1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 #include <linux/sched/mm.h> 33 34 #include <trace/events/jbd2.h> 35 36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 38 39 static struct kmem_cache *transaction_cache; 40 int __init jbd2_journal_init_transaction_cache(void) 41 { 42 J_ASSERT(!transaction_cache); 43 transaction_cache = kmem_cache_create("jbd2_transaction_s", 44 sizeof(transaction_t), 45 0, 46 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 47 NULL); 48 if (transaction_cache) 49 return 0; 50 return -ENOMEM; 51 } 52 53 void jbd2_journal_destroy_transaction_cache(void) 54 { 55 if (transaction_cache) { 56 kmem_cache_destroy(transaction_cache); 57 transaction_cache = NULL; 58 } 59 } 60 61 void jbd2_journal_free_transaction(transaction_t *transaction) 62 { 63 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 64 return; 65 kmem_cache_free(transaction_cache, transaction); 66 } 67 68 /* 69 * jbd2_get_transaction: obtain a new transaction_t object. 70 * 71 * Simply allocate and initialise a new transaction. Create it in 72 * RUNNING state and add it to the current journal (which should not 73 * have an existing running transaction: we only make a new transaction 74 * once we have started to commit the old one). 75 * 76 * Preconditions: 77 * The journal MUST be locked. We don't perform atomic mallocs on the 78 * new transaction and we can't block without protecting against other 79 * processes trying to touch the journal while it is in transition. 80 * 81 */ 82 83 static transaction_t * 84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 85 { 86 transaction->t_journal = journal; 87 transaction->t_state = T_RUNNING; 88 transaction->t_start_time = ktime_get(); 89 transaction->t_tid = journal->j_transaction_sequence++; 90 transaction->t_expires = jiffies + journal->j_commit_interval; 91 spin_lock_init(&transaction->t_handle_lock); 92 atomic_set(&transaction->t_updates, 0); 93 atomic_set(&transaction->t_outstanding_credits, 94 atomic_read(&journal->j_reserved_credits)); 95 atomic_set(&transaction->t_handle_count, 0); 96 INIT_LIST_HEAD(&transaction->t_inode_list); 97 INIT_LIST_HEAD(&transaction->t_private_list); 98 99 /* Set up the commit timer for the new transaction. */ 100 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 101 add_timer(&journal->j_commit_timer); 102 103 J_ASSERT(journal->j_running_transaction == NULL); 104 journal->j_running_transaction = transaction; 105 transaction->t_max_wait = 0; 106 transaction->t_start = jiffies; 107 transaction->t_requested = 0; 108 109 return transaction; 110 } 111 112 /* 113 * Handle management. 114 * 115 * A handle_t is an object which represents a single atomic update to a 116 * filesystem, and which tracks all of the modifications which form part 117 * of that one update. 118 */ 119 120 /* 121 * Update transaction's maximum wait time, if debugging is enabled. 122 * 123 * In order for t_max_wait to be reliable, it must be protected by a 124 * lock. But doing so will mean that start_this_handle() can not be 125 * run in parallel on SMP systems, which limits our scalability. So 126 * unless debugging is enabled, we no longer update t_max_wait, which 127 * means that maximum wait time reported by the jbd2_run_stats 128 * tracepoint will always be zero. 129 */ 130 static inline void update_t_max_wait(transaction_t *transaction, 131 unsigned long ts) 132 { 133 #ifdef CONFIG_JBD2_DEBUG 134 if (jbd2_journal_enable_debug && 135 time_after(transaction->t_start, ts)) { 136 ts = jbd2_time_diff(ts, transaction->t_start); 137 spin_lock(&transaction->t_handle_lock); 138 if (ts > transaction->t_max_wait) 139 transaction->t_max_wait = ts; 140 spin_unlock(&transaction->t_handle_lock); 141 } 142 #endif 143 } 144 145 /* 146 * Wait until running transaction passes T_LOCKED state. Also starts the commit 147 * if needed. The function expects running transaction to exist and releases 148 * j_state_lock. 149 */ 150 static void wait_transaction_locked(journal_t *journal) 151 __releases(journal->j_state_lock) 152 { 153 DEFINE_WAIT(wait); 154 int need_to_start; 155 tid_t tid = journal->j_running_transaction->t_tid; 156 157 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 158 TASK_UNINTERRUPTIBLE); 159 need_to_start = !tid_geq(journal->j_commit_request, tid); 160 read_unlock(&journal->j_state_lock); 161 if (need_to_start) 162 jbd2_log_start_commit(journal, tid); 163 jbd2_might_wait_for_commit(journal); 164 schedule(); 165 finish_wait(&journal->j_wait_transaction_locked, &wait); 166 } 167 168 static void sub_reserved_credits(journal_t *journal, int blocks) 169 { 170 atomic_sub(blocks, &journal->j_reserved_credits); 171 wake_up(&journal->j_wait_reserved); 172 } 173 174 /* 175 * Wait until we can add credits for handle to the running transaction. Called 176 * with j_state_lock held for reading. Returns 0 if handle joined the running 177 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 178 * caller must retry. 179 */ 180 static int add_transaction_credits(journal_t *journal, int blocks, 181 int rsv_blocks) 182 { 183 transaction_t *t = journal->j_running_transaction; 184 int needed; 185 int total = blocks + rsv_blocks; 186 187 /* 188 * If the current transaction is locked down for commit, wait 189 * for the lock to be released. 190 */ 191 if (t->t_state == T_LOCKED) { 192 wait_transaction_locked(journal); 193 return 1; 194 } 195 196 /* 197 * If there is not enough space left in the log to write all 198 * potential buffers requested by this operation, we need to 199 * stall pending a log checkpoint to free some more log space. 200 */ 201 needed = atomic_add_return(total, &t->t_outstanding_credits); 202 if (needed > journal->j_max_transaction_buffers) { 203 /* 204 * If the current transaction is already too large, 205 * then start to commit it: we can then go back and 206 * attach this handle to a new transaction. 207 */ 208 atomic_sub(total, &t->t_outstanding_credits); 209 210 /* 211 * Is the number of reserved credits in the current transaction too 212 * big to fit this handle? Wait until reserved credits are freed. 213 */ 214 if (atomic_read(&journal->j_reserved_credits) + total > 215 journal->j_max_transaction_buffers) { 216 read_unlock(&journal->j_state_lock); 217 jbd2_might_wait_for_commit(journal); 218 wait_event(journal->j_wait_reserved, 219 atomic_read(&journal->j_reserved_credits) + total <= 220 journal->j_max_transaction_buffers); 221 return 1; 222 } 223 224 wait_transaction_locked(journal); 225 return 1; 226 } 227 228 /* 229 * The commit code assumes that it can get enough log space 230 * without forcing a checkpoint. This is *critical* for 231 * correctness: a checkpoint of a buffer which is also 232 * associated with a committing transaction creates a deadlock, 233 * so commit simply cannot force through checkpoints. 234 * 235 * We must therefore ensure the necessary space in the journal 236 * *before* starting to dirty potentially checkpointed buffers 237 * in the new transaction. 238 */ 239 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 jbd2_might_wait_for_commit(journal); 243 write_lock(&journal->j_state_lock); 244 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 245 __jbd2_log_wait_for_space(journal); 246 write_unlock(&journal->j_state_lock); 247 return 1; 248 } 249 250 /* No reservation? We are done... */ 251 if (!rsv_blocks) 252 return 0; 253 254 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 255 /* We allow at most half of a transaction to be reserved */ 256 if (needed > journal->j_max_transaction_buffers / 2) { 257 sub_reserved_credits(journal, rsv_blocks); 258 atomic_sub(total, &t->t_outstanding_credits); 259 read_unlock(&journal->j_state_lock); 260 jbd2_might_wait_for_commit(journal); 261 wait_event(journal->j_wait_reserved, 262 atomic_read(&journal->j_reserved_credits) + rsv_blocks 263 <= journal->j_max_transaction_buffers / 2); 264 return 1; 265 } 266 return 0; 267 } 268 269 /* 270 * start_this_handle: Given a handle, deal with any locking or stalling 271 * needed to make sure that there is enough journal space for the handle 272 * to begin. Attach the handle to a transaction and set up the 273 * transaction's buffer credits. 274 */ 275 276 static int start_this_handle(journal_t *journal, handle_t *handle, 277 gfp_t gfp_mask) 278 { 279 transaction_t *transaction, *new_transaction = NULL; 280 int blocks = handle->h_buffer_credits; 281 int rsv_blocks = 0; 282 unsigned long ts = jiffies; 283 284 if (handle->h_rsv_handle) 285 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 286 287 /* 288 * Limit the number of reserved credits to 1/2 of maximum transaction 289 * size and limit the number of total credits to not exceed maximum 290 * transaction size per operation. 291 */ 292 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 293 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 294 printk(KERN_ERR "JBD2: %s wants too many credits " 295 "credits:%d rsv_credits:%d max:%d\n", 296 current->comm, blocks, rsv_blocks, 297 journal->j_max_transaction_buffers); 298 WARN_ON(1); 299 return -ENOSPC; 300 } 301 302 alloc_transaction: 303 if (!journal->j_running_transaction) { 304 /* 305 * If __GFP_FS is not present, then we may be being called from 306 * inside the fs writeback layer, so we MUST NOT fail. 307 */ 308 if ((gfp_mask & __GFP_FS) == 0) 309 gfp_mask |= __GFP_NOFAIL; 310 new_transaction = kmem_cache_zalloc(transaction_cache, 311 gfp_mask); 312 if (!new_transaction) 313 return -ENOMEM; 314 } 315 316 jbd_debug(3, "New handle %p going live.\n", handle); 317 318 /* 319 * We need to hold j_state_lock until t_updates has been incremented, 320 * for proper journal barrier handling 321 */ 322 repeat: 323 read_lock(&journal->j_state_lock); 324 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 325 if (is_journal_aborted(journal) || 326 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 327 read_unlock(&journal->j_state_lock); 328 jbd2_journal_free_transaction(new_transaction); 329 return -EROFS; 330 } 331 332 /* 333 * Wait on the journal's transaction barrier if necessary. Specifically 334 * we allow reserved handles to proceed because otherwise commit could 335 * deadlock on page writeback not being able to complete. 336 */ 337 if (!handle->h_reserved && journal->j_barrier_count) { 338 read_unlock(&journal->j_state_lock); 339 wait_event(journal->j_wait_transaction_locked, 340 journal->j_barrier_count == 0); 341 goto repeat; 342 } 343 344 if (!journal->j_running_transaction) { 345 read_unlock(&journal->j_state_lock); 346 if (!new_transaction) 347 goto alloc_transaction; 348 write_lock(&journal->j_state_lock); 349 if (!journal->j_running_transaction && 350 (handle->h_reserved || !journal->j_barrier_count)) { 351 jbd2_get_transaction(journal, new_transaction); 352 new_transaction = NULL; 353 } 354 write_unlock(&journal->j_state_lock); 355 goto repeat; 356 } 357 358 transaction = journal->j_running_transaction; 359 360 if (!handle->h_reserved) { 361 /* We may have dropped j_state_lock - restart in that case */ 362 if (add_transaction_credits(journal, blocks, rsv_blocks)) 363 goto repeat; 364 } else { 365 /* 366 * We have handle reserved so we are allowed to join T_LOCKED 367 * transaction and we don't have to check for transaction size 368 * and journal space. 369 */ 370 sub_reserved_credits(journal, blocks); 371 handle->h_reserved = 0; 372 } 373 374 /* OK, account for the buffers that this operation expects to 375 * use and add the handle to the running transaction. 376 */ 377 update_t_max_wait(transaction, ts); 378 handle->h_transaction = transaction; 379 handle->h_requested_credits = blocks; 380 handle->h_start_jiffies = jiffies; 381 atomic_inc(&transaction->t_updates); 382 atomic_inc(&transaction->t_handle_count); 383 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 384 handle, blocks, 385 atomic_read(&transaction->t_outstanding_credits), 386 jbd2_log_space_left(journal)); 387 read_unlock(&journal->j_state_lock); 388 current->journal_info = handle; 389 390 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 391 jbd2_journal_free_transaction(new_transaction); 392 /* 393 * Ensure that no allocations done while the transaction is open are 394 * going to recurse back to the fs layer. 395 */ 396 handle->saved_alloc_context = memalloc_nofs_save(); 397 return 0; 398 } 399 400 /* Allocate a new handle. This should probably be in a slab... */ 401 static handle_t *new_handle(int nblocks) 402 { 403 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 404 if (!handle) 405 return NULL; 406 handle->h_buffer_credits = nblocks; 407 handle->h_ref = 1; 408 409 return handle; 410 } 411 412 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 413 gfp_t gfp_mask, unsigned int type, 414 unsigned int line_no) 415 { 416 handle_t *handle = journal_current_handle(); 417 int err; 418 419 if (!journal) 420 return ERR_PTR(-EROFS); 421 422 if (handle) { 423 J_ASSERT(handle->h_transaction->t_journal == journal); 424 handle->h_ref++; 425 return handle; 426 } 427 428 handle = new_handle(nblocks); 429 if (!handle) 430 return ERR_PTR(-ENOMEM); 431 if (rsv_blocks) { 432 handle_t *rsv_handle; 433 434 rsv_handle = new_handle(rsv_blocks); 435 if (!rsv_handle) { 436 jbd2_free_handle(handle); 437 return ERR_PTR(-ENOMEM); 438 } 439 rsv_handle->h_reserved = 1; 440 rsv_handle->h_journal = journal; 441 handle->h_rsv_handle = rsv_handle; 442 } 443 444 err = start_this_handle(journal, handle, gfp_mask); 445 if (err < 0) { 446 if (handle->h_rsv_handle) 447 jbd2_free_handle(handle->h_rsv_handle); 448 jbd2_free_handle(handle); 449 return ERR_PTR(err); 450 } 451 handle->h_type = type; 452 handle->h_line_no = line_no; 453 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 454 handle->h_transaction->t_tid, type, 455 line_no, nblocks); 456 457 return handle; 458 } 459 EXPORT_SYMBOL(jbd2__journal_start); 460 461 462 /** 463 * handle_t *jbd2_journal_start() - Obtain a new handle. 464 * @journal: Journal to start transaction on. 465 * @nblocks: number of block buffer we might modify 466 * 467 * We make sure that the transaction can guarantee at least nblocks of 468 * modified buffers in the log. We block until the log can guarantee 469 * that much space. Additionally, if rsv_blocks > 0, we also create another 470 * handle with rsv_blocks reserved blocks in the journal. This handle is 471 * is stored in h_rsv_handle. It is not attached to any particular transaction 472 * and thus doesn't block transaction commit. If the caller uses this reserved 473 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 474 * on the parent handle will dispose the reserved one. Reserved handle has to 475 * be converted to a normal handle using jbd2_journal_start_reserved() before 476 * it can be used. 477 * 478 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 479 * on failure. 480 */ 481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 482 { 483 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 484 } 485 EXPORT_SYMBOL(jbd2_journal_start); 486 487 void jbd2_journal_free_reserved(handle_t *handle) 488 { 489 journal_t *journal = handle->h_journal; 490 491 WARN_ON(!handle->h_reserved); 492 sub_reserved_credits(journal, handle->h_buffer_credits); 493 jbd2_free_handle(handle); 494 } 495 EXPORT_SYMBOL(jbd2_journal_free_reserved); 496 497 /** 498 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 499 * @handle: handle to start 500 * 501 * Start handle that has been previously reserved with jbd2_journal_reserve(). 502 * This attaches @handle to the running transaction (or creates one if there's 503 * not transaction running). Unlike jbd2_journal_start() this function cannot 504 * block on journal commit, checkpointing, or similar stuff. It can block on 505 * memory allocation or frozen journal though. 506 * 507 * Return 0 on success, non-zero on error - handle is freed in that case. 508 */ 509 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 510 unsigned int line_no) 511 { 512 journal_t *journal = handle->h_journal; 513 int ret = -EIO; 514 515 if (WARN_ON(!handle->h_reserved)) { 516 /* Someone passed in normal handle? Just stop it. */ 517 jbd2_journal_stop(handle); 518 return ret; 519 } 520 /* 521 * Usefulness of mixing of reserved and unreserved handles is 522 * questionable. So far nobody seems to need it so just error out. 523 */ 524 if (WARN_ON(current->journal_info)) { 525 jbd2_journal_free_reserved(handle); 526 return ret; 527 } 528 529 handle->h_journal = NULL; 530 /* 531 * GFP_NOFS is here because callers are likely from writeback or 532 * similarly constrained call sites 533 */ 534 ret = start_this_handle(journal, handle, GFP_NOFS); 535 if (ret < 0) { 536 jbd2_journal_free_reserved(handle); 537 return ret; 538 } 539 handle->h_type = type; 540 handle->h_line_no = line_no; 541 return 0; 542 } 543 EXPORT_SYMBOL(jbd2_journal_start_reserved); 544 545 /** 546 * int jbd2_journal_extend() - extend buffer credits. 547 * @handle: handle to 'extend' 548 * @nblocks: nr blocks to try to extend by. 549 * 550 * Some transactions, such as large extends and truncates, can be done 551 * atomically all at once or in several stages. The operation requests 552 * a credit for a number of buffer modifications in advance, but can 553 * extend its credit if it needs more. 554 * 555 * jbd2_journal_extend tries to give the running handle more buffer credits. 556 * It does not guarantee that allocation - this is a best-effort only. 557 * The calling process MUST be able to deal cleanly with a failure to 558 * extend here. 559 * 560 * Return 0 on success, non-zero on failure. 561 * 562 * return code < 0 implies an error 563 * return code > 0 implies normal transaction-full status. 564 */ 565 int jbd2_journal_extend(handle_t *handle, int nblocks) 566 { 567 transaction_t *transaction = handle->h_transaction; 568 journal_t *journal; 569 int result; 570 int wanted; 571 572 if (is_handle_aborted(handle)) 573 return -EROFS; 574 journal = transaction->t_journal; 575 576 result = 1; 577 578 read_lock(&journal->j_state_lock); 579 580 /* Don't extend a locked-down transaction! */ 581 if (transaction->t_state != T_RUNNING) { 582 jbd_debug(3, "denied handle %p %d blocks: " 583 "transaction not running\n", handle, nblocks); 584 goto error_out; 585 } 586 587 spin_lock(&transaction->t_handle_lock); 588 wanted = atomic_add_return(nblocks, 589 &transaction->t_outstanding_credits); 590 591 if (wanted > journal->j_max_transaction_buffers) { 592 jbd_debug(3, "denied handle %p %d blocks: " 593 "transaction too large\n", handle, nblocks); 594 atomic_sub(nblocks, &transaction->t_outstanding_credits); 595 goto unlock; 596 } 597 598 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 599 jbd2_log_space_left(journal)) { 600 jbd_debug(3, "denied handle %p %d blocks: " 601 "insufficient log space\n", handle, nblocks); 602 atomic_sub(nblocks, &transaction->t_outstanding_credits); 603 goto unlock; 604 } 605 606 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 607 transaction->t_tid, 608 handle->h_type, handle->h_line_no, 609 handle->h_buffer_credits, 610 nblocks); 611 612 handle->h_buffer_credits += nblocks; 613 handle->h_requested_credits += nblocks; 614 result = 0; 615 616 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 617 unlock: 618 spin_unlock(&transaction->t_handle_lock); 619 error_out: 620 read_unlock(&journal->j_state_lock); 621 return result; 622 } 623 624 625 /** 626 * int jbd2_journal_restart() - restart a handle . 627 * @handle: handle to restart 628 * @nblocks: nr credits requested 629 * 630 * Restart a handle for a multi-transaction filesystem 631 * operation. 632 * 633 * If the jbd2_journal_extend() call above fails to grant new buffer credits 634 * to a running handle, a call to jbd2_journal_restart will commit the 635 * handle's transaction so far and reattach the handle to a new 636 * transaction capable of guaranteeing the requested number of 637 * credits. We preserve reserved handle if there's any attached to the 638 * passed in handle. 639 */ 640 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 641 { 642 transaction_t *transaction = handle->h_transaction; 643 journal_t *journal; 644 tid_t tid; 645 int need_to_start, ret; 646 647 /* If we've had an abort of any type, don't even think about 648 * actually doing the restart! */ 649 if (is_handle_aborted(handle)) 650 return 0; 651 journal = transaction->t_journal; 652 653 /* 654 * First unlink the handle from its current transaction, and start the 655 * commit on that. 656 */ 657 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 658 J_ASSERT(journal_current_handle() == handle); 659 660 read_lock(&journal->j_state_lock); 661 spin_lock(&transaction->t_handle_lock); 662 atomic_sub(handle->h_buffer_credits, 663 &transaction->t_outstanding_credits); 664 if (handle->h_rsv_handle) { 665 sub_reserved_credits(journal, 666 handle->h_rsv_handle->h_buffer_credits); 667 } 668 if (atomic_dec_and_test(&transaction->t_updates)) 669 wake_up(&journal->j_wait_updates); 670 tid = transaction->t_tid; 671 spin_unlock(&transaction->t_handle_lock); 672 handle->h_transaction = NULL; 673 current->journal_info = NULL; 674 675 jbd_debug(2, "restarting handle %p\n", handle); 676 need_to_start = !tid_geq(journal->j_commit_request, tid); 677 read_unlock(&journal->j_state_lock); 678 if (need_to_start) 679 jbd2_log_start_commit(journal, tid); 680 681 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 682 handle->h_buffer_credits = nblocks; 683 /* 684 * Restore the original nofs context because the journal restart 685 * is basically the same thing as journal stop and start. 686 * start_this_handle will start a new nofs context. 687 */ 688 memalloc_nofs_restore(handle->saved_alloc_context); 689 ret = start_this_handle(journal, handle, gfp_mask); 690 return ret; 691 } 692 EXPORT_SYMBOL(jbd2__journal_restart); 693 694 695 int jbd2_journal_restart(handle_t *handle, int nblocks) 696 { 697 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 698 } 699 EXPORT_SYMBOL(jbd2_journal_restart); 700 701 /** 702 * void jbd2_journal_lock_updates () - establish a transaction barrier. 703 * @journal: Journal to establish a barrier on. 704 * 705 * This locks out any further updates from being started, and blocks 706 * until all existing updates have completed, returning only once the 707 * journal is in a quiescent state with no updates running. 708 * 709 * The journal lock should not be held on entry. 710 */ 711 void jbd2_journal_lock_updates(journal_t *journal) 712 { 713 DEFINE_WAIT(wait); 714 715 jbd2_might_wait_for_commit(journal); 716 717 write_lock(&journal->j_state_lock); 718 ++journal->j_barrier_count; 719 720 /* Wait until there are no reserved handles */ 721 if (atomic_read(&journal->j_reserved_credits)) { 722 write_unlock(&journal->j_state_lock); 723 wait_event(journal->j_wait_reserved, 724 atomic_read(&journal->j_reserved_credits) == 0); 725 write_lock(&journal->j_state_lock); 726 } 727 728 /* Wait until there are no running updates */ 729 while (1) { 730 transaction_t *transaction = journal->j_running_transaction; 731 732 if (!transaction) 733 break; 734 735 spin_lock(&transaction->t_handle_lock); 736 prepare_to_wait(&journal->j_wait_updates, &wait, 737 TASK_UNINTERRUPTIBLE); 738 if (!atomic_read(&transaction->t_updates)) { 739 spin_unlock(&transaction->t_handle_lock); 740 finish_wait(&journal->j_wait_updates, &wait); 741 break; 742 } 743 spin_unlock(&transaction->t_handle_lock); 744 write_unlock(&journal->j_state_lock); 745 schedule(); 746 finish_wait(&journal->j_wait_updates, &wait); 747 write_lock(&journal->j_state_lock); 748 } 749 write_unlock(&journal->j_state_lock); 750 751 /* 752 * We have now established a barrier against other normal updates, but 753 * we also need to barrier against other jbd2_journal_lock_updates() calls 754 * to make sure that we serialise special journal-locked operations 755 * too. 756 */ 757 mutex_lock(&journal->j_barrier); 758 } 759 760 /** 761 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 762 * @journal: Journal to release the barrier on. 763 * 764 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 765 * 766 * Should be called without the journal lock held. 767 */ 768 void jbd2_journal_unlock_updates (journal_t *journal) 769 { 770 J_ASSERT(journal->j_barrier_count != 0); 771 772 mutex_unlock(&journal->j_barrier); 773 write_lock(&journal->j_state_lock); 774 --journal->j_barrier_count; 775 write_unlock(&journal->j_state_lock); 776 wake_up(&journal->j_wait_transaction_locked); 777 } 778 779 static void warn_dirty_buffer(struct buffer_head *bh) 780 { 781 printk(KERN_WARNING 782 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 783 "There's a risk of filesystem corruption in case of system " 784 "crash.\n", 785 bh->b_bdev, (unsigned long long)bh->b_blocknr); 786 } 787 788 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 789 static void jbd2_freeze_jh_data(struct journal_head *jh) 790 { 791 struct page *page; 792 int offset; 793 char *source; 794 struct buffer_head *bh = jh2bh(jh); 795 796 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 797 page = bh->b_page; 798 offset = offset_in_page(bh->b_data); 799 source = kmap_atomic(page); 800 /* Fire data frozen trigger just before we copy the data */ 801 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 802 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 803 kunmap_atomic(source); 804 805 /* 806 * Now that the frozen data is saved off, we need to store any matching 807 * triggers. 808 */ 809 jh->b_frozen_triggers = jh->b_triggers; 810 } 811 812 /* 813 * If the buffer is already part of the current transaction, then there 814 * is nothing we need to do. If it is already part of a prior 815 * transaction which we are still committing to disk, then we need to 816 * make sure that we do not overwrite the old copy: we do copy-out to 817 * preserve the copy going to disk. We also account the buffer against 818 * the handle's metadata buffer credits (unless the buffer is already 819 * part of the transaction, that is). 820 * 821 */ 822 static int 823 do_get_write_access(handle_t *handle, struct journal_head *jh, 824 int force_copy) 825 { 826 struct buffer_head *bh; 827 transaction_t *transaction = handle->h_transaction; 828 journal_t *journal; 829 int error; 830 char *frozen_buffer = NULL; 831 unsigned long start_lock, time_lock; 832 833 if (is_handle_aborted(handle)) 834 return -EROFS; 835 journal = transaction->t_journal; 836 837 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 838 839 JBUFFER_TRACE(jh, "entry"); 840 repeat: 841 bh = jh2bh(jh); 842 843 /* @@@ Need to check for errors here at some point. */ 844 845 start_lock = jiffies; 846 lock_buffer(bh); 847 jbd_lock_bh_state(bh); 848 849 /* If it takes too long to lock the buffer, trace it */ 850 time_lock = jbd2_time_diff(start_lock, jiffies); 851 if (time_lock > HZ/10) 852 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 853 jiffies_to_msecs(time_lock)); 854 855 /* We now hold the buffer lock so it is safe to query the buffer 856 * state. Is the buffer dirty? 857 * 858 * If so, there are two possibilities. The buffer may be 859 * non-journaled, and undergoing a quite legitimate writeback. 860 * Otherwise, it is journaled, and we don't expect dirty buffers 861 * in that state (the buffers should be marked JBD_Dirty 862 * instead.) So either the IO is being done under our own 863 * control and this is a bug, or it's a third party IO such as 864 * dump(8) (which may leave the buffer scheduled for read --- 865 * ie. locked but not dirty) or tune2fs (which may actually have 866 * the buffer dirtied, ugh.) */ 867 868 if (buffer_dirty(bh)) { 869 /* 870 * First question: is this buffer already part of the current 871 * transaction or the existing committing transaction? 872 */ 873 if (jh->b_transaction) { 874 J_ASSERT_JH(jh, 875 jh->b_transaction == transaction || 876 jh->b_transaction == 877 journal->j_committing_transaction); 878 if (jh->b_next_transaction) 879 J_ASSERT_JH(jh, jh->b_next_transaction == 880 transaction); 881 warn_dirty_buffer(bh); 882 } 883 /* 884 * In any case we need to clean the dirty flag and we must 885 * do it under the buffer lock to be sure we don't race 886 * with running write-out. 887 */ 888 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 889 clear_buffer_dirty(bh); 890 set_buffer_jbddirty(bh); 891 } 892 893 unlock_buffer(bh); 894 895 error = -EROFS; 896 if (is_handle_aborted(handle)) { 897 jbd_unlock_bh_state(bh); 898 goto out; 899 } 900 error = 0; 901 902 /* 903 * The buffer is already part of this transaction if b_transaction or 904 * b_next_transaction points to it 905 */ 906 if (jh->b_transaction == transaction || 907 jh->b_next_transaction == transaction) 908 goto done; 909 910 /* 911 * this is the first time this transaction is touching this buffer, 912 * reset the modified flag 913 */ 914 jh->b_modified = 0; 915 916 /* 917 * If the buffer is not journaled right now, we need to make sure it 918 * doesn't get written to disk before the caller actually commits the 919 * new data 920 */ 921 if (!jh->b_transaction) { 922 JBUFFER_TRACE(jh, "no transaction"); 923 J_ASSERT_JH(jh, !jh->b_next_transaction); 924 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 925 /* 926 * Make sure all stores to jh (b_modified, b_frozen_data) are 927 * visible before attaching it to the running transaction. 928 * Paired with barrier in jbd2_write_access_granted() 929 */ 930 smp_wmb(); 931 spin_lock(&journal->j_list_lock); 932 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 933 spin_unlock(&journal->j_list_lock); 934 goto done; 935 } 936 /* 937 * If there is already a copy-out version of this buffer, then we don't 938 * need to make another one 939 */ 940 if (jh->b_frozen_data) { 941 JBUFFER_TRACE(jh, "has frozen data"); 942 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 943 goto attach_next; 944 } 945 946 JBUFFER_TRACE(jh, "owned by older transaction"); 947 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 948 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 949 950 /* 951 * There is one case we have to be very careful about. If the 952 * committing transaction is currently writing this buffer out to disk 953 * and has NOT made a copy-out, then we cannot modify the buffer 954 * contents at all right now. The essence of copy-out is that it is 955 * the extra copy, not the primary copy, which gets journaled. If the 956 * primary copy is already going to disk then we cannot do copy-out 957 * here. 958 */ 959 if (buffer_shadow(bh)) { 960 JBUFFER_TRACE(jh, "on shadow: sleep"); 961 jbd_unlock_bh_state(bh); 962 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 963 goto repeat; 964 } 965 966 /* 967 * Only do the copy if the currently-owning transaction still needs it. 968 * If buffer isn't on BJ_Metadata list, the committing transaction is 969 * past that stage (here we use the fact that BH_Shadow is set under 970 * bh_state lock together with refiling to BJ_Shadow list and at this 971 * point we know the buffer doesn't have BH_Shadow set). 972 * 973 * Subtle point, though: if this is a get_undo_access, then we will be 974 * relying on the frozen_data to contain the new value of the 975 * committed_data record after the transaction, so we HAVE to force the 976 * frozen_data copy in that case. 977 */ 978 if (jh->b_jlist == BJ_Metadata || force_copy) { 979 JBUFFER_TRACE(jh, "generate frozen data"); 980 if (!frozen_buffer) { 981 JBUFFER_TRACE(jh, "allocate memory for buffer"); 982 jbd_unlock_bh_state(bh); 983 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 984 GFP_NOFS | __GFP_NOFAIL); 985 goto repeat; 986 } 987 jh->b_frozen_data = frozen_buffer; 988 frozen_buffer = NULL; 989 jbd2_freeze_jh_data(jh); 990 } 991 attach_next: 992 /* 993 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 994 * before attaching it to the running transaction. Paired with barrier 995 * in jbd2_write_access_granted() 996 */ 997 smp_wmb(); 998 jh->b_next_transaction = transaction; 999 1000 done: 1001 jbd_unlock_bh_state(bh); 1002 1003 /* 1004 * If we are about to journal a buffer, then any revoke pending on it is 1005 * no longer valid 1006 */ 1007 jbd2_journal_cancel_revoke(handle, jh); 1008 1009 out: 1010 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1011 jbd2_free(frozen_buffer, bh->b_size); 1012 1013 JBUFFER_TRACE(jh, "exit"); 1014 return error; 1015 } 1016 1017 /* Fast check whether buffer is already attached to the required transaction */ 1018 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1019 bool undo) 1020 { 1021 struct journal_head *jh; 1022 bool ret = false; 1023 1024 /* Dirty buffers require special handling... */ 1025 if (buffer_dirty(bh)) 1026 return false; 1027 1028 /* 1029 * RCU protects us from dereferencing freed pages. So the checks we do 1030 * are guaranteed not to oops. However the jh slab object can get freed 1031 * & reallocated while we work with it. So we have to be careful. When 1032 * we see jh attached to the running transaction, we know it must stay 1033 * so until the transaction is committed. Thus jh won't be freed and 1034 * will be attached to the same bh while we run. However it can 1035 * happen jh gets freed, reallocated, and attached to the transaction 1036 * just after we get pointer to it from bh. So we have to be careful 1037 * and recheck jh still belongs to our bh before we return success. 1038 */ 1039 rcu_read_lock(); 1040 if (!buffer_jbd(bh)) 1041 goto out; 1042 /* This should be bh2jh() but that doesn't work with inline functions */ 1043 jh = READ_ONCE(bh->b_private); 1044 if (!jh) 1045 goto out; 1046 /* For undo access buffer must have data copied */ 1047 if (undo && !jh->b_committed_data) 1048 goto out; 1049 if (jh->b_transaction != handle->h_transaction && 1050 jh->b_next_transaction != handle->h_transaction) 1051 goto out; 1052 /* 1053 * There are two reasons for the barrier here: 1054 * 1) Make sure to fetch b_bh after we did previous checks so that we 1055 * detect when jh went through free, realloc, attach to transaction 1056 * while we were checking. Paired with implicit barrier in that path. 1057 * 2) So that access to bh done after jbd2_write_access_granted() 1058 * doesn't get reordered and see inconsistent state of concurrent 1059 * do_get_write_access(). 1060 */ 1061 smp_mb(); 1062 if (unlikely(jh->b_bh != bh)) 1063 goto out; 1064 ret = true; 1065 out: 1066 rcu_read_unlock(); 1067 return ret; 1068 } 1069 1070 /** 1071 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1072 * @handle: transaction to add buffer modifications to 1073 * @bh: bh to be used for metadata writes 1074 * 1075 * Returns: error code or 0 on success. 1076 * 1077 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1078 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1079 */ 1080 1081 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1082 { 1083 struct journal_head *jh; 1084 int rc; 1085 1086 if (jbd2_write_access_granted(handle, bh, false)) 1087 return 0; 1088 1089 jh = jbd2_journal_add_journal_head(bh); 1090 /* We do not want to get caught playing with fields which the 1091 * log thread also manipulates. Make sure that the buffer 1092 * completes any outstanding IO before proceeding. */ 1093 rc = do_get_write_access(handle, jh, 0); 1094 jbd2_journal_put_journal_head(jh); 1095 return rc; 1096 } 1097 1098 1099 /* 1100 * When the user wants to journal a newly created buffer_head 1101 * (ie. getblk() returned a new buffer and we are going to populate it 1102 * manually rather than reading off disk), then we need to keep the 1103 * buffer_head locked until it has been completely filled with new 1104 * data. In this case, we should be able to make the assertion that 1105 * the bh is not already part of an existing transaction. 1106 * 1107 * The buffer should already be locked by the caller by this point. 1108 * There is no lock ranking violation: it was a newly created, 1109 * unlocked buffer beforehand. */ 1110 1111 /** 1112 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1113 * @handle: transaction to new buffer to 1114 * @bh: new buffer. 1115 * 1116 * Call this if you create a new bh. 1117 */ 1118 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1119 { 1120 transaction_t *transaction = handle->h_transaction; 1121 journal_t *journal; 1122 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1123 int err; 1124 1125 jbd_debug(5, "journal_head %p\n", jh); 1126 err = -EROFS; 1127 if (is_handle_aborted(handle)) 1128 goto out; 1129 journal = transaction->t_journal; 1130 err = 0; 1131 1132 JBUFFER_TRACE(jh, "entry"); 1133 /* 1134 * The buffer may already belong to this transaction due to pre-zeroing 1135 * in the filesystem's new_block code. It may also be on the previous, 1136 * committing transaction's lists, but it HAS to be in Forget state in 1137 * that case: the transaction must have deleted the buffer for it to be 1138 * reused here. 1139 */ 1140 jbd_lock_bh_state(bh); 1141 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1142 jh->b_transaction == NULL || 1143 (jh->b_transaction == journal->j_committing_transaction && 1144 jh->b_jlist == BJ_Forget))); 1145 1146 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1147 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1148 1149 if (jh->b_transaction == NULL) { 1150 /* 1151 * Previous jbd2_journal_forget() could have left the buffer 1152 * with jbddirty bit set because it was being committed. When 1153 * the commit finished, we've filed the buffer for 1154 * checkpointing and marked it dirty. Now we are reallocating 1155 * the buffer so the transaction freeing it must have 1156 * committed and so it's safe to clear the dirty bit. 1157 */ 1158 clear_buffer_dirty(jh2bh(jh)); 1159 /* first access by this transaction */ 1160 jh->b_modified = 0; 1161 1162 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1163 spin_lock(&journal->j_list_lock); 1164 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1165 spin_unlock(&journal->j_list_lock); 1166 } else if (jh->b_transaction == journal->j_committing_transaction) { 1167 /* first access by this transaction */ 1168 jh->b_modified = 0; 1169 1170 JBUFFER_TRACE(jh, "set next transaction"); 1171 spin_lock(&journal->j_list_lock); 1172 jh->b_next_transaction = transaction; 1173 spin_unlock(&journal->j_list_lock); 1174 } 1175 jbd_unlock_bh_state(bh); 1176 1177 /* 1178 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1179 * blocks which contain freed but then revoked metadata. We need 1180 * to cancel the revoke in case we end up freeing it yet again 1181 * and the reallocating as data - this would cause a second revoke, 1182 * which hits an assertion error. 1183 */ 1184 JBUFFER_TRACE(jh, "cancelling revoke"); 1185 jbd2_journal_cancel_revoke(handle, jh); 1186 out: 1187 jbd2_journal_put_journal_head(jh); 1188 return err; 1189 } 1190 1191 /** 1192 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1193 * non-rewindable consequences 1194 * @handle: transaction 1195 * @bh: buffer to undo 1196 * 1197 * Sometimes there is a need to distinguish between metadata which has 1198 * been committed to disk and that which has not. The ext3fs code uses 1199 * this for freeing and allocating space, we have to make sure that we 1200 * do not reuse freed space until the deallocation has been committed, 1201 * since if we overwrote that space we would make the delete 1202 * un-rewindable in case of a crash. 1203 * 1204 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1205 * buffer for parts of non-rewindable operations such as delete 1206 * operations on the bitmaps. The journaling code must keep a copy of 1207 * the buffer's contents prior to the undo_access call until such time 1208 * as we know that the buffer has definitely been committed to disk. 1209 * 1210 * We never need to know which transaction the committed data is part 1211 * of, buffers touched here are guaranteed to be dirtied later and so 1212 * will be committed to a new transaction in due course, at which point 1213 * we can discard the old committed data pointer. 1214 * 1215 * Returns error number or 0 on success. 1216 */ 1217 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1218 { 1219 int err; 1220 struct journal_head *jh; 1221 char *committed_data = NULL; 1222 1223 JBUFFER_TRACE(jh, "entry"); 1224 if (jbd2_write_access_granted(handle, bh, true)) 1225 return 0; 1226 1227 jh = jbd2_journal_add_journal_head(bh); 1228 /* 1229 * Do this first --- it can drop the journal lock, so we want to 1230 * make sure that obtaining the committed_data is done 1231 * atomically wrt. completion of any outstanding commits. 1232 */ 1233 err = do_get_write_access(handle, jh, 1); 1234 if (err) 1235 goto out; 1236 1237 repeat: 1238 if (!jh->b_committed_data) 1239 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1240 GFP_NOFS|__GFP_NOFAIL); 1241 1242 jbd_lock_bh_state(bh); 1243 if (!jh->b_committed_data) { 1244 /* Copy out the current buffer contents into the 1245 * preserved, committed copy. */ 1246 JBUFFER_TRACE(jh, "generate b_committed data"); 1247 if (!committed_data) { 1248 jbd_unlock_bh_state(bh); 1249 goto repeat; 1250 } 1251 1252 jh->b_committed_data = committed_data; 1253 committed_data = NULL; 1254 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1255 } 1256 jbd_unlock_bh_state(bh); 1257 out: 1258 jbd2_journal_put_journal_head(jh); 1259 if (unlikely(committed_data)) 1260 jbd2_free(committed_data, bh->b_size); 1261 return err; 1262 } 1263 1264 /** 1265 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1266 * @bh: buffer to trigger on 1267 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1268 * 1269 * Set any triggers on this journal_head. This is always safe, because 1270 * triggers for a committing buffer will be saved off, and triggers for 1271 * a running transaction will match the buffer in that transaction. 1272 * 1273 * Call with NULL to clear the triggers. 1274 */ 1275 void jbd2_journal_set_triggers(struct buffer_head *bh, 1276 struct jbd2_buffer_trigger_type *type) 1277 { 1278 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1279 1280 if (WARN_ON(!jh)) 1281 return; 1282 jh->b_triggers = type; 1283 jbd2_journal_put_journal_head(jh); 1284 } 1285 1286 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1287 struct jbd2_buffer_trigger_type *triggers) 1288 { 1289 struct buffer_head *bh = jh2bh(jh); 1290 1291 if (!triggers || !triggers->t_frozen) 1292 return; 1293 1294 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1295 } 1296 1297 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1298 struct jbd2_buffer_trigger_type *triggers) 1299 { 1300 if (!triggers || !triggers->t_abort) 1301 return; 1302 1303 triggers->t_abort(triggers, jh2bh(jh)); 1304 } 1305 1306 /** 1307 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1308 * @handle: transaction to add buffer to. 1309 * @bh: buffer to mark 1310 * 1311 * mark dirty metadata which needs to be journaled as part of the current 1312 * transaction. 1313 * 1314 * The buffer must have previously had jbd2_journal_get_write_access() 1315 * called so that it has a valid journal_head attached to the buffer 1316 * head. 1317 * 1318 * The buffer is placed on the transaction's metadata list and is marked 1319 * as belonging to the transaction. 1320 * 1321 * Returns error number or 0 on success. 1322 * 1323 * Special care needs to be taken if the buffer already belongs to the 1324 * current committing transaction (in which case we should have frozen 1325 * data present for that commit). In that case, we don't relink the 1326 * buffer: that only gets done when the old transaction finally 1327 * completes its commit. 1328 */ 1329 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1330 { 1331 transaction_t *transaction = handle->h_transaction; 1332 journal_t *journal; 1333 struct journal_head *jh; 1334 int ret = 0; 1335 1336 if (is_handle_aborted(handle)) 1337 return -EROFS; 1338 if (!buffer_jbd(bh)) { 1339 ret = -EUCLEAN; 1340 goto out; 1341 } 1342 /* 1343 * We don't grab jh reference here since the buffer must be part 1344 * of the running transaction. 1345 */ 1346 jh = bh2jh(bh); 1347 /* 1348 * This and the following assertions are unreliable since we may see jh 1349 * in inconsistent state unless we grab bh_state lock. But this is 1350 * crucial to catch bugs so let's do a reliable check until the 1351 * lockless handling is fully proven. 1352 */ 1353 if (jh->b_transaction != transaction && 1354 jh->b_next_transaction != transaction) { 1355 jbd_lock_bh_state(bh); 1356 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1357 jh->b_next_transaction == transaction); 1358 jbd_unlock_bh_state(bh); 1359 } 1360 if (jh->b_modified == 1) { 1361 /* If it's in our transaction it must be in BJ_Metadata list. */ 1362 if (jh->b_transaction == transaction && 1363 jh->b_jlist != BJ_Metadata) { 1364 jbd_lock_bh_state(bh); 1365 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1366 jh->b_jlist == BJ_Metadata); 1367 jbd_unlock_bh_state(bh); 1368 } 1369 goto out; 1370 } 1371 1372 journal = transaction->t_journal; 1373 jbd_debug(5, "journal_head %p\n", jh); 1374 JBUFFER_TRACE(jh, "entry"); 1375 1376 jbd_lock_bh_state(bh); 1377 1378 if (jh->b_modified == 0) { 1379 /* 1380 * This buffer's got modified and becoming part 1381 * of the transaction. This needs to be done 1382 * once a transaction -bzzz 1383 */ 1384 jh->b_modified = 1; 1385 if (handle->h_buffer_credits <= 0) { 1386 ret = -ENOSPC; 1387 goto out_unlock_bh; 1388 } 1389 handle->h_buffer_credits--; 1390 } 1391 1392 /* 1393 * fastpath, to avoid expensive locking. If this buffer is already 1394 * on the running transaction's metadata list there is nothing to do. 1395 * Nobody can take it off again because there is a handle open. 1396 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1397 * result in this test being false, so we go in and take the locks. 1398 */ 1399 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1400 JBUFFER_TRACE(jh, "fastpath"); 1401 if (unlikely(jh->b_transaction != 1402 journal->j_running_transaction)) { 1403 printk(KERN_ERR "JBD2: %s: " 1404 "jh->b_transaction (%llu, %p, %u) != " 1405 "journal->j_running_transaction (%p, %u)\n", 1406 journal->j_devname, 1407 (unsigned long long) bh->b_blocknr, 1408 jh->b_transaction, 1409 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1410 journal->j_running_transaction, 1411 journal->j_running_transaction ? 1412 journal->j_running_transaction->t_tid : 0); 1413 ret = -EINVAL; 1414 } 1415 goto out_unlock_bh; 1416 } 1417 1418 set_buffer_jbddirty(bh); 1419 1420 /* 1421 * Metadata already on the current transaction list doesn't 1422 * need to be filed. Metadata on another transaction's list must 1423 * be committing, and will be refiled once the commit completes: 1424 * leave it alone for now. 1425 */ 1426 if (jh->b_transaction != transaction) { 1427 JBUFFER_TRACE(jh, "already on other transaction"); 1428 if (unlikely(((jh->b_transaction != 1429 journal->j_committing_transaction)) || 1430 (jh->b_next_transaction != transaction))) { 1431 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1432 "bad jh for block %llu: " 1433 "transaction (%p, %u), " 1434 "jh->b_transaction (%p, %u), " 1435 "jh->b_next_transaction (%p, %u), jlist %u\n", 1436 journal->j_devname, 1437 (unsigned long long) bh->b_blocknr, 1438 transaction, transaction->t_tid, 1439 jh->b_transaction, 1440 jh->b_transaction ? 1441 jh->b_transaction->t_tid : 0, 1442 jh->b_next_transaction, 1443 jh->b_next_transaction ? 1444 jh->b_next_transaction->t_tid : 0, 1445 jh->b_jlist); 1446 WARN_ON(1); 1447 ret = -EINVAL; 1448 } 1449 /* And this case is illegal: we can't reuse another 1450 * transaction's data buffer, ever. */ 1451 goto out_unlock_bh; 1452 } 1453 1454 /* That test should have eliminated the following case: */ 1455 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1456 1457 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1458 spin_lock(&journal->j_list_lock); 1459 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1460 spin_unlock(&journal->j_list_lock); 1461 out_unlock_bh: 1462 jbd_unlock_bh_state(bh); 1463 out: 1464 JBUFFER_TRACE(jh, "exit"); 1465 return ret; 1466 } 1467 1468 /** 1469 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1470 * @handle: transaction handle 1471 * @bh: bh to 'forget' 1472 * 1473 * We can only do the bforget if there are no commits pending against the 1474 * buffer. If the buffer is dirty in the current running transaction we 1475 * can safely unlink it. 1476 * 1477 * bh may not be a journalled buffer at all - it may be a non-JBD 1478 * buffer which came off the hashtable. Check for this. 1479 * 1480 * Decrements bh->b_count by one. 1481 * 1482 * Allow this call even if the handle has aborted --- it may be part of 1483 * the caller's cleanup after an abort. 1484 */ 1485 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1486 { 1487 transaction_t *transaction = handle->h_transaction; 1488 journal_t *journal; 1489 struct journal_head *jh; 1490 int drop_reserve = 0; 1491 int err = 0; 1492 int was_modified = 0; 1493 1494 if (is_handle_aborted(handle)) 1495 return -EROFS; 1496 journal = transaction->t_journal; 1497 1498 BUFFER_TRACE(bh, "entry"); 1499 1500 jbd_lock_bh_state(bh); 1501 1502 if (!buffer_jbd(bh)) 1503 goto not_jbd; 1504 jh = bh2jh(bh); 1505 1506 /* Critical error: attempting to delete a bitmap buffer, maybe? 1507 * Don't do any jbd operations, and return an error. */ 1508 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1509 "inconsistent data on disk")) { 1510 err = -EIO; 1511 goto not_jbd; 1512 } 1513 1514 /* keep track of whether or not this transaction modified us */ 1515 was_modified = jh->b_modified; 1516 1517 /* 1518 * The buffer's going from the transaction, we must drop 1519 * all references -bzzz 1520 */ 1521 jh->b_modified = 0; 1522 1523 if (jh->b_transaction == transaction) { 1524 J_ASSERT_JH(jh, !jh->b_frozen_data); 1525 1526 /* If we are forgetting a buffer which is already part 1527 * of this transaction, then we can just drop it from 1528 * the transaction immediately. */ 1529 clear_buffer_dirty(bh); 1530 clear_buffer_jbddirty(bh); 1531 1532 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1533 1534 /* 1535 * we only want to drop a reference if this transaction 1536 * modified the buffer 1537 */ 1538 if (was_modified) 1539 drop_reserve = 1; 1540 1541 /* 1542 * We are no longer going to journal this buffer. 1543 * However, the commit of this transaction is still 1544 * important to the buffer: the delete that we are now 1545 * processing might obsolete an old log entry, so by 1546 * committing, we can satisfy the buffer's checkpoint. 1547 * 1548 * So, if we have a checkpoint on the buffer, we should 1549 * now refile the buffer on our BJ_Forget list so that 1550 * we know to remove the checkpoint after we commit. 1551 */ 1552 1553 spin_lock(&journal->j_list_lock); 1554 if (jh->b_cp_transaction) { 1555 __jbd2_journal_temp_unlink_buffer(jh); 1556 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1557 } else { 1558 __jbd2_journal_unfile_buffer(jh); 1559 if (!buffer_jbd(bh)) { 1560 spin_unlock(&journal->j_list_lock); 1561 jbd_unlock_bh_state(bh); 1562 __bforget(bh); 1563 goto drop; 1564 } 1565 } 1566 spin_unlock(&journal->j_list_lock); 1567 } else if (jh->b_transaction) { 1568 J_ASSERT_JH(jh, (jh->b_transaction == 1569 journal->j_committing_transaction)); 1570 /* However, if the buffer is still owned by a prior 1571 * (committing) transaction, we can't drop it yet... */ 1572 JBUFFER_TRACE(jh, "belongs to older transaction"); 1573 /* ... but we CAN drop it from the new transaction if we 1574 * have also modified it since the original commit. */ 1575 1576 if (jh->b_next_transaction) { 1577 J_ASSERT(jh->b_next_transaction == transaction); 1578 spin_lock(&journal->j_list_lock); 1579 jh->b_next_transaction = NULL; 1580 spin_unlock(&journal->j_list_lock); 1581 1582 /* 1583 * only drop a reference if this transaction modified 1584 * the buffer 1585 */ 1586 if (was_modified) 1587 drop_reserve = 1; 1588 } 1589 } 1590 1591 not_jbd: 1592 jbd_unlock_bh_state(bh); 1593 __brelse(bh); 1594 drop: 1595 if (drop_reserve) { 1596 /* no need to reserve log space for this block -bzzz */ 1597 handle->h_buffer_credits++; 1598 } 1599 return err; 1600 } 1601 1602 /** 1603 * int jbd2_journal_stop() - complete a transaction 1604 * @handle: transaction to complete. 1605 * 1606 * All done for a particular handle. 1607 * 1608 * There is not much action needed here. We just return any remaining 1609 * buffer credits to the transaction and remove the handle. The only 1610 * complication is that we need to start a commit operation if the 1611 * filesystem is marked for synchronous update. 1612 * 1613 * jbd2_journal_stop itself will not usually return an error, but it may 1614 * do so in unusual circumstances. In particular, expect it to 1615 * return -EIO if a jbd2_journal_abort has been executed since the 1616 * transaction began. 1617 */ 1618 int jbd2_journal_stop(handle_t *handle) 1619 { 1620 transaction_t *transaction = handle->h_transaction; 1621 journal_t *journal; 1622 int err = 0, wait_for_commit = 0; 1623 tid_t tid; 1624 pid_t pid; 1625 1626 if (!transaction) { 1627 /* 1628 * Handle is already detached from the transaction so 1629 * there is nothing to do other than decrease a refcount, 1630 * or free the handle if refcount drops to zero 1631 */ 1632 if (--handle->h_ref > 0) { 1633 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1634 handle->h_ref); 1635 return err; 1636 } else { 1637 if (handle->h_rsv_handle) 1638 jbd2_free_handle(handle->h_rsv_handle); 1639 goto free_and_exit; 1640 } 1641 } 1642 journal = transaction->t_journal; 1643 1644 J_ASSERT(journal_current_handle() == handle); 1645 1646 if (is_handle_aborted(handle)) 1647 err = -EIO; 1648 else 1649 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1650 1651 if (--handle->h_ref > 0) { 1652 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1653 handle->h_ref); 1654 return err; 1655 } 1656 1657 jbd_debug(4, "Handle %p going down\n", handle); 1658 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1659 transaction->t_tid, 1660 handle->h_type, handle->h_line_no, 1661 jiffies - handle->h_start_jiffies, 1662 handle->h_sync, handle->h_requested_credits, 1663 (handle->h_requested_credits - 1664 handle->h_buffer_credits)); 1665 1666 /* 1667 * Implement synchronous transaction batching. If the handle 1668 * was synchronous, don't force a commit immediately. Let's 1669 * yield and let another thread piggyback onto this 1670 * transaction. Keep doing that while new threads continue to 1671 * arrive. It doesn't cost much - we're about to run a commit 1672 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1673 * operations by 30x or more... 1674 * 1675 * We try and optimize the sleep time against what the 1676 * underlying disk can do, instead of having a static sleep 1677 * time. This is useful for the case where our storage is so 1678 * fast that it is more optimal to go ahead and force a flush 1679 * and wait for the transaction to be committed than it is to 1680 * wait for an arbitrary amount of time for new writers to 1681 * join the transaction. We achieve this by measuring how 1682 * long it takes to commit a transaction, and compare it with 1683 * how long this transaction has been running, and if run time 1684 * < commit time then we sleep for the delta and commit. This 1685 * greatly helps super fast disks that would see slowdowns as 1686 * more threads started doing fsyncs. 1687 * 1688 * But don't do this if this process was the most recent one 1689 * to perform a synchronous write. We do this to detect the 1690 * case where a single process is doing a stream of sync 1691 * writes. No point in waiting for joiners in that case. 1692 * 1693 * Setting max_batch_time to 0 disables this completely. 1694 */ 1695 pid = current->pid; 1696 if (handle->h_sync && journal->j_last_sync_writer != pid && 1697 journal->j_max_batch_time) { 1698 u64 commit_time, trans_time; 1699 1700 journal->j_last_sync_writer = pid; 1701 1702 read_lock(&journal->j_state_lock); 1703 commit_time = journal->j_average_commit_time; 1704 read_unlock(&journal->j_state_lock); 1705 1706 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1707 transaction->t_start_time)); 1708 1709 commit_time = max_t(u64, commit_time, 1710 1000*journal->j_min_batch_time); 1711 commit_time = min_t(u64, commit_time, 1712 1000*journal->j_max_batch_time); 1713 1714 if (trans_time < commit_time) { 1715 ktime_t expires = ktime_add_ns(ktime_get(), 1716 commit_time); 1717 set_current_state(TASK_UNINTERRUPTIBLE); 1718 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1719 } 1720 } 1721 1722 if (handle->h_sync) 1723 transaction->t_synchronous_commit = 1; 1724 current->journal_info = NULL; 1725 atomic_sub(handle->h_buffer_credits, 1726 &transaction->t_outstanding_credits); 1727 1728 /* 1729 * If the handle is marked SYNC, we need to set another commit 1730 * going! We also want to force a commit if the current 1731 * transaction is occupying too much of the log, or if the 1732 * transaction is too old now. 1733 */ 1734 if (handle->h_sync || 1735 (atomic_read(&transaction->t_outstanding_credits) > 1736 journal->j_max_transaction_buffers) || 1737 time_after_eq(jiffies, transaction->t_expires)) { 1738 /* Do this even for aborted journals: an abort still 1739 * completes the commit thread, it just doesn't write 1740 * anything to disk. */ 1741 1742 jbd_debug(2, "transaction too old, requesting commit for " 1743 "handle %p\n", handle); 1744 /* This is non-blocking */ 1745 jbd2_log_start_commit(journal, transaction->t_tid); 1746 1747 /* 1748 * Special case: JBD2_SYNC synchronous updates require us 1749 * to wait for the commit to complete. 1750 */ 1751 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1752 wait_for_commit = 1; 1753 } 1754 1755 /* 1756 * Once we drop t_updates, if it goes to zero the transaction 1757 * could start committing on us and eventually disappear. So 1758 * once we do this, we must not dereference transaction 1759 * pointer again. 1760 */ 1761 tid = transaction->t_tid; 1762 if (atomic_dec_and_test(&transaction->t_updates)) { 1763 wake_up(&journal->j_wait_updates); 1764 if (journal->j_barrier_count) 1765 wake_up(&journal->j_wait_transaction_locked); 1766 } 1767 1768 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1769 1770 if (wait_for_commit) 1771 err = jbd2_log_wait_commit(journal, tid); 1772 1773 if (handle->h_rsv_handle) 1774 jbd2_journal_free_reserved(handle->h_rsv_handle); 1775 free_and_exit: 1776 /* 1777 * Scope of the GFP_NOFS context is over here and so we can restore the 1778 * original alloc context. 1779 */ 1780 memalloc_nofs_restore(handle->saved_alloc_context); 1781 jbd2_free_handle(handle); 1782 return err; 1783 } 1784 1785 /* 1786 * 1787 * List management code snippets: various functions for manipulating the 1788 * transaction buffer lists. 1789 * 1790 */ 1791 1792 /* 1793 * Append a buffer to a transaction list, given the transaction's list head 1794 * pointer. 1795 * 1796 * j_list_lock is held. 1797 * 1798 * jbd_lock_bh_state(jh2bh(jh)) is held. 1799 */ 1800 1801 static inline void 1802 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1803 { 1804 if (!*list) { 1805 jh->b_tnext = jh->b_tprev = jh; 1806 *list = jh; 1807 } else { 1808 /* Insert at the tail of the list to preserve order */ 1809 struct journal_head *first = *list, *last = first->b_tprev; 1810 jh->b_tprev = last; 1811 jh->b_tnext = first; 1812 last->b_tnext = first->b_tprev = jh; 1813 } 1814 } 1815 1816 /* 1817 * Remove a buffer from a transaction list, given the transaction's list 1818 * head pointer. 1819 * 1820 * Called with j_list_lock held, and the journal may not be locked. 1821 * 1822 * jbd_lock_bh_state(jh2bh(jh)) is held. 1823 */ 1824 1825 static inline void 1826 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1827 { 1828 if (*list == jh) { 1829 *list = jh->b_tnext; 1830 if (*list == jh) 1831 *list = NULL; 1832 } 1833 jh->b_tprev->b_tnext = jh->b_tnext; 1834 jh->b_tnext->b_tprev = jh->b_tprev; 1835 } 1836 1837 /* 1838 * Remove a buffer from the appropriate transaction list. 1839 * 1840 * Note that this function can *change* the value of 1841 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1842 * t_reserved_list. If the caller is holding onto a copy of one of these 1843 * pointers, it could go bad. Generally the caller needs to re-read the 1844 * pointer from the transaction_t. 1845 * 1846 * Called under j_list_lock. 1847 */ 1848 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1849 { 1850 struct journal_head **list = NULL; 1851 transaction_t *transaction; 1852 struct buffer_head *bh = jh2bh(jh); 1853 1854 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1855 transaction = jh->b_transaction; 1856 if (transaction) 1857 assert_spin_locked(&transaction->t_journal->j_list_lock); 1858 1859 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1860 if (jh->b_jlist != BJ_None) 1861 J_ASSERT_JH(jh, transaction != NULL); 1862 1863 switch (jh->b_jlist) { 1864 case BJ_None: 1865 return; 1866 case BJ_Metadata: 1867 transaction->t_nr_buffers--; 1868 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1869 list = &transaction->t_buffers; 1870 break; 1871 case BJ_Forget: 1872 list = &transaction->t_forget; 1873 break; 1874 case BJ_Shadow: 1875 list = &transaction->t_shadow_list; 1876 break; 1877 case BJ_Reserved: 1878 list = &transaction->t_reserved_list; 1879 break; 1880 } 1881 1882 __blist_del_buffer(list, jh); 1883 jh->b_jlist = BJ_None; 1884 if (transaction && is_journal_aborted(transaction->t_journal)) 1885 clear_buffer_jbddirty(bh); 1886 else if (test_clear_buffer_jbddirty(bh)) 1887 mark_buffer_dirty(bh); /* Expose it to the VM */ 1888 } 1889 1890 /* 1891 * Remove buffer from all transactions. 1892 * 1893 * Called with bh_state lock and j_list_lock 1894 * 1895 * jh and bh may be already freed when this function returns. 1896 */ 1897 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1898 { 1899 __jbd2_journal_temp_unlink_buffer(jh); 1900 jh->b_transaction = NULL; 1901 jbd2_journal_put_journal_head(jh); 1902 } 1903 1904 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1905 { 1906 struct buffer_head *bh = jh2bh(jh); 1907 1908 /* Get reference so that buffer cannot be freed before we unlock it */ 1909 get_bh(bh); 1910 jbd_lock_bh_state(bh); 1911 spin_lock(&journal->j_list_lock); 1912 __jbd2_journal_unfile_buffer(jh); 1913 spin_unlock(&journal->j_list_lock); 1914 jbd_unlock_bh_state(bh); 1915 __brelse(bh); 1916 } 1917 1918 /* 1919 * Called from jbd2_journal_try_to_free_buffers(). 1920 * 1921 * Called under jbd_lock_bh_state(bh) 1922 */ 1923 static void 1924 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1925 { 1926 struct journal_head *jh; 1927 1928 jh = bh2jh(bh); 1929 1930 if (buffer_locked(bh) || buffer_dirty(bh)) 1931 goto out; 1932 1933 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1934 goto out; 1935 1936 spin_lock(&journal->j_list_lock); 1937 if (jh->b_cp_transaction != NULL) { 1938 /* written-back checkpointed metadata buffer */ 1939 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1940 __jbd2_journal_remove_checkpoint(jh); 1941 } 1942 spin_unlock(&journal->j_list_lock); 1943 out: 1944 return; 1945 } 1946 1947 /** 1948 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1949 * @journal: journal for operation 1950 * @page: to try and free 1951 * @gfp_mask: we use the mask to detect how hard should we try to release 1952 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1953 * code to release the buffers. 1954 * 1955 * 1956 * For all the buffers on this page, 1957 * if they are fully written out ordered data, move them onto BUF_CLEAN 1958 * so try_to_free_buffers() can reap them. 1959 * 1960 * This function returns non-zero if we wish try_to_free_buffers() 1961 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1962 * We also do it if the page has locked or dirty buffers and the caller wants 1963 * us to perform sync or async writeout. 1964 * 1965 * This complicates JBD locking somewhat. We aren't protected by the 1966 * BKL here. We wish to remove the buffer from its committing or 1967 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1968 * 1969 * This may *change* the value of transaction_t->t_datalist, so anyone 1970 * who looks at t_datalist needs to lock against this function. 1971 * 1972 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1973 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1974 * will come out of the lock with the buffer dirty, which makes it 1975 * ineligible for release here. 1976 * 1977 * Who else is affected by this? hmm... Really the only contender 1978 * is do_get_write_access() - it could be looking at the buffer while 1979 * journal_try_to_free_buffer() is changing its state. But that 1980 * cannot happen because we never reallocate freed data as metadata 1981 * while the data is part of a transaction. Yes? 1982 * 1983 * Return 0 on failure, 1 on success 1984 */ 1985 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1986 struct page *page, gfp_t gfp_mask) 1987 { 1988 struct buffer_head *head; 1989 struct buffer_head *bh; 1990 int ret = 0; 1991 1992 J_ASSERT(PageLocked(page)); 1993 1994 head = page_buffers(page); 1995 bh = head; 1996 do { 1997 struct journal_head *jh; 1998 1999 /* 2000 * We take our own ref against the journal_head here to avoid 2001 * having to add tons of locking around each instance of 2002 * jbd2_journal_put_journal_head(). 2003 */ 2004 jh = jbd2_journal_grab_journal_head(bh); 2005 if (!jh) 2006 continue; 2007 2008 jbd_lock_bh_state(bh); 2009 __journal_try_to_free_buffer(journal, bh); 2010 jbd2_journal_put_journal_head(jh); 2011 jbd_unlock_bh_state(bh); 2012 if (buffer_jbd(bh)) 2013 goto busy; 2014 } while ((bh = bh->b_this_page) != head); 2015 2016 ret = try_to_free_buffers(page); 2017 2018 busy: 2019 return ret; 2020 } 2021 2022 /* 2023 * This buffer is no longer needed. If it is on an older transaction's 2024 * checkpoint list we need to record it on this transaction's forget list 2025 * to pin this buffer (and hence its checkpointing transaction) down until 2026 * this transaction commits. If the buffer isn't on a checkpoint list, we 2027 * release it. 2028 * Returns non-zero if JBD no longer has an interest in the buffer. 2029 * 2030 * Called under j_list_lock. 2031 * 2032 * Called under jbd_lock_bh_state(bh). 2033 */ 2034 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2035 { 2036 int may_free = 1; 2037 struct buffer_head *bh = jh2bh(jh); 2038 2039 if (jh->b_cp_transaction) { 2040 JBUFFER_TRACE(jh, "on running+cp transaction"); 2041 __jbd2_journal_temp_unlink_buffer(jh); 2042 /* 2043 * We don't want to write the buffer anymore, clear the 2044 * bit so that we don't confuse checks in 2045 * __journal_file_buffer 2046 */ 2047 clear_buffer_dirty(bh); 2048 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2049 may_free = 0; 2050 } else { 2051 JBUFFER_TRACE(jh, "on running transaction"); 2052 __jbd2_journal_unfile_buffer(jh); 2053 } 2054 return may_free; 2055 } 2056 2057 /* 2058 * jbd2_journal_invalidatepage 2059 * 2060 * This code is tricky. It has a number of cases to deal with. 2061 * 2062 * There are two invariants which this code relies on: 2063 * 2064 * i_size must be updated on disk before we start calling invalidatepage on the 2065 * data. 2066 * 2067 * This is done in ext3 by defining an ext3_setattr method which 2068 * updates i_size before truncate gets going. By maintaining this 2069 * invariant, we can be sure that it is safe to throw away any buffers 2070 * attached to the current transaction: once the transaction commits, 2071 * we know that the data will not be needed. 2072 * 2073 * Note however that we can *not* throw away data belonging to the 2074 * previous, committing transaction! 2075 * 2076 * Any disk blocks which *are* part of the previous, committing 2077 * transaction (and which therefore cannot be discarded immediately) are 2078 * not going to be reused in the new running transaction 2079 * 2080 * The bitmap committed_data images guarantee this: any block which is 2081 * allocated in one transaction and removed in the next will be marked 2082 * as in-use in the committed_data bitmap, so cannot be reused until 2083 * the next transaction to delete the block commits. This means that 2084 * leaving committing buffers dirty is quite safe: the disk blocks 2085 * cannot be reallocated to a different file and so buffer aliasing is 2086 * not possible. 2087 * 2088 * 2089 * The above applies mainly to ordered data mode. In writeback mode we 2090 * don't make guarantees about the order in which data hits disk --- in 2091 * particular we don't guarantee that new dirty data is flushed before 2092 * transaction commit --- so it is always safe just to discard data 2093 * immediately in that mode. --sct 2094 */ 2095 2096 /* 2097 * The journal_unmap_buffer helper function returns zero if the buffer 2098 * concerned remains pinned as an anonymous buffer belonging to an older 2099 * transaction. 2100 * 2101 * We're outside-transaction here. Either or both of j_running_transaction 2102 * and j_committing_transaction may be NULL. 2103 */ 2104 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2105 int partial_page) 2106 { 2107 transaction_t *transaction; 2108 struct journal_head *jh; 2109 int may_free = 1; 2110 2111 BUFFER_TRACE(bh, "entry"); 2112 2113 /* 2114 * It is safe to proceed here without the j_list_lock because the 2115 * buffers cannot be stolen by try_to_free_buffers as long as we are 2116 * holding the page lock. --sct 2117 */ 2118 2119 if (!buffer_jbd(bh)) 2120 goto zap_buffer_unlocked; 2121 2122 /* OK, we have data buffer in journaled mode */ 2123 write_lock(&journal->j_state_lock); 2124 jbd_lock_bh_state(bh); 2125 spin_lock(&journal->j_list_lock); 2126 2127 jh = jbd2_journal_grab_journal_head(bh); 2128 if (!jh) 2129 goto zap_buffer_no_jh; 2130 2131 /* 2132 * We cannot remove the buffer from checkpoint lists until the 2133 * transaction adding inode to orphan list (let's call it T) 2134 * is committed. Otherwise if the transaction changing the 2135 * buffer would be cleaned from the journal before T is 2136 * committed, a crash will cause that the correct contents of 2137 * the buffer will be lost. On the other hand we have to 2138 * clear the buffer dirty bit at latest at the moment when the 2139 * transaction marking the buffer as freed in the filesystem 2140 * structures is committed because from that moment on the 2141 * block can be reallocated and used by a different page. 2142 * Since the block hasn't been freed yet but the inode has 2143 * already been added to orphan list, it is safe for us to add 2144 * the buffer to BJ_Forget list of the newest transaction. 2145 * 2146 * Also we have to clear buffer_mapped flag of a truncated buffer 2147 * because the buffer_head may be attached to the page straddling 2148 * i_size (can happen only when blocksize < pagesize) and thus the 2149 * buffer_head can be reused when the file is extended again. So we end 2150 * up keeping around invalidated buffers attached to transactions' 2151 * BJ_Forget list just to stop checkpointing code from cleaning up 2152 * the transaction this buffer was modified in. 2153 */ 2154 transaction = jh->b_transaction; 2155 if (transaction == NULL) { 2156 /* First case: not on any transaction. If it 2157 * has no checkpoint link, then we can zap it: 2158 * it's a writeback-mode buffer so we don't care 2159 * if it hits disk safely. */ 2160 if (!jh->b_cp_transaction) { 2161 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2162 goto zap_buffer; 2163 } 2164 2165 if (!buffer_dirty(bh)) { 2166 /* bdflush has written it. We can drop it now */ 2167 __jbd2_journal_remove_checkpoint(jh); 2168 goto zap_buffer; 2169 } 2170 2171 /* OK, it must be in the journal but still not 2172 * written fully to disk: it's metadata or 2173 * journaled data... */ 2174 2175 if (journal->j_running_transaction) { 2176 /* ... and once the current transaction has 2177 * committed, the buffer won't be needed any 2178 * longer. */ 2179 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2180 may_free = __dispose_buffer(jh, 2181 journal->j_running_transaction); 2182 goto zap_buffer; 2183 } else { 2184 /* There is no currently-running transaction. So the 2185 * orphan record which we wrote for this file must have 2186 * passed into commit. We must attach this buffer to 2187 * the committing transaction, if it exists. */ 2188 if (journal->j_committing_transaction) { 2189 JBUFFER_TRACE(jh, "give to committing trans"); 2190 may_free = __dispose_buffer(jh, 2191 journal->j_committing_transaction); 2192 goto zap_buffer; 2193 } else { 2194 /* The orphan record's transaction has 2195 * committed. We can cleanse this buffer */ 2196 clear_buffer_jbddirty(bh); 2197 __jbd2_journal_remove_checkpoint(jh); 2198 goto zap_buffer; 2199 } 2200 } 2201 } else if (transaction == journal->j_committing_transaction) { 2202 JBUFFER_TRACE(jh, "on committing transaction"); 2203 /* 2204 * The buffer is committing, we simply cannot touch 2205 * it. If the page is straddling i_size we have to wait 2206 * for commit and try again. 2207 */ 2208 if (partial_page) { 2209 jbd2_journal_put_journal_head(jh); 2210 spin_unlock(&journal->j_list_lock); 2211 jbd_unlock_bh_state(bh); 2212 write_unlock(&journal->j_state_lock); 2213 return -EBUSY; 2214 } 2215 /* 2216 * OK, buffer won't be reachable after truncate. We just set 2217 * j_next_transaction to the running transaction (if there is 2218 * one) and mark buffer as freed so that commit code knows it 2219 * should clear dirty bits when it is done with the buffer. 2220 */ 2221 set_buffer_freed(bh); 2222 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2223 jh->b_next_transaction = journal->j_running_transaction; 2224 jbd2_journal_put_journal_head(jh); 2225 spin_unlock(&journal->j_list_lock); 2226 jbd_unlock_bh_state(bh); 2227 write_unlock(&journal->j_state_lock); 2228 return 0; 2229 } else { 2230 /* Good, the buffer belongs to the running transaction. 2231 * We are writing our own transaction's data, not any 2232 * previous one's, so it is safe to throw it away 2233 * (remember that we expect the filesystem to have set 2234 * i_size already for this truncate so recovery will not 2235 * expose the disk blocks we are discarding here.) */ 2236 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2237 JBUFFER_TRACE(jh, "on running transaction"); 2238 may_free = __dispose_buffer(jh, transaction); 2239 } 2240 2241 zap_buffer: 2242 /* 2243 * This is tricky. Although the buffer is truncated, it may be reused 2244 * if blocksize < pagesize and it is attached to the page straddling 2245 * EOF. Since the buffer might have been added to BJ_Forget list of the 2246 * running transaction, journal_get_write_access() won't clear 2247 * b_modified and credit accounting gets confused. So clear b_modified 2248 * here. 2249 */ 2250 jh->b_modified = 0; 2251 jbd2_journal_put_journal_head(jh); 2252 zap_buffer_no_jh: 2253 spin_unlock(&journal->j_list_lock); 2254 jbd_unlock_bh_state(bh); 2255 write_unlock(&journal->j_state_lock); 2256 zap_buffer_unlocked: 2257 clear_buffer_dirty(bh); 2258 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2259 clear_buffer_mapped(bh); 2260 clear_buffer_req(bh); 2261 clear_buffer_new(bh); 2262 clear_buffer_delay(bh); 2263 clear_buffer_unwritten(bh); 2264 bh->b_bdev = NULL; 2265 return may_free; 2266 } 2267 2268 /** 2269 * void jbd2_journal_invalidatepage() 2270 * @journal: journal to use for flush... 2271 * @page: page to flush 2272 * @offset: start of the range to invalidate 2273 * @length: length of the range to invalidate 2274 * 2275 * Reap page buffers containing data after in the specified range in page. 2276 * Can return -EBUSY if buffers are part of the committing transaction and 2277 * the page is straddling i_size. Caller then has to wait for current commit 2278 * and try again. 2279 */ 2280 int jbd2_journal_invalidatepage(journal_t *journal, 2281 struct page *page, 2282 unsigned int offset, 2283 unsigned int length) 2284 { 2285 struct buffer_head *head, *bh, *next; 2286 unsigned int stop = offset + length; 2287 unsigned int curr_off = 0; 2288 int partial_page = (offset || length < PAGE_SIZE); 2289 int may_free = 1; 2290 int ret = 0; 2291 2292 if (!PageLocked(page)) 2293 BUG(); 2294 if (!page_has_buffers(page)) 2295 return 0; 2296 2297 BUG_ON(stop > PAGE_SIZE || stop < length); 2298 2299 /* We will potentially be playing with lists other than just the 2300 * data lists (especially for journaled data mode), so be 2301 * cautious in our locking. */ 2302 2303 head = bh = page_buffers(page); 2304 do { 2305 unsigned int next_off = curr_off + bh->b_size; 2306 next = bh->b_this_page; 2307 2308 if (next_off > stop) 2309 return 0; 2310 2311 if (offset <= curr_off) { 2312 /* This block is wholly outside the truncation point */ 2313 lock_buffer(bh); 2314 ret = journal_unmap_buffer(journal, bh, partial_page); 2315 unlock_buffer(bh); 2316 if (ret < 0) 2317 return ret; 2318 may_free &= ret; 2319 } 2320 curr_off = next_off; 2321 bh = next; 2322 2323 } while (bh != head); 2324 2325 if (!partial_page) { 2326 if (may_free && try_to_free_buffers(page)) 2327 J_ASSERT(!page_has_buffers(page)); 2328 } 2329 return 0; 2330 } 2331 2332 /* 2333 * File a buffer on the given transaction list. 2334 */ 2335 void __jbd2_journal_file_buffer(struct journal_head *jh, 2336 transaction_t *transaction, int jlist) 2337 { 2338 struct journal_head **list = NULL; 2339 int was_dirty = 0; 2340 struct buffer_head *bh = jh2bh(jh); 2341 2342 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2343 assert_spin_locked(&transaction->t_journal->j_list_lock); 2344 2345 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2346 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2347 jh->b_transaction == NULL); 2348 2349 if (jh->b_transaction && jh->b_jlist == jlist) 2350 return; 2351 2352 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2353 jlist == BJ_Shadow || jlist == BJ_Forget) { 2354 /* 2355 * For metadata buffers, we track dirty bit in buffer_jbddirty 2356 * instead of buffer_dirty. We should not see a dirty bit set 2357 * here because we clear it in do_get_write_access but e.g. 2358 * tune2fs can modify the sb and set the dirty bit at any time 2359 * so we try to gracefully handle that. 2360 */ 2361 if (buffer_dirty(bh)) 2362 warn_dirty_buffer(bh); 2363 if (test_clear_buffer_dirty(bh) || 2364 test_clear_buffer_jbddirty(bh)) 2365 was_dirty = 1; 2366 } 2367 2368 if (jh->b_transaction) 2369 __jbd2_journal_temp_unlink_buffer(jh); 2370 else 2371 jbd2_journal_grab_journal_head(bh); 2372 jh->b_transaction = transaction; 2373 2374 switch (jlist) { 2375 case BJ_None: 2376 J_ASSERT_JH(jh, !jh->b_committed_data); 2377 J_ASSERT_JH(jh, !jh->b_frozen_data); 2378 return; 2379 case BJ_Metadata: 2380 transaction->t_nr_buffers++; 2381 list = &transaction->t_buffers; 2382 break; 2383 case BJ_Forget: 2384 list = &transaction->t_forget; 2385 break; 2386 case BJ_Shadow: 2387 list = &transaction->t_shadow_list; 2388 break; 2389 case BJ_Reserved: 2390 list = &transaction->t_reserved_list; 2391 break; 2392 } 2393 2394 __blist_add_buffer(list, jh); 2395 jh->b_jlist = jlist; 2396 2397 if (was_dirty) 2398 set_buffer_jbddirty(bh); 2399 } 2400 2401 void jbd2_journal_file_buffer(struct journal_head *jh, 2402 transaction_t *transaction, int jlist) 2403 { 2404 jbd_lock_bh_state(jh2bh(jh)); 2405 spin_lock(&transaction->t_journal->j_list_lock); 2406 __jbd2_journal_file_buffer(jh, transaction, jlist); 2407 spin_unlock(&transaction->t_journal->j_list_lock); 2408 jbd_unlock_bh_state(jh2bh(jh)); 2409 } 2410 2411 /* 2412 * Remove a buffer from its current buffer list in preparation for 2413 * dropping it from its current transaction entirely. If the buffer has 2414 * already started to be used by a subsequent transaction, refile the 2415 * buffer on that transaction's metadata list. 2416 * 2417 * Called under j_list_lock 2418 * Called under jbd_lock_bh_state(jh2bh(jh)) 2419 * 2420 * jh and bh may be already free when this function returns 2421 */ 2422 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2423 { 2424 int was_dirty, jlist; 2425 struct buffer_head *bh = jh2bh(jh); 2426 2427 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2428 if (jh->b_transaction) 2429 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2430 2431 /* If the buffer is now unused, just drop it. */ 2432 if (jh->b_next_transaction == NULL) { 2433 __jbd2_journal_unfile_buffer(jh); 2434 return; 2435 } 2436 2437 /* 2438 * It has been modified by a later transaction: add it to the new 2439 * transaction's metadata list. 2440 */ 2441 2442 was_dirty = test_clear_buffer_jbddirty(bh); 2443 __jbd2_journal_temp_unlink_buffer(jh); 2444 /* 2445 * We set b_transaction here because b_next_transaction will inherit 2446 * our jh reference and thus __jbd2_journal_file_buffer() must not 2447 * take a new one. 2448 */ 2449 jh->b_transaction = jh->b_next_transaction; 2450 jh->b_next_transaction = NULL; 2451 if (buffer_freed(bh)) 2452 jlist = BJ_Forget; 2453 else if (jh->b_modified) 2454 jlist = BJ_Metadata; 2455 else 2456 jlist = BJ_Reserved; 2457 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2458 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2459 2460 if (was_dirty) 2461 set_buffer_jbddirty(bh); 2462 } 2463 2464 /* 2465 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2466 * bh reference so that we can safely unlock bh. 2467 * 2468 * The jh and bh may be freed by this call. 2469 */ 2470 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2471 { 2472 struct buffer_head *bh = jh2bh(jh); 2473 2474 /* Get reference so that buffer cannot be freed before we unlock it */ 2475 get_bh(bh); 2476 jbd_lock_bh_state(bh); 2477 spin_lock(&journal->j_list_lock); 2478 __jbd2_journal_refile_buffer(jh); 2479 jbd_unlock_bh_state(bh); 2480 spin_unlock(&journal->j_list_lock); 2481 __brelse(bh); 2482 } 2483 2484 /* 2485 * File inode in the inode list of the handle's transaction 2486 */ 2487 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2488 unsigned long flags) 2489 { 2490 transaction_t *transaction = handle->h_transaction; 2491 journal_t *journal; 2492 2493 if (is_handle_aborted(handle)) 2494 return -EROFS; 2495 journal = transaction->t_journal; 2496 2497 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2498 transaction->t_tid); 2499 2500 /* 2501 * First check whether inode isn't already on the transaction's 2502 * lists without taking the lock. Note that this check is safe 2503 * without the lock as we cannot race with somebody removing inode 2504 * from the transaction. The reason is that we remove inode from the 2505 * transaction only in journal_release_jbd_inode() and when we commit 2506 * the transaction. We are guarded from the first case by holding 2507 * a reference to the inode. We are safe against the second case 2508 * because if jinode->i_transaction == transaction, commit code 2509 * cannot touch the transaction because we hold reference to it, 2510 * and if jinode->i_next_transaction == transaction, commit code 2511 * will only file the inode where we want it. 2512 */ 2513 if ((jinode->i_transaction == transaction || 2514 jinode->i_next_transaction == transaction) && 2515 (jinode->i_flags & flags) == flags) 2516 return 0; 2517 2518 spin_lock(&journal->j_list_lock); 2519 jinode->i_flags |= flags; 2520 /* Is inode already attached where we need it? */ 2521 if (jinode->i_transaction == transaction || 2522 jinode->i_next_transaction == transaction) 2523 goto done; 2524 2525 /* 2526 * We only ever set this variable to 1 so the test is safe. Since 2527 * t_need_data_flush is likely to be set, we do the test to save some 2528 * cacheline bouncing 2529 */ 2530 if (!transaction->t_need_data_flush) 2531 transaction->t_need_data_flush = 1; 2532 /* On some different transaction's list - should be 2533 * the committing one */ 2534 if (jinode->i_transaction) { 2535 J_ASSERT(jinode->i_next_transaction == NULL); 2536 J_ASSERT(jinode->i_transaction == 2537 journal->j_committing_transaction); 2538 jinode->i_next_transaction = transaction; 2539 goto done; 2540 } 2541 /* Not on any transaction list... */ 2542 J_ASSERT(!jinode->i_next_transaction); 2543 jinode->i_transaction = transaction; 2544 list_add(&jinode->i_list, &transaction->t_inode_list); 2545 done: 2546 spin_unlock(&journal->j_list_lock); 2547 2548 return 0; 2549 } 2550 2551 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2552 { 2553 return jbd2_journal_file_inode(handle, jinode, 2554 JI_WRITE_DATA | JI_WAIT_DATA); 2555 } 2556 2557 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2558 { 2559 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2560 } 2561 2562 /* 2563 * File truncate and transaction commit interact with each other in a 2564 * non-trivial way. If a transaction writing data block A is 2565 * committing, we cannot discard the data by truncate until we have 2566 * written them. Otherwise if we crashed after the transaction with 2567 * write has committed but before the transaction with truncate has 2568 * committed, we could see stale data in block A. This function is a 2569 * helper to solve this problem. It starts writeout of the truncated 2570 * part in case it is in the committing transaction. 2571 * 2572 * Filesystem code must call this function when inode is journaled in 2573 * ordered mode before truncation happens and after the inode has been 2574 * placed on orphan list with the new inode size. The second condition 2575 * avoids the race that someone writes new data and we start 2576 * committing the transaction after this function has been called but 2577 * before a transaction for truncate is started (and furthermore it 2578 * allows us to optimize the case where the addition to orphan list 2579 * happens in the same transaction as write --- we don't have to write 2580 * any data in such case). 2581 */ 2582 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2583 struct jbd2_inode *jinode, 2584 loff_t new_size) 2585 { 2586 transaction_t *inode_trans, *commit_trans; 2587 int ret = 0; 2588 2589 /* This is a quick check to avoid locking if not necessary */ 2590 if (!jinode->i_transaction) 2591 goto out; 2592 /* Locks are here just to force reading of recent values, it is 2593 * enough that the transaction was not committing before we started 2594 * a transaction adding the inode to orphan list */ 2595 read_lock(&journal->j_state_lock); 2596 commit_trans = journal->j_committing_transaction; 2597 read_unlock(&journal->j_state_lock); 2598 spin_lock(&journal->j_list_lock); 2599 inode_trans = jinode->i_transaction; 2600 spin_unlock(&journal->j_list_lock); 2601 if (inode_trans == commit_trans) { 2602 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2603 new_size, LLONG_MAX); 2604 if (ret) 2605 jbd2_journal_abort(journal, ret); 2606 } 2607 out: 2608 return ret; 2609 } 2610