1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 wait_transaction_locked(journal); 208 return 1; 209 } 210 211 /* 212 * The commit code assumes that it can get enough log space 213 * without forcing a checkpoint. This is *critical* for 214 * correctness: a checkpoint of a buffer which is also 215 * associated with a committing transaction creates a deadlock, 216 * so commit simply cannot force through checkpoints. 217 * 218 * We must therefore ensure the necessary space in the journal 219 * *before* starting to dirty potentially checkpointed buffers 220 * in the new transaction. 221 */ 222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 223 atomic_sub(total, &t->t_outstanding_credits); 224 read_unlock(&journal->j_state_lock); 225 write_lock(&journal->j_state_lock); 226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 227 __jbd2_log_wait_for_space(journal); 228 write_unlock(&journal->j_state_lock); 229 return 1; 230 } 231 232 /* No reservation? We are done... */ 233 if (!rsv_blocks) 234 return 0; 235 236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 237 /* We allow at most half of a transaction to be reserved */ 238 if (needed > journal->j_max_transaction_buffers / 2) { 239 sub_reserved_credits(journal, rsv_blocks); 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_reserved, 243 atomic_read(&journal->j_reserved_credits) + rsv_blocks 244 <= journal->j_max_transaction_buffers / 2); 245 return 1; 246 } 247 return 0; 248 } 249 250 /* 251 * start_this_handle: Given a handle, deal with any locking or stalling 252 * needed to make sure that there is enough journal space for the handle 253 * to begin. Attach the handle to a transaction and set up the 254 * transaction's buffer credits. 255 */ 256 257 static int start_this_handle(journal_t *journal, handle_t *handle, 258 gfp_t gfp_mask) 259 { 260 transaction_t *transaction, *new_transaction = NULL; 261 int blocks = handle->h_buffer_credits; 262 int rsv_blocks = 0; 263 unsigned long ts = jiffies; 264 265 /* 266 * 1/2 of transaction can be reserved so we can practically handle 267 * only 1/2 of maximum transaction size per operation 268 */ 269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) { 270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 271 current->comm, blocks, 272 journal->j_max_transaction_buffers / 2); 273 return -ENOSPC; 274 } 275 276 if (handle->h_rsv_handle) 277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 278 279 alloc_transaction: 280 if (!journal->j_running_transaction) { 281 /* 282 * If __GFP_FS is not present, then we may be being called from 283 * inside the fs writeback layer, so we MUST NOT fail. 284 */ 285 if ((gfp_mask & __GFP_FS) == 0) 286 gfp_mask |= __GFP_NOFAIL; 287 new_transaction = kmem_cache_zalloc(transaction_cache, 288 gfp_mask); 289 if (!new_transaction) 290 return -ENOMEM; 291 } 292 293 jbd_debug(3, "New handle %p going live.\n", handle); 294 295 /* 296 * We need to hold j_state_lock until t_updates has been incremented, 297 * for proper journal barrier handling 298 */ 299 repeat: 300 read_lock(&journal->j_state_lock); 301 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 302 if (is_journal_aborted(journal) || 303 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 304 read_unlock(&journal->j_state_lock); 305 jbd2_journal_free_transaction(new_transaction); 306 return -EROFS; 307 } 308 309 /* 310 * Wait on the journal's transaction barrier if necessary. Specifically 311 * we allow reserved handles to proceed because otherwise commit could 312 * deadlock on page writeback not being able to complete. 313 */ 314 if (!handle->h_reserved && journal->j_barrier_count) { 315 read_unlock(&journal->j_state_lock); 316 wait_event(journal->j_wait_transaction_locked, 317 journal->j_barrier_count == 0); 318 goto repeat; 319 } 320 321 if (!journal->j_running_transaction) { 322 read_unlock(&journal->j_state_lock); 323 if (!new_transaction) 324 goto alloc_transaction; 325 write_lock(&journal->j_state_lock); 326 if (!journal->j_running_transaction && 327 (handle->h_reserved || !journal->j_barrier_count)) { 328 jbd2_get_transaction(journal, new_transaction); 329 new_transaction = NULL; 330 } 331 write_unlock(&journal->j_state_lock); 332 goto repeat; 333 } 334 335 transaction = journal->j_running_transaction; 336 337 if (!handle->h_reserved) { 338 /* We may have dropped j_state_lock - restart in that case */ 339 if (add_transaction_credits(journal, blocks, rsv_blocks)) 340 goto repeat; 341 } else { 342 /* 343 * We have handle reserved so we are allowed to join T_LOCKED 344 * transaction and we don't have to check for transaction size 345 * and journal space. 346 */ 347 sub_reserved_credits(journal, blocks); 348 handle->h_reserved = 0; 349 } 350 351 /* OK, account for the buffers that this operation expects to 352 * use and add the handle to the running transaction. 353 */ 354 update_t_max_wait(transaction, ts); 355 handle->h_transaction = transaction; 356 handle->h_requested_credits = blocks; 357 handle->h_start_jiffies = jiffies; 358 atomic_inc(&transaction->t_updates); 359 atomic_inc(&transaction->t_handle_count); 360 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 361 handle, blocks, 362 atomic_read(&transaction->t_outstanding_credits), 363 jbd2_log_space_left(journal)); 364 read_unlock(&journal->j_state_lock); 365 current->journal_info = handle; 366 367 lock_map_acquire(&handle->h_lockdep_map); 368 jbd2_journal_free_transaction(new_transaction); 369 return 0; 370 } 371 372 static struct lock_class_key jbd2_handle_key; 373 374 /* Allocate a new handle. This should probably be in a slab... */ 375 static handle_t *new_handle(int nblocks) 376 { 377 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 378 if (!handle) 379 return NULL; 380 handle->h_buffer_credits = nblocks; 381 handle->h_ref = 1; 382 383 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 384 &jbd2_handle_key, 0); 385 386 return handle; 387 } 388 389 /** 390 * handle_t *jbd2_journal_start() - Obtain a new handle. 391 * @journal: Journal to start transaction on. 392 * @nblocks: number of block buffer we might modify 393 * 394 * We make sure that the transaction can guarantee at least nblocks of 395 * modified buffers in the log. We block until the log can guarantee 396 * that much space. Additionally, if rsv_blocks > 0, we also create another 397 * handle with rsv_blocks reserved blocks in the journal. This handle is 398 * is stored in h_rsv_handle. It is not attached to any particular transaction 399 * and thus doesn't block transaction commit. If the caller uses this reserved 400 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 401 * on the parent handle will dispose the reserved one. Reserved handle has to 402 * be converted to a normal handle using jbd2_journal_start_reserved() before 403 * it can be used. 404 * 405 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 406 * on failure. 407 */ 408 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 409 gfp_t gfp_mask, unsigned int type, 410 unsigned int line_no) 411 { 412 handle_t *handle = journal_current_handle(); 413 int err; 414 415 if (!journal) 416 return ERR_PTR(-EROFS); 417 418 if (handle) { 419 J_ASSERT(handle->h_transaction->t_journal == journal); 420 handle->h_ref++; 421 return handle; 422 } 423 424 handle = new_handle(nblocks); 425 if (!handle) 426 return ERR_PTR(-ENOMEM); 427 if (rsv_blocks) { 428 handle_t *rsv_handle; 429 430 rsv_handle = new_handle(rsv_blocks); 431 if (!rsv_handle) { 432 jbd2_free_handle(handle); 433 return ERR_PTR(-ENOMEM); 434 } 435 rsv_handle->h_reserved = 1; 436 rsv_handle->h_journal = journal; 437 handle->h_rsv_handle = rsv_handle; 438 } 439 440 err = start_this_handle(journal, handle, gfp_mask); 441 if (err < 0) { 442 if (handle->h_rsv_handle) 443 jbd2_free_handle(handle->h_rsv_handle); 444 jbd2_free_handle(handle); 445 return ERR_PTR(err); 446 } 447 handle->h_type = type; 448 handle->h_line_no = line_no; 449 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 450 handle->h_transaction->t_tid, type, 451 line_no, nblocks); 452 return handle; 453 } 454 EXPORT_SYMBOL(jbd2__journal_start); 455 456 457 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 458 { 459 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 460 } 461 EXPORT_SYMBOL(jbd2_journal_start); 462 463 void jbd2_journal_free_reserved(handle_t *handle) 464 { 465 journal_t *journal = handle->h_journal; 466 467 WARN_ON(!handle->h_reserved); 468 sub_reserved_credits(journal, handle->h_buffer_credits); 469 jbd2_free_handle(handle); 470 } 471 EXPORT_SYMBOL(jbd2_journal_free_reserved); 472 473 /** 474 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 475 * @handle: handle to start 476 * 477 * Start handle that has been previously reserved with jbd2_journal_reserve(). 478 * This attaches @handle to the running transaction (or creates one if there's 479 * not transaction running). Unlike jbd2_journal_start() this function cannot 480 * block on journal commit, checkpointing, or similar stuff. It can block on 481 * memory allocation or frozen journal though. 482 * 483 * Return 0 on success, non-zero on error - handle is freed in that case. 484 */ 485 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 486 unsigned int line_no) 487 { 488 journal_t *journal = handle->h_journal; 489 int ret = -EIO; 490 491 if (WARN_ON(!handle->h_reserved)) { 492 /* Someone passed in normal handle? Just stop it. */ 493 jbd2_journal_stop(handle); 494 return ret; 495 } 496 /* 497 * Usefulness of mixing of reserved and unreserved handles is 498 * questionable. So far nobody seems to need it so just error out. 499 */ 500 if (WARN_ON(current->journal_info)) { 501 jbd2_journal_free_reserved(handle); 502 return ret; 503 } 504 505 handle->h_journal = NULL; 506 /* 507 * GFP_NOFS is here because callers are likely from writeback or 508 * similarly constrained call sites 509 */ 510 ret = start_this_handle(journal, handle, GFP_NOFS); 511 if (ret < 0) { 512 jbd2_journal_free_reserved(handle); 513 return ret; 514 } 515 handle->h_type = type; 516 handle->h_line_no = line_no; 517 return 0; 518 } 519 EXPORT_SYMBOL(jbd2_journal_start_reserved); 520 521 /** 522 * int jbd2_journal_extend() - extend buffer credits. 523 * @handle: handle to 'extend' 524 * @nblocks: nr blocks to try to extend by. 525 * 526 * Some transactions, such as large extends and truncates, can be done 527 * atomically all at once or in several stages. The operation requests 528 * a credit for a number of buffer modications in advance, but can 529 * extend its credit if it needs more. 530 * 531 * jbd2_journal_extend tries to give the running handle more buffer credits. 532 * It does not guarantee that allocation - this is a best-effort only. 533 * The calling process MUST be able to deal cleanly with a failure to 534 * extend here. 535 * 536 * Return 0 on success, non-zero on failure. 537 * 538 * return code < 0 implies an error 539 * return code > 0 implies normal transaction-full status. 540 */ 541 int jbd2_journal_extend(handle_t *handle, int nblocks) 542 { 543 transaction_t *transaction = handle->h_transaction; 544 journal_t *journal; 545 int result; 546 int wanted; 547 548 if (is_handle_aborted(handle)) 549 return -EROFS; 550 journal = transaction->t_journal; 551 552 result = 1; 553 554 read_lock(&journal->j_state_lock); 555 556 /* Don't extend a locked-down transaction! */ 557 if (transaction->t_state != T_RUNNING) { 558 jbd_debug(3, "denied handle %p %d blocks: " 559 "transaction not running\n", handle, nblocks); 560 goto error_out; 561 } 562 563 spin_lock(&transaction->t_handle_lock); 564 wanted = atomic_add_return(nblocks, 565 &transaction->t_outstanding_credits); 566 567 if (wanted > journal->j_max_transaction_buffers) { 568 jbd_debug(3, "denied handle %p %d blocks: " 569 "transaction too large\n", handle, nblocks); 570 atomic_sub(nblocks, &transaction->t_outstanding_credits); 571 goto unlock; 572 } 573 574 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 575 jbd2_log_space_left(journal)) { 576 jbd_debug(3, "denied handle %p %d blocks: " 577 "insufficient log space\n", handle, nblocks); 578 atomic_sub(nblocks, &transaction->t_outstanding_credits); 579 goto unlock; 580 } 581 582 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 583 transaction->t_tid, 584 handle->h_type, handle->h_line_no, 585 handle->h_buffer_credits, 586 nblocks); 587 588 handle->h_buffer_credits += nblocks; 589 handle->h_requested_credits += nblocks; 590 result = 0; 591 592 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 593 unlock: 594 spin_unlock(&transaction->t_handle_lock); 595 error_out: 596 read_unlock(&journal->j_state_lock); 597 return result; 598 } 599 600 601 /** 602 * int jbd2_journal_restart() - restart a handle . 603 * @handle: handle to restart 604 * @nblocks: nr credits requested 605 * 606 * Restart a handle for a multi-transaction filesystem 607 * operation. 608 * 609 * If the jbd2_journal_extend() call above fails to grant new buffer credits 610 * to a running handle, a call to jbd2_journal_restart will commit the 611 * handle's transaction so far and reattach the handle to a new 612 * transaction capabable of guaranteeing the requested number of 613 * credits. We preserve reserved handle if there's any attached to the 614 * passed in handle. 615 */ 616 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 617 { 618 transaction_t *transaction = handle->h_transaction; 619 journal_t *journal; 620 tid_t tid; 621 int need_to_start, ret; 622 623 /* If we've had an abort of any type, don't even think about 624 * actually doing the restart! */ 625 if (is_handle_aborted(handle)) 626 return 0; 627 journal = transaction->t_journal; 628 629 /* 630 * First unlink the handle from its current transaction, and start the 631 * commit on that. 632 */ 633 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 634 J_ASSERT(journal_current_handle() == handle); 635 636 read_lock(&journal->j_state_lock); 637 spin_lock(&transaction->t_handle_lock); 638 atomic_sub(handle->h_buffer_credits, 639 &transaction->t_outstanding_credits); 640 if (handle->h_rsv_handle) { 641 sub_reserved_credits(journal, 642 handle->h_rsv_handle->h_buffer_credits); 643 } 644 if (atomic_dec_and_test(&transaction->t_updates)) 645 wake_up(&journal->j_wait_updates); 646 tid = transaction->t_tid; 647 spin_unlock(&transaction->t_handle_lock); 648 handle->h_transaction = NULL; 649 current->journal_info = NULL; 650 651 jbd_debug(2, "restarting handle %p\n", handle); 652 need_to_start = !tid_geq(journal->j_commit_request, tid); 653 read_unlock(&journal->j_state_lock); 654 if (need_to_start) 655 jbd2_log_start_commit(journal, tid); 656 657 lock_map_release(&handle->h_lockdep_map); 658 handle->h_buffer_credits = nblocks; 659 ret = start_this_handle(journal, handle, gfp_mask); 660 return ret; 661 } 662 EXPORT_SYMBOL(jbd2__journal_restart); 663 664 665 int jbd2_journal_restart(handle_t *handle, int nblocks) 666 { 667 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 668 } 669 EXPORT_SYMBOL(jbd2_journal_restart); 670 671 /** 672 * void jbd2_journal_lock_updates () - establish a transaction barrier. 673 * @journal: Journal to establish a barrier on. 674 * 675 * This locks out any further updates from being started, and blocks 676 * until all existing updates have completed, returning only once the 677 * journal is in a quiescent state with no updates running. 678 * 679 * The journal lock should not be held on entry. 680 */ 681 void jbd2_journal_lock_updates(journal_t *journal) 682 { 683 DEFINE_WAIT(wait); 684 685 write_lock(&journal->j_state_lock); 686 ++journal->j_barrier_count; 687 688 /* Wait until there are no reserved handles */ 689 if (atomic_read(&journal->j_reserved_credits)) { 690 write_unlock(&journal->j_state_lock); 691 wait_event(journal->j_wait_reserved, 692 atomic_read(&journal->j_reserved_credits) == 0); 693 write_lock(&journal->j_state_lock); 694 } 695 696 /* Wait until there are no running updates */ 697 while (1) { 698 transaction_t *transaction = journal->j_running_transaction; 699 700 if (!transaction) 701 break; 702 703 spin_lock(&transaction->t_handle_lock); 704 prepare_to_wait(&journal->j_wait_updates, &wait, 705 TASK_UNINTERRUPTIBLE); 706 if (!atomic_read(&transaction->t_updates)) { 707 spin_unlock(&transaction->t_handle_lock); 708 finish_wait(&journal->j_wait_updates, &wait); 709 break; 710 } 711 spin_unlock(&transaction->t_handle_lock); 712 write_unlock(&journal->j_state_lock); 713 schedule(); 714 finish_wait(&journal->j_wait_updates, &wait); 715 write_lock(&journal->j_state_lock); 716 } 717 write_unlock(&journal->j_state_lock); 718 719 /* 720 * We have now established a barrier against other normal updates, but 721 * we also need to barrier against other jbd2_journal_lock_updates() calls 722 * to make sure that we serialise special journal-locked operations 723 * too. 724 */ 725 mutex_lock(&journal->j_barrier); 726 } 727 728 /** 729 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 730 * @journal: Journal to release the barrier on. 731 * 732 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 733 * 734 * Should be called without the journal lock held. 735 */ 736 void jbd2_journal_unlock_updates (journal_t *journal) 737 { 738 J_ASSERT(journal->j_barrier_count != 0); 739 740 mutex_unlock(&journal->j_barrier); 741 write_lock(&journal->j_state_lock); 742 --journal->j_barrier_count; 743 write_unlock(&journal->j_state_lock); 744 wake_up(&journal->j_wait_transaction_locked); 745 } 746 747 static void warn_dirty_buffer(struct buffer_head *bh) 748 { 749 char b[BDEVNAME_SIZE]; 750 751 printk(KERN_WARNING 752 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 753 "There's a risk of filesystem corruption in case of system " 754 "crash.\n", 755 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 756 } 757 758 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 759 static void jbd2_freeze_jh_data(struct journal_head *jh) 760 { 761 struct page *page; 762 int offset; 763 char *source; 764 struct buffer_head *bh = jh2bh(jh); 765 766 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 767 page = bh->b_page; 768 offset = offset_in_page(bh->b_data); 769 source = kmap_atomic(page); 770 /* Fire data frozen trigger just before we copy the data */ 771 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 772 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 773 kunmap_atomic(source); 774 775 /* 776 * Now that the frozen data is saved off, we need to store any matching 777 * triggers. 778 */ 779 jh->b_frozen_triggers = jh->b_triggers; 780 } 781 782 /* 783 * If the buffer is already part of the current transaction, then there 784 * is nothing we need to do. If it is already part of a prior 785 * transaction which we are still committing to disk, then we need to 786 * make sure that we do not overwrite the old copy: we do copy-out to 787 * preserve the copy going to disk. We also account the buffer against 788 * the handle's metadata buffer credits (unless the buffer is already 789 * part of the transaction, that is). 790 * 791 */ 792 static int 793 do_get_write_access(handle_t *handle, struct journal_head *jh, 794 int force_copy) 795 { 796 struct buffer_head *bh; 797 transaction_t *transaction = handle->h_transaction; 798 journal_t *journal; 799 int error; 800 char *frozen_buffer = NULL; 801 unsigned long start_lock, time_lock; 802 803 if (is_handle_aborted(handle)) 804 return -EROFS; 805 journal = transaction->t_journal; 806 807 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 808 809 JBUFFER_TRACE(jh, "entry"); 810 repeat: 811 bh = jh2bh(jh); 812 813 /* @@@ Need to check for errors here at some point. */ 814 815 start_lock = jiffies; 816 lock_buffer(bh); 817 jbd_lock_bh_state(bh); 818 819 /* If it takes too long to lock the buffer, trace it */ 820 time_lock = jbd2_time_diff(start_lock, jiffies); 821 if (time_lock > HZ/10) 822 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 823 jiffies_to_msecs(time_lock)); 824 825 /* We now hold the buffer lock so it is safe to query the buffer 826 * state. Is the buffer dirty? 827 * 828 * If so, there are two possibilities. The buffer may be 829 * non-journaled, and undergoing a quite legitimate writeback. 830 * Otherwise, it is journaled, and we don't expect dirty buffers 831 * in that state (the buffers should be marked JBD_Dirty 832 * instead.) So either the IO is being done under our own 833 * control and this is a bug, or it's a third party IO such as 834 * dump(8) (which may leave the buffer scheduled for read --- 835 * ie. locked but not dirty) or tune2fs (which may actually have 836 * the buffer dirtied, ugh.) */ 837 838 if (buffer_dirty(bh)) { 839 /* 840 * First question: is this buffer already part of the current 841 * transaction or the existing committing transaction? 842 */ 843 if (jh->b_transaction) { 844 J_ASSERT_JH(jh, 845 jh->b_transaction == transaction || 846 jh->b_transaction == 847 journal->j_committing_transaction); 848 if (jh->b_next_transaction) 849 J_ASSERT_JH(jh, jh->b_next_transaction == 850 transaction); 851 warn_dirty_buffer(bh); 852 } 853 /* 854 * In any case we need to clean the dirty flag and we must 855 * do it under the buffer lock to be sure we don't race 856 * with running write-out. 857 */ 858 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 859 clear_buffer_dirty(bh); 860 set_buffer_jbddirty(bh); 861 } 862 863 unlock_buffer(bh); 864 865 error = -EROFS; 866 if (is_handle_aborted(handle)) { 867 jbd_unlock_bh_state(bh); 868 goto out; 869 } 870 error = 0; 871 872 /* 873 * The buffer is already part of this transaction if b_transaction or 874 * b_next_transaction points to it 875 */ 876 if (jh->b_transaction == transaction || 877 jh->b_next_transaction == transaction) 878 goto done; 879 880 /* 881 * this is the first time this transaction is touching this buffer, 882 * reset the modified flag 883 */ 884 jh->b_modified = 0; 885 886 /* 887 * If the buffer is not journaled right now, we need to make sure it 888 * doesn't get written to disk before the caller actually commits the 889 * new data 890 */ 891 if (!jh->b_transaction) { 892 JBUFFER_TRACE(jh, "no transaction"); 893 J_ASSERT_JH(jh, !jh->b_next_transaction); 894 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 895 /* 896 * Make sure all stores to jh (b_modified, b_frozen_data) are 897 * visible before attaching it to the running transaction. 898 * Paired with barrier in jbd2_write_access_granted() 899 */ 900 smp_wmb(); 901 spin_lock(&journal->j_list_lock); 902 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 903 spin_unlock(&journal->j_list_lock); 904 goto done; 905 } 906 /* 907 * If there is already a copy-out version of this buffer, then we don't 908 * need to make another one 909 */ 910 if (jh->b_frozen_data) { 911 JBUFFER_TRACE(jh, "has frozen data"); 912 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 913 goto attach_next; 914 } 915 916 JBUFFER_TRACE(jh, "owned by older transaction"); 917 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 918 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 919 920 /* 921 * There is one case we have to be very careful about. If the 922 * committing transaction is currently writing this buffer out to disk 923 * and has NOT made a copy-out, then we cannot modify the buffer 924 * contents at all right now. The essence of copy-out is that it is 925 * the extra copy, not the primary copy, which gets journaled. If the 926 * primary copy is already going to disk then we cannot do copy-out 927 * here. 928 */ 929 if (buffer_shadow(bh)) { 930 JBUFFER_TRACE(jh, "on shadow: sleep"); 931 jbd_unlock_bh_state(bh); 932 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 933 goto repeat; 934 } 935 936 /* 937 * Only do the copy if the currently-owning transaction still needs it. 938 * If buffer isn't on BJ_Metadata list, the committing transaction is 939 * past that stage (here we use the fact that BH_Shadow is set under 940 * bh_state lock together with refiling to BJ_Shadow list and at this 941 * point we know the buffer doesn't have BH_Shadow set). 942 * 943 * Subtle point, though: if this is a get_undo_access, then we will be 944 * relying on the frozen_data to contain the new value of the 945 * committed_data record after the transaction, so we HAVE to force the 946 * frozen_data copy in that case. 947 */ 948 if (jh->b_jlist == BJ_Metadata || force_copy) { 949 JBUFFER_TRACE(jh, "generate frozen data"); 950 if (!frozen_buffer) { 951 JBUFFER_TRACE(jh, "allocate memory for buffer"); 952 jbd_unlock_bh_state(bh); 953 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 954 if (!frozen_buffer) { 955 printk(KERN_ERR "%s: OOM for frozen_buffer\n", 956 __func__); 957 JBUFFER_TRACE(jh, "oom!"); 958 error = -ENOMEM; 959 goto out; 960 } 961 goto repeat; 962 } 963 jh->b_frozen_data = frozen_buffer; 964 frozen_buffer = NULL; 965 jbd2_freeze_jh_data(jh); 966 } 967 attach_next: 968 /* 969 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 970 * before attaching it to the running transaction. Paired with barrier 971 * in jbd2_write_access_granted() 972 */ 973 smp_wmb(); 974 jh->b_next_transaction = transaction; 975 976 done: 977 jbd_unlock_bh_state(bh); 978 979 /* 980 * If we are about to journal a buffer, then any revoke pending on it is 981 * no longer valid 982 */ 983 jbd2_journal_cancel_revoke(handle, jh); 984 985 out: 986 if (unlikely(frozen_buffer)) /* It's usually NULL */ 987 jbd2_free(frozen_buffer, bh->b_size); 988 989 JBUFFER_TRACE(jh, "exit"); 990 return error; 991 } 992 993 /* Fast check whether buffer is already attached to the required transaction */ 994 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh) 995 { 996 struct journal_head *jh; 997 bool ret = false; 998 999 /* Dirty buffers require special handling... */ 1000 if (buffer_dirty(bh)) 1001 return false; 1002 1003 /* 1004 * RCU protects us from dereferencing freed pages. So the checks we do 1005 * are guaranteed not to oops. However the jh slab object can get freed 1006 * & reallocated while we work with it. So we have to be careful. When 1007 * we see jh attached to the running transaction, we know it must stay 1008 * so until the transaction is committed. Thus jh won't be freed and 1009 * will be attached to the same bh while we run. However it can 1010 * happen jh gets freed, reallocated, and attached to the transaction 1011 * just after we get pointer to it from bh. So we have to be careful 1012 * and recheck jh still belongs to our bh before we return success. 1013 */ 1014 rcu_read_lock(); 1015 if (!buffer_jbd(bh)) 1016 goto out; 1017 /* This should be bh2jh() but that doesn't work with inline functions */ 1018 jh = READ_ONCE(bh->b_private); 1019 if (!jh) 1020 goto out; 1021 if (jh->b_transaction != handle->h_transaction && 1022 jh->b_next_transaction != handle->h_transaction) 1023 goto out; 1024 /* 1025 * There are two reasons for the barrier here: 1026 * 1) Make sure to fetch b_bh after we did previous checks so that we 1027 * detect when jh went through free, realloc, attach to transaction 1028 * while we were checking. Paired with implicit barrier in that path. 1029 * 2) So that access to bh done after jbd2_write_access_granted() 1030 * doesn't get reordered and see inconsistent state of concurrent 1031 * do_get_write_access(). 1032 */ 1033 smp_mb(); 1034 if (unlikely(jh->b_bh != bh)) 1035 goto out; 1036 ret = true; 1037 out: 1038 rcu_read_unlock(); 1039 return ret; 1040 } 1041 1042 /** 1043 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1044 * @handle: transaction to add buffer modifications to 1045 * @bh: bh to be used for metadata writes 1046 * 1047 * Returns an error code or 0 on success. 1048 * 1049 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1050 * because we're write()ing a buffer which is also part of a shared mapping. 1051 */ 1052 1053 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1054 { 1055 struct journal_head *jh; 1056 int rc; 1057 1058 if (jbd2_write_access_granted(handle, bh)) 1059 return 0; 1060 1061 jh = jbd2_journal_add_journal_head(bh); 1062 /* We do not want to get caught playing with fields which the 1063 * log thread also manipulates. Make sure that the buffer 1064 * completes any outstanding IO before proceeding. */ 1065 rc = do_get_write_access(handle, jh, 0); 1066 jbd2_journal_put_journal_head(jh); 1067 return rc; 1068 } 1069 1070 1071 /* 1072 * When the user wants to journal a newly created buffer_head 1073 * (ie. getblk() returned a new buffer and we are going to populate it 1074 * manually rather than reading off disk), then we need to keep the 1075 * buffer_head locked until it has been completely filled with new 1076 * data. In this case, we should be able to make the assertion that 1077 * the bh is not already part of an existing transaction. 1078 * 1079 * The buffer should already be locked by the caller by this point. 1080 * There is no lock ranking violation: it was a newly created, 1081 * unlocked buffer beforehand. */ 1082 1083 /** 1084 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1085 * @handle: transaction to new buffer to 1086 * @bh: new buffer. 1087 * 1088 * Call this if you create a new bh. 1089 */ 1090 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1091 { 1092 transaction_t *transaction = handle->h_transaction; 1093 journal_t *journal; 1094 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1095 int err; 1096 1097 jbd_debug(5, "journal_head %p\n", jh); 1098 err = -EROFS; 1099 if (is_handle_aborted(handle)) 1100 goto out; 1101 journal = transaction->t_journal; 1102 err = 0; 1103 1104 JBUFFER_TRACE(jh, "entry"); 1105 /* 1106 * The buffer may already belong to this transaction due to pre-zeroing 1107 * in the filesystem's new_block code. It may also be on the previous, 1108 * committing transaction's lists, but it HAS to be in Forget state in 1109 * that case: the transaction must have deleted the buffer for it to be 1110 * reused here. 1111 */ 1112 jbd_lock_bh_state(bh); 1113 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1114 jh->b_transaction == NULL || 1115 (jh->b_transaction == journal->j_committing_transaction && 1116 jh->b_jlist == BJ_Forget))); 1117 1118 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1119 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1120 1121 if (jh->b_transaction == NULL) { 1122 /* 1123 * Previous jbd2_journal_forget() could have left the buffer 1124 * with jbddirty bit set because it was being committed. When 1125 * the commit finished, we've filed the buffer for 1126 * checkpointing and marked it dirty. Now we are reallocating 1127 * the buffer so the transaction freeing it must have 1128 * committed and so it's safe to clear the dirty bit. 1129 */ 1130 clear_buffer_dirty(jh2bh(jh)); 1131 /* first access by this transaction */ 1132 jh->b_modified = 0; 1133 1134 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1135 spin_lock(&journal->j_list_lock); 1136 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1137 } else if (jh->b_transaction == journal->j_committing_transaction) { 1138 /* first access by this transaction */ 1139 jh->b_modified = 0; 1140 1141 JBUFFER_TRACE(jh, "set next transaction"); 1142 spin_lock(&journal->j_list_lock); 1143 jh->b_next_transaction = transaction; 1144 } 1145 spin_unlock(&journal->j_list_lock); 1146 jbd_unlock_bh_state(bh); 1147 1148 /* 1149 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1150 * blocks which contain freed but then revoked metadata. We need 1151 * to cancel the revoke in case we end up freeing it yet again 1152 * and the reallocating as data - this would cause a second revoke, 1153 * which hits an assertion error. 1154 */ 1155 JBUFFER_TRACE(jh, "cancelling revoke"); 1156 jbd2_journal_cancel_revoke(handle, jh); 1157 out: 1158 jbd2_journal_put_journal_head(jh); 1159 return err; 1160 } 1161 1162 /** 1163 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1164 * non-rewindable consequences 1165 * @handle: transaction 1166 * @bh: buffer to undo 1167 * 1168 * Sometimes there is a need to distinguish between metadata which has 1169 * been committed to disk and that which has not. The ext3fs code uses 1170 * this for freeing and allocating space, we have to make sure that we 1171 * do not reuse freed space until the deallocation has been committed, 1172 * since if we overwrote that space we would make the delete 1173 * un-rewindable in case of a crash. 1174 * 1175 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1176 * buffer for parts of non-rewindable operations such as delete 1177 * operations on the bitmaps. The journaling code must keep a copy of 1178 * the buffer's contents prior to the undo_access call until such time 1179 * as we know that the buffer has definitely been committed to disk. 1180 * 1181 * We never need to know which transaction the committed data is part 1182 * of, buffers touched here are guaranteed to be dirtied later and so 1183 * will be committed to a new transaction in due course, at which point 1184 * we can discard the old committed data pointer. 1185 * 1186 * Returns error number or 0 on success. 1187 */ 1188 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1189 { 1190 int err; 1191 struct journal_head *jh; 1192 char *committed_data = NULL; 1193 1194 JBUFFER_TRACE(jh, "entry"); 1195 if (jbd2_write_access_granted(handle, bh)) 1196 return 0; 1197 1198 jh = jbd2_journal_add_journal_head(bh); 1199 /* 1200 * Do this first --- it can drop the journal lock, so we want to 1201 * make sure that obtaining the committed_data is done 1202 * atomically wrt. completion of any outstanding commits. 1203 */ 1204 err = do_get_write_access(handle, jh, 1); 1205 if (err) 1206 goto out; 1207 1208 repeat: 1209 if (!jh->b_committed_data) { 1210 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1211 if (!committed_data) { 1212 printk(KERN_ERR "%s: No memory for committed data\n", 1213 __func__); 1214 err = -ENOMEM; 1215 goto out; 1216 } 1217 } 1218 1219 jbd_lock_bh_state(bh); 1220 if (!jh->b_committed_data) { 1221 /* Copy out the current buffer contents into the 1222 * preserved, committed copy. */ 1223 JBUFFER_TRACE(jh, "generate b_committed data"); 1224 if (!committed_data) { 1225 jbd_unlock_bh_state(bh); 1226 goto repeat; 1227 } 1228 1229 jh->b_committed_data = committed_data; 1230 committed_data = NULL; 1231 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1232 } 1233 jbd_unlock_bh_state(bh); 1234 out: 1235 jbd2_journal_put_journal_head(jh); 1236 if (unlikely(committed_data)) 1237 jbd2_free(committed_data, bh->b_size); 1238 return err; 1239 } 1240 1241 /** 1242 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1243 * @bh: buffer to trigger on 1244 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1245 * 1246 * Set any triggers on this journal_head. This is always safe, because 1247 * triggers for a committing buffer will be saved off, and triggers for 1248 * a running transaction will match the buffer in that transaction. 1249 * 1250 * Call with NULL to clear the triggers. 1251 */ 1252 void jbd2_journal_set_triggers(struct buffer_head *bh, 1253 struct jbd2_buffer_trigger_type *type) 1254 { 1255 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1256 1257 if (WARN_ON(!jh)) 1258 return; 1259 jh->b_triggers = type; 1260 jbd2_journal_put_journal_head(jh); 1261 } 1262 1263 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1264 struct jbd2_buffer_trigger_type *triggers) 1265 { 1266 struct buffer_head *bh = jh2bh(jh); 1267 1268 if (!triggers || !triggers->t_frozen) 1269 return; 1270 1271 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1272 } 1273 1274 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1275 struct jbd2_buffer_trigger_type *triggers) 1276 { 1277 if (!triggers || !triggers->t_abort) 1278 return; 1279 1280 triggers->t_abort(triggers, jh2bh(jh)); 1281 } 1282 1283 1284 1285 /** 1286 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1287 * @handle: transaction to add buffer to. 1288 * @bh: buffer to mark 1289 * 1290 * mark dirty metadata which needs to be journaled as part of the current 1291 * transaction. 1292 * 1293 * The buffer must have previously had jbd2_journal_get_write_access() 1294 * called so that it has a valid journal_head attached to the buffer 1295 * head. 1296 * 1297 * The buffer is placed on the transaction's metadata list and is marked 1298 * as belonging to the transaction. 1299 * 1300 * Returns error number or 0 on success. 1301 * 1302 * Special care needs to be taken if the buffer already belongs to the 1303 * current committing transaction (in which case we should have frozen 1304 * data present for that commit). In that case, we don't relink the 1305 * buffer: that only gets done when the old transaction finally 1306 * completes its commit. 1307 */ 1308 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1309 { 1310 transaction_t *transaction = handle->h_transaction; 1311 journal_t *journal; 1312 struct journal_head *jh; 1313 int ret = 0; 1314 1315 if (is_handle_aborted(handle)) 1316 return -EROFS; 1317 journal = transaction->t_journal; 1318 jh = jbd2_journal_grab_journal_head(bh); 1319 if (!jh) { 1320 ret = -EUCLEAN; 1321 goto out; 1322 } 1323 jbd_debug(5, "journal_head %p\n", jh); 1324 JBUFFER_TRACE(jh, "entry"); 1325 1326 jbd_lock_bh_state(bh); 1327 1328 if (jh->b_modified == 0) { 1329 /* 1330 * This buffer's got modified and becoming part 1331 * of the transaction. This needs to be done 1332 * once a transaction -bzzz 1333 */ 1334 jh->b_modified = 1; 1335 if (handle->h_buffer_credits <= 0) { 1336 ret = -ENOSPC; 1337 goto out_unlock_bh; 1338 } 1339 handle->h_buffer_credits--; 1340 } 1341 1342 /* 1343 * fastpath, to avoid expensive locking. If this buffer is already 1344 * on the running transaction's metadata list there is nothing to do. 1345 * Nobody can take it off again because there is a handle open. 1346 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1347 * result in this test being false, so we go in and take the locks. 1348 */ 1349 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1350 JBUFFER_TRACE(jh, "fastpath"); 1351 if (unlikely(jh->b_transaction != 1352 journal->j_running_transaction)) { 1353 printk(KERN_ERR "JBD2: %s: " 1354 "jh->b_transaction (%llu, %p, %u) != " 1355 "journal->j_running_transaction (%p, %u)\n", 1356 journal->j_devname, 1357 (unsigned long long) bh->b_blocknr, 1358 jh->b_transaction, 1359 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1360 journal->j_running_transaction, 1361 journal->j_running_transaction ? 1362 journal->j_running_transaction->t_tid : 0); 1363 ret = -EINVAL; 1364 } 1365 goto out_unlock_bh; 1366 } 1367 1368 set_buffer_jbddirty(bh); 1369 1370 /* 1371 * Metadata already on the current transaction list doesn't 1372 * need to be filed. Metadata on another transaction's list must 1373 * be committing, and will be refiled once the commit completes: 1374 * leave it alone for now. 1375 */ 1376 if (jh->b_transaction != transaction) { 1377 JBUFFER_TRACE(jh, "already on other transaction"); 1378 if (unlikely(((jh->b_transaction != 1379 journal->j_committing_transaction)) || 1380 (jh->b_next_transaction != transaction))) { 1381 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1382 "bad jh for block %llu: " 1383 "transaction (%p, %u), " 1384 "jh->b_transaction (%p, %u), " 1385 "jh->b_next_transaction (%p, %u), jlist %u\n", 1386 journal->j_devname, 1387 (unsigned long long) bh->b_blocknr, 1388 transaction, transaction->t_tid, 1389 jh->b_transaction, 1390 jh->b_transaction ? 1391 jh->b_transaction->t_tid : 0, 1392 jh->b_next_transaction, 1393 jh->b_next_transaction ? 1394 jh->b_next_transaction->t_tid : 0, 1395 jh->b_jlist); 1396 WARN_ON(1); 1397 ret = -EINVAL; 1398 } 1399 /* And this case is illegal: we can't reuse another 1400 * transaction's data buffer, ever. */ 1401 goto out_unlock_bh; 1402 } 1403 1404 /* That test should have eliminated the following case: */ 1405 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1406 1407 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1408 spin_lock(&journal->j_list_lock); 1409 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1410 spin_unlock(&journal->j_list_lock); 1411 out_unlock_bh: 1412 jbd_unlock_bh_state(bh); 1413 jbd2_journal_put_journal_head(jh); 1414 out: 1415 JBUFFER_TRACE(jh, "exit"); 1416 return ret; 1417 } 1418 1419 /** 1420 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1421 * @handle: transaction handle 1422 * @bh: bh to 'forget' 1423 * 1424 * We can only do the bforget if there are no commits pending against the 1425 * buffer. If the buffer is dirty in the current running transaction we 1426 * can safely unlink it. 1427 * 1428 * bh may not be a journalled buffer at all - it may be a non-JBD 1429 * buffer which came off the hashtable. Check for this. 1430 * 1431 * Decrements bh->b_count by one. 1432 * 1433 * Allow this call even if the handle has aborted --- it may be part of 1434 * the caller's cleanup after an abort. 1435 */ 1436 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1437 { 1438 transaction_t *transaction = handle->h_transaction; 1439 journal_t *journal; 1440 struct journal_head *jh; 1441 int drop_reserve = 0; 1442 int err = 0; 1443 int was_modified = 0; 1444 1445 if (is_handle_aborted(handle)) 1446 return -EROFS; 1447 journal = transaction->t_journal; 1448 1449 BUFFER_TRACE(bh, "entry"); 1450 1451 jbd_lock_bh_state(bh); 1452 1453 if (!buffer_jbd(bh)) 1454 goto not_jbd; 1455 jh = bh2jh(bh); 1456 1457 /* Critical error: attempting to delete a bitmap buffer, maybe? 1458 * Don't do any jbd operations, and return an error. */ 1459 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1460 "inconsistent data on disk")) { 1461 err = -EIO; 1462 goto not_jbd; 1463 } 1464 1465 /* keep track of whether or not this transaction modified us */ 1466 was_modified = jh->b_modified; 1467 1468 /* 1469 * The buffer's going from the transaction, we must drop 1470 * all references -bzzz 1471 */ 1472 jh->b_modified = 0; 1473 1474 if (jh->b_transaction == transaction) { 1475 J_ASSERT_JH(jh, !jh->b_frozen_data); 1476 1477 /* If we are forgetting a buffer which is already part 1478 * of this transaction, then we can just drop it from 1479 * the transaction immediately. */ 1480 clear_buffer_dirty(bh); 1481 clear_buffer_jbddirty(bh); 1482 1483 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1484 1485 /* 1486 * we only want to drop a reference if this transaction 1487 * modified the buffer 1488 */ 1489 if (was_modified) 1490 drop_reserve = 1; 1491 1492 /* 1493 * We are no longer going to journal this buffer. 1494 * However, the commit of this transaction is still 1495 * important to the buffer: the delete that we are now 1496 * processing might obsolete an old log entry, so by 1497 * committing, we can satisfy the buffer's checkpoint. 1498 * 1499 * So, if we have a checkpoint on the buffer, we should 1500 * now refile the buffer on our BJ_Forget list so that 1501 * we know to remove the checkpoint after we commit. 1502 */ 1503 1504 spin_lock(&journal->j_list_lock); 1505 if (jh->b_cp_transaction) { 1506 __jbd2_journal_temp_unlink_buffer(jh); 1507 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1508 } else { 1509 __jbd2_journal_unfile_buffer(jh); 1510 if (!buffer_jbd(bh)) { 1511 spin_unlock(&journal->j_list_lock); 1512 jbd_unlock_bh_state(bh); 1513 __bforget(bh); 1514 goto drop; 1515 } 1516 } 1517 spin_unlock(&journal->j_list_lock); 1518 } else if (jh->b_transaction) { 1519 J_ASSERT_JH(jh, (jh->b_transaction == 1520 journal->j_committing_transaction)); 1521 /* However, if the buffer is still owned by a prior 1522 * (committing) transaction, we can't drop it yet... */ 1523 JBUFFER_TRACE(jh, "belongs to older transaction"); 1524 /* ... but we CAN drop it from the new transaction if we 1525 * have also modified it since the original commit. */ 1526 1527 if (jh->b_next_transaction) { 1528 J_ASSERT(jh->b_next_transaction == transaction); 1529 spin_lock(&journal->j_list_lock); 1530 jh->b_next_transaction = NULL; 1531 spin_unlock(&journal->j_list_lock); 1532 1533 /* 1534 * only drop a reference if this transaction modified 1535 * the buffer 1536 */ 1537 if (was_modified) 1538 drop_reserve = 1; 1539 } 1540 } 1541 1542 not_jbd: 1543 jbd_unlock_bh_state(bh); 1544 __brelse(bh); 1545 drop: 1546 if (drop_reserve) { 1547 /* no need to reserve log space for this block -bzzz */ 1548 handle->h_buffer_credits++; 1549 } 1550 return err; 1551 } 1552 1553 /** 1554 * int jbd2_journal_stop() - complete a transaction 1555 * @handle: tranaction to complete. 1556 * 1557 * All done for a particular handle. 1558 * 1559 * There is not much action needed here. We just return any remaining 1560 * buffer credits to the transaction and remove the handle. The only 1561 * complication is that we need to start a commit operation if the 1562 * filesystem is marked for synchronous update. 1563 * 1564 * jbd2_journal_stop itself will not usually return an error, but it may 1565 * do so in unusual circumstances. In particular, expect it to 1566 * return -EIO if a jbd2_journal_abort has been executed since the 1567 * transaction began. 1568 */ 1569 int jbd2_journal_stop(handle_t *handle) 1570 { 1571 transaction_t *transaction = handle->h_transaction; 1572 journal_t *journal; 1573 int err = 0, wait_for_commit = 0; 1574 tid_t tid; 1575 pid_t pid; 1576 1577 if (!transaction) { 1578 /* 1579 * Handle is already detached from the transaction so 1580 * there is nothing to do other than decrease a refcount, 1581 * or free the handle if refcount drops to zero 1582 */ 1583 if (--handle->h_ref > 0) { 1584 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1585 handle->h_ref); 1586 return err; 1587 } else { 1588 if (handle->h_rsv_handle) 1589 jbd2_free_handle(handle->h_rsv_handle); 1590 goto free_and_exit; 1591 } 1592 } 1593 journal = transaction->t_journal; 1594 1595 J_ASSERT(journal_current_handle() == handle); 1596 1597 if (is_handle_aborted(handle)) 1598 err = -EIO; 1599 else 1600 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1601 1602 if (--handle->h_ref > 0) { 1603 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1604 handle->h_ref); 1605 return err; 1606 } 1607 1608 jbd_debug(4, "Handle %p going down\n", handle); 1609 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1610 transaction->t_tid, 1611 handle->h_type, handle->h_line_no, 1612 jiffies - handle->h_start_jiffies, 1613 handle->h_sync, handle->h_requested_credits, 1614 (handle->h_requested_credits - 1615 handle->h_buffer_credits)); 1616 1617 /* 1618 * Implement synchronous transaction batching. If the handle 1619 * was synchronous, don't force a commit immediately. Let's 1620 * yield and let another thread piggyback onto this 1621 * transaction. Keep doing that while new threads continue to 1622 * arrive. It doesn't cost much - we're about to run a commit 1623 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1624 * operations by 30x or more... 1625 * 1626 * We try and optimize the sleep time against what the 1627 * underlying disk can do, instead of having a static sleep 1628 * time. This is useful for the case where our storage is so 1629 * fast that it is more optimal to go ahead and force a flush 1630 * and wait for the transaction to be committed than it is to 1631 * wait for an arbitrary amount of time for new writers to 1632 * join the transaction. We achieve this by measuring how 1633 * long it takes to commit a transaction, and compare it with 1634 * how long this transaction has been running, and if run time 1635 * < commit time then we sleep for the delta and commit. This 1636 * greatly helps super fast disks that would see slowdowns as 1637 * more threads started doing fsyncs. 1638 * 1639 * But don't do this if this process was the most recent one 1640 * to perform a synchronous write. We do this to detect the 1641 * case where a single process is doing a stream of sync 1642 * writes. No point in waiting for joiners in that case. 1643 * 1644 * Setting max_batch_time to 0 disables this completely. 1645 */ 1646 pid = current->pid; 1647 if (handle->h_sync && journal->j_last_sync_writer != pid && 1648 journal->j_max_batch_time) { 1649 u64 commit_time, trans_time; 1650 1651 journal->j_last_sync_writer = pid; 1652 1653 read_lock(&journal->j_state_lock); 1654 commit_time = journal->j_average_commit_time; 1655 read_unlock(&journal->j_state_lock); 1656 1657 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1658 transaction->t_start_time)); 1659 1660 commit_time = max_t(u64, commit_time, 1661 1000*journal->j_min_batch_time); 1662 commit_time = min_t(u64, commit_time, 1663 1000*journal->j_max_batch_time); 1664 1665 if (trans_time < commit_time) { 1666 ktime_t expires = ktime_add_ns(ktime_get(), 1667 commit_time); 1668 set_current_state(TASK_UNINTERRUPTIBLE); 1669 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1670 } 1671 } 1672 1673 if (handle->h_sync) 1674 transaction->t_synchronous_commit = 1; 1675 current->journal_info = NULL; 1676 atomic_sub(handle->h_buffer_credits, 1677 &transaction->t_outstanding_credits); 1678 1679 /* 1680 * If the handle is marked SYNC, we need to set another commit 1681 * going! We also want to force a commit if the current 1682 * transaction is occupying too much of the log, or if the 1683 * transaction is too old now. 1684 */ 1685 if (handle->h_sync || 1686 (atomic_read(&transaction->t_outstanding_credits) > 1687 journal->j_max_transaction_buffers) || 1688 time_after_eq(jiffies, transaction->t_expires)) { 1689 /* Do this even for aborted journals: an abort still 1690 * completes the commit thread, it just doesn't write 1691 * anything to disk. */ 1692 1693 jbd_debug(2, "transaction too old, requesting commit for " 1694 "handle %p\n", handle); 1695 /* This is non-blocking */ 1696 jbd2_log_start_commit(journal, transaction->t_tid); 1697 1698 /* 1699 * Special case: JBD2_SYNC synchronous updates require us 1700 * to wait for the commit to complete. 1701 */ 1702 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1703 wait_for_commit = 1; 1704 } 1705 1706 /* 1707 * Once we drop t_updates, if it goes to zero the transaction 1708 * could start committing on us and eventually disappear. So 1709 * once we do this, we must not dereference transaction 1710 * pointer again. 1711 */ 1712 tid = transaction->t_tid; 1713 if (atomic_dec_and_test(&transaction->t_updates)) { 1714 wake_up(&journal->j_wait_updates); 1715 if (journal->j_barrier_count) 1716 wake_up(&journal->j_wait_transaction_locked); 1717 } 1718 1719 if (wait_for_commit) 1720 err = jbd2_log_wait_commit(journal, tid); 1721 1722 lock_map_release(&handle->h_lockdep_map); 1723 1724 if (handle->h_rsv_handle) 1725 jbd2_journal_free_reserved(handle->h_rsv_handle); 1726 free_and_exit: 1727 jbd2_free_handle(handle); 1728 return err; 1729 } 1730 1731 /* 1732 * 1733 * List management code snippets: various functions for manipulating the 1734 * transaction buffer lists. 1735 * 1736 */ 1737 1738 /* 1739 * Append a buffer to a transaction list, given the transaction's list head 1740 * pointer. 1741 * 1742 * j_list_lock is held. 1743 * 1744 * jbd_lock_bh_state(jh2bh(jh)) is held. 1745 */ 1746 1747 static inline void 1748 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1749 { 1750 if (!*list) { 1751 jh->b_tnext = jh->b_tprev = jh; 1752 *list = jh; 1753 } else { 1754 /* Insert at the tail of the list to preserve order */ 1755 struct journal_head *first = *list, *last = first->b_tprev; 1756 jh->b_tprev = last; 1757 jh->b_tnext = first; 1758 last->b_tnext = first->b_tprev = jh; 1759 } 1760 } 1761 1762 /* 1763 * Remove a buffer from a transaction list, given the transaction's list 1764 * head pointer. 1765 * 1766 * Called with j_list_lock held, and the journal may not be locked. 1767 * 1768 * jbd_lock_bh_state(jh2bh(jh)) is held. 1769 */ 1770 1771 static inline void 1772 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1773 { 1774 if (*list == jh) { 1775 *list = jh->b_tnext; 1776 if (*list == jh) 1777 *list = NULL; 1778 } 1779 jh->b_tprev->b_tnext = jh->b_tnext; 1780 jh->b_tnext->b_tprev = jh->b_tprev; 1781 } 1782 1783 /* 1784 * Remove a buffer from the appropriate transaction list. 1785 * 1786 * Note that this function can *change* the value of 1787 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1788 * t_reserved_list. If the caller is holding onto a copy of one of these 1789 * pointers, it could go bad. Generally the caller needs to re-read the 1790 * pointer from the transaction_t. 1791 * 1792 * Called under j_list_lock. 1793 */ 1794 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1795 { 1796 struct journal_head **list = NULL; 1797 transaction_t *transaction; 1798 struct buffer_head *bh = jh2bh(jh); 1799 1800 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1801 transaction = jh->b_transaction; 1802 if (transaction) 1803 assert_spin_locked(&transaction->t_journal->j_list_lock); 1804 1805 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1806 if (jh->b_jlist != BJ_None) 1807 J_ASSERT_JH(jh, transaction != NULL); 1808 1809 switch (jh->b_jlist) { 1810 case BJ_None: 1811 return; 1812 case BJ_Metadata: 1813 transaction->t_nr_buffers--; 1814 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1815 list = &transaction->t_buffers; 1816 break; 1817 case BJ_Forget: 1818 list = &transaction->t_forget; 1819 break; 1820 case BJ_Shadow: 1821 list = &transaction->t_shadow_list; 1822 break; 1823 case BJ_Reserved: 1824 list = &transaction->t_reserved_list; 1825 break; 1826 } 1827 1828 __blist_del_buffer(list, jh); 1829 jh->b_jlist = BJ_None; 1830 if (test_clear_buffer_jbddirty(bh)) 1831 mark_buffer_dirty(bh); /* Expose it to the VM */ 1832 } 1833 1834 /* 1835 * Remove buffer from all transactions. 1836 * 1837 * Called with bh_state lock and j_list_lock 1838 * 1839 * jh and bh may be already freed when this function returns. 1840 */ 1841 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1842 { 1843 __jbd2_journal_temp_unlink_buffer(jh); 1844 jh->b_transaction = NULL; 1845 jbd2_journal_put_journal_head(jh); 1846 } 1847 1848 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1849 { 1850 struct buffer_head *bh = jh2bh(jh); 1851 1852 /* Get reference so that buffer cannot be freed before we unlock it */ 1853 get_bh(bh); 1854 jbd_lock_bh_state(bh); 1855 spin_lock(&journal->j_list_lock); 1856 __jbd2_journal_unfile_buffer(jh); 1857 spin_unlock(&journal->j_list_lock); 1858 jbd_unlock_bh_state(bh); 1859 __brelse(bh); 1860 } 1861 1862 /* 1863 * Called from jbd2_journal_try_to_free_buffers(). 1864 * 1865 * Called under jbd_lock_bh_state(bh) 1866 */ 1867 static void 1868 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1869 { 1870 struct journal_head *jh; 1871 1872 jh = bh2jh(bh); 1873 1874 if (buffer_locked(bh) || buffer_dirty(bh)) 1875 goto out; 1876 1877 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1878 goto out; 1879 1880 spin_lock(&journal->j_list_lock); 1881 if (jh->b_cp_transaction != NULL) { 1882 /* written-back checkpointed metadata buffer */ 1883 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1884 __jbd2_journal_remove_checkpoint(jh); 1885 } 1886 spin_unlock(&journal->j_list_lock); 1887 out: 1888 return; 1889 } 1890 1891 /** 1892 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1893 * @journal: journal for operation 1894 * @page: to try and free 1895 * @gfp_mask: we use the mask to detect how hard should we try to release 1896 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1897 * release the buffers. 1898 * 1899 * 1900 * For all the buffers on this page, 1901 * if they are fully written out ordered data, move them onto BUF_CLEAN 1902 * so try_to_free_buffers() can reap them. 1903 * 1904 * This function returns non-zero if we wish try_to_free_buffers() 1905 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1906 * We also do it if the page has locked or dirty buffers and the caller wants 1907 * us to perform sync or async writeout. 1908 * 1909 * This complicates JBD locking somewhat. We aren't protected by the 1910 * BKL here. We wish to remove the buffer from its committing or 1911 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1912 * 1913 * This may *change* the value of transaction_t->t_datalist, so anyone 1914 * who looks at t_datalist needs to lock against this function. 1915 * 1916 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1917 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1918 * will come out of the lock with the buffer dirty, which makes it 1919 * ineligible for release here. 1920 * 1921 * Who else is affected by this? hmm... Really the only contender 1922 * is do_get_write_access() - it could be looking at the buffer while 1923 * journal_try_to_free_buffer() is changing its state. But that 1924 * cannot happen because we never reallocate freed data as metadata 1925 * while the data is part of a transaction. Yes? 1926 * 1927 * Return 0 on failure, 1 on success 1928 */ 1929 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1930 struct page *page, gfp_t gfp_mask) 1931 { 1932 struct buffer_head *head; 1933 struct buffer_head *bh; 1934 int ret = 0; 1935 1936 J_ASSERT(PageLocked(page)); 1937 1938 head = page_buffers(page); 1939 bh = head; 1940 do { 1941 struct journal_head *jh; 1942 1943 /* 1944 * We take our own ref against the journal_head here to avoid 1945 * having to add tons of locking around each instance of 1946 * jbd2_journal_put_journal_head(). 1947 */ 1948 jh = jbd2_journal_grab_journal_head(bh); 1949 if (!jh) 1950 continue; 1951 1952 jbd_lock_bh_state(bh); 1953 __journal_try_to_free_buffer(journal, bh); 1954 jbd2_journal_put_journal_head(jh); 1955 jbd_unlock_bh_state(bh); 1956 if (buffer_jbd(bh)) 1957 goto busy; 1958 } while ((bh = bh->b_this_page) != head); 1959 1960 ret = try_to_free_buffers(page); 1961 1962 busy: 1963 return ret; 1964 } 1965 1966 /* 1967 * This buffer is no longer needed. If it is on an older transaction's 1968 * checkpoint list we need to record it on this transaction's forget list 1969 * to pin this buffer (and hence its checkpointing transaction) down until 1970 * this transaction commits. If the buffer isn't on a checkpoint list, we 1971 * release it. 1972 * Returns non-zero if JBD no longer has an interest in the buffer. 1973 * 1974 * Called under j_list_lock. 1975 * 1976 * Called under jbd_lock_bh_state(bh). 1977 */ 1978 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1979 { 1980 int may_free = 1; 1981 struct buffer_head *bh = jh2bh(jh); 1982 1983 if (jh->b_cp_transaction) { 1984 JBUFFER_TRACE(jh, "on running+cp transaction"); 1985 __jbd2_journal_temp_unlink_buffer(jh); 1986 /* 1987 * We don't want to write the buffer anymore, clear the 1988 * bit so that we don't confuse checks in 1989 * __journal_file_buffer 1990 */ 1991 clear_buffer_dirty(bh); 1992 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1993 may_free = 0; 1994 } else { 1995 JBUFFER_TRACE(jh, "on running transaction"); 1996 __jbd2_journal_unfile_buffer(jh); 1997 } 1998 return may_free; 1999 } 2000 2001 /* 2002 * jbd2_journal_invalidatepage 2003 * 2004 * This code is tricky. It has a number of cases to deal with. 2005 * 2006 * There are two invariants which this code relies on: 2007 * 2008 * i_size must be updated on disk before we start calling invalidatepage on the 2009 * data. 2010 * 2011 * This is done in ext3 by defining an ext3_setattr method which 2012 * updates i_size before truncate gets going. By maintaining this 2013 * invariant, we can be sure that it is safe to throw away any buffers 2014 * attached to the current transaction: once the transaction commits, 2015 * we know that the data will not be needed. 2016 * 2017 * Note however that we can *not* throw away data belonging to the 2018 * previous, committing transaction! 2019 * 2020 * Any disk blocks which *are* part of the previous, committing 2021 * transaction (and which therefore cannot be discarded immediately) are 2022 * not going to be reused in the new running transaction 2023 * 2024 * The bitmap committed_data images guarantee this: any block which is 2025 * allocated in one transaction and removed in the next will be marked 2026 * as in-use in the committed_data bitmap, so cannot be reused until 2027 * the next transaction to delete the block commits. This means that 2028 * leaving committing buffers dirty is quite safe: the disk blocks 2029 * cannot be reallocated to a different file and so buffer aliasing is 2030 * not possible. 2031 * 2032 * 2033 * The above applies mainly to ordered data mode. In writeback mode we 2034 * don't make guarantees about the order in which data hits disk --- in 2035 * particular we don't guarantee that new dirty data is flushed before 2036 * transaction commit --- so it is always safe just to discard data 2037 * immediately in that mode. --sct 2038 */ 2039 2040 /* 2041 * The journal_unmap_buffer helper function returns zero if the buffer 2042 * concerned remains pinned as an anonymous buffer belonging to an older 2043 * transaction. 2044 * 2045 * We're outside-transaction here. Either or both of j_running_transaction 2046 * and j_committing_transaction may be NULL. 2047 */ 2048 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2049 int partial_page) 2050 { 2051 transaction_t *transaction; 2052 struct journal_head *jh; 2053 int may_free = 1; 2054 2055 BUFFER_TRACE(bh, "entry"); 2056 2057 /* 2058 * It is safe to proceed here without the j_list_lock because the 2059 * buffers cannot be stolen by try_to_free_buffers as long as we are 2060 * holding the page lock. --sct 2061 */ 2062 2063 if (!buffer_jbd(bh)) 2064 goto zap_buffer_unlocked; 2065 2066 /* OK, we have data buffer in journaled mode */ 2067 write_lock(&journal->j_state_lock); 2068 jbd_lock_bh_state(bh); 2069 spin_lock(&journal->j_list_lock); 2070 2071 jh = jbd2_journal_grab_journal_head(bh); 2072 if (!jh) 2073 goto zap_buffer_no_jh; 2074 2075 /* 2076 * We cannot remove the buffer from checkpoint lists until the 2077 * transaction adding inode to orphan list (let's call it T) 2078 * is committed. Otherwise if the transaction changing the 2079 * buffer would be cleaned from the journal before T is 2080 * committed, a crash will cause that the correct contents of 2081 * the buffer will be lost. On the other hand we have to 2082 * clear the buffer dirty bit at latest at the moment when the 2083 * transaction marking the buffer as freed in the filesystem 2084 * structures is committed because from that moment on the 2085 * block can be reallocated and used by a different page. 2086 * Since the block hasn't been freed yet but the inode has 2087 * already been added to orphan list, it is safe for us to add 2088 * the buffer to BJ_Forget list of the newest transaction. 2089 * 2090 * Also we have to clear buffer_mapped flag of a truncated buffer 2091 * because the buffer_head may be attached to the page straddling 2092 * i_size (can happen only when blocksize < pagesize) and thus the 2093 * buffer_head can be reused when the file is extended again. So we end 2094 * up keeping around invalidated buffers attached to transactions' 2095 * BJ_Forget list just to stop checkpointing code from cleaning up 2096 * the transaction this buffer was modified in. 2097 */ 2098 transaction = jh->b_transaction; 2099 if (transaction == NULL) { 2100 /* First case: not on any transaction. If it 2101 * has no checkpoint link, then we can zap it: 2102 * it's a writeback-mode buffer so we don't care 2103 * if it hits disk safely. */ 2104 if (!jh->b_cp_transaction) { 2105 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2106 goto zap_buffer; 2107 } 2108 2109 if (!buffer_dirty(bh)) { 2110 /* bdflush has written it. We can drop it now */ 2111 goto zap_buffer; 2112 } 2113 2114 /* OK, it must be in the journal but still not 2115 * written fully to disk: it's metadata or 2116 * journaled data... */ 2117 2118 if (journal->j_running_transaction) { 2119 /* ... and once the current transaction has 2120 * committed, the buffer won't be needed any 2121 * longer. */ 2122 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2123 may_free = __dispose_buffer(jh, 2124 journal->j_running_transaction); 2125 goto zap_buffer; 2126 } else { 2127 /* There is no currently-running transaction. So the 2128 * orphan record which we wrote for this file must have 2129 * passed into commit. We must attach this buffer to 2130 * the committing transaction, if it exists. */ 2131 if (journal->j_committing_transaction) { 2132 JBUFFER_TRACE(jh, "give to committing trans"); 2133 may_free = __dispose_buffer(jh, 2134 journal->j_committing_transaction); 2135 goto zap_buffer; 2136 } else { 2137 /* The orphan record's transaction has 2138 * committed. We can cleanse this buffer */ 2139 clear_buffer_jbddirty(bh); 2140 goto zap_buffer; 2141 } 2142 } 2143 } else if (transaction == journal->j_committing_transaction) { 2144 JBUFFER_TRACE(jh, "on committing transaction"); 2145 /* 2146 * The buffer is committing, we simply cannot touch 2147 * it. If the page is straddling i_size we have to wait 2148 * for commit and try again. 2149 */ 2150 if (partial_page) { 2151 jbd2_journal_put_journal_head(jh); 2152 spin_unlock(&journal->j_list_lock); 2153 jbd_unlock_bh_state(bh); 2154 write_unlock(&journal->j_state_lock); 2155 return -EBUSY; 2156 } 2157 /* 2158 * OK, buffer won't be reachable after truncate. We just set 2159 * j_next_transaction to the running transaction (if there is 2160 * one) and mark buffer as freed so that commit code knows it 2161 * should clear dirty bits when it is done with the buffer. 2162 */ 2163 set_buffer_freed(bh); 2164 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2165 jh->b_next_transaction = journal->j_running_transaction; 2166 jbd2_journal_put_journal_head(jh); 2167 spin_unlock(&journal->j_list_lock); 2168 jbd_unlock_bh_state(bh); 2169 write_unlock(&journal->j_state_lock); 2170 return 0; 2171 } else { 2172 /* Good, the buffer belongs to the running transaction. 2173 * We are writing our own transaction's data, not any 2174 * previous one's, so it is safe to throw it away 2175 * (remember that we expect the filesystem to have set 2176 * i_size already for this truncate so recovery will not 2177 * expose the disk blocks we are discarding here.) */ 2178 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2179 JBUFFER_TRACE(jh, "on running transaction"); 2180 may_free = __dispose_buffer(jh, transaction); 2181 } 2182 2183 zap_buffer: 2184 /* 2185 * This is tricky. Although the buffer is truncated, it may be reused 2186 * if blocksize < pagesize and it is attached to the page straddling 2187 * EOF. Since the buffer might have been added to BJ_Forget list of the 2188 * running transaction, journal_get_write_access() won't clear 2189 * b_modified and credit accounting gets confused. So clear b_modified 2190 * here. 2191 */ 2192 jh->b_modified = 0; 2193 jbd2_journal_put_journal_head(jh); 2194 zap_buffer_no_jh: 2195 spin_unlock(&journal->j_list_lock); 2196 jbd_unlock_bh_state(bh); 2197 write_unlock(&journal->j_state_lock); 2198 zap_buffer_unlocked: 2199 clear_buffer_dirty(bh); 2200 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2201 clear_buffer_mapped(bh); 2202 clear_buffer_req(bh); 2203 clear_buffer_new(bh); 2204 clear_buffer_delay(bh); 2205 clear_buffer_unwritten(bh); 2206 bh->b_bdev = NULL; 2207 return may_free; 2208 } 2209 2210 /** 2211 * void jbd2_journal_invalidatepage() 2212 * @journal: journal to use for flush... 2213 * @page: page to flush 2214 * @offset: start of the range to invalidate 2215 * @length: length of the range to invalidate 2216 * 2217 * Reap page buffers containing data after in the specified range in page. 2218 * Can return -EBUSY if buffers are part of the committing transaction and 2219 * the page is straddling i_size. Caller then has to wait for current commit 2220 * and try again. 2221 */ 2222 int jbd2_journal_invalidatepage(journal_t *journal, 2223 struct page *page, 2224 unsigned int offset, 2225 unsigned int length) 2226 { 2227 struct buffer_head *head, *bh, *next; 2228 unsigned int stop = offset + length; 2229 unsigned int curr_off = 0; 2230 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2231 int may_free = 1; 2232 int ret = 0; 2233 2234 if (!PageLocked(page)) 2235 BUG(); 2236 if (!page_has_buffers(page)) 2237 return 0; 2238 2239 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2240 2241 /* We will potentially be playing with lists other than just the 2242 * data lists (especially for journaled data mode), so be 2243 * cautious in our locking. */ 2244 2245 head = bh = page_buffers(page); 2246 do { 2247 unsigned int next_off = curr_off + bh->b_size; 2248 next = bh->b_this_page; 2249 2250 if (next_off > stop) 2251 return 0; 2252 2253 if (offset <= curr_off) { 2254 /* This block is wholly outside the truncation point */ 2255 lock_buffer(bh); 2256 ret = journal_unmap_buffer(journal, bh, partial_page); 2257 unlock_buffer(bh); 2258 if (ret < 0) 2259 return ret; 2260 may_free &= ret; 2261 } 2262 curr_off = next_off; 2263 bh = next; 2264 2265 } while (bh != head); 2266 2267 if (!partial_page) { 2268 if (may_free && try_to_free_buffers(page)) 2269 J_ASSERT(!page_has_buffers(page)); 2270 } 2271 return 0; 2272 } 2273 2274 /* 2275 * File a buffer on the given transaction list. 2276 */ 2277 void __jbd2_journal_file_buffer(struct journal_head *jh, 2278 transaction_t *transaction, int jlist) 2279 { 2280 struct journal_head **list = NULL; 2281 int was_dirty = 0; 2282 struct buffer_head *bh = jh2bh(jh); 2283 2284 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2285 assert_spin_locked(&transaction->t_journal->j_list_lock); 2286 2287 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2288 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2289 jh->b_transaction == NULL); 2290 2291 if (jh->b_transaction && jh->b_jlist == jlist) 2292 return; 2293 2294 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2295 jlist == BJ_Shadow || jlist == BJ_Forget) { 2296 /* 2297 * For metadata buffers, we track dirty bit in buffer_jbddirty 2298 * instead of buffer_dirty. We should not see a dirty bit set 2299 * here because we clear it in do_get_write_access but e.g. 2300 * tune2fs can modify the sb and set the dirty bit at any time 2301 * so we try to gracefully handle that. 2302 */ 2303 if (buffer_dirty(bh)) 2304 warn_dirty_buffer(bh); 2305 if (test_clear_buffer_dirty(bh) || 2306 test_clear_buffer_jbddirty(bh)) 2307 was_dirty = 1; 2308 } 2309 2310 if (jh->b_transaction) 2311 __jbd2_journal_temp_unlink_buffer(jh); 2312 else 2313 jbd2_journal_grab_journal_head(bh); 2314 jh->b_transaction = transaction; 2315 2316 switch (jlist) { 2317 case BJ_None: 2318 J_ASSERT_JH(jh, !jh->b_committed_data); 2319 J_ASSERT_JH(jh, !jh->b_frozen_data); 2320 return; 2321 case BJ_Metadata: 2322 transaction->t_nr_buffers++; 2323 list = &transaction->t_buffers; 2324 break; 2325 case BJ_Forget: 2326 list = &transaction->t_forget; 2327 break; 2328 case BJ_Shadow: 2329 list = &transaction->t_shadow_list; 2330 break; 2331 case BJ_Reserved: 2332 list = &transaction->t_reserved_list; 2333 break; 2334 } 2335 2336 __blist_add_buffer(list, jh); 2337 jh->b_jlist = jlist; 2338 2339 if (was_dirty) 2340 set_buffer_jbddirty(bh); 2341 } 2342 2343 void jbd2_journal_file_buffer(struct journal_head *jh, 2344 transaction_t *transaction, int jlist) 2345 { 2346 jbd_lock_bh_state(jh2bh(jh)); 2347 spin_lock(&transaction->t_journal->j_list_lock); 2348 __jbd2_journal_file_buffer(jh, transaction, jlist); 2349 spin_unlock(&transaction->t_journal->j_list_lock); 2350 jbd_unlock_bh_state(jh2bh(jh)); 2351 } 2352 2353 /* 2354 * Remove a buffer from its current buffer list in preparation for 2355 * dropping it from its current transaction entirely. If the buffer has 2356 * already started to be used by a subsequent transaction, refile the 2357 * buffer on that transaction's metadata list. 2358 * 2359 * Called under j_list_lock 2360 * Called under jbd_lock_bh_state(jh2bh(jh)) 2361 * 2362 * jh and bh may be already free when this function returns 2363 */ 2364 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2365 { 2366 int was_dirty, jlist; 2367 struct buffer_head *bh = jh2bh(jh); 2368 2369 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2370 if (jh->b_transaction) 2371 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2372 2373 /* If the buffer is now unused, just drop it. */ 2374 if (jh->b_next_transaction == NULL) { 2375 __jbd2_journal_unfile_buffer(jh); 2376 return; 2377 } 2378 2379 /* 2380 * It has been modified by a later transaction: add it to the new 2381 * transaction's metadata list. 2382 */ 2383 2384 was_dirty = test_clear_buffer_jbddirty(bh); 2385 __jbd2_journal_temp_unlink_buffer(jh); 2386 /* 2387 * We set b_transaction here because b_next_transaction will inherit 2388 * our jh reference and thus __jbd2_journal_file_buffer() must not 2389 * take a new one. 2390 */ 2391 jh->b_transaction = jh->b_next_transaction; 2392 jh->b_next_transaction = NULL; 2393 if (buffer_freed(bh)) 2394 jlist = BJ_Forget; 2395 else if (jh->b_modified) 2396 jlist = BJ_Metadata; 2397 else 2398 jlist = BJ_Reserved; 2399 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2400 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2401 2402 if (was_dirty) 2403 set_buffer_jbddirty(bh); 2404 } 2405 2406 /* 2407 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2408 * bh reference so that we can safely unlock bh. 2409 * 2410 * The jh and bh may be freed by this call. 2411 */ 2412 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2413 { 2414 struct buffer_head *bh = jh2bh(jh); 2415 2416 /* Get reference so that buffer cannot be freed before we unlock it */ 2417 get_bh(bh); 2418 jbd_lock_bh_state(bh); 2419 spin_lock(&journal->j_list_lock); 2420 __jbd2_journal_refile_buffer(jh); 2421 jbd_unlock_bh_state(bh); 2422 spin_unlock(&journal->j_list_lock); 2423 __brelse(bh); 2424 } 2425 2426 /* 2427 * File inode in the inode list of the handle's transaction 2428 */ 2429 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2430 { 2431 transaction_t *transaction = handle->h_transaction; 2432 journal_t *journal; 2433 2434 if (is_handle_aborted(handle)) 2435 return -EROFS; 2436 journal = transaction->t_journal; 2437 2438 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2439 transaction->t_tid); 2440 2441 /* 2442 * First check whether inode isn't already on the transaction's 2443 * lists without taking the lock. Note that this check is safe 2444 * without the lock as we cannot race with somebody removing inode 2445 * from the transaction. The reason is that we remove inode from the 2446 * transaction only in journal_release_jbd_inode() and when we commit 2447 * the transaction. We are guarded from the first case by holding 2448 * a reference to the inode. We are safe against the second case 2449 * because if jinode->i_transaction == transaction, commit code 2450 * cannot touch the transaction because we hold reference to it, 2451 * and if jinode->i_next_transaction == transaction, commit code 2452 * will only file the inode where we want it. 2453 */ 2454 if (jinode->i_transaction == transaction || 2455 jinode->i_next_transaction == transaction) 2456 return 0; 2457 2458 spin_lock(&journal->j_list_lock); 2459 2460 if (jinode->i_transaction == transaction || 2461 jinode->i_next_transaction == transaction) 2462 goto done; 2463 2464 /* 2465 * We only ever set this variable to 1 so the test is safe. Since 2466 * t_need_data_flush is likely to be set, we do the test to save some 2467 * cacheline bouncing 2468 */ 2469 if (!transaction->t_need_data_flush) 2470 transaction->t_need_data_flush = 1; 2471 /* On some different transaction's list - should be 2472 * the committing one */ 2473 if (jinode->i_transaction) { 2474 J_ASSERT(jinode->i_next_transaction == NULL); 2475 J_ASSERT(jinode->i_transaction == 2476 journal->j_committing_transaction); 2477 jinode->i_next_transaction = transaction; 2478 goto done; 2479 } 2480 /* Not on any transaction list... */ 2481 J_ASSERT(!jinode->i_next_transaction); 2482 jinode->i_transaction = transaction; 2483 list_add(&jinode->i_list, &transaction->t_inode_list); 2484 done: 2485 spin_unlock(&journal->j_list_lock); 2486 2487 return 0; 2488 } 2489 2490 /* 2491 * File truncate and transaction commit interact with each other in a 2492 * non-trivial way. If a transaction writing data block A is 2493 * committing, we cannot discard the data by truncate until we have 2494 * written them. Otherwise if we crashed after the transaction with 2495 * write has committed but before the transaction with truncate has 2496 * committed, we could see stale data in block A. This function is a 2497 * helper to solve this problem. It starts writeout of the truncated 2498 * part in case it is in the committing transaction. 2499 * 2500 * Filesystem code must call this function when inode is journaled in 2501 * ordered mode before truncation happens and after the inode has been 2502 * placed on orphan list with the new inode size. The second condition 2503 * avoids the race that someone writes new data and we start 2504 * committing the transaction after this function has been called but 2505 * before a transaction for truncate is started (and furthermore it 2506 * allows us to optimize the case where the addition to orphan list 2507 * happens in the same transaction as write --- we don't have to write 2508 * any data in such case). 2509 */ 2510 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2511 struct jbd2_inode *jinode, 2512 loff_t new_size) 2513 { 2514 transaction_t *inode_trans, *commit_trans; 2515 int ret = 0; 2516 2517 /* This is a quick check to avoid locking if not necessary */ 2518 if (!jinode->i_transaction) 2519 goto out; 2520 /* Locks are here just to force reading of recent values, it is 2521 * enough that the transaction was not committing before we started 2522 * a transaction adding the inode to orphan list */ 2523 read_lock(&journal->j_state_lock); 2524 commit_trans = journal->j_committing_transaction; 2525 read_unlock(&journal->j_state_lock); 2526 spin_lock(&journal->j_list_lock); 2527 inode_trans = jinode->i_transaction; 2528 spin_unlock(&journal->j_list_lock); 2529 if (inode_trans == commit_trans) { 2530 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2531 new_size, LLONG_MAX); 2532 if (ret) 2533 jbd2_journal_abort(journal, ret); 2534 } 2535 out: 2536 return ret; 2537 } 2538