1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply initialise a new transaction. Initialize it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static void jbd2_get_transaction(journal_t *journal, 81 transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 spin_lock_init(&transaction->t_handle_lock); 89 atomic_set(&transaction->t_updates, 0); 90 atomic_set(&transaction->t_outstanding_credits, 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_handle_count, 0); 93 INIT_LIST_HEAD(&transaction->t_inode_list); 94 INIT_LIST_HEAD(&transaction->t_private_list); 95 96 /* Set up the commit timer for the new transaction. */ 97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 98 add_timer(&journal->j_commit_timer); 99 100 J_ASSERT(journal->j_running_transaction == NULL); 101 journal->j_running_transaction = transaction; 102 transaction->t_max_wait = 0; 103 transaction->t_start = jiffies; 104 transaction->t_requested = 0; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * Update transaction's maximum wait time, if debugging is enabled. 117 * 118 * In order for t_max_wait to be reliable, it must be protected by a 119 * lock. But doing so will mean that start_this_handle() can not be 120 * run in parallel on SMP systems, which limits our scalability. So 121 * unless debugging is enabled, we no longer update t_max_wait, which 122 * means that maximum wait time reported by the jbd2_run_stats 123 * tracepoint will always be zero. 124 */ 125 static inline void update_t_max_wait(transaction_t *transaction, 126 unsigned long ts) 127 { 128 #ifdef CONFIG_JBD2_DEBUG 129 if (jbd2_journal_enable_debug && 130 time_after(transaction->t_start, ts)) { 131 ts = jbd2_time_diff(ts, transaction->t_start); 132 spin_lock(&transaction->t_handle_lock); 133 if (ts > transaction->t_max_wait) 134 transaction->t_max_wait = ts; 135 spin_unlock(&transaction->t_handle_lock); 136 } 137 #endif 138 } 139 140 /* 141 * Wait until running transaction passes to T_FLUSH state and new transaction 142 * can thus be started. Also starts the commit if needed. The function expects 143 * running transaction to exist and releases j_state_lock. 144 */ 145 static void wait_transaction_locked(journal_t *journal) 146 __releases(journal->j_state_lock) 147 { 148 DEFINE_WAIT(wait); 149 int need_to_start; 150 tid_t tid = journal->j_running_transaction->t_tid; 151 152 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 153 TASK_UNINTERRUPTIBLE); 154 need_to_start = !tid_geq(journal->j_commit_request, tid); 155 read_unlock(&journal->j_state_lock); 156 if (need_to_start) 157 jbd2_log_start_commit(journal, tid); 158 jbd2_might_wait_for_commit(journal); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 } 162 163 /* 164 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 165 * state and new transaction can thus be started. The function releases 166 * j_state_lock. 167 */ 168 static void wait_transaction_switching(journal_t *journal) 169 __releases(journal->j_state_lock) 170 { 171 DEFINE_WAIT(wait); 172 173 if (WARN_ON(!journal->j_running_transaction || 174 journal->j_running_transaction->t_state != T_SWITCH)) 175 return; 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 read_unlock(&journal->j_state_lock); 179 /* 180 * We don't call jbd2_might_wait_for_commit() here as there's no 181 * waiting for outstanding handles happening anymore in T_SWITCH state 182 * and handling of reserved handles actually relies on that for 183 * correctness. 184 */ 185 schedule(); 186 finish_wait(&journal->j_wait_transaction_locked, &wait); 187 } 188 189 static void sub_reserved_credits(journal_t *journal, int blocks) 190 { 191 atomic_sub(blocks, &journal->j_reserved_credits); 192 wake_up(&journal->j_wait_reserved); 193 } 194 195 /* 196 * Wait until we can add credits for handle to the running transaction. Called 197 * with j_state_lock held for reading. Returns 0 if handle joined the running 198 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 199 * caller must retry. 200 */ 201 static int add_transaction_credits(journal_t *journal, int blocks, 202 int rsv_blocks) 203 { 204 transaction_t *t = journal->j_running_transaction; 205 int needed; 206 int total = blocks + rsv_blocks; 207 208 /* 209 * If the current transaction is locked down for commit, wait 210 * for the lock to be released. 211 */ 212 if (t->t_state != T_RUNNING) { 213 WARN_ON_ONCE(t->t_state >= T_FLUSH); 214 wait_transaction_locked(journal); 215 return 1; 216 } 217 218 /* 219 * If there is not enough space left in the log to write all 220 * potential buffers requested by this operation, we need to 221 * stall pending a log checkpoint to free some more log space. 222 */ 223 needed = atomic_add_return(total, &t->t_outstanding_credits); 224 if (needed > journal->j_max_transaction_buffers) { 225 /* 226 * If the current transaction is already too large, 227 * then start to commit it: we can then go back and 228 * attach this handle to a new transaction. 229 */ 230 atomic_sub(total, &t->t_outstanding_credits); 231 232 /* 233 * Is the number of reserved credits in the current transaction too 234 * big to fit this handle? Wait until reserved credits are freed. 235 */ 236 if (atomic_read(&journal->j_reserved_credits) + total > 237 journal->j_max_transaction_buffers) { 238 read_unlock(&journal->j_state_lock); 239 jbd2_might_wait_for_commit(journal); 240 wait_event(journal->j_wait_reserved, 241 atomic_read(&journal->j_reserved_credits) + total <= 242 journal->j_max_transaction_buffers); 243 return 1; 244 } 245 246 wait_transaction_locked(journal); 247 return 1; 248 } 249 250 /* 251 * The commit code assumes that it can get enough log space 252 * without forcing a checkpoint. This is *critical* for 253 * correctness: a checkpoint of a buffer which is also 254 * associated with a committing transaction creates a deadlock, 255 * so commit simply cannot force through checkpoints. 256 * 257 * We must therefore ensure the necessary space in the journal 258 * *before* starting to dirty potentially checkpointed buffers 259 * in the new transaction. 260 */ 261 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 262 atomic_sub(total, &t->t_outstanding_credits); 263 read_unlock(&journal->j_state_lock); 264 jbd2_might_wait_for_commit(journal); 265 write_lock(&journal->j_state_lock); 266 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 267 __jbd2_log_wait_for_space(journal); 268 write_unlock(&journal->j_state_lock); 269 return 1; 270 } 271 272 /* No reservation? We are done... */ 273 if (!rsv_blocks) 274 return 0; 275 276 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 277 /* We allow at most half of a transaction to be reserved */ 278 if (needed > journal->j_max_transaction_buffers / 2) { 279 sub_reserved_credits(journal, rsv_blocks); 280 atomic_sub(total, &t->t_outstanding_credits); 281 read_unlock(&journal->j_state_lock); 282 jbd2_might_wait_for_commit(journal); 283 wait_event(journal->j_wait_reserved, 284 atomic_read(&journal->j_reserved_credits) + rsv_blocks 285 <= journal->j_max_transaction_buffers / 2); 286 return 1; 287 } 288 return 0; 289 } 290 291 /* 292 * start_this_handle: Given a handle, deal with any locking or stalling 293 * needed to make sure that there is enough journal space for the handle 294 * to begin. Attach the handle to a transaction and set up the 295 * transaction's buffer credits. 296 */ 297 298 static int start_this_handle(journal_t *journal, handle_t *handle, 299 gfp_t gfp_mask) 300 { 301 transaction_t *transaction, *new_transaction = NULL; 302 int blocks = handle->h_buffer_credits; 303 int rsv_blocks = 0; 304 unsigned long ts = jiffies; 305 306 if (handle->h_rsv_handle) 307 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 308 309 /* 310 * Limit the number of reserved credits to 1/2 of maximum transaction 311 * size and limit the number of total credits to not exceed maximum 312 * transaction size per operation. 313 */ 314 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 315 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 316 printk(KERN_ERR "JBD2: %s wants too many credits " 317 "credits:%d rsv_credits:%d max:%d\n", 318 current->comm, blocks, rsv_blocks, 319 journal->j_max_transaction_buffers); 320 WARN_ON(1); 321 return -ENOSPC; 322 } 323 324 alloc_transaction: 325 if (!journal->j_running_transaction) { 326 /* 327 * If __GFP_FS is not present, then we may be being called from 328 * inside the fs writeback layer, so we MUST NOT fail. 329 */ 330 if ((gfp_mask & __GFP_FS) == 0) 331 gfp_mask |= __GFP_NOFAIL; 332 new_transaction = kmem_cache_zalloc(transaction_cache, 333 gfp_mask); 334 if (!new_transaction) 335 return -ENOMEM; 336 } 337 338 jbd_debug(3, "New handle %p going live.\n", handle); 339 340 /* 341 * We need to hold j_state_lock until t_updates has been incremented, 342 * for proper journal barrier handling 343 */ 344 repeat: 345 read_lock(&journal->j_state_lock); 346 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 347 if (is_journal_aborted(journal) || 348 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 349 read_unlock(&journal->j_state_lock); 350 jbd2_journal_free_transaction(new_transaction); 351 return -EROFS; 352 } 353 354 /* 355 * Wait on the journal's transaction barrier if necessary. Specifically 356 * we allow reserved handles to proceed because otherwise commit could 357 * deadlock on page writeback not being able to complete. 358 */ 359 if (!handle->h_reserved && journal->j_barrier_count) { 360 read_unlock(&journal->j_state_lock); 361 wait_event(journal->j_wait_transaction_locked, 362 journal->j_barrier_count == 0); 363 goto repeat; 364 } 365 366 if (!journal->j_running_transaction) { 367 read_unlock(&journal->j_state_lock); 368 if (!new_transaction) 369 goto alloc_transaction; 370 write_lock(&journal->j_state_lock); 371 if (!journal->j_running_transaction && 372 (handle->h_reserved || !journal->j_barrier_count)) { 373 jbd2_get_transaction(journal, new_transaction); 374 new_transaction = NULL; 375 } 376 write_unlock(&journal->j_state_lock); 377 goto repeat; 378 } 379 380 transaction = journal->j_running_transaction; 381 382 if (!handle->h_reserved) { 383 /* We may have dropped j_state_lock - restart in that case */ 384 if (add_transaction_credits(journal, blocks, rsv_blocks)) 385 goto repeat; 386 } else { 387 /* 388 * We have handle reserved so we are allowed to join T_LOCKED 389 * transaction and we don't have to check for transaction size 390 * and journal space. But we still have to wait while running 391 * transaction is being switched to a committing one as it 392 * won't wait for any handles anymore. 393 */ 394 if (transaction->t_state == T_SWITCH) { 395 wait_transaction_switching(journal); 396 goto repeat; 397 } 398 sub_reserved_credits(journal, blocks); 399 handle->h_reserved = 0; 400 } 401 402 /* OK, account for the buffers that this operation expects to 403 * use and add the handle to the running transaction. 404 */ 405 update_t_max_wait(transaction, ts); 406 handle->h_transaction = transaction; 407 handle->h_requested_credits = blocks; 408 handle->h_start_jiffies = jiffies; 409 atomic_inc(&transaction->t_updates); 410 atomic_inc(&transaction->t_handle_count); 411 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 412 handle, blocks, 413 atomic_read(&transaction->t_outstanding_credits), 414 jbd2_log_space_left(journal)); 415 read_unlock(&journal->j_state_lock); 416 current->journal_info = handle; 417 418 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 419 jbd2_journal_free_transaction(new_transaction); 420 /* 421 * Ensure that no allocations done while the transaction is open are 422 * going to recurse back to the fs layer. 423 */ 424 handle->saved_alloc_context = memalloc_nofs_save(); 425 return 0; 426 } 427 428 /* Allocate a new handle. This should probably be in a slab... */ 429 static handle_t *new_handle(int nblocks) 430 { 431 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 432 if (!handle) 433 return NULL; 434 handle->h_buffer_credits = nblocks; 435 handle->h_ref = 1; 436 437 return handle; 438 } 439 440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 441 gfp_t gfp_mask, unsigned int type, 442 unsigned int line_no) 443 { 444 handle_t *handle = journal_current_handle(); 445 int err; 446 447 if (!journal) 448 return ERR_PTR(-EROFS); 449 450 if (handle) { 451 J_ASSERT(handle->h_transaction->t_journal == journal); 452 handle->h_ref++; 453 return handle; 454 } 455 456 handle = new_handle(nblocks); 457 if (!handle) 458 return ERR_PTR(-ENOMEM); 459 if (rsv_blocks) { 460 handle_t *rsv_handle; 461 462 rsv_handle = new_handle(rsv_blocks); 463 if (!rsv_handle) { 464 jbd2_free_handle(handle); 465 return ERR_PTR(-ENOMEM); 466 } 467 rsv_handle->h_reserved = 1; 468 rsv_handle->h_journal = journal; 469 handle->h_rsv_handle = rsv_handle; 470 } 471 472 err = start_this_handle(journal, handle, gfp_mask); 473 if (err < 0) { 474 if (handle->h_rsv_handle) 475 jbd2_free_handle(handle->h_rsv_handle); 476 jbd2_free_handle(handle); 477 return ERR_PTR(err); 478 } 479 handle->h_type = type; 480 handle->h_line_no = line_no; 481 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 482 handle->h_transaction->t_tid, type, 483 line_no, nblocks); 484 485 return handle; 486 } 487 EXPORT_SYMBOL(jbd2__journal_start); 488 489 490 /** 491 * handle_t *jbd2_journal_start() - Obtain a new handle. 492 * @journal: Journal to start transaction on. 493 * @nblocks: number of block buffer we might modify 494 * 495 * We make sure that the transaction can guarantee at least nblocks of 496 * modified buffers in the log. We block until the log can guarantee 497 * that much space. Additionally, if rsv_blocks > 0, we also create another 498 * handle with rsv_blocks reserved blocks in the journal. This handle is 499 * is stored in h_rsv_handle. It is not attached to any particular transaction 500 * and thus doesn't block transaction commit. If the caller uses this reserved 501 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 502 * on the parent handle will dispose the reserved one. Reserved handle has to 503 * be converted to a normal handle using jbd2_journal_start_reserved() before 504 * it can be used. 505 * 506 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 507 * on failure. 508 */ 509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 510 { 511 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 512 } 513 EXPORT_SYMBOL(jbd2_journal_start); 514 515 void jbd2_journal_free_reserved(handle_t *handle) 516 { 517 journal_t *journal = handle->h_journal; 518 519 WARN_ON(!handle->h_reserved); 520 sub_reserved_credits(journal, handle->h_buffer_credits); 521 jbd2_free_handle(handle); 522 } 523 EXPORT_SYMBOL(jbd2_journal_free_reserved); 524 525 /** 526 * int jbd2_journal_start_reserved() - start reserved handle 527 * @handle: handle to start 528 * @type: for handle statistics 529 * @line_no: for handle statistics 530 * 531 * Start handle that has been previously reserved with jbd2_journal_reserve(). 532 * This attaches @handle to the running transaction (or creates one if there's 533 * not transaction running). Unlike jbd2_journal_start() this function cannot 534 * block on journal commit, checkpointing, or similar stuff. It can block on 535 * memory allocation or frozen journal though. 536 * 537 * Return 0 on success, non-zero on error - handle is freed in that case. 538 */ 539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 540 unsigned int line_no) 541 { 542 journal_t *journal = handle->h_journal; 543 int ret = -EIO; 544 545 if (WARN_ON(!handle->h_reserved)) { 546 /* Someone passed in normal handle? Just stop it. */ 547 jbd2_journal_stop(handle); 548 return ret; 549 } 550 /* 551 * Usefulness of mixing of reserved and unreserved handles is 552 * questionable. So far nobody seems to need it so just error out. 553 */ 554 if (WARN_ON(current->journal_info)) { 555 jbd2_journal_free_reserved(handle); 556 return ret; 557 } 558 559 handle->h_journal = NULL; 560 /* 561 * GFP_NOFS is here because callers are likely from writeback or 562 * similarly constrained call sites 563 */ 564 ret = start_this_handle(journal, handle, GFP_NOFS); 565 if (ret < 0) { 566 handle->h_journal = journal; 567 jbd2_journal_free_reserved(handle); 568 return ret; 569 } 570 handle->h_type = type; 571 handle->h_line_no = line_no; 572 return 0; 573 } 574 EXPORT_SYMBOL(jbd2_journal_start_reserved); 575 576 /** 577 * int jbd2_journal_extend() - extend buffer credits. 578 * @handle: handle to 'extend' 579 * @nblocks: nr blocks to try to extend by. 580 * 581 * Some transactions, such as large extends and truncates, can be done 582 * atomically all at once or in several stages. The operation requests 583 * a credit for a number of buffer modifications in advance, but can 584 * extend its credit if it needs more. 585 * 586 * jbd2_journal_extend tries to give the running handle more buffer credits. 587 * It does not guarantee that allocation - this is a best-effort only. 588 * The calling process MUST be able to deal cleanly with a failure to 589 * extend here. 590 * 591 * Return 0 on success, non-zero on failure. 592 * 593 * return code < 0 implies an error 594 * return code > 0 implies normal transaction-full status. 595 */ 596 int jbd2_journal_extend(handle_t *handle, int nblocks) 597 { 598 transaction_t *transaction = handle->h_transaction; 599 journal_t *journal; 600 int result; 601 int wanted; 602 603 if (is_handle_aborted(handle)) 604 return -EROFS; 605 journal = transaction->t_journal; 606 607 result = 1; 608 609 read_lock(&journal->j_state_lock); 610 611 /* Don't extend a locked-down transaction! */ 612 if (transaction->t_state != T_RUNNING) { 613 jbd_debug(3, "denied handle %p %d blocks: " 614 "transaction not running\n", handle, nblocks); 615 goto error_out; 616 } 617 618 spin_lock(&transaction->t_handle_lock); 619 wanted = atomic_add_return(nblocks, 620 &transaction->t_outstanding_credits); 621 622 if (wanted > journal->j_max_transaction_buffers) { 623 jbd_debug(3, "denied handle %p %d blocks: " 624 "transaction too large\n", handle, nblocks); 625 atomic_sub(nblocks, &transaction->t_outstanding_credits); 626 goto unlock; 627 } 628 629 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 630 jbd2_log_space_left(journal)) { 631 jbd_debug(3, "denied handle %p %d blocks: " 632 "insufficient log space\n", handle, nblocks); 633 atomic_sub(nblocks, &transaction->t_outstanding_credits); 634 goto unlock; 635 } 636 637 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 638 transaction->t_tid, 639 handle->h_type, handle->h_line_no, 640 handle->h_buffer_credits, 641 nblocks); 642 643 handle->h_buffer_credits += nblocks; 644 handle->h_requested_credits += nblocks; 645 result = 0; 646 647 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 648 unlock: 649 spin_unlock(&transaction->t_handle_lock); 650 error_out: 651 read_unlock(&journal->j_state_lock); 652 return result; 653 } 654 655 656 /** 657 * int jbd2_journal_restart() - restart a handle . 658 * @handle: handle to restart 659 * @nblocks: nr credits requested 660 * @gfp_mask: memory allocation flags (for start_this_handle) 661 * 662 * Restart a handle for a multi-transaction filesystem 663 * operation. 664 * 665 * If the jbd2_journal_extend() call above fails to grant new buffer credits 666 * to a running handle, a call to jbd2_journal_restart will commit the 667 * handle's transaction so far and reattach the handle to a new 668 * transaction capable of guaranteeing the requested number of 669 * credits. We preserve reserved handle if there's any attached to the 670 * passed in handle. 671 */ 672 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 673 { 674 transaction_t *transaction = handle->h_transaction; 675 journal_t *journal; 676 tid_t tid; 677 int need_to_start, ret; 678 679 /* If we've had an abort of any type, don't even think about 680 * actually doing the restart! */ 681 if (is_handle_aborted(handle)) 682 return 0; 683 journal = transaction->t_journal; 684 685 /* 686 * First unlink the handle from its current transaction, and start the 687 * commit on that. 688 */ 689 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 690 J_ASSERT(journal_current_handle() == handle); 691 692 read_lock(&journal->j_state_lock); 693 spin_lock(&transaction->t_handle_lock); 694 atomic_sub(handle->h_buffer_credits, 695 &transaction->t_outstanding_credits); 696 if (handle->h_rsv_handle) { 697 sub_reserved_credits(journal, 698 handle->h_rsv_handle->h_buffer_credits); 699 } 700 if (atomic_dec_and_test(&transaction->t_updates)) 701 wake_up(&journal->j_wait_updates); 702 tid = transaction->t_tid; 703 spin_unlock(&transaction->t_handle_lock); 704 handle->h_transaction = NULL; 705 current->journal_info = NULL; 706 707 jbd_debug(2, "restarting handle %p\n", handle); 708 need_to_start = !tid_geq(journal->j_commit_request, tid); 709 read_unlock(&journal->j_state_lock); 710 if (need_to_start) 711 jbd2_log_start_commit(journal, tid); 712 713 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 714 handle->h_buffer_credits = nblocks; 715 /* 716 * Restore the original nofs context because the journal restart 717 * is basically the same thing as journal stop and start. 718 * start_this_handle will start a new nofs context. 719 */ 720 memalloc_nofs_restore(handle->saved_alloc_context); 721 ret = start_this_handle(journal, handle, gfp_mask); 722 return ret; 723 } 724 EXPORT_SYMBOL(jbd2__journal_restart); 725 726 727 int jbd2_journal_restart(handle_t *handle, int nblocks) 728 { 729 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 730 } 731 EXPORT_SYMBOL(jbd2_journal_restart); 732 733 /** 734 * void jbd2_journal_lock_updates () - establish a transaction barrier. 735 * @journal: Journal to establish a barrier on. 736 * 737 * This locks out any further updates from being started, and blocks 738 * until all existing updates have completed, returning only once the 739 * journal is in a quiescent state with no updates running. 740 * 741 * The journal lock should not be held on entry. 742 */ 743 void jbd2_journal_lock_updates(journal_t *journal) 744 { 745 DEFINE_WAIT(wait); 746 747 jbd2_might_wait_for_commit(journal); 748 749 write_lock(&journal->j_state_lock); 750 ++journal->j_barrier_count; 751 752 /* Wait until there are no reserved handles */ 753 if (atomic_read(&journal->j_reserved_credits)) { 754 write_unlock(&journal->j_state_lock); 755 wait_event(journal->j_wait_reserved, 756 atomic_read(&journal->j_reserved_credits) == 0); 757 write_lock(&journal->j_state_lock); 758 } 759 760 /* Wait until there are no running updates */ 761 while (1) { 762 transaction_t *transaction = journal->j_running_transaction; 763 764 if (!transaction) 765 break; 766 767 spin_lock(&transaction->t_handle_lock); 768 prepare_to_wait(&journal->j_wait_updates, &wait, 769 TASK_UNINTERRUPTIBLE); 770 if (!atomic_read(&transaction->t_updates)) { 771 spin_unlock(&transaction->t_handle_lock); 772 finish_wait(&journal->j_wait_updates, &wait); 773 break; 774 } 775 spin_unlock(&transaction->t_handle_lock); 776 write_unlock(&journal->j_state_lock); 777 schedule(); 778 finish_wait(&journal->j_wait_updates, &wait); 779 write_lock(&journal->j_state_lock); 780 } 781 write_unlock(&journal->j_state_lock); 782 783 /* 784 * We have now established a barrier against other normal updates, but 785 * we also need to barrier against other jbd2_journal_lock_updates() calls 786 * to make sure that we serialise special journal-locked operations 787 * too. 788 */ 789 mutex_lock(&journal->j_barrier); 790 } 791 792 /** 793 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 794 * @journal: Journal to release the barrier on. 795 * 796 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 797 * 798 * Should be called without the journal lock held. 799 */ 800 void jbd2_journal_unlock_updates (journal_t *journal) 801 { 802 J_ASSERT(journal->j_barrier_count != 0); 803 804 mutex_unlock(&journal->j_barrier); 805 write_lock(&journal->j_state_lock); 806 --journal->j_barrier_count; 807 write_unlock(&journal->j_state_lock); 808 wake_up(&journal->j_wait_transaction_locked); 809 } 810 811 static void warn_dirty_buffer(struct buffer_head *bh) 812 { 813 printk(KERN_WARNING 814 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 815 "There's a risk of filesystem corruption in case of system " 816 "crash.\n", 817 bh->b_bdev, (unsigned long long)bh->b_blocknr); 818 } 819 820 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 821 static void jbd2_freeze_jh_data(struct journal_head *jh) 822 { 823 struct page *page; 824 int offset; 825 char *source; 826 struct buffer_head *bh = jh2bh(jh); 827 828 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 829 page = bh->b_page; 830 offset = offset_in_page(bh->b_data); 831 source = kmap_atomic(page); 832 /* Fire data frozen trigger just before we copy the data */ 833 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 834 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 835 kunmap_atomic(source); 836 837 /* 838 * Now that the frozen data is saved off, we need to store any matching 839 * triggers. 840 */ 841 jh->b_frozen_triggers = jh->b_triggers; 842 } 843 844 /* 845 * If the buffer is already part of the current transaction, then there 846 * is nothing we need to do. If it is already part of a prior 847 * transaction which we are still committing to disk, then we need to 848 * make sure that we do not overwrite the old copy: we do copy-out to 849 * preserve the copy going to disk. We also account the buffer against 850 * the handle's metadata buffer credits (unless the buffer is already 851 * part of the transaction, that is). 852 * 853 */ 854 static int 855 do_get_write_access(handle_t *handle, struct journal_head *jh, 856 int force_copy) 857 { 858 struct buffer_head *bh; 859 transaction_t *transaction = handle->h_transaction; 860 journal_t *journal; 861 int error; 862 char *frozen_buffer = NULL; 863 unsigned long start_lock, time_lock; 864 865 if (is_handle_aborted(handle)) 866 return -EROFS; 867 journal = transaction->t_journal; 868 869 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 870 871 JBUFFER_TRACE(jh, "entry"); 872 repeat: 873 bh = jh2bh(jh); 874 875 /* @@@ Need to check for errors here at some point. */ 876 877 start_lock = jiffies; 878 lock_buffer(bh); 879 jbd_lock_bh_state(bh); 880 881 /* If it takes too long to lock the buffer, trace it */ 882 time_lock = jbd2_time_diff(start_lock, jiffies); 883 if (time_lock > HZ/10) 884 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 885 jiffies_to_msecs(time_lock)); 886 887 /* We now hold the buffer lock so it is safe to query the buffer 888 * state. Is the buffer dirty? 889 * 890 * If so, there are two possibilities. The buffer may be 891 * non-journaled, and undergoing a quite legitimate writeback. 892 * Otherwise, it is journaled, and we don't expect dirty buffers 893 * in that state (the buffers should be marked JBD_Dirty 894 * instead.) So either the IO is being done under our own 895 * control and this is a bug, or it's a third party IO such as 896 * dump(8) (which may leave the buffer scheduled for read --- 897 * ie. locked but not dirty) or tune2fs (which may actually have 898 * the buffer dirtied, ugh.) */ 899 900 if (buffer_dirty(bh)) { 901 /* 902 * First question: is this buffer already part of the current 903 * transaction or the existing committing transaction? 904 */ 905 if (jh->b_transaction) { 906 J_ASSERT_JH(jh, 907 jh->b_transaction == transaction || 908 jh->b_transaction == 909 journal->j_committing_transaction); 910 if (jh->b_next_transaction) 911 J_ASSERT_JH(jh, jh->b_next_transaction == 912 transaction); 913 warn_dirty_buffer(bh); 914 } 915 /* 916 * In any case we need to clean the dirty flag and we must 917 * do it under the buffer lock to be sure we don't race 918 * with running write-out. 919 */ 920 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 921 clear_buffer_dirty(bh); 922 set_buffer_jbddirty(bh); 923 } 924 925 unlock_buffer(bh); 926 927 error = -EROFS; 928 if (is_handle_aborted(handle)) { 929 jbd_unlock_bh_state(bh); 930 goto out; 931 } 932 error = 0; 933 934 /* 935 * The buffer is already part of this transaction if b_transaction or 936 * b_next_transaction points to it 937 */ 938 if (jh->b_transaction == transaction || 939 jh->b_next_transaction == transaction) 940 goto done; 941 942 /* 943 * this is the first time this transaction is touching this buffer, 944 * reset the modified flag 945 */ 946 jh->b_modified = 0; 947 948 /* 949 * If the buffer is not journaled right now, we need to make sure it 950 * doesn't get written to disk before the caller actually commits the 951 * new data 952 */ 953 if (!jh->b_transaction) { 954 JBUFFER_TRACE(jh, "no transaction"); 955 J_ASSERT_JH(jh, !jh->b_next_transaction); 956 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 957 /* 958 * Make sure all stores to jh (b_modified, b_frozen_data) are 959 * visible before attaching it to the running transaction. 960 * Paired with barrier in jbd2_write_access_granted() 961 */ 962 smp_wmb(); 963 spin_lock(&journal->j_list_lock); 964 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 965 spin_unlock(&journal->j_list_lock); 966 goto done; 967 } 968 /* 969 * If there is already a copy-out version of this buffer, then we don't 970 * need to make another one 971 */ 972 if (jh->b_frozen_data) { 973 JBUFFER_TRACE(jh, "has frozen data"); 974 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 975 goto attach_next; 976 } 977 978 JBUFFER_TRACE(jh, "owned by older transaction"); 979 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 980 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 981 982 /* 983 * There is one case we have to be very careful about. If the 984 * committing transaction is currently writing this buffer out to disk 985 * and has NOT made a copy-out, then we cannot modify the buffer 986 * contents at all right now. The essence of copy-out is that it is 987 * the extra copy, not the primary copy, which gets journaled. If the 988 * primary copy is already going to disk then we cannot do copy-out 989 * here. 990 */ 991 if (buffer_shadow(bh)) { 992 JBUFFER_TRACE(jh, "on shadow: sleep"); 993 jbd_unlock_bh_state(bh); 994 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 995 goto repeat; 996 } 997 998 /* 999 * Only do the copy if the currently-owning transaction still needs it. 1000 * If buffer isn't on BJ_Metadata list, the committing transaction is 1001 * past that stage (here we use the fact that BH_Shadow is set under 1002 * bh_state lock together with refiling to BJ_Shadow list and at this 1003 * point we know the buffer doesn't have BH_Shadow set). 1004 * 1005 * Subtle point, though: if this is a get_undo_access, then we will be 1006 * relying on the frozen_data to contain the new value of the 1007 * committed_data record after the transaction, so we HAVE to force the 1008 * frozen_data copy in that case. 1009 */ 1010 if (jh->b_jlist == BJ_Metadata || force_copy) { 1011 JBUFFER_TRACE(jh, "generate frozen data"); 1012 if (!frozen_buffer) { 1013 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1014 jbd_unlock_bh_state(bh); 1015 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1016 GFP_NOFS | __GFP_NOFAIL); 1017 goto repeat; 1018 } 1019 jh->b_frozen_data = frozen_buffer; 1020 frozen_buffer = NULL; 1021 jbd2_freeze_jh_data(jh); 1022 } 1023 attach_next: 1024 /* 1025 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1026 * before attaching it to the running transaction. Paired with barrier 1027 * in jbd2_write_access_granted() 1028 */ 1029 smp_wmb(); 1030 jh->b_next_transaction = transaction; 1031 1032 done: 1033 jbd_unlock_bh_state(bh); 1034 1035 /* 1036 * If we are about to journal a buffer, then any revoke pending on it is 1037 * no longer valid 1038 */ 1039 jbd2_journal_cancel_revoke(handle, jh); 1040 1041 out: 1042 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1043 jbd2_free(frozen_buffer, bh->b_size); 1044 1045 JBUFFER_TRACE(jh, "exit"); 1046 return error; 1047 } 1048 1049 /* Fast check whether buffer is already attached to the required transaction */ 1050 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1051 bool undo) 1052 { 1053 struct journal_head *jh; 1054 bool ret = false; 1055 1056 /* Dirty buffers require special handling... */ 1057 if (buffer_dirty(bh)) 1058 return false; 1059 1060 /* 1061 * RCU protects us from dereferencing freed pages. So the checks we do 1062 * are guaranteed not to oops. However the jh slab object can get freed 1063 * & reallocated while we work with it. So we have to be careful. When 1064 * we see jh attached to the running transaction, we know it must stay 1065 * so until the transaction is committed. Thus jh won't be freed and 1066 * will be attached to the same bh while we run. However it can 1067 * happen jh gets freed, reallocated, and attached to the transaction 1068 * just after we get pointer to it from bh. So we have to be careful 1069 * and recheck jh still belongs to our bh before we return success. 1070 */ 1071 rcu_read_lock(); 1072 if (!buffer_jbd(bh)) 1073 goto out; 1074 /* This should be bh2jh() but that doesn't work with inline functions */ 1075 jh = READ_ONCE(bh->b_private); 1076 if (!jh) 1077 goto out; 1078 /* For undo access buffer must have data copied */ 1079 if (undo && !jh->b_committed_data) 1080 goto out; 1081 if (jh->b_transaction != handle->h_transaction && 1082 jh->b_next_transaction != handle->h_transaction) 1083 goto out; 1084 /* 1085 * There are two reasons for the barrier here: 1086 * 1) Make sure to fetch b_bh after we did previous checks so that we 1087 * detect when jh went through free, realloc, attach to transaction 1088 * while we were checking. Paired with implicit barrier in that path. 1089 * 2) So that access to bh done after jbd2_write_access_granted() 1090 * doesn't get reordered and see inconsistent state of concurrent 1091 * do_get_write_access(). 1092 */ 1093 smp_mb(); 1094 if (unlikely(jh->b_bh != bh)) 1095 goto out; 1096 ret = true; 1097 out: 1098 rcu_read_unlock(); 1099 return ret; 1100 } 1101 1102 /** 1103 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1104 * @handle: transaction to add buffer modifications to 1105 * @bh: bh to be used for metadata writes 1106 * 1107 * Returns: error code or 0 on success. 1108 * 1109 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1110 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1111 */ 1112 1113 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1114 { 1115 struct journal_head *jh; 1116 int rc; 1117 1118 if (jbd2_write_access_granted(handle, bh, false)) 1119 return 0; 1120 1121 jh = jbd2_journal_add_journal_head(bh); 1122 /* We do not want to get caught playing with fields which the 1123 * log thread also manipulates. Make sure that the buffer 1124 * completes any outstanding IO before proceeding. */ 1125 rc = do_get_write_access(handle, jh, 0); 1126 jbd2_journal_put_journal_head(jh); 1127 return rc; 1128 } 1129 1130 1131 /* 1132 * When the user wants to journal a newly created buffer_head 1133 * (ie. getblk() returned a new buffer and we are going to populate it 1134 * manually rather than reading off disk), then we need to keep the 1135 * buffer_head locked until it has been completely filled with new 1136 * data. In this case, we should be able to make the assertion that 1137 * the bh is not already part of an existing transaction. 1138 * 1139 * The buffer should already be locked by the caller by this point. 1140 * There is no lock ranking violation: it was a newly created, 1141 * unlocked buffer beforehand. */ 1142 1143 /** 1144 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1145 * @handle: transaction to new buffer to 1146 * @bh: new buffer. 1147 * 1148 * Call this if you create a new bh. 1149 */ 1150 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1151 { 1152 transaction_t *transaction = handle->h_transaction; 1153 journal_t *journal; 1154 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1155 int err; 1156 1157 jbd_debug(5, "journal_head %p\n", jh); 1158 err = -EROFS; 1159 if (is_handle_aborted(handle)) 1160 goto out; 1161 journal = transaction->t_journal; 1162 err = 0; 1163 1164 JBUFFER_TRACE(jh, "entry"); 1165 /* 1166 * The buffer may already belong to this transaction due to pre-zeroing 1167 * in the filesystem's new_block code. It may also be on the previous, 1168 * committing transaction's lists, but it HAS to be in Forget state in 1169 * that case: the transaction must have deleted the buffer for it to be 1170 * reused here. 1171 */ 1172 jbd_lock_bh_state(bh); 1173 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1174 jh->b_transaction == NULL || 1175 (jh->b_transaction == journal->j_committing_transaction && 1176 jh->b_jlist == BJ_Forget))); 1177 1178 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1179 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1180 1181 if (jh->b_transaction == NULL) { 1182 /* 1183 * Previous jbd2_journal_forget() could have left the buffer 1184 * with jbddirty bit set because it was being committed. When 1185 * the commit finished, we've filed the buffer for 1186 * checkpointing and marked it dirty. Now we are reallocating 1187 * the buffer so the transaction freeing it must have 1188 * committed and so it's safe to clear the dirty bit. 1189 */ 1190 clear_buffer_dirty(jh2bh(jh)); 1191 /* first access by this transaction */ 1192 jh->b_modified = 0; 1193 1194 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1195 spin_lock(&journal->j_list_lock); 1196 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1197 spin_unlock(&journal->j_list_lock); 1198 } else if (jh->b_transaction == journal->j_committing_transaction) { 1199 /* first access by this transaction */ 1200 jh->b_modified = 0; 1201 1202 JBUFFER_TRACE(jh, "set next transaction"); 1203 spin_lock(&journal->j_list_lock); 1204 jh->b_next_transaction = transaction; 1205 spin_unlock(&journal->j_list_lock); 1206 } 1207 jbd_unlock_bh_state(bh); 1208 1209 /* 1210 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1211 * blocks which contain freed but then revoked metadata. We need 1212 * to cancel the revoke in case we end up freeing it yet again 1213 * and the reallocating as data - this would cause a second revoke, 1214 * which hits an assertion error. 1215 */ 1216 JBUFFER_TRACE(jh, "cancelling revoke"); 1217 jbd2_journal_cancel_revoke(handle, jh); 1218 out: 1219 jbd2_journal_put_journal_head(jh); 1220 return err; 1221 } 1222 1223 /** 1224 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1225 * non-rewindable consequences 1226 * @handle: transaction 1227 * @bh: buffer to undo 1228 * 1229 * Sometimes there is a need to distinguish between metadata which has 1230 * been committed to disk and that which has not. The ext3fs code uses 1231 * this for freeing and allocating space, we have to make sure that we 1232 * do not reuse freed space until the deallocation has been committed, 1233 * since if we overwrote that space we would make the delete 1234 * un-rewindable in case of a crash. 1235 * 1236 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1237 * buffer for parts of non-rewindable operations such as delete 1238 * operations on the bitmaps. The journaling code must keep a copy of 1239 * the buffer's contents prior to the undo_access call until such time 1240 * as we know that the buffer has definitely been committed to disk. 1241 * 1242 * We never need to know which transaction the committed data is part 1243 * of, buffers touched here are guaranteed to be dirtied later and so 1244 * will be committed to a new transaction in due course, at which point 1245 * we can discard the old committed data pointer. 1246 * 1247 * Returns error number or 0 on success. 1248 */ 1249 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1250 { 1251 int err; 1252 struct journal_head *jh; 1253 char *committed_data = NULL; 1254 1255 if (jbd2_write_access_granted(handle, bh, true)) 1256 return 0; 1257 1258 jh = jbd2_journal_add_journal_head(bh); 1259 JBUFFER_TRACE(jh, "entry"); 1260 1261 /* 1262 * Do this first --- it can drop the journal lock, so we want to 1263 * make sure that obtaining the committed_data is done 1264 * atomically wrt. completion of any outstanding commits. 1265 */ 1266 err = do_get_write_access(handle, jh, 1); 1267 if (err) 1268 goto out; 1269 1270 repeat: 1271 if (!jh->b_committed_data) 1272 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1273 GFP_NOFS|__GFP_NOFAIL); 1274 1275 jbd_lock_bh_state(bh); 1276 if (!jh->b_committed_data) { 1277 /* Copy out the current buffer contents into the 1278 * preserved, committed copy. */ 1279 JBUFFER_TRACE(jh, "generate b_committed data"); 1280 if (!committed_data) { 1281 jbd_unlock_bh_state(bh); 1282 goto repeat; 1283 } 1284 1285 jh->b_committed_data = committed_data; 1286 committed_data = NULL; 1287 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1288 } 1289 jbd_unlock_bh_state(bh); 1290 out: 1291 jbd2_journal_put_journal_head(jh); 1292 if (unlikely(committed_data)) 1293 jbd2_free(committed_data, bh->b_size); 1294 return err; 1295 } 1296 1297 /** 1298 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1299 * @bh: buffer to trigger on 1300 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1301 * 1302 * Set any triggers on this journal_head. This is always safe, because 1303 * triggers for a committing buffer will be saved off, and triggers for 1304 * a running transaction will match the buffer in that transaction. 1305 * 1306 * Call with NULL to clear the triggers. 1307 */ 1308 void jbd2_journal_set_triggers(struct buffer_head *bh, 1309 struct jbd2_buffer_trigger_type *type) 1310 { 1311 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1312 1313 if (WARN_ON(!jh)) 1314 return; 1315 jh->b_triggers = type; 1316 jbd2_journal_put_journal_head(jh); 1317 } 1318 1319 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1320 struct jbd2_buffer_trigger_type *triggers) 1321 { 1322 struct buffer_head *bh = jh2bh(jh); 1323 1324 if (!triggers || !triggers->t_frozen) 1325 return; 1326 1327 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1328 } 1329 1330 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1331 struct jbd2_buffer_trigger_type *triggers) 1332 { 1333 if (!triggers || !triggers->t_abort) 1334 return; 1335 1336 triggers->t_abort(triggers, jh2bh(jh)); 1337 } 1338 1339 /** 1340 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1341 * @handle: transaction to add buffer to. 1342 * @bh: buffer to mark 1343 * 1344 * mark dirty metadata which needs to be journaled as part of the current 1345 * transaction. 1346 * 1347 * The buffer must have previously had jbd2_journal_get_write_access() 1348 * called so that it has a valid journal_head attached to the buffer 1349 * head. 1350 * 1351 * The buffer is placed on the transaction's metadata list and is marked 1352 * as belonging to the transaction. 1353 * 1354 * Returns error number or 0 on success. 1355 * 1356 * Special care needs to be taken if the buffer already belongs to the 1357 * current committing transaction (in which case we should have frozen 1358 * data present for that commit). In that case, we don't relink the 1359 * buffer: that only gets done when the old transaction finally 1360 * completes its commit. 1361 */ 1362 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1363 { 1364 transaction_t *transaction = handle->h_transaction; 1365 journal_t *journal; 1366 struct journal_head *jh; 1367 int ret = 0; 1368 1369 if (is_handle_aborted(handle)) 1370 return -EROFS; 1371 if (!buffer_jbd(bh)) 1372 return -EUCLEAN; 1373 1374 /* 1375 * We don't grab jh reference here since the buffer must be part 1376 * of the running transaction. 1377 */ 1378 jh = bh2jh(bh); 1379 jbd_debug(5, "journal_head %p\n", jh); 1380 JBUFFER_TRACE(jh, "entry"); 1381 1382 /* 1383 * This and the following assertions are unreliable since we may see jh 1384 * in inconsistent state unless we grab bh_state lock. But this is 1385 * crucial to catch bugs so let's do a reliable check until the 1386 * lockless handling is fully proven. 1387 */ 1388 if (jh->b_transaction != transaction && 1389 jh->b_next_transaction != transaction) { 1390 jbd_lock_bh_state(bh); 1391 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1392 jh->b_next_transaction == transaction); 1393 jbd_unlock_bh_state(bh); 1394 } 1395 if (jh->b_modified == 1) { 1396 /* If it's in our transaction it must be in BJ_Metadata list. */ 1397 if (jh->b_transaction == transaction && 1398 jh->b_jlist != BJ_Metadata) { 1399 jbd_lock_bh_state(bh); 1400 if (jh->b_transaction == transaction && 1401 jh->b_jlist != BJ_Metadata) 1402 pr_err("JBD2: assertion failure: h_type=%u " 1403 "h_line_no=%u block_no=%llu jlist=%u\n", 1404 handle->h_type, handle->h_line_no, 1405 (unsigned long long) bh->b_blocknr, 1406 jh->b_jlist); 1407 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1408 jh->b_jlist == BJ_Metadata); 1409 jbd_unlock_bh_state(bh); 1410 } 1411 goto out; 1412 } 1413 1414 journal = transaction->t_journal; 1415 jbd_lock_bh_state(bh); 1416 1417 if (jh->b_modified == 0) { 1418 /* 1419 * This buffer's got modified and becoming part 1420 * of the transaction. This needs to be done 1421 * once a transaction -bzzz 1422 */ 1423 if (handle->h_buffer_credits <= 0) { 1424 ret = -ENOSPC; 1425 goto out_unlock_bh; 1426 } 1427 jh->b_modified = 1; 1428 handle->h_buffer_credits--; 1429 } 1430 1431 /* 1432 * fastpath, to avoid expensive locking. If this buffer is already 1433 * on the running transaction's metadata list there is nothing to do. 1434 * Nobody can take it off again because there is a handle open. 1435 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1436 * result in this test being false, so we go in and take the locks. 1437 */ 1438 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1439 JBUFFER_TRACE(jh, "fastpath"); 1440 if (unlikely(jh->b_transaction != 1441 journal->j_running_transaction)) { 1442 printk(KERN_ERR "JBD2: %s: " 1443 "jh->b_transaction (%llu, %p, %u) != " 1444 "journal->j_running_transaction (%p, %u)\n", 1445 journal->j_devname, 1446 (unsigned long long) bh->b_blocknr, 1447 jh->b_transaction, 1448 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1449 journal->j_running_transaction, 1450 journal->j_running_transaction ? 1451 journal->j_running_transaction->t_tid : 0); 1452 ret = -EINVAL; 1453 } 1454 goto out_unlock_bh; 1455 } 1456 1457 set_buffer_jbddirty(bh); 1458 1459 /* 1460 * Metadata already on the current transaction list doesn't 1461 * need to be filed. Metadata on another transaction's list must 1462 * be committing, and will be refiled once the commit completes: 1463 * leave it alone for now. 1464 */ 1465 if (jh->b_transaction != transaction) { 1466 JBUFFER_TRACE(jh, "already on other transaction"); 1467 if (unlikely(((jh->b_transaction != 1468 journal->j_committing_transaction)) || 1469 (jh->b_next_transaction != transaction))) { 1470 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1471 "bad jh for block %llu: " 1472 "transaction (%p, %u), " 1473 "jh->b_transaction (%p, %u), " 1474 "jh->b_next_transaction (%p, %u), jlist %u\n", 1475 journal->j_devname, 1476 (unsigned long long) bh->b_blocknr, 1477 transaction, transaction->t_tid, 1478 jh->b_transaction, 1479 jh->b_transaction ? 1480 jh->b_transaction->t_tid : 0, 1481 jh->b_next_transaction, 1482 jh->b_next_transaction ? 1483 jh->b_next_transaction->t_tid : 0, 1484 jh->b_jlist); 1485 WARN_ON(1); 1486 ret = -EINVAL; 1487 } 1488 /* And this case is illegal: we can't reuse another 1489 * transaction's data buffer, ever. */ 1490 goto out_unlock_bh; 1491 } 1492 1493 /* That test should have eliminated the following case: */ 1494 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1495 1496 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1497 spin_lock(&journal->j_list_lock); 1498 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1499 spin_unlock(&journal->j_list_lock); 1500 out_unlock_bh: 1501 jbd_unlock_bh_state(bh); 1502 out: 1503 JBUFFER_TRACE(jh, "exit"); 1504 return ret; 1505 } 1506 1507 /** 1508 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1509 * @handle: transaction handle 1510 * @bh: bh to 'forget' 1511 * 1512 * We can only do the bforget if there are no commits pending against the 1513 * buffer. If the buffer is dirty in the current running transaction we 1514 * can safely unlink it. 1515 * 1516 * bh may not be a journalled buffer at all - it may be a non-JBD 1517 * buffer which came off the hashtable. Check for this. 1518 * 1519 * Decrements bh->b_count by one. 1520 * 1521 * Allow this call even if the handle has aborted --- it may be part of 1522 * the caller's cleanup after an abort. 1523 */ 1524 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1525 { 1526 transaction_t *transaction = handle->h_transaction; 1527 journal_t *journal; 1528 struct journal_head *jh; 1529 int drop_reserve = 0; 1530 int err = 0; 1531 int was_modified = 0; 1532 1533 if (is_handle_aborted(handle)) 1534 return -EROFS; 1535 journal = transaction->t_journal; 1536 1537 BUFFER_TRACE(bh, "entry"); 1538 1539 jbd_lock_bh_state(bh); 1540 1541 if (!buffer_jbd(bh)) 1542 goto not_jbd; 1543 jh = bh2jh(bh); 1544 1545 /* Critical error: attempting to delete a bitmap buffer, maybe? 1546 * Don't do any jbd operations, and return an error. */ 1547 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1548 "inconsistent data on disk")) { 1549 err = -EIO; 1550 goto not_jbd; 1551 } 1552 1553 /* keep track of whether or not this transaction modified us */ 1554 was_modified = jh->b_modified; 1555 1556 /* 1557 * The buffer's going from the transaction, we must drop 1558 * all references -bzzz 1559 */ 1560 jh->b_modified = 0; 1561 1562 if (jh->b_transaction == transaction) { 1563 J_ASSERT_JH(jh, !jh->b_frozen_data); 1564 1565 /* If we are forgetting a buffer which is already part 1566 * of this transaction, then we can just drop it from 1567 * the transaction immediately. */ 1568 clear_buffer_dirty(bh); 1569 clear_buffer_jbddirty(bh); 1570 1571 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1572 1573 /* 1574 * we only want to drop a reference if this transaction 1575 * modified the buffer 1576 */ 1577 if (was_modified) 1578 drop_reserve = 1; 1579 1580 /* 1581 * We are no longer going to journal this buffer. 1582 * However, the commit of this transaction is still 1583 * important to the buffer: the delete that we are now 1584 * processing might obsolete an old log entry, so by 1585 * committing, we can satisfy the buffer's checkpoint. 1586 * 1587 * So, if we have a checkpoint on the buffer, we should 1588 * now refile the buffer on our BJ_Forget list so that 1589 * we know to remove the checkpoint after we commit. 1590 */ 1591 1592 spin_lock(&journal->j_list_lock); 1593 if (jh->b_cp_transaction) { 1594 __jbd2_journal_temp_unlink_buffer(jh); 1595 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1596 } else { 1597 __jbd2_journal_unfile_buffer(jh); 1598 if (!buffer_jbd(bh)) { 1599 spin_unlock(&journal->j_list_lock); 1600 goto not_jbd; 1601 } 1602 } 1603 spin_unlock(&journal->j_list_lock); 1604 } else if (jh->b_transaction) { 1605 J_ASSERT_JH(jh, (jh->b_transaction == 1606 journal->j_committing_transaction)); 1607 /* However, if the buffer is still owned by a prior 1608 * (committing) transaction, we can't drop it yet... */ 1609 JBUFFER_TRACE(jh, "belongs to older transaction"); 1610 /* ... but we CAN drop it from the new transaction through 1611 * marking the buffer as freed and set j_next_transaction to 1612 * the new transaction, so that not only the commit code 1613 * knows it should clear dirty bits when it is done with the 1614 * buffer, but also the buffer can be checkpointed only 1615 * after the new transaction commits. */ 1616 1617 set_buffer_freed(bh); 1618 1619 if (!jh->b_next_transaction) { 1620 spin_lock(&journal->j_list_lock); 1621 jh->b_next_transaction = transaction; 1622 spin_unlock(&journal->j_list_lock); 1623 } else { 1624 J_ASSERT(jh->b_next_transaction == transaction); 1625 1626 /* 1627 * only drop a reference if this transaction modified 1628 * the buffer 1629 */ 1630 if (was_modified) 1631 drop_reserve = 1; 1632 } 1633 } else { 1634 /* 1635 * Finally, if the buffer is not belongs to any 1636 * transaction, we can just drop it now if it has no 1637 * checkpoint. 1638 */ 1639 spin_lock(&journal->j_list_lock); 1640 if (!jh->b_cp_transaction) { 1641 JBUFFER_TRACE(jh, "belongs to none transaction"); 1642 spin_unlock(&journal->j_list_lock); 1643 goto not_jbd; 1644 } 1645 1646 /* 1647 * Otherwise, if the buffer has been written to disk, 1648 * it is safe to remove the checkpoint and drop it. 1649 */ 1650 if (!buffer_dirty(bh)) { 1651 __jbd2_journal_remove_checkpoint(jh); 1652 spin_unlock(&journal->j_list_lock); 1653 goto not_jbd; 1654 } 1655 1656 /* 1657 * The buffer is still not written to disk, we should 1658 * attach this buffer to current transaction so that the 1659 * buffer can be checkpointed only after the current 1660 * transaction commits. 1661 */ 1662 clear_buffer_dirty(bh); 1663 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1664 spin_unlock(&journal->j_list_lock); 1665 } 1666 1667 jbd_unlock_bh_state(bh); 1668 __brelse(bh); 1669 drop: 1670 if (drop_reserve) { 1671 /* no need to reserve log space for this block -bzzz */ 1672 handle->h_buffer_credits++; 1673 } 1674 return err; 1675 1676 not_jbd: 1677 jbd_unlock_bh_state(bh); 1678 __bforget(bh); 1679 goto drop; 1680 } 1681 1682 /** 1683 * int jbd2_journal_stop() - complete a transaction 1684 * @handle: transaction to complete. 1685 * 1686 * All done for a particular handle. 1687 * 1688 * There is not much action needed here. We just return any remaining 1689 * buffer credits to the transaction and remove the handle. The only 1690 * complication is that we need to start a commit operation if the 1691 * filesystem is marked for synchronous update. 1692 * 1693 * jbd2_journal_stop itself will not usually return an error, but it may 1694 * do so in unusual circumstances. In particular, expect it to 1695 * return -EIO if a jbd2_journal_abort has been executed since the 1696 * transaction began. 1697 */ 1698 int jbd2_journal_stop(handle_t *handle) 1699 { 1700 transaction_t *transaction = handle->h_transaction; 1701 journal_t *journal; 1702 int err = 0, wait_for_commit = 0; 1703 tid_t tid; 1704 pid_t pid; 1705 1706 if (!transaction) { 1707 /* 1708 * Handle is already detached from the transaction so 1709 * there is nothing to do other than decrease a refcount, 1710 * or free the handle if refcount drops to zero 1711 */ 1712 if (--handle->h_ref > 0) { 1713 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1714 handle->h_ref); 1715 return err; 1716 } else { 1717 if (handle->h_rsv_handle) 1718 jbd2_free_handle(handle->h_rsv_handle); 1719 goto free_and_exit; 1720 } 1721 } 1722 journal = transaction->t_journal; 1723 1724 J_ASSERT(journal_current_handle() == handle); 1725 1726 if (is_handle_aborted(handle)) 1727 err = -EIO; 1728 else 1729 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1730 1731 if (--handle->h_ref > 0) { 1732 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1733 handle->h_ref); 1734 return err; 1735 } 1736 1737 jbd_debug(4, "Handle %p going down\n", handle); 1738 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1739 transaction->t_tid, 1740 handle->h_type, handle->h_line_no, 1741 jiffies - handle->h_start_jiffies, 1742 handle->h_sync, handle->h_requested_credits, 1743 (handle->h_requested_credits - 1744 handle->h_buffer_credits)); 1745 1746 /* 1747 * Implement synchronous transaction batching. If the handle 1748 * was synchronous, don't force a commit immediately. Let's 1749 * yield and let another thread piggyback onto this 1750 * transaction. Keep doing that while new threads continue to 1751 * arrive. It doesn't cost much - we're about to run a commit 1752 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1753 * operations by 30x or more... 1754 * 1755 * We try and optimize the sleep time against what the 1756 * underlying disk can do, instead of having a static sleep 1757 * time. This is useful for the case where our storage is so 1758 * fast that it is more optimal to go ahead and force a flush 1759 * and wait for the transaction to be committed than it is to 1760 * wait for an arbitrary amount of time for new writers to 1761 * join the transaction. We achieve this by measuring how 1762 * long it takes to commit a transaction, and compare it with 1763 * how long this transaction has been running, and if run time 1764 * < commit time then we sleep for the delta and commit. This 1765 * greatly helps super fast disks that would see slowdowns as 1766 * more threads started doing fsyncs. 1767 * 1768 * But don't do this if this process was the most recent one 1769 * to perform a synchronous write. We do this to detect the 1770 * case where a single process is doing a stream of sync 1771 * writes. No point in waiting for joiners in that case. 1772 * 1773 * Setting max_batch_time to 0 disables this completely. 1774 */ 1775 pid = current->pid; 1776 if (handle->h_sync && journal->j_last_sync_writer != pid && 1777 journal->j_max_batch_time) { 1778 u64 commit_time, trans_time; 1779 1780 journal->j_last_sync_writer = pid; 1781 1782 read_lock(&journal->j_state_lock); 1783 commit_time = journal->j_average_commit_time; 1784 read_unlock(&journal->j_state_lock); 1785 1786 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1787 transaction->t_start_time)); 1788 1789 commit_time = max_t(u64, commit_time, 1790 1000*journal->j_min_batch_time); 1791 commit_time = min_t(u64, commit_time, 1792 1000*journal->j_max_batch_time); 1793 1794 if (trans_time < commit_time) { 1795 ktime_t expires = ktime_add_ns(ktime_get(), 1796 commit_time); 1797 set_current_state(TASK_UNINTERRUPTIBLE); 1798 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1799 } 1800 } 1801 1802 if (handle->h_sync) 1803 transaction->t_synchronous_commit = 1; 1804 current->journal_info = NULL; 1805 atomic_sub(handle->h_buffer_credits, 1806 &transaction->t_outstanding_credits); 1807 1808 /* 1809 * If the handle is marked SYNC, we need to set another commit 1810 * going! We also want to force a commit if the current 1811 * transaction is occupying too much of the log, or if the 1812 * transaction is too old now. 1813 */ 1814 if (handle->h_sync || 1815 (atomic_read(&transaction->t_outstanding_credits) > 1816 journal->j_max_transaction_buffers) || 1817 time_after_eq(jiffies, transaction->t_expires)) { 1818 /* Do this even for aborted journals: an abort still 1819 * completes the commit thread, it just doesn't write 1820 * anything to disk. */ 1821 1822 jbd_debug(2, "transaction too old, requesting commit for " 1823 "handle %p\n", handle); 1824 /* This is non-blocking */ 1825 jbd2_log_start_commit(journal, transaction->t_tid); 1826 1827 /* 1828 * Special case: JBD2_SYNC synchronous updates require us 1829 * to wait for the commit to complete. 1830 */ 1831 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1832 wait_for_commit = 1; 1833 } 1834 1835 /* 1836 * Once we drop t_updates, if it goes to zero the transaction 1837 * could start committing on us and eventually disappear. So 1838 * once we do this, we must not dereference transaction 1839 * pointer again. 1840 */ 1841 tid = transaction->t_tid; 1842 if (atomic_dec_and_test(&transaction->t_updates)) { 1843 wake_up(&journal->j_wait_updates); 1844 if (journal->j_barrier_count) 1845 wake_up(&journal->j_wait_transaction_locked); 1846 } 1847 1848 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1849 1850 if (wait_for_commit) 1851 err = jbd2_log_wait_commit(journal, tid); 1852 1853 if (handle->h_rsv_handle) 1854 jbd2_journal_free_reserved(handle->h_rsv_handle); 1855 free_and_exit: 1856 /* 1857 * Scope of the GFP_NOFS context is over here and so we can restore the 1858 * original alloc context. 1859 */ 1860 memalloc_nofs_restore(handle->saved_alloc_context); 1861 jbd2_free_handle(handle); 1862 return err; 1863 } 1864 1865 /* 1866 * 1867 * List management code snippets: various functions for manipulating the 1868 * transaction buffer lists. 1869 * 1870 */ 1871 1872 /* 1873 * Append a buffer to a transaction list, given the transaction's list head 1874 * pointer. 1875 * 1876 * j_list_lock is held. 1877 * 1878 * jbd_lock_bh_state(jh2bh(jh)) is held. 1879 */ 1880 1881 static inline void 1882 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1883 { 1884 if (!*list) { 1885 jh->b_tnext = jh->b_tprev = jh; 1886 *list = jh; 1887 } else { 1888 /* Insert at the tail of the list to preserve order */ 1889 struct journal_head *first = *list, *last = first->b_tprev; 1890 jh->b_tprev = last; 1891 jh->b_tnext = first; 1892 last->b_tnext = first->b_tprev = jh; 1893 } 1894 } 1895 1896 /* 1897 * Remove a buffer from a transaction list, given the transaction's list 1898 * head pointer. 1899 * 1900 * Called with j_list_lock held, and the journal may not be locked. 1901 * 1902 * jbd_lock_bh_state(jh2bh(jh)) is held. 1903 */ 1904 1905 static inline void 1906 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1907 { 1908 if (*list == jh) { 1909 *list = jh->b_tnext; 1910 if (*list == jh) 1911 *list = NULL; 1912 } 1913 jh->b_tprev->b_tnext = jh->b_tnext; 1914 jh->b_tnext->b_tprev = jh->b_tprev; 1915 } 1916 1917 /* 1918 * Remove a buffer from the appropriate transaction list. 1919 * 1920 * Note that this function can *change* the value of 1921 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1922 * t_reserved_list. If the caller is holding onto a copy of one of these 1923 * pointers, it could go bad. Generally the caller needs to re-read the 1924 * pointer from the transaction_t. 1925 * 1926 * Called under j_list_lock. 1927 */ 1928 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1929 { 1930 struct journal_head **list = NULL; 1931 transaction_t *transaction; 1932 struct buffer_head *bh = jh2bh(jh); 1933 1934 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1935 transaction = jh->b_transaction; 1936 if (transaction) 1937 assert_spin_locked(&transaction->t_journal->j_list_lock); 1938 1939 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1940 if (jh->b_jlist != BJ_None) 1941 J_ASSERT_JH(jh, transaction != NULL); 1942 1943 switch (jh->b_jlist) { 1944 case BJ_None: 1945 return; 1946 case BJ_Metadata: 1947 transaction->t_nr_buffers--; 1948 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1949 list = &transaction->t_buffers; 1950 break; 1951 case BJ_Forget: 1952 list = &transaction->t_forget; 1953 break; 1954 case BJ_Shadow: 1955 list = &transaction->t_shadow_list; 1956 break; 1957 case BJ_Reserved: 1958 list = &transaction->t_reserved_list; 1959 break; 1960 } 1961 1962 __blist_del_buffer(list, jh); 1963 jh->b_jlist = BJ_None; 1964 if (transaction && is_journal_aborted(transaction->t_journal)) 1965 clear_buffer_jbddirty(bh); 1966 else if (test_clear_buffer_jbddirty(bh)) 1967 mark_buffer_dirty(bh); /* Expose it to the VM */ 1968 } 1969 1970 /* 1971 * Remove buffer from all transactions. 1972 * 1973 * Called with bh_state lock and j_list_lock 1974 * 1975 * jh and bh may be already freed when this function returns. 1976 */ 1977 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1978 { 1979 __jbd2_journal_temp_unlink_buffer(jh); 1980 jh->b_transaction = NULL; 1981 jbd2_journal_put_journal_head(jh); 1982 } 1983 1984 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1985 { 1986 struct buffer_head *bh = jh2bh(jh); 1987 1988 /* Get reference so that buffer cannot be freed before we unlock it */ 1989 get_bh(bh); 1990 jbd_lock_bh_state(bh); 1991 spin_lock(&journal->j_list_lock); 1992 __jbd2_journal_unfile_buffer(jh); 1993 spin_unlock(&journal->j_list_lock); 1994 jbd_unlock_bh_state(bh); 1995 __brelse(bh); 1996 } 1997 1998 /* 1999 * Called from jbd2_journal_try_to_free_buffers(). 2000 * 2001 * Called under jbd_lock_bh_state(bh) 2002 */ 2003 static void 2004 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2005 { 2006 struct journal_head *jh; 2007 2008 jh = bh2jh(bh); 2009 2010 if (buffer_locked(bh) || buffer_dirty(bh)) 2011 goto out; 2012 2013 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2014 goto out; 2015 2016 spin_lock(&journal->j_list_lock); 2017 if (jh->b_cp_transaction != NULL) { 2018 /* written-back checkpointed metadata buffer */ 2019 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2020 __jbd2_journal_remove_checkpoint(jh); 2021 } 2022 spin_unlock(&journal->j_list_lock); 2023 out: 2024 return; 2025 } 2026 2027 /** 2028 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 2029 * @journal: journal for operation 2030 * @page: to try and free 2031 * @gfp_mask: we use the mask to detect how hard should we try to release 2032 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 2033 * code to release the buffers. 2034 * 2035 * 2036 * For all the buffers on this page, 2037 * if they are fully written out ordered data, move them onto BUF_CLEAN 2038 * so try_to_free_buffers() can reap them. 2039 * 2040 * This function returns non-zero if we wish try_to_free_buffers() 2041 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2042 * We also do it if the page has locked or dirty buffers and the caller wants 2043 * us to perform sync or async writeout. 2044 * 2045 * This complicates JBD locking somewhat. We aren't protected by the 2046 * BKL here. We wish to remove the buffer from its committing or 2047 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2048 * 2049 * This may *change* the value of transaction_t->t_datalist, so anyone 2050 * who looks at t_datalist needs to lock against this function. 2051 * 2052 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2053 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2054 * will come out of the lock with the buffer dirty, which makes it 2055 * ineligible for release here. 2056 * 2057 * Who else is affected by this? hmm... Really the only contender 2058 * is do_get_write_access() - it could be looking at the buffer while 2059 * journal_try_to_free_buffer() is changing its state. But that 2060 * cannot happen because we never reallocate freed data as metadata 2061 * while the data is part of a transaction. Yes? 2062 * 2063 * Return 0 on failure, 1 on success 2064 */ 2065 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2066 struct page *page, gfp_t gfp_mask) 2067 { 2068 struct buffer_head *head; 2069 struct buffer_head *bh; 2070 int ret = 0; 2071 2072 J_ASSERT(PageLocked(page)); 2073 2074 head = page_buffers(page); 2075 bh = head; 2076 do { 2077 struct journal_head *jh; 2078 2079 /* 2080 * We take our own ref against the journal_head here to avoid 2081 * having to add tons of locking around each instance of 2082 * jbd2_journal_put_journal_head(). 2083 */ 2084 jh = jbd2_journal_grab_journal_head(bh); 2085 if (!jh) 2086 continue; 2087 2088 jbd_lock_bh_state(bh); 2089 __journal_try_to_free_buffer(journal, bh); 2090 jbd2_journal_put_journal_head(jh); 2091 jbd_unlock_bh_state(bh); 2092 if (buffer_jbd(bh)) 2093 goto busy; 2094 } while ((bh = bh->b_this_page) != head); 2095 2096 ret = try_to_free_buffers(page); 2097 2098 busy: 2099 return ret; 2100 } 2101 2102 /* 2103 * This buffer is no longer needed. If it is on an older transaction's 2104 * checkpoint list we need to record it on this transaction's forget list 2105 * to pin this buffer (and hence its checkpointing transaction) down until 2106 * this transaction commits. If the buffer isn't on a checkpoint list, we 2107 * release it. 2108 * Returns non-zero if JBD no longer has an interest in the buffer. 2109 * 2110 * Called under j_list_lock. 2111 * 2112 * Called under jbd_lock_bh_state(bh). 2113 */ 2114 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2115 { 2116 int may_free = 1; 2117 struct buffer_head *bh = jh2bh(jh); 2118 2119 if (jh->b_cp_transaction) { 2120 JBUFFER_TRACE(jh, "on running+cp transaction"); 2121 __jbd2_journal_temp_unlink_buffer(jh); 2122 /* 2123 * We don't want to write the buffer anymore, clear the 2124 * bit so that we don't confuse checks in 2125 * __journal_file_buffer 2126 */ 2127 clear_buffer_dirty(bh); 2128 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2129 may_free = 0; 2130 } else { 2131 JBUFFER_TRACE(jh, "on running transaction"); 2132 __jbd2_journal_unfile_buffer(jh); 2133 } 2134 return may_free; 2135 } 2136 2137 /* 2138 * jbd2_journal_invalidatepage 2139 * 2140 * This code is tricky. It has a number of cases to deal with. 2141 * 2142 * There are two invariants which this code relies on: 2143 * 2144 * i_size must be updated on disk before we start calling invalidatepage on the 2145 * data. 2146 * 2147 * This is done in ext3 by defining an ext3_setattr method which 2148 * updates i_size before truncate gets going. By maintaining this 2149 * invariant, we can be sure that it is safe to throw away any buffers 2150 * attached to the current transaction: once the transaction commits, 2151 * we know that the data will not be needed. 2152 * 2153 * Note however that we can *not* throw away data belonging to the 2154 * previous, committing transaction! 2155 * 2156 * Any disk blocks which *are* part of the previous, committing 2157 * transaction (and which therefore cannot be discarded immediately) are 2158 * not going to be reused in the new running transaction 2159 * 2160 * The bitmap committed_data images guarantee this: any block which is 2161 * allocated in one transaction and removed in the next will be marked 2162 * as in-use in the committed_data bitmap, so cannot be reused until 2163 * the next transaction to delete the block commits. This means that 2164 * leaving committing buffers dirty is quite safe: the disk blocks 2165 * cannot be reallocated to a different file and so buffer aliasing is 2166 * not possible. 2167 * 2168 * 2169 * The above applies mainly to ordered data mode. In writeback mode we 2170 * don't make guarantees about the order in which data hits disk --- in 2171 * particular we don't guarantee that new dirty data is flushed before 2172 * transaction commit --- so it is always safe just to discard data 2173 * immediately in that mode. --sct 2174 */ 2175 2176 /* 2177 * The journal_unmap_buffer helper function returns zero if the buffer 2178 * concerned remains pinned as an anonymous buffer belonging to an older 2179 * transaction. 2180 * 2181 * We're outside-transaction here. Either or both of j_running_transaction 2182 * and j_committing_transaction may be NULL. 2183 */ 2184 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2185 int partial_page) 2186 { 2187 transaction_t *transaction; 2188 struct journal_head *jh; 2189 int may_free = 1; 2190 2191 BUFFER_TRACE(bh, "entry"); 2192 2193 /* 2194 * It is safe to proceed here without the j_list_lock because the 2195 * buffers cannot be stolen by try_to_free_buffers as long as we are 2196 * holding the page lock. --sct 2197 */ 2198 2199 if (!buffer_jbd(bh)) 2200 goto zap_buffer_unlocked; 2201 2202 /* OK, we have data buffer in journaled mode */ 2203 write_lock(&journal->j_state_lock); 2204 jbd_lock_bh_state(bh); 2205 spin_lock(&journal->j_list_lock); 2206 2207 jh = jbd2_journal_grab_journal_head(bh); 2208 if (!jh) 2209 goto zap_buffer_no_jh; 2210 2211 /* 2212 * We cannot remove the buffer from checkpoint lists until the 2213 * transaction adding inode to orphan list (let's call it T) 2214 * is committed. Otherwise if the transaction changing the 2215 * buffer would be cleaned from the journal before T is 2216 * committed, a crash will cause that the correct contents of 2217 * the buffer will be lost. On the other hand we have to 2218 * clear the buffer dirty bit at latest at the moment when the 2219 * transaction marking the buffer as freed in the filesystem 2220 * structures is committed because from that moment on the 2221 * block can be reallocated and used by a different page. 2222 * Since the block hasn't been freed yet but the inode has 2223 * already been added to orphan list, it is safe for us to add 2224 * the buffer to BJ_Forget list of the newest transaction. 2225 * 2226 * Also we have to clear buffer_mapped flag of a truncated buffer 2227 * because the buffer_head may be attached to the page straddling 2228 * i_size (can happen only when blocksize < pagesize) and thus the 2229 * buffer_head can be reused when the file is extended again. So we end 2230 * up keeping around invalidated buffers attached to transactions' 2231 * BJ_Forget list just to stop checkpointing code from cleaning up 2232 * the transaction this buffer was modified in. 2233 */ 2234 transaction = jh->b_transaction; 2235 if (transaction == NULL) { 2236 /* First case: not on any transaction. If it 2237 * has no checkpoint link, then we can zap it: 2238 * it's a writeback-mode buffer so we don't care 2239 * if it hits disk safely. */ 2240 if (!jh->b_cp_transaction) { 2241 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2242 goto zap_buffer; 2243 } 2244 2245 if (!buffer_dirty(bh)) { 2246 /* bdflush has written it. We can drop it now */ 2247 __jbd2_journal_remove_checkpoint(jh); 2248 goto zap_buffer; 2249 } 2250 2251 /* OK, it must be in the journal but still not 2252 * written fully to disk: it's metadata or 2253 * journaled data... */ 2254 2255 if (journal->j_running_transaction) { 2256 /* ... and once the current transaction has 2257 * committed, the buffer won't be needed any 2258 * longer. */ 2259 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2260 may_free = __dispose_buffer(jh, 2261 journal->j_running_transaction); 2262 goto zap_buffer; 2263 } else { 2264 /* There is no currently-running transaction. So the 2265 * orphan record which we wrote for this file must have 2266 * passed into commit. We must attach this buffer to 2267 * the committing transaction, if it exists. */ 2268 if (journal->j_committing_transaction) { 2269 JBUFFER_TRACE(jh, "give to committing trans"); 2270 may_free = __dispose_buffer(jh, 2271 journal->j_committing_transaction); 2272 goto zap_buffer; 2273 } else { 2274 /* The orphan record's transaction has 2275 * committed. We can cleanse this buffer */ 2276 clear_buffer_jbddirty(bh); 2277 __jbd2_journal_remove_checkpoint(jh); 2278 goto zap_buffer; 2279 } 2280 } 2281 } else if (transaction == journal->j_committing_transaction) { 2282 JBUFFER_TRACE(jh, "on committing transaction"); 2283 /* 2284 * The buffer is committing, we simply cannot touch 2285 * it. If the page is straddling i_size we have to wait 2286 * for commit and try again. 2287 */ 2288 if (partial_page) { 2289 jbd2_journal_put_journal_head(jh); 2290 spin_unlock(&journal->j_list_lock); 2291 jbd_unlock_bh_state(bh); 2292 write_unlock(&journal->j_state_lock); 2293 return -EBUSY; 2294 } 2295 /* 2296 * OK, buffer won't be reachable after truncate. We just set 2297 * j_next_transaction to the running transaction (if there is 2298 * one) and mark buffer as freed so that commit code knows it 2299 * should clear dirty bits when it is done with the buffer. 2300 */ 2301 set_buffer_freed(bh); 2302 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2303 jh->b_next_transaction = journal->j_running_transaction; 2304 jbd2_journal_put_journal_head(jh); 2305 spin_unlock(&journal->j_list_lock); 2306 jbd_unlock_bh_state(bh); 2307 write_unlock(&journal->j_state_lock); 2308 return 0; 2309 } else { 2310 /* Good, the buffer belongs to the running transaction. 2311 * We are writing our own transaction's data, not any 2312 * previous one's, so it is safe to throw it away 2313 * (remember that we expect the filesystem to have set 2314 * i_size already for this truncate so recovery will not 2315 * expose the disk blocks we are discarding here.) */ 2316 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2317 JBUFFER_TRACE(jh, "on running transaction"); 2318 may_free = __dispose_buffer(jh, transaction); 2319 } 2320 2321 zap_buffer: 2322 /* 2323 * This is tricky. Although the buffer is truncated, it may be reused 2324 * if blocksize < pagesize and it is attached to the page straddling 2325 * EOF. Since the buffer might have been added to BJ_Forget list of the 2326 * running transaction, journal_get_write_access() won't clear 2327 * b_modified and credit accounting gets confused. So clear b_modified 2328 * here. 2329 */ 2330 jh->b_modified = 0; 2331 jbd2_journal_put_journal_head(jh); 2332 zap_buffer_no_jh: 2333 spin_unlock(&journal->j_list_lock); 2334 jbd_unlock_bh_state(bh); 2335 write_unlock(&journal->j_state_lock); 2336 zap_buffer_unlocked: 2337 clear_buffer_dirty(bh); 2338 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2339 clear_buffer_mapped(bh); 2340 clear_buffer_req(bh); 2341 clear_buffer_new(bh); 2342 clear_buffer_delay(bh); 2343 clear_buffer_unwritten(bh); 2344 bh->b_bdev = NULL; 2345 return may_free; 2346 } 2347 2348 /** 2349 * void jbd2_journal_invalidatepage() 2350 * @journal: journal to use for flush... 2351 * @page: page to flush 2352 * @offset: start of the range to invalidate 2353 * @length: length of the range to invalidate 2354 * 2355 * Reap page buffers containing data after in the specified range in page. 2356 * Can return -EBUSY if buffers are part of the committing transaction and 2357 * the page is straddling i_size. Caller then has to wait for current commit 2358 * and try again. 2359 */ 2360 int jbd2_journal_invalidatepage(journal_t *journal, 2361 struct page *page, 2362 unsigned int offset, 2363 unsigned int length) 2364 { 2365 struct buffer_head *head, *bh, *next; 2366 unsigned int stop = offset + length; 2367 unsigned int curr_off = 0; 2368 int partial_page = (offset || length < PAGE_SIZE); 2369 int may_free = 1; 2370 int ret = 0; 2371 2372 if (!PageLocked(page)) 2373 BUG(); 2374 if (!page_has_buffers(page)) 2375 return 0; 2376 2377 BUG_ON(stop > PAGE_SIZE || stop < length); 2378 2379 /* We will potentially be playing with lists other than just the 2380 * data lists (especially for journaled data mode), so be 2381 * cautious in our locking. */ 2382 2383 head = bh = page_buffers(page); 2384 do { 2385 unsigned int next_off = curr_off + bh->b_size; 2386 next = bh->b_this_page; 2387 2388 if (next_off > stop) 2389 return 0; 2390 2391 if (offset <= curr_off) { 2392 /* This block is wholly outside the truncation point */ 2393 lock_buffer(bh); 2394 ret = journal_unmap_buffer(journal, bh, partial_page); 2395 unlock_buffer(bh); 2396 if (ret < 0) 2397 return ret; 2398 may_free &= ret; 2399 } 2400 curr_off = next_off; 2401 bh = next; 2402 2403 } while (bh != head); 2404 2405 if (!partial_page) { 2406 if (may_free && try_to_free_buffers(page)) 2407 J_ASSERT(!page_has_buffers(page)); 2408 } 2409 return 0; 2410 } 2411 2412 /* 2413 * File a buffer on the given transaction list. 2414 */ 2415 void __jbd2_journal_file_buffer(struct journal_head *jh, 2416 transaction_t *transaction, int jlist) 2417 { 2418 struct journal_head **list = NULL; 2419 int was_dirty = 0; 2420 struct buffer_head *bh = jh2bh(jh); 2421 2422 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2423 assert_spin_locked(&transaction->t_journal->j_list_lock); 2424 2425 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2426 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2427 jh->b_transaction == NULL); 2428 2429 if (jh->b_transaction && jh->b_jlist == jlist) 2430 return; 2431 2432 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2433 jlist == BJ_Shadow || jlist == BJ_Forget) { 2434 /* 2435 * For metadata buffers, we track dirty bit in buffer_jbddirty 2436 * instead of buffer_dirty. We should not see a dirty bit set 2437 * here because we clear it in do_get_write_access but e.g. 2438 * tune2fs can modify the sb and set the dirty bit at any time 2439 * so we try to gracefully handle that. 2440 */ 2441 if (buffer_dirty(bh)) 2442 warn_dirty_buffer(bh); 2443 if (test_clear_buffer_dirty(bh) || 2444 test_clear_buffer_jbddirty(bh)) 2445 was_dirty = 1; 2446 } 2447 2448 if (jh->b_transaction) 2449 __jbd2_journal_temp_unlink_buffer(jh); 2450 else 2451 jbd2_journal_grab_journal_head(bh); 2452 jh->b_transaction = transaction; 2453 2454 switch (jlist) { 2455 case BJ_None: 2456 J_ASSERT_JH(jh, !jh->b_committed_data); 2457 J_ASSERT_JH(jh, !jh->b_frozen_data); 2458 return; 2459 case BJ_Metadata: 2460 transaction->t_nr_buffers++; 2461 list = &transaction->t_buffers; 2462 break; 2463 case BJ_Forget: 2464 list = &transaction->t_forget; 2465 break; 2466 case BJ_Shadow: 2467 list = &transaction->t_shadow_list; 2468 break; 2469 case BJ_Reserved: 2470 list = &transaction->t_reserved_list; 2471 break; 2472 } 2473 2474 __blist_add_buffer(list, jh); 2475 jh->b_jlist = jlist; 2476 2477 if (was_dirty) 2478 set_buffer_jbddirty(bh); 2479 } 2480 2481 void jbd2_journal_file_buffer(struct journal_head *jh, 2482 transaction_t *transaction, int jlist) 2483 { 2484 jbd_lock_bh_state(jh2bh(jh)); 2485 spin_lock(&transaction->t_journal->j_list_lock); 2486 __jbd2_journal_file_buffer(jh, transaction, jlist); 2487 spin_unlock(&transaction->t_journal->j_list_lock); 2488 jbd_unlock_bh_state(jh2bh(jh)); 2489 } 2490 2491 /* 2492 * Remove a buffer from its current buffer list in preparation for 2493 * dropping it from its current transaction entirely. If the buffer has 2494 * already started to be used by a subsequent transaction, refile the 2495 * buffer on that transaction's metadata list. 2496 * 2497 * Called under j_list_lock 2498 * Called under jbd_lock_bh_state(jh2bh(jh)) 2499 * 2500 * jh and bh may be already free when this function returns 2501 */ 2502 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2503 { 2504 int was_dirty, jlist; 2505 struct buffer_head *bh = jh2bh(jh); 2506 2507 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2508 if (jh->b_transaction) 2509 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2510 2511 /* If the buffer is now unused, just drop it. */ 2512 if (jh->b_next_transaction == NULL) { 2513 __jbd2_journal_unfile_buffer(jh); 2514 return; 2515 } 2516 2517 /* 2518 * It has been modified by a later transaction: add it to the new 2519 * transaction's metadata list. 2520 */ 2521 2522 was_dirty = test_clear_buffer_jbddirty(bh); 2523 __jbd2_journal_temp_unlink_buffer(jh); 2524 /* 2525 * We set b_transaction here because b_next_transaction will inherit 2526 * our jh reference and thus __jbd2_journal_file_buffer() must not 2527 * take a new one. 2528 */ 2529 jh->b_transaction = jh->b_next_transaction; 2530 jh->b_next_transaction = NULL; 2531 if (buffer_freed(bh)) 2532 jlist = BJ_Forget; 2533 else if (jh->b_modified) 2534 jlist = BJ_Metadata; 2535 else 2536 jlist = BJ_Reserved; 2537 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2538 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2539 2540 if (was_dirty) 2541 set_buffer_jbddirty(bh); 2542 } 2543 2544 /* 2545 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2546 * bh reference so that we can safely unlock bh. 2547 * 2548 * The jh and bh may be freed by this call. 2549 */ 2550 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2551 { 2552 struct buffer_head *bh = jh2bh(jh); 2553 2554 /* Get reference so that buffer cannot be freed before we unlock it */ 2555 get_bh(bh); 2556 jbd_lock_bh_state(bh); 2557 spin_lock(&journal->j_list_lock); 2558 __jbd2_journal_refile_buffer(jh); 2559 jbd_unlock_bh_state(bh); 2560 spin_unlock(&journal->j_list_lock); 2561 __brelse(bh); 2562 } 2563 2564 /* 2565 * File inode in the inode list of the handle's transaction 2566 */ 2567 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2568 unsigned long flags) 2569 { 2570 transaction_t *transaction = handle->h_transaction; 2571 journal_t *journal; 2572 2573 if (is_handle_aborted(handle)) 2574 return -EROFS; 2575 journal = transaction->t_journal; 2576 2577 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2578 transaction->t_tid); 2579 2580 /* 2581 * First check whether inode isn't already on the transaction's 2582 * lists without taking the lock. Note that this check is safe 2583 * without the lock as we cannot race with somebody removing inode 2584 * from the transaction. The reason is that we remove inode from the 2585 * transaction only in journal_release_jbd_inode() and when we commit 2586 * the transaction. We are guarded from the first case by holding 2587 * a reference to the inode. We are safe against the second case 2588 * because if jinode->i_transaction == transaction, commit code 2589 * cannot touch the transaction because we hold reference to it, 2590 * and if jinode->i_next_transaction == transaction, commit code 2591 * will only file the inode where we want it. 2592 */ 2593 if ((jinode->i_transaction == transaction || 2594 jinode->i_next_transaction == transaction) && 2595 (jinode->i_flags & flags) == flags) 2596 return 0; 2597 2598 spin_lock(&journal->j_list_lock); 2599 jinode->i_flags |= flags; 2600 /* Is inode already attached where we need it? */ 2601 if (jinode->i_transaction == transaction || 2602 jinode->i_next_transaction == transaction) 2603 goto done; 2604 2605 /* 2606 * We only ever set this variable to 1 so the test is safe. Since 2607 * t_need_data_flush is likely to be set, we do the test to save some 2608 * cacheline bouncing 2609 */ 2610 if (!transaction->t_need_data_flush) 2611 transaction->t_need_data_flush = 1; 2612 /* On some different transaction's list - should be 2613 * the committing one */ 2614 if (jinode->i_transaction) { 2615 J_ASSERT(jinode->i_next_transaction == NULL); 2616 J_ASSERT(jinode->i_transaction == 2617 journal->j_committing_transaction); 2618 jinode->i_next_transaction = transaction; 2619 goto done; 2620 } 2621 /* Not on any transaction list... */ 2622 J_ASSERT(!jinode->i_next_transaction); 2623 jinode->i_transaction = transaction; 2624 list_add(&jinode->i_list, &transaction->t_inode_list); 2625 done: 2626 spin_unlock(&journal->j_list_lock); 2627 2628 return 0; 2629 } 2630 2631 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2632 { 2633 return jbd2_journal_file_inode(handle, jinode, 2634 JI_WRITE_DATA | JI_WAIT_DATA); 2635 } 2636 2637 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2638 { 2639 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2640 } 2641 2642 /* 2643 * File truncate and transaction commit interact with each other in a 2644 * non-trivial way. If a transaction writing data block A is 2645 * committing, we cannot discard the data by truncate until we have 2646 * written them. Otherwise if we crashed after the transaction with 2647 * write has committed but before the transaction with truncate has 2648 * committed, we could see stale data in block A. This function is a 2649 * helper to solve this problem. It starts writeout of the truncated 2650 * part in case it is in the committing transaction. 2651 * 2652 * Filesystem code must call this function when inode is journaled in 2653 * ordered mode before truncation happens and after the inode has been 2654 * placed on orphan list with the new inode size. The second condition 2655 * avoids the race that someone writes new data and we start 2656 * committing the transaction after this function has been called but 2657 * before a transaction for truncate is started (and furthermore it 2658 * allows us to optimize the case where the addition to orphan list 2659 * happens in the same transaction as write --- we don't have to write 2660 * any data in such case). 2661 */ 2662 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2663 struct jbd2_inode *jinode, 2664 loff_t new_size) 2665 { 2666 transaction_t *inode_trans, *commit_trans; 2667 int ret = 0; 2668 2669 /* This is a quick check to avoid locking if not necessary */ 2670 if (!jinode->i_transaction) 2671 goto out; 2672 /* Locks are here just to force reading of recent values, it is 2673 * enough that the transaction was not committing before we started 2674 * a transaction adding the inode to orphan list */ 2675 read_lock(&journal->j_state_lock); 2676 commit_trans = journal->j_committing_transaction; 2677 read_unlock(&journal->j_state_lock); 2678 spin_lock(&journal->j_list_lock); 2679 inode_trans = jinode->i_transaction; 2680 spin_unlock(&journal->j_list_lock); 2681 if (inode_trans == commit_trans) { 2682 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2683 new_size, LLONG_MAX); 2684 if (ret) 2685 jbd2_journal_abort(journal, ret); 2686 } 2687 out: 2688 return ret; 2689 } 2690