xref: /openbmc/linux/fs/jbd2/transaction.c (revision b04b4f78)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 
30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
31 
32 /*
33  * jbd2_get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *	The journal MUST be locked.  We don't perform atomic mallocs on the
42  *	new transaction	and we can't block without protecting against other
43  *	processes trying to touch the journal while it is in transition.
44  *
45  */
46 
47 static transaction_t *
48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
49 {
50 	transaction->t_journal = journal;
51 	transaction->t_state = T_RUNNING;
52 	transaction->t_start_time = ktime_get();
53 	transaction->t_tid = journal->j_transaction_sequence++;
54 	transaction->t_expires = jiffies + journal->j_commit_interval;
55 	spin_lock_init(&transaction->t_handle_lock);
56 	INIT_LIST_HEAD(&transaction->t_inode_list);
57 	INIT_LIST_HEAD(&transaction->t_private_list);
58 
59 	/* Set up the commit timer for the new transaction. */
60 	journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
61 	add_timer(&journal->j_commit_timer);
62 
63 	J_ASSERT(journal->j_running_transaction == NULL);
64 	journal->j_running_transaction = transaction;
65 	transaction->t_max_wait = 0;
66 	transaction->t_start = jiffies;
67 
68 	return transaction;
69 }
70 
71 /*
72  * Handle management.
73  *
74  * A handle_t is an object which represents a single atomic update to a
75  * filesystem, and which tracks all of the modifications which form part
76  * of that one update.
77  */
78 
79 /*
80  * start_this_handle: Given a handle, deal with any locking or stalling
81  * needed to make sure that there is enough journal space for the handle
82  * to begin.  Attach the handle to a transaction and set up the
83  * transaction's buffer credits.
84  */
85 
86 static int start_this_handle(journal_t *journal, handle_t *handle)
87 {
88 	transaction_t *transaction;
89 	int needed;
90 	int nblocks = handle->h_buffer_credits;
91 	transaction_t *new_transaction = NULL;
92 	int ret = 0;
93 	unsigned long ts = jiffies;
94 
95 	if (nblocks > journal->j_max_transaction_buffers) {
96 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
97 		       current->comm, nblocks,
98 		       journal->j_max_transaction_buffers);
99 		ret = -ENOSPC;
100 		goto out;
101 	}
102 
103 alloc_transaction:
104 	if (!journal->j_running_transaction) {
105 		new_transaction = kzalloc(sizeof(*new_transaction),
106 						GFP_NOFS|__GFP_NOFAIL);
107 		if (!new_transaction) {
108 			ret = -ENOMEM;
109 			goto out;
110 		}
111 	}
112 
113 	jbd_debug(3, "New handle %p going live.\n", handle);
114 
115 repeat:
116 
117 	/*
118 	 * We need to hold j_state_lock until t_updates has been incremented,
119 	 * for proper journal barrier handling
120 	 */
121 	spin_lock(&journal->j_state_lock);
122 repeat_locked:
123 	if (is_journal_aborted(journal) ||
124 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
125 		spin_unlock(&journal->j_state_lock);
126 		ret = -EROFS;
127 		goto out;
128 	}
129 
130 	/* Wait on the journal's transaction barrier if necessary */
131 	if (journal->j_barrier_count) {
132 		spin_unlock(&journal->j_state_lock);
133 		wait_event(journal->j_wait_transaction_locked,
134 				journal->j_barrier_count == 0);
135 		goto repeat;
136 	}
137 
138 	if (!journal->j_running_transaction) {
139 		if (!new_transaction) {
140 			spin_unlock(&journal->j_state_lock);
141 			goto alloc_transaction;
142 		}
143 		jbd2_get_transaction(journal, new_transaction);
144 		new_transaction = NULL;
145 	}
146 
147 	transaction = journal->j_running_transaction;
148 
149 	/*
150 	 * If the current transaction is locked down for commit, wait for the
151 	 * lock to be released.
152 	 */
153 	if (transaction->t_state == T_LOCKED) {
154 		DEFINE_WAIT(wait);
155 
156 		prepare_to_wait(&journal->j_wait_transaction_locked,
157 					&wait, TASK_UNINTERRUPTIBLE);
158 		spin_unlock(&journal->j_state_lock);
159 		schedule();
160 		finish_wait(&journal->j_wait_transaction_locked, &wait);
161 		goto repeat;
162 	}
163 
164 	/*
165 	 * If there is not enough space left in the log to write all potential
166 	 * buffers requested by this operation, we need to stall pending a log
167 	 * checkpoint to free some more log space.
168 	 */
169 	spin_lock(&transaction->t_handle_lock);
170 	needed = transaction->t_outstanding_credits + nblocks;
171 
172 	if (needed > journal->j_max_transaction_buffers) {
173 		/*
174 		 * If the current transaction is already too large, then start
175 		 * to commit it: we can then go back and attach this handle to
176 		 * a new transaction.
177 		 */
178 		DEFINE_WAIT(wait);
179 
180 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
181 		spin_unlock(&transaction->t_handle_lock);
182 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
183 				TASK_UNINTERRUPTIBLE);
184 		__jbd2_log_start_commit(journal, transaction->t_tid);
185 		spin_unlock(&journal->j_state_lock);
186 		schedule();
187 		finish_wait(&journal->j_wait_transaction_locked, &wait);
188 		goto repeat;
189 	}
190 
191 	/*
192 	 * The commit code assumes that it can get enough log space
193 	 * without forcing a checkpoint.  This is *critical* for
194 	 * correctness: a checkpoint of a buffer which is also
195 	 * associated with a committing transaction creates a deadlock,
196 	 * so commit simply cannot force through checkpoints.
197 	 *
198 	 * We must therefore ensure the necessary space in the journal
199 	 * *before* starting to dirty potentially checkpointed buffers
200 	 * in the new transaction.
201 	 *
202 	 * The worst part is, any transaction currently committing can
203 	 * reduce the free space arbitrarily.  Be careful to account for
204 	 * those buffers when checkpointing.
205 	 */
206 
207 	/*
208 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
209 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
210 	 * the committing transaction.  Really, we only need to give it
211 	 * committing_transaction->t_outstanding_credits plus "enough" for
212 	 * the log control blocks.
213 	 * Also, this test is inconsitent with the matching one in
214 	 * jbd2_journal_extend().
215 	 */
216 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
217 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
218 		spin_unlock(&transaction->t_handle_lock);
219 		__jbd2_log_wait_for_space(journal);
220 		goto repeat_locked;
221 	}
222 
223 	/* OK, account for the buffers that this operation expects to
224 	 * use and add the handle to the running transaction. */
225 
226 	if (time_after(transaction->t_start, ts)) {
227 		ts = jbd2_time_diff(ts, transaction->t_start);
228 		if (ts > transaction->t_max_wait)
229 			transaction->t_max_wait = ts;
230 	}
231 
232 	handle->h_transaction = transaction;
233 	transaction->t_outstanding_credits += nblocks;
234 	transaction->t_updates++;
235 	transaction->t_handle_count++;
236 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
237 		  handle, nblocks, transaction->t_outstanding_credits,
238 		  __jbd2_log_space_left(journal));
239 	spin_unlock(&transaction->t_handle_lock);
240 	spin_unlock(&journal->j_state_lock);
241 out:
242 	if (unlikely(new_transaction))		/* It's usually NULL */
243 		kfree(new_transaction);
244 	return ret;
245 }
246 
247 static struct lock_class_key jbd2_handle_key;
248 
249 /* Allocate a new handle.  This should probably be in a slab... */
250 static handle_t *new_handle(int nblocks)
251 {
252 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
253 	if (!handle)
254 		return NULL;
255 	memset(handle, 0, sizeof(*handle));
256 	handle->h_buffer_credits = nblocks;
257 	handle->h_ref = 1;
258 
259 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
260 						&jbd2_handle_key, 0);
261 
262 	return handle;
263 }
264 
265 /**
266  * handle_t *jbd2_journal_start() - Obtain a new handle.
267  * @journal: Journal to start transaction on.
268  * @nblocks: number of block buffer we might modify
269  *
270  * We make sure that the transaction can guarantee at least nblocks of
271  * modified buffers in the log.  We block until the log can guarantee
272  * that much space.
273  *
274  * This function is visible to journal users (like ext3fs), so is not
275  * called with the journal already locked.
276  *
277  * Return a pointer to a newly allocated handle, or NULL on failure
278  */
279 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
280 {
281 	handle_t *handle = journal_current_handle();
282 	int err;
283 
284 	if (!journal)
285 		return ERR_PTR(-EROFS);
286 
287 	if (handle) {
288 		J_ASSERT(handle->h_transaction->t_journal == journal);
289 		handle->h_ref++;
290 		return handle;
291 	}
292 
293 	handle = new_handle(nblocks);
294 	if (!handle)
295 		return ERR_PTR(-ENOMEM);
296 
297 	current->journal_info = handle;
298 
299 	err = start_this_handle(journal, handle);
300 	if (err < 0) {
301 		jbd2_free_handle(handle);
302 		current->journal_info = NULL;
303 		handle = ERR_PTR(err);
304 		goto out;
305 	}
306 
307 	lock_map_acquire(&handle->h_lockdep_map);
308 out:
309 	return handle;
310 }
311 
312 /**
313  * int jbd2_journal_extend() - extend buffer credits.
314  * @handle:  handle to 'extend'
315  * @nblocks: nr blocks to try to extend by.
316  *
317  * Some transactions, such as large extends and truncates, can be done
318  * atomically all at once or in several stages.  The operation requests
319  * a credit for a number of buffer modications in advance, but can
320  * extend its credit if it needs more.
321  *
322  * jbd2_journal_extend tries to give the running handle more buffer credits.
323  * It does not guarantee that allocation - this is a best-effort only.
324  * The calling process MUST be able to deal cleanly with a failure to
325  * extend here.
326  *
327  * Return 0 on success, non-zero on failure.
328  *
329  * return code < 0 implies an error
330  * return code > 0 implies normal transaction-full status.
331  */
332 int jbd2_journal_extend(handle_t *handle, int nblocks)
333 {
334 	transaction_t *transaction = handle->h_transaction;
335 	journal_t *journal = transaction->t_journal;
336 	int result;
337 	int wanted;
338 
339 	result = -EIO;
340 	if (is_handle_aborted(handle))
341 		goto out;
342 
343 	result = 1;
344 
345 	spin_lock(&journal->j_state_lock);
346 
347 	/* Don't extend a locked-down transaction! */
348 	if (handle->h_transaction->t_state != T_RUNNING) {
349 		jbd_debug(3, "denied handle %p %d blocks: "
350 			  "transaction not running\n", handle, nblocks);
351 		goto error_out;
352 	}
353 
354 	spin_lock(&transaction->t_handle_lock);
355 	wanted = transaction->t_outstanding_credits + nblocks;
356 
357 	if (wanted > journal->j_max_transaction_buffers) {
358 		jbd_debug(3, "denied handle %p %d blocks: "
359 			  "transaction too large\n", handle, nblocks);
360 		goto unlock;
361 	}
362 
363 	if (wanted > __jbd2_log_space_left(journal)) {
364 		jbd_debug(3, "denied handle %p %d blocks: "
365 			  "insufficient log space\n", handle, nblocks);
366 		goto unlock;
367 	}
368 
369 	handle->h_buffer_credits += nblocks;
370 	transaction->t_outstanding_credits += nblocks;
371 	result = 0;
372 
373 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
374 unlock:
375 	spin_unlock(&transaction->t_handle_lock);
376 error_out:
377 	spin_unlock(&journal->j_state_lock);
378 out:
379 	return result;
380 }
381 
382 
383 /**
384  * int jbd2_journal_restart() - restart a handle .
385  * @handle:  handle to restart
386  * @nblocks: nr credits requested
387  *
388  * Restart a handle for a multi-transaction filesystem
389  * operation.
390  *
391  * If the jbd2_journal_extend() call above fails to grant new buffer credits
392  * to a running handle, a call to jbd2_journal_restart will commit the
393  * handle's transaction so far and reattach the handle to a new
394  * transaction capabable of guaranteeing the requested number of
395  * credits.
396  */
397 
398 int jbd2_journal_restart(handle_t *handle, int nblocks)
399 {
400 	transaction_t *transaction = handle->h_transaction;
401 	journal_t *journal = transaction->t_journal;
402 	int ret;
403 
404 	/* If we've had an abort of any type, don't even think about
405 	 * actually doing the restart! */
406 	if (is_handle_aborted(handle))
407 		return 0;
408 
409 	/*
410 	 * First unlink the handle from its current transaction, and start the
411 	 * commit on that.
412 	 */
413 	J_ASSERT(transaction->t_updates > 0);
414 	J_ASSERT(journal_current_handle() == handle);
415 
416 	spin_lock(&journal->j_state_lock);
417 	spin_lock(&transaction->t_handle_lock);
418 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
419 	transaction->t_updates--;
420 
421 	if (!transaction->t_updates)
422 		wake_up(&journal->j_wait_updates);
423 	spin_unlock(&transaction->t_handle_lock);
424 
425 	jbd_debug(2, "restarting handle %p\n", handle);
426 	__jbd2_log_start_commit(journal, transaction->t_tid);
427 	spin_unlock(&journal->j_state_lock);
428 
429 	handle->h_buffer_credits = nblocks;
430 	ret = start_this_handle(journal, handle);
431 	return ret;
432 }
433 
434 
435 /**
436  * void jbd2_journal_lock_updates () - establish a transaction barrier.
437  * @journal:  Journal to establish a barrier on.
438  *
439  * This locks out any further updates from being started, and blocks
440  * until all existing updates have completed, returning only once the
441  * journal is in a quiescent state with no updates running.
442  *
443  * The journal lock should not be held on entry.
444  */
445 void jbd2_journal_lock_updates(journal_t *journal)
446 {
447 	DEFINE_WAIT(wait);
448 
449 	spin_lock(&journal->j_state_lock);
450 	++journal->j_barrier_count;
451 
452 	/* Wait until there are no running updates */
453 	while (1) {
454 		transaction_t *transaction = journal->j_running_transaction;
455 
456 		if (!transaction)
457 			break;
458 
459 		spin_lock(&transaction->t_handle_lock);
460 		if (!transaction->t_updates) {
461 			spin_unlock(&transaction->t_handle_lock);
462 			break;
463 		}
464 		prepare_to_wait(&journal->j_wait_updates, &wait,
465 				TASK_UNINTERRUPTIBLE);
466 		spin_unlock(&transaction->t_handle_lock);
467 		spin_unlock(&journal->j_state_lock);
468 		schedule();
469 		finish_wait(&journal->j_wait_updates, &wait);
470 		spin_lock(&journal->j_state_lock);
471 	}
472 	spin_unlock(&journal->j_state_lock);
473 
474 	/*
475 	 * We have now established a barrier against other normal updates, but
476 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
477 	 * to make sure that we serialise special journal-locked operations
478 	 * too.
479 	 */
480 	mutex_lock(&journal->j_barrier);
481 }
482 
483 /**
484  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
485  * @journal:  Journal to release the barrier on.
486  *
487  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
488  *
489  * Should be called without the journal lock held.
490  */
491 void jbd2_journal_unlock_updates (journal_t *journal)
492 {
493 	J_ASSERT(journal->j_barrier_count != 0);
494 
495 	mutex_unlock(&journal->j_barrier);
496 	spin_lock(&journal->j_state_lock);
497 	--journal->j_barrier_count;
498 	spin_unlock(&journal->j_state_lock);
499 	wake_up(&journal->j_wait_transaction_locked);
500 }
501 
502 /*
503  * Report any unexpected dirty buffers which turn up.  Normally those
504  * indicate an error, but they can occur if the user is running (say)
505  * tune2fs to modify the live filesystem, so we need the option of
506  * continuing as gracefully as possible.  #
507  *
508  * The caller should already hold the journal lock and
509  * j_list_lock spinlock: most callers will need those anyway
510  * in order to probe the buffer's journaling state safely.
511  */
512 static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
513 {
514 	int jlist;
515 
516 	/* If this buffer is one which might reasonably be dirty
517 	 * --- ie. data, or not part of this journal --- then
518 	 * we're OK to leave it alone, but otherwise we need to
519 	 * move the dirty bit to the journal's own internal
520 	 * JBDDirty bit. */
521 	jlist = jh->b_jlist;
522 
523 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
524 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
525 		struct buffer_head *bh = jh2bh(jh);
526 
527 		if (test_clear_buffer_dirty(bh))
528 			set_buffer_jbddirty(bh);
529 	}
530 }
531 
532 /*
533  * If the buffer is already part of the current transaction, then there
534  * is nothing we need to do.  If it is already part of a prior
535  * transaction which we are still committing to disk, then we need to
536  * make sure that we do not overwrite the old copy: we do copy-out to
537  * preserve the copy going to disk.  We also account the buffer against
538  * the handle's metadata buffer credits (unless the buffer is already
539  * part of the transaction, that is).
540  *
541  */
542 static int
543 do_get_write_access(handle_t *handle, struct journal_head *jh,
544 			int force_copy)
545 {
546 	struct buffer_head *bh;
547 	transaction_t *transaction;
548 	journal_t *journal;
549 	int error;
550 	char *frozen_buffer = NULL;
551 	int need_copy = 0;
552 
553 	if (is_handle_aborted(handle))
554 		return -EROFS;
555 
556 	transaction = handle->h_transaction;
557 	journal = transaction->t_journal;
558 
559 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
560 
561 	JBUFFER_TRACE(jh, "entry");
562 repeat:
563 	bh = jh2bh(jh);
564 
565 	/* @@@ Need to check for errors here at some point. */
566 
567 	lock_buffer(bh);
568 	jbd_lock_bh_state(bh);
569 
570 	/* We now hold the buffer lock so it is safe to query the buffer
571 	 * state.  Is the buffer dirty?
572 	 *
573 	 * If so, there are two possibilities.  The buffer may be
574 	 * non-journaled, and undergoing a quite legitimate writeback.
575 	 * Otherwise, it is journaled, and we don't expect dirty buffers
576 	 * in that state (the buffers should be marked JBD_Dirty
577 	 * instead.)  So either the IO is being done under our own
578 	 * control and this is a bug, or it's a third party IO such as
579 	 * dump(8) (which may leave the buffer scheduled for read ---
580 	 * ie. locked but not dirty) or tune2fs (which may actually have
581 	 * the buffer dirtied, ugh.)  */
582 
583 	if (buffer_dirty(bh)) {
584 		/*
585 		 * First question: is this buffer already part of the current
586 		 * transaction or the existing committing transaction?
587 		 */
588 		if (jh->b_transaction) {
589 			J_ASSERT_JH(jh,
590 				jh->b_transaction == transaction ||
591 				jh->b_transaction ==
592 					journal->j_committing_transaction);
593 			if (jh->b_next_transaction)
594 				J_ASSERT_JH(jh, jh->b_next_transaction ==
595 							transaction);
596 		}
597 		/*
598 		 * In any case we need to clean the dirty flag and we must
599 		 * do it under the buffer lock to be sure we don't race
600 		 * with running write-out.
601 		 */
602 		JBUFFER_TRACE(jh, "Unexpected dirty buffer");
603 		jbd_unexpected_dirty_buffer(jh);
604 	}
605 
606 	unlock_buffer(bh);
607 
608 	error = -EROFS;
609 	if (is_handle_aborted(handle)) {
610 		jbd_unlock_bh_state(bh);
611 		goto out;
612 	}
613 	error = 0;
614 
615 	/*
616 	 * The buffer is already part of this transaction if b_transaction or
617 	 * b_next_transaction points to it
618 	 */
619 	if (jh->b_transaction == transaction ||
620 	    jh->b_next_transaction == transaction)
621 		goto done;
622 
623 	/*
624 	 * this is the first time this transaction is touching this buffer,
625 	 * reset the modified flag
626 	 */
627        jh->b_modified = 0;
628 
629 	/*
630 	 * If there is already a copy-out version of this buffer, then we don't
631 	 * need to make another one
632 	 */
633 	if (jh->b_frozen_data) {
634 		JBUFFER_TRACE(jh, "has frozen data");
635 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
636 		jh->b_next_transaction = transaction;
637 		goto done;
638 	}
639 
640 	/* Is there data here we need to preserve? */
641 
642 	if (jh->b_transaction && jh->b_transaction != transaction) {
643 		JBUFFER_TRACE(jh, "owned by older transaction");
644 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
645 		J_ASSERT_JH(jh, jh->b_transaction ==
646 					journal->j_committing_transaction);
647 
648 		/* There is one case we have to be very careful about.
649 		 * If the committing transaction is currently writing
650 		 * this buffer out to disk and has NOT made a copy-out,
651 		 * then we cannot modify the buffer contents at all
652 		 * right now.  The essence of copy-out is that it is the
653 		 * extra copy, not the primary copy, which gets
654 		 * journaled.  If the primary copy is already going to
655 		 * disk then we cannot do copy-out here. */
656 
657 		if (jh->b_jlist == BJ_Shadow) {
658 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
659 			wait_queue_head_t *wqh;
660 
661 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
662 
663 			JBUFFER_TRACE(jh, "on shadow: sleep");
664 			jbd_unlock_bh_state(bh);
665 			/* commit wakes up all shadow buffers after IO */
666 			for ( ; ; ) {
667 				prepare_to_wait(wqh, &wait.wait,
668 						TASK_UNINTERRUPTIBLE);
669 				if (jh->b_jlist != BJ_Shadow)
670 					break;
671 				schedule();
672 			}
673 			finish_wait(wqh, &wait.wait);
674 			goto repeat;
675 		}
676 
677 		/* Only do the copy if the currently-owning transaction
678 		 * still needs it.  If it is on the Forget list, the
679 		 * committing transaction is past that stage.  The
680 		 * buffer had better remain locked during the kmalloc,
681 		 * but that should be true --- we hold the journal lock
682 		 * still and the buffer is already on the BUF_JOURNAL
683 		 * list so won't be flushed.
684 		 *
685 		 * Subtle point, though: if this is a get_undo_access,
686 		 * then we will be relying on the frozen_data to contain
687 		 * the new value of the committed_data record after the
688 		 * transaction, so we HAVE to force the frozen_data copy
689 		 * in that case. */
690 
691 		if (jh->b_jlist != BJ_Forget || force_copy) {
692 			JBUFFER_TRACE(jh, "generate frozen data");
693 			if (!frozen_buffer) {
694 				JBUFFER_TRACE(jh, "allocate memory for buffer");
695 				jbd_unlock_bh_state(bh);
696 				frozen_buffer =
697 					jbd2_alloc(jh2bh(jh)->b_size,
698 							 GFP_NOFS);
699 				if (!frozen_buffer) {
700 					printk(KERN_EMERG
701 					       "%s: OOM for frozen_buffer\n",
702 					       __func__);
703 					JBUFFER_TRACE(jh, "oom!");
704 					error = -ENOMEM;
705 					jbd_lock_bh_state(bh);
706 					goto done;
707 				}
708 				goto repeat;
709 			}
710 			jh->b_frozen_data = frozen_buffer;
711 			frozen_buffer = NULL;
712 			need_copy = 1;
713 		}
714 		jh->b_next_transaction = transaction;
715 	}
716 
717 
718 	/*
719 	 * Finally, if the buffer is not journaled right now, we need to make
720 	 * sure it doesn't get written to disk before the caller actually
721 	 * commits the new data
722 	 */
723 	if (!jh->b_transaction) {
724 		JBUFFER_TRACE(jh, "no transaction");
725 		J_ASSERT_JH(jh, !jh->b_next_transaction);
726 		jh->b_transaction = transaction;
727 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
728 		spin_lock(&journal->j_list_lock);
729 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
730 		spin_unlock(&journal->j_list_lock);
731 	}
732 
733 done:
734 	if (need_copy) {
735 		struct page *page;
736 		int offset;
737 		char *source;
738 
739 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
740 			    "Possible IO failure.\n");
741 		page = jh2bh(jh)->b_page;
742 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
743 		source = kmap_atomic(page, KM_USER0);
744 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
745 		kunmap_atomic(source, KM_USER0);
746 
747 		/*
748 		 * Now that the frozen data is saved off, we need to store
749 		 * any matching triggers.
750 		 */
751 		jh->b_frozen_triggers = jh->b_triggers;
752 	}
753 	jbd_unlock_bh_state(bh);
754 
755 	/*
756 	 * If we are about to journal a buffer, then any revoke pending on it is
757 	 * no longer valid
758 	 */
759 	jbd2_journal_cancel_revoke(handle, jh);
760 
761 out:
762 	if (unlikely(frozen_buffer))	/* It's usually NULL */
763 		jbd2_free(frozen_buffer, bh->b_size);
764 
765 	JBUFFER_TRACE(jh, "exit");
766 	return error;
767 }
768 
769 /**
770  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
771  * @handle: transaction to add buffer modifications to
772  * @bh:     bh to be used for metadata writes
773  * @credits: variable that will receive credits for the buffer
774  *
775  * Returns an error code or 0 on success.
776  *
777  * In full data journalling mode the buffer may be of type BJ_AsyncData,
778  * because we're write()ing a buffer which is also part of a shared mapping.
779  */
780 
781 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
782 {
783 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
784 	int rc;
785 
786 	/* We do not want to get caught playing with fields which the
787 	 * log thread also manipulates.  Make sure that the buffer
788 	 * completes any outstanding IO before proceeding. */
789 	rc = do_get_write_access(handle, jh, 0);
790 	jbd2_journal_put_journal_head(jh);
791 	return rc;
792 }
793 
794 
795 /*
796  * When the user wants to journal a newly created buffer_head
797  * (ie. getblk() returned a new buffer and we are going to populate it
798  * manually rather than reading off disk), then we need to keep the
799  * buffer_head locked until it has been completely filled with new
800  * data.  In this case, we should be able to make the assertion that
801  * the bh is not already part of an existing transaction.
802  *
803  * The buffer should already be locked by the caller by this point.
804  * There is no lock ranking violation: it was a newly created,
805  * unlocked buffer beforehand. */
806 
807 /**
808  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
809  * @handle: transaction to new buffer to
810  * @bh: new buffer.
811  *
812  * Call this if you create a new bh.
813  */
814 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
815 {
816 	transaction_t *transaction = handle->h_transaction;
817 	journal_t *journal = transaction->t_journal;
818 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
819 	int err;
820 
821 	jbd_debug(5, "journal_head %p\n", jh);
822 	err = -EROFS;
823 	if (is_handle_aborted(handle))
824 		goto out;
825 	err = 0;
826 
827 	JBUFFER_TRACE(jh, "entry");
828 	/*
829 	 * The buffer may already belong to this transaction due to pre-zeroing
830 	 * in the filesystem's new_block code.  It may also be on the previous,
831 	 * committing transaction's lists, but it HAS to be in Forget state in
832 	 * that case: the transaction must have deleted the buffer for it to be
833 	 * reused here.
834 	 */
835 	jbd_lock_bh_state(bh);
836 	spin_lock(&journal->j_list_lock);
837 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
838 		jh->b_transaction == NULL ||
839 		(jh->b_transaction == journal->j_committing_transaction &&
840 			  jh->b_jlist == BJ_Forget)));
841 
842 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
843 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
844 
845 	if (jh->b_transaction == NULL) {
846 		jh->b_transaction = transaction;
847 
848 		/* first access by this transaction */
849 		jh->b_modified = 0;
850 
851 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
852 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
853 	} else if (jh->b_transaction == journal->j_committing_transaction) {
854 		/* first access by this transaction */
855 		jh->b_modified = 0;
856 
857 		JBUFFER_TRACE(jh, "set next transaction");
858 		jh->b_next_transaction = transaction;
859 	}
860 	spin_unlock(&journal->j_list_lock);
861 	jbd_unlock_bh_state(bh);
862 
863 	/*
864 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
865 	 * blocks which contain freed but then revoked metadata.  We need
866 	 * to cancel the revoke in case we end up freeing it yet again
867 	 * and the reallocating as data - this would cause a second revoke,
868 	 * which hits an assertion error.
869 	 */
870 	JBUFFER_TRACE(jh, "cancelling revoke");
871 	jbd2_journal_cancel_revoke(handle, jh);
872 	jbd2_journal_put_journal_head(jh);
873 out:
874 	return err;
875 }
876 
877 /**
878  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
879  *     non-rewindable consequences
880  * @handle: transaction
881  * @bh: buffer to undo
882  * @credits: store the number of taken credits here (if not NULL)
883  *
884  * Sometimes there is a need to distinguish between metadata which has
885  * been committed to disk and that which has not.  The ext3fs code uses
886  * this for freeing and allocating space, we have to make sure that we
887  * do not reuse freed space until the deallocation has been committed,
888  * since if we overwrote that space we would make the delete
889  * un-rewindable in case of a crash.
890  *
891  * To deal with that, jbd2_journal_get_undo_access requests write access to a
892  * buffer for parts of non-rewindable operations such as delete
893  * operations on the bitmaps.  The journaling code must keep a copy of
894  * the buffer's contents prior to the undo_access call until such time
895  * as we know that the buffer has definitely been committed to disk.
896  *
897  * We never need to know which transaction the committed data is part
898  * of, buffers touched here are guaranteed to be dirtied later and so
899  * will be committed to a new transaction in due course, at which point
900  * we can discard the old committed data pointer.
901  *
902  * Returns error number or 0 on success.
903  */
904 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
905 {
906 	int err;
907 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
908 	char *committed_data = NULL;
909 
910 	JBUFFER_TRACE(jh, "entry");
911 
912 	/*
913 	 * Do this first --- it can drop the journal lock, so we want to
914 	 * make sure that obtaining the committed_data is done
915 	 * atomically wrt. completion of any outstanding commits.
916 	 */
917 	err = do_get_write_access(handle, jh, 1);
918 	if (err)
919 		goto out;
920 
921 repeat:
922 	if (!jh->b_committed_data) {
923 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
924 		if (!committed_data) {
925 			printk(KERN_EMERG "%s: No memory for committed data\n",
926 				__func__);
927 			err = -ENOMEM;
928 			goto out;
929 		}
930 	}
931 
932 	jbd_lock_bh_state(bh);
933 	if (!jh->b_committed_data) {
934 		/* Copy out the current buffer contents into the
935 		 * preserved, committed copy. */
936 		JBUFFER_TRACE(jh, "generate b_committed data");
937 		if (!committed_data) {
938 			jbd_unlock_bh_state(bh);
939 			goto repeat;
940 		}
941 
942 		jh->b_committed_data = committed_data;
943 		committed_data = NULL;
944 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
945 	}
946 	jbd_unlock_bh_state(bh);
947 out:
948 	jbd2_journal_put_journal_head(jh);
949 	if (unlikely(committed_data))
950 		jbd2_free(committed_data, bh->b_size);
951 	return err;
952 }
953 
954 /**
955  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
956  * @bh: buffer to trigger on
957  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
958  *
959  * Set any triggers on this journal_head.  This is always safe, because
960  * triggers for a committing buffer will be saved off, and triggers for
961  * a running transaction will match the buffer in that transaction.
962  *
963  * Call with NULL to clear the triggers.
964  */
965 void jbd2_journal_set_triggers(struct buffer_head *bh,
966 			       struct jbd2_buffer_trigger_type *type)
967 {
968 	struct journal_head *jh = bh2jh(bh);
969 
970 	jh->b_triggers = type;
971 }
972 
973 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
974 				struct jbd2_buffer_trigger_type *triggers)
975 {
976 	struct buffer_head *bh = jh2bh(jh);
977 
978 	if (!triggers || !triggers->t_commit)
979 		return;
980 
981 	triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
982 }
983 
984 void jbd2_buffer_abort_trigger(struct journal_head *jh,
985 			       struct jbd2_buffer_trigger_type *triggers)
986 {
987 	if (!triggers || !triggers->t_abort)
988 		return;
989 
990 	triggers->t_abort(triggers, jh2bh(jh));
991 }
992 
993 
994 
995 /**
996  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
997  * @handle: transaction to add buffer to.
998  * @bh: buffer to mark
999  *
1000  * mark dirty metadata which needs to be journaled as part of the current
1001  * transaction.
1002  *
1003  * The buffer is placed on the transaction's metadata list and is marked
1004  * as belonging to the transaction.
1005  *
1006  * Returns error number or 0 on success.
1007  *
1008  * Special care needs to be taken if the buffer already belongs to the
1009  * current committing transaction (in which case we should have frozen
1010  * data present for that commit).  In that case, we don't relink the
1011  * buffer: that only gets done when the old transaction finally
1012  * completes its commit.
1013  */
1014 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1015 {
1016 	transaction_t *transaction = handle->h_transaction;
1017 	journal_t *journal = transaction->t_journal;
1018 	struct journal_head *jh = bh2jh(bh);
1019 
1020 	jbd_debug(5, "journal_head %p\n", jh);
1021 	JBUFFER_TRACE(jh, "entry");
1022 	if (is_handle_aborted(handle))
1023 		goto out;
1024 
1025 	jbd_lock_bh_state(bh);
1026 
1027 	if (jh->b_modified == 0) {
1028 		/*
1029 		 * This buffer's got modified and becoming part
1030 		 * of the transaction. This needs to be done
1031 		 * once a transaction -bzzz
1032 		 */
1033 		jh->b_modified = 1;
1034 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1035 		handle->h_buffer_credits--;
1036 	}
1037 
1038 	/*
1039 	 * fastpath, to avoid expensive locking.  If this buffer is already
1040 	 * on the running transaction's metadata list there is nothing to do.
1041 	 * Nobody can take it off again because there is a handle open.
1042 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1043 	 * result in this test being false, so we go in and take the locks.
1044 	 */
1045 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1046 		JBUFFER_TRACE(jh, "fastpath");
1047 		J_ASSERT_JH(jh, jh->b_transaction ==
1048 					journal->j_running_transaction);
1049 		goto out_unlock_bh;
1050 	}
1051 
1052 	set_buffer_jbddirty(bh);
1053 
1054 	/*
1055 	 * Metadata already on the current transaction list doesn't
1056 	 * need to be filed.  Metadata on another transaction's list must
1057 	 * be committing, and will be refiled once the commit completes:
1058 	 * leave it alone for now.
1059 	 */
1060 	if (jh->b_transaction != transaction) {
1061 		JBUFFER_TRACE(jh, "already on other transaction");
1062 		J_ASSERT_JH(jh, jh->b_transaction ==
1063 					journal->j_committing_transaction);
1064 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1065 		/* And this case is illegal: we can't reuse another
1066 		 * transaction's data buffer, ever. */
1067 		goto out_unlock_bh;
1068 	}
1069 
1070 	/* That test should have eliminated the following case: */
1071 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1072 
1073 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1074 	spin_lock(&journal->j_list_lock);
1075 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1076 	spin_unlock(&journal->j_list_lock);
1077 out_unlock_bh:
1078 	jbd_unlock_bh_state(bh);
1079 out:
1080 	JBUFFER_TRACE(jh, "exit");
1081 	return 0;
1082 }
1083 
1084 /*
1085  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1086  * updates, if the update decided in the end that it didn't need access.
1087  *
1088  */
1089 void
1090 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1091 {
1092 	BUFFER_TRACE(bh, "entry");
1093 }
1094 
1095 /**
1096  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1097  * @handle: transaction handle
1098  * @bh:     bh to 'forget'
1099  *
1100  * We can only do the bforget if there are no commits pending against the
1101  * buffer.  If the buffer is dirty in the current running transaction we
1102  * can safely unlink it.
1103  *
1104  * bh may not be a journalled buffer at all - it may be a non-JBD
1105  * buffer which came off the hashtable.  Check for this.
1106  *
1107  * Decrements bh->b_count by one.
1108  *
1109  * Allow this call even if the handle has aborted --- it may be part of
1110  * the caller's cleanup after an abort.
1111  */
1112 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1113 {
1114 	transaction_t *transaction = handle->h_transaction;
1115 	journal_t *journal = transaction->t_journal;
1116 	struct journal_head *jh;
1117 	int drop_reserve = 0;
1118 	int err = 0;
1119 	int was_modified = 0;
1120 
1121 	BUFFER_TRACE(bh, "entry");
1122 
1123 	jbd_lock_bh_state(bh);
1124 	spin_lock(&journal->j_list_lock);
1125 
1126 	if (!buffer_jbd(bh))
1127 		goto not_jbd;
1128 	jh = bh2jh(bh);
1129 
1130 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1131 	 * Don't do any jbd operations, and return an error. */
1132 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1133 			 "inconsistent data on disk")) {
1134 		err = -EIO;
1135 		goto not_jbd;
1136 	}
1137 
1138 	/* keep track of wether or not this transaction modified us */
1139 	was_modified = jh->b_modified;
1140 
1141 	/*
1142 	 * The buffer's going from the transaction, we must drop
1143 	 * all references -bzzz
1144 	 */
1145 	jh->b_modified = 0;
1146 
1147 	if (jh->b_transaction == handle->h_transaction) {
1148 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1149 
1150 		/* If we are forgetting a buffer which is already part
1151 		 * of this transaction, then we can just drop it from
1152 		 * the transaction immediately. */
1153 		clear_buffer_dirty(bh);
1154 		clear_buffer_jbddirty(bh);
1155 
1156 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1157 
1158 		/*
1159 		 * we only want to drop a reference if this transaction
1160 		 * modified the buffer
1161 		 */
1162 		if (was_modified)
1163 			drop_reserve = 1;
1164 
1165 		/*
1166 		 * We are no longer going to journal this buffer.
1167 		 * However, the commit of this transaction is still
1168 		 * important to the buffer: the delete that we are now
1169 		 * processing might obsolete an old log entry, so by
1170 		 * committing, we can satisfy the buffer's checkpoint.
1171 		 *
1172 		 * So, if we have a checkpoint on the buffer, we should
1173 		 * now refile the buffer on our BJ_Forget list so that
1174 		 * we know to remove the checkpoint after we commit.
1175 		 */
1176 
1177 		if (jh->b_cp_transaction) {
1178 			__jbd2_journal_temp_unlink_buffer(jh);
1179 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1180 		} else {
1181 			__jbd2_journal_unfile_buffer(jh);
1182 			jbd2_journal_remove_journal_head(bh);
1183 			__brelse(bh);
1184 			if (!buffer_jbd(bh)) {
1185 				spin_unlock(&journal->j_list_lock);
1186 				jbd_unlock_bh_state(bh);
1187 				__bforget(bh);
1188 				goto drop;
1189 			}
1190 		}
1191 	} else if (jh->b_transaction) {
1192 		J_ASSERT_JH(jh, (jh->b_transaction ==
1193 				 journal->j_committing_transaction));
1194 		/* However, if the buffer is still owned by a prior
1195 		 * (committing) transaction, we can't drop it yet... */
1196 		JBUFFER_TRACE(jh, "belongs to older transaction");
1197 		/* ... but we CAN drop it from the new transaction if we
1198 		 * have also modified it since the original commit. */
1199 
1200 		if (jh->b_next_transaction) {
1201 			J_ASSERT(jh->b_next_transaction == transaction);
1202 			jh->b_next_transaction = NULL;
1203 
1204 			/*
1205 			 * only drop a reference if this transaction modified
1206 			 * the buffer
1207 			 */
1208 			if (was_modified)
1209 				drop_reserve = 1;
1210 		}
1211 	}
1212 
1213 not_jbd:
1214 	spin_unlock(&journal->j_list_lock);
1215 	jbd_unlock_bh_state(bh);
1216 	__brelse(bh);
1217 drop:
1218 	if (drop_reserve) {
1219 		/* no need to reserve log space for this block -bzzz */
1220 		handle->h_buffer_credits++;
1221 	}
1222 	return err;
1223 }
1224 
1225 /**
1226  * int jbd2_journal_stop() - complete a transaction
1227  * @handle: tranaction to complete.
1228  *
1229  * All done for a particular handle.
1230  *
1231  * There is not much action needed here.  We just return any remaining
1232  * buffer credits to the transaction and remove the handle.  The only
1233  * complication is that we need to start a commit operation if the
1234  * filesystem is marked for synchronous update.
1235  *
1236  * jbd2_journal_stop itself will not usually return an error, but it may
1237  * do so in unusual circumstances.  In particular, expect it to
1238  * return -EIO if a jbd2_journal_abort has been executed since the
1239  * transaction began.
1240  */
1241 int jbd2_journal_stop(handle_t *handle)
1242 {
1243 	transaction_t *transaction = handle->h_transaction;
1244 	journal_t *journal = transaction->t_journal;
1245 	int err;
1246 	pid_t pid;
1247 
1248 	J_ASSERT(journal_current_handle() == handle);
1249 
1250 	if (is_handle_aborted(handle))
1251 		err = -EIO;
1252 	else {
1253 		J_ASSERT(transaction->t_updates > 0);
1254 		err = 0;
1255 	}
1256 
1257 	if (--handle->h_ref > 0) {
1258 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1259 			  handle->h_ref);
1260 		return err;
1261 	}
1262 
1263 	jbd_debug(4, "Handle %p going down\n", handle);
1264 
1265 	/*
1266 	 * Implement synchronous transaction batching.  If the handle
1267 	 * was synchronous, don't force a commit immediately.  Let's
1268 	 * yield and let another thread piggyback onto this
1269 	 * transaction.  Keep doing that while new threads continue to
1270 	 * arrive.  It doesn't cost much - we're about to run a commit
1271 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1272 	 * operations by 30x or more...
1273 	 *
1274 	 * We try and optimize the sleep time against what the
1275 	 * underlying disk can do, instead of having a static sleep
1276 	 * time.  This is useful for the case where our storage is so
1277 	 * fast that it is more optimal to go ahead and force a flush
1278 	 * and wait for the transaction to be committed than it is to
1279 	 * wait for an arbitrary amount of time for new writers to
1280 	 * join the transaction.  We achieve this by measuring how
1281 	 * long it takes to commit a transaction, and compare it with
1282 	 * how long this transaction has been running, and if run time
1283 	 * < commit time then we sleep for the delta and commit.  This
1284 	 * greatly helps super fast disks that would see slowdowns as
1285 	 * more threads started doing fsyncs.
1286 	 *
1287 	 * But don't do this if this process was the most recent one
1288 	 * to perform a synchronous write.  We do this to detect the
1289 	 * case where a single process is doing a stream of sync
1290 	 * writes.  No point in waiting for joiners in that case.
1291 	 */
1292 	pid = current->pid;
1293 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1294 		u64 commit_time, trans_time;
1295 
1296 		journal->j_last_sync_writer = pid;
1297 
1298 		spin_lock(&journal->j_state_lock);
1299 		commit_time = journal->j_average_commit_time;
1300 		spin_unlock(&journal->j_state_lock);
1301 
1302 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1303 						   transaction->t_start_time));
1304 
1305 		commit_time = max_t(u64, commit_time,
1306 				    1000*journal->j_min_batch_time);
1307 		commit_time = min_t(u64, commit_time,
1308 				    1000*journal->j_max_batch_time);
1309 
1310 		if (trans_time < commit_time) {
1311 			ktime_t expires = ktime_add_ns(ktime_get(),
1312 						       commit_time);
1313 			set_current_state(TASK_UNINTERRUPTIBLE);
1314 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1315 		}
1316 	}
1317 
1318 	if (handle->h_sync)
1319 		transaction->t_synchronous_commit = 1;
1320 	current->journal_info = NULL;
1321 	spin_lock(&journal->j_state_lock);
1322 	spin_lock(&transaction->t_handle_lock);
1323 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1324 	transaction->t_updates--;
1325 	if (!transaction->t_updates) {
1326 		wake_up(&journal->j_wait_updates);
1327 		if (journal->j_barrier_count)
1328 			wake_up(&journal->j_wait_transaction_locked);
1329 	}
1330 
1331 	/*
1332 	 * If the handle is marked SYNC, we need to set another commit
1333 	 * going!  We also want to force a commit if the current
1334 	 * transaction is occupying too much of the log, or if the
1335 	 * transaction is too old now.
1336 	 */
1337 	if (handle->h_sync ||
1338 			transaction->t_outstanding_credits >
1339 				journal->j_max_transaction_buffers ||
1340 			time_after_eq(jiffies, transaction->t_expires)) {
1341 		/* Do this even for aborted journals: an abort still
1342 		 * completes the commit thread, it just doesn't write
1343 		 * anything to disk. */
1344 		tid_t tid = transaction->t_tid;
1345 
1346 		spin_unlock(&transaction->t_handle_lock);
1347 		jbd_debug(2, "transaction too old, requesting commit for "
1348 					"handle %p\n", handle);
1349 		/* This is non-blocking */
1350 		__jbd2_log_start_commit(journal, transaction->t_tid);
1351 		spin_unlock(&journal->j_state_lock);
1352 
1353 		/*
1354 		 * Special case: JBD2_SYNC synchronous updates require us
1355 		 * to wait for the commit to complete.
1356 		 */
1357 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1358 			err = jbd2_log_wait_commit(journal, tid);
1359 	} else {
1360 		spin_unlock(&transaction->t_handle_lock);
1361 		spin_unlock(&journal->j_state_lock);
1362 	}
1363 
1364 	lock_map_release(&handle->h_lockdep_map);
1365 
1366 	jbd2_free_handle(handle);
1367 	return err;
1368 }
1369 
1370 /**
1371  * int jbd2_journal_force_commit() - force any uncommitted transactions
1372  * @journal: journal to force
1373  *
1374  * For synchronous operations: force any uncommitted transactions
1375  * to disk.  May seem kludgy, but it reuses all the handle batching
1376  * code in a very simple manner.
1377  */
1378 int jbd2_journal_force_commit(journal_t *journal)
1379 {
1380 	handle_t *handle;
1381 	int ret;
1382 
1383 	handle = jbd2_journal_start(journal, 1);
1384 	if (IS_ERR(handle)) {
1385 		ret = PTR_ERR(handle);
1386 	} else {
1387 		handle->h_sync = 1;
1388 		ret = jbd2_journal_stop(handle);
1389 	}
1390 	return ret;
1391 }
1392 
1393 /*
1394  *
1395  * List management code snippets: various functions for manipulating the
1396  * transaction buffer lists.
1397  *
1398  */
1399 
1400 /*
1401  * Append a buffer to a transaction list, given the transaction's list head
1402  * pointer.
1403  *
1404  * j_list_lock is held.
1405  *
1406  * jbd_lock_bh_state(jh2bh(jh)) is held.
1407  */
1408 
1409 static inline void
1410 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1411 {
1412 	if (!*list) {
1413 		jh->b_tnext = jh->b_tprev = jh;
1414 		*list = jh;
1415 	} else {
1416 		/* Insert at the tail of the list to preserve order */
1417 		struct journal_head *first = *list, *last = first->b_tprev;
1418 		jh->b_tprev = last;
1419 		jh->b_tnext = first;
1420 		last->b_tnext = first->b_tprev = jh;
1421 	}
1422 }
1423 
1424 /*
1425  * Remove a buffer from a transaction list, given the transaction's list
1426  * head pointer.
1427  *
1428  * Called with j_list_lock held, and the journal may not be locked.
1429  *
1430  * jbd_lock_bh_state(jh2bh(jh)) is held.
1431  */
1432 
1433 static inline void
1434 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1435 {
1436 	if (*list == jh) {
1437 		*list = jh->b_tnext;
1438 		if (*list == jh)
1439 			*list = NULL;
1440 	}
1441 	jh->b_tprev->b_tnext = jh->b_tnext;
1442 	jh->b_tnext->b_tprev = jh->b_tprev;
1443 }
1444 
1445 /*
1446  * Remove a buffer from the appropriate transaction list.
1447  *
1448  * Note that this function can *change* the value of
1449  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1450  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1451  * of these pointers, it could go bad.  Generally the caller needs to re-read
1452  * the pointer from the transaction_t.
1453  *
1454  * Called under j_list_lock.  The journal may not be locked.
1455  */
1456 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1457 {
1458 	struct journal_head **list = NULL;
1459 	transaction_t *transaction;
1460 	struct buffer_head *bh = jh2bh(jh);
1461 
1462 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1463 	transaction = jh->b_transaction;
1464 	if (transaction)
1465 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1466 
1467 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1468 	if (jh->b_jlist != BJ_None)
1469 		J_ASSERT_JH(jh, transaction != NULL);
1470 
1471 	switch (jh->b_jlist) {
1472 	case BJ_None:
1473 		return;
1474 	case BJ_Metadata:
1475 		transaction->t_nr_buffers--;
1476 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1477 		list = &transaction->t_buffers;
1478 		break;
1479 	case BJ_Forget:
1480 		list = &transaction->t_forget;
1481 		break;
1482 	case BJ_IO:
1483 		list = &transaction->t_iobuf_list;
1484 		break;
1485 	case BJ_Shadow:
1486 		list = &transaction->t_shadow_list;
1487 		break;
1488 	case BJ_LogCtl:
1489 		list = &transaction->t_log_list;
1490 		break;
1491 	case BJ_Reserved:
1492 		list = &transaction->t_reserved_list;
1493 		break;
1494 	}
1495 
1496 	__blist_del_buffer(list, jh);
1497 	jh->b_jlist = BJ_None;
1498 	if (test_clear_buffer_jbddirty(bh))
1499 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1500 }
1501 
1502 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1503 {
1504 	__jbd2_journal_temp_unlink_buffer(jh);
1505 	jh->b_transaction = NULL;
1506 }
1507 
1508 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1509 {
1510 	jbd_lock_bh_state(jh2bh(jh));
1511 	spin_lock(&journal->j_list_lock);
1512 	__jbd2_journal_unfile_buffer(jh);
1513 	spin_unlock(&journal->j_list_lock);
1514 	jbd_unlock_bh_state(jh2bh(jh));
1515 }
1516 
1517 /*
1518  * Called from jbd2_journal_try_to_free_buffers().
1519  *
1520  * Called under jbd_lock_bh_state(bh)
1521  */
1522 static void
1523 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1524 {
1525 	struct journal_head *jh;
1526 
1527 	jh = bh2jh(bh);
1528 
1529 	if (buffer_locked(bh) || buffer_dirty(bh))
1530 		goto out;
1531 
1532 	if (jh->b_next_transaction != NULL)
1533 		goto out;
1534 
1535 	spin_lock(&journal->j_list_lock);
1536 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1537 		/* written-back checkpointed metadata buffer */
1538 		if (jh->b_jlist == BJ_None) {
1539 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1540 			__jbd2_journal_remove_checkpoint(jh);
1541 			jbd2_journal_remove_journal_head(bh);
1542 			__brelse(bh);
1543 		}
1544 	}
1545 	spin_unlock(&journal->j_list_lock);
1546 out:
1547 	return;
1548 }
1549 
1550 /*
1551  * jbd2_journal_try_to_free_buffers() could race with
1552  * jbd2_journal_commit_transaction(). The later might still hold the
1553  * reference count to the buffers when inspecting them on
1554  * t_syncdata_list or t_locked_list.
1555  *
1556  * jbd2_journal_try_to_free_buffers() will call this function to
1557  * wait for the current transaction to finish syncing data buffers, before
1558  * try to free that buffer.
1559  *
1560  * Called with journal->j_state_lock hold.
1561  */
1562 static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal)
1563 {
1564 	transaction_t *transaction;
1565 	tid_t tid;
1566 
1567 	spin_lock(&journal->j_state_lock);
1568 	transaction = journal->j_committing_transaction;
1569 
1570 	if (!transaction) {
1571 		spin_unlock(&journal->j_state_lock);
1572 		return;
1573 	}
1574 
1575 	tid = transaction->t_tid;
1576 	spin_unlock(&journal->j_state_lock);
1577 	jbd2_log_wait_commit(journal, tid);
1578 }
1579 
1580 /**
1581  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1582  * @journal: journal for operation
1583  * @page: to try and free
1584  * @gfp_mask: we use the mask to detect how hard should we try to release
1585  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1586  * release the buffers.
1587  *
1588  *
1589  * For all the buffers on this page,
1590  * if they are fully written out ordered data, move them onto BUF_CLEAN
1591  * so try_to_free_buffers() can reap them.
1592  *
1593  * This function returns non-zero if we wish try_to_free_buffers()
1594  * to be called. We do this if the page is releasable by try_to_free_buffers().
1595  * We also do it if the page has locked or dirty buffers and the caller wants
1596  * us to perform sync or async writeout.
1597  *
1598  * This complicates JBD locking somewhat.  We aren't protected by the
1599  * BKL here.  We wish to remove the buffer from its committing or
1600  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1601  *
1602  * This may *change* the value of transaction_t->t_datalist, so anyone
1603  * who looks at t_datalist needs to lock against this function.
1604  *
1605  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1606  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1607  * will come out of the lock with the buffer dirty, which makes it
1608  * ineligible for release here.
1609  *
1610  * Who else is affected by this?  hmm...  Really the only contender
1611  * is do_get_write_access() - it could be looking at the buffer while
1612  * journal_try_to_free_buffer() is changing its state.  But that
1613  * cannot happen because we never reallocate freed data as metadata
1614  * while the data is part of a transaction.  Yes?
1615  *
1616  * Return 0 on failure, 1 on success
1617  */
1618 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1619 				struct page *page, gfp_t gfp_mask)
1620 {
1621 	struct buffer_head *head;
1622 	struct buffer_head *bh;
1623 	int ret = 0;
1624 
1625 	J_ASSERT(PageLocked(page));
1626 
1627 	head = page_buffers(page);
1628 	bh = head;
1629 	do {
1630 		struct journal_head *jh;
1631 
1632 		/*
1633 		 * We take our own ref against the journal_head here to avoid
1634 		 * having to add tons of locking around each instance of
1635 		 * jbd2_journal_remove_journal_head() and
1636 		 * jbd2_journal_put_journal_head().
1637 		 */
1638 		jh = jbd2_journal_grab_journal_head(bh);
1639 		if (!jh)
1640 			continue;
1641 
1642 		jbd_lock_bh_state(bh);
1643 		__journal_try_to_free_buffer(journal, bh);
1644 		jbd2_journal_put_journal_head(jh);
1645 		jbd_unlock_bh_state(bh);
1646 		if (buffer_jbd(bh))
1647 			goto busy;
1648 	} while ((bh = bh->b_this_page) != head);
1649 
1650 	ret = try_to_free_buffers(page);
1651 
1652 	/*
1653 	 * There are a number of places where jbd2_journal_try_to_free_buffers()
1654 	 * could race with jbd2_journal_commit_transaction(), the later still
1655 	 * holds the reference to the buffers to free while processing them.
1656 	 * try_to_free_buffers() failed to free those buffers. Some of the
1657 	 * caller of releasepage() request page buffers to be dropped, otherwise
1658 	 * treat the fail-to-free as errors (such as generic_file_direct_IO())
1659 	 *
1660 	 * So, if the caller of try_to_release_page() wants the synchronous
1661 	 * behaviour(i.e make sure buffers are dropped upon return),
1662 	 * let's wait for the current transaction to finish flush of
1663 	 * dirty data buffers, then try to free those buffers again,
1664 	 * with the journal locked.
1665 	 */
1666 	if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) {
1667 		jbd2_journal_wait_for_transaction_sync_data(journal);
1668 		ret = try_to_free_buffers(page);
1669 	}
1670 
1671 busy:
1672 	return ret;
1673 }
1674 
1675 /*
1676  * This buffer is no longer needed.  If it is on an older transaction's
1677  * checkpoint list we need to record it on this transaction's forget list
1678  * to pin this buffer (and hence its checkpointing transaction) down until
1679  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1680  * release it.
1681  * Returns non-zero if JBD no longer has an interest in the buffer.
1682  *
1683  * Called under j_list_lock.
1684  *
1685  * Called under jbd_lock_bh_state(bh).
1686  */
1687 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1688 {
1689 	int may_free = 1;
1690 	struct buffer_head *bh = jh2bh(jh);
1691 
1692 	__jbd2_journal_unfile_buffer(jh);
1693 
1694 	if (jh->b_cp_transaction) {
1695 		JBUFFER_TRACE(jh, "on running+cp transaction");
1696 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1697 		clear_buffer_jbddirty(bh);
1698 		may_free = 0;
1699 	} else {
1700 		JBUFFER_TRACE(jh, "on running transaction");
1701 		jbd2_journal_remove_journal_head(bh);
1702 		__brelse(bh);
1703 	}
1704 	return may_free;
1705 }
1706 
1707 /*
1708  * jbd2_journal_invalidatepage
1709  *
1710  * This code is tricky.  It has a number of cases to deal with.
1711  *
1712  * There are two invariants which this code relies on:
1713  *
1714  * i_size must be updated on disk before we start calling invalidatepage on the
1715  * data.
1716  *
1717  *  This is done in ext3 by defining an ext3_setattr method which
1718  *  updates i_size before truncate gets going.  By maintaining this
1719  *  invariant, we can be sure that it is safe to throw away any buffers
1720  *  attached to the current transaction: once the transaction commits,
1721  *  we know that the data will not be needed.
1722  *
1723  *  Note however that we can *not* throw away data belonging to the
1724  *  previous, committing transaction!
1725  *
1726  * Any disk blocks which *are* part of the previous, committing
1727  * transaction (and which therefore cannot be discarded immediately) are
1728  * not going to be reused in the new running transaction
1729  *
1730  *  The bitmap committed_data images guarantee this: any block which is
1731  *  allocated in one transaction and removed in the next will be marked
1732  *  as in-use in the committed_data bitmap, so cannot be reused until
1733  *  the next transaction to delete the block commits.  This means that
1734  *  leaving committing buffers dirty is quite safe: the disk blocks
1735  *  cannot be reallocated to a different file and so buffer aliasing is
1736  *  not possible.
1737  *
1738  *
1739  * The above applies mainly to ordered data mode.  In writeback mode we
1740  * don't make guarantees about the order in which data hits disk --- in
1741  * particular we don't guarantee that new dirty data is flushed before
1742  * transaction commit --- so it is always safe just to discard data
1743  * immediately in that mode.  --sct
1744  */
1745 
1746 /*
1747  * The journal_unmap_buffer helper function returns zero if the buffer
1748  * concerned remains pinned as an anonymous buffer belonging to an older
1749  * transaction.
1750  *
1751  * We're outside-transaction here.  Either or both of j_running_transaction
1752  * and j_committing_transaction may be NULL.
1753  */
1754 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1755 {
1756 	transaction_t *transaction;
1757 	struct journal_head *jh;
1758 	int may_free = 1;
1759 	int ret;
1760 
1761 	BUFFER_TRACE(bh, "entry");
1762 
1763 	/*
1764 	 * It is safe to proceed here without the j_list_lock because the
1765 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1766 	 * holding the page lock. --sct
1767 	 */
1768 
1769 	if (!buffer_jbd(bh))
1770 		goto zap_buffer_unlocked;
1771 
1772 	/* OK, we have data buffer in journaled mode */
1773 	spin_lock(&journal->j_state_lock);
1774 	jbd_lock_bh_state(bh);
1775 	spin_lock(&journal->j_list_lock);
1776 
1777 	jh = jbd2_journal_grab_journal_head(bh);
1778 	if (!jh)
1779 		goto zap_buffer_no_jh;
1780 
1781 	transaction = jh->b_transaction;
1782 	if (transaction == NULL) {
1783 		/* First case: not on any transaction.  If it
1784 		 * has no checkpoint link, then we can zap it:
1785 		 * it's a writeback-mode buffer so we don't care
1786 		 * if it hits disk safely. */
1787 		if (!jh->b_cp_transaction) {
1788 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1789 			goto zap_buffer;
1790 		}
1791 
1792 		if (!buffer_dirty(bh)) {
1793 			/* bdflush has written it.  We can drop it now */
1794 			goto zap_buffer;
1795 		}
1796 
1797 		/* OK, it must be in the journal but still not
1798 		 * written fully to disk: it's metadata or
1799 		 * journaled data... */
1800 
1801 		if (journal->j_running_transaction) {
1802 			/* ... and once the current transaction has
1803 			 * committed, the buffer won't be needed any
1804 			 * longer. */
1805 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1806 			ret = __dispose_buffer(jh,
1807 					journal->j_running_transaction);
1808 			jbd2_journal_put_journal_head(jh);
1809 			spin_unlock(&journal->j_list_lock);
1810 			jbd_unlock_bh_state(bh);
1811 			spin_unlock(&journal->j_state_lock);
1812 			return ret;
1813 		} else {
1814 			/* There is no currently-running transaction. So the
1815 			 * orphan record which we wrote for this file must have
1816 			 * passed into commit.  We must attach this buffer to
1817 			 * the committing transaction, if it exists. */
1818 			if (journal->j_committing_transaction) {
1819 				JBUFFER_TRACE(jh, "give to committing trans");
1820 				ret = __dispose_buffer(jh,
1821 					journal->j_committing_transaction);
1822 				jbd2_journal_put_journal_head(jh);
1823 				spin_unlock(&journal->j_list_lock);
1824 				jbd_unlock_bh_state(bh);
1825 				spin_unlock(&journal->j_state_lock);
1826 				return ret;
1827 			} else {
1828 				/* The orphan record's transaction has
1829 				 * committed.  We can cleanse this buffer */
1830 				clear_buffer_jbddirty(bh);
1831 				goto zap_buffer;
1832 			}
1833 		}
1834 	} else if (transaction == journal->j_committing_transaction) {
1835 		JBUFFER_TRACE(jh, "on committing transaction");
1836 		/*
1837 		 * If it is committing, we simply cannot touch it.  We
1838 		 * can remove it's next_transaction pointer from the
1839 		 * running transaction if that is set, but nothing
1840 		 * else. */
1841 		set_buffer_freed(bh);
1842 		if (jh->b_next_transaction) {
1843 			J_ASSERT(jh->b_next_transaction ==
1844 					journal->j_running_transaction);
1845 			jh->b_next_transaction = NULL;
1846 		}
1847 		jbd2_journal_put_journal_head(jh);
1848 		spin_unlock(&journal->j_list_lock);
1849 		jbd_unlock_bh_state(bh);
1850 		spin_unlock(&journal->j_state_lock);
1851 		return 0;
1852 	} else {
1853 		/* Good, the buffer belongs to the running transaction.
1854 		 * We are writing our own transaction's data, not any
1855 		 * previous one's, so it is safe to throw it away
1856 		 * (remember that we expect the filesystem to have set
1857 		 * i_size already for this truncate so recovery will not
1858 		 * expose the disk blocks we are discarding here.) */
1859 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1860 		JBUFFER_TRACE(jh, "on running transaction");
1861 		may_free = __dispose_buffer(jh, transaction);
1862 	}
1863 
1864 zap_buffer:
1865 	jbd2_journal_put_journal_head(jh);
1866 zap_buffer_no_jh:
1867 	spin_unlock(&journal->j_list_lock);
1868 	jbd_unlock_bh_state(bh);
1869 	spin_unlock(&journal->j_state_lock);
1870 zap_buffer_unlocked:
1871 	clear_buffer_dirty(bh);
1872 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1873 	clear_buffer_mapped(bh);
1874 	clear_buffer_req(bh);
1875 	clear_buffer_new(bh);
1876 	bh->b_bdev = NULL;
1877 	return may_free;
1878 }
1879 
1880 /**
1881  * void jbd2_journal_invalidatepage()
1882  * @journal: journal to use for flush...
1883  * @page:    page to flush
1884  * @offset:  length of page to invalidate.
1885  *
1886  * Reap page buffers containing data after offset in page.
1887  *
1888  */
1889 void jbd2_journal_invalidatepage(journal_t *journal,
1890 		      struct page *page,
1891 		      unsigned long offset)
1892 {
1893 	struct buffer_head *head, *bh, *next;
1894 	unsigned int curr_off = 0;
1895 	int may_free = 1;
1896 
1897 	if (!PageLocked(page))
1898 		BUG();
1899 	if (!page_has_buffers(page))
1900 		return;
1901 
1902 	/* We will potentially be playing with lists other than just the
1903 	 * data lists (especially for journaled data mode), so be
1904 	 * cautious in our locking. */
1905 
1906 	head = bh = page_buffers(page);
1907 	do {
1908 		unsigned int next_off = curr_off + bh->b_size;
1909 		next = bh->b_this_page;
1910 
1911 		if (offset <= curr_off) {
1912 			/* This block is wholly outside the truncation point */
1913 			lock_buffer(bh);
1914 			may_free &= journal_unmap_buffer(journal, bh);
1915 			unlock_buffer(bh);
1916 		}
1917 		curr_off = next_off;
1918 		bh = next;
1919 
1920 	} while (bh != head);
1921 
1922 	if (!offset) {
1923 		if (may_free && try_to_free_buffers(page))
1924 			J_ASSERT(!page_has_buffers(page));
1925 	}
1926 }
1927 
1928 /*
1929  * File a buffer on the given transaction list.
1930  */
1931 void __jbd2_journal_file_buffer(struct journal_head *jh,
1932 			transaction_t *transaction, int jlist)
1933 {
1934 	struct journal_head **list = NULL;
1935 	int was_dirty = 0;
1936 	struct buffer_head *bh = jh2bh(jh);
1937 
1938 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1939 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1940 
1941 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1942 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1943 				jh->b_transaction == NULL);
1944 
1945 	if (jh->b_transaction && jh->b_jlist == jlist)
1946 		return;
1947 
1948 	/* The following list of buffer states needs to be consistent
1949 	 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1950 	 * state. */
1951 
1952 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1953 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1954 		if (test_clear_buffer_dirty(bh) ||
1955 		    test_clear_buffer_jbddirty(bh))
1956 			was_dirty = 1;
1957 	}
1958 
1959 	if (jh->b_transaction)
1960 		__jbd2_journal_temp_unlink_buffer(jh);
1961 	jh->b_transaction = transaction;
1962 
1963 	switch (jlist) {
1964 	case BJ_None:
1965 		J_ASSERT_JH(jh, !jh->b_committed_data);
1966 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1967 		return;
1968 	case BJ_Metadata:
1969 		transaction->t_nr_buffers++;
1970 		list = &transaction->t_buffers;
1971 		break;
1972 	case BJ_Forget:
1973 		list = &transaction->t_forget;
1974 		break;
1975 	case BJ_IO:
1976 		list = &transaction->t_iobuf_list;
1977 		break;
1978 	case BJ_Shadow:
1979 		list = &transaction->t_shadow_list;
1980 		break;
1981 	case BJ_LogCtl:
1982 		list = &transaction->t_log_list;
1983 		break;
1984 	case BJ_Reserved:
1985 		list = &transaction->t_reserved_list;
1986 		break;
1987 	}
1988 
1989 	__blist_add_buffer(list, jh);
1990 	jh->b_jlist = jlist;
1991 
1992 	if (was_dirty)
1993 		set_buffer_jbddirty(bh);
1994 }
1995 
1996 void jbd2_journal_file_buffer(struct journal_head *jh,
1997 				transaction_t *transaction, int jlist)
1998 {
1999 	jbd_lock_bh_state(jh2bh(jh));
2000 	spin_lock(&transaction->t_journal->j_list_lock);
2001 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2002 	spin_unlock(&transaction->t_journal->j_list_lock);
2003 	jbd_unlock_bh_state(jh2bh(jh));
2004 }
2005 
2006 /*
2007  * Remove a buffer from its current buffer list in preparation for
2008  * dropping it from its current transaction entirely.  If the buffer has
2009  * already started to be used by a subsequent transaction, refile the
2010  * buffer on that transaction's metadata list.
2011  *
2012  * Called under journal->j_list_lock
2013  *
2014  * Called under jbd_lock_bh_state(jh2bh(jh))
2015  */
2016 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2017 {
2018 	int was_dirty;
2019 	struct buffer_head *bh = jh2bh(jh);
2020 
2021 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2022 	if (jh->b_transaction)
2023 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2024 
2025 	/* If the buffer is now unused, just drop it. */
2026 	if (jh->b_next_transaction == NULL) {
2027 		__jbd2_journal_unfile_buffer(jh);
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * It has been modified by a later transaction: add it to the new
2033 	 * transaction's metadata list.
2034 	 */
2035 
2036 	was_dirty = test_clear_buffer_jbddirty(bh);
2037 	__jbd2_journal_temp_unlink_buffer(jh);
2038 	jh->b_transaction = jh->b_next_transaction;
2039 	jh->b_next_transaction = NULL;
2040 	__jbd2_journal_file_buffer(jh, jh->b_transaction,
2041 				jh->b_modified ? BJ_Metadata : BJ_Reserved);
2042 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2043 
2044 	if (was_dirty)
2045 		set_buffer_jbddirty(bh);
2046 }
2047 
2048 /*
2049  * For the unlocked version of this call, also make sure that any
2050  * hanging journal_head is cleaned up if necessary.
2051  *
2052  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2053  * operation on a buffer_head, in which the caller is probably going to
2054  * be hooking the journal_head onto other lists.  In that case it is up
2055  * to the caller to remove the journal_head if necessary.  For the
2056  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2057  * doing anything else to the buffer so we need to do the cleanup
2058  * ourselves to avoid a jh leak.
2059  *
2060  * *** The journal_head may be freed by this call! ***
2061  */
2062 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2063 {
2064 	struct buffer_head *bh = jh2bh(jh);
2065 
2066 	jbd_lock_bh_state(bh);
2067 	spin_lock(&journal->j_list_lock);
2068 
2069 	__jbd2_journal_refile_buffer(jh);
2070 	jbd_unlock_bh_state(bh);
2071 	jbd2_journal_remove_journal_head(bh);
2072 
2073 	spin_unlock(&journal->j_list_lock);
2074 	__brelse(bh);
2075 }
2076 
2077 /*
2078  * File inode in the inode list of the handle's transaction
2079  */
2080 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2081 {
2082 	transaction_t *transaction = handle->h_transaction;
2083 	journal_t *journal = transaction->t_journal;
2084 
2085 	if (is_handle_aborted(handle))
2086 		return -EIO;
2087 
2088 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2089 			transaction->t_tid);
2090 
2091 	/*
2092 	 * First check whether inode isn't already on the transaction's
2093 	 * lists without taking the lock. Note that this check is safe
2094 	 * without the lock as we cannot race with somebody removing inode
2095 	 * from the transaction. The reason is that we remove inode from the
2096 	 * transaction only in journal_release_jbd_inode() and when we commit
2097 	 * the transaction. We are guarded from the first case by holding
2098 	 * a reference to the inode. We are safe against the second case
2099 	 * because if jinode->i_transaction == transaction, commit code
2100 	 * cannot touch the transaction because we hold reference to it,
2101 	 * and if jinode->i_next_transaction == transaction, commit code
2102 	 * will only file the inode where we want it.
2103 	 */
2104 	if (jinode->i_transaction == transaction ||
2105 	    jinode->i_next_transaction == transaction)
2106 		return 0;
2107 
2108 	spin_lock(&journal->j_list_lock);
2109 
2110 	if (jinode->i_transaction == transaction ||
2111 	    jinode->i_next_transaction == transaction)
2112 		goto done;
2113 
2114 	/* On some different transaction's list - should be
2115 	 * the committing one */
2116 	if (jinode->i_transaction) {
2117 		J_ASSERT(jinode->i_next_transaction == NULL);
2118 		J_ASSERT(jinode->i_transaction ==
2119 					journal->j_committing_transaction);
2120 		jinode->i_next_transaction = transaction;
2121 		goto done;
2122 	}
2123 	/* Not on any transaction list... */
2124 	J_ASSERT(!jinode->i_next_transaction);
2125 	jinode->i_transaction = transaction;
2126 	list_add(&jinode->i_list, &transaction->t_inode_list);
2127 done:
2128 	spin_unlock(&journal->j_list_lock);
2129 
2130 	return 0;
2131 }
2132 
2133 /*
2134  * File truncate and transaction commit interact with each other in a
2135  * non-trivial way.  If a transaction writing data block A is
2136  * committing, we cannot discard the data by truncate until we have
2137  * written them.  Otherwise if we crashed after the transaction with
2138  * write has committed but before the transaction with truncate has
2139  * committed, we could see stale data in block A.  This function is a
2140  * helper to solve this problem.  It starts writeout of the truncated
2141  * part in case it is in the committing transaction.
2142  *
2143  * Filesystem code must call this function when inode is journaled in
2144  * ordered mode before truncation happens and after the inode has been
2145  * placed on orphan list with the new inode size. The second condition
2146  * avoids the race that someone writes new data and we start
2147  * committing the transaction after this function has been called but
2148  * before a transaction for truncate is started (and furthermore it
2149  * allows us to optimize the case where the addition to orphan list
2150  * happens in the same transaction as write --- we don't have to write
2151  * any data in such case).
2152  */
2153 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2154 					struct jbd2_inode *jinode,
2155 					loff_t new_size)
2156 {
2157 	transaction_t *inode_trans, *commit_trans;
2158 	int ret = 0;
2159 
2160 	/* This is a quick check to avoid locking if not necessary */
2161 	if (!jinode->i_transaction)
2162 		goto out;
2163 	/* Locks are here just to force reading of recent values, it is
2164 	 * enough that the transaction was not committing before we started
2165 	 * a transaction adding the inode to orphan list */
2166 	spin_lock(&journal->j_state_lock);
2167 	commit_trans = journal->j_committing_transaction;
2168 	spin_unlock(&journal->j_state_lock);
2169 	spin_lock(&journal->j_list_lock);
2170 	inode_trans = jinode->i_transaction;
2171 	spin_unlock(&journal->j_list_lock);
2172 	if (inode_trans == commit_trans) {
2173 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2174 			new_size, LLONG_MAX);
2175 		if (ret)
2176 			jbd2_journal_abort(journal, ret);
2177 	}
2178 out:
2179 	return ret;
2180 }
2181