_buffers(page)) 2289 return 0; 2290 2291 BUG_ON(stop > PAGE_SIZE || stop < length); 2292 2293 /* We will potentially be playing with lists other than just the 2294 * data lists (especially for journaled data mode), so be 2295 * cautious in our locking. */ 2296 2297 head = bh = page_buffers(page); 2298 do { 2299 unsigned int next_off = curr_off + bh->b_size; 2300 next = bh->b_this_page; 2301 2302 if (next_off > stop) 2303 return 0; 2304 2305 if (offset <= curr_off) { 2306 /* This block is wholly outside the truncation point */ 2307 lock_buffer(bh); 2308 ret = journal_unmap_buffer(journal, bh, partial_page); 2309 unlock_buffer(bh); 2310 if (ret < 0) 2311 return ret; 2312 may_free &= ret; 2313 } 2314 curr_off = next_off; 2315 bh = next; 2316 2317 } while (bh != head); 2318 2319 if (!partial_page) { 2320 if (may_free && try_to_free_buffers(page)) 2321 J_ASSERT(!page_has_buffers(page)); 2322 } 2323 return 0; 2324 } 2325 2326 /* 2327 * File a buffer on the given transaction list. 2328 */ 2329 void __jbd2_journal_file_buffer(struct journal_head *jh, 2330 transaction_t *transaction, int jlist) 2331 { 2332 struct journal_head **list = NULL; 2333 int was_dirty = 0; 2334 struct buffer_head *bh = jh2bh(jh); 2335 2336 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2337 assert_spin_locked(&transaction->t_journal->j_list_lock); 2338 2339 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2340 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2341 jh->b_transaction == NULL); 2342 2343 if (jh->b_transaction && jh->b_jlist == jlist) 2344 return; 2345 2346 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2347 jlist == BJ_Shadow || jlist == BJ_Forget) { 2348 /* 2349 * For metadata buffers, we track dirty bit in buffer_jbddirty 2350 * instead of buffer_dirty. We should not see a dirty bit set 2351 * here because we clear it in do_get_write_access but e.g. 2352 * tune2fs can modify the sb and set the dirty bit at any time 2353 * so we try to gracefully handle that. 2354 */ 2355 if (buffer_dirty(bh)) 2356 warn_dirty_buffer(bh); 2357 if (test_clear_buffer_dirty(bh) || 2358 test_clear_buffer_jbddirty(bh)) 2359 was_dirty = 1; 2360 } 2361 2362 if (jh->b_transaction) 2363 __jbd2_journal_temp_unlink_buffer(jh); 2364 else 2365 jbd2_journal_grab_journal_head(bh); 2366 jh->b_transaction = transaction; 2367 2368 switch (jlist) { 2369 case BJ_None: 2370 J_ASSERT_JH(jh, !jh->b_committed_data); 2371 J_ASSERT_JH(jh, !jh->b_frozen_data); 2372 return; 2373 case BJ_Metadata: 2374 transaction->t_nr_buffers++; 2375 list = &transaction->t_buffers; 2376 break; 2377 case BJ_Forget: 2378 list = &transaction->t_forget; 2379 break; 2380 case BJ_Shadow: 2381 list = &transaction->t_shadow_list; 2382 break; 2383 case BJ_Reserved: 2384 list = &transaction->t_reserved_list; 2385 break; 2386 } 2387 2388 __blist_add_buffer(list, jh); 2389 jh->b_jlist = jlist; 2390 2391 if (was_dirty) 2392 set_buffer_jbddirty(bh); 2393 } 2394 2395 void jbd2_journal_file_buffer(struct journal_head *jh, 2396 transaction_t *transaction, int jlist) 2397 { 2398 jbd_lock_bh_state(jh2bh(jh)); 2399 spin_lock(&transaction->t_journal->j_list_lock); 2400 __jbd2_journal_file_buffer(jh, transaction, jlist); 2401 spin_unlock(&transaction->t_journal->j_list_lock); 2402 jbd_unlock_bh_state(jh2bh(jh)); 2403 } 2404 2405 /* 2406 * Remove a buffer from its current buffer list in preparation for 2407 * dropping it from its current transaction entirely. If the buffer has 2408 * already started to be used by a subsequent transaction, refile the 2409 * buffer on that transaction's metadata list. 2410 * 2411 * Called under j_list_lock 2412 * Called under jbd_lock_bh_state(jh2bh(jh)) 2413 * 2414 * jh and bh may be already free when this function returns 2415 */ 2416 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2417 { 2418 int was_dirty, jlist; 2419 struct buffer_head *bh = jh2bh(jh); 2420 2421 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2422 if (jh->b_transaction) 2423 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2424 2425 /* If the buffer is now unused, just drop it. */ 2426 if (jh->b_next_transaction == NULL) { 2427 __jbd2_journal_unfile_buffer(jh); 2428 return; 2429 } 2430 2431 /* 2432 * It has been modified by a later transaction: add it to the new 2433 * transaction's metadata list. 2434 */ 2435 2436 was_dirty = test_clear_buffer_jbddirty(bh); 2437 __jbd2_journal_temp_unlink_buffer(jh); 2438 /* 2439 * We set b_transaction here because b_next_transaction will inherit 2440 * our jh reference and thus __jbd2_journal_file_buffer() must not 2441 * take a new one. 2442 */ 2443 jh->b_transaction = jh->b_next_transaction; 2444 jh->b_next_transaction = NULL; 2445 if (buffer_freed(bh)) 2446 jlist = BJ_Forget; 2447 else if (jh->b_modified) 2448 jlist = BJ_Metadata; 2449 else 2450 jlist = BJ_Reserved; 2451 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2452 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2453 2454 if (was_dirty) 2455 set_buffer_jbddirty(bh); 2456 } 2457 2458 /* 2459 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2460 * bh reference so that we can safely unlock bh. 2461 * 2462 * The jh and bh may be freed by this call. 2463 */ 2464 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2465 { 2466 struct buffer_head *bh = jh2bh(jh); 2467 2468 /* Get reference so that buffer cannot be freed before we unlock it */ 2469 get_bh(bh); 2470 jbd_lock_bh_state(bh); 2471 spin_lock(&journal->j_list_lock); 2472 __jbd2_journal_refile_buffer(jh); 2473 jbd_unlock_bh_state(bh); 2474 spin_unlock(&journal->j_list_lock); 2475 __brelse(bh); 2476 } 2477 2478 /* 2479 * File inode in the inode list of the handle's transaction 2480 */ 2481 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2482 unsigned long flags) 2483 { 2484 transaction_t *transaction = handle->h_transaction; 2485 journal_t *journal; 2486 2487 if (is_handle_aborted(handle)) 2488 return -EROFS; 2489 journal = transaction->t_journal; 2490 2491 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2492 transaction->t_tid); 2493 2494 /* 2495 * First check whether inode isn't already on the transaction's 2496 * lists without taking the lock. Note that this check is safe 2497 * without the lock as we cannot race with somebody removing inode 2498 * from the transaction. The reason is that we remove inode from the 2499 * transaction only in journal_release_jbd_inode() and when we commit 2500 * the transaction. We are guarded from the first case by holding 2501 * a reference to the inode. We are safe against the second case 2502 * because if jinode->i_transaction == transaction, commit code 2503 * cannot touch the transaction because we hold reference to it, 2504 * and if jinode->i_next_transaction == transaction, commit code 2505 * will only file the inode where we want it. 2506 */ 2507 if ((jinode->i_transaction == transaction || 2508 jinode->i_next_transaction == transaction) && 2509 (jinode->i_flags & flags) == flags) 2510 return 0; 2511 2512 spin_lock(&journal->j_list_lock); 2513 jinode->i_flags |= flags; 2514 /* Is inode already attached where we need it? */ 2515 if (jinode->i_transaction == transaction || 2516 jinode->i_next_transaction == transaction) 2517 goto done; 2518 2519 /* 2520 * We only ever set this variable to 1 so the test is safe. Since 2521 * t_need_data_flush is likely to be set, we do the test to save some 2522 * cacheline bouncing 2523 */ 2524 if (!transaction->t_need_data_flush) 2525 transaction->t_need_data_flush = 1; 2526 /* On some different transaction's list - should be 2527 * the committing one */ 2528 if (jinode->i_transaction) { 2529 J_ASSERT(jinode->i_next_transaction == NULL); 2530 J_ASSERT(jinode->i_transaction == 2531 journal->j_committing_transaction); 2532 jinode->i_next_transaction = transaction; 2533 goto done; 2534 } 2535 /* Not on any transaction list... */ 2536 J_ASSERT(!jinode->i_next_transaction); 2537 jinode->i_transaction = transaction; 2538 list_add(&jinode->i_list, &transaction->t_inode_list); 2539 done: 2540 spin_unlock(&journal->j_list_lock); 2541 2542 return 0; 2543 } 2544 2545 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2546 { 2547 return jbd2_journal_file_inode(handle, jinode, 2548 JI_WRITE_DATA | JI_WAIT_DATA); 2549 } 2550 2551 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2552 { 2553 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2554 } 2555 2556 /* 2557 * File truncate and transaction commit interact with each other in a 2558 * non-trivial way. If a transaction writing data block A is 2559 * committing, we cannot discard the data by truncate until we have 2560 * written them. Otherwise if we crashed after the transaction with 2561 * write has committed but before the transaction with truncate has 2562 * committed, we could see stale data in block A. This function is a 2563 * helper to solve this problem. It starts writeout of the truncated 2564 * part in case it is in the committing transaction. 2565 * 2566 * Filesystem code must call this function when inode is journaled in 2567 * ordered mode before truncation happens and after the inode has been 2568 * placed on orphan list with the new inode size. The second condition 2569 * avoids the race that someone writes new data and we start 2570 * committing the transaction after this function has been called but 2571 * before a transaction for truncate is started (and furthermore it 2572 * allows us to optimize the case where the addition to orphan list 2573 * happens in the same transaction as write --- we don't have to write 2574 * any data in such case). 2575 */ 2576 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2577 struct jbd2_inode *jinode, 2578 loff_t new_size) 2579 { 2580 transaction_t *inode_trans, *commit_trans; 2581 int ret = 0; 2582 2583 /* This is a quick check to avoid locking if not necessary */ 2584 if (!jinode->i_transaction) 2585 goto out; 2586 /* Locks are here just to force reading of recent values, it is 2587 * enough that the transaction was not committing before we started 2588 * a transaction adding the inode to orphan list */ 2589 read_lock(&journal->j_state_lock); 2590 commit_trans = journal->j_committing_transaction; 2591 read_unlock(&journal->j_state_lock); 2592 spin_lock(&journal->j_list_lock); 2593 inode_trans = jinode->i_transaction; 2594 spin_unlock(&journal->j_list_lock); 2595 if (inode_trans == commit_trans) { 2596 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2597 new_size, LLONG_MAX); 2598 if (ret) 2599 jbd2_journal_abort(journal, ret); 2600 } 2601 out: 2602 return ret; 2603 } 2604