xref: /openbmc/linux/fs/jbd2/transaction.c (revision bdeeed09)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (transaction_cache)
46 		return 0;
47 	return -ENOMEM;
48 }
49 
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 	if (transaction_cache) {
53 		kmem_cache_destroy(transaction_cache);
54 		transaction_cache = NULL;
55 	}
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply allocate and initialise a new transaction.  Create it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static transaction_t *
81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits,
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_handle_count, 0);
93 	INIT_LIST_HEAD(&transaction->t_inode_list);
94 	INIT_LIST_HEAD(&transaction->t_private_list);
95 
96 	/* Set up the commit timer for the new transaction. */
97 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 	add_timer(&journal->j_commit_timer);
99 
100 	J_ASSERT(journal->j_running_transaction == NULL);
101 	journal->j_running_transaction = transaction;
102 	transaction->t_max_wait = 0;
103 	transaction->t_start = jiffies;
104 	transaction->t_requested = 0;
105 
106 	return transaction;
107 }
108 
109 /*
110  * Handle management.
111  *
112  * A handle_t is an object which represents a single atomic update to a
113  * filesystem, and which tracks all of the modifications which form part
114  * of that one update.
115  */
116 
117 /*
118  * Update transaction's maximum wait time, if debugging is enabled.
119  *
120  * In order for t_max_wait to be reliable, it must be protected by a
121  * lock.  But doing so will mean that start_this_handle() can not be
122  * run in parallel on SMP systems, which limits our scalability.  So
123  * unless debugging is enabled, we no longer update t_max_wait, which
124  * means that maximum wait time reported by the jbd2_run_stats
125  * tracepoint will always be zero.
126  */
127 static inline void update_t_max_wait(transaction_t *transaction,
128 				     unsigned long ts)
129 {
130 #ifdef CONFIG_JBD2_DEBUG
131 	if (jbd2_journal_enable_debug &&
132 	    time_after(transaction->t_start, ts)) {
133 		ts = jbd2_time_diff(ts, transaction->t_start);
134 		spin_lock(&transaction->t_handle_lock);
135 		if (ts > transaction->t_max_wait)
136 			transaction->t_max_wait = ts;
137 		spin_unlock(&transaction->t_handle_lock);
138 	}
139 #endif
140 }
141 
142 /*
143  * Wait until running transaction passes T_LOCKED state. Also starts the commit
144  * if needed. The function expects running transaction to exist and releases
145  * j_state_lock.
146  */
147 static void wait_transaction_locked(journal_t *journal)
148 	__releases(journal->j_state_lock)
149 {
150 	DEFINE_WAIT(wait);
151 	int need_to_start;
152 	tid_t tid = journal->j_running_transaction->t_tid;
153 
154 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
155 			TASK_UNINTERRUPTIBLE);
156 	need_to_start = !tid_geq(journal->j_commit_request, tid);
157 	read_unlock(&journal->j_state_lock);
158 	if (need_to_start)
159 		jbd2_log_start_commit(journal, tid);
160 	jbd2_might_wait_for_commit(journal);
161 	schedule();
162 	finish_wait(&journal->j_wait_transaction_locked, &wait);
163 }
164 
165 static void sub_reserved_credits(journal_t *journal, int blocks)
166 {
167 	atomic_sub(blocks, &journal->j_reserved_credits);
168 	wake_up(&journal->j_wait_reserved);
169 }
170 
171 /*
172  * Wait until we can add credits for handle to the running transaction.  Called
173  * with j_state_lock held for reading. Returns 0 if handle joined the running
174  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
175  * caller must retry.
176  */
177 static int add_transaction_credits(journal_t *journal, int blocks,
178 				   int rsv_blocks)
179 {
180 	transaction_t *t = journal->j_running_transaction;
181 	int needed;
182 	int total = blocks + rsv_blocks;
183 
184 	/*
185 	 * If the current transaction is locked down for commit, wait
186 	 * for the lock to be released.
187 	 */
188 	if (t->t_state == T_LOCKED) {
189 		wait_transaction_locked(journal);
190 		return 1;
191 	}
192 
193 	/*
194 	 * If there is not enough space left in the log to write all
195 	 * potential buffers requested by this operation, we need to
196 	 * stall pending a log checkpoint to free some more log space.
197 	 */
198 	needed = atomic_add_return(total, &t->t_outstanding_credits);
199 	if (needed > journal->j_max_transaction_buffers) {
200 		/*
201 		 * If the current transaction is already too large,
202 		 * then start to commit it: we can then go back and
203 		 * attach this handle to a new transaction.
204 		 */
205 		atomic_sub(total, &t->t_outstanding_credits);
206 
207 		/*
208 		 * Is the number of reserved credits in the current transaction too
209 		 * big to fit this handle? Wait until reserved credits are freed.
210 		 */
211 		if (atomic_read(&journal->j_reserved_credits) + total >
212 		    journal->j_max_transaction_buffers) {
213 			read_unlock(&journal->j_state_lock);
214 			jbd2_might_wait_for_commit(journal);
215 			wait_event(journal->j_wait_reserved,
216 				   atomic_read(&journal->j_reserved_credits) + total <=
217 				   journal->j_max_transaction_buffers);
218 			return 1;
219 		}
220 
221 		wait_transaction_locked(journal);
222 		return 1;
223 	}
224 
225 	/*
226 	 * The commit code assumes that it can get enough log space
227 	 * without forcing a checkpoint.  This is *critical* for
228 	 * correctness: a checkpoint of a buffer which is also
229 	 * associated with a committing transaction creates a deadlock,
230 	 * so commit simply cannot force through checkpoints.
231 	 *
232 	 * We must therefore ensure the necessary space in the journal
233 	 * *before* starting to dirty potentially checkpointed buffers
234 	 * in the new transaction.
235 	 */
236 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 		atomic_sub(total, &t->t_outstanding_credits);
238 		read_unlock(&journal->j_state_lock);
239 		jbd2_might_wait_for_commit(journal);
240 		write_lock(&journal->j_state_lock);
241 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
242 			__jbd2_log_wait_for_space(journal);
243 		write_unlock(&journal->j_state_lock);
244 		return 1;
245 	}
246 
247 	/* No reservation? We are done... */
248 	if (!rsv_blocks)
249 		return 0;
250 
251 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
252 	/* We allow at most half of a transaction to be reserved */
253 	if (needed > journal->j_max_transaction_buffers / 2) {
254 		sub_reserved_credits(journal, rsv_blocks);
255 		atomic_sub(total, &t->t_outstanding_credits);
256 		read_unlock(&journal->j_state_lock);
257 		jbd2_might_wait_for_commit(journal);
258 		wait_event(journal->j_wait_reserved,
259 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
260 			 <= journal->j_max_transaction_buffers / 2);
261 		return 1;
262 	}
263 	return 0;
264 }
265 
266 /*
267  * start_this_handle: Given a handle, deal with any locking or stalling
268  * needed to make sure that there is enough journal space for the handle
269  * to begin.  Attach the handle to a transaction and set up the
270  * transaction's buffer credits.
271  */
272 
273 static int start_this_handle(journal_t *journal, handle_t *handle,
274 			     gfp_t gfp_mask)
275 {
276 	transaction_t	*transaction, *new_transaction = NULL;
277 	int		blocks = handle->h_buffer_credits;
278 	int		rsv_blocks = 0;
279 	unsigned long ts = jiffies;
280 
281 	if (handle->h_rsv_handle)
282 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283 
284 	/*
285 	 * Limit the number of reserved credits to 1/2 of maximum transaction
286 	 * size and limit the number of total credits to not exceed maximum
287 	 * transaction size per operation.
288 	 */
289 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291 		printk(KERN_ERR "JBD2: %s wants too many credits "
292 		       "credits:%d rsv_credits:%d max:%d\n",
293 		       current->comm, blocks, rsv_blocks,
294 		       journal->j_max_transaction_buffers);
295 		WARN_ON(1);
296 		return -ENOSPC;
297 	}
298 
299 alloc_transaction:
300 	if (!journal->j_running_transaction) {
301 		/*
302 		 * If __GFP_FS is not present, then we may be being called from
303 		 * inside the fs writeback layer, so we MUST NOT fail.
304 		 */
305 		if ((gfp_mask & __GFP_FS) == 0)
306 			gfp_mask |= __GFP_NOFAIL;
307 		new_transaction = kmem_cache_zalloc(transaction_cache,
308 						    gfp_mask);
309 		if (!new_transaction)
310 			return -ENOMEM;
311 	}
312 
313 	jbd_debug(3, "New handle %p going live.\n", handle);
314 
315 	/*
316 	 * We need to hold j_state_lock until t_updates has been incremented,
317 	 * for proper journal barrier handling
318 	 */
319 repeat:
320 	read_lock(&journal->j_state_lock);
321 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
322 	if (is_journal_aborted(journal) ||
323 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
324 		read_unlock(&journal->j_state_lock);
325 		jbd2_journal_free_transaction(new_transaction);
326 		return -EROFS;
327 	}
328 
329 	/*
330 	 * Wait on the journal's transaction barrier if necessary. Specifically
331 	 * we allow reserved handles to proceed because otherwise commit could
332 	 * deadlock on page writeback not being able to complete.
333 	 */
334 	if (!handle->h_reserved && journal->j_barrier_count) {
335 		read_unlock(&journal->j_state_lock);
336 		wait_event(journal->j_wait_transaction_locked,
337 				journal->j_barrier_count == 0);
338 		goto repeat;
339 	}
340 
341 	if (!journal->j_running_transaction) {
342 		read_unlock(&journal->j_state_lock);
343 		if (!new_transaction)
344 			goto alloc_transaction;
345 		write_lock(&journal->j_state_lock);
346 		if (!journal->j_running_transaction &&
347 		    (handle->h_reserved || !journal->j_barrier_count)) {
348 			jbd2_get_transaction(journal, new_transaction);
349 			new_transaction = NULL;
350 		}
351 		write_unlock(&journal->j_state_lock);
352 		goto repeat;
353 	}
354 
355 	transaction = journal->j_running_transaction;
356 
357 	if (!handle->h_reserved) {
358 		/* We may have dropped j_state_lock - restart in that case */
359 		if (add_transaction_credits(journal, blocks, rsv_blocks))
360 			goto repeat;
361 	} else {
362 		/*
363 		 * We have handle reserved so we are allowed to join T_LOCKED
364 		 * transaction and we don't have to check for transaction size
365 		 * and journal space.
366 		 */
367 		sub_reserved_credits(journal, blocks);
368 		handle->h_reserved = 0;
369 	}
370 
371 	/* OK, account for the buffers that this operation expects to
372 	 * use and add the handle to the running transaction.
373 	 */
374 	update_t_max_wait(transaction, ts);
375 	handle->h_transaction = transaction;
376 	handle->h_requested_credits = blocks;
377 	handle->h_start_jiffies = jiffies;
378 	atomic_inc(&transaction->t_updates);
379 	atomic_inc(&transaction->t_handle_count);
380 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381 		  handle, blocks,
382 		  atomic_read(&transaction->t_outstanding_credits),
383 		  jbd2_log_space_left(journal));
384 	read_unlock(&journal->j_state_lock);
385 	current->journal_info = handle;
386 
387 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
388 	jbd2_journal_free_transaction(new_transaction);
389 	/*
390 	 * Ensure that no allocations done while the transaction is open are
391 	 * going to recurse back to the fs layer.
392 	 */
393 	handle->saved_alloc_context = memalloc_nofs_save();
394 	return 0;
395 }
396 
397 /* Allocate a new handle.  This should probably be in a slab... */
398 static handle_t *new_handle(int nblocks)
399 {
400 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
401 	if (!handle)
402 		return NULL;
403 	handle->h_buffer_credits = nblocks;
404 	handle->h_ref = 1;
405 
406 	return handle;
407 }
408 
409 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
410 			      gfp_t gfp_mask, unsigned int type,
411 			      unsigned int line_no)
412 {
413 	handle_t *handle = journal_current_handle();
414 	int err;
415 
416 	if (!journal)
417 		return ERR_PTR(-EROFS);
418 
419 	if (handle) {
420 		J_ASSERT(handle->h_transaction->t_journal == journal);
421 		handle->h_ref++;
422 		return handle;
423 	}
424 
425 	handle = new_handle(nblocks);
426 	if (!handle)
427 		return ERR_PTR(-ENOMEM);
428 	if (rsv_blocks) {
429 		handle_t *rsv_handle;
430 
431 		rsv_handle = new_handle(rsv_blocks);
432 		if (!rsv_handle) {
433 			jbd2_free_handle(handle);
434 			return ERR_PTR(-ENOMEM);
435 		}
436 		rsv_handle->h_reserved = 1;
437 		rsv_handle->h_journal = journal;
438 		handle->h_rsv_handle = rsv_handle;
439 	}
440 
441 	err = start_this_handle(journal, handle, gfp_mask);
442 	if (err < 0) {
443 		if (handle->h_rsv_handle)
444 			jbd2_free_handle(handle->h_rsv_handle);
445 		jbd2_free_handle(handle);
446 		return ERR_PTR(err);
447 	}
448 	handle->h_type = type;
449 	handle->h_line_no = line_no;
450 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
451 				handle->h_transaction->t_tid, type,
452 				line_no, nblocks);
453 
454 	return handle;
455 }
456 EXPORT_SYMBOL(jbd2__journal_start);
457 
458 
459 /**
460  * handle_t *jbd2_journal_start() - Obtain a new handle.
461  * @journal: Journal to start transaction on.
462  * @nblocks: number of block buffer we might modify
463  *
464  * We make sure that the transaction can guarantee at least nblocks of
465  * modified buffers in the log.  We block until the log can guarantee
466  * that much space. Additionally, if rsv_blocks > 0, we also create another
467  * handle with rsv_blocks reserved blocks in the journal. This handle is
468  * is stored in h_rsv_handle. It is not attached to any particular transaction
469  * and thus doesn't block transaction commit. If the caller uses this reserved
470  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
471  * on the parent handle will dispose the reserved one. Reserved handle has to
472  * be converted to a normal handle using jbd2_journal_start_reserved() before
473  * it can be used.
474  *
475  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
476  * on failure.
477  */
478 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
479 {
480 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
481 }
482 EXPORT_SYMBOL(jbd2_journal_start);
483 
484 void jbd2_journal_free_reserved(handle_t *handle)
485 {
486 	journal_t *journal = handle->h_journal;
487 
488 	WARN_ON(!handle->h_reserved);
489 	sub_reserved_credits(journal, handle->h_buffer_credits);
490 	jbd2_free_handle(handle);
491 }
492 EXPORT_SYMBOL(jbd2_journal_free_reserved);
493 
494 /**
495  * int jbd2_journal_start_reserved() - start reserved handle
496  * @handle: handle to start
497  * @type: for handle statistics
498  * @line_no: for handle statistics
499  *
500  * Start handle that has been previously reserved with jbd2_journal_reserve().
501  * This attaches @handle to the running transaction (or creates one if there's
502  * not transaction running). Unlike jbd2_journal_start() this function cannot
503  * block on journal commit, checkpointing, or similar stuff. It can block on
504  * memory allocation or frozen journal though.
505  *
506  * Return 0 on success, non-zero on error - handle is freed in that case.
507  */
508 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
509 				unsigned int line_no)
510 {
511 	journal_t *journal = handle->h_journal;
512 	int ret = -EIO;
513 
514 	if (WARN_ON(!handle->h_reserved)) {
515 		/* Someone passed in normal handle? Just stop it. */
516 		jbd2_journal_stop(handle);
517 		return ret;
518 	}
519 	/*
520 	 * Usefulness of mixing of reserved and unreserved handles is
521 	 * questionable. So far nobody seems to need it so just error out.
522 	 */
523 	if (WARN_ON(current->journal_info)) {
524 		jbd2_journal_free_reserved(handle);
525 		return ret;
526 	}
527 
528 	handle->h_journal = NULL;
529 	/*
530 	 * GFP_NOFS is here because callers are likely from writeback or
531 	 * similarly constrained call sites
532 	 */
533 	ret = start_this_handle(journal, handle, GFP_NOFS);
534 	if (ret < 0) {
535 		handle->h_journal = journal;
536 		jbd2_journal_free_reserved(handle);
537 		return ret;
538 	}
539 	handle->h_type = type;
540 	handle->h_line_no = line_no;
541 	return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544 
545 /**
546  * int jbd2_journal_extend() - extend buffer credits.
547  * @handle:  handle to 'extend'
548  * @nblocks: nr blocks to try to extend by.
549  *
550  * Some transactions, such as large extends and truncates, can be done
551  * atomically all at once or in several stages.  The operation requests
552  * a credit for a number of buffer modifications in advance, but can
553  * extend its credit if it needs more.
554  *
555  * jbd2_journal_extend tries to give the running handle more buffer credits.
556  * It does not guarantee that allocation - this is a best-effort only.
557  * The calling process MUST be able to deal cleanly with a failure to
558  * extend here.
559  *
560  * Return 0 on success, non-zero on failure.
561  *
562  * return code < 0 implies an error
563  * return code > 0 implies normal transaction-full status.
564  */
565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567 	transaction_t *transaction = handle->h_transaction;
568 	journal_t *journal;
569 	int result;
570 	int wanted;
571 
572 	if (is_handle_aborted(handle))
573 		return -EROFS;
574 	journal = transaction->t_journal;
575 
576 	result = 1;
577 
578 	read_lock(&journal->j_state_lock);
579 
580 	/* Don't extend a locked-down transaction! */
581 	if (transaction->t_state != T_RUNNING) {
582 		jbd_debug(3, "denied handle %p %d blocks: "
583 			  "transaction not running\n", handle, nblocks);
584 		goto error_out;
585 	}
586 
587 	spin_lock(&transaction->t_handle_lock);
588 	wanted = atomic_add_return(nblocks,
589 				   &transaction->t_outstanding_credits);
590 
591 	if (wanted > journal->j_max_transaction_buffers) {
592 		jbd_debug(3, "denied handle %p %d blocks: "
593 			  "transaction too large\n", handle, nblocks);
594 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
595 		goto unlock;
596 	}
597 
598 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599 	    jbd2_log_space_left(journal)) {
600 		jbd_debug(3, "denied handle %p %d blocks: "
601 			  "insufficient log space\n", handle, nblocks);
602 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
603 		goto unlock;
604 	}
605 
606 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607 				 transaction->t_tid,
608 				 handle->h_type, handle->h_line_no,
609 				 handle->h_buffer_credits,
610 				 nblocks);
611 
612 	handle->h_buffer_credits += nblocks;
613 	handle->h_requested_credits += nblocks;
614 	result = 0;
615 
616 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618 	spin_unlock(&transaction->t_handle_lock);
619 error_out:
620 	read_unlock(&journal->j_state_lock);
621 	return result;
622 }
623 
624 
625 /**
626  * int jbd2_journal_restart() - restart a handle .
627  * @handle:  handle to restart
628  * @nblocks: nr credits requested
629  * @gfp_mask: memory allocation flags (for start_this_handle)
630  *
631  * Restart a handle for a multi-transaction filesystem
632  * operation.
633  *
634  * If the jbd2_journal_extend() call above fails to grant new buffer credits
635  * to a running handle, a call to jbd2_journal_restart will commit the
636  * handle's transaction so far and reattach the handle to a new
637  * transaction capable of guaranteeing the requested number of
638  * credits. We preserve reserved handle if there's any attached to the
639  * passed in handle.
640  */
641 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
642 {
643 	transaction_t *transaction = handle->h_transaction;
644 	journal_t *journal;
645 	tid_t		tid;
646 	int		need_to_start, ret;
647 
648 	/* If we've had an abort of any type, don't even think about
649 	 * actually doing the restart! */
650 	if (is_handle_aborted(handle))
651 		return 0;
652 	journal = transaction->t_journal;
653 
654 	/*
655 	 * First unlink the handle from its current transaction, and start the
656 	 * commit on that.
657 	 */
658 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
659 	J_ASSERT(journal_current_handle() == handle);
660 
661 	read_lock(&journal->j_state_lock);
662 	spin_lock(&transaction->t_handle_lock);
663 	atomic_sub(handle->h_buffer_credits,
664 		   &transaction->t_outstanding_credits);
665 	if (handle->h_rsv_handle) {
666 		sub_reserved_credits(journal,
667 				     handle->h_rsv_handle->h_buffer_credits);
668 	}
669 	if (atomic_dec_and_test(&transaction->t_updates))
670 		wake_up(&journal->j_wait_updates);
671 	tid = transaction->t_tid;
672 	spin_unlock(&transaction->t_handle_lock);
673 	handle->h_transaction = NULL;
674 	current->journal_info = NULL;
675 
676 	jbd_debug(2, "restarting handle %p\n", handle);
677 	need_to_start = !tid_geq(journal->j_commit_request, tid);
678 	read_unlock(&journal->j_state_lock);
679 	if (need_to_start)
680 		jbd2_log_start_commit(journal, tid);
681 
682 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
683 	handle->h_buffer_credits = nblocks;
684 	/*
685 	 * Restore the original nofs context because the journal restart
686 	 * is basically the same thing as journal stop and start.
687 	 * start_this_handle will start a new nofs context.
688 	 */
689 	memalloc_nofs_restore(handle->saved_alloc_context);
690 	ret = start_this_handle(journal, handle, gfp_mask);
691 	return ret;
692 }
693 EXPORT_SYMBOL(jbd2__journal_restart);
694 
695 
696 int jbd2_journal_restart(handle_t *handle, int nblocks)
697 {
698 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
699 }
700 EXPORT_SYMBOL(jbd2_journal_restart);
701 
702 /**
703  * void jbd2_journal_lock_updates () - establish a transaction barrier.
704  * @journal:  Journal to establish a barrier on.
705  *
706  * This locks out any further updates from being started, and blocks
707  * until all existing updates have completed, returning only once the
708  * journal is in a quiescent state with no updates running.
709  *
710  * The journal lock should not be held on entry.
711  */
712 void jbd2_journal_lock_updates(journal_t *journal)
713 {
714 	DEFINE_WAIT(wait);
715 
716 	jbd2_might_wait_for_commit(journal);
717 
718 	write_lock(&journal->j_state_lock);
719 	++journal->j_barrier_count;
720 
721 	/* Wait until there are no reserved handles */
722 	if (atomic_read(&journal->j_reserved_credits)) {
723 		write_unlock(&journal->j_state_lock);
724 		wait_event(journal->j_wait_reserved,
725 			   atomic_read(&journal->j_reserved_credits) == 0);
726 		write_lock(&journal->j_state_lock);
727 	}
728 
729 	/* Wait until there are no running updates */
730 	while (1) {
731 		transaction_t *transaction = journal->j_running_transaction;
732 
733 		if (!transaction)
734 			break;
735 
736 		spin_lock(&transaction->t_handle_lock);
737 		prepare_to_wait(&journal->j_wait_updates, &wait,
738 				TASK_UNINTERRUPTIBLE);
739 		if (!atomic_read(&transaction->t_updates)) {
740 			spin_unlock(&transaction->t_handle_lock);
741 			finish_wait(&journal->j_wait_updates, &wait);
742 			break;
743 		}
744 		spin_unlock(&transaction->t_handle_lock);
745 		write_unlock(&journal->j_state_lock);
746 		schedule();
747 		finish_wait(&journal->j_wait_updates, &wait);
748 		write_lock(&journal->j_state_lock);
749 	}
750 	write_unlock(&journal->j_state_lock);
751 
752 	/*
753 	 * We have now established a barrier against other normal updates, but
754 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
755 	 * to make sure that we serialise special journal-locked operations
756 	 * too.
757 	 */
758 	mutex_lock(&journal->j_barrier);
759 }
760 
761 /**
762  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
763  * @journal:  Journal to release the barrier on.
764  *
765  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
766  *
767  * Should be called without the journal lock held.
768  */
769 void jbd2_journal_unlock_updates (journal_t *journal)
770 {
771 	J_ASSERT(journal->j_barrier_count != 0);
772 
773 	mutex_unlock(&journal->j_barrier);
774 	write_lock(&journal->j_state_lock);
775 	--journal->j_barrier_count;
776 	write_unlock(&journal->j_state_lock);
777 	wake_up(&journal->j_wait_transaction_locked);
778 }
779 
780 static void warn_dirty_buffer(struct buffer_head *bh)
781 {
782 	printk(KERN_WARNING
783 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
784 	       "There's a risk of filesystem corruption in case of system "
785 	       "crash.\n",
786 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
787 }
788 
789 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
790 static void jbd2_freeze_jh_data(struct journal_head *jh)
791 {
792 	struct page *page;
793 	int offset;
794 	char *source;
795 	struct buffer_head *bh = jh2bh(jh);
796 
797 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
798 	page = bh->b_page;
799 	offset = offset_in_page(bh->b_data);
800 	source = kmap_atomic(page);
801 	/* Fire data frozen trigger just before we copy the data */
802 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
803 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
804 	kunmap_atomic(source);
805 
806 	/*
807 	 * Now that the frozen data is saved off, we need to store any matching
808 	 * triggers.
809 	 */
810 	jh->b_frozen_triggers = jh->b_triggers;
811 }
812 
813 /*
814  * If the buffer is already part of the current transaction, then there
815  * is nothing we need to do.  If it is already part of a prior
816  * transaction which we are still committing to disk, then we need to
817  * make sure that we do not overwrite the old copy: we do copy-out to
818  * preserve the copy going to disk.  We also account the buffer against
819  * the handle's metadata buffer credits (unless the buffer is already
820  * part of the transaction, that is).
821  *
822  */
823 static int
824 do_get_write_access(handle_t *handle, struct journal_head *jh,
825 			int force_copy)
826 {
827 	struct buffer_head *bh;
828 	transaction_t *transaction = handle->h_transaction;
829 	journal_t *journal;
830 	int error;
831 	char *frozen_buffer = NULL;
832 	unsigned long start_lock, time_lock;
833 
834 	if (is_handle_aborted(handle))
835 		return -EROFS;
836 	journal = transaction->t_journal;
837 
838 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
839 
840 	JBUFFER_TRACE(jh, "entry");
841 repeat:
842 	bh = jh2bh(jh);
843 
844 	/* @@@ Need to check for errors here at some point. */
845 
846  	start_lock = jiffies;
847 	lock_buffer(bh);
848 	jbd_lock_bh_state(bh);
849 
850 	/* If it takes too long to lock the buffer, trace it */
851 	time_lock = jbd2_time_diff(start_lock, jiffies);
852 	if (time_lock > HZ/10)
853 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
854 			jiffies_to_msecs(time_lock));
855 
856 	/* We now hold the buffer lock so it is safe to query the buffer
857 	 * state.  Is the buffer dirty?
858 	 *
859 	 * If so, there are two possibilities.  The buffer may be
860 	 * non-journaled, and undergoing a quite legitimate writeback.
861 	 * Otherwise, it is journaled, and we don't expect dirty buffers
862 	 * in that state (the buffers should be marked JBD_Dirty
863 	 * instead.)  So either the IO is being done under our own
864 	 * control and this is a bug, or it's a third party IO such as
865 	 * dump(8) (which may leave the buffer scheduled for read ---
866 	 * ie. locked but not dirty) or tune2fs (which may actually have
867 	 * the buffer dirtied, ugh.)  */
868 
869 	if (buffer_dirty(bh)) {
870 		/*
871 		 * First question: is this buffer already part of the current
872 		 * transaction or the existing committing transaction?
873 		 */
874 		if (jh->b_transaction) {
875 			J_ASSERT_JH(jh,
876 				jh->b_transaction == transaction ||
877 				jh->b_transaction ==
878 					journal->j_committing_transaction);
879 			if (jh->b_next_transaction)
880 				J_ASSERT_JH(jh, jh->b_next_transaction ==
881 							transaction);
882 			warn_dirty_buffer(bh);
883 		}
884 		/*
885 		 * In any case we need to clean the dirty flag and we must
886 		 * do it under the buffer lock to be sure we don't race
887 		 * with running write-out.
888 		 */
889 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
890 		clear_buffer_dirty(bh);
891 		set_buffer_jbddirty(bh);
892 	}
893 
894 	unlock_buffer(bh);
895 
896 	error = -EROFS;
897 	if (is_handle_aborted(handle)) {
898 		jbd_unlock_bh_state(bh);
899 		goto out;
900 	}
901 	error = 0;
902 
903 	/*
904 	 * The buffer is already part of this transaction if b_transaction or
905 	 * b_next_transaction points to it
906 	 */
907 	if (jh->b_transaction == transaction ||
908 	    jh->b_next_transaction == transaction)
909 		goto done;
910 
911 	/*
912 	 * this is the first time this transaction is touching this buffer,
913 	 * reset the modified flag
914 	 */
915        jh->b_modified = 0;
916 
917 	/*
918 	 * If the buffer is not journaled right now, we need to make sure it
919 	 * doesn't get written to disk before the caller actually commits the
920 	 * new data
921 	 */
922 	if (!jh->b_transaction) {
923 		JBUFFER_TRACE(jh, "no transaction");
924 		J_ASSERT_JH(jh, !jh->b_next_transaction);
925 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
926 		/*
927 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
928 		 * visible before attaching it to the running transaction.
929 		 * Paired with barrier in jbd2_write_access_granted()
930 		 */
931 		smp_wmb();
932 		spin_lock(&journal->j_list_lock);
933 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
934 		spin_unlock(&journal->j_list_lock);
935 		goto done;
936 	}
937 	/*
938 	 * If there is already a copy-out version of this buffer, then we don't
939 	 * need to make another one
940 	 */
941 	if (jh->b_frozen_data) {
942 		JBUFFER_TRACE(jh, "has frozen data");
943 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
944 		goto attach_next;
945 	}
946 
947 	JBUFFER_TRACE(jh, "owned by older transaction");
948 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
949 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
950 
951 	/*
952 	 * There is one case we have to be very careful about.  If the
953 	 * committing transaction is currently writing this buffer out to disk
954 	 * and has NOT made a copy-out, then we cannot modify the buffer
955 	 * contents at all right now.  The essence of copy-out is that it is
956 	 * the extra copy, not the primary copy, which gets journaled.  If the
957 	 * primary copy is already going to disk then we cannot do copy-out
958 	 * here.
959 	 */
960 	if (buffer_shadow(bh)) {
961 		JBUFFER_TRACE(jh, "on shadow: sleep");
962 		jbd_unlock_bh_state(bh);
963 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
964 		goto repeat;
965 	}
966 
967 	/*
968 	 * Only do the copy if the currently-owning transaction still needs it.
969 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
970 	 * past that stage (here we use the fact that BH_Shadow is set under
971 	 * bh_state lock together with refiling to BJ_Shadow list and at this
972 	 * point we know the buffer doesn't have BH_Shadow set).
973 	 *
974 	 * Subtle point, though: if this is a get_undo_access, then we will be
975 	 * relying on the frozen_data to contain the new value of the
976 	 * committed_data record after the transaction, so we HAVE to force the
977 	 * frozen_data copy in that case.
978 	 */
979 	if (jh->b_jlist == BJ_Metadata || force_copy) {
980 		JBUFFER_TRACE(jh, "generate frozen data");
981 		if (!frozen_buffer) {
982 			JBUFFER_TRACE(jh, "allocate memory for buffer");
983 			jbd_unlock_bh_state(bh);
984 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
985 						   GFP_NOFS | __GFP_NOFAIL);
986 			goto repeat;
987 		}
988 		jh->b_frozen_data = frozen_buffer;
989 		frozen_buffer = NULL;
990 		jbd2_freeze_jh_data(jh);
991 	}
992 attach_next:
993 	/*
994 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
995 	 * before attaching it to the running transaction. Paired with barrier
996 	 * in jbd2_write_access_granted()
997 	 */
998 	smp_wmb();
999 	jh->b_next_transaction = transaction;
1000 
1001 done:
1002 	jbd_unlock_bh_state(bh);
1003 
1004 	/*
1005 	 * If we are about to journal a buffer, then any revoke pending on it is
1006 	 * no longer valid
1007 	 */
1008 	jbd2_journal_cancel_revoke(handle, jh);
1009 
1010 out:
1011 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1012 		jbd2_free(frozen_buffer, bh->b_size);
1013 
1014 	JBUFFER_TRACE(jh, "exit");
1015 	return error;
1016 }
1017 
1018 /* Fast check whether buffer is already attached to the required transaction */
1019 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1020 							bool undo)
1021 {
1022 	struct journal_head *jh;
1023 	bool ret = false;
1024 
1025 	/* Dirty buffers require special handling... */
1026 	if (buffer_dirty(bh))
1027 		return false;
1028 
1029 	/*
1030 	 * RCU protects us from dereferencing freed pages. So the checks we do
1031 	 * are guaranteed not to oops. However the jh slab object can get freed
1032 	 * & reallocated while we work with it. So we have to be careful. When
1033 	 * we see jh attached to the running transaction, we know it must stay
1034 	 * so until the transaction is committed. Thus jh won't be freed and
1035 	 * will be attached to the same bh while we run.  However it can
1036 	 * happen jh gets freed, reallocated, and attached to the transaction
1037 	 * just after we get pointer to it from bh. So we have to be careful
1038 	 * and recheck jh still belongs to our bh before we return success.
1039 	 */
1040 	rcu_read_lock();
1041 	if (!buffer_jbd(bh))
1042 		goto out;
1043 	/* This should be bh2jh() but that doesn't work with inline functions */
1044 	jh = READ_ONCE(bh->b_private);
1045 	if (!jh)
1046 		goto out;
1047 	/* For undo access buffer must have data copied */
1048 	if (undo && !jh->b_committed_data)
1049 		goto out;
1050 	if (jh->b_transaction != handle->h_transaction &&
1051 	    jh->b_next_transaction != handle->h_transaction)
1052 		goto out;
1053 	/*
1054 	 * There are two reasons for the barrier here:
1055 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1056 	 * detect when jh went through free, realloc, attach to transaction
1057 	 * while we were checking. Paired with implicit barrier in that path.
1058 	 * 2) So that access to bh done after jbd2_write_access_granted()
1059 	 * doesn't get reordered and see inconsistent state of concurrent
1060 	 * do_get_write_access().
1061 	 */
1062 	smp_mb();
1063 	if (unlikely(jh->b_bh != bh))
1064 		goto out;
1065 	ret = true;
1066 out:
1067 	rcu_read_unlock();
1068 	return ret;
1069 }
1070 
1071 /**
1072  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1073  * @handle: transaction to add buffer modifications to
1074  * @bh:     bh to be used for metadata writes
1075  *
1076  * Returns: error code or 0 on success.
1077  *
1078  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1079  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1080  */
1081 
1082 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1083 {
1084 	struct journal_head *jh;
1085 	int rc;
1086 
1087 	if (jbd2_write_access_granted(handle, bh, false))
1088 		return 0;
1089 
1090 	jh = jbd2_journal_add_journal_head(bh);
1091 	/* We do not want to get caught playing with fields which the
1092 	 * log thread also manipulates.  Make sure that the buffer
1093 	 * completes any outstanding IO before proceeding. */
1094 	rc = do_get_write_access(handle, jh, 0);
1095 	jbd2_journal_put_journal_head(jh);
1096 	return rc;
1097 }
1098 
1099 
1100 /*
1101  * When the user wants to journal a newly created buffer_head
1102  * (ie. getblk() returned a new buffer and we are going to populate it
1103  * manually rather than reading off disk), then we need to keep the
1104  * buffer_head locked until it has been completely filled with new
1105  * data.  In this case, we should be able to make the assertion that
1106  * the bh is not already part of an existing transaction.
1107  *
1108  * The buffer should already be locked by the caller by this point.
1109  * There is no lock ranking violation: it was a newly created,
1110  * unlocked buffer beforehand. */
1111 
1112 /**
1113  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1114  * @handle: transaction to new buffer to
1115  * @bh: new buffer.
1116  *
1117  * Call this if you create a new bh.
1118  */
1119 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1120 {
1121 	transaction_t *transaction = handle->h_transaction;
1122 	journal_t *journal;
1123 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1124 	int err;
1125 
1126 	jbd_debug(5, "journal_head %p\n", jh);
1127 	err = -EROFS;
1128 	if (is_handle_aborted(handle))
1129 		goto out;
1130 	journal = transaction->t_journal;
1131 	err = 0;
1132 
1133 	JBUFFER_TRACE(jh, "entry");
1134 	/*
1135 	 * The buffer may already belong to this transaction due to pre-zeroing
1136 	 * in the filesystem's new_block code.  It may also be on the previous,
1137 	 * committing transaction's lists, but it HAS to be in Forget state in
1138 	 * that case: the transaction must have deleted the buffer for it to be
1139 	 * reused here.
1140 	 */
1141 	jbd_lock_bh_state(bh);
1142 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1143 		jh->b_transaction == NULL ||
1144 		(jh->b_transaction == journal->j_committing_transaction &&
1145 			  jh->b_jlist == BJ_Forget)));
1146 
1147 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1148 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1149 
1150 	if (jh->b_transaction == NULL) {
1151 		/*
1152 		 * Previous jbd2_journal_forget() could have left the buffer
1153 		 * with jbddirty bit set because it was being committed. When
1154 		 * the commit finished, we've filed the buffer for
1155 		 * checkpointing and marked it dirty. Now we are reallocating
1156 		 * the buffer so the transaction freeing it must have
1157 		 * committed and so it's safe to clear the dirty bit.
1158 		 */
1159 		clear_buffer_dirty(jh2bh(jh));
1160 		/* first access by this transaction */
1161 		jh->b_modified = 0;
1162 
1163 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1164 		spin_lock(&journal->j_list_lock);
1165 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1166 		spin_unlock(&journal->j_list_lock);
1167 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1168 		/* first access by this transaction */
1169 		jh->b_modified = 0;
1170 
1171 		JBUFFER_TRACE(jh, "set next transaction");
1172 		spin_lock(&journal->j_list_lock);
1173 		jh->b_next_transaction = transaction;
1174 		spin_unlock(&journal->j_list_lock);
1175 	}
1176 	jbd_unlock_bh_state(bh);
1177 
1178 	/*
1179 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1180 	 * blocks which contain freed but then revoked metadata.  We need
1181 	 * to cancel the revoke in case we end up freeing it yet again
1182 	 * and the reallocating as data - this would cause a second revoke,
1183 	 * which hits an assertion error.
1184 	 */
1185 	JBUFFER_TRACE(jh, "cancelling revoke");
1186 	jbd2_journal_cancel_revoke(handle, jh);
1187 out:
1188 	jbd2_journal_put_journal_head(jh);
1189 	return err;
1190 }
1191 
1192 /**
1193  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1194  *     non-rewindable consequences
1195  * @handle: transaction
1196  * @bh: buffer to undo
1197  *
1198  * Sometimes there is a need to distinguish between metadata which has
1199  * been committed to disk and that which has not.  The ext3fs code uses
1200  * this for freeing and allocating space, we have to make sure that we
1201  * do not reuse freed space until the deallocation has been committed,
1202  * since if we overwrote that space we would make the delete
1203  * un-rewindable in case of a crash.
1204  *
1205  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1206  * buffer for parts of non-rewindable operations such as delete
1207  * operations on the bitmaps.  The journaling code must keep a copy of
1208  * the buffer's contents prior to the undo_access call until such time
1209  * as we know that the buffer has definitely been committed to disk.
1210  *
1211  * We never need to know which transaction the committed data is part
1212  * of, buffers touched here are guaranteed to be dirtied later and so
1213  * will be committed to a new transaction in due course, at which point
1214  * we can discard the old committed data pointer.
1215  *
1216  * Returns error number or 0 on success.
1217  */
1218 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1219 {
1220 	int err;
1221 	struct journal_head *jh;
1222 	char *committed_data = NULL;
1223 
1224 	JBUFFER_TRACE(jh, "entry");
1225 	if (jbd2_write_access_granted(handle, bh, true))
1226 		return 0;
1227 
1228 	jh = jbd2_journal_add_journal_head(bh);
1229 	/*
1230 	 * Do this first --- it can drop the journal lock, so we want to
1231 	 * make sure that obtaining the committed_data is done
1232 	 * atomically wrt. completion of any outstanding commits.
1233 	 */
1234 	err = do_get_write_access(handle, jh, 1);
1235 	if (err)
1236 		goto out;
1237 
1238 repeat:
1239 	if (!jh->b_committed_data)
1240 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1241 					    GFP_NOFS|__GFP_NOFAIL);
1242 
1243 	jbd_lock_bh_state(bh);
1244 	if (!jh->b_committed_data) {
1245 		/* Copy out the current buffer contents into the
1246 		 * preserved, committed copy. */
1247 		JBUFFER_TRACE(jh, "generate b_committed data");
1248 		if (!committed_data) {
1249 			jbd_unlock_bh_state(bh);
1250 			goto repeat;
1251 		}
1252 
1253 		jh->b_committed_data = committed_data;
1254 		committed_data = NULL;
1255 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1256 	}
1257 	jbd_unlock_bh_state(bh);
1258 out:
1259 	jbd2_journal_put_journal_head(jh);
1260 	if (unlikely(committed_data))
1261 		jbd2_free(committed_data, bh->b_size);
1262 	return err;
1263 }
1264 
1265 /**
1266  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1267  * @bh: buffer to trigger on
1268  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1269  *
1270  * Set any triggers on this journal_head.  This is always safe, because
1271  * triggers for a committing buffer will be saved off, and triggers for
1272  * a running transaction will match the buffer in that transaction.
1273  *
1274  * Call with NULL to clear the triggers.
1275  */
1276 void jbd2_journal_set_triggers(struct buffer_head *bh,
1277 			       struct jbd2_buffer_trigger_type *type)
1278 {
1279 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1280 
1281 	if (WARN_ON(!jh))
1282 		return;
1283 	jh->b_triggers = type;
1284 	jbd2_journal_put_journal_head(jh);
1285 }
1286 
1287 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1288 				struct jbd2_buffer_trigger_type *triggers)
1289 {
1290 	struct buffer_head *bh = jh2bh(jh);
1291 
1292 	if (!triggers || !triggers->t_frozen)
1293 		return;
1294 
1295 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1296 }
1297 
1298 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1299 			       struct jbd2_buffer_trigger_type *triggers)
1300 {
1301 	if (!triggers || !triggers->t_abort)
1302 		return;
1303 
1304 	triggers->t_abort(triggers, jh2bh(jh));
1305 }
1306 
1307 /**
1308  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1309  * @handle: transaction to add buffer to.
1310  * @bh: buffer to mark
1311  *
1312  * mark dirty metadata which needs to be journaled as part of the current
1313  * transaction.
1314  *
1315  * The buffer must have previously had jbd2_journal_get_write_access()
1316  * called so that it has a valid journal_head attached to the buffer
1317  * head.
1318  *
1319  * The buffer is placed on the transaction's metadata list and is marked
1320  * as belonging to the transaction.
1321  *
1322  * Returns error number or 0 on success.
1323  *
1324  * Special care needs to be taken if the buffer already belongs to the
1325  * current committing transaction (in which case we should have frozen
1326  * data present for that commit).  In that case, we don't relink the
1327  * buffer: that only gets done when the old transaction finally
1328  * completes its commit.
1329  */
1330 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1331 {
1332 	transaction_t *transaction = handle->h_transaction;
1333 	journal_t *journal;
1334 	struct journal_head *jh;
1335 	int ret = 0;
1336 
1337 	if (is_handle_aborted(handle))
1338 		return -EROFS;
1339 	if (!buffer_jbd(bh)) {
1340 		ret = -EUCLEAN;
1341 		goto out;
1342 	}
1343 	/*
1344 	 * We don't grab jh reference here since the buffer must be part
1345 	 * of the running transaction.
1346 	 */
1347 	jh = bh2jh(bh);
1348 	/*
1349 	 * This and the following assertions are unreliable since we may see jh
1350 	 * in inconsistent state unless we grab bh_state lock. But this is
1351 	 * crucial to catch bugs so let's do a reliable check until the
1352 	 * lockless handling is fully proven.
1353 	 */
1354 	if (jh->b_transaction != transaction &&
1355 	    jh->b_next_transaction != transaction) {
1356 		jbd_lock_bh_state(bh);
1357 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1358 				jh->b_next_transaction == transaction);
1359 		jbd_unlock_bh_state(bh);
1360 	}
1361 	if (jh->b_modified == 1) {
1362 		/* If it's in our transaction it must be in BJ_Metadata list. */
1363 		if (jh->b_transaction == transaction &&
1364 		    jh->b_jlist != BJ_Metadata) {
1365 			jbd_lock_bh_state(bh);
1366 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1367 					jh->b_jlist == BJ_Metadata);
1368 			jbd_unlock_bh_state(bh);
1369 		}
1370 		goto out;
1371 	}
1372 
1373 	journal = transaction->t_journal;
1374 	jbd_debug(5, "journal_head %p\n", jh);
1375 	JBUFFER_TRACE(jh, "entry");
1376 
1377 	jbd_lock_bh_state(bh);
1378 
1379 	if (jh->b_modified == 0) {
1380 		/*
1381 		 * This buffer's got modified and becoming part
1382 		 * of the transaction. This needs to be done
1383 		 * once a transaction -bzzz
1384 		 */
1385 		jh->b_modified = 1;
1386 		if (handle->h_buffer_credits <= 0) {
1387 			ret = -ENOSPC;
1388 			goto out_unlock_bh;
1389 		}
1390 		handle->h_buffer_credits--;
1391 	}
1392 
1393 	/*
1394 	 * fastpath, to avoid expensive locking.  If this buffer is already
1395 	 * on the running transaction's metadata list there is nothing to do.
1396 	 * Nobody can take it off again because there is a handle open.
1397 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1398 	 * result in this test being false, so we go in and take the locks.
1399 	 */
1400 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1401 		JBUFFER_TRACE(jh, "fastpath");
1402 		if (unlikely(jh->b_transaction !=
1403 			     journal->j_running_transaction)) {
1404 			printk(KERN_ERR "JBD2: %s: "
1405 			       "jh->b_transaction (%llu, %p, %u) != "
1406 			       "journal->j_running_transaction (%p, %u)\n",
1407 			       journal->j_devname,
1408 			       (unsigned long long) bh->b_blocknr,
1409 			       jh->b_transaction,
1410 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1411 			       journal->j_running_transaction,
1412 			       journal->j_running_transaction ?
1413 			       journal->j_running_transaction->t_tid : 0);
1414 			ret = -EINVAL;
1415 		}
1416 		goto out_unlock_bh;
1417 	}
1418 
1419 	set_buffer_jbddirty(bh);
1420 
1421 	/*
1422 	 * Metadata already on the current transaction list doesn't
1423 	 * need to be filed.  Metadata on another transaction's list must
1424 	 * be committing, and will be refiled once the commit completes:
1425 	 * leave it alone for now.
1426 	 */
1427 	if (jh->b_transaction != transaction) {
1428 		JBUFFER_TRACE(jh, "already on other transaction");
1429 		if (unlikely(((jh->b_transaction !=
1430 			       journal->j_committing_transaction)) ||
1431 			     (jh->b_next_transaction != transaction))) {
1432 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1433 			       "bad jh for block %llu: "
1434 			       "transaction (%p, %u), "
1435 			       "jh->b_transaction (%p, %u), "
1436 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1437 			       journal->j_devname,
1438 			       (unsigned long long) bh->b_blocknr,
1439 			       transaction, transaction->t_tid,
1440 			       jh->b_transaction,
1441 			       jh->b_transaction ?
1442 			       jh->b_transaction->t_tid : 0,
1443 			       jh->b_next_transaction,
1444 			       jh->b_next_transaction ?
1445 			       jh->b_next_transaction->t_tid : 0,
1446 			       jh->b_jlist);
1447 			WARN_ON(1);
1448 			ret = -EINVAL;
1449 		}
1450 		/* And this case is illegal: we can't reuse another
1451 		 * transaction's data buffer, ever. */
1452 		goto out_unlock_bh;
1453 	}
1454 
1455 	/* That test should have eliminated the following case: */
1456 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1457 
1458 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1459 	spin_lock(&journal->j_list_lock);
1460 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1461 	spin_unlock(&journal->j_list_lock);
1462 out_unlock_bh:
1463 	jbd_unlock_bh_state(bh);
1464 out:
1465 	JBUFFER_TRACE(jh, "exit");
1466 	return ret;
1467 }
1468 
1469 /**
1470  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1471  * @handle: transaction handle
1472  * @bh:     bh to 'forget'
1473  *
1474  * We can only do the bforget if there are no commits pending against the
1475  * buffer.  If the buffer is dirty in the current running transaction we
1476  * can safely unlink it.
1477  *
1478  * bh may not be a journalled buffer at all - it may be a non-JBD
1479  * buffer which came off the hashtable.  Check for this.
1480  *
1481  * Decrements bh->b_count by one.
1482  *
1483  * Allow this call even if the handle has aborted --- it may be part of
1484  * the caller's cleanup after an abort.
1485  */
1486 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1487 {
1488 	transaction_t *transaction = handle->h_transaction;
1489 	journal_t *journal;
1490 	struct journal_head *jh;
1491 	int drop_reserve = 0;
1492 	int err = 0;
1493 	int was_modified = 0;
1494 
1495 	if (is_handle_aborted(handle))
1496 		return -EROFS;
1497 	journal = transaction->t_journal;
1498 
1499 	BUFFER_TRACE(bh, "entry");
1500 
1501 	jbd_lock_bh_state(bh);
1502 
1503 	if (!buffer_jbd(bh))
1504 		goto not_jbd;
1505 	jh = bh2jh(bh);
1506 
1507 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1508 	 * Don't do any jbd operations, and return an error. */
1509 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1510 			 "inconsistent data on disk")) {
1511 		err = -EIO;
1512 		goto not_jbd;
1513 	}
1514 
1515 	/* keep track of whether or not this transaction modified us */
1516 	was_modified = jh->b_modified;
1517 
1518 	/*
1519 	 * The buffer's going from the transaction, we must drop
1520 	 * all references -bzzz
1521 	 */
1522 	jh->b_modified = 0;
1523 
1524 	if (jh->b_transaction == transaction) {
1525 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1526 
1527 		/* If we are forgetting a buffer which is already part
1528 		 * of this transaction, then we can just drop it from
1529 		 * the transaction immediately. */
1530 		clear_buffer_dirty(bh);
1531 		clear_buffer_jbddirty(bh);
1532 
1533 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1534 
1535 		/*
1536 		 * we only want to drop a reference if this transaction
1537 		 * modified the buffer
1538 		 */
1539 		if (was_modified)
1540 			drop_reserve = 1;
1541 
1542 		/*
1543 		 * We are no longer going to journal this buffer.
1544 		 * However, the commit of this transaction is still
1545 		 * important to the buffer: the delete that we are now
1546 		 * processing might obsolete an old log entry, so by
1547 		 * committing, we can satisfy the buffer's checkpoint.
1548 		 *
1549 		 * So, if we have a checkpoint on the buffer, we should
1550 		 * now refile the buffer on our BJ_Forget list so that
1551 		 * we know to remove the checkpoint after we commit.
1552 		 */
1553 
1554 		spin_lock(&journal->j_list_lock);
1555 		if (jh->b_cp_transaction) {
1556 			__jbd2_journal_temp_unlink_buffer(jh);
1557 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1558 		} else {
1559 			__jbd2_journal_unfile_buffer(jh);
1560 			if (!buffer_jbd(bh)) {
1561 				spin_unlock(&journal->j_list_lock);
1562 				jbd_unlock_bh_state(bh);
1563 				__bforget(bh);
1564 				goto drop;
1565 			}
1566 		}
1567 		spin_unlock(&journal->j_list_lock);
1568 	} else if (jh->b_transaction) {
1569 		J_ASSERT_JH(jh, (jh->b_transaction ==
1570 				 journal->j_committing_transaction));
1571 		/* However, if the buffer is still owned by a prior
1572 		 * (committing) transaction, we can't drop it yet... */
1573 		JBUFFER_TRACE(jh, "belongs to older transaction");
1574 		/* ... but we CAN drop it from the new transaction if we
1575 		 * have also modified it since the original commit. */
1576 
1577 		if (jh->b_next_transaction) {
1578 			J_ASSERT(jh->b_next_transaction == transaction);
1579 			spin_lock(&journal->j_list_lock);
1580 			jh->b_next_transaction = NULL;
1581 			spin_unlock(&journal->j_list_lock);
1582 
1583 			/*
1584 			 * only drop a reference if this transaction modified
1585 			 * the buffer
1586 			 */
1587 			if (was_modified)
1588 				drop_reserve = 1;
1589 		}
1590 	}
1591 
1592 not_jbd:
1593 	jbd_unlock_bh_state(bh);
1594 	__brelse(bh);
1595 drop:
1596 	if (drop_reserve) {
1597 		/* no need to reserve log space for this block -bzzz */
1598 		handle->h_buffer_credits++;
1599 	}
1600 	return err;
1601 }
1602 
1603 /**
1604  * int jbd2_journal_stop() - complete a transaction
1605  * @handle: transaction to complete.
1606  *
1607  * All done for a particular handle.
1608  *
1609  * There is not much action needed here.  We just return any remaining
1610  * buffer credits to the transaction and remove the handle.  The only
1611  * complication is that we need to start a commit operation if the
1612  * filesystem is marked for synchronous update.
1613  *
1614  * jbd2_journal_stop itself will not usually return an error, but it may
1615  * do so in unusual circumstances.  In particular, expect it to
1616  * return -EIO if a jbd2_journal_abort has been executed since the
1617  * transaction began.
1618  */
1619 int jbd2_journal_stop(handle_t *handle)
1620 {
1621 	transaction_t *transaction = handle->h_transaction;
1622 	journal_t *journal;
1623 	int err = 0, wait_for_commit = 0;
1624 	tid_t tid;
1625 	pid_t pid;
1626 
1627 	if (!transaction) {
1628 		/*
1629 		 * Handle is already detached from the transaction so
1630 		 * there is nothing to do other than decrease a refcount,
1631 		 * or free the handle if refcount drops to zero
1632 		 */
1633 		if (--handle->h_ref > 0) {
1634 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1635 							 handle->h_ref);
1636 			return err;
1637 		} else {
1638 			if (handle->h_rsv_handle)
1639 				jbd2_free_handle(handle->h_rsv_handle);
1640 			goto free_and_exit;
1641 		}
1642 	}
1643 	journal = transaction->t_journal;
1644 
1645 	J_ASSERT(journal_current_handle() == handle);
1646 
1647 	if (is_handle_aborted(handle))
1648 		err = -EIO;
1649 	else
1650 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1651 
1652 	if (--handle->h_ref > 0) {
1653 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1654 			  handle->h_ref);
1655 		return err;
1656 	}
1657 
1658 	jbd_debug(4, "Handle %p going down\n", handle);
1659 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1660 				transaction->t_tid,
1661 				handle->h_type, handle->h_line_no,
1662 				jiffies - handle->h_start_jiffies,
1663 				handle->h_sync, handle->h_requested_credits,
1664 				(handle->h_requested_credits -
1665 				 handle->h_buffer_credits));
1666 
1667 	/*
1668 	 * Implement synchronous transaction batching.  If the handle
1669 	 * was synchronous, don't force a commit immediately.  Let's
1670 	 * yield and let another thread piggyback onto this
1671 	 * transaction.  Keep doing that while new threads continue to
1672 	 * arrive.  It doesn't cost much - we're about to run a commit
1673 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1674 	 * operations by 30x or more...
1675 	 *
1676 	 * We try and optimize the sleep time against what the
1677 	 * underlying disk can do, instead of having a static sleep
1678 	 * time.  This is useful for the case where our storage is so
1679 	 * fast that it is more optimal to go ahead and force a flush
1680 	 * and wait for the transaction to be committed than it is to
1681 	 * wait for an arbitrary amount of time for new writers to
1682 	 * join the transaction.  We achieve this by measuring how
1683 	 * long it takes to commit a transaction, and compare it with
1684 	 * how long this transaction has been running, and if run time
1685 	 * < commit time then we sleep for the delta and commit.  This
1686 	 * greatly helps super fast disks that would see slowdowns as
1687 	 * more threads started doing fsyncs.
1688 	 *
1689 	 * But don't do this if this process was the most recent one
1690 	 * to perform a synchronous write.  We do this to detect the
1691 	 * case where a single process is doing a stream of sync
1692 	 * writes.  No point in waiting for joiners in that case.
1693 	 *
1694 	 * Setting max_batch_time to 0 disables this completely.
1695 	 */
1696 	pid = current->pid;
1697 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1698 	    journal->j_max_batch_time) {
1699 		u64 commit_time, trans_time;
1700 
1701 		journal->j_last_sync_writer = pid;
1702 
1703 		read_lock(&journal->j_state_lock);
1704 		commit_time = journal->j_average_commit_time;
1705 		read_unlock(&journal->j_state_lock);
1706 
1707 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1708 						   transaction->t_start_time));
1709 
1710 		commit_time = max_t(u64, commit_time,
1711 				    1000*journal->j_min_batch_time);
1712 		commit_time = min_t(u64, commit_time,
1713 				    1000*journal->j_max_batch_time);
1714 
1715 		if (trans_time < commit_time) {
1716 			ktime_t expires = ktime_add_ns(ktime_get(),
1717 						       commit_time);
1718 			set_current_state(TASK_UNINTERRUPTIBLE);
1719 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1720 		}
1721 	}
1722 
1723 	if (handle->h_sync)
1724 		transaction->t_synchronous_commit = 1;
1725 	current->journal_info = NULL;
1726 	atomic_sub(handle->h_buffer_credits,
1727 		   &transaction->t_outstanding_credits);
1728 
1729 	/*
1730 	 * If the handle is marked SYNC, we need to set another commit
1731 	 * going!  We also want to force a commit if the current
1732 	 * transaction is occupying too much of the log, or if the
1733 	 * transaction is too old now.
1734 	 */
1735 	if (handle->h_sync ||
1736 	    (atomic_read(&transaction->t_outstanding_credits) >
1737 	     journal->j_max_transaction_buffers) ||
1738 	    time_after_eq(jiffies, transaction->t_expires)) {
1739 		/* Do this even for aborted journals: an abort still
1740 		 * completes the commit thread, it just doesn't write
1741 		 * anything to disk. */
1742 
1743 		jbd_debug(2, "transaction too old, requesting commit for "
1744 					"handle %p\n", handle);
1745 		/* This is non-blocking */
1746 		jbd2_log_start_commit(journal, transaction->t_tid);
1747 
1748 		/*
1749 		 * Special case: JBD2_SYNC synchronous updates require us
1750 		 * to wait for the commit to complete.
1751 		 */
1752 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1753 			wait_for_commit = 1;
1754 	}
1755 
1756 	/*
1757 	 * Once we drop t_updates, if it goes to zero the transaction
1758 	 * could start committing on us and eventually disappear.  So
1759 	 * once we do this, we must not dereference transaction
1760 	 * pointer again.
1761 	 */
1762 	tid = transaction->t_tid;
1763 	if (atomic_dec_and_test(&transaction->t_updates)) {
1764 		wake_up(&journal->j_wait_updates);
1765 		if (journal->j_barrier_count)
1766 			wake_up(&journal->j_wait_transaction_locked);
1767 	}
1768 
1769 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1770 
1771 	if (wait_for_commit)
1772 		err = jbd2_log_wait_commit(journal, tid);
1773 
1774 	if (handle->h_rsv_handle)
1775 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1776 free_and_exit:
1777 	/*
1778 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1779 	 * original alloc context.
1780 	 */
1781 	memalloc_nofs_restore(handle->saved_alloc_context);
1782 	jbd2_free_handle(handle);
1783 	return err;
1784 }
1785 
1786 /*
1787  *
1788  * List management code snippets: various functions for manipulating the
1789  * transaction buffer lists.
1790  *
1791  */
1792 
1793 /*
1794  * Append a buffer to a transaction list, given the transaction's list head
1795  * pointer.
1796  *
1797  * j_list_lock is held.
1798  *
1799  * jbd_lock_bh_state(jh2bh(jh)) is held.
1800  */
1801 
1802 static inline void
1803 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1804 {
1805 	if (!*list) {
1806 		jh->b_tnext = jh->b_tprev = jh;
1807 		*list = jh;
1808 	} else {
1809 		/* Insert at the tail of the list to preserve order */
1810 		struct journal_head *first = *list, *last = first->b_tprev;
1811 		jh->b_tprev = last;
1812 		jh->b_tnext = first;
1813 		last->b_tnext = first->b_tprev = jh;
1814 	}
1815 }
1816 
1817 /*
1818  * Remove a buffer from a transaction list, given the transaction's list
1819  * head pointer.
1820  *
1821  * Called with j_list_lock held, and the journal may not be locked.
1822  *
1823  * jbd_lock_bh_state(jh2bh(jh)) is held.
1824  */
1825 
1826 static inline void
1827 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1828 {
1829 	if (*list == jh) {
1830 		*list = jh->b_tnext;
1831 		if (*list == jh)
1832 			*list = NULL;
1833 	}
1834 	jh->b_tprev->b_tnext = jh->b_tnext;
1835 	jh->b_tnext->b_tprev = jh->b_tprev;
1836 }
1837 
1838 /*
1839  * Remove a buffer from the appropriate transaction list.
1840  *
1841  * Note that this function can *change* the value of
1842  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1843  * t_reserved_list.  If the caller is holding onto a copy of one of these
1844  * pointers, it could go bad.  Generally the caller needs to re-read the
1845  * pointer from the transaction_t.
1846  *
1847  * Called under j_list_lock.
1848  */
1849 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1850 {
1851 	struct journal_head **list = NULL;
1852 	transaction_t *transaction;
1853 	struct buffer_head *bh = jh2bh(jh);
1854 
1855 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1856 	transaction = jh->b_transaction;
1857 	if (transaction)
1858 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1859 
1860 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1861 	if (jh->b_jlist != BJ_None)
1862 		J_ASSERT_JH(jh, transaction != NULL);
1863 
1864 	switch (jh->b_jlist) {
1865 	case BJ_None:
1866 		return;
1867 	case BJ_Metadata:
1868 		transaction->t_nr_buffers--;
1869 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1870 		list = &transaction->t_buffers;
1871 		break;
1872 	case BJ_Forget:
1873 		list = &transaction->t_forget;
1874 		break;
1875 	case BJ_Shadow:
1876 		list = &transaction->t_shadow_list;
1877 		break;
1878 	case BJ_Reserved:
1879 		list = &transaction->t_reserved_list;
1880 		break;
1881 	}
1882 
1883 	__blist_del_buffer(list, jh);
1884 	jh->b_jlist = BJ_None;
1885 	if (transaction && is_journal_aborted(transaction->t_journal))
1886 		clear_buffer_jbddirty(bh);
1887 	else if (test_clear_buffer_jbddirty(bh))
1888 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1889 }
1890 
1891 /*
1892  * Remove buffer from all transactions.
1893  *
1894  * Called with bh_state lock and j_list_lock
1895  *
1896  * jh and bh may be already freed when this function returns.
1897  */
1898 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1899 {
1900 	__jbd2_journal_temp_unlink_buffer(jh);
1901 	jh->b_transaction = NULL;
1902 	jbd2_journal_put_journal_head(jh);
1903 }
1904 
1905 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1906 {
1907 	struct buffer_head *bh = jh2bh(jh);
1908 
1909 	/* Get reference so that buffer cannot be freed before we unlock it */
1910 	get_bh(bh);
1911 	jbd_lock_bh_state(bh);
1912 	spin_lock(&journal->j_list_lock);
1913 	__jbd2_journal_unfile_buffer(jh);
1914 	spin_unlock(&journal->j_list_lock);
1915 	jbd_unlock_bh_state(bh);
1916 	__brelse(bh);
1917 }
1918 
1919 /*
1920  * Called from jbd2_journal_try_to_free_buffers().
1921  *
1922  * Called under jbd_lock_bh_state(bh)
1923  */
1924 static void
1925 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1926 {
1927 	struct journal_head *jh;
1928 
1929 	jh = bh2jh(bh);
1930 
1931 	if (buffer_locked(bh) || buffer_dirty(bh))
1932 		goto out;
1933 
1934 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1935 		goto out;
1936 
1937 	spin_lock(&journal->j_list_lock);
1938 	if (jh->b_cp_transaction != NULL) {
1939 		/* written-back checkpointed metadata buffer */
1940 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1941 		__jbd2_journal_remove_checkpoint(jh);
1942 	}
1943 	spin_unlock(&journal->j_list_lock);
1944 out:
1945 	return;
1946 }
1947 
1948 /**
1949  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1950  * @journal: journal for operation
1951  * @page: to try and free
1952  * @gfp_mask: we use the mask to detect how hard should we try to release
1953  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1954  * code to release the buffers.
1955  *
1956  *
1957  * For all the buffers on this page,
1958  * if they are fully written out ordered data, move them onto BUF_CLEAN
1959  * so try_to_free_buffers() can reap them.
1960  *
1961  * This function returns non-zero if we wish try_to_free_buffers()
1962  * to be called. We do this if the page is releasable by try_to_free_buffers().
1963  * We also do it if the page has locked or dirty buffers and the caller wants
1964  * us to perform sync or async writeout.
1965  *
1966  * This complicates JBD locking somewhat.  We aren't protected by the
1967  * BKL here.  We wish to remove the buffer from its committing or
1968  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1969  *
1970  * This may *change* the value of transaction_t->t_datalist, so anyone
1971  * who looks at t_datalist needs to lock against this function.
1972  *
1973  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1974  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1975  * will come out of the lock with the buffer dirty, which makes it
1976  * ineligible for release here.
1977  *
1978  * Who else is affected by this?  hmm...  Really the only contender
1979  * is do_get_write_access() - it could be looking at the buffer while
1980  * journal_try_to_free_buffer() is changing its state.  But that
1981  * cannot happen because we never reallocate freed data as metadata
1982  * while the data is part of a transaction.  Yes?
1983  *
1984  * Return 0 on failure, 1 on success
1985  */
1986 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1987 				struct page *page, gfp_t gfp_mask)
1988 {
1989 	struct buffer_head *head;
1990 	struct buffer_head *bh;
1991 	int ret = 0;
1992 
1993 	J_ASSERT(PageLocked(page));
1994 
1995 	head = page_buffers(page);
1996 	bh = head;
1997 	do {
1998 		struct journal_head *jh;
1999 
2000 		/*
2001 		 * We take our own ref against the journal_head here to avoid
2002 		 * having to add tons of locking around each instance of
2003 		 * jbd2_journal_put_journal_head().
2004 		 */
2005 		jh = jbd2_journal_grab_journal_head(bh);
2006 		if (!jh)
2007 			continue;
2008 
2009 		jbd_lock_bh_state(bh);
2010 		__journal_try_to_free_buffer(journal, bh);
2011 		jbd2_journal_put_journal_head(jh);
2012 		jbd_unlock_bh_state(bh);
2013 		if (buffer_jbd(bh))
2014 			goto busy;
2015 	} while ((bh = bh->b_this_page) != head);
2016 
2017 	ret = try_to_free_buffers(page);
2018 
2019 busy:
2020 	return ret;
2021 }
2022 
2023 /*
2024  * This buffer is no longer needed.  If it is on an older transaction's
2025  * checkpoint list we need to record it on this transaction's forget list
2026  * to pin this buffer (and hence its checkpointing transaction) down until
2027  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2028  * release it.
2029  * Returns non-zero if JBD no longer has an interest in the buffer.
2030  *
2031  * Called under j_list_lock.
2032  *
2033  * Called under jbd_lock_bh_state(bh).
2034  */
2035 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2036 {
2037 	int may_free = 1;
2038 	struct buffer_head *bh = jh2bh(jh);
2039 
2040 	if (jh->b_cp_transaction) {
2041 		JBUFFER_TRACE(jh, "on running+cp transaction");
2042 		__jbd2_journal_temp_unlink_buffer(jh);
2043 		/*
2044 		 * We don't want to write the buffer anymore, clear the
2045 		 * bit so that we don't confuse checks in
2046 		 * __journal_file_buffer
2047 		 */
2048 		clear_buffer_dirty(bh);
2049 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2050 		may_free = 0;
2051 	} else {
2052 		JBUFFER_TRACE(jh, "on running transaction");
2053 		__jbd2_journal_unfile_buffer(jh);
2054 	}
2055 	return may_free;
2056 }
2057 
2058 /*
2059  * jbd2_journal_invalidatepage
2060  *
2061  * This code is tricky.  It has a number of cases to deal with.
2062  *
2063  * There are two invariants which this code relies on:
2064  *
2065  * i_size must be updated on disk before we start calling invalidatepage on the
2066  * data.
2067  *
2068  *  This is done in ext3 by defining an ext3_setattr method which
2069  *  updates i_size before truncate gets going.  By maintaining this
2070  *  invariant, we can be sure that it is safe to throw away any buffers
2071  *  attached to the current transaction: once the transaction commits,
2072  *  we know that the data will not be needed.
2073  *
2074  *  Note however that we can *not* throw away data belonging to the
2075  *  previous, committing transaction!
2076  *
2077  * Any disk blocks which *are* part of the previous, committing
2078  * transaction (and which therefore cannot be discarded immediately) are
2079  * not going to be reused in the new running transaction
2080  *
2081  *  The bitmap committed_data images guarantee this: any block which is
2082  *  allocated in one transaction and removed in the next will be marked
2083  *  as in-use in the committed_data bitmap, so cannot be reused until
2084  *  the next transaction to delete the block commits.  This means that
2085  *  leaving committing buffers dirty is quite safe: the disk blocks
2086  *  cannot be reallocated to a different file and so buffer aliasing is
2087  *  not possible.
2088  *
2089  *
2090  * The above applies mainly to ordered data mode.  In writeback mode we
2091  * don't make guarantees about the order in which data hits disk --- in
2092  * particular we don't guarantee that new dirty data is flushed before
2093  * transaction commit --- so it is always safe just to discard data
2094  * immediately in that mode.  --sct
2095  */
2096 
2097 /*
2098  * The journal_unmap_buffer helper function returns zero if the buffer
2099  * concerned remains pinned as an anonymous buffer belonging to an older
2100  * transaction.
2101  *
2102  * We're outside-transaction here.  Either or both of j_running_transaction
2103  * and j_committing_transaction may be NULL.
2104  */
2105 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2106 				int partial_page)
2107 {
2108 	transaction_t *transaction;
2109 	struct journal_head *jh;
2110 	int may_free = 1;
2111 
2112 	BUFFER_TRACE(bh, "entry");
2113 
2114 	/*
2115 	 * It is safe to proceed here without the j_list_lock because the
2116 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2117 	 * holding the page lock. --sct
2118 	 */
2119 
2120 	if (!buffer_jbd(bh))
2121 		goto zap_buffer_unlocked;
2122 
2123 	/* OK, we have data buffer in journaled mode */
2124 	write_lock(&journal->j_state_lock);
2125 	jbd_lock_bh_state(bh);
2126 	spin_lock(&journal->j_list_lock);
2127 
2128 	jh = jbd2_journal_grab_journal_head(bh);
2129 	if (!jh)
2130 		goto zap_buffer_no_jh;
2131 
2132 	/*
2133 	 * We cannot remove the buffer from checkpoint lists until the
2134 	 * transaction adding inode to orphan list (let's call it T)
2135 	 * is committed.  Otherwise if the transaction changing the
2136 	 * buffer would be cleaned from the journal before T is
2137 	 * committed, a crash will cause that the correct contents of
2138 	 * the buffer will be lost.  On the other hand we have to
2139 	 * clear the buffer dirty bit at latest at the moment when the
2140 	 * transaction marking the buffer as freed in the filesystem
2141 	 * structures is committed because from that moment on the
2142 	 * block can be reallocated and used by a different page.
2143 	 * Since the block hasn't been freed yet but the inode has
2144 	 * already been added to orphan list, it is safe for us to add
2145 	 * the buffer to BJ_Forget list of the newest transaction.
2146 	 *
2147 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2148 	 * because the buffer_head may be attached to the page straddling
2149 	 * i_size (can happen only when blocksize < pagesize) and thus the
2150 	 * buffer_head can be reused when the file is extended again. So we end
2151 	 * up keeping around invalidated buffers attached to transactions'
2152 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2153 	 * the transaction this buffer was modified in.
2154 	 */
2155 	transaction = jh->b_transaction;
2156 	if (transaction == NULL) {
2157 		/* First case: not on any transaction.  If it
2158 		 * has no checkpoint link, then we can zap it:
2159 		 * it's a writeback-mode buffer so we don't care
2160 		 * if it hits disk safely. */
2161 		if (!jh->b_cp_transaction) {
2162 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2163 			goto zap_buffer;
2164 		}
2165 
2166 		if (!buffer_dirty(bh)) {
2167 			/* bdflush has written it.  We can drop it now */
2168 			__jbd2_journal_remove_checkpoint(jh);
2169 			goto zap_buffer;
2170 		}
2171 
2172 		/* OK, it must be in the journal but still not
2173 		 * written fully to disk: it's metadata or
2174 		 * journaled data... */
2175 
2176 		if (journal->j_running_transaction) {
2177 			/* ... and once the current transaction has
2178 			 * committed, the buffer won't be needed any
2179 			 * longer. */
2180 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2181 			may_free = __dispose_buffer(jh,
2182 					journal->j_running_transaction);
2183 			goto zap_buffer;
2184 		} else {
2185 			/* There is no currently-running transaction. So the
2186 			 * orphan record which we wrote for this file must have
2187 			 * passed into commit.  We must attach this buffer to
2188 			 * the committing transaction, if it exists. */
2189 			if (journal->j_committing_transaction) {
2190 				JBUFFER_TRACE(jh, "give to committing trans");
2191 				may_free = __dispose_buffer(jh,
2192 					journal->j_committing_transaction);
2193 				goto zap_buffer;
2194 			} else {
2195 				/* The orphan record's transaction has
2196 				 * committed.  We can cleanse this buffer */
2197 				clear_buffer_jbddirty(bh);
2198 				__jbd2_journal_remove_checkpoint(jh);
2199 				goto zap_buffer;
2200 			}
2201 		}
2202 	} else if (transaction == journal->j_committing_transaction) {
2203 		JBUFFER_TRACE(jh, "on committing transaction");
2204 		/*
2205 		 * The buffer is committing, we simply cannot touch
2206 		 * it. If the page is straddling i_size we have to wait
2207 		 * for commit and try again.
2208 		 */
2209 		if (partial_page) {
2210 			jbd2_journal_put_journal_head(jh);
2211 			spin_unlock(&journal->j_list_lock);
2212 			jbd_unlock_bh_state(bh);
2213 			write_unlock(&journal->j_state_lock);
2214 			return -EBUSY;
2215 		}
2216 		/*
2217 		 * OK, buffer won't be reachable after truncate. We just set
2218 		 * j_next_transaction to the running transaction (if there is
2219 		 * one) and mark buffer as freed so that commit code knows it
2220 		 * should clear dirty bits when it is done with the buffer.
2221 		 */
2222 		set_buffer_freed(bh);
2223 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2224 			jh->b_next_transaction = journal->j_running_transaction;
2225 		jbd2_journal_put_journal_head(jh);
2226 		spin_unlock(&journal->j_list_lock);
2227 		jbd_unlock_bh_state(bh);
2228 		write_unlock(&journal->j_state_lock);
2229 		return 0;
2230 	} else {
2231 		/* Good, the buffer belongs to the running transaction.
2232 		 * We are writing our own transaction's data, not any
2233 		 * previous one's, so it is safe to throw it away
2234 		 * (remember that we expect the filesystem to have set
2235 		 * i_size already for this truncate so recovery will not
2236 		 * expose the disk blocks we are discarding here.) */
2237 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2238 		JBUFFER_TRACE(jh, "on running transaction");
2239 		may_free = __dispose_buffer(jh, transaction);
2240 	}
2241 
2242 zap_buffer:
2243 	/*
2244 	 * This is tricky. Although the buffer is truncated, it may be reused
2245 	 * if blocksize < pagesize and it is attached to the page straddling
2246 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2247 	 * running transaction, journal_get_write_access() won't clear
2248 	 * b_modified and credit accounting gets confused. So clear b_modified
2249 	 * here.
2250 	 */
2251 	jh->b_modified = 0;
2252 	jbd2_journal_put_journal_head(jh);
2253 zap_buffer_no_jh:
2254 	spin_unlock(&journal->j_list_lock);
2255 	jbd_unlock_bh_state(bh);
2256 	write_unlock(&journal->j_state_lock);
2257 zap_buffer_unlocked:
2258 	clear_buffer_dirty(bh);
2259 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2260 	clear_buffer_mapped(bh);
2261 	clear_buffer_req(bh);
2262 	clear_buffer_new(bh);
2263 	clear_buffer_delay(bh);
2264 	clear_buffer_unwritten(bh);
2265 	bh->b_bdev = NULL;
2266 	return may_free;
2267 }
2268 
2269 /**
2270  * void jbd2_journal_invalidatepage()
2271  * @journal: journal to use for flush...
2272  * @page:    page to flush
2273  * @offset:  start of the range to invalidate
2274  * @length:  length of the range to invalidate
2275  *
2276  * Reap page buffers containing data after in the specified range in page.
2277  * Can return -EBUSY if buffers are part of the committing transaction and
2278  * the page is straddling i_size. Caller then has to wait for current commit
2279  * and try again.
2280  */
2281 int jbd2_journal_invalidatepage(journal_t *journal,
2282 				struct page *page,
2283 				unsigned int offset,
2284 				unsigned int length)
2285 {
2286 	struct buffer_head *head, *bh, *next;
2287 	unsigned int stop = offset + length;
2288 	unsigned int curr_off = 0;
2289 	int partial_page = (offset || length < PAGE_SIZE);
2290 	int may_free = 1;
2291 	int ret = 0;
2292 
2293 	if (!PageLocked(page))
2294 		BUG();
2295 	if (!page_has_buffers(page))
2296 		return 0;
2297 
2298 	BUG_ON(stop > PAGE_SIZE || stop < length);
2299 
2300 	/* We will potentially be playing with lists other than just the
2301 	 * data lists (especially for journaled data mode), so be
2302 	 * cautious in our locking. */
2303 
2304 	head = bh = page_buffers(page);
2305 	do {
2306 		unsigned int next_off = curr_off + bh->b_size;
2307 		next = bh->b_this_page;
2308 
2309 		if (next_off > stop)
2310 			return 0;
2311 
2312 		if (offset <= curr_off) {
2313 			/* This block is wholly outside the truncation point */
2314 			lock_buffer(bh);
2315 			ret = journal_unmap_buffer(journal, bh, partial_page);
2316 			unlock_buffer(bh);
2317 			if (ret < 0)
2318 				return ret;
2319 			may_free &= ret;
2320 		}
2321 		curr_off = next_off;
2322 		bh = next;
2323 
2324 	} while (bh != head);
2325 
2326 	if (!partial_page) {
2327 		if (may_free && try_to_free_buffers(page))
2328 			J_ASSERT(!page_has_buffers(page));
2329 	}
2330 	return 0;
2331 }
2332 
2333 /*
2334  * File a buffer on the given transaction list.
2335  */
2336 void __jbd2_journal_file_buffer(struct journal_head *jh,
2337 			transaction_t *transaction, int jlist)
2338 {
2339 	struct journal_head **list = NULL;
2340 	int was_dirty = 0;
2341 	struct buffer_head *bh = jh2bh(jh);
2342 
2343 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2344 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2345 
2346 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2347 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2348 				jh->b_transaction == NULL);
2349 
2350 	if (jh->b_transaction && jh->b_jlist == jlist)
2351 		return;
2352 
2353 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2354 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2355 		/*
2356 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2357 		 * instead of buffer_dirty. We should not see a dirty bit set
2358 		 * here because we clear it in do_get_write_access but e.g.
2359 		 * tune2fs can modify the sb and set the dirty bit at any time
2360 		 * so we try to gracefully handle that.
2361 		 */
2362 		if (buffer_dirty(bh))
2363 			warn_dirty_buffer(bh);
2364 		if (test_clear_buffer_dirty(bh) ||
2365 		    test_clear_buffer_jbddirty(bh))
2366 			was_dirty = 1;
2367 	}
2368 
2369 	if (jh->b_transaction)
2370 		__jbd2_journal_temp_unlink_buffer(jh);
2371 	else
2372 		jbd2_journal_grab_journal_head(bh);
2373 	jh->b_transaction = transaction;
2374 
2375 	switch (jlist) {
2376 	case BJ_None:
2377 		J_ASSERT_JH(jh, !jh->b_committed_data);
2378 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2379 		return;
2380 	case BJ_Metadata:
2381 		transaction->t_nr_buffers++;
2382 		list = &transaction->t_buffers;
2383 		break;
2384 	case BJ_Forget:
2385 		list = &transaction->t_forget;
2386 		break;
2387 	case BJ_Shadow:
2388 		list = &transaction->t_shadow_list;
2389 		break;
2390 	case BJ_Reserved:
2391 		list = &transaction->t_reserved_list;
2392 		break;
2393 	}
2394 
2395 	__blist_add_buffer(list, jh);
2396 	jh->b_jlist = jlist;
2397 
2398 	if (was_dirty)
2399 		set_buffer_jbddirty(bh);
2400 }
2401 
2402 void jbd2_journal_file_buffer(struct journal_head *jh,
2403 				transaction_t *transaction, int jlist)
2404 {
2405 	jbd_lock_bh_state(jh2bh(jh));
2406 	spin_lock(&transaction->t_journal->j_list_lock);
2407 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2408 	spin_unlock(&transaction->t_journal->j_list_lock);
2409 	jbd_unlock_bh_state(jh2bh(jh));
2410 }
2411 
2412 /*
2413  * Remove a buffer from its current buffer list in preparation for
2414  * dropping it from its current transaction entirely.  If the buffer has
2415  * already started to be used by a subsequent transaction, refile the
2416  * buffer on that transaction's metadata list.
2417  *
2418  * Called under j_list_lock
2419  * Called under jbd_lock_bh_state(jh2bh(jh))
2420  *
2421  * jh and bh may be already free when this function returns
2422  */
2423 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2424 {
2425 	int was_dirty, jlist;
2426 	struct buffer_head *bh = jh2bh(jh);
2427 
2428 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2429 	if (jh->b_transaction)
2430 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2431 
2432 	/* If the buffer is now unused, just drop it. */
2433 	if (jh->b_next_transaction == NULL) {
2434 		__jbd2_journal_unfile_buffer(jh);
2435 		return;
2436 	}
2437 
2438 	/*
2439 	 * It has been modified by a later transaction: add it to the new
2440 	 * transaction's metadata list.
2441 	 */
2442 
2443 	was_dirty = test_clear_buffer_jbddirty(bh);
2444 	__jbd2_journal_temp_unlink_buffer(jh);
2445 	/*
2446 	 * We set b_transaction here because b_next_transaction will inherit
2447 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2448 	 * take a new one.
2449 	 */
2450 	jh->b_transaction = jh->b_next_transaction;
2451 	jh->b_next_transaction = NULL;
2452 	if (buffer_freed(bh))
2453 		jlist = BJ_Forget;
2454 	else if (jh->b_modified)
2455 		jlist = BJ_Metadata;
2456 	else
2457 		jlist = BJ_Reserved;
2458 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2459 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2460 
2461 	if (was_dirty)
2462 		set_buffer_jbddirty(bh);
2463 }
2464 
2465 /*
2466  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2467  * bh reference so that we can safely unlock bh.
2468  *
2469  * The jh and bh may be freed by this call.
2470  */
2471 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2472 {
2473 	struct buffer_head *bh = jh2bh(jh);
2474 
2475 	/* Get reference so that buffer cannot be freed before we unlock it */
2476 	get_bh(bh);
2477 	jbd_lock_bh_state(bh);
2478 	spin_lock(&journal->j_list_lock);
2479 	__jbd2_journal_refile_buffer(jh);
2480 	jbd_unlock_bh_state(bh);
2481 	spin_unlock(&journal->j_list_lock);
2482 	__brelse(bh);
2483 }
2484 
2485 /*
2486  * File inode in the inode list of the handle's transaction
2487  */
2488 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2489 				   unsigned long flags)
2490 {
2491 	transaction_t *transaction = handle->h_transaction;
2492 	journal_t *journal;
2493 
2494 	if (is_handle_aborted(handle))
2495 		return -EROFS;
2496 	journal = transaction->t_journal;
2497 
2498 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2499 			transaction->t_tid);
2500 
2501 	/*
2502 	 * First check whether inode isn't already on the transaction's
2503 	 * lists without taking the lock. Note that this check is safe
2504 	 * without the lock as we cannot race with somebody removing inode
2505 	 * from the transaction. The reason is that we remove inode from the
2506 	 * transaction only in journal_release_jbd_inode() and when we commit
2507 	 * the transaction. We are guarded from the first case by holding
2508 	 * a reference to the inode. We are safe against the second case
2509 	 * because if jinode->i_transaction == transaction, commit code
2510 	 * cannot touch the transaction because we hold reference to it,
2511 	 * and if jinode->i_next_transaction == transaction, commit code
2512 	 * will only file the inode where we want it.
2513 	 */
2514 	if ((jinode->i_transaction == transaction ||
2515 	    jinode->i_next_transaction == transaction) &&
2516 	    (jinode->i_flags & flags) == flags)
2517 		return 0;
2518 
2519 	spin_lock(&journal->j_list_lock);
2520 	jinode->i_flags |= flags;
2521 	/* Is inode already attached where we need it? */
2522 	if (jinode->i_transaction == transaction ||
2523 	    jinode->i_next_transaction == transaction)
2524 		goto done;
2525 
2526 	/*
2527 	 * We only ever set this variable to 1 so the test is safe. Since
2528 	 * t_need_data_flush is likely to be set, we do the test to save some
2529 	 * cacheline bouncing
2530 	 */
2531 	if (!transaction->t_need_data_flush)
2532 		transaction->t_need_data_flush = 1;
2533 	/* On some different transaction's list - should be
2534 	 * the committing one */
2535 	if (jinode->i_transaction) {
2536 		J_ASSERT(jinode->i_next_transaction == NULL);
2537 		J_ASSERT(jinode->i_transaction ==
2538 					journal->j_committing_transaction);
2539 		jinode->i_next_transaction = transaction;
2540 		goto done;
2541 	}
2542 	/* Not on any transaction list... */
2543 	J_ASSERT(!jinode->i_next_transaction);
2544 	jinode->i_transaction = transaction;
2545 	list_add(&jinode->i_list, &transaction->t_inode_list);
2546 done:
2547 	spin_unlock(&journal->j_list_lock);
2548 
2549 	return 0;
2550 }
2551 
2552 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2553 {
2554 	return jbd2_journal_file_inode(handle, jinode,
2555 				       JI_WRITE_DATA | JI_WAIT_DATA);
2556 }
2557 
2558 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2559 {
2560 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2561 }
2562 
2563 /*
2564  * File truncate and transaction commit interact with each other in a
2565  * non-trivial way.  If a transaction writing data block A is
2566  * committing, we cannot discard the data by truncate until we have
2567  * written them.  Otherwise if we crashed after the transaction with
2568  * write has committed but before the transaction with truncate has
2569  * committed, we could see stale data in block A.  This function is a
2570  * helper to solve this problem.  It starts writeout of the truncated
2571  * part in case it is in the committing transaction.
2572  *
2573  * Filesystem code must call this function when inode is journaled in
2574  * ordered mode before truncation happens and after the inode has been
2575  * placed on orphan list with the new inode size. The second condition
2576  * avoids the race that someone writes new data and we start
2577  * committing the transaction after this function has been called but
2578  * before a transaction for truncate is started (and furthermore it
2579  * allows us to optimize the case where the addition to orphan list
2580  * happens in the same transaction as write --- we don't have to write
2581  * any data in such case).
2582  */
2583 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2584 					struct jbd2_inode *jinode,
2585 					loff_t new_size)
2586 {
2587 	transaction_t *inode_trans, *commit_trans;
2588 	int ret = 0;
2589 
2590 	/* This is a quick check to avoid locking if not necessary */
2591 	if (!jinode->i_transaction)
2592 		goto out;
2593 	/* Locks are here just to force reading of recent values, it is
2594 	 * enough that the transaction was not committing before we started
2595 	 * a transaction adding the inode to orphan list */
2596 	read_lock(&journal->j_state_lock);
2597 	commit_trans = journal->j_committing_transaction;
2598 	read_unlock(&journal->j_state_lock);
2599 	spin_lock(&journal->j_list_lock);
2600 	inode_trans = jinode->i_transaction;
2601 	spin_unlock(&journal->j_list_lock);
2602 	if (inode_trans == commit_trans) {
2603 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2604 			new_size, LLONG_MAX);
2605 		if (ret)
2606 			jbd2_journal_abort(journal, ret);
2607 	}
2608 out:
2609 	return ret;
2610 }
2611