1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (transaction_cache) 46 return 0; 47 return -ENOMEM; 48 } 49 50 void jbd2_journal_destroy_transaction_cache(void) 51 { 52 if (transaction_cache) { 53 kmem_cache_destroy(transaction_cache); 54 transaction_cache = NULL; 55 } 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply allocate and initialise a new transaction. Create it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static transaction_t * 81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 spin_lock_init(&transaction->t_handle_lock); 89 atomic_set(&transaction->t_updates, 0); 90 atomic_set(&transaction->t_outstanding_credits, 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_handle_count, 0); 93 INIT_LIST_HEAD(&transaction->t_inode_list); 94 INIT_LIST_HEAD(&transaction->t_private_list); 95 96 /* Set up the commit timer for the new transaction. */ 97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 98 add_timer(&journal->j_commit_timer); 99 100 J_ASSERT(journal->j_running_transaction == NULL); 101 journal->j_running_transaction = transaction; 102 transaction->t_max_wait = 0; 103 transaction->t_start = jiffies; 104 transaction->t_requested = 0; 105 106 return transaction; 107 } 108 109 /* 110 * Handle management. 111 * 112 * A handle_t is an object which represents a single atomic update to a 113 * filesystem, and which tracks all of the modifications which form part 114 * of that one update. 115 */ 116 117 /* 118 * Update transaction's maximum wait time, if debugging is enabled. 119 * 120 * In order for t_max_wait to be reliable, it must be protected by a 121 * lock. But doing so will mean that start_this_handle() can not be 122 * run in parallel on SMP systems, which limits our scalability. So 123 * unless debugging is enabled, we no longer update t_max_wait, which 124 * means that maximum wait time reported by the jbd2_run_stats 125 * tracepoint will always be zero. 126 */ 127 static inline void update_t_max_wait(transaction_t *transaction, 128 unsigned long ts) 129 { 130 #ifdef CONFIG_JBD2_DEBUG 131 if (jbd2_journal_enable_debug && 132 time_after(transaction->t_start, ts)) { 133 ts = jbd2_time_diff(ts, transaction->t_start); 134 spin_lock(&transaction->t_handle_lock); 135 if (ts > transaction->t_max_wait) 136 transaction->t_max_wait = ts; 137 spin_unlock(&transaction->t_handle_lock); 138 } 139 #endif 140 } 141 142 /* 143 * Wait until running transaction passes T_LOCKED state. Also starts the commit 144 * if needed. The function expects running transaction to exist and releases 145 * j_state_lock. 146 */ 147 static void wait_transaction_locked(journal_t *journal) 148 __releases(journal->j_state_lock) 149 { 150 DEFINE_WAIT(wait); 151 int need_to_start; 152 tid_t tid = journal->j_running_transaction->t_tid; 153 154 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 155 TASK_UNINTERRUPTIBLE); 156 need_to_start = !tid_geq(journal->j_commit_request, tid); 157 read_unlock(&journal->j_state_lock); 158 if (need_to_start) 159 jbd2_log_start_commit(journal, tid); 160 jbd2_might_wait_for_commit(journal); 161 schedule(); 162 finish_wait(&journal->j_wait_transaction_locked, &wait); 163 } 164 165 static void sub_reserved_credits(journal_t *journal, int blocks) 166 { 167 atomic_sub(blocks, &journal->j_reserved_credits); 168 wake_up(&journal->j_wait_reserved); 169 } 170 171 /* 172 * Wait until we can add credits for handle to the running transaction. Called 173 * with j_state_lock held for reading. Returns 0 if handle joined the running 174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 175 * caller must retry. 176 */ 177 static int add_transaction_credits(journal_t *journal, int blocks, 178 int rsv_blocks) 179 { 180 transaction_t *t = journal->j_running_transaction; 181 int needed; 182 int total = blocks + rsv_blocks; 183 184 /* 185 * If the current transaction is locked down for commit, wait 186 * for the lock to be released. 187 */ 188 if (t->t_state == T_LOCKED) { 189 wait_transaction_locked(journal); 190 return 1; 191 } 192 193 /* 194 * If there is not enough space left in the log to write all 195 * potential buffers requested by this operation, we need to 196 * stall pending a log checkpoint to free some more log space. 197 */ 198 needed = atomic_add_return(total, &t->t_outstanding_credits); 199 if (needed > journal->j_max_transaction_buffers) { 200 /* 201 * If the current transaction is already too large, 202 * then start to commit it: we can then go back and 203 * attach this handle to a new transaction. 204 */ 205 atomic_sub(total, &t->t_outstanding_credits); 206 207 /* 208 * Is the number of reserved credits in the current transaction too 209 * big to fit this handle? Wait until reserved credits are freed. 210 */ 211 if (atomic_read(&journal->j_reserved_credits) + total > 212 journal->j_max_transaction_buffers) { 213 read_unlock(&journal->j_state_lock); 214 jbd2_might_wait_for_commit(journal); 215 wait_event(journal->j_wait_reserved, 216 atomic_read(&journal->j_reserved_credits) + total <= 217 journal->j_max_transaction_buffers); 218 return 1; 219 } 220 221 wait_transaction_locked(journal); 222 return 1; 223 } 224 225 /* 226 * The commit code assumes that it can get enough log space 227 * without forcing a checkpoint. This is *critical* for 228 * correctness: a checkpoint of a buffer which is also 229 * associated with a committing transaction creates a deadlock, 230 * so commit simply cannot force through checkpoints. 231 * 232 * We must therefore ensure the necessary space in the journal 233 * *before* starting to dirty potentially checkpointed buffers 234 * in the new transaction. 235 */ 236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 237 atomic_sub(total, &t->t_outstanding_credits); 238 read_unlock(&journal->j_state_lock); 239 jbd2_might_wait_for_commit(journal); 240 write_lock(&journal->j_state_lock); 241 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 242 __jbd2_log_wait_for_space(journal); 243 write_unlock(&journal->j_state_lock); 244 return 1; 245 } 246 247 /* No reservation? We are done... */ 248 if (!rsv_blocks) 249 return 0; 250 251 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 252 /* We allow at most half of a transaction to be reserved */ 253 if (needed > journal->j_max_transaction_buffers / 2) { 254 sub_reserved_credits(journal, rsv_blocks); 255 atomic_sub(total, &t->t_outstanding_credits); 256 read_unlock(&journal->j_state_lock); 257 jbd2_might_wait_for_commit(journal); 258 wait_event(journal->j_wait_reserved, 259 atomic_read(&journal->j_reserved_credits) + rsv_blocks 260 <= journal->j_max_transaction_buffers / 2); 261 return 1; 262 } 263 return 0; 264 } 265 266 /* 267 * start_this_handle: Given a handle, deal with any locking or stalling 268 * needed to make sure that there is enough journal space for the handle 269 * to begin. Attach the handle to a transaction and set up the 270 * transaction's buffer credits. 271 */ 272 273 static int start_this_handle(journal_t *journal, handle_t *handle, 274 gfp_t gfp_mask) 275 { 276 transaction_t *transaction, *new_transaction = NULL; 277 int blocks = handle->h_buffer_credits; 278 int rsv_blocks = 0; 279 unsigned long ts = jiffies; 280 281 if (handle->h_rsv_handle) 282 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 283 284 /* 285 * Limit the number of reserved credits to 1/2 of maximum transaction 286 * size and limit the number of total credits to not exceed maximum 287 * transaction size per operation. 288 */ 289 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 290 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 291 printk(KERN_ERR "JBD2: %s wants too many credits " 292 "credits:%d rsv_credits:%d max:%d\n", 293 current->comm, blocks, rsv_blocks, 294 journal->j_max_transaction_buffers); 295 WARN_ON(1); 296 return -ENOSPC; 297 } 298 299 alloc_transaction: 300 if (!journal->j_running_transaction) { 301 /* 302 * If __GFP_FS is not present, then we may be being called from 303 * inside the fs writeback layer, so we MUST NOT fail. 304 */ 305 if ((gfp_mask & __GFP_FS) == 0) 306 gfp_mask |= __GFP_NOFAIL; 307 new_transaction = kmem_cache_zalloc(transaction_cache, 308 gfp_mask); 309 if (!new_transaction) 310 return -ENOMEM; 311 } 312 313 jbd_debug(3, "New handle %p going live.\n", handle); 314 315 /* 316 * We need to hold j_state_lock until t_updates has been incremented, 317 * for proper journal barrier handling 318 */ 319 repeat: 320 read_lock(&journal->j_state_lock); 321 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 322 if (is_journal_aborted(journal) || 323 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 324 read_unlock(&journal->j_state_lock); 325 jbd2_journal_free_transaction(new_transaction); 326 return -EROFS; 327 } 328 329 /* 330 * Wait on the journal's transaction barrier if necessary. Specifically 331 * we allow reserved handles to proceed because otherwise commit could 332 * deadlock on page writeback not being able to complete. 333 */ 334 if (!handle->h_reserved && journal->j_barrier_count) { 335 read_unlock(&journal->j_state_lock); 336 wait_event(journal->j_wait_transaction_locked, 337 journal->j_barrier_count == 0); 338 goto repeat; 339 } 340 341 if (!journal->j_running_transaction) { 342 read_unlock(&journal->j_state_lock); 343 if (!new_transaction) 344 goto alloc_transaction; 345 write_lock(&journal->j_state_lock); 346 if (!journal->j_running_transaction && 347 (handle->h_reserved || !journal->j_barrier_count)) { 348 jbd2_get_transaction(journal, new_transaction); 349 new_transaction = NULL; 350 } 351 write_unlock(&journal->j_state_lock); 352 goto repeat; 353 } 354 355 transaction = journal->j_running_transaction; 356 357 if (!handle->h_reserved) { 358 /* We may have dropped j_state_lock - restart in that case */ 359 if (add_transaction_credits(journal, blocks, rsv_blocks)) 360 goto repeat; 361 } else { 362 /* 363 * We have handle reserved so we are allowed to join T_LOCKED 364 * transaction and we don't have to check for transaction size 365 * and journal space. 366 */ 367 sub_reserved_credits(journal, blocks); 368 handle->h_reserved = 0; 369 } 370 371 /* OK, account for the buffers that this operation expects to 372 * use and add the handle to the running transaction. 373 */ 374 update_t_max_wait(transaction, ts); 375 handle->h_transaction = transaction; 376 handle->h_requested_credits = blocks; 377 handle->h_start_jiffies = jiffies; 378 atomic_inc(&transaction->t_updates); 379 atomic_inc(&transaction->t_handle_count); 380 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 381 handle, blocks, 382 atomic_read(&transaction->t_outstanding_credits), 383 jbd2_log_space_left(journal)); 384 read_unlock(&journal->j_state_lock); 385 current->journal_info = handle; 386 387 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 388 jbd2_journal_free_transaction(new_transaction); 389 /* 390 * Ensure that no allocations done while the transaction is open are 391 * going to recurse back to the fs layer. 392 */ 393 handle->saved_alloc_context = memalloc_nofs_save(); 394 return 0; 395 } 396 397 /* Allocate a new handle. This should probably be in a slab... */ 398 static handle_t *new_handle(int nblocks) 399 { 400 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 401 if (!handle) 402 return NULL; 403 handle->h_buffer_credits = nblocks; 404 handle->h_ref = 1; 405 406 return handle; 407 } 408 409 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 410 gfp_t gfp_mask, unsigned int type, 411 unsigned int line_no) 412 { 413 handle_t *handle = journal_current_handle(); 414 int err; 415 416 if (!journal) 417 return ERR_PTR(-EROFS); 418 419 if (handle) { 420 J_ASSERT(handle->h_transaction->t_journal == journal); 421 handle->h_ref++; 422 return handle; 423 } 424 425 handle = new_handle(nblocks); 426 if (!handle) 427 return ERR_PTR(-ENOMEM); 428 if (rsv_blocks) { 429 handle_t *rsv_handle; 430 431 rsv_handle = new_handle(rsv_blocks); 432 if (!rsv_handle) { 433 jbd2_free_handle(handle); 434 return ERR_PTR(-ENOMEM); 435 } 436 rsv_handle->h_reserved = 1; 437 rsv_handle->h_journal = journal; 438 handle->h_rsv_handle = rsv_handle; 439 } 440 441 err = start_this_handle(journal, handle, gfp_mask); 442 if (err < 0) { 443 if (handle->h_rsv_handle) 444 jbd2_free_handle(handle->h_rsv_handle); 445 jbd2_free_handle(handle); 446 return ERR_PTR(err); 447 } 448 handle->h_type = type; 449 handle->h_line_no = line_no; 450 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 451 handle->h_transaction->t_tid, type, 452 line_no, nblocks); 453 454 return handle; 455 } 456 EXPORT_SYMBOL(jbd2__journal_start); 457 458 459 /** 460 * handle_t *jbd2_journal_start() - Obtain a new handle. 461 * @journal: Journal to start transaction on. 462 * @nblocks: number of block buffer we might modify 463 * 464 * We make sure that the transaction can guarantee at least nblocks of 465 * modified buffers in the log. We block until the log can guarantee 466 * that much space. Additionally, if rsv_blocks > 0, we also create another 467 * handle with rsv_blocks reserved blocks in the journal. This handle is 468 * is stored in h_rsv_handle. It is not attached to any particular transaction 469 * and thus doesn't block transaction commit. If the caller uses this reserved 470 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 471 * on the parent handle will dispose the reserved one. Reserved handle has to 472 * be converted to a normal handle using jbd2_journal_start_reserved() before 473 * it can be used. 474 * 475 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 476 * on failure. 477 */ 478 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 479 { 480 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 481 } 482 EXPORT_SYMBOL(jbd2_journal_start); 483 484 void jbd2_journal_free_reserved(handle_t *handle) 485 { 486 journal_t *journal = handle->h_journal; 487 488 WARN_ON(!handle->h_reserved); 489 sub_reserved_credits(journal, handle->h_buffer_credits); 490 jbd2_free_handle(handle); 491 } 492 EXPORT_SYMBOL(jbd2_journal_free_reserved); 493 494 /** 495 * int jbd2_journal_start_reserved() - start reserved handle 496 * @handle: handle to start 497 * @type: for handle statistics 498 * @line_no: for handle statistics 499 * 500 * Start handle that has been previously reserved with jbd2_journal_reserve(). 501 * This attaches @handle to the running transaction (or creates one if there's 502 * not transaction running). Unlike jbd2_journal_start() this function cannot 503 * block on journal commit, checkpointing, or similar stuff. It can block on 504 * memory allocation or frozen journal though. 505 * 506 * Return 0 on success, non-zero on error - handle is freed in that case. 507 */ 508 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 509 unsigned int line_no) 510 { 511 journal_t *journal = handle->h_journal; 512 int ret = -EIO; 513 514 if (WARN_ON(!handle->h_reserved)) { 515 /* Someone passed in normal handle? Just stop it. */ 516 jbd2_journal_stop(handle); 517 return ret; 518 } 519 /* 520 * Usefulness of mixing of reserved and unreserved handles is 521 * questionable. So far nobody seems to need it so just error out. 522 */ 523 if (WARN_ON(current->journal_info)) { 524 jbd2_journal_free_reserved(handle); 525 return ret; 526 } 527 528 handle->h_journal = NULL; 529 /* 530 * GFP_NOFS is here because callers are likely from writeback or 531 * similarly constrained call sites 532 */ 533 ret = start_this_handle(journal, handle, GFP_NOFS); 534 if (ret < 0) { 535 handle->h_journal = journal; 536 jbd2_journal_free_reserved(handle); 537 return ret; 538 } 539 handle->h_type = type; 540 handle->h_line_no = line_no; 541 return 0; 542 } 543 EXPORT_SYMBOL(jbd2_journal_start_reserved); 544 545 /** 546 * int jbd2_journal_extend() - extend buffer credits. 547 * @handle: handle to 'extend' 548 * @nblocks: nr blocks to try to extend by. 549 * 550 * Some transactions, such as large extends and truncates, can be done 551 * atomically all at once or in several stages. The operation requests 552 * a credit for a number of buffer modifications in advance, but can 553 * extend its credit if it needs more. 554 * 555 * jbd2_journal_extend tries to give the running handle more buffer credits. 556 * It does not guarantee that allocation - this is a best-effort only. 557 * The calling process MUST be able to deal cleanly with a failure to 558 * extend here. 559 * 560 * Return 0 on success, non-zero on failure. 561 * 562 * return code < 0 implies an error 563 * return code > 0 implies normal transaction-full status. 564 */ 565 int jbd2_journal_extend(handle_t *handle, int nblocks) 566 { 567 transaction_t *transaction = handle->h_transaction; 568 journal_t *journal; 569 int result; 570 int wanted; 571 572 if (is_handle_aborted(handle)) 573 return -EROFS; 574 journal = transaction->t_journal; 575 576 result = 1; 577 578 read_lock(&journal->j_state_lock); 579 580 /* Don't extend a locked-down transaction! */ 581 if (transaction->t_state != T_RUNNING) { 582 jbd_debug(3, "denied handle %p %d blocks: " 583 "transaction not running\n", handle, nblocks); 584 goto error_out; 585 } 586 587 spin_lock(&transaction->t_handle_lock); 588 wanted = atomic_add_return(nblocks, 589 &transaction->t_outstanding_credits); 590 591 if (wanted > journal->j_max_transaction_buffers) { 592 jbd_debug(3, "denied handle %p %d blocks: " 593 "transaction too large\n", handle, nblocks); 594 atomic_sub(nblocks, &transaction->t_outstanding_credits); 595 goto unlock; 596 } 597 598 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 599 jbd2_log_space_left(journal)) { 600 jbd_debug(3, "denied handle %p %d blocks: " 601 "insufficient log space\n", handle, nblocks); 602 atomic_sub(nblocks, &transaction->t_outstanding_credits); 603 goto unlock; 604 } 605 606 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 607 transaction->t_tid, 608 handle->h_type, handle->h_line_no, 609 handle->h_buffer_credits, 610 nblocks); 611 612 handle->h_buffer_credits += nblocks; 613 handle->h_requested_credits += nblocks; 614 result = 0; 615 616 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 617 unlock: 618 spin_unlock(&transaction->t_handle_lock); 619 error_out: 620 read_unlock(&journal->j_state_lock); 621 return result; 622 } 623 624 625 /** 626 * int jbd2_journal_restart() - restart a handle . 627 * @handle: handle to restart 628 * @nblocks: nr credits requested 629 * @gfp_mask: memory allocation flags (for start_this_handle) 630 * 631 * Restart a handle for a multi-transaction filesystem 632 * operation. 633 * 634 * If the jbd2_journal_extend() call above fails to grant new buffer credits 635 * to a running handle, a call to jbd2_journal_restart will commit the 636 * handle's transaction so far and reattach the handle to a new 637 * transaction capable of guaranteeing the requested number of 638 * credits. We preserve reserved handle if there's any attached to the 639 * passed in handle. 640 */ 641 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 642 { 643 transaction_t *transaction = handle->h_transaction; 644 journal_t *journal; 645 tid_t tid; 646 int need_to_start, ret; 647 648 /* If we've had an abort of any type, don't even think about 649 * actually doing the restart! */ 650 if (is_handle_aborted(handle)) 651 return 0; 652 journal = transaction->t_journal; 653 654 /* 655 * First unlink the handle from its current transaction, and start the 656 * commit on that. 657 */ 658 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 659 J_ASSERT(journal_current_handle() == handle); 660 661 read_lock(&journal->j_state_lock); 662 spin_lock(&transaction->t_handle_lock); 663 atomic_sub(handle->h_buffer_credits, 664 &transaction->t_outstanding_credits); 665 if (handle->h_rsv_handle) { 666 sub_reserved_credits(journal, 667 handle->h_rsv_handle->h_buffer_credits); 668 } 669 if (atomic_dec_and_test(&transaction->t_updates)) 670 wake_up(&journal->j_wait_updates); 671 tid = transaction->t_tid; 672 spin_unlock(&transaction->t_handle_lock); 673 handle->h_transaction = NULL; 674 current->journal_info = NULL; 675 676 jbd_debug(2, "restarting handle %p\n", handle); 677 need_to_start = !tid_geq(journal->j_commit_request, tid); 678 read_unlock(&journal->j_state_lock); 679 if (need_to_start) 680 jbd2_log_start_commit(journal, tid); 681 682 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 683 handle->h_buffer_credits = nblocks; 684 /* 685 * Restore the original nofs context because the journal restart 686 * is basically the same thing as journal stop and start. 687 * start_this_handle will start a new nofs context. 688 */ 689 memalloc_nofs_restore(handle->saved_alloc_context); 690 ret = start_this_handle(journal, handle, gfp_mask); 691 return ret; 692 } 693 EXPORT_SYMBOL(jbd2__journal_restart); 694 695 696 int jbd2_journal_restart(handle_t *handle, int nblocks) 697 { 698 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 699 } 700 EXPORT_SYMBOL(jbd2_journal_restart); 701 702 /** 703 * void jbd2_journal_lock_updates () - establish a transaction barrier. 704 * @journal: Journal to establish a barrier on. 705 * 706 * This locks out any further updates from being started, and blocks 707 * until all existing updates have completed, returning only once the 708 * journal is in a quiescent state with no updates running. 709 * 710 * The journal lock should not be held on entry. 711 */ 712 void jbd2_journal_lock_updates(journal_t *journal) 713 { 714 DEFINE_WAIT(wait); 715 716 jbd2_might_wait_for_commit(journal); 717 718 write_lock(&journal->j_state_lock); 719 ++journal->j_barrier_count; 720 721 /* Wait until there are no reserved handles */ 722 if (atomic_read(&journal->j_reserved_credits)) { 723 write_unlock(&journal->j_state_lock); 724 wait_event(journal->j_wait_reserved, 725 atomic_read(&journal->j_reserved_credits) == 0); 726 write_lock(&journal->j_state_lock); 727 } 728 729 /* Wait until there are no running updates */ 730 while (1) { 731 transaction_t *transaction = journal->j_running_transaction; 732 733 if (!transaction) 734 break; 735 736 spin_lock(&transaction->t_handle_lock); 737 prepare_to_wait(&journal->j_wait_updates, &wait, 738 TASK_UNINTERRUPTIBLE); 739 if (!atomic_read(&transaction->t_updates)) { 740 spin_unlock(&transaction->t_handle_lock); 741 finish_wait(&journal->j_wait_updates, &wait); 742 break; 743 } 744 spin_unlock(&transaction->t_handle_lock); 745 write_unlock(&journal->j_state_lock); 746 schedule(); 747 finish_wait(&journal->j_wait_updates, &wait); 748 write_lock(&journal->j_state_lock); 749 } 750 write_unlock(&journal->j_state_lock); 751 752 /* 753 * We have now established a barrier against other normal updates, but 754 * we also need to barrier against other jbd2_journal_lock_updates() calls 755 * to make sure that we serialise special journal-locked operations 756 * too. 757 */ 758 mutex_lock(&journal->j_barrier); 759 } 760 761 /** 762 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 763 * @journal: Journal to release the barrier on. 764 * 765 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 766 * 767 * Should be called without the journal lock held. 768 */ 769 void jbd2_journal_unlock_updates (journal_t *journal) 770 { 771 J_ASSERT(journal->j_barrier_count != 0); 772 773 mutex_unlock(&journal->j_barrier); 774 write_lock(&journal->j_state_lock); 775 --journal->j_barrier_count; 776 write_unlock(&journal->j_state_lock); 777 wake_up(&journal->j_wait_transaction_locked); 778 } 779 780 static void warn_dirty_buffer(struct buffer_head *bh) 781 { 782 printk(KERN_WARNING 783 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 784 "There's a risk of filesystem corruption in case of system " 785 "crash.\n", 786 bh->b_bdev, (unsigned long long)bh->b_blocknr); 787 } 788 789 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 790 static void jbd2_freeze_jh_data(struct journal_head *jh) 791 { 792 struct page *page; 793 int offset; 794 char *source; 795 struct buffer_head *bh = jh2bh(jh); 796 797 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 798 page = bh->b_page; 799 offset = offset_in_page(bh->b_data); 800 source = kmap_atomic(page); 801 /* Fire data frozen trigger just before we copy the data */ 802 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 803 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 804 kunmap_atomic(source); 805 806 /* 807 * Now that the frozen data is saved off, we need to store any matching 808 * triggers. 809 */ 810 jh->b_frozen_triggers = jh->b_triggers; 811 } 812 813 /* 814 * If the buffer is already part of the current transaction, then there 815 * is nothing we need to do. If it is already part of a prior 816 * transaction which we are still committing to disk, then we need to 817 * make sure that we do not overwrite the old copy: we do copy-out to 818 * preserve the copy going to disk. We also account the buffer against 819 * the handle's metadata buffer credits (unless the buffer is already 820 * part of the transaction, that is). 821 * 822 */ 823 static int 824 do_get_write_access(handle_t *handle, struct journal_head *jh, 825 int force_copy) 826 { 827 struct buffer_head *bh; 828 transaction_t *transaction = handle->h_transaction; 829 journal_t *journal; 830 int error; 831 char *frozen_buffer = NULL; 832 unsigned long start_lock, time_lock; 833 834 if (is_handle_aborted(handle)) 835 return -EROFS; 836 journal = transaction->t_journal; 837 838 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 839 840 JBUFFER_TRACE(jh, "entry"); 841 repeat: 842 bh = jh2bh(jh); 843 844 /* @@@ Need to check for errors here at some point. */ 845 846 start_lock = jiffies; 847 lock_buffer(bh); 848 jbd_lock_bh_state(bh); 849 850 /* If it takes too long to lock the buffer, trace it */ 851 time_lock = jbd2_time_diff(start_lock, jiffies); 852 if (time_lock > HZ/10) 853 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 854 jiffies_to_msecs(time_lock)); 855 856 /* We now hold the buffer lock so it is safe to query the buffer 857 * state. Is the buffer dirty? 858 * 859 * If so, there are two possibilities. The buffer may be 860 * non-journaled, and undergoing a quite legitimate writeback. 861 * Otherwise, it is journaled, and we don't expect dirty buffers 862 * in that state (the buffers should be marked JBD_Dirty 863 * instead.) So either the IO is being done under our own 864 * control and this is a bug, or it's a third party IO such as 865 * dump(8) (which may leave the buffer scheduled for read --- 866 * ie. locked but not dirty) or tune2fs (which may actually have 867 * the buffer dirtied, ugh.) */ 868 869 if (buffer_dirty(bh)) { 870 /* 871 * First question: is this buffer already part of the current 872 * transaction or the existing committing transaction? 873 */ 874 if (jh->b_transaction) { 875 J_ASSERT_JH(jh, 876 jh->b_transaction == transaction || 877 jh->b_transaction == 878 journal->j_committing_transaction); 879 if (jh->b_next_transaction) 880 J_ASSERT_JH(jh, jh->b_next_transaction == 881 transaction); 882 warn_dirty_buffer(bh); 883 } 884 /* 885 * In any case we need to clean the dirty flag and we must 886 * do it under the buffer lock to be sure we don't race 887 * with running write-out. 888 */ 889 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 890 clear_buffer_dirty(bh); 891 set_buffer_jbddirty(bh); 892 } 893 894 unlock_buffer(bh); 895 896 error = -EROFS; 897 if (is_handle_aborted(handle)) { 898 jbd_unlock_bh_state(bh); 899 goto out; 900 } 901 error = 0; 902 903 /* 904 * The buffer is already part of this transaction if b_transaction or 905 * b_next_transaction points to it 906 */ 907 if (jh->b_transaction == transaction || 908 jh->b_next_transaction == transaction) 909 goto done; 910 911 /* 912 * this is the first time this transaction is touching this buffer, 913 * reset the modified flag 914 */ 915 jh->b_modified = 0; 916 917 /* 918 * If the buffer is not journaled right now, we need to make sure it 919 * doesn't get written to disk before the caller actually commits the 920 * new data 921 */ 922 if (!jh->b_transaction) { 923 JBUFFER_TRACE(jh, "no transaction"); 924 J_ASSERT_JH(jh, !jh->b_next_transaction); 925 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 926 /* 927 * Make sure all stores to jh (b_modified, b_frozen_data) are 928 * visible before attaching it to the running transaction. 929 * Paired with barrier in jbd2_write_access_granted() 930 */ 931 smp_wmb(); 932 spin_lock(&journal->j_list_lock); 933 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 934 spin_unlock(&journal->j_list_lock); 935 goto done; 936 } 937 /* 938 * If there is already a copy-out version of this buffer, then we don't 939 * need to make another one 940 */ 941 if (jh->b_frozen_data) { 942 JBUFFER_TRACE(jh, "has frozen data"); 943 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 944 goto attach_next; 945 } 946 947 JBUFFER_TRACE(jh, "owned by older transaction"); 948 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 949 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 950 951 /* 952 * There is one case we have to be very careful about. If the 953 * committing transaction is currently writing this buffer out to disk 954 * and has NOT made a copy-out, then we cannot modify the buffer 955 * contents at all right now. The essence of copy-out is that it is 956 * the extra copy, not the primary copy, which gets journaled. If the 957 * primary copy is already going to disk then we cannot do copy-out 958 * here. 959 */ 960 if (buffer_shadow(bh)) { 961 JBUFFER_TRACE(jh, "on shadow: sleep"); 962 jbd_unlock_bh_state(bh); 963 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 964 goto repeat; 965 } 966 967 /* 968 * Only do the copy if the currently-owning transaction still needs it. 969 * If buffer isn't on BJ_Metadata list, the committing transaction is 970 * past that stage (here we use the fact that BH_Shadow is set under 971 * bh_state lock together with refiling to BJ_Shadow list and at this 972 * point we know the buffer doesn't have BH_Shadow set). 973 * 974 * Subtle point, though: if this is a get_undo_access, then we will be 975 * relying on the frozen_data to contain the new value of the 976 * committed_data record after the transaction, so we HAVE to force the 977 * frozen_data copy in that case. 978 */ 979 if (jh->b_jlist == BJ_Metadata || force_copy) { 980 JBUFFER_TRACE(jh, "generate frozen data"); 981 if (!frozen_buffer) { 982 JBUFFER_TRACE(jh, "allocate memory for buffer"); 983 jbd_unlock_bh_state(bh); 984 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 985 GFP_NOFS | __GFP_NOFAIL); 986 goto repeat; 987 } 988 jh->b_frozen_data = frozen_buffer; 989 frozen_buffer = NULL; 990 jbd2_freeze_jh_data(jh); 991 } 992 attach_next: 993 /* 994 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 995 * before attaching it to the running transaction. Paired with barrier 996 * in jbd2_write_access_granted() 997 */ 998 smp_wmb(); 999 jh->b_next_transaction = transaction; 1000 1001 done: 1002 jbd_unlock_bh_state(bh); 1003 1004 /* 1005 * If we are about to journal a buffer, then any revoke pending on it is 1006 * no longer valid 1007 */ 1008 jbd2_journal_cancel_revoke(handle, jh); 1009 1010 out: 1011 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1012 jbd2_free(frozen_buffer, bh->b_size); 1013 1014 JBUFFER_TRACE(jh, "exit"); 1015 return error; 1016 } 1017 1018 /* Fast check whether buffer is already attached to the required transaction */ 1019 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1020 bool undo) 1021 { 1022 struct journal_head *jh; 1023 bool ret = false; 1024 1025 /* Dirty buffers require special handling... */ 1026 if (buffer_dirty(bh)) 1027 return false; 1028 1029 /* 1030 * RCU protects us from dereferencing freed pages. So the checks we do 1031 * are guaranteed not to oops. However the jh slab object can get freed 1032 * & reallocated while we work with it. So we have to be careful. When 1033 * we see jh attached to the running transaction, we know it must stay 1034 * so until the transaction is committed. Thus jh won't be freed and 1035 * will be attached to the same bh while we run. However it can 1036 * happen jh gets freed, reallocated, and attached to the transaction 1037 * just after we get pointer to it from bh. So we have to be careful 1038 * and recheck jh still belongs to our bh before we return success. 1039 */ 1040 rcu_read_lock(); 1041 if (!buffer_jbd(bh)) 1042 goto out; 1043 /* This should be bh2jh() but that doesn't work with inline functions */ 1044 jh = READ_ONCE(bh->b_private); 1045 if (!jh) 1046 goto out; 1047 /* For undo access buffer must have data copied */ 1048 if (undo && !jh->b_committed_data) 1049 goto out; 1050 if (jh->b_transaction != handle->h_transaction && 1051 jh->b_next_transaction != handle->h_transaction) 1052 goto out; 1053 /* 1054 * There are two reasons for the barrier here: 1055 * 1) Make sure to fetch b_bh after we did previous checks so that we 1056 * detect when jh went through free, realloc, attach to transaction 1057 * while we were checking. Paired with implicit barrier in that path. 1058 * 2) So that access to bh done after jbd2_write_access_granted() 1059 * doesn't get reordered and see inconsistent state of concurrent 1060 * do_get_write_access(). 1061 */ 1062 smp_mb(); 1063 if (unlikely(jh->b_bh != bh)) 1064 goto out; 1065 ret = true; 1066 out: 1067 rcu_read_unlock(); 1068 return ret; 1069 } 1070 1071 /** 1072 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1073 * @handle: transaction to add buffer modifications to 1074 * @bh: bh to be used for metadata writes 1075 * 1076 * Returns: error code or 0 on success. 1077 * 1078 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1079 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1080 */ 1081 1082 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1083 { 1084 struct journal_head *jh; 1085 int rc; 1086 1087 if (jbd2_write_access_granted(handle, bh, false)) 1088 return 0; 1089 1090 jh = jbd2_journal_add_journal_head(bh); 1091 /* We do not want to get caught playing with fields which the 1092 * log thread also manipulates. Make sure that the buffer 1093 * completes any outstanding IO before proceeding. */ 1094 rc = do_get_write_access(handle, jh, 0); 1095 jbd2_journal_put_journal_head(jh); 1096 return rc; 1097 } 1098 1099 1100 /* 1101 * When the user wants to journal a newly created buffer_head 1102 * (ie. getblk() returned a new buffer and we are going to populate it 1103 * manually rather than reading off disk), then we need to keep the 1104 * buffer_head locked until it has been completely filled with new 1105 * data. In this case, we should be able to make the assertion that 1106 * the bh is not already part of an existing transaction. 1107 * 1108 * The buffer should already be locked by the caller by this point. 1109 * There is no lock ranking violation: it was a newly created, 1110 * unlocked buffer beforehand. */ 1111 1112 /** 1113 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1114 * @handle: transaction to new buffer to 1115 * @bh: new buffer. 1116 * 1117 * Call this if you create a new bh. 1118 */ 1119 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1120 { 1121 transaction_t *transaction = handle->h_transaction; 1122 journal_t *journal; 1123 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1124 int err; 1125 1126 jbd_debug(5, "journal_head %p\n", jh); 1127 err = -EROFS; 1128 if (is_handle_aborted(handle)) 1129 goto out; 1130 journal = transaction->t_journal; 1131 err = 0; 1132 1133 JBUFFER_TRACE(jh, "entry"); 1134 /* 1135 * The buffer may already belong to this transaction due to pre-zeroing 1136 * in the filesystem's new_block code. It may also be on the previous, 1137 * committing transaction's lists, but it HAS to be in Forget state in 1138 * that case: the transaction must have deleted the buffer for it to be 1139 * reused here. 1140 */ 1141 jbd_lock_bh_state(bh); 1142 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1143 jh->b_transaction == NULL || 1144 (jh->b_transaction == journal->j_committing_transaction && 1145 jh->b_jlist == BJ_Forget))); 1146 1147 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1148 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1149 1150 if (jh->b_transaction == NULL) { 1151 /* 1152 * Previous jbd2_journal_forget() could have left the buffer 1153 * with jbddirty bit set because it was being committed. When 1154 * the commit finished, we've filed the buffer for 1155 * checkpointing and marked it dirty. Now we are reallocating 1156 * the buffer so the transaction freeing it must have 1157 * committed and so it's safe to clear the dirty bit. 1158 */ 1159 clear_buffer_dirty(jh2bh(jh)); 1160 /* first access by this transaction */ 1161 jh->b_modified = 0; 1162 1163 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1164 spin_lock(&journal->j_list_lock); 1165 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1166 spin_unlock(&journal->j_list_lock); 1167 } else if (jh->b_transaction == journal->j_committing_transaction) { 1168 /* first access by this transaction */ 1169 jh->b_modified = 0; 1170 1171 JBUFFER_TRACE(jh, "set next transaction"); 1172 spin_lock(&journal->j_list_lock); 1173 jh->b_next_transaction = transaction; 1174 spin_unlock(&journal->j_list_lock); 1175 } 1176 jbd_unlock_bh_state(bh); 1177 1178 /* 1179 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1180 * blocks which contain freed but then revoked metadata. We need 1181 * to cancel the revoke in case we end up freeing it yet again 1182 * and the reallocating as data - this would cause a second revoke, 1183 * which hits an assertion error. 1184 */ 1185 JBUFFER_TRACE(jh, "cancelling revoke"); 1186 jbd2_journal_cancel_revoke(handle, jh); 1187 out: 1188 jbd2_journal_put_journal_head(jh); 1189 return err; 1190 } 1191 1192 /** 1193 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1194 * non-rewindable consequences 1195 * @handle: transaction 1196 * @bh: buffer to undo 1197 * 1198 * Sometimes there is a need to distinguish between metadata which has 1199 * been committed to disk and that which has not. The ext3fs code uses 1200 * this for freeing and allocating space, we have to make sure that we 1201 * do not reuse freed space until the deallocation has been committed, 1202 * since if we overwrote that space we would make the delete 1203 * un-rewindable in case of a crash. 1204 * 1205 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1206 * buffer for parts of non-rewindable operations such as delete 1207 * operations on the bitmaps. The journaling code must keep a copy of 1208 * the buffer's contents prior to the undo_access call until such time 1209 * as we know that the buffer has definitely been committed to disk. 1210 * 1211 * We never need to know which transaction the committed data is part 1212 * of, buffers touched here are guaranteed to be dirtied later and so 1213 * will be committed to a new transaction in due course, at which point 1214 * we can discard the old committed data pointer. 1215 * 1216 * Returns error number or 0 on success. 1217 */ 1218 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1219 { 1220 int err; 1221 struct journal_head *jh; 1222 char *committed_data = NULL; 1223 1224 JBUFFER_TRACE(jh, "entry"); 1225 if (jbd2_write_access_granted(handle, bh, true)) 1226 return 0; 1227 1228 jh = jbd2_journal_add_journal_head(bh); 1229 /* 1230 * Do this first --- it can drop the journal lock, so we want to 1231 * make sure that obtaining the committed_data is done 1232 * atomically wrt. completion of any outstanding commits. 1233 */ 1234 err = do_get_write_access(handle, jh, 1); 1235 if (err) 1236 goto out; 1237 1238 repeat: 1239 if (!jh->b_committed_data) 1240 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1241 GFP_NOFS|__GFP_NOFAIL); 1242 1243 jbd_lock_bh_state(bh); 1244 if (!jh->b_committed_data) { 1245 /* Copy out the current buffer contents into the 1246 * preserved, committed copy. */ 1247 JBUFFER_TRACE(jh, "generate b_committed data"); 1248 if (!committed_data) { 1249 jbd_unlock_bh_state(bh); 1250 goto repeat; 1251 } 1252 1253 jh->b_committed_data = committed_data; 1254 committed_data = NULL; 1255 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1256 } 1257 jbd_unlock_bh_state(bh); 1258 out: 1259 jbd2_journal_put_journal_head(jh); 1260 if (unlikely(committed_data)) 1261 jbd2_free(committed_data, bh->b_size); 1262 return err; 1263 } 1264 1265 /** 1266 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1267 * @bh: buffer to trigger on 1268 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1269 * 1270 * Set any triggers on this journal_head. This is always safe, because 1271 * triggers for a committing buffer will be saved off, and triggers for 1272 * a running transaction will match the buffer in that transaction. 1273 * 1274 * Call with NULL to clear the triggers. 1275 */ 1276 void jbd2_journal_set_triggers(struct buffer_head *bh, 1277 struct jbd2_buffer_trigger_type *type) 1278 { 1279 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1280 1281 if (WARN_ON(!jh)) 1282 return; 1283 jh->b_triggers = type; 1284 jbd2_journal_put_journal_head(jh); 1285 } 1286 1287 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1288 struct jbd2_buffer_trigger_type *triggers) 1289 { 1290 struct buffer_head *bh = jh2bh(jh); 1291 1292 if (!triggers || !triggers->t_frozen) 1293 return; 1294 1295 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1296 } 1297 1298 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1299 struct jbd2_buffer_trigger_type *triggers) 1300 { 1301 if (!triggers || !triggers->t_abort) 1302 return; 1303 1304 triggers->t_abort(triggers, jh2bh(jh)); 1305 } 1306 1307 /** 1308 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1309 * @handle: transaction to add buffer to. 1310 * @bh: buffer to mark 1311 * 1312 * mark dirty metadata which needs to be journaled as part of the current 1313 * transaction. 1314 * 1315 * The buffer must have previously had jbd2_journal_get_write_access() 1316 * called so that it has a valid journal_head attached to the buffer 1317 * head. 1318 * 1319 * The buffer is placed on the transaction's metadata list and is marked 1320 * as belonging to the transaction. 1321 * 1322 * Returns error number or 0 on success. 1323 * 1324 * Special care needs to be taken if the buffer already belongs to the 1325 * current committing transaction (in which case we should have frozen 1326 * data present for that commit). In that case, we don't relink the 1327 * buffer: that only gets done when the old transaction finally 1328 * completes its commit. 1329 */ 1330 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1331 { 1332 transaction_t *transaction = handle->h_transaction; 1333 journal_t *journal; 1334 struct journal_head *jh; 1335 int ret = 0; 1336 1337 if (is_handle_aborted(handle)) 1338 return -EROFS; 1339 if (!buffer_jbd(bh)) { 1340 ret = -EUCLEAN; 1341 goto out; 1342 } 1343 /* 1344 * We don't grab jh reference here since the buffer must be part 1345 * of the running transaction. 1346 */ 1347 jh = bh2jh(bh); 1348 /* 1349 * This and the following assertions are unreliable since we may see jh 1350 * in inconsistent state unless we grab bh_state lock. But this is 1351 * crucial to catch bugs so let's do a reliable check until the 1352 * lockless handling is fully proven. 1353 */ 1354 if (jh->b_transaction != transaction && 1355 jh->b_next_transaction != transaction) { 1356 jbd_lock_bh_state(bh); 1357 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1358 jh->b_next_transaction == transaction); 1359 jbd_unlock_bh_state(bh); 1360 } 1361 if (jh->b_modified == 1) { 1362 /* If it's in our transaction it must be in BJ_Metadata list. */ 1363 if (jh->b_transaction == transaction && 1364 jh->b_jlist != BJ_Metadata) { 1365 jbd_lock_bh_state(bh); 1366 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1367 jh->b_jlist == BJ_Metadata); 1368 jbd_unlock_bh_state(bh); 1369 } 1370 goto out; 1371 } 1372 1373 journal = transaction->t_journal; 1374 jbd_debug(5, "journal_head %p\n", jh); 1375 JBUFFER_TRACE(jh, "entry"); 1376 1377 jbd_lock_bh_state(bh); 1378 1379 if (jh->b_modified == 0) { 1380 /* 1381 * This buffer's got modified and becoming part 1382 * of the transaction. This needs to be done 1383 * once a transaction -bzzz 1384 */ 1385 jh->b_modified = 1; 1386 if (handle->h_buffer_credits <= 0) { 1387 ret = -ENOSPC; 1388 goto out_unlock_bh; 1389 } 1390 handle->h_buffer_credits--; 1391 } 1392 1393 /* 1394 * fastpath, to avoid expensive locking. If this buffer is already 1395 * on the running transaction's metadata list there is nothing to do. 1396 * Nobody can take it off again because there is a handle open. 1397 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1398 * result in this test being false, so we go in and take the locks. 1399 */ 1400 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1401 JBUFFER_TRACE(jh, "fastpath"); 1402 if (unlikely(jh->b_transaction != 1403 journal->j_running_transaction)) { 1404 printk(KERN_ERR "JBD2: %s: " 1405 "jh->b_transaction (%llu, %p, %u) != " 1406 "journal->j_running_transaction (%p, %u)\n", 1407 journal->j_devname, 1408 (unsigned long long) bh->b_blocknr, 1409 jh->b_transaction, 1410 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1411 journal->j_running_transaction, 1412 journal->j_running_transaction ? 1413 journal->j_running_transaction->t_tid : 0); 1414 ret = -EINVAL; 1415 } 1416 goto out_unlock_bh; 1417 } 1418 1419 set_buffer_jbddirty(bh); 1420 1421 /* 1422 * Metadata already on the current transaction list doesn't 1423 * need to be filed. Metadata on another transaction's list must 1424 * be committing, and will be refiled once the commit completes: 1425 * leave it alone for now. 1426 */ 1427 if (jh->b_transaction != transaction) { 1428 JBUFFER_TRACE(jh, "already on other transaction"); 1429 if (unlikely(((jh->b_transaction != 1430 journal->j_committing_transaction)) || 1431 (jh->b_next_transaction != transaction))) { 1432 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1433 "bad jh for block %llu: " 1434 "transaction (%p, %u), " 1435 "jh->b_transaction (%p, %u), " 1436 "jh->b_next_transaction (%p, %u), jlist %u\n", 1437 journal->j_devname, 1438 (unsigned long long) bh->b_blocknr, 1439 transaction, transaction->t_tid, 1440 jh->b_transaction, 1441 jh->b_transaction ? 1442 jh->b_transaction->t_tid : 0, 1443 jh->b_next_transaction, 1444 jh->b_next_transaction ? 1445 jh->b_next_transaction->t_tid : 0, 1446 jh->b_jlist); 1447 WARN_ON(1); 1448 ret = -EINVAL; 1449 } 1450 /* And this case is illegal: we can't reuse another 1451 * transaction's data buffer, ever. */ 1452 goto out_unlock_bh; 1453 } 1454 1455 /* That test should have eliminated the following case: */ 1456 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1457 1458 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1459 spin_lock(&journal->j_list_lock); 1460 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1461 spin_unlock(&journal->j_list_lock); 1462 out_unlock_bh: 1463 jbd_unlock_bh_state(bh); 1464 out: 1465 JBUFFER_TRACE(jh, "exit"); 1466 return ret; 1467 } 1468 1469 /** 1470 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1471 * @handle: transaction handle 1472 * @bh: bh to 'forget' 1473 * 1474 * We can only do the bforget if there are no commits pending against the 1475 * buffer. If the buffer is dirty in the current running transaction we 1476 * can safely unlink it. 1477 * 1478 * bh may not be a journalled buffer at all - it may be a non-JBD 1479 * buffer which came off the hashtable. Check for this. 1480 * 1481 * Decrements bh->b_count by one. 1482 * 1483 * Allow this call even if the handle has aborted --- it may be part of 1484 * the caller's cleanup after an abort. 1485 */ 1486 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1487 { 1488 transaction_t *transaction = handle->h_transaction; 1489 journal_t *journal; 1490 struct journal_head *jh; 1491 int drop_reserve = 0; 1492 int err = 0; 1493 int was_modified = 0; 1494 1495 if (is_handle_aborted(handle)) 1496 return -EROFS; 1497 journal = transaction->t_journal; 1498 1499 BUFFER_TRACE(bh, "entry"); 1500 1501 jbd_lock_bh_state(bh); 1502 1503 if (!buffer_jbd(bh)) 1504 goto not_jbd; 1505 jh = bh2jh(bh); 1506 1507 /* Critical error: attempting to delete a bitmap buffer, maybe? 1508 * Don't do any jbd operations, and return an error. */ 1509 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1510 "inconsistent data on disk")) { 1511 err = -EIO; 1512 goto not_jbd; 1513 } 1514 1515 /* keep track of whether or not this transaction modified us */ 1516 was_modified = jh->b_modified; 1517 1518 /* 1519 * The buffer's going from the transaction, we must drop 1520 * all references -bzzz 1521 */ 1522 jh->b_modified = 0; 1523 1524 if (jh->b_transaction == transaction) { 1525 J_ASSERT_JH(jh, !jh->b_frozen_data); 1526 1527 /* If we are forgetting a buffer which is already part 1528 * of this transaction, then we can just drop it from 1529 * the transaction immediately. */ 1530 clear_buffer_dirty(bh); 1531 clear_buffer_jbddirty(bh); 1532 1533 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1534 1535 /* 1536 * we only want to drop a reference if this transaction 1537 * modified the buffer 1538 */ 1539 if (was_modified) 1540 drop_reserve = 1; 1541 1542 /* 1543 * We are no longer going to journal this buffer. 1544 * However, the commit of this transaction is still 1545 * important to the buffer: the delete that we are now 1546 * processing might obsolete an old log entry, so by 1547 * committing, we can satisfy the buffer's checkpoint. 1548 * 1549 * So, if we have a checkpoint on the buffer, we should 1550 * now refile the buffer on our BJ_Forget list so that 1551 * we know to remove the checkpoint after we commit. 1552 */ 1553 1554 spin_lock(&journal->j_list_lock); 1555 if (jh->b_cp_transaction) { 1556 __jbd2_journal_temp_unlink_buffer(jh); 1557 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1558 } else { 1559 __jbd2_journal_unfile_buffer(jh); 1560 if (!buffer_jbd(bh)) { 1561 spin_unlock(&journal->j_list_lock); 1562 jbd_unlock_bh_state(bh); 1563 __bforget(bh); 1564 goto drop; 1565 } 1566 } 1567 spin_unlock(&journal->j_list_lock); 1568 } else if (jh->b_transaction) { 1569 J_ASSERT_JH(jh, (jh->b_transaction == 1570 journal->j_committing_transaction)); 1571 /* However, if the buffer is still owned by a prior 1572 * (committing) transaction, we can't drop it yet... */ 1573 JBUFFER_TRACE(jh, "belongs to older transaction"); 1574 /* ... but we CAN drop it from the new transaction if we 1575 * have also modified it since the original commit. */ 1576 1577 if (jh->b_next_transaction) { 1578 J_ASSERT(jh->b_next_transaction == transaction); 1579 spin_lock(&journal->j_list_lock); 1580 jh->b_next_transaction = NULL; 1581 spin_unlock(&journal->j_list_lock); 1582 1583 /* 1584 * only drop a reference if this transaction modified 1585 * the buffer 1586 */ 1587 if (was_modified) 1588 drop_reserve = 1; 1589 } 1590 } 1591 1592 not_jbd: 1593 jbd_unlock_bh_state(bh); 1594 __brelse(bh); 1595 drop: 1596 if (drop_reserve) { 1597 /* no need to reserve log space for this block -bzzz */ 1598 handle->h_buffer_credits++; 1599 } 1600 return err; 1601 } 1602 1603 /** 1604 * int jbd2_journal_stop() - complete a transaction 1605 * @handle: transaction to complete. 1606 * 1607 * All done for a particular handle. 1608 * 1609 * There is not much action needed here. We just return any remaining 1610 * buffer credits to the transaction and remove the handle. The only 1611 * complication is that we need to start a commit operation if the 1612 * filesystem is marked for synchronous update. 1613 * 1614 * jbd2_journal_stop itself will not usually return an error, but it may 1615 * do so in unusual circumstances. In particular, expect it to 1616 * return -EIO if a jbd2_journal_abort has been executed since the 1617 * transaction began. 1618 */ 1619 int jbd2_journal_stop(handle_t *handle) 1620 { 1621 transaction_t *transaction = handle->h_transaction; 1622 journal_t *journal; 1623 int err = 0, wait_for_commit = 0; 1624 tid_t tid; 1625 pid_t pid; 1626 1627 if (!transaction) { 1628 /* 1629 * Handle is already detached from the transaction so 1630 * there is nothing to do other than decrease a refcount, 1631 * or free the handle if refcount drops to zero 1632 */ 1633 if (--handle->h_ref > 0) { 1634 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1635 handle->h_ref); 1636 return err; 1637 } else { 1638 if (handle->h_rsv_handle) 1639 jbd2_free_handle(handle->h_rsv_handle); 1640 goto free_and_exit; 1641 } 1642 } 1643 journal = transaction->t_journal; 1644 1645 J_ASSERT(journal_current_handle() == handle); 1646 1647 if (is_handle_aborted(handle)) 1648 err = -EIO; 1649 else 1650 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1651 1652 if (--handle->h_ref > 0) { 1653 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1654 handle->h_ref); 1655 return err; 1656 } 1657 1658 jbd_debug(4, "Handle %p going down\n", handle); 1659 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1660 transaction->t_tid, 1661 handle->h_type, handle->h_line_no, 1662 jiffies - handle->h_start_jiffies, 1663 handle->h_sync, handle->h_requested_credits, 1664 (handle->h_requested_credits - 1665 handle->h_buffer_credits)); 1666 1667 /* 1668 * Implement synchronous transaction batching. If the handle 1669 * was synchronous, don't force a commit immediately. Let's 1670 * yield and let another thread piggyback onto this 1671 * transaction. Keep doing that while new threads continue to 1672 * arrive. It doesn't cost much - we're about to run a commit 1673 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1674 * operations by 30x or more... 1675 * 1676 * We try and optimize the sleep time against what the 1677 * underlying disk can do, instead of having a static sleep 1678 * time. This is useful for the case where our storage is so 1679 * fast that it is more optimal to go ahead and force a flush 1680 * and wait for the transaction to be committed than it is to 1681 * wait for an arbitrary amount of time for new writers to 1682 * join the transaction. We achieve this by measuring how 1683 * long it takes to commit a transaction, and compare it with 1684 * how long this transaction has been running, and if run time 1685 * < commit time then we sleep for the delta and commit. This 1686 * greatly helps super fast disks that would see slowdowns as 1687 * more threads started doing fsyncs. 1688 * 1689 * But don't do this if this process was the most recent one 1690 * to perform a synchronous write. We do this to detect the 1691 * case where a single process is doing a stream of sync 1692 * writes. No point in waiting for joiners in that case. 1693 * 1694 * Setting max_batch_time to 0 disables this completely. 1695 */ 1696 pid = current->pid; 1697 if (handle->h_sync && journal->j_last_sync_writer != pid && 1698 journal->j_max_batch_time) { 1699 u64 commit_time, trans_time; 1700 1701 journal->j_last_sync_writer = pid; 1702 1703 read_lock(&journal->j_state_lock); 1704 commit_time = journal->j_average_commit_time; 1705 read_unlock(&journal->j_state_lock); 1706 1707 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1708 transaction->t_start_time)); 1709 1710 commit_time = max_t(u64, commit_time, 1711 1000*journal->j_min_batch_time); 1712 commit_time = min_t(u64, commit_time, 1713 1000*journal->j_max_batch_time); 1714 1715 if (trans_time < commit_time) { 1716 ktime_t expires = ktime_add_ns(ktime_get(), 1717 commit_time); 1718 set_current_state(TASK_UNINTERRUPTIBLE); 1719 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1720 } 1721 } 1722 1723 if (handle->h_sync) 1724 transaction->t_synchronous_commit = 1; 1725 current->journal_info = NULL; 1726 atomic_sub(handle->h_buffer_credits, 1727 &transaction->t_outstanding_credits); 1728 1729 /* 1730 * If the handle is marked SYNC, we need to set another commit 1731 * going! We also want to force a commit if the current 1732 * transaction is occupying too much of the log, or if the 1733 * transaction is too old now. 1734 */ 1735 if (handle->h_sync || 1736 (atomic_read(&transaction->t_outstanding_credits) > 1737 journal->j_max_transaction_buffers) || 1738 time_after_eq(jiffies, transaction->t_expires)) { 1739 /* Do this even for aborted journals: an abort still 1740 * completes the commit thread, it just doesn't write 1741 * anything to disk. */ 1742 1743 jbd_debug(2, "transaction too old, requesting commit for " 1744 "handle %p\n", handle); 1745 /* This is non-blocking */ 1746 jbd2_log_start_commit(journal, transaction->t_tid); 1747 1748 /* 1749 * Special case: JBD2_SYNC synchronous updates require us 1750 * to wait for the commit to complete. 1751 */ 1752 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1753 wait_for_commit = 1; 1754 } 1755 1756 /* 1757 * Once we drop t_updates, if it goes to zero the transaction 1758 * could start committing on us and eventually disappear. So 1759 * once we do this, we must not dereference transaction 1760 * pointer again. 1761 */ 1762 tid = transaction->t_tid; 1763 if (atomic_dec_and_test(&transaction->t_updates)) { 1764 wake_up(&journal->j_wait_updates); 1765 if (journal->j_barrier_count) 1766 wake_up(&journal->j_wait_transaction_locked); 1767 } 1768 1769 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1770 1771 if (wait_for_commit) 1772 err = jbd2_log_wait_commit(journal, tid); 1773 1774 if (handle->h_rsv_handle) 1775 jbd2_journal_free_reserved(handle->h_rsv_handle); 1776 free_and_exit: 1777 /* 1778 * Scope of the GFP_NOFS context is over here and so we can restore the 1779 * original alloc context. 1780 */ 1781 memalloc_nofs_restore(handle->saved_alloc_context); 1782 jbd2_free_handle(handle); 1783 return err; 1784 } 1785 1786 /* 1787 * 1788 * List management code snippets: various functions for manipulating the 1789 * transaction buffer lists. 1790 * 1791 */ 1792 1793 /* 1794 * Append a buffer to a transaction list, given the transaction's list head 1795 * pointer. 1796 * 1797 * j_list_lock is held. 1798 * 1799 * jbd_lock_bh_state(jh2bh(jh)) is held. 1800 */ 1801 1802 static inline void 1803 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1804 { 1805 if (!*list) { 1806 jh->b_tnext = jh->b_tprev = jh; 1807 *list = jh; 1808 } else { 1809 /* Insert at the tail of the list to preserve order */ 1810 struct journal_head *first = *list, *last = first->b_tprev; 1811 jh->b_tprev = last; 1812 jh->b_tnext = first; 1813 last->b_tnext = first->b_tprev = jh; 1814 } 1815 } 1816 1817 /* 1818 * Remove a buffer from a transaction list, given the transaction's list 1819 * head pointer. 1820 * 1821 * Called with j_list_lock held, and the journal may not be locked. 1822 * 1823 * jbd_lock_bh_state(jh2bh(jh)) is held. 1824 */ 1825 1826 static inline void 1827 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1828 { 1829 if (*list == jh) { 1830 *list = jh->b_tnext; 1831 if (*list == jh) 1832 *list = NULL; 1833 } 1834 jh->b_tprev->b_tnext = jh->b_tnext; 1835 jh->b_tnext->b_tprev = jh->b_tprev; 1836 } 1837 1838 /* 1839 * Remove a buffer from the appropriate transaction list. 1840 * 1841 * Note that this function can *change* the value of 1842 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1843 * t_reserved_list. If the caller is holding onto a copy of one of these 1844 * pointers, it could go bad. Generally the caller needs to re-read the 1845 * pointer from the transaction_t. 1846 * 1847 * Called under j_list_lock. 1848 */ 1849 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1850 { 1851 struct journal_head **list = NULL; 1852 transaction_t *transaction; 1853 struct buffer_head *bh = jh2bh(jh); 1854 1855 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1856 transaction = jh->b_transaction; 1857 if (transaction) 1858 assert_spin_locked(&transaction->t_journal->j_list_lock); 1859 1860 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1861 if (jh->b_jlist != BJ_None) 1862 J_ASSERT_JH(jh, transaction != NULL); 1863 1864 switch (jh->b_jlist) { 1865 case BJ_None: 1866 return; 1867 case BJ_Metadata: 1868 transaction->t_nr_buffers--; 1869 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1870 list = &transaction->t_buffers; 1871 break; 1872 case BJ_Forget: 1873 list = &transaction->t_forget; 1874 break; 1875 case BJ_Shadow: 1876 list = &transaction->t_shadow_list; 1877 break; 1878 case BJ_Reserved: 1879 list = &transaction->t_reserved_list; 1880 break; 1881 } 1882 1883 __blist_del_buffer(list, jh); 1884 jh->b_jlist = BJ_None; 1885 if (transaction && is_journal_aborted(transaction->t_journal)) 1886 clear_buffer_jbddirty(bh); 1887 else if (test_clear_buffer_jbddirty(bh)) 1888 mark_buffer_dirty(bh); /* Expose it to the VM */ 1889 } 1890 1891 /* 1892 * Remove buffer from all transactions. 1893 * 1894 * Called with bh_state lock and j_list_lock 1895 * 1896 * jh and bh may be already freed when this function returns. 1897 */ 1898 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1899 { 1900 __jbd2_journal_temp_unlink_buffer(jh); 1901 jh->b_transaction = NULL; 1902 jbd2_journal_put_journal_head(jh); 1903 } 1904 1905 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1906 { 1907 struct buffer_head *bh = jh2bh(jh); 1908 1909 /* Get reference so that buffer cannot be freed before we unlock it */ 1910 get_bh(bh); 1911 jbd_lock_bh_state(bh); 1912 spin_lock(&journal->j_list_lock); 1913 __jbd2_journal_unfile_buffer(jh); 1914 spin_unlock(&journal->j_list_lock); 1915 jbd_unlock_bh_state(bh); 1916 __brelse(bh); 1917 } 1918 1919 /* 1920 * Called from jbd2_journal_try_to_free_buffers(). 1921 * 1922 * Called under jbd_lock_bh_state(bh) 1923 */ 1924 static void 1925 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1926 { 1927 struct journal_head *jh; 1928 1929 jh = bh2jh(bh); 1930 1931 if (buffer_locked(bh) || buffer_dirty(bh)) 1932 goto out; 1933 1934 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1935 goto out; 1936 1937 spin_lock(&journal->j_list_lock); 1938 if (jh->b_cp_transaction != NULL) { 1939 /* written-back checkpointed metadata buffer */ 1940 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1941 __jbd2_journal_remove_checkpoint(jh); 1942 } 1943 spin_unlock(&journal->j_list_lock); 1944 out: 1945 return; 1946 } 1947 1948 /** 1949 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1950 * @journal: journal for operation 1951 * @page: to try and free 1952 * @gfp_mask: we use the mask to detect how hard should we try to release 1953 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1954 * code to release the buffers. 1955 * 1956 * 1957 * For all the buffers on this page, 1958 * if they are fully written out ordered data, move them onto BUF_CLEAN 1959 * so try_to_free_buffers() can reap them. 1960 * 1961 * This function returns non-zero if we wish try_to_free_buffers() 1962 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1963 * We also do it if the page has locked or dirty buffers and the caller wants 1964 * us to perform sync or async writeout. 1965 * 1966 * This complicates JBD locking somewhat. We aren't protected by the 1967 * BKL here. We wish to remove the buffer from its committing or 1968 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1969 * 1970 * This may *change* the value of transaction_t->t_datalist, so anyone 1971 * who looks at t_datalist needs to lock against this function. 1972 * 1973 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1974 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1975 * will come out of the lock with the buffer dirty, which makes it 1976 * ineligible for release here. 1977 * 1978 * Who else is affected by this? hmm... Really the only contender 1979 * is do_get_write_access() - it could be looking at the buffer while 1980 * journal_try_to_free_buffer() is changing its state. But that 1981 * cannot happen because we never reallocate freed data as metadata 1982 * while the data is part of a transaction. Yes? 1983 * 1984 * Return 0 on failure, 1 on success 1985 */ 1986 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1987 struct page *page, gfp_t gfp_mask) 1988 { 1989 struct buffer_head *head; 1990 struct buffer_head *bh; 1991 int ret = 0; 1992 1993 J_ASSERT(PageLocked(page)); 1994 1995 head = page_buffers(page); 1996 bh = head; 1997 do { 1998 struct journal_head *jh; 1999 2000 /* 2001 * We take our own ref against the journal_head here to avoid 2002 * having to add tons of locking around each instance of 2003 * jbd2_journal_put_journal_head(). 2004 */ 2005 jh = jbd2_journal_grab_journal_head(bh); 2006 if (!jh) 2007 continue; 2008 2009 jbd_lock_bh_state(bh); 2010 __journal_try_to_free_buffer(journal, bh); 2011 jbd2_journal_put_journal_head(jh); 2012 jbd_unlock_bh_state(bh); 2013 if (buffer_jbd(bh)) 2014 goto busy; 2015 } while ((bh = bh->b_this_page) != head); 2016 2017 ret = try_to_free_buffers(page); 2018 2019 busy: 2020 return ret; 2021 } 2022 2023 /* 2024 * This buffer is no longer needed. If it is on an older transaction's 2025 * checkpoint list we need to record it on this transaction's forget list 2026 * to pin this buffer (and hence its checkpointing transaction) down until 2027 * this transaction commits. If the buffer isn't on a checkpoint list, we 2028 * release it. 2029 * Returns non-zero if JBD no longer has an interest in the buffer. 2030 * 2031 * Called under j_list_lock. 2032 * 2033 * Called under jbd_lock_bh_state(bh). 2034 */ 2035 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2036 { 2037 int may_free = 1; 2038 struct buffer_head *bh = jh2bh(jh); 2039 2040 if (jh->b_cp_transaction) { 2041 JBUFFER_TRACE(jh, "on running+cp transaction"); 2042 __jbd2_journal_temp_unlink_buffer(jh); 2043 /* 2044 * We don't want to write the buffer anymore, clear the 2045 * bit so that we don't confuse checks in 2046 * __journal_file_buffer 2047 */ 2048 clear_buffer_dirty(bh); 2049 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2050 may_free = 0; 2051 } else { 2052 JBUFFER_TRACE(jh, "on running transaction"); 2053 __jbd2_journal_unfile_buffer(jh); 2054 } 2055 return may_free; 2056 } 2057 2058 /* 2059 * jbd2_journal_invalidatepage 2060 * 2061 * This code is tricky. It has a number of cases to deal with. 2062 * 2063 * There are two invariants which this code relies on: 2064 * 2065 * i_size must be updated on disk before we start calling invalidatepage on the 2066 * data. 2067 * 2068 * This is done in ext3 by defining an ext3_setattr method which 2069 * updates i_size before truncate gets going. By maintaining this 2070 * invariant, we can be sure that it is safe to throw away any buffers 2071 * attached to the current transaction: once the transaction commits, 2072 * we know that the data will not be needed. 2073 * 2074 * Note however that we can *not* throw away data belonging to the 2075 * previous, committing transaction! 2076 * 2077 * Any disk blocks which *are* part of the previous, committing 2078 * transaction (and which therefore cannot be discarded immediately) are 2079 * not going to be reused in the new running transaction 2080 * 2081 * The bitmap committed_data images guarantee this: any block which is 2082 * allocated in one transaction and removed in the next will be marked 2083 * as in-use in the committed_data bitmap, so cannot be reused until 2084 * the next transaction to delete the block commits. This means that 2085 * leaving committing buffers dirty is quite safe: the disk blocks 2086 * cannot be reallocated to a different file and so buffer aliasing is 2087 * not possible. 2088 * 2089 * 2090 * The above applies mainly to ordered data mode. In writeback mode we 2091 * don't make guarantees about the order in which data hits disk --- in 2092 * particular we don't guarantee that new dirty data is flushed before 2093 * transaction commit --- so it is always safe just to discard data 2094 * immediately in that mode. --sct 2095 */ 2096 2097 /* 2098 * The journal_unmap_buffer helper function returns zero if the buffer 2099 * concerned remains pinned as an anonymous buffer belonging to an older 2100 * transaction. 2101 * 2102 * We're outside-transaction here. Either or both of j_running_transaction 2103 * and j_committing_transaction may be NULL. 2104 */ 2105 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2106 int partial_page) 2107 { 2108 transaction_t *transaction; 2109 struct journal_head *jh; 2110 int may_free = 1; 2111 2112 BUFFER_TRACE(bh, "entry"); 2113 2114 /* 2115 * It is safe to proceed here without the j_list_lock because the 2116 * buffers cannot be stolen by try_to_free_buffers as long as we are 2117 * holding the page lock. --sct 2118 */ 2119 2120 if (!buffer_jbd(bh)) 2121 goto zap_buffer_unlocked; 2122 2123 /* OK, we have data buffer in journaled mode */ 2124 write_lock(&journal->j_state_lock); 2125 jbd_lock_bh_state(bh); 2126 spin_lock(&journal->j_list_lock); 2127 2128 jh = jbd2_journal_grab_journal_head(bh); 2129 if (!jh) 2130 goto zap_buffer_no_jh; 2131 2132 /* 2133 * We cannot remove the buffer from checkpoint lists until the 2134 * transaction adding inode to orphan list (let's call it T) 2135 * is committed. Otherwise if the transaction changing the 2136 * buffer would be cleaned from the journal before T is 2137 * committed, a crash will cause that the correct contents of 2138 * the buffer will be lost. On the other hand we have to 2139 * clear the buffer dirty bit at latest at the moment when the 2140 * transaction marking the buffer as freed in the filesystem 2141 * structures is committed because from that moment on the 2142 * block can be reallocated and used by a different page. 2143 * Since the block hasn't been freed yet but the inode has 2144 * already been added to orphan list, it is safe for us to add 2145 * the buffer to BJ_Forget list of the newest transaction. 2146 * 2147 * Also we have to clear buffer_mapped flag of a truncated buffer 2148 * because the buffer_head may be attached to the page straddling 2149 * i_size (can happen only when blocksize < pagesize) and thus the 2150 * buffer_head can be reused when the file is extended again. So we end 2151 * up keeping around invalidated buffers attached to transactions' 2152 * BJ_Forget list just to stop checkpointing code from cleaning up 2153 * the transaction this buffer was modified in. 2154 */ 2155 transaction = jh->b_transaction; 2156 if (transaction == NULL) { 2157 /* First case: not on any transaction. If it 2158 * has no checkpoint link, then we can zap it: 2159 * it's a writeback-mode buffer so we don't care 2160 * if it hits disk safely. */ 2161 if (!jh->b_cp_transaction) { 2162 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2163 goto zap_buffer; 2164 } 2165 2166 if (!buffer_dirty(bh)) { 2167 /* bdflush has written it. We can drop it now */ 2168 __jbd2_journal_remove_checkpoint(jh); 2169 goto zap_buffer; 2170 } 2171 2172 /* OK, it must be in the journal but still not 2173 * written fully to disk: it's metadata or 2174 * journaled data... */ 2175 2176 if (journal->j_running_transaction) { 2177 /* ... and once the current transaction has 2178 * committed, the buffer won't be needed any 2179 * longer. */ 2180 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2181 may_free = __dispose_buffer(jh, 2182 journal->j_running_transaction); 2183 goto zap_buffer; 2184 } else { 2185 /* There is no currently-running transaction. So the 2186 * orphan record which we wrote for this file must have 2187 * passed into commit. We must attach this buffer to 2188 * the committing transaction, if it exists. */ 2189 if (journal->j_committing_transaction) { 2190 JBUFFER_TRACE(jh, "give to committing trans"); 2191 may_free = __dispose_buffer(jh, 2192 journal->j_committing_transaction); 2193 goto zap_buffer; 2194 } else { 2195 /* The orphan record's transaction has 2196 * committed. We can cleanse this buffer */ 2197 clear_buffer_jbddirty(bh); 2198 __jbd2_journal_remove_checkpoint(jh); 2199 goto zap_buffer; 2200 } 2201 } 2202 } else if (transaction == journal->j_committing_transaction) { 2203 JBUFFER_TRACE(jh, "on committing transaction"); 2204 /* 2205 * The buffer is committing, we simply cannot touch 2206 * it. If the page is straddling i_size we have to wait 2207 * for commit and try again. 2208 */ 2209 if (partial_page) { 2210 jbd2_journal_put_journal_head(jh); 2211 spin_unlock(&journal->j_list_lock); 2212 jbd_unlock_bh_state(bh); 2213 write_unlock(&journal->j_state_lock); 2214 return -EBUSY; 2215 } 2216 /* 2217 * OK, buffer won't be reachable after truncate. We just set 2218 * j_next_transaction to the running transaction (if there is 2219 * one) and mark buffer as freed so that commit code knows it 2220 * should clear dirty bits when it is done with the buffer. 2221 */ 2222 set_buffer_freed(bh); 2223 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2224 jh->b_next_transaction = journal->j_running_transaction; 2225 jbd2_journal_put_journal_head(jh); 2226 spin_unlock(&journal->j_list_lock); 2227 jbd_unlock_bh_state(bh); 2228 write_unlock(&journal->j_state_lock); 2229 return 0; 2230 } else { 2231 /* Good, the buffer belongs to the running transaction. 2232 * We are writing our own transaction's data, not any 2233 * previous one's, so it is safe to throw it away 2234 * (remember that we expect the filesystem to have set 2235 * i_size already for this truncate so recovery will not 2236 * expose the disk blocks we are discarding here.) */ 2237 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2238 JBUFFER_TRACE(jh, "on running transaction"); 2239 may_free = __dispose_buffer(jh, transaction); 2240 } 2241 2242 zap_buffer: 2243 /* 2244 * This is tricky. Although the buffer is truncated, it may be reused 2245 * if blocksize < pagesize and it is attached to the page straddling 2246 * EOF. Since the buffer might have been added to BJ_Forget list of the 2247 * running transaction, journal_get_write_access() won't clear 2248 * b_modified and credit accounting gets confused. So clear b_modified 2249 * here. 2250 */ 2251 jh->b_modified = 0; 2252 jbd2_journal_put_journal_head(jh); 2253 zap_buffer_no_jh: 2254 spin_unlock(&journal->j_list_lock); 2255 jbd_unlock_bh_state(bh); 2256 write_unlock(&journal->j_state_lock); 2257 zap_buffer_unlocked: 2258 clear_buffer_dirty(bh); 2259 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2260 clear_buffer_mapped(bh); 2261 clear_buffer_req(bh); 2262 clear_buffer_new(bh); 2263 clear_buffer_delay(bh); 2264 clear_buffer_unwritten(bh); 2265 bh->b_bdev = NULL; 2266 return may_free; 2267 } 2268 2269 /** 2270 * void jbd2_journal_invalidatepage() 2271 * @journal: journal to use for flush... 2272 * @page: page to flush 2273 * @offset: start of the range to invalidate 2274 * @length: length of the range to invalidate 2275 * 2276 * Reap page buffers containing data after in the specified range in page. 2277 * Can return -EBUSY if buffers are part of the committing transaction and 2278 * the page is straddling i_size. Caller then has to wait for current commit 2279 * and try again. 2280 */ 2281 int jbd2_journal_invalidatepage(journal_t *journal, 2282 struct page *page, 2283 unsigned int offset, 2284 unsigned int length) 2285 { 2286 struct buffer_head *head, *bh, *next; 2287 unsigned int stop = offset + length; 2288 unsigned int curr_off = 0; 2289 int partial_page = (offset || length < PAGE_SIZE); 2290 int may_free = 1; 2291 int ret = 0; 2292 2293 if (!PageLocked(page)) 2294 BUG(); 2295 if (!page_has_buffers(page)) 2296 return 0; 2297 2298 BUG_ON(stop > PAGE_SIZE || stop < length); 2299 2300 /* We will potentially be playing with lists other than just the 2301 * data lists (especially for journaled data mode), so be 2302 * cautious in our locking. */ 2303 2304 head = bh = page_buffers(page); 2305 do { 2306 unsigned int next_off = curr_off + bh->b_size; 2307 next = bh->b_this_page; 2308 2309 if (next_off > stop) 2310 return 0; 2311 2312 if (offset <= curr_off) { 2313 /* This block is wholly outside the truncation point */ 2314 lock_buffer(bh); 2315 ret = journal_unmap_buffer(journal, bh, partial_page); 2316 unlock_buffer(bh); 2317 if (ret < 0) 2318 return ret; 2319 may_free &= ret; 2320 } 2321 curr_off = next_off; 2322 bh = next; 2323 2324 } while (bh != head); 2325 2326 if (!partial_page) { 2327 if (may_free && try_to_free_buffers(page)) 2328 J_ASSERT(!page_has_buffers(page)); 2329 } 2330 return 0; 2331 } 2332 2333 /* 2334 * File a buffer on the given transaction list. 2335 */ 2336 void __jbd2_journal_file_buffer(struct journal_head *jh, 2337 transaction_t *transaction, int jlist) 2338 { 2339 struct journal_head **list = NULL; 2340 int was_dirty = 0; 2341 struct buffer_head *bh = jh2bh(jh); 2342 2343 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2344 assert_spin_locked(&transaction->t_journal->j_list_lock); 2345 2346 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2347 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2348 jh->b_transaction == NULL); 2349 2350 if (jh->b_transaction && jh->b_jlist == jlist) 2351 return; 2352 2353 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2354 jlist == BJ_Shadow || jlist == BJ_Forget) { 2355 /* 2356 * For metadata buffers, we track dirty bit in buffer_jbddirty 2357 * instead of buffer_dirty. We should not see a dirty bit set 2358 * here because we clear it in do_get_write_access but e.g. 2359 * tune2fs can modify the sb and set the dirty bit at any time 2360 * so we try to gracefully handle that. 2361 */ 2362 if (buffer_dirty(bh)) 2363 warn_dirty_buffer(bh); 2364 if (test_clear_buffer_dirty(bh) || 2365 test_clear_buffer_jbddirty(bh)) 2366 was_dirty = 1; 2367 } 2368 2369 if (jh->b_transaction) 2370 __jbd2_journal_temp_unlink_buffer(jh); 2371 else 2372 jbd2_journal_grab_journal_head(bh); 2373 jh->b_transaction = transaction; 2374 2375 switch (jlist) { 2376 case BJ_None: 2377 J_ASSERT_JH(jh, !jh->b_committed_data); 2378 J_ASSERT_JH(jh, !jh->b_frozen_data); 2379 return; 2380 case BJ_Metadata: 2381 transaction->t_nr_buffers++; 2382 list = &transaction->t_buffers; 2383 break; 2384 case BJ_Forget: 2385 list = &transaction->t_forget; 2386 break; 2387 case BJ_Shadow: 2388 list = &transaction->t_shadow_list; 2389 break; 2390 case BJ_Reserved: 2391 list = &transaction->t_reserved_list; 2392 break; 2393 } 2394 2395 __blist_add_buffer(list, jh); 2396 jh->b_jlist = jlist; 2397 2398 if (was_dirty) 2399 set_buffer_jbddirty(bh); 2400 } 2401 2402 void jbd2_journal_file_buffer(struct journal_head *jh, 2403 transaction_t *transaction, int jlist) 2404 { 2405 jbd_lock_bh_state(jh2bh(jh)); 2406 spin_lock(&transaction->t_journal->j_list_lock); 2407 __jbd2_journal_file_buffer(jh, transaction, jlist); 2408 spin_unlock(&transaction->t_journal->j_list_lock); 2409 jbd_unlock_bh_state(jh2bh(jh)); 2410 } 2411 2412 /* 2413 * Remove a buffer from its current buffer list in preparation for 2414 * dropping it from its current transaction entirely. If the buffer has 2415 * already started to be used by a subsequent transaction, refile the 2416 * buffer on that transaction's metadata list. 2417 * 2418 * Called under j_list_lock 2419 * Called under jbd_lock_bh_state(jh2bh(jh)) 2420 * 2421 * jh and bh may be already free when this function returns 2422 */ 2423 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2424 { 2425 int was_dirty, jlist; 2426 struct buffer_head *bh = jh2bh(jh); 2427 2428 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2429 if (jh->b_transaction) 2430 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2431 2432 /* If the buffer is now unused, just drop it. */ 2433 if (jh->b_next_transaction == NULL) { 2434 __jbd2_journal_unfile_buffer(jh); 2435 return; 2436 } 2437 2438 /* 2439 * It has been modified by a later transaction: add it to the new 2440 * transaction's metadata list. 2441 */ 2442 2443 was_dirty = test_clear_buffer_jbddirty(bh); 2444 __jbd2_journal_temp_unlink_buffer(jh); 2445 /* 2446 * We set b_transaction here because b_next_transaction will inherit 2447 * our jh reference and thus __jbd2_journal_file_buffer() must not 2448 * take a new one. 2449 */ 2450 jh->b_transaction = jh->b_next_transaction; 2451 jh->b_next_transaction = NULL; 2452 if (buffer_freed(bh)) 2453 jlist = BJ_Forget; 2454 else if (jh->b_modified) 2455 jlist = BJ_Metadata; 2456 else 2457 jlist = BJ_Reserved; 2458 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2459 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2460 2461 if (was_dirty) 2462 set_buffer_jbddirty(bh); 2463 } 2464 2465 /* 2466 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2467 * bh reference so that we can safely unlock bh. 2468 * 2469 * The jh and bh may be freed by this call. 2470 */ 2471 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2472 { 2473 struct buffer_head *bh = jh2bh(jh); 2474 2475 /* Get reference so that buffer cannot be freed before we unlock it */ 2476 get_bh(bh); 2477 jbd_lock_bh_state(bh); 2478 spin_lock(&journal->j_list_lock); 2479 __jbd2_journal_refile_buffer(jh); 2480 jbd_unlock_bh_state(bh); 2481 spin_unlock(&journal->j_list_lock); 2482 __brelse(bh); 2483 } 2484 2485 /* 2486 * File inode in the inode list of the handle's transaction 2487 */ 2488 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2489 unsigned long flags) 2490 { 2491 transaction_t *transaction = handle->h_transaction; 2492 journal_t *journal; 2493 2494 if (is_handle_aborted(handle)) 2495 return -EROFS; 2496 journal = transaction->t_journal; 2497 2498 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2499 transaction->t_tid); 2500 2501 /* 2502 * First check whether inode isn't already on the transaction's 2503 * lists without taking the lock. Note that this check is safe 2504 * without the lock as we cannot race with somebody removing inode 2505 * from the transaction. The reason is that we remove inode from the 2506 * transaction only in journal_release_jbd_inode() and when we commit 2507 * the transaction. We are guarded from the first case by holding 2508 * a reference to the inode. We are safe against the second case 2509 * because if jinode->i_transaction == transaction, commit code 2510 * cannot touch the transaction because we hold reference to it, 2511 * and if jinode->i_next_transaction == transaction, commit code 2512 * will only file the inode where we want it. 2513 */ 2514 if ((jinode->i_transaction == transaction || 2515 jinode->i_next_transaction == transaction) && 2516 (jinode->i_flags & flags) == flags) 2517 return 0; 2518 2519 spin_lock(&journal->j_list_lock); 2520 jinode->i_flags |= flags; 2521 /* Is inode already attached where we need it? */ 2522 if (jinode->i_transaction == transaction || 2523 jinode->i_next_transaction == transaction) 2524 goto done; 2525 2526 /* 2527 * We only ever set this variable to 1 so the test is safe. Since 2528 * t_need_data_flush is likely to be set, we do the test to save some 2529 * cacheline bouncing 2530 */ 2531 if (!transaction->t_need_data_flush) 2532 transaction->t_need_data_flush = 1; 2533 /* On some different transaction's list - should be 2534 * the committing one */ 2535 if (jinode->i_transaction) { 2536 J_ASSERT(jinode->i_next_transaction == NULL); 2537 J_ASSERT(jinode->i_transaction == 2538 journal->j_committing_transaction); 2539 jinode->i_next_transaction = transaction; 2540 goto done; 2541 } 2542 /* Not on any transaction list... */ 2543 J_ASSERT(!jinode->i_next_transaction); 2544 jinode->i_transaction = transaction; 2545 list_add(&jinode->i_list, &transaction->t_inode_list); 2546 done: 2547 spin_unlock(&journal->j_list_lock); 2548 2549 return 0; 2550 } 2551 2552 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2553 { 2554 return jbd2_journal_file_inode(handle, jinode, 2555 JI_WRITE_DATA | JI_WAIT_DATA); 2556 } 2557 2558 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2559 { 2560 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2561 } 2562 2563 /* 2564 * File truncate and transaction commit interact with each other in a 2565 * non-trivial way. If a transaction writing data block A is 2566 * committing, we cannot discard the data by truncate until we have 2567 * written them. Otherwise if we crashed after the transaction with 2568 * write has committed but before the transaction with truncate has 2569 * committed, we could see stale data in block A. This function is a 2570 * helper to solve this problem. It starts writeout of the truncated 2571 * part in case it is in the committing transaction. 2572 * 2573 * Filesystem code must call this function when inode is journaled in 2574 * ordered mode before truncation happens and after the inode has been 2575 * placed on orphan list with the new inode size. The second condition 2576 * avoids the race that someone writes new data and we start 2577 * committing the transaction after this function has been called but 2578 * before a transaction for truncate is started (and furthermore it 2579 * allows us to optimize the case where the addition to orphan list 2580 * happens in the same transaction as write --- we don't have to write 2581 * any data in such case). 2582 */ 2583 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2584 struct jbd2_inode *jinode, 2585 loff_t new_size) 2586 { 2587 transaction_t *inode_trans, *commit_trans; 2588 int ret = 0; 2589 2590 /* This is a quick check to avoid locking if not necessary */ 2591 if (!jinode->i_transaction) 2592 goto out; 2593 /* Locks are here just to force reading of recent values, it is 2594 * enough that the transaction was not committing before we started 2595 * a transaction adding the inode to orphan list */ 2596 read_lock(&journal->j_state_lock); 2597 commit_trans = journal->j_committing_transaction; 2598 read_unlock(&journal->j_state_lock); 2599 spin_lock(&journal->j_list_lock); 2600 inode_trans = jinode->i_transaction; 2601 spin_unlock(&journal->j_list_lock); 2602 if (inode_trans == commit_trans) { 2603 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2604 new_size, LLONG_MAX); 2605 if (ret) 2606 jbd2_journal_abort(journal, ret); 2607 } 2608 out: 2609 return ret; 2610 } 2611