xref: /openbmc/linux/fs/jbd2/transaction.c (revision b595076a)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *	The journal MUST be locked.  We don't perform atomic mallocs on the
44  *	new transaction	and we can't block without protecting against other
45  *	processes trying to touch the journal while it is in transition.
46  *
47  */
48 
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 	atomic_set(&transaction->t_updates, 0);
59 	atomic_set(&transaction->t_outstanding_credits, 0);
60 	atomic_set(&transaction->t_handle_count, 0);
61 	INIT_LIST_HEAD(&transaction->t_inode_list);
62 	INIT_LIST_HEAD(&transaction->t_private_list);
63 
64 	/* Set up the commit timer for the new transaction. */
65 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 	add_timer(&journal->j_commit_timer);
67 
68 	J_ASSERT(journal->j_running_transaction == NULL);
69 	journal->j_running_transaction = transaction;
70 	transaction->t_max_wait = 0;
71 	transaction->t_start = jiffies;
72 
73 	return transaction;
74 }
75 
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83 
84 /*
85  * Update transiaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction)
95 {
96 #ifdef CONFIG_JBD2_DEBUG
97 	unsigned long ts = jiffies;
98 
99 	if (jbd2_journal_enable_debug &&
100 	    time_after(transaction->t_start, ts)) {
101 		ts = jbd2_time_diff(ts, transaction->t_start);
102 		spin_lock(&transaction->t_handle_lock);
103 		if (ts > transaction->t_max_wait)
104 			transaction->t_max_wait = ts;
105 		spin_unlock(&transaction->t_handle_lock);
106 	}
107 #endif
108 }
109 
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116 
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118 			     int gfp_mask)
119 {
120 	transaction_t *transaction;
121 	int needed;
122 	int nblocks = handle->h_buffer_credits;
123 	transaction_t *new_transaction = NULL;
124 
125 	if (nblocks > journal->j_max_transaction_buffers) {
126 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127 		       current->comm, nblocks,
128 		       journal->j_max_transaction_buffers);
129 		return -ENOSPC;
130 	}
131 
132 alloc_transaction:
133 	if (!journal->j_running_transaction) {
134 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135 		if (!new_transaction) {
136 			/*
137 			 * If __GFP_FS is not present, then we may be
138 			 * being called from inside the fs writeback
139 			 * layer, so we MUST NOT fail.  Since
140 			 * __GFP_NOFAIL is going away, we will arrange
141 			 * to retry the allocation ourselves.
142 			 */
143 			if ((gfp_mask & __GFP_FS) == 0) {
144 				congestion_wait(BLK_RW_ASYNC, HZ/50);
145 				goto alloc_transaction;
146 			}
147 			return -ENOMEM;
148 		}
149 	}
150 
151 	jbd_debug(3, "New handle %p going live.\n", handle);
152 
153 	/*
154 	 * We need to hold j_state_lock until t_updates has been incremented,
155 	 * for proper journal barrier handling
156 	 */
157 repeat:
158 	read_lock(&journal->j_state_lock);
159 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160 	if (is_journal_aborted(journal) ||
161 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162 		read_unlock(&journal->j_state_lock);
163 		kfree(new_transaction);
164 		return -EROFS;
165 	}
166 
167 	/* Wait on the journal's transaction barrier if necessary */
168 	if (journal->j_barrier_count) {
169 		read_unlock(&journal->j_state_lock);
170 		wait_event(journal->j_wait_transaction_locked,
171 				journal->j_barrier_count == 0);
172 		goto repeat;
173 	}
174 
175 	if (!journal->j_running_transaction) {
176 		read_unlock(&journal->j_state_lock);
177 		if (!new_transaction)
178 			goto alloc_transaction;
179 		write_lock(&journal->j_state_lock);
180 		if (!journal->j_running_transaction) {
181 			jbd2_get_transaction(journal, new_transaction);
182 			new_transaction = NULL;
183 		}
184 		write_unlock(&journal->j_state_lock);
185 		goto repeat;
186 	}
187 
188 	transaction = journal->j_running_transaction;
189 
190 	/*
191 	 * If the current transaction is locked down for commit, wait for the
192 	 * lock to be released.
193 	 */
194 	if (transaction->t_state == T_LOCKED) {
195 		DEFINE_WAIT(wait);
196 
197 		prepare_to_wait(&journal->j_wait_transaction_locked,
198 					&wait, TASK_UNINTERRUPTIBLE);
199 		read_unlock(&journal->j_state_lock);
200 		schedule();
201 		finish_wait(&journal->j_wait_transaction_locked, &wait);
202 		goto repeat;
203 	}
204 
205 	/*
206 	 * If there is not enough space left in the log to write all potential
207 	 * buffers requested by this operation, we need to stall pending a log
208 	 * checkpoint to free some more log space.
209 	 */
210 	needed = atomic_add_return(nblocks,
211 				   &transaction->t_outstanding_credits);
212 
213 	if (needed > journal->j_max_transaction_buffers) {
214 		/*
215 		 * If the current transaction is already too large, then start
216 		 * to commit it: we can then go back and attach this handle to
217 		 * a new transaction.
218 		 */
219 		DEFINE_WAIT(wait);
220 
221 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
222 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
223 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
224 				TASK_UNINTERRUPTIBLE);
225 		__jbd2_log_start_commit(journal, transaction->t_tid);
226 		read_unlock(&journal->j_state_lock);
227 		schedule();
228 		finish_wait(&journal->j_wait_transaction_locked, &wait);
229 		goto repeat;
230 	}
231 
232 	/*
233 	 * The commit code assumes that it can get enough log space
234 	 * without forcing a checkpoint.  This is *critical* for
235 	 * correctness: a checkpoint of a buffer which is also
236 	 * associated with a committing transaction creates a deadlock,
237 	 * so commit simply cannot force through checkpoints.
238 	 *
239 	 * We must therefore ensure the necessary space in the journal
240 	 * *before* starting to dirty potentially checkpointed buffers
241 	 * in the new transaction.
242 	 *
243 	 * The worst part is, any transaction currently committing can
244 	 * reduce the free space arbitrarily.  Be careful to account for
245 	 * those buffers when checkpointing.
246 	 */
247 
248 	/*
249 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
250 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
251 	 * the committing transaction.  Really, we only need to give it
252 	 * committing_transaction->t_outstanding_credits plus "enough" for
253 	 * the log control blocks.
254 	 * Also, this test is inconsitent with the matching one in
255 	 * jbd2_journal_extend().
256 	 */
257 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
258 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
259 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
260 		read_unlock(&journal->j_state_lock);
261 		write_lock(&journal->j_state_lock);
262 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
263 			__jbd2_log_wait_for_space(journal);
264 		write_unlock(&journal->j_state_lock);
265 		goto repeat;
266 	}
267 
268 	/* OK, account for the buffers that this operation expects to
269 	 * use and add the handle to the running transaction.
270 	 */
271 	update_t_max_wait(transaction);
272 	handle->h_transaction = transaction;
273 	atomic_inc(&transaction->t_updates);
274 	atomic_inc(&transaction->t_handle_count);
275 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
276 		  handle, nblocks,
277 		  atomic_read(&transaction->t_outstanding_credits),
278 		  __jbd2_log_space_left(journal));
279 	read_unlock(&journal->j_state_lock);
280 
281 	lock_map_acquire(&handle->h_lockdep_map);
282 	kfree(new_transaction);
283 	return 0;
284 }
285 
286 static struct lock_class_key jbd2_handle_key;
287 
288 /* Allocate a new handle.  This should probably be in a slab... */
289 static handle_t *new_handle(int nblocks)
290 {
291 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
292 	if (!handle)
293 		return NULL;
294 	memset(handle, 0, sizeof(*handle));
295 	handle->h_buffer_credits = nblocks;
296 	handle->h_ref = 1;
297 
298 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
299 						&jbd2_handle_key, 0);
300 
301 	return handle;
302 }
303 
304 /**
305  * handle_t *jbd2_journal_start() - Obtain a new handle.
306  * @journal: Journal to start transaction on.
307  * @nblocks: number of block buffer we might modify
308  *
309  * We make sure that the transaction can guarantee at least nblocks of
310  * modified buffers in the log.  We block until the log can guarantee
311  * that much space.
312  *
313  * This function is visible to journal users (like ext3fs), so is not
314  * called with the journal already locked.
315  *
316  * Return a pointer to a newly allocated handle, or NULL on failure
317  */
318 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
319 {
320 	handle_t *handle = journal_current_handle();
321 	int err;
322 
323 	if (!journal)
324 		return ERR_PTR(-EROFS);
325 
326 	if (handle) {
327 		J_ASSERT(handle->h_transaction->t_journal == journal);
328 		handle->h_ref++;
329 		return handle;
330 	}
331 
332 	handle = new_handle(nblocks);
333 	if (!handle)
334 		return ERR_PTR(-ENOMEM);
335 
336 	current->journal_info = handle;
337 
338 	err = start_this_handle(journal, handle, gfp_mask);
339 	if (err < 0) {
340 		jbd2_free_handle(handle);
341 		current->journal_info = NULL;
342 		handle = ERR_PTR(err);
343 		goto out;
344 	}
345 out:
346 	return handle;
347 }
348 EXPORT_SYMBOL(jbd2__journal_start);
349 
350 
351 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
352 {
353 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
354 }
355 EXPORT_SYMBOL(jbd2_journal_start);
356 
357 
358 /**
359  * int jbd2_journal_extend() - extend buffer credits.
360  * @handle:  handle to 'extend'
361  * @nblocks: nr blocks to try to extend by.
362  *
363  * Some transactions, such as large extends and truncates, can be done
364  * atomically all at once or in several stages.  The operation requests
365  * a credit for a number of buffer modications in advance, but can
366  * extend its credit if it needs more.
367  *
368  * jbd2_journal_extend tries to give the running handle more buffer credits.
369  * It does not guarantee that allocation - this is a best-effort only.
370  * The calling process MUST be able to deal cleanly with a failure to
371  * extend here.
372  *
373  * Return 0 on success, non-zero on failure.
374  *
375  * return code < 0 implies an error
376  * return code > 0 implies normal transaction-full status.
377  */
378 int jbd2_journal_extend(handle_t *handle, int nblocks)
379 {
380 	transaction_t *transaction = handle->h_transaction;
381 	journal_t *journal = transaction->t_journal;
382 	int result;
383 	int wanted;
384 
385 	result = -EIO;
386 	if (is_handle_aborted(handle))
387 		goto out;
388 
389 	result = 1;
390 
391 	read_lock(&journal->j_state_lock);
392 
393 	/* Don't extend a locked-down transaction! */
394 	if (handle->h_transaction->t_state != T_RUNNING) {
395 		jbd_debug(3, "denied handle %p %d blocks: "
396 			  "transaction not running\n", handle, nblocks);
397 		goto error_out;
398 	}
399 
400 	spin_lock(&transaction->t_handle_lock);
401 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
402 
403 	if (wanted > journal->j_max_transaction_buffers) {
404 		jbd_debug(3, "denied handle %p %d blocks: "
405 			  "transaction too large\n", handle, nblocks);
406 		goto unlock;
407 	}
408 
409 	if (wanted > __jbd2_log_space_left(journal)) {
410 		jbd_debug(3, "denied handle %p %d blocks: "
411 			  "insufficient log space\n", handle, nblocks);
412 		goto unlock;
413 	}
414 
415 	handle->h_buffer_credits += nblocks;
416 	atomic_add(nblocks, &transaction->t_outstanding_credits);
417 	result = 0;
418 
419 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
420 unlock:
421 	spin_unlock(&transaction->t_handle_lock);
422 error_out:
423 	read_unlock(&journal->j_state_lock);
424 out:
425 	return result;
426 }
427 
428 
429 /**
430  * int jbd2_journal_restart() - restart a handle .
431  * @handle:  handle to restart
432  * @nblocks: nr credits requested
433  *
434  * Restart a handle for a multi-transaction filesystem
435  * operation.
436  *
437  * If the jbd2_journal_extend() call above fails to grant new buffer credits
438  * to a running handle, a call to jbd2_journal_restart will commit the
439  * handle's transaction so far and reattach the handle to a new
440  * transaction capabable of guaranteeing the requested number of
441  * credits.
442  */
443 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
444 {
445 	transaction_t *transaction = handle->h_transaction;
446 	journal_t *journal = transaction->t_journal;
447 	int ret;
448 
449 	/* If we've had an abort of any type, don't even think about
450 	 * actually doing the restart! */
451 	if (is_handle_aborted(handle))
452 		return 0;
453 
454 	/*
455 	 * First unlink the handle from its current transaction, and start the
456 	 * commit on that.
457 	 */
458 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
459 	J_ASSERT(journal_current_handle() == handle);
460 
461 	read_lock(&journal->j_state_lock);
462 	spin_lock(&transaction->t_handle_lock);
463 	atomic_sub(handle->h_buffer_credits,
464 		   &transaction->t_outstanding_credits);
465 	if (atomic_dec_and_test(&transaction->t_updates))
466 		wake_up(&journal->j_wait_updates);
467 	spin_unlock(&transaction->t_handle_lock);
468 
469 	jbd_debug(2, "restarting handle %p\n", handle);
470 	__jbd2_log_start_commit(journal, transaction->t_tid);
471 	read_unlock(&journal->j_state_lock);
472 
473 	lock_map_release(&handle->h_lockdep_map);
474 	handle->h_buffer_credits = nblocks;
475 	ret = start_this_handle(journal, handle, gfp_mask);
476 	return ret;
477 }
478 EXPORT_SYMBOL(jbd2__journal_restart);
479 
480 
481 int jbd2_journal_restart(handle_t *handle, int nblocks)
482 {
483 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
484 }
485 EXPORT_SYMBOL(jbd2_journal_restart);
486 
487 /**
488  * void jbd2_journal_lock_updates () - establish a transaction barrier.
489  * @journal:  Journal to establish a barrier on.
490  *
491  * This locks out any further updates from being started, and blocks
492  * until all existing updates have completed, returning only once the
493  * journal is in a quiescent state with no updates running.
494  *
495  * The journal lock should not be held on entry.
496  */
497 void jbd2_journal_lock_updates(journal_t *journal)
498 {
499 	DEFINE_WAIT(wait);
500 
501 	write_lock(&journal->j_state_lock);
502 	++journal->j_barrier_count;
503 
504 	/* Wait until there are no running updates */
505 	while (1) {
506 		transaction_t *transaction = journal->j_running_transaction;
507 
508 		if (!transaction)
509 			break;
510 
511 		spin_lock(&transaction->t_handle_lock);
512 		if (!atomic_read(&transaction->t_updates)) {
513 			spin_unlock(&transaction->t_handle_lock);
514 			break;
515 		}
516 		prepare_to_wait(&journal->j_wait_updates, &wait,
517 				TASK_UNINTERRUPTIBLE);
518 		spin_unlock(&transaction->t_handle_lock);
519 		write_unlock(&journal->j_state_lock);
520 		schedule();
521 		finish_wait(&journal->j_wait_updates, &wait);
522 		write_lock(&journal->j_state_lock);
523 	}
524 	write_unlock(&journal->j_state_lock);
525 
526 	/*
527 	 * We have now established a barrier against other normal updates, but
528 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
529 	 * to make sure that we serialise special journal-locked operations
530 	 * too.
531 	 */
532 	mutex_lock(&journal->j_barrier);
533 }
534 
535 /**
536  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
537  * @journal:  Journal to release the barrier on.
538  *
539  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
540  *
541  * Should be called without the journal lock held.
542  */
543 void jbd2_journal_unlock_updates (journal_t *journal)
544 {
545 	J_ASSERT(journal->j_barrier_count != 0);
546 
547 	mutex_unlock(&journal->j_barrier);
548 	write_lock(&journal->j_state_lock);
549 	--journal->j_barrier_count;
550 	write_unlock(&journal->j_state_lock);
551 	wake_up(&journal->j_wait_transaction_locked);
552 }
553 
554 static void warn_dirty_buffer(struct buffer_head *bh)
555 {
556 	char b[BDEVNAME_SIZE];
557 
558 	printk(KERN_WARNING
559 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
560 	       "There's a risk of filesystem corruption in case of system "
561 	       "crash.\n",
562 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
563 }
564 
565 /*
566  * If the buffer is already part of the current transaction, then there
567  * is nothing we need to do.  If it is already part of a prior
568  * transaction which we are still committing to disk, then we need to
569  * make sure that we do not overwrite the old copy: we do copy-out to
570  * preserve the copy going to disk.  We also account the buffer against
571  * the handle's metadata buffer credits (unless the buffer is already
572  * part of the transaction, that is).
573  *
574  */
575 static int
576 do_get_write_access(handle_t *handle, struct journal_head *jh,
577 			int force_copy)
578 {
579 	struct buffer_head *bh;
580 	transaction_t *transaction;
581 	journal_t *journal;
582 	int error;
583 	char *frozen_buffer = NULL;
584 	int need_copy = 0;
585 
586 	if (is_handle_aborted(handle))
587 		return -EROFS;
588 
589 	transaction = handle->h_transaction;
590 	journal = transaction->t_journal;
591 
592 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
593 
594 	JBUFFER_TRACE(jh, "entry");
595 repeat:
596 	bh = jh2bh(jh);
597 
598 	/* @@@ Need to check for errors here at some point. */
599 
600 	lock_buffer(bh);
601 	jbd_lock_bh_state(bh);
602 
603 	/* We now hold the buffer lock so it is safe to query the buffer
604 	 * state.  Is the buffer dirty?
605 	 *
606 	 * If so, there are two possibilities.  The buffer may be
607 	 * non-journaled, and undergoing a quite legitimate writeback.
608 	 * Otherwise, it is journaled, and we don't expect dirty buffers
609 	 * in that state (the buffers should be marked JBD_Dirty
610 	 * instead.)  So either the IO is being done under our own
611 	 * control and this is a bug, or it's a third party IO such as
612 	 * dump(8) (which may leave the buffer scheduled for read ---
613 	 * ie. locked but not dirty) or tune2fs (which may actually have
614 	 * the buffer dirtied, ugh.)  */
615 
616 	if (buffer_dirty(bh)) {
617 		/*
618 		 * First question: is this buffer already part of the current
619 		 * transaction or the existing committing transaction?
620 		 */
621 		if (jh->b_transaction) {
622 			J_ASSERT_JH(jh,
623 				jh->b_transaction == transaction ||
624 				jh->b_transaction ==
625 					journal->j_committing_transaction);
626 			if (jh->b_next_transaction)
627 				J_ASSERT_JH(jh, jh->b_next_transaction ==
628 							transaction);
629 			warn_dirty_buffer(bh);
630 		}
631 		/*
632 		 * In any case we need to clean the dirty flag and we must
633 		 * do it under the buffer lock to be sure we don't race
634 		 * with running write-out.
635 		 */
636 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
637 		clear_buffer_dirty(bh);
638 		set_buffer_jbddirty(bh);
639 	}
640 
641 	unlock_buffer(bh);
642 
643 	error = -EROFS;
644 	if (is_handle_aborted(handle)) {
645 		jbd_unlock_bh_state(bh);
646 		goto out;
647 	}
648 	error = 0;
649 
650 	/*
651 	 * The buffer is already part of this transaction if b_transaction or
652 	 * b_next_transaction points to it
653 	 */
654 	if (jh->b_transaction == transaction ||
655 	    jh->b_next_transaction == transaction)
656 		goto done;
657 
658 	/*
659 	 * this is the first time this transaction is touching this buffer,
660 	 * reset the modified flag
661 	 */
662        jh->b_modified = 0;
663 
664 	/*
665 	 * If there is already a copy-out version of this buffer, then we don't
666 	 * need to make another one
667 	 */
668 	if (jh->b_frozen_data) {
669 		JBUFFER_TRACE(jh, "has frozen data");
670 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
671 		jh->b_next_transaction = transaction;
672 		goto done;
673 	}
674 
675 	/* Is there data here we need to preserve? */
676 
677 	if (jh->b_transaction && jh->b_transaction != transaction) {
678 		JBUFFER_TRACE(jh, "owned by older transaction");
679 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
680 		J_ASSERT_JH(jh, jh->b_transaction ==
681 					journal->j_committing_transaction);
682 
683 		/* There is one case we have to be very careful about.
684 		 * If the committing transaction is currently writing
685 		 * this buffer out to disk and has NOT made a copy-out,
686 		 * then we cannot modify the buffer contents at all
687 		 * right now.  The essence of copy-out is that it is the
688 		 * extra copy, not the primary copy, which gets
689 		 * journaled.  If the primary copy is already going to
690 		 * disk then we cannot do copy-out here. */
691 
692 		if (jh->b_jlist == BJ_Shadow) {
693 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
694 			wait_queue_head_t *wqh;
695 
696 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
697 
698 			JBUFFER_TRACE(jh, "on shadow: sleep");
699 			jbd_unlock_bh_state(bh);
700 			/* commit wakes up all shadow buffers after IO */
701 			for ( ; ; ) {
702 				prepare_to_wait(wqh, &wait.wait,
703 						TASK_UNINTERRUPTIBLE);
704 				if (jh->b_jlist != BJ_Shadow)
705 					break;
706 				schedule();
707 			}
708 			finish_wait(wqh, &wait.wait);
709 			goto repeat;
710 		}
711 
712 		/* Only do the copy if the currently-owning transaction
713 		 * still needs it.  If it is on the Forget list, the
714 		 * committing transaction is past that stage.  The
715 		 * buffer had better remain locked during the kmalloc,
716 		 * but that should be true --- we hold the journal lock
717 		 * still and the buffer is already on the BUF_JOURNAL
718 		 * list so won't be flushed.
719 		 *
720 		 * Subtle point, though: if this is a get_undo_access,
721 		 * then we will be relying on the frozen_data to contain
722 		 * the new value of the committed_data record after the
723 		 * transaction, so we HAVE to force the frozen_data copy
724 		 * in that case. */
725 
726 		if (jh->b_jlist != BJ_Forget || force_copy) {
727 			JBUFFER_TRACE(jh, "generate frozen data");
728 			if (!frozen_buffer) {
729 				JBUFFER_TRACE(jh, "allocate memory for buffer");
730 				jbd_unlock_bh_state(bh);
731 				frozen_buffer =
732 					jbd2_alloc(jh2bh(jh)->b_size,
733 							 GFP_NOFS);
734 				if (!frozen_buffer) {
735 					printk(KERN_EMERG
736 					       "%s: OOM for frozen_buffer\n",
737 					       __func__);
738 					JBUFFER_TRACE(jh, "oom!");
739 					error = -ENOMEM;
740 					jbd_lock_bh_state(bh);
741 					goto done;
742 				}
743 				goto repeat;
744 			}
745 			jh->b_frozen_data = frozen_buffer;
746 			frozen_buffer = NULL;
747 			need_copy = 1;
748 		}
749 		jh->b_next_transaction = transaction;
750 	}
751 
752 
753 	/*
754 	 * Finally, if the buffer is not journaled right now, we need to make
755 	 * sure it doesn't get written to disk before the caller actually
756 	 * commits the new data
757 	 */
758 	if (!jh->b_transaction) {
759 		JBUFFER_TRACE(jh, "no transaction");
760 		J_ASSERT_JH(jh, !jh->b_next_transaction);
761 		jh->b_transaction = transaction;
762 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
763 		spin_lock(&journal->j_list_lock);
764 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
765 		spin_unlock(&journal->j_list_lock);
766 	}
767 
768 done:
769 	if (need_copy) {
770 		struct page *page;
771 		int offset;
772 		char *source;
773 
774 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
775 			    "Possible IO failure.\n");
776 		page = jh2bh(jh)->b_page;
777 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
778 		source = kmap_atomic(page, KM_USER0);
779 		/* Fire data frozen trigger just before we copy the data */
780 		jbd2_buffer_frozen_trigger(jh, source + offset,
781 					   jh->b_triggers);
782 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
783 		kunmap_atomic(source, KM_USER0);
784 
785 		/*
786 		 * Now that the frozen data is saved off, we need to store
787 		 * any matching triggers.
788 		 */
789 		jh->b_frozen_triggers = jh->b_triggers;
790 	}
791 	jbd_unlock_bh_state(bh);
792 
793 	/*
794 	 * If we are about to journal a buffer, then any revoke pending on it is
795 	 * no longer valid
796 	 */
797 	jbd2_journal_cancel_revoke(handle, jh);
798 
799 out:
800 	if (unlikely(frozen_buffer))	/* It's usually NULL */
801 		jbd2_free(frozen_buffer, bh->b_size);
802 
803 	JBUFFER_TRACE(jh, "exit");
804 	return error;
805 }
806 
807 /**
808  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
809  * @handle: transaction to add buffer modifications to
810  * @bh:     bh to be used for metadata writes
811  * @credits: variable that will receive credits for the buffer
812  *
813  * Returns an error code or 0 on success.
814  *
815  * In full data journalling mode the buffer may be of type BJ_AsyncData,
816  * because we're write()ing a buffer which is also part of a shared mapping.
817  */
818 
819 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
820 {
821 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
822 	int rc;
823 
824 	/* We do not want to get caught playing with fields which the
825 	 * log thread also manipulates.  Make sure that the buffer
826 	 * completes any outstanding IO before proceeding. */
827 	rc = do_get_write_access(handle, jh, 0);
828 	jbd2_journal_put_journal_head(jh);
829 	return rc;
830 }
831 
832 
833 /*
834  * When the user wants to journal a newly created buffer_head
835  * (ie. getblk() returned a new buffer and we are going to populate it
836  * manually rather than reading off disk), then we need to keep the
837  * buffer_head locked until it has been completely filled with new
838  * data.  In this case, we should be able to make the assertion that
839  * the bh is not already part of an existing transaction.
840  *
841  * The buffer should already be locked by the caller by this point.
842  * There is no lock ranking violation: it was a newly created,
843  * unlocked buffer beforehand. */
844 
845 /**
846  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
847  * @handle: transaction to new buffer to
848  * @bh: new buffer.
849  *
850  * Call this if you create a new bh.
851  */
852 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
853 {
854 	transaction_t *transaction = handle->h_transaction;
855 	journal_t *journal = transaction->t_journal;
856 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
857 	int err;
858 
859 	jbd_debug(5, "journal_head %p\n", jh);
860 	err = -EROFS;
861 	if (is_handle_aborted(handle))
862 		goto out;
863 	err = 0;
864 
865 	JBUFFER_TRACE(jh, "entry");
866 	/*
867 	 * The buffer may already belong to this transaction due to pre-zeroing
868 	 * in the filesystem's new_block code.  It may also be on the previous,
869 	 * committing transaction's lists, but it HAS to be in Forget state in
870 	 * that case: the transaction must have deleted the buffer for it to be
871 	 * reused here.
872 	 */
873 	jbd_lock_bh_state(bh);
874 	spin_lock(&journal->j_list_lock);
875 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
876 		jh->b_transaction == NULL ||
877 		(jh->b_transaction == journal->j_committing_transaction &&
878 			  jh->b_jlist == BJ_Forget)));
879 
880 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
881 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
882 
883 	if (jh->b_transaction == NULL) {
884 		/*
885 		 * Previous jbd2_journal_forget() could have left the buffer
886 		 * with jbddirty bit set because it was being committed. When
887 		 * the commit finished, we've filed the buffer for
888 		 * checkpointing and marked it dirty. Now we are reallocating
889 		 * the buffer so the transaction freeing it must have
890 		 * committed and so it's safe to clear the dirty bit.
891 		 */
892 		clear_buffer_dirty(jh2bh(jh));
893 		jh->b_transaction = transaction;
894 
895 		/* first access by this transaction */
896 		jh->b_modified = 0;
897 
898 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
899 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
900 	} else if (jh->b_transaction == journal->j_committing_transaction) {
901 		/* first access by this transaction */
902 		jh->b_modified = 0;
903 
904 		JBUFFER_TRACE(jh, "set next transaction");
905 		jh->b_next_transaction = transaction;
906 	}
907 	spin_unlock(&journal->j_list_lock);
908 	jbd_unlock_bh_state(bh);
909 
910 	/*
911 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
912 	 * blocks which contain freed but then revoked metadata.  We need
913 	 * to cancel the revoke in case we end up freeing it yet again
914 	 * and the reallocating as data - this would cause a second revoke,
915 	 * which hits an assertion error.
916 	 */
917 	JBUFFER_TRACE(jh, "cancelling revoke");
918 	jbd2_journal_cancel_revoke(handle, jh);
919 	jbd2_journal_put_journal_head(jh);
920 out:
921 	return err;
922 }
923 
924 /**
925  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
926  *     non-rewindable consequences
927  * @handle: transaction
928  * @bh: buffer to undo
929  * @credits: store the number of taken credits here (if not NULL)
930  *
931  * Sometimes there is a need to distinguish between metadata which has
932  * been committed to disk and that which has not.  The ext3fs code uses
933  * this for freeing and allocating space, we have to make sure that we
934  * do not reuse freed space until the deallocation has been committed,
935  * since if we overwrote that space we would make the delete
936  * un-rewindable in case of a crash.
937  *
938  * To deal with that, jbd2_journal_get_undo_access requests write access to a
939  * buffer for parts of non-rewindable operations such as delete
940  * operations on the bitmaps.  The journaling code must keep a copy of
941  * the buffer's contents prior to the undo_access call until such time
942  * as we know that the buffer has definitely been committed to disk.
943  *
944  * We never need to know which transaction the committed data is part
945  * of, buffers touched here are guaranteed to be dirtied later and so
946  * will be committed to a new transaction in due course, at which point
947  * we can discard the old committed data pointer.
948  *
949  * Returns error number or 0 on success.
950  */
951 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
952 {
953 	int err;
954 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
955 	char *committed_data = NULL;
956 
957 	JBUFFER_TRACE(jh, "entry");
958 
959 	/*
960 	 * Do this first --- it can drop the journal lock, so we want to
961 	 * make sure that obtaining the committed_data is done
962 	 * atomically wrt. completion of any outstanding commits.
963 	 */
964 	err = do_get_write_access(handle, jh, 1);
965 	if (err)
966 		goto out;
967 
968 repeat:
969 	if (!jh->b_committed_data) {
970 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
971 		if (!committed_data) {
972 			printk(KERN_EMERG "%s: No memory for committed data\n",
973 				__func__);
974 			err = -ENOMEM;
975 			goto out;
976 		}
977 	}
978 
979 	jbd_lock_bh_state(bh);
980 	if (!jh->b_committed_data) {
981 		/* Copy out the current buffer contents into the
982 		 * preserved, committed copy. */
983 		JBUFFER_TRACE(jh, "generate b_committed data");
984 		if (!committed_data) {
985 			jbd_unlock_bh_state(bh);
986 			goto repeat;
987 		}
988 
989 		jh->b_committed_data = committed_data;
990 		committed_data = NULL;
991 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
992 	}
993 	jbd_unlock_bh_state(bh);
994 out:
995 	jbd2_journal_put_journal_head(jh);
996 	if (unlikely(committed_data))
997 		jbd2_free(committed_data, bh->b_size);
998 	return err;
999 }
1000 
1001 /**
1002  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1003  * @bh: buffer to trigger on
1004  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1005  *
1006  * Set any triggers on this journal_head.  This is always safe, because
1007  * triggers for a committing buffer will be saved off, and triggers for
1008  * a running transaction will match the buffer in that transaction.
1009  *
1010  * Call with NULL to clear the triggers.
1011  */
1012 void jbd2_journal_set_triggers(struct buffer_head *bh,
1013 			       struct jbd2_buffer_trigger_type *type)
1014 {
1015 	struct journal_head *jh = bh2jh(bh);
1016 
1017 	jh->b_triggers = type;
1018 }
1019 
1020 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1021 				struct jbd2_buffer_trigger_type *triggers)
1022 {
1023 	struct buffer_head *bh = jh2bh(jh);
1024 
1025 	if (!triggers || !triggers->t_frozen)
1026 		return;
1027 
1028 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1029 }
1030 
1031 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1032 			       struct jbd2_buffer_trigger_type *triggers)
1033 {
1034 	if (!triggers || !triggers->t_abort)
1035 		return;
1036 
1037 	triggers->t_abort(triggers, jh2bh(jh));
1038 }
1039 
1040 
1041 
1042 /**
1043  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1044  * @handle: transaction to add buffer to.
1045  * @bh: buffer to mark
1046  *
1047  * mark dirty metadata which needs to be journaled as part of the current
1048  * transaction.
1049  *
1050  * The buffer is placed on the transaction's metadata list and is marked
1051  * as belonging to the transaction.
1052  *
1053  * Returns error number or 0 on success.
1054  *
1055  * Special care needs to be taken if the buffer already belongs to the
1056  * current committing transaction (in which case we should have frozen
1057  * data present for that commit).  In that case, we don't relink the
1058  * buffer: that only gets done when the old transaction finally
1059  * completes its commit.
1060  */
1061 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1062 {
1063 	transaction_t *transaction = handle->h_transaction;
1064 	journal_t *journal = transaction->t_journal;
1065 	struct journal_head *jh = bh2jh(bh);
1066 
1067 	jbd_debug(5, "journal_head %p\n", jh);
1068 	JBUFFER_TRACE(jh, "entry");
1069 	if (is_handle_aborted(handle))
1070 		goto out;
1071 
1072 	jbd_lock_bh_state(bh);
1073 
1074 	if (jh->b_modified == 0) {
1075 		/*
1076 		 * This buffer's got modified and becoming part
1077 		 * of the transaction. This needs to be done
1078 		 * once a transaction -bzzz
1079 		 */
1080 		jh->b_modified = 1;
1081 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1082 		handle->h_buffer_credits--;
1083 	}
1084 
1085 	/*
1086 	 * fastpath, to avoid expensive locking.  If this buffer is already
1087 	 * on the running transaction's metadata list there is nothing to do.
1088 	 * Nobody can take it off again because there is a handle open.
1089 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1090 	 * result in this test being false, so we go in and take the locks.
1091 	 */
1092 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1093 		JBUFFER_TRACE(jh, "fastpath");
1094 		J_ASSERT_JH(jh, jh->b_transaction ==
1095 					journal->j_running_transaction);
1096 		goto out_unlock_bh;
1097 	}
1098 
1099 	set_buffer_jbddirty(bh);
1100 
1101 	/*
1102 	 * Metadata already on the current transaction list doesn't
1103 	 * need to be filed.  Metadata on another transaction's list must
1104 	 * be committing, and will be refiled once the commit completes:
1105 	 * leave it alone for now.
1106 	 */
1107 	if (jh->b_transaction != transaction) {
1108 		JBUFFER_TRACE(jh, "already on other transaction");
1109 		J_ASSERT_JH(jh, jh->b_transaction ==
1110 					journal->j_committing_transaction);
1111 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1112 		/* And this case is illegal: we can't reuse another
1113 		 * transaction's data buffer, ever. */
1114 		goto out_unlock_bh;
1115 	}
1116 
1117 	/* That test should have eliminated the following case: */
1118 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1119 
1120 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1121 	spin_lock(&journal->j_list_lock);
1122 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1123 	spin_unlock(&journal->j_list_lock);
1124 out_unlock_bh:
1125 	jbd_unlock_bh_state(bh);
1126 out:
1127 	JBUFFER_TRACE(jh, "exit");
1128 	return 0;
1129 }
1130 
1131 /*
1132  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1133  * updates, if the update decided in the end that it didn't need access.
1134  *
1135  */
1136 void
1137 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1138 {
1139 	BUFFER_TRACE(bh, "entry");
1140 }
1141 
1142 /**
1143  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1144  * @handle: transaction handle
1145  * @bh:     bh to 'forget'
1146  *
1147  * We can only do the bforget if there are no commits pending against the
1148  * buffer.  If the buffer is dirty in the current running transaction we
1149  * can safely unlink it.
1150  *
1151  * bh may not be a journalled buffer at all - it may be a non-JBD
1152  * buffer which came off the hashtable.  Check for this.
1153  *
1154  * Decrements bh->b_count by one.
1155  *
1156  * Allow this call even if the handle has aborted --- it may be part of
1157  * the caller's cleanup after an abort.
1158  */
1159 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1160 {
1161 	transaction_t *transaction = handle->h_transaction;
1162 	journal_t *journal = transaction->t_journal;
1163 	struct journal_head *jh;
1164 	int drop_reserve = 0;
1165 	int err = 0;
1166 	int was_modified = 0;
1167 
1168 	BUFFER_TRACE(bh, "entry");
1169 
1170 	jbd_lock_bh_state(bh);
1171 	spin_lock(&journal->j_list_lock);
1172 
1173 	if (!buffer_jbd(bh))
1174 		goto not_jbd;
1175 	jh = bh2jh(bh);
1176 
1177 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1178 	 * Don't do any jbd operations, and return an error. */
1179 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1180 			 "inconsistent data on disk")) {
1181 		err = -EIO;
1182 		goto not_jbd;
1183 	}
1184 
1185 	/* keep track of wether or not this transaction modified us */
1186 	was_modified = jh->b_modified;
1187 
1188 	/*
1189 	 * The buffer's going from the transaction, we must drop
1190 	 * all references -bzzz
1191 	 */
1192 	jh->b_modified = 0;
1193 
1194 	if (jh->b_transaction == handle->h_transaction) {
1195 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1196 
1197 		/* If we are forgetting a buffer which is already part
1198 		 * of this transaction, then we can just drop it from
1199 		 * the transaction immediately. */
1200 		clear_buffer_dirty(bh);
1201 		clear_buffer_jbddirty(bh);
1202 
1203 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1204 
1205 		/*
1206 		 * we only want to drop a reference if this transaction
1207 		 * modified the buffer
1208 		 */
1209 		if (was_modified)
1210 			drop_reserve = 1;
1211 
1212 		/*
1213 		 * We are no longer going to journal this buffer.
1214 		 * However, the commit of this transaction is still
1215 		 * important to the buffer: the delete that we are now
1216 		 * processing might obsolete an old log entry, so by
1217 		 * committing, we can satisfy the buffer's checkpoint.
1218 		 *
1219 		 * So, if we have a checkpoint on the buffer, we should
1220 		 * now refile the buffer on our BJ_Forget list so that
1221 		 * we know to remove the checkpoint after we commit.
1222 		 */
1223 
1224 		if (jh->b_cp_transaction) {
1225 			__jbd2_journal_temp_unlink_buffer(jh);
1226 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1227 		} else {
1228 			__jbd2_journal_unfile_buffer(jh);
1229 			jbd2_journal_remove_journal_head(bh);
1230 			__brelse(bh);
1231 			if (!buffer_jbd(bh)) {
1232 				spin_unlock(&journal->j_list_lock);
1233 				jbd_unlock_bh_state(bh);
1234 				__bforget(bh);
1235 				goto drop;
1236 			}
1237 		}
1238 	} else if (jh->b_transaction) {
1239 		J_ASSERT_JH(jh, (jh->b_transaction ==
1240 				 journal->j_committing_transaction));
1241 		/* However, if the buffer is still owned by a prior
1242 		 * (committing) transaction, we can't drop it yet... */
1243 		JBUFFER_TRACE(jh, "belongs to older transaction");
1244 		/* ... but we CAN drop it from the new transaction if we
1245 		 * have also modified it since the original commit. */
1246 
1247 		if (jh->b_next_transaction) {
1248 			J_ASSERT(jh->b_next_transaction == transaction);
1249 			jh->b_next_transaction = NULL;
1250 
1251 			/*
1252 			 * only drop a reference if this transaction modified
1253 			 * the buffer
1254 			 */
1255 			if (was_modified)
1256 				drop_reserve = 1;
1257 		}
1258 	}
1259 
1260 not_jbd:
1261 	spin_unlock(&journal->j_list_lock);
1262 	jbd_unlock_bh_state(bh);
1263 	__brelse(bh);
1264 drop:
1265 	if (drop_reserve) {
1266 		/* no need to reserve log space for this block -bzzz */
1267 		handle->h_buffer_credits++;
1268 	}
1269 	return err;
1270 }
1271 
1272 /**
1273  * int jbd2_journal_stop() - complete a transaction
1274  * @handle: tranaction to complete.
1275  *
1276  * All done for a particular handle.
1277  *
1278  * There is not much action needed here.  We just return any remaining
1279  * buffer credits to the transaction and remove the handle.  The only
1280  * complication is that we need to start a commit operation if the
1281  * filesystem is marked for synchronous update.
1282  *
1283  * jbd2_journal_stop itself will not usually return an error, but it may
1284  * do so in unusual circumstances.  In particular, expect it to
1285  * return -EIO if a jbd2_journal_abort has been executed since the
1286  * transaction began.
1287  */
1288 int jbd2_journal_stop(handle_t *handle)
1289 {
1290 	transaction_t *transaction = handle->h_transaction;
1291 	journal_t *journal = transaction->t_journal;
1292 	int err, wait_for_commit = 0;
1293 	tid_t tid;
1294 	pid_t pid;
1295 
1296 	J_ASSERT(journal_current_handle() == handle);
1297 
1298 	if (is_handle_aborted(handle))
1299 		err = -EIO;
1300 	else {
1301 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1302 		err = 0;
1303 	}
1304 
1305 	if (--handle->h_ref > 0) {
1306 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1307 			  handle->h_ref);
1308 		return err;
1309 	}
1310 
1311 	jbd_debug(4, "Handle %p going down\n", handle);
1312 
1313 	/*
1314 	 * Implement synchronous transaction batching.  If the handle
1315 	 * was synchronous, don't force a commit immediately.  Let's
1316 	 * yield and let another thread piggyback onto this
1317 	 * transaction.  Keep doing that while new threads continue to
1318 	 * arrive.  It doesn't cost much - we're about to run a commit
1319 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1320 	 * operations by 30x or more...
1321 	 *
1322 	 * We try and optimize the sleep time against what the
1323 	 * underlying disk can do, instead of having a static sleep
1324 	 * time.  This is useful for the case where our storage is so
1325 	 * fast that it is more optimal to go ahead and force a flush
1326 	 * and wait for the transaction to be committed than it is to
1327 	 * wait for an arbitrary amount of time for new writers to
1328 	 * join the transaction.  We achieve this by measuring how
1329 	 * long it takes to commit a transaction, and compare it with
1330 	 * how long this transaction has been running, and if run time
1331 	 * < commit time then we sleep for the delta and commit.  This
1332 	 * greatly helps super fast disks that would see slowdowns as
1333 	 * more threads started doing fsyncs.
1334 	 *
1335 	 * But don't do this if this process was the most recent one
1336 	 * to perform a synchronous write.  We do this to detect the
1337 	 * case where a single process is doing a stream of sync
1338 	 * writes.  No point in waiting for joiners in that case.
1339 	 */
1340 	pid = current->pid;
1341 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1342 		u64 commit_time, trans_time;
1343 
1344 		journal->j_last_sync_writer = pid;
1345 
1346 		read_lock(&journal->j_state_lock);
1347 		commit_time = journal->j_average_commit_time;
1348 		read_unlock(&journal->j_state_lock);
1349 
1350 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1351 						   transaction->t_start_time));
1352 
1353 		commit_time = max_t(u64, commit_time,
1354 				    1000*journal->j_min_batch_time);
1355 		commit_time = min_t(u64, commit_time,
1356 				    1000*journal->j_max_batch_time);
1357 
1358 		if (trans_time < commit_time) {
1359 			ktime_t expires = ktime_add_ns(ktime_get(),
1360 						       commit_time);
1361 			set_current_state(TASK_UNINTERRUPTIBLE);
1362 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1363 		}
1364 	}
1365 
1366 	if (handle->h_sync)
1367 		transaction->t_synchronous_commit = 1;
1368 	current->journal_info = NULL;
1369 	atomic_sub(handle->h_buffer_credits,
1370 		   &transaction->t_outstanding_credits);
1371 
1372 	/*
1373 	 * If the handle is marked SYNC, we need to set another commit
1374 	 * going!  We also want to force a commit if the current
1375 	 * transaction is occupying too much of the log, or if the
1376 	 * transaction is too old now.
1377 	 */
1378 	if (handle->h_sync ||
1379 	    (atomic_read(&transaction->t_outstanding_credits) >
1380 	     journal->j_max_transaction_buffers) ||
1381 	    time_after_eq(jiffies, transaction->t_expires)) {
1382 		/* Do this even for aborted journals: an abort still
1383 		 * completes the commit thread, it just doesn't write
1384 		 * anything to disk. */
1385 
1386 		jbd_debug(2, "transaction too old, requesting commit for "
1387 					"handle %p\n", handle);
1388 		/* This is non-blocking */
1389 		jbd2_log_start_commit(journal, transaction->t_tid);
1390 
1391 		/*
1392 		 * Special case: JBD2_SYNC synchronous updates require us
1393 		 * to wait for the commit to complete.
1394 		 */
1395 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1396 			wait_for_commit = 1;
1397 	}
1398 
1399 	/*
1400 	 * Once we drop t_updates, if it goes to zero the transaction
1401 	 * could start commiting on us and eventually disappear.  So
1402 	 * once we do this, we must not dereference transaction
1403 	 * pointer again.
1404 	 */
1405 	tid = transaction->t_tid;
1406 	if (atomic_dec_and_test(&transaction->t_updates)) {
1407 		wake_up(&journal->j_wait_updates);
1408 		if (journal->j_barrier_count)
1409 			wake_up(&journal->j_wait_transaction_locked);
1410 	}
1411 
1412 	if (wait_for_commit)
1413 		err = jbd2_log_wait_commit(journal, tid);
1414 
1415 	lock_map_release(&handle->h_lockdep_map);
1416 
1417 	jbd2_free_handle(handle);
1418 	return err;
1419 }
1420 
1421 /**
1422  * int jbd2_journal_force_commit() - force any uncommitted transactions
1423  * @journal: journal to force
1424  *
1425  * For synchronous operations: force any uncommitted transactions
1426  * to disk.  May seem kludgy, but it reuses all the handle batching
1427  * code in a very simple manner.
1428  */
1429 int jbd2_journal_force_commit(journal_t *journal)
1430 {
1431 	handle_t *handle;
1432 	int ret;
1433 
1434 	handle = jbd2_journal_start(journal, 1);
1435 	if (IS_ERR(handle)) {
1436 		ret = PTR_ERR(handle);
1437 	} else {
1438 		handle->h_sync = 1;
1439 		ret = jbd2_journal_stop(handle);
1440 	}
1441 	return ret;
1442 }
1443 
1444 /*
1445  *
1446  * List management code snippets: various functions for manipulating the
1447  * transaction buffer lists.
1448  *
1449  */
1450 
1451 /*
1452  * Append a buffer to a transaction list, given the transaction's list head
1453  * pointer.
1454  *
1455  * j_list_lock is held.
1456  *
1457  * jbd_lock_bh_state(jh2bh(jh)) is held.
1458  */
1459 
1460 static inline void
1461 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1462 {
1463 	if (!*list) {
1464 		jh->b_tnext = jh->b_tprev = jh;
1465 		*list = jh;
1466 	} else {
1467 		/* Insert at the tail of the list to preserve order */
1468 		struct journal_head *first = *list, *last = first->b_tprev;
1469 		jh->b_tprev = last;
1470 		jh->b_tnext = first;
1471 		last->b_tnext = first->b_tprev = jh;
1472 	}
1473 }
1474 
1475 /*
1476  * Remove a buffer from a transaction list, given the transaction's list
1477  * head pointer.
1478  *
1479  * Called with j_list_lock held, and the journal may not be locked.
1480  *
1481  * jbd_lock_bh_state(jh2bh(jh)) is held.
1482  */
1483 
1484 static inline void
1485 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1486 {
1487 	if (*list == jh) {
1488 		*list = jh->b_tnext;
1489 		if (*list == jh)
1490 			*list = NULL;
1491 	}
1492 	jh->b_tprev->b_tnext = jh->b_tnext;
1493 	jh->b_tnext->b_tprev = jh->b_tprev;
1494 }
1495 
1496 /*
1497  * Remove a buffer from the appropriate transaction list.
1498  *
1499  * Note that this function can *change* the value of
1500  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1501  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1502  * of these pointers, it could go bad.  Generally the caller needs to re-read
1503  * the pointer from the transaction_t.
1504  *
1505  * Called under j_list_lock.  The journal may not be locked.
1506  */
1507 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1508 {
1509 	struct journal_head **list = NULL;
1510 	transaction_t *transaction;
1511 	struct buffer_head *bh = jh2bh(jh);
1512 
1513 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1514 	transaction = jh->b_transaction;
1515 	if (transaction)
1516 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1517 
1518 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1519 	if (jh->b_jlist != BJ_None)
1520 		J_ASSERT_JH(jh, transaction != NULL);
1521 
1522 	switch (jh->b_jlist) {
1523 	case BJ_None:
1524 		return;
1525 	case BJ_Metadata:
1526 		transaction->t_nr_buffers--;
1527 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1528 		list = &transaction->t_buffers;
1529 		break;
1530 	case BJ_Forget:
1531 		list = &transaction->t_forget;
1532 		break;
1533 	case BJ_IO:
1534 		list = &transaction->t_iobuf_list;
1535 		break;
1536 	case BJ_Shadow:
1537 		list = &transaction->t_shadow_list;
1538 		break;
1539 	case BJ_LogCtl:
1540 		list = &transaction->t_log_list;
1541 		break;
1542 	case BJ_Reserved:
1543 		list = &transaction->t_reserved_list;
1544 		break;
1545 	}
1546 
1547 	__blist_del_buffer(list, jh);
1548 	jh->b_jlist = BJ_None;
1549 	if (test_clear_buffer_jbddirty(bh))
1550 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1551 }
1552 
1553 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1554 {
1555 	__jbd2_journal_temp_unlink_buffer(jh);
1556 	jh->b_transaction = NULL;
1557 }
1558 
1559 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1560 {
1561 	jbd_lock_bh_state(jh2bh(jh));
1562 	spin_lock(&journal->j_list_lock);
1563 	__jbd2_journal_unfile_buffer(jh);
1564 	spin_unlock(&journal->j_list_lock);
1565 	jbd_unlock_bh_state(jh2bh(jh));
1566 }
1567 
1568 /*
1569  * Called from jbd2_journal_try_to_free_buffers().
1570  *
1571  * Called under jbd_lock_bh_state(bh)
1572  */
1573 static void
1574 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1575 {
1576 	struct journal_head *jh;
1577 
1578 	jh = bh2jh(bh);
1579 
1580 	if (buffer_locked(bh) || buffer_dirty(bh))
1581 		goto out;
1582 
1583 	if (jh->b_next_transaction != NULL)
1584 		goto out;
1585 
1586 	spin_lock(&journal->j_list_lock);
1587 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1588 		/* written-back checkpointed metadata buffer */
1589 		if (jh->b_jlist == BJ_None) {
1590 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1591 			__jbd2_journal_remove_checkpoint(jh);
1592 			jbd2_journal_remove_journal_head(bh);
1593 			__brelse(bh);
1594 		}
1595 	}
1596 	spin_unlock(&journal->j_list_lock);
1597 out:
1598 	return;
1599 }
1600 
1601 /**
1602  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1603  * @journal: journal for operation
1604  * @page: to try and free
1605  * @gfp_mask: we use the mask to detect how hard should we try to release
1606  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1607  * release the buffers.
1608  *
1609  *
1610  * For all the buffers on this page,
1611  * if they are fully written out ordered data, move them onto BUF_CLEAN
1612  * so try_to_free_buffers() can reap them.
1613  *
1614  * This function returns non-zero if we wish try_to_free_buffers()
1615  * to be called. We do this if the page is releasable by try_to_free_buffers().
1616  * We also do it if the page has locked or dirty buffers and the caller wants
1617  * us to perform sync or async writeout.
1618  *
1619  * This complicates JBD locking somewhat.  We aren't protected by the
1620  * BKL here.  We wish to remove the buffer from its committing or
1621  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1622  *
1623  * This may *change* the value of transaction_t->t_datalist, so anyone
1624  * who looks at t_datalist needs to lock against this function.
1625  *
1626  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1627  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1628  * will come out of the lock with the buffer dirty, which makes it
1629  * ineligible for release here.
1630  *
1631  * Who else is affected by this?  hmm...  Really the only contender
1632  * is do_get_write_access() - it could be looking at the buffer while
1633  * journal_try_to_free_buffer() is changing its state.  But that
1634  * cannot happen because we never reallocate freed data as metadata
1635  * while the data is part of a transaction.  Yes?
1636  *
1637  * Return 0 on failure, 1 on success
1638  */
1639 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1640 				struct page *page, gfp_t gfp_mask)
1641 {
1642 	struct buffer_head *head;
1643 	struct buffer_head *bh;
1644 	int ret = 0;
1645 
1646 	J_ASSERT(PageLocked(page));
1647 
1648 	head = page_buffers(page);
1649 	bh = head;
1650 	do {
1651 		struct journal_head *jh;
1652 
1653 		/*
1654 		 * We take our own ref against the journal_head here to avoid
1655 		 * having to add tons of locking around each instance of
1656 		 * jbd2_journal_remove_journal_head() and
1657 		 * jbd2_journal_put_journal_head().
1658 		 */
1659 		jh = jbd2_journal_grab_journal_head(bh);
1660 		if (!jh)
1661 			continue;
1662 
1663 		jbd_lock_bh_state(bh);
1664 		__journal_try_to_free_buffer(journal, bh);
1665 		jbd2_journal_put_journal_head(jh);
1666 		jbd_unlock_bh_state(bh);
1667 		if (buffer_jbd(bh))
1668 			goto busy;
1669 	} while ((bh = bh->b_this_page) != head);
1670 
1671 	ret = try_to_free_buffers(page);
1672 
1673 busy:
1674 	return ret;
1675 }
1676 
1677 /*
1678  * This buffer is no longer needed.  If it is on an older transaction's
1679  * checkpoint list we need to record it on this transaction's forget list
1680  * to pin this buffer (and hence its checkpointing transaction) down until
1681  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1682  * release it.
1683  * Returns non-zero if JBD no longer has an interest in the buffer.
1684  *
1685  * Called under j_list_lock.
1686  *
1687  * Called under jbd_lock_bh_state(bh).
1688  */
1689 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1690 {
1691 	int may_free = 1;
1692 	struct buffer_head *bh = jh2bh(jh);
1693 
1694 	__jbd2_journal_unfile_buffer(jh);
1695 
1696 	if (jh->b_cp_transaction) {
1697 		JBUFFER_TRACE(jh, "on running+cp transaction");
1698 		/*
1699 		 * We don't want to write the buffer anymore, clear the
1700 		 * bit so that we don't confuse checks in
1701 		 * __journal_file_buffer
1702 		 */
1703 		clear_buffer_dirty(bh);
1704 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1705 		may_free = 0;
1706 	} else {
1707 		JBUFFER_TRACE(jh, "on running transaction");
1708 		jbd2_journal_remove_journal_head(bh);
1709 		__brelse(bh);
1710 	}
1711 	return may_free;
1712 }
1713 
1714 /*
1715  * jbd2_journal_invalidatepage
1716  *
1717  * This code is tricky.  It has a number of cases to deal with.
1718  *
1719  * There are two invariants which this code relies on:
1720  *
1721  * i_size must be updated on disk before we start calling invalidatepage on the
1722  * data.
1723  *
1724  *  This is done in ext3 by defining an ext3_setattr method which
1725  *  updates i_size before truncate gets going.  By maintaining this
1726  *  invariant, we can be sure that it is safe to throw away any buffers
1727  *  attached to the current transaction: once the transaction commits,
1728  *  we know that the data will not be needed.
1729  *
1730  *  Note however that we can *not* throw away data belonging to the
1731  *  previous, committing transaction!
1732  *
1733  * Any disk blocks which *are* part of the previous, committing
1734  * transaction (and which therefore cannot be discarded immediately) are
1735  * not going to be reused in the new running transaction
1736  *
1737  *  The bitmap committed_data images guarantee this: any block which is
1738  *  allocated in one transaction and removed in the next will be marked
1739  *  as in-use in the committed_data bitmap, so cannot be reused until
1740  *  the next transaction to delete the block commits.  This means that
1741  *  leaving committing buffers dirty is quite safe: the disk blocks
1742  *  cannot be reallocated to a different file and so buffer aliasing is
1743  *  not possible.
1744  *
1745  *
1746  * The above applies mainly to ordered data mode.  In writeback mode we
1747  * don't make guarantees about the order in which data hits disk --- in
1748  * particular we don't guarantee that new dirty data is flushed before
1749  * transaction commit --- so it is always safe just to discard data
1750  * immediately in that mode.  --sct
1751  */
1752 
1753 /*
1754  * The journal_unmap_buffer helper function returns zero if the buffer
1755  * concerned remains pinned as an anonymous buffer belonging to an older
1756  * transaction.
1757  *
1758  * We're outside-transaction here.  Either or both of j_running_transaction
1759  * and j_committing_transaction may be NULL.
1760  */
1761 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1762 {
1763 	transaction_t *transaction;
1764 	struct journal_head *jh;
1765 	int may_free = 1;
1766 	int ret;
1767 
1768 	BUFFER_TRACE(bh, "entry");
1769 
1770 	/*
1771 	 * It is safe to proceed here without the j_list_lock because the
1772 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1773 	 * holding the page lock. --sct
1774 	 */
1775 
1776 	if (!buffer_jbd(bh))
1777 		goto zap_buffer_unlocked;
1778 
1779 	/* OK, we have data buffer in journaled mode */
1780 	write_lock(&journal->j_state_lock);
1781 	jbd_lock_bh_state(bh);
1782 	spin_lock(&journal->j_list_lock);
1783 
1784 	jh = jbd2_journal_grab_journal_head(bh);
1785 	if (!jh)
1786 		goto zap_buffer_no_jh;
1787 
1788 	/*
1789 	 * We cannot remove the buffer from checkpoint lists until the
1790 	 * transaction adding inode to orphan list (let's call it T)
1791 	 * is committed.  Otherwise if the transaction changing the
1792 	 * buffer would be cleaned from the journal before T is
1793 	 * committed, a crash will cause that the correct contents of
1794 	 * the buffer will be lost.  On the other hand we have to
1795 	 * clear the buffer dirty bit at latest at the moment when the
1796 	 * transaction marking the buffer as freed in the filesystem
1797 	 * structures is committed because from that moment on the
1798 	 * buffer can be reallocated and used by a different page.
1799 	 * Since the block hasn't been freed yet but the inode has
1800 	 * already been added to orphan list, it is safe for us to add
1801 	 * the buffer to BJ_Forget list of the newest transaction.
1802 	 */
1803 	transaction = jh->b_transaction;
1804 	if (transaction == NULL) {
1805 		/* First case: not on any transaction.  If it
1806 		 * has no checkpoint link, then we can zap it:
1807 		 * it's a writeback-mode buffer so we don't care
1808 		 * if it hits disk safely. */
1809 		if (!jh->b_cp_transaction) {
1810 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1811 			goto zap_buffer;
1812 		}
1813 
1814 		if (!buffer_dirty(bh)) {
1815 			/* bdflush has written it.  We can drop it now */
1816 			goto zap_buffer;
1817 		}
1818 
1819 		/* OK, it must be in the journal but still not
1820 		 * written fully to disk: it's metadata or
1821 		 * journaled data... */
1822 
1823 		if (journal->j_running_transaction) {
1824 			/* ... and once the current transaction has
1825 			 * committed, the buffer won't be needed any
1826 			 * longer. */
1827 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1828 			ret = __dispose_buffer(jh,
1829 					journal->j_running_transaction);
1830 			jbd2_journal_put_journal_head(jh);
1831 			spin_unlock(&journal->j_list_lock);
1832 			jbd_unlock_bh_state(bh);
1833 			write_unlock(&journal->j_state_lock);
1834 			return ret;
1835 		} else {
1836 			/* There is no currently-running transaction. So the
1837 			 * orphan record which we wrote for this file must have
1838 			 * passed into commit.  We must attach this buffer to
1839 			 * the committing transaction, if it exists. */
1840 			if (journal->j_committing_transaction) {
1841 				JBUFFER_TRACE(jh, "give to committing trans");
1842 				ret = __dispose_buffer(jh,
1843 					journal->j_committing_transaction);
1844 				jbd2_journal_put_journal_head(jh);
1845 				spin_unlock(&journal->j_list_lock);
1846 				jbd_unlock_bh_state(bh);
1847 				write_unlock(&journal->j_state_lock);
1848 				return ret;
1849 			} else {
1850 				/* The orphan record's transaction has
1851 				 * committed.  We can cleanse this buffer */
1852 				clear_buffer_jbddirty(bh);
1853 				goto zap_buffer;
1854 			}
1855 		}
1856 	} else if (transaction == journal->j_committing_transaction) {
1857 		JBUFFER_TRACE(jh, "on committing transaction");
1858 		/*
1859 		 * The buffer is committing, we simply cannot touch
1860 		 * it. So we just set j_next_transaction to the
1861 		 * running transaction (if there is one) and mark
1862 		 * buffer as freed so that commit code knows it should
1863 		 * clear dirty bits when it is done with the buffer.
1864 		 */
1865 		set_buffer_freed(bh);
1866 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1867 			jh->b_next_transaction = journal->j_running_transaction;
1868 		jbd2_journal_put_journal_head(jh);
1869 		spin_unlock(&journal->j_list_lock);
1870 		jbd_unlock_bh_state(bh);
1871 		write_unlock(&journal->j_state_lock);
1872 		return 0;
1873 	} else {
1874 		/* Good, the buffer belongs to the running transaction.
1875 		 * We are writing our own transaction's data, not any
1876 		 * previous one's, so it is safe to throw it away
1877 		 * (remember that we expect the filesystem to have set
1878 		 * i_size already for this truncate so recovery will not
1879 		 * expose the disk blocks we are discarding here.) */
1880 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1881 		JBUFFER_TRACE(jh, "on running transaction");
1882 		may_free = __dispose_buffer(jh, transaction);
1883 	}
1884 
1885 zap_buffer:
1886 	jbd2_journal_put_journal_head(jh);
1887 zap_buffer_no_jh:
1888 	spin_unlock(&journal->j_list_lock);
1889 	jbd_unlock_bh_state(bh);
1890 	write_unlock(&journal->j_state_lock);
1891 zap_buffer_unlocked:
1892 	clear_buffer_dirty(bh);
1893 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1894 	clear_buffer_mapped(bh);
1895 	clear_buffer_req(bh);
1896 	clear_buffer_new(bh);
1897 	bh->b_bdev = NULL;
1898 	return may_free;
1899 }
1900 
1901 /**
1902  * void jbd2_journal_invalidatepage()
1903  * @journal: journal to use for flush...
1904  * @page:    page to flush
1905  * @offset:  length of page to invalidate.
1906  *
1907  * Reap page buffers containing data after offset in page.
1908  *
1909  */
1910 void jbd2_journal_invalidatepage(journal_t *journal,
1911 		      struct page *page,
1912 		      unsigned long offset)
1913 {
1914 	struct buffer_head *head, *bh, *next;
1915 	unsigned int curr_off = 0;
1916 	int may_free = 1;
1917 
1918 	if (!PageLocked(page))
1919 		BUG();
1920 	if (!page_has_buffers(page))
1921 		return;
1922 
1923 	/* We will potentially be playing with lists other than just the
1924 	 * data lists (especially for journaled data mode), so be
1925 	 * cautious in our locking. */
1926 
1927 	head = bh = page_buffers(page);
1928 	do {
1929 		unsigned int next_off = curr_off + bh->b_size;
1930 		next = bh->b_this_page;
1931 
1932 		if (offset <= curr_off) {
1933 			/* This block is wholly outside the truncation point */
1934 			lock_buffer(bh);
1935 			may_free &= journal_unmap_buffer(journal, bh);
1936 			unlock_buffer(bh);
1937 		}
1938 		curr_off = next_off;
1939 		bh = next;
1940 
1941 	} while (bh != head);
1942 
1943 	if (!offset) {
1944 		if (may_free && try_to_free_buffers(page))
1945 			J_ASSERT(!page_has_buffers(page));
1946 	}
1947 }
1948 
1949 /*
1950  * File a buffer on the given transaction list.
1951  */
1952 void __jbd2_journal_file_buffer(struct journal_head *jh,
1953 			transaction_t *transaction, int jlist)
1954 {
1955 	struct journal_head **list = NULL;
1956 	int was_dirty = 0;
1957 	struct buffer_head *bh = jh2bh(jh);
1958 
1959 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1960 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1961 
1962 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1963 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1964 				jh->b_transaction == NULL);
1965 
1966 	if (jh->b_transaction && jh->b_jlist == jlist)
1967 		return;
1968 
1969 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1970 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1971 		/*
1972 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1973 		 * instead of buffer_dirty. We should not see a dirty bit set
1974 		 * here because we clear it in do_get_write_access but e.g.
1975 		 * tune2fs can modify the sb and set the dirty bit at any time
1976 		 * so we try to gracefully handle that.
1977 		 */
1978 		if (buffer_dirty(bh))
1979 			warn_dirty_buffer(bh);
1980 		if (test_clear_buffer_dirty(bh) ||
1981 		    test_clear_buffer_jbddirty(bh))
1982 			was_dirty = 1;
1983 	}
1984 
1985 	if (jh->b_transaction)
1986 		__jbd2_journal_temp_unlink_buffer(jh);
1987 	jh->b_transaction = transaction;
1988 
1989 	switch (jlist) {
1990 	case BJ_None:
1991 		J_ASSERT_JH(jh, !jh->b_committed_data);
1992 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1993 		return;
1994 	case BJ_Metadata:
1995 		transaction->t_nr_buffers++;
1996 		list = &transaction->t_buffers;
1997 		break;
1998 	case BJ_Forget:
1999 		list = &transaction->t_forget;
2000 		break;
2001 	case BJ_IO:
2002 		list = &transaction->t_iobuf_list;
2003 		break;
2004 	case BJ_Shadow:
2005 		list = &transaction->t_shadow_list;
2006 		break;
2007 	case BJ_LogCtl:
2008 		list = &transaction->t_log_list;
2009 		break;
2010 	case BJ_Reserved:
2011 		list = &transaction->t_reserved_list;
2012 		break;
2013 	}
2014 
2015 	__blist_add_buffer(list, jh);
2016 	jh->b_jlist = jlist;
2017 
2018 	if (was_dirty)
2019 		set_buffer_jbddirty(bh);
2020 }
2021 
2022 void jbd2_journal_file_buffer(struct journal_head *jh,
2023 				transaction_t *transaction, int jlist)
2024 {
2025 	jbd_lock_bh_state(jh2bh(jh));
2026 	spin_lock(&transaction->t_journal->j_list_lock);
2027 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2028 	spin_unlock(&transaction->t_journal->j_list_lock);
2029 	jbd_unlock_bh_state(jh2bh(jh));
2030 }
2031 
2032 /*
2033  * Remove a buffer from its current buffer list in preparation for
2034  * dropping it from its current transaction entirely.  If the buffer has
2035  * already started to be used by a subsequent transaction, refile the
2036  * buffer on that transaction's metadata list.
2037  *
2038  * Called under journal->j_list_lock
2039  *
2040  * Called under jbd_lock_bh_state(jh2bh(jh))
2041  */
2042 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2043 {
2044 	int was_dirty, jlist;
2045 	struct buffer_head *bh = jh2bh(jh);
2046 
2047 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2048 	if (jh->b_transaction)
2049 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2050 
2051 	/* If the buffer is now unused, just drop it. */
2052 	if (jh->b_next_transaction == NULL) {
2053 		__jbd2_journal_unfile_buffer(jh);
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * It has been modified by a later transaction: add it to the new
2059 	 * transaction's metadata list.
2060 	 */
2061 
2062 	was_dirty = test_clear_buffer_jbddirty(bh);
2063 	__jbd2_journal_temp_unlink_buffer(jh);
2064 	jh->b_transaction = jh->b_next_transaction;
2065 	jh->b_next_transaction = NULL;
2066 	if (buffer_freed(bh))
2067 		jlist = BJ_Forget;
2068 	else if (jh->b_modified)
2069 		jlist = BJ_Metadata;
2070 	else
2071 		jlist = BJ_Reserved;
2072 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2073 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2074 
2075 	if (was_dirty)
2076 		set_buffer_jbddirty(bh);
2077 }
2078 
2079 /*
2080  * For the unlocked version of this call, also make sure that any
2081  * hanging journal_head is cleaned up if necessary.
2082  *
2083  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2084  * operation on a buffer_head, in which the caller is probably going to
2085  * be hooking the journal_head onto other lists.  In that case it is up
2086  * to the caller to remove the journal_head if necessary.  For the
2087  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2088  * doing anything else to the buffer so we need to do the cleanup
2089  * ourselves to avoid a jh leak.
2090  *
2091  * *** The journal_head may be freed by this call! ***
2092  */
2093 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2094 {
2095 	struct buffer_head *bh = jh2bh(jh);
2096 
2097 	jbd_lock_bh_state(bh);
2098 	spin_lock(&journal->j_list_lock);
2099 
2100 	__jbd2_journal_refile_buffer(jh);
2101 	jbd_unlock_bh_state(bh);
2102 	jbd2_journal_remove_journal_head(bh);
2103 
2104 	spin_unlock(&journal->j_list_lock);
2105 	__brelse(bh);
2106 }
2107 
2108 /*
2109  * File inode in the inode list of the handle's transaction
2110  */
2111 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2112 {
2113 	transaction_t *transaction = handle->h_transaction;
2114 	journal_t *journal = transaction->t_journal;
2115 
2116 	if (is_handle_aborted(handle))
2117 		return -EIO;
2118 
2119 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2120 			transaction->t_tid);
2121 
2122 	/*
2123 	 * First check whether inode isn't already on the transaction's
2124 	 * lists without taking the lock. Note that this check is safe
2125 	 * without the lock as we cannot race with somebody removing inode
2126 	 * from the transaction. The reason is that we remove inode from the
2127 	 * transaction only in journal_release_jbd_inode() and when we commit
2128 	 * the transaction. We are guarded from the first case by holding
2129 	 * a reference to the inode. We are safe against the second case
2130 	 * because if jinode->i_transaction == transaction, commit code
2131 	 * cannot touch the transaction because we hold reference to it,
2132 	 * and if jinode->i_next_transaction == transaction, commit code
2133 	 * will only file the inode where we want it.
2134 	 */
2135 	if (jinode->i_transaction == transaction ||
2136 	    jinode->i_next_transaction == transaction)
2137 		return 0;
2138 
2139 	spin_lock(&journal->j_list_lock);
2140 
2141 	if (jinode->i_transaction == transaction ||
2142 	    jinode->i_next_transaction == transaction)
2143 		goto done;
2144 
2145 	/* On some different transaction's list - should be
2146 	 * the committing one */
2147 	if (jinode->i_transaction) {
2148 		J_ASSERT(jinode->i_next_transaction == NULL);
2149 		J_ASSERT(jinode->i_transaction ==
2150 					journal->j_committing_transaction);
2151 		jinode->i_next_transaction = transaction;
2152 		goto done;
2153 	}
2154 	/* Not on any transaction list... */
2155 	J_ASSERT(!jinode->i_next_transaction);
2156 	jinode->i_transaction = transaction;
2157 	list_add(&jinode->i_list, &transaction->t_inode_list);
2158 done:
2159 	spin_unlock(&journal->j_list_lock);
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * File truncate and transaction commit interact with each other in a
2166  * non-trivial way.  If a transaction writing data block A is
2167  * committing, we cannot discard the data by truncate until we have
2168  * written them.  Otherwise if we crashed after the transaction with
2169  * write has committed but before the transaction with truncate has
2170  * committed, we could see stale data in block A.  This function is a
2171  * helper to solve this problem.  It starts writeout of the truncated
2172  * part in case it is in the committing transaction.
2173  *
2174  * Filesystem code must call this function when inode is journaled in
2175  * ordered mode before truncation happens and after the inode has been
2176  * placed on orphan list with the new inode size. The second condition
2177  * avoids the race that someone writes new data and we start
2178  * committing the transaction after this function has been called but
2179  * before a transaction for truncate is started (and furthermore it
2180  * allows us to optimize the case where the addition to orphan list
2181  * happens in the same transaction as write --- we don't have to write
2182  * any data in such case).
2183  */
2184 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2185 					struct jbd2_inode *jinode,
2186 					loff_t new_size)
2187 {
2188 	transaction_t *inode_trans, *commit_trans;
2189 	int ret = 0;
2190 
2191 	/* This is a quick check to avoid locking if not necessary */
2192 	if (!jinode->i_transaction)
2193 		goto out;
2194 	/* Locks are here just to force reading of recent values, it is
2195 	 * enough that the transaction was not committing before we started
2196 	 * a transaction adding the inode to orphan list */
2197 	read_lock(&journal->j_state_lock);
2198 	commit_trans = journal->j_committing_transaction;
2199 	read_unlock(&journal->j_state_lock);
2200 	spin_lock(&journal->j_list_lock);
2201 	inode_trans = jinode->i_transaction;
2202 	spin_unlock(&journal->j_list_lock);
2203 	if (inode_trans == commit_trans) {
2204 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2205 			new_size, LLONG_MAX);
2206 		if (ret)
2207 			jbd2_journal_abort(journal, ret);
2208 	}
2209 out:
2210 	return ret;
2211 }
2212