1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 31 32 /* 33 * jbd2_get_transaction: obtain a new transaction_t object. 34 * 35 * Simply allocate and initialise a new transaction. Create it in 36 * RUNNING state and add it to the current journal (which should not 37 * have an existing running transaction: we only make a new transaction 38 * once we have started to commit the old one). 39 * 40 * Preconditions: 41 * The journal MUST be locked. We don't perform atomic mallocs on the 42 * new transaction and we can't block without protecting against other 43 * processes trying to touch the journal while it is in transition. 44 * 45 */ 46 47 static transaction_t * 48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 49 { 50 transaction->t_journal = journal; 51 transaction->t_state = T_RUNNING; 52 transaction->t_start_time = ktime_get(); 53 transaction->t_tid = journal->j_transaction_sequence++; 54 transaction->t_expires = jiffies + journal->j_commit_interval; 55 spin_lock_init(&transaction->t_handle_lock); 56 INIT_LIST_HEAD(&transaction->t_inode_list); 57 INIT_LIST_HEAD(&transaction->t_private_list); 58 59 /* Set up the commit timer for the new transaction. */ 60 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires); 61 add_timer(&journal->j_commit_timer); 62 63 J_ASSERT(journal->j_running_transaction == NULL); 64 journal->j_running_transaction = transaction; 65 transaction->t_max_wait = 0; 66 transaction->t_start = jiffies; 67 68 return transaction; 69 } 70 71 /* 72 * Handle management. 73 * 74 * A handle_t is an object which represents a single atomic update to a 75 * filesystem, and which tracks all of the modifications which form part 76 * of that one update. 77 */ 78 79 /* 80 * start_this_handle: Given a handle, deal with any locking or stalling 81 * needed to make sure that there is enough journal space for the handle 82 * to begin. Attach the handle to a transaction and set up the 83 * transaction's buffer credits. 84 */ 85 86 static int start_this_handle(journal_t *journal, handle_t *handle) 87 { 88 transaction_t *transaction; 89 int needed; 90 int nblocks = handle->h_buffer_credits; 91 transaction_t *new_transaction = NULL; 92 int ret = 0; 93 unsigned long ts = jiffies; 94 95 if (nblocks > journal->j_max_transaction_buffers) { 96 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 97 current->comm, nblocks, 98 journal->j_max_transaction_buffers); 99 ret = -ENOSPC; 100 goto out; 101 } 102 103 alloc_transaction: 104 if (!journal->j_running_transaction) { 105 new_transaction = kzalloc(sizeof(*new_transaction), 106 GFP_NOFS|__GFP_NOFAIL); 107 if (!new_transaction) { 108 ret = -ENOMEM; 109 goto out; 110 } 111 } 112 113 jbd_debug(3, "New handle %p going live.\n", handle); 114 115 repeat: 116 117 /* 118 * We need to hold j_state_lock until t_updates has been incremented, 119 * for proper journal barrier handling 120 */ 121 spin_lock(&journal->j_state_lock); 122 repeat_locked: 123 if (is_journal_aborted(journal) || 124 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 125 spin_unlock(&journal->j_state_lock); 126 ret = -EROFS; 127 goto out; 128 } 129 130 /* Wait on the journal's transaction barrier if necessary */ 131 if (journal->j_barrier_count) { 132 spin_unlock(&journal->j_state_lock); 133 wait_event(journal->j_wait_transaction_locked, 134 journal->j_barrier_count == 0); 135 goto repeat; 136 } 137 138 if (!journal->j_running_transaction) { 139 if (!new_transaction) { 140 spin_unlock(&journal->j_state_lock); 141 goto alloc_transaction; 142 } 143 jbd2_get_transaction(journal, new_transaction); 144 new_transaction = NULL; 145 } 146 147 transaction = journal->j_running_transaction; 148 149 /* 150 * If the current transaction is locked down for commit, wait for the 151 * lock to be released. 152 */ 153 if (transaction->t_state == T_LOCKED) { 154 DEFINE_WAIT(wait); 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, 157 &wait, TASK_UNINTERRUPTIBLE); 158 spin_unlock(&journal->j_state_lock); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 goto repeat; 162 } 163 164 /* 165 * If there is not enough space left in the log to write all potential 166 * buffers requested by this operation, we need to stall pending a log 167 * checkpoint to free some more log space. 168 */ 169 spin_lock(&transaction->t_handle_lock); 170 needed = transaction->t_outstanding_credits + nblocks; 171 172 if (needed > journal->j_max_transaction_buffers) { 173 /* 174 * If the current transaction is already too large, then start 175 * to commit it: we can then go back and attach this handle to 176 * a new transaction. 177 */ 178 DEFINE_WAIT(wait); 179 180 jbd_debug(2, "Handle %p starting new commit...\n", handle); 181 spin_unlock(&transaction->t_handle_lock); 182 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 183 TASK_UNINTERRUPTIBLE); 184 __jbd2_log_start_commit(journal, transaction->t_tid); 185 spin_unlock(&journal->j_state_lock); 186 schedule(); 187 finish_wait(&journal->j_wait_transaction_locked, &wait); 188 goto repeat; 189 } 190 191 /* 192 * The commit code assumes that it can get enough log space 193 * without forcing a checkpoint. This is *critical* for 194 * correctness: a checkpoint of a buffer which is also 195 * associated with a committing transaction creates a deadlock, 196 * so commit simply cannot force through checkpoints. 197 * 198 * We must therefore ensure the necessary space in the journal 199 * *before* starting to dirty potentially checkpointed buffers 200 * in the new transaction. 201 * 202 * The worst part is, any transaction currently committing can 203 * reduce the free space arbitrarily. Be careful to account for 204 * those buffers when checkpointing. 205 */ 206 207 /* 208 * @@@ AKPM: This seems rather over-defensive. We're giving commit 209 * a _lot_ of headroom: 1/4 of the journal plus the size of 210 * the committing transaction. Really, we only need to give it 211 * committing_transaction->t_outstanding_credits plus "enough" for 212 * the log control blocks. 213 * Also, this test is inconsitent with the matching one in 214 * jbd2_journal_extend(). 215 */ 216 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 217 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 218 spin_unlock(&transaction->t_handle_lock); 219 __jbd2_log_wait_for_space(journal); 220 goto repeat_locked; 221 } 222 223 /* OK, account for the buffers that this operation expects to 224 * use and add the handle to the running transaction. */ 225 226 if (time_after(transaction->t_start, ts)) { 227 ts = jbd2_time_diff(ts, transaction->t_start); 228 if (ts > transaction->t_max_wait) 229 transaction->t_max_wait = ts; 230 } 231 232 handle->h_transaction = transaction; 233 transaction->t_outstanding_credits += nblocks; 234 transaction->t_updates++; 235 transaction->t_handle_count++; 236 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 237 handle, nblocks, transaction->t_outstanding_credits, 238 __jbd2_log_space_left(journal)); 239 spin_unlock(&transaction->t_handle_lock); 240 spin_unlock(&journal->j_state_lock); 241 out: 242 if (unlikely(new_transaction)) /* It's usually NULL */ 243 kfree(new_transaction); 244 return ret; 245 } 246 247 static struct lock_class_key jbd2_handle_key; 248 249 /* Allocate a new handle. This should probably be in a slab... */ 250 static handle_t *new_handle(int nblocks) 251 { 252 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 253 if (!handle) 254 return NULL; 255 memset(handle, 0, sizeof(*handle)); 256 handle->h_buffer_credits = nblocks; 257 handle->h_ref = 1; 258 259 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 260 &jbd2_handle_key, 0); 261 262 return handle; 263 } 264 265 /** 266 * handle_t *jbd2_journal_start() - Obtain a new handle. 267 * @journal: Journal to start transaction on. 268 * @nblocks: number of block buffer we might modify 269 * 270 * We make sure that the transaction can guarantee at least nblocks of 271 * modified buffers in the log. We block until the log can guarantee 272 * that much space. 273 * 274 * This function is visible to journal users (like ext3fs), so is not 275 * called with the journal already locked. 276 * 277 * Return a pointer to a newly allocated handle, or NULL on failure 278 */ 279 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 280 { 281 handle_t *handle = journal_current_handle(); 282 int err; 283 284 if (!journal) 285 return ERR_PTR(-EROFS); 286 287 if (handle) { 288 J_ASSERT(handle->h_transaction->t_journal == journal); 289 handle->h_ref++; 290 return handle; 291 } 292 293 handle = new_handle(nblocks); 294 if (!handle) 295 return ERR_PTR(-ENOMEM); 296 297 current->journal_info = handle; 298 299 err = start_this_handle(journal, handle); 300 if (err < 0) { 301 jbd2_free_handle(handle); 302 current->journal_info = NULL; 303 handle = ERR_PTR(err); 304 goto out; 305 } 306 307 lock_map_acquire(&handle->h_lockdep_map); 308 out: 309 return handle; 310 } 311 312 /** 313 * int jbd2_journal_extend() - extend buffer credits. 314 * @handle: handle to 'extend' 315 * @nblocks: nr blocks to try to extend by. 316 * 317 * Some transactions, such as large extends and truncates, can be done 318 * atomically all at once or in several stages. The operation requests 319 * a credit for a number of buffer modications in advance, but can 320 * extend its credit if it needs more. 321 * 322 * jbd2_journal_extend tries to give the running handle more buffer credits. 323 * It does not guarantee that allocation - this is a best-effort only. 324 * The calling process MUST be able to deal cleanly with a failure to 325 * extend here. 326 * 327 * Return 0 on success, non-zero on failure. 328 * 329 * return code < 0 implies an error 330 * return code > 0 implies normal transaction-full status. 331 */ 332 int jbd2_journal_extend(handle_t *handle, int nblocks) 333 { 334 transaction_t *transaction = handle->h_transaction; 335 journal_t *journal = transaction->t_journal; 336 int result; 337 int wanted; 338 339 result = -EIO; 340 if (is_handle_aborted(handle)) 341 goto out; 342 343 result = 1; 344 345 spin_lock(&journal->j_state_lock); 346 347 /* Don't extend a locked-down transaction! */ 348 if (handle->h_transaction->t_state != T_RUNNING) { 349 jbd_debug(3, "denied handle %p %d blocks: " 350 "transaction not running\n", handle, nblocks); 351 goto error_out; 352 } 353 354 spin_lock(&transaction->t_handle_lock); 355 wanted = transaction->t_outstanding_credits + nblocks; 356 357 if (wanted > journal->j_max_transaction_buffers) { 358 jbd_debug(3, "denied handle %p %d blocks: " 359 "transaction too large\n", handle, nblocks); 360 goto unlock; 361 } 362 363 if (wanted > __jbd2_log_space_left(journal)) { 364 jbd_debug(3, "denied handle %p %d blocks: " 365 "insufficient log space\n", handle, nblocks); 366 goto unlock; 367 } 368 369 handle->h_buffer_credits += nblocks; 370 transaction->t_outstanding_credits += nblocks; 371 result = 0; 372 373 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 374 unlock: 375 spin_unlock(&transaction->t_handle_lock); 376 error_out: 377 spin_unlock(&journal->j_state_lock); 378 out: 379 return result; 380 } 381 382 383 /** 384 * int jbd2_journal_restart() - restart a handle . 385 * @handle: handle to restart 386 * @nblocks: nr credits requested 387 * 388 * Restart a handle for a multi-transaction filesystem 389 * operation. 390 * 391 * If the jbd2_journal_extend() call above fails to grant new buffer credits 392 * to a running handle, a call to jbd2_journal_restart will commit the 393 * handle's transaction so far and reattach the handle to a new 394 * transaction capabable of guaranteeing the requested number of 395 * credits. 396 */ 397 398 int jbd2_journal_restart(handle_t *handle, int nblocks) 399 { 400 transaction_t *transaction = handle->h_transaction; 401 journal_t *journal = transaction->t_journal; 402 int ret; 403 404 /* If we've had an abort of any type, don't even think about 405 * actually doing the restart! */ 406 if (is_handle_aborted(handle)) 407 return 0; 408 409 /* 410 * First unlink the handle from its current transaction, and start the 411 * commit on that. 412 */ 413 J_ASSERT(transaction->t_updates > 0); 414 J_ASSERT(journal_current_handle() == handle); 415 416 spin_lock(&journal->j_state_lock); 417 spin_lock(&transaction->t_handle_lock); 418 transaction->t_outstanding_credits -= handle->h_buffer_credits; 419 transaction->t_updates--; 420 421 if (!transaction->t_updates) 422 wake_up(&journal->j_wait_updates); 423 spin_unlock(&transaction->t_handle_lock); 424 425 jbd_debug(2, "restarting handle %p\n", handle); 426 __jbd2_log_start_commit(journal, transaction->t_tid); 427 spin_unlock(&journal->j_state_lock); 428 429 handle->h_buffer_credits = nblocks; 430 ret = start_this_handle(journal, handle); 431 return ret; 432 } 433 434 435 /** 436 * void jbd2_journal_lock_updates () - establish a transaction barrier. 437 * @journal: Journal to establish a barrier on. 438 * 439 * This locks out any further updates from being started, and blocks 440 * until all existing updates have completed, returning only once the 441 * journal is in a quiescent state with no updates running. 442 * 443 * The journal lock should not be held on entry. 444 */ 445 void jbd2_journal_lock_updates(journal_t *journal) 446 { 447 DEFINE_WAIT(wait); 448 449 spin_lock(&journal->j_state_lock); 450 ++journal->j_barrier_count; 451 452 /* Wait until there are no running updates */ 453 while (1) { 454 transaction_t *transaction = journal->j_running_transaction; 455 456 if (!transaction) 457 break; 458 459 spin_lock(&transaction->t_handle_lock); 460 if (!transaction->t_updates) { 461 spin_unlock(&transaction->t_handle_lock); 462 break; 463 } 464 prepare_to_wait(&journal->j_wait_updates, &wait, 465 TASK_UNINTERRUPTIBLE); 466 spin_unlock(&transaction->t_handle_lock); 467 spin_unlock(&journal->j_state_lock); 468 schedule(); 469 finish_wait(&journal->j_wait_updates, &wait); 470 spin_lock(&journal->j_state_lock); 471 } 472 spin_unlock(&journal->j_state_lock); 473 474 /* 475 * We have now established a barrier against other normal updates, but 476 * we also need to barrier against other jbd2_journal_lock_updates() calls 477 * to make sure that we serialise special journal-locked operations 478 * too. 479 */ 480 mutex_lock(&journal->j_barrier); 481 } 482 483 /** 484 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 485 * @journal: Journal to release the barrier on. 486 * 487 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 488 * 489 * Should be called without the journal lock held. 490 */ 491 void jbd2_journal_unlock_updates (journal_t *journal) 492 { 493 J_ASSERT(journal->j_barrier_count != 0); 494 495 mutex_unlock(&journal->j_barrier); 496 spin_lock(&journal->j_state_lock); 497 --journal->j_barrier_count; 498 spin_unlock(&journal->j_state_lock); 499 wake_up(&journal->j_wait_transaction_locked); 500 } 501 502 /* 503 * Report any unexpected dirty buffers which turn up. Normally those 504 * indicate an error, but they can occur if the user is running (say) 505 * tune2fs to modify the live filesystem, so we need the option of 506 * continuing as gracefully as possible. # 507 * 508 * The caller should already hold the journal lock and 509 * j_list_lock spinlock: most callers will need those anyway 510 * in order to probe the buffer's journaling state safely. 511 */ 512 static void jbd_unexpected_dirty_buffer(struct journal_head *jh) 513 { 514 int jlist; 515 516 /* If this buffer is one which might reasonably be dirty 517 * --- ie. data, or not part of this journal --- then 518 * we're OK to leave it alone, but otherwise we need to 519 * move the dirty bit to the journal's own internal 520 * JBDDirty bit. */ 521 jlist = jh->b_jlist; 522 523 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 524 jlist == BJ_Shadow || jlist == BJ_Forget) { 525 struct buffer_head *bh = jh2bh(jh); 526 527 if (test_clear_buffer_dirty(bh)) 528 set_buffer_jbddirty(bh); 529 } 530 } 531 532 /* 533 * If the buffer is already part of the current transaction, then there 534 * is nothing we need to do. If it is already part of a prior 535 * transaction which we are still committing to disk, then we need to 536 * make sure that we do not overwrite the old copy: we do copy-out to 537 * preserve the copy going to disk. We also account the buffer against 538 * the handle's metadata buffer credits (unless the buffer is already 539 * part of the transaction, that is). 540 * 541 */ 542 static int 543 do_get_write_access(handle_t *handle, struct journal_head *jh, 544 int force_copy) 545 { 546 struct buffer_head *bh; 547 transaction_t *transaction; 548 journal_t *journal; 549 int error; 550 char *frozen_buffer = NULL; 551 int need_copy = 0; 552 553 if (is_handle_aborted(handle)) 554 return -EROFS; 555 556 transaction = handle->h_transaction; 557 journal = transaction->t_journal; 558 559 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 560 561 JBUFFER_TRACE(jh, "entry"); 562 repeat: 563 bh = jh2bh(jh); 564 565 /* @@@ Need to check for errors here at some point. */ 566 567 lock_buffer(bh); 568 jbd_lock_bh_state(bh); 569 570 /* We now hold the buffer lock so it is safe to query the buffer 571 * state. Is the buffer dirty? 572 * 573 * If so, there are two possibilities. The buffer may be 574 * non-journaled, and undergoing a quite legitimate writeback. 575 * Otherwise, it is journaled, and we don't expect dirty buffers 576 * in that state (the buffers should be marked JBD_Dirty 577 * instead.) So either the IO is being done under our own 578 * control and this is a bug, or it's a third party IO such as 579 * dump(8) (which may leave the buffer scheduled for read --- 580 * ie. locked but not dirty) or tune2fs (which may actually have 581 * the buffer dirtied, ugh.) */ 582 583 if (buffer_dirty(bh)) { 584 /* 585 * First question: is this buffer already part of the current 586 * transaction or the existing committing transaction? 587 */ 588 if (jh->b_transaction) { 589 J_ASSERT_JH(jh, 590 jh->b_transaction == transaction || 591 jh->b_transaction == 592 journal->j_committing_transaction); 593 if (jh->b_next_transaction) 594 J_ASSERT_JH(jh, jh->b_next_transaction == 595 transaction); 596 } 597 /* 598 * In any case we need to clean the dirty flag and we must 599 * do it under the buffer lock to be sure we don't race 600 * with running write-out. 601 */ 602 JBUFFER_TRACE(jh, "Unexpected dirty buffer"); 603 jbd_unexpected_dirty_buffer(jh); 604 } 605 606 unlock_buffer(bh); 607 608 error = -EROFS; 609 if (is_handle_aborted(handle)) { 610 jbd_unlock_bh_state(bh); 611 goto out; 612 } 613 error = 0; 614 615 /* 616 * The buffer is already part of this transaction if b_transaction or 617 * b_next_transaction points to it 618 */ 619 if (jh->b_transaction == transaction || 620 jh->b_next_transaction == transaction) 621 goto done; 622 623 /* 624 * this is the first time this transaction is touching this buffer, 625 * reset the modified flag 626 */ 627 jh->b_modified = 0; 628 629 /* 630 * If there is already a copy-out version of this buffer, then we don't 631 * need to make another one 632 */ 633 if (jh->b_frozen_data) { 634 JBUFFER_TRACE(jh, "has frozen data"); 635 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 636 jh->b_next_transaction = transaction; 637 goto done; 638 } 639 640 /* Is there data here we need to preserve? */ 641 642 if (jh->b_transaction && jh->b_transaction != transaction) { 643 JBUFFER_TRACE(jh, "owned by older transaction"); 644 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 645 J_ASSERT_JH(jh, jh->b_transaction == 646 journal->j_committing_transaction); 647 648 /* There is one case we have to be very careful about. 649 * If the committing transaction is currently writing 650 * this buffer out to disk and has NOT made a copy-out, 651 * then we cannot modify the buffer contents at all 652 * right now. The essence of copy-out is that it is the 653 * extra copy, not the primary copy, which gets 654 * journaled. If the primary copy is already going to 655 * disk then we cannot do copy-out here. */ 656 657 if (jh->b_jlist == BJ_Shadow) { 658 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 659 wait_queue_head_t *wqh; 660 661 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 662 663 JBUFFER_TRACE(jh, "on shadow: sleep"); 664 jbd_unlock_bh_state(bh); 665 /* commit wakes up all shadow buffers after IO */ 666 for ( ; ; ) { 667 prepare_to_wait(wqh, &wait.wait, 668 TASK_UNINTERRUPTIBLE); 669 if (jh->b_jlist != BJ_Shadow) 670 break; 671 schedule(); 672 } 673 finish_wait(wqh, &wait.wait); 674 goto repeat; 675 } 676 677 /* Only do the copy if the currently-owning transaction 678 * still needs it. If it is on the Forget list, the 679 * committing transaction is past that stage. The 680 * buffer had better remain locked during the kmalloc, 681 * but that should be true --- we hold the journal lock 682 * still and the buffer is already on the BUF_JOURNAL 683 * list so won't be flushed. 684 * 685 * Subtle point, though: if this is a get_undo_access, 686 * then we will be relying on the frozen_data to contain 687 * the new value of the committed_data record after the 688 * transaction, so we HAVE to force the frozen_data copy 689 * in that case. */ 690 691 if (jh->b_jlist != BJ_Forget || force_copy) { 692 JBUFFER_TRACE(jh, "generate frozen data"); 693 if (!frozen_buffer) { 694 JBUFFER_TRACE(jh, "allocate memory for buffer"); 695 jbd_unlock_bh_state(bh); 696 frozen_buffer = 697 jbd2_alloc(jh2bh(jh)->b_size, 698 GFP_NOFS); 699 if (!frozen_buffer) { 700 printk(KERN_EMERG 701 "%s: OOM for frozen_buffer\n", 702 __func__); 703 JBUFFER_TRACE(jh, "oom!"); 704 error = -ENOMEM; 705 jbd_lock_bh_state(bh); 706 goto done; 707 } 708 goto repeat; 709 } 710 jh->b_frozen_data = frozen_buffer; 711 frozen_buffer = NULL; 712 need_copy = 1; 713 } 714 jh->b_next_transaction = transaction; 715 } 716 717 718 /* 719 * Finally, if the buffer is not journaled right now, we need to make 720 * sure it doesn't get written to disk before the caller actually 721 * commits the new data 722 */ 723 if (!jh->b_transaction) { 724 JBUFFER_TRACE(jh, "no transaction"); 725 J_ASSERT_JH(jh, !jh->b_next_transaction); 726 jh->b_transaction = transaction; 727 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 728 spin_lock(&journal->j_list_lock); 729 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 730 spin_unlock(&journal->j_list_lock); 731 } 732 733 done: 734 if (need_copy) { 735 struct page *page; 736 int offset; 737 char *source; 738 739 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 740 "Possible IO failure.\n"); 741 page = jh2bh(jh)->b_page; 742 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 743 source = kmap_atomic(page, KM_USER0); 744 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 745 kunmap_atomic(source, KM_USER0); 746 747 /* 748 * Now that the frozen data is saved off, we need to store 749 * any matching triggers. 750 */ 751 jh->b_frozen_triggers = jh->b_triggers; 752 } 753 jbd_unlock_bh_state(bh); 754 755 /* 756 * If we are about to journal a buffer, then any revoke pending on it is 757 * no longer valid 758 */ 759 jbd2_journal_cancel_revoke(handle, jh); 760 761 out: 762 if (unlikely(frozen_buffer)) /* It's usually NULL */ 763 jbd2_free(frozen_buffer, bh->b_size); 764 765 JBUFFER_TRACE(jh, "exit"); 766 return error; 767 } 768 769 /** 770 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 771 * @handle: transaction to add buffer modifications to 772 * @bh: bh to be used for metadata writes 773 * @credits: variable that will receive credits for the buffer 774 * 775 * Returns an error code or 0 on success. 776 * 777 * In full data journalling mode the buffer may be of type BJ_AsyncData, 778 * because we're write()ing a buffer which is also part of a shared mapping. 779 */ 780 781 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 782 { 783 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 784 int rc; 785 786 /* We do not want to get caught playing with fields which the 787 * log thread also manipulates. Make sure that the buffer 788 * completes any outstanding IO before proceeding. */ 789 rc = do_get_write_access(handle, jh, 0); 790 jbd2_journal_put_journal_head(jh); 791 return rc; 792 } 793 794 795 /* 796 * When the user wants to journal a newly created buffer_head 797 * (ie. getblk() returned a new buffer and we are going to populate it 798 * manually rather than reading off disk), then we need to keep the 799 * buffer_head locked until it has been completely filled with new 800 * data. In this case, we should be able to make the assertion that 801 * the bh is not already part of an existing transaction. 802 * 803 * The buffer should already be locked by the caller by this point. 804 * There is no lock ranking violation: it was a newly created, 805 * unlocked buffer beforehand. */ 806 807 /** 808 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 809 * @handle: transaction to new buffer to 810 * @bh: new buffer. 811 * 812 * Call this if you create a new bh. 813 */ 814 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 815 { 816 transaction_t *transaction = handle->h_transaction; 817 journal_t *journal = transaction->t_journal; 818 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 819 int err; 820 821 jbd_debug(5, "journal_head %p\n", jh); 822 err = -EROFS; 823 if (is_handle_aborted(handle)) 824 goto out; 825 err = 0; 826 827 JBUFFER_TRACE(jh, "entry"); 828 /* 829 * The buffer may already belong to this transaction due to pre-zeroing 830 * in the filesystem's new_block code. It may also be on the previous, 831 * committing transaction's lists, but it HAS to be in Forget state in 832 * that case: the transaction must have deleted the buffer for it to be 833 * reused here. 834 */ 835 jbd_lock_bh_state(bh); 836 spin_lock(&journal->j_list_lock); 837 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 838 jh->b_transaction == NULL || 839 (jh->b_transaction == journal->j_committing_transaction && 840 jh->b_jlist == BJ_Forget))); 841 842 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 843 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 844 845 if (jh->b_transaction == NULL) { 846 jh->b_transaction = transaction; 847 848 /* first access by this transaction */ 849 jh->b_modified = 0; 850 851 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 852 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 853 } else if (jh->b_transaction == journal->j_committing_transaction) { 854 /* first access by this transaction */ 855 jh->b_modified = 0; 856 857 JBUFFER_TRACE(jh, "set next transaction"); 858 jh->b_next_transaction = transaction; 859 } 860 spin_unlock(&journal->j_list_lock); 861 jbd_unlock_bh_state(bh); 862 863 /* 864 * akpm: I added this. ext3_alloc_branch can pick up new indirect 865 * blocks which contain freed but then revoked metadata. We need 866 * to cancel the revoke in case we end up freeing it yet again 867 * and the reallocating as data - this would cause a second revoke, 868 * which hits an assertion error. 869 */ 870 JBUFFER_TRACE(jh, "cancelling revoke"); 871 jbd2_journal_cancel_revoke(handle, jh); 872 jbd2_journal_put_journal_head(jh); 873 out: 874 return err; 875 } 876 877 /** 878 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 879 * non-rewindable consequences 880 * @handle: transaction 881 * @bh: buffer to undo 882 * @credits: store the number of taken credits here (if not NULL) 883 * 884 * Sometimes there is a need to distinguish between metadata which has 885 * been committed to disk and that which has not. The ext3fs code uses 886 * this for freeing and allocating space, we have to make sure that we 887 * do not reuse freed space until the deallocation has been committed, 888 * since if we overwrote that space we would make the delete 889 * un-rewindable in case of a crash. 890 * 891 * To deal with that, jbd2_journal_get_undo_access requests write access to a 892 * buffer for parts of non-rewindable operations such as delete 893 * operations on the bitmaps. The journaling code must keep a copy of 894 * the buffer's contents prior to the undo_access call until such time 895 * as we know that the buffer has definitely been committed to disk. 896 * 897 * We never need to know which transaction the committed data is part 898 * of, buffers touched here are guaranteed to be dirtied later and so 899 * will be committed to a new transaction in due course, at which point 900 * we can discard the old committed data pointer. 901 * 902 * Returns error number or 0 on success. 903 */ 904 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 905 { 906 int err; 907 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 908 char *committed_data = NULL; 909 910 JBUFFER_TRACE(jh, "entry"); 911 912 /* 913 * Do this first --- it can drop the journal lock, so we want to 914 * make sure that obtaining the committed_data is done 915 * atomically wrt. completion of any outstanding commits. 916 */ 917 err = do_get_write_access(handle, jh, 1); 918 if (err) 919 goto out; 920 921 repeat: 922 if (!jh->b_committed_data) { 923 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 924 if (!committed_data) { 925 printk(KERN_EMERG "%s: No memory for committed data\n", 926 __func__); 927 err = -ENOMEM; 928 goto out; 929 } 930 } 931 932 jbd_lock_bh_state(bh); 933 if (!jh->b_committed_data) { 934 /* Copy out the current buffer contents into the 935 * preserved, committed copy. */ 936 JBUFFER_TRACE(jh, "generate b_committed data"); 937 if (!committed_data) { 938 jbd_unlock_bh_state(bh); 939 goto repeat; 940 } 941 942 jh->b_committed_data = committed_data; 943 committed_data = NULL; 944 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 945 } 946 jbd_unlock_bh_state(bh); 947 out: 948 jbd2_journal_put_journal_head(jh); 949 if (unlikely(committed_data)) 950 jbd2_free(committed_data, bh->b_size); 951 return err; 952 } 953 954 /** 955 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 956 * @bh: buffer to trigger on 957 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 958 * 959 * Set any triggers on this journal_head. This is always safe, because 960 * triggers for a committing buffer will be saved off, and triggers for 961 * a running transaction will match the buffer in that transaction. 962 * 963 * Call with NULL to clear the triggers. 964 */ 965 void jbd2_journal_set_triggers(struct buffer_head *bh, 966 struct jbd2_buffer_trigger_type *type) 967 { 968 struct journal_head *jh = bh2jh(bh); 969 970 jh->b_triggers = type; 971 } 972 973 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data, 974 struct jbd2_buffer_trigger_type *triggers) 975 { 976 struct buffer_head *bh = jh2bh(jh); 977 978 if (!triggers || !triggers->t_commit) 979 return; 980 981 triggers->t_commit(triggers, bh, mapped_data, bh->b_size); 982 } 983 984 void jbd2_buffer_abort_trigger(struct journal_head *jh, 985 struct jbd2_buffer_trigger_type *triggers) 986 { 987 if (!triggers || !triggers->t_abort) 988 return; 989 990 triggers->t_abort(triggers, jh2bh(jh)); 991 } 992 993 994 995 /** 996 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 997 * @handle: transaction to add buffer to. 998 * @bh: buffer to mark 999 * 1000 * mark dirty metadata which needs to be journaled as part of the current 1001 * transaction. 1002 * 1003 * The buffer is placed on the transaction's metadata list and is marked 1004 * as belonging to the transaction. 1005 * 1006 * Returns error number or 0 on success. 1007 * 1008 * Special care needs to be taken if the buffer already belongs to the 1009 * current committing transaction (in which case we should have frozen 1010 * data present for that commit). In that case, we don't relink the 1011 * buffer: that only gets done when the old transaction finally 1012 * completes its commit. 1013 */ 1014 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1015 { 1016 transaction_t *transaction = handle->h_transaction; 1017 journal_t *journal = transaction->t_journal; 1018 struct journal_head *jh = bh2jh(bh); 1019 1020 jbd_debug(5, "journal_head %p\n", jh); 1021 JBUFFER_TRACE(jh, "entry"); 1022 if (is_handle_aborted(handle)) 1023 goto out; 1024 1025 jbd_lock_bh_state(bh); 1026 1027 if (jh->b_modified == 0) { 1028 /* 1029 * This buffer's got modified and becoming part 1030 * of the transaction. This needs to be done 1031 * once a transaction -bzzz 1032 */ 1033 jh->b_modified = 1; 1034 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1035 handle->h_buffer_credits--; 1036 } 1037 1038 /* 1039 * fastpath, to avoid expensive locking. If this buffer is already 1040 * on the running transaction's metadata list there is nothing to do. 1041 * Nobody can take it off again because there is a handle open. 1042 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1043 * result in this test being false, so we go in and take the locks. 1044 */ 1045 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1046 JBUFFER_TRACE(jh, "fastpath"); 1047 J_ASSERT_JH(jh, jh->b_transaction == 1048 journal->j_running_transaction); 1049 goto out_unlock_bh; 1050 } 1051 1052 set_buffer_jbddirty(bh); 1053 1054 /* 1055 * Metadata already on the current transaction list doesn't 1056 * need to be filed. Metadata on another transaction's list must 1057 * be committing, and will be refiled once the commit completes: 1058 * leave it alone for now. 1059 */ 1060 if (jh->b_transaction != transaction) { 1061 JBUFFER_TRACE(jh, "already on other transaction"); 1062 J_ASSERT_JH(jh, jh->b_transaction == 1063 journal->j_committing_transaction); 1064 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1065 /* And this case is illegal: we can't reuse another 1066 * transaction's data buffer, ever. */ 1067 goto out_unlock_bh; 1068 } 1069 1070 /* That test should have eliminated the following case: */ 1071 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1072 1073 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1074 spin_lock(&journal->j_list_lock); 1075 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1076 spin_unlock(&journal->j_list_lock); 1077 out_unlock_bh: 1078 jbd_unlock_bh_state(bh); 1079 out: 1080 JBUFFER_TRACE(jh, "exit"); 1081 return 0; 1082 } 1083 1084 /* 1085 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1086 * updates, if the update decided in the end that it didn't need access. 1087 * 1088 */ 1089 void 1090 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1091 { 1092 BUFFER_TRACE(bh, "entry"); 1093 } 1094 1095 /** 1096 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1097 * @handle: transaction handle 1098 * @bh: bh to 'forget' 1099 * 1100 * We can only do the bforget if there are no commits pending against the 1101 * buffer. If the buffer is dirty in the current running transaction we 1102 * can safely unlink it. 1103 * 1104 * bh may not be a journalled buffer at all - it may be a non-JBD 1105 * buffer which came off the hashtable. Check for this. 1106 * 1107 * Decrements bh->b_count by one. 1108 * 1109 * Allow this call even if the handle has aborted --- it may be part of 1110 * the caller's cleanup after an abort. 1111 */ 1112 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1113 { 1114 transaction_t *transaction = handle->h_transaction; 1115 journal_t *journal = transaction->t_journal; 1116 struct journal_head *jh; 1117 int drop_reserve = 0; 1118 int err = 0; 1119 int was_modified = 0; 1120 1121 BUFFER_TRACE(bh, "entry"); 1122 1123 jbd_lock_bh_state(bh); 1124 spin_lock(&journal->j_list_lock); 1125 1126 if (!buffer_jbd(bh)) 1127 goto not_jbd; 1128 jh = bh2jh(bh); 1129 1130 /* Critical error: attempting to delete a bitmap buffer, maybe? 1131 * Don't do any jbd operations, and return an error. */ 1132 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1133 "inconsistent data on disk")) { 1134 err = -EIO; 1135 goto not_jbd; 1136 } 1137 1138 /* keep track of wether or not this transaction modified us */ 1139 was_modified = jh->b_modified; 1140 1141 /* 1142 * The buffer's going from the transaction, we must drop 1143 * all references -bzzz 1144 */ 1145 jh->b_modified = 0; 1146 1147 if (jh->b_transaction == handle->h_transaction) { 1148 J_ASSERT_JH(jh, !jh->b_frozen_data); 1149 1150 /* If we are forgetting a buffer which is already part 1151 * of this transaction, then we can just drop it from 1152 * the transaction immediately. */ 1153 clear_buffer_dirty(bh); 1154 clear_buffer_jbddirty(bh); 1155 1156 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1157 1158 /* 1159 * we only want to drop a reference if this transaction 1160 * modified the buffer 1161 */ 1162 if (was_modified) 1163 drop_reserve = 1; 1164 1165 /* 1166 * We are no longer going to journal this buffer. 1167 * However, the commit of this transaction is still 1168 * important to the buffer: the delete that we are now 1169 * processing might obsolete an old log entry, so by 1170 * committing, we can satisfy the buffer's checkpoint. 1171 * 1172 * So, if we have a checkpoint on the buffer, we should 1173 * now refile the buffer on our BJ_Forget list so that 1174 * we know to remove the checkpoint after we commit. 1175 */ 1176 1177 if (jh->b_cp_transaction) { 1178 __jbd2_journal_temp_unlink_buffer(jh); 1179 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1180 } else { 1181 __jbd2_journal_unfile_buffer(jh); 1182 jbd2_journal_remove_journal_head(bh); 1183 __brelse(bh); 1184 if (!buffer_jbd(bh)) { 1185 spin_unlock(&journal->j_list_lock); 1186 jbd_unlock_bh_state(bh); 1187 __bforget(bh); 1188 goto drop; 1189 } 1190 } 1191 } else if (jh->b_transaction) { 1192 J_ASSERT_JH(jh, (jh->b_transaction == 1193 journal->j_committing_transaction)); 1194 /* However, if the buffer is still owned by a prior 1195 * (committing) transaction, we can't drop it yet... */ 1196 JBUFFER_TRACE(jh, "belongs to older transaction"); 1197 /* ... but we CAN drop it from the new transaction if we 1198 * have also modified it since the original commit. */ 1199 1200 if (jh->b_next_transaction) { 1201 J_ASSERT(jh->b_next_transaction == transaction); 1202 jh->b_next_transaction = NULL; 1203 1204 /* 1205 * only drop a reference if this transaction modified 1206 * the buffer 1207 */ 1208 if (was_modified) 1209 drop_reserve = 1; 1210 } 1211 } 1212 1213 not_jbd: 1214 spin_unlock(&journal->j_list_lock); 1215 jbd_unlock_bh_state(bh); 1216 __brelse(bh); 1217 drop: 1218 if (drop_reserve) { 1219 /* no need to reserve log space for this block -bzzz */ 1220 handle->h_buffer_credits++; 1221 } 1222 return err; 1223 } 1224 1225 /** 1226 * int jbd2_journal_stop() - complete a transaction 1227 * @handle: tranaction to complete. 1228 * 1229 * All done for a particular handle. 1230 * 1231 * There is not much action needed here. We just return any remaining 1232 * buffer credits to the transaction and remove the handle. The only 1233 * complication is that we need to start a commit operation if the 1234 * filesystem is marked for synchronous update. 1235 * 1236 * jbd2_journal_stop itself will not usually return an error, but it may 1237 * do so in unusual circumstances. In particular, expect it to 1238 * return -EIO if a jbd2_journal_abort has been executed since the 1239 * transaction began. 1240 */ 1241 int jbd2_journal_stop(handle_t *handle) 1242 { 1243 transaction_t *transaction = handle->h_transaction; 1244 journal_t *journal = transaction->t_journal; 1245 int err; 1246 pid_t pid; 1247 1248 J_ASSERT(journal_current_handle() == handle); 1249 1250 if (is_handle_aborted(handle)) 1251 err = -EIO; 1252 else { 1253 J_ASSERT(transaction->t_updates > 0); 1254 err = 0; 1255 } 1256 1257 if (--handle->h_ref > 0) { 1258 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1259 handle->h_ref); 1260 return err; 1261 } 1262 1263 jbd_debug(4, "Handle %p going down\n", handle); 1264 1265 /* 1266 * Implement synchronous transaction batching. If the handle 1267 * was synchronous, don't force a commit immediately. Let's 1268 * yield and let another thread piggyback onto this 1269 * transaction. Keep doing that while new threads continue to 1270 * arrive. It doesn't cost much - we're about to run a commit 1271 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1272 * operations by 30x or more... 1273 * 1274 * We try and optimize the sleep time against what the 1275 * underlying disk can do, instead of having a static sleep 1276 * time. This is useful for the case where our storage is so 1277 * fast that it is more optimal to go ahead and force a flush 1278 * and wait for the transaction to be committed than it is to 1279 * wait for an arbitrary amount of time for new writers to 1280 * join the transaction. We achieve this by measuring how 1281 * long it takes to commit a transaction, and compare it with 1282 * how long this transaction has been running, and if run time 1283 * < commit time then we sleep for the delta and commit. This 1284 * greatly helps super fast disks that would see slowdowns as 1285 * more threads started doing fsyncs. 1286 * 1287 * But don't do this if this process was the most recent one 1288 * to perform a synchronous write. We do this to detect the 1289 * case where a single process is doing a stream of sync 1290 * writes. No point in waiting for joiners in that case. 1291 */ 1292 pid = current->pid; 1293 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1294 u64 commit_time, trans_time; 1295 1296 journal->j_last_sync_writer = pid; 1297 1298 spin_lock(&journal->j_state_lock); 1299 commit_time = journal->j_average_commit_time; 1300 spin_unlock(&journal->j_state_lock); 1301 1302 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1303 transaction->t_start_time)); 1304 1305 commit_time = max_t(u64, commit_time, 1306 1000*journal->j_min_batch_time); 1307 commit_time = min_t(u64, commit_time, 1308 1000*journal->j_max_batch_time); 1309 1310 if (trans_time < commit_time) { 1311 ktime_t expires = ktime_add_ns(ktime_get(), 1312 commit_time); 1313 set_current_state(TASK_UNINTERRUPTIBLE); 1314 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1315 } 1316 } 1317 1318 if (handle->h_sync) 1319 transaction->t_synchronous_commit = 1; 1320 current->journal_info = NULL; 1321 spin_lock(&journal->j_state_lock); 1322 spin_lock(&transaction->t_handle_lock); 1323 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1324 transaction->t_updates--; 1325 if (!transaction->t_updates) { 1326 wake_up(&journal->j_wait_updates); 1327 if (journal->j_barrier_count) 1328 wake_up(&journal->j_wait_transaction_locked); 1329 } 1330 1331 /* 1332 * If the handle is marked SYNC, we need to set another commit 1333 * going! We also want to force a commit if the current 1334 * transaction is occupying too much of the log, or if the 1335 * transaction is too old now. 1336 */ 1337 if (handle->h_sync || 1338 transaction->t_outstanding_credits > 1339 journal->j_max_transaction_buffers || 1340 time_after_eq(jiffies, transaction->t_expires)) { 1341 /* Do this even for aborted journals: an abort still 1342 * completes the commit thread, it just doesn't write 1343 * anything to disk. */ 1344 tid_t tid = transaction->t_tid; 1345 1346 spin_unlock(&transaction->t_handle_lock); 1347 jbd_debug(2, "transaction too old, requesting commit for " 1348 "handle %p\n", handle); 1349 /* This is non-blocking */ 1350 __jbd2_log_start_commit(journal, transaction->t_tid); 1351 spin_unlock(&journal->j_state_lock); 1352 1353 /* 1354 * Special case: JBD2_SYNC synchronous updates require us 1355 * to wait for the commit to complete. 1356 */ 1357 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1358 err = jbd2_log_wait_commit(journal, tid); 1359 } else { 1360 spin_unlock(&transaction->t_handle_lock); 1361 spin_unlock(&journal->j_state_lock); 1362 } 1363 1364 lock_map_release(&handle->h_lockdep_map); 1365 1366 jbd2_free_handle(handle); 1367 return err; 1368 } 1369 1370 /** 1371 * int jbd2_journal_force_commit() - force any uncommitted transactions 1372 * @journal: journal to force 1373 * 1374 * For synchronous operations: force any uncommitted transactions 1375 * to disk. May seem kludgy, but it reuses all the handle batching 1376 * code in a very simple manner. 1377 */ 1378 int jbd2_journal_force_commit(journal_t *journal) 1379 { 1380 handle_t *handle; 1381 int ret; 1382 1383 handle = jbd2_journal_start(journal, 1); 1384 if (IS_ERR(handle)) { 1385 ret = PTR_ERR(handle); 1386 } else { 1387 handle->h_sync = 1; 1388 ret = jbd2_journal_stop(handle); 1389 } 1390 return ret; 1391 } 1392 1393 /* 1394 * 1395 * List management code snippets: various functions for manipulating the 1396 * transaction buffer lists. 1397 * 1398 */ 1399 1400 /* 1401 * Append a buffer to a transaction list, given the transaction's list head 1402 * pointer. 1403 * 1404 * j_list_lock is held. 1405 * 1406 * jbd_lock_bh_state(jh2bh(jh)) is held. 1407 */ 1408 1409 static inline void 1410 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1411 { 1412 if (!*list) { 1413 jh->b_tnext = jh->b_tprev = jh; 1414 *list = jh; 1415 } else { 1416 /* Insert at the tail of the list to preserve order */ 1417 struct journal_head *first = *list, *last = first->b_tprev; 1418 jh->b_tprev = last; 1419 jh->b_tnext = first; 1420 last->b_tnext = first->b_tprev = jh; 1421 } 1422 } 1423 1424 /* 1425 * Remove a buffer from a transaction list, given the transaction's list 1426 * head pointer. 1427 * 1428 * Called with j_list_lock held, and the journal may not be locked. 1429 * 1430 * jbd_lock_bh_state(jh2bh(jh)) is held. 1431 */ 1432 1433 static inline void 1434 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1435 { 1436 if (*list == jh) { 1437 *list = jh->b_tnext; 1438 if (*list == jh) 1439 *list = NULL; 1440 } 1441 jh->b_tprev->b_tnext = jh->b_tnext; 1442 jh->b_tnext->b_tprev = jh->b_tprev; 1443 } 1444 1445 /* 1446 * Remove a buffer from the appropriate transaction list. 1447 * 1448 * Note that this function can *change* the value of 1449 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1450 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1451 * of these pointers, it could go bad. Generally the caller needs to re-read 1452 * the pointer from the transaction_t. 1453 * 1454 * Called under j_list_lock. The journal may not be locked. 1455 */ 1456 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1457 { 1458 struct journal_head **list = NULL; 1459 transaction_t *transaction; 1460 struct buffer_head *bh = jh2bh(jh); 1461 1462 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1463 transaction = jh->b_transaction; 1464 if (transaction) 1465 assert_spin_locked(&transaction->t_journal->j_list_lock); 1466 1467 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1468 if (jh->b_jlist != BJ_None) 1469 J_ASSERT_JH(jh, transaction != NULL); 1470 1471 switch (jh->b_jlist) { 1472 case BJ_None: 1473 return; 1474 case BJ_Metadata: 1475 transaction->t_nr_buffers--; 1476 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1477 list = &transaction->t_buffers; 1478 break; 1479 case BJ_Forget: 1480 list = &transaction->t_forget; 1481 break; 1482 case BJ_IO: 1483 list = &transaction->t_iobuf_list; 1484 break; 1485 case BJ_Shadow: 1486 list = &transaction->t_shadow_list; 1487 break; 1488 case BJ_LogCtl: 1489 list = &transaction->t_log_list; 1490 break; 1491 case BJ_Reserved: 1492 list = &transaction->t_reserved_list; 1493 break; 1494 } 1495 1496 __blist_del_buffer(list, jh); 1497 jh->b_jlist = BJ_None; 1498 if (test_clear_buffer_jbddirty(bh)) 1499 mark_buffer_dirty(bh); /* Expose it to the VM */ 1500 } 1501 1502 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1503 { 1504 __jbd2_journal_temp_unlink_buffer(jh); 1505 jh->b_transaction = NULL; 1506 } 1507 1508 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1509 { 1510 jbd_lock_bh_state(jh2bh(jh)); 1511 spin_lock(&journal->j_list_lock); 1512 __jbd2_journal_unfile_buffer(jh); 1513 spin_unlock(&journal->j_list_lock); 1514 jbd_unlock_bh_state(jh2bh(jh)); 1515 } 1516 1517 /* 1518 * Called from jbd2_journal_try_to_free_buffers(). 1519 * 1520 * Called under jbd_lock_bh_state(bh) 1521 */ 1522 static void 1523 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1524 { 1525 struct journal_head *jh; 1526 1527 jh = bh2jh(bh); 1528 1529 if (buffer_locked(bh) || buffer_dirty(bh)) 1530 goto out; 1531 1532 if (jh->b_next_transaction != NULL) 1533 goto out; 1534 1535 spin_lock(&journal->j_list_lock); 1536 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1537 /* written-back checkpointed metadata buffer */ 1538 if (jh->b_jlist == BJ_None) { 1539 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1540 __jbd2_journal_remove_checkpoint(jh); 1541 jbd2_journal_remove_journal_head(bh); 1542 __brelse(bh); 1543 } 1544 } 1545 spin_unlock(&journal->j_list_lock); 1546 out: 1547 return; 1548 } 1549 1550 /* 1551 * jbd2_journal_try_to_free_buffers() could race with 1552 * jbd2_journal_commit_transaction(). The later might still hold the 1553 * reference count to the buffers when inspecting them on 1554 * t_syncdata_list or t_locked_list. 1555 * 1556 * jbd2_journal_try_to_free_buffers() will call this function to 1557 * wait for the current transaction to finish syncing data buffers, before 1558 * try to free that buffer. 1559 * 1560 * Called with journal->j_state_lock hold. 1561 */ 1562 static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal) 1563 { 1564 transaction_t *transaction; 1565 tid_t tid; 1566 1567 spin_lock(&journal->j_state_lock); 1568 transaction = journal->j_committing_transaction; 1569 1570 if (!transaction) { 1571 spin_unlock(&journal->j_state_lock); 1572 return; 1573 } 1574 1575 tid = transaction->t_tid; 1576 spin_unlock(&journal->j_state_lock); 1577 jbd2_log_wait_commit(journal, tid); 1578 } 1579 1580 /** 1581 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1582 * @journal: journal for operation 1583 * @page: to try and free 1584 * @gfp_mask: we use the mask to detect how hard should we try to release 1585 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1586 * release the buffers. 1587 * 1588 * 1589 * For all the buffers on this page, 1590 * if they are fully written out ordered data, move them onto BUF_CLEAN 1591 * so try_to_free_buffers() can reap them. 1592 * 1593 * This function returns non-zero if we wish try_to_free_buffers() 1594 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1595 * We also do it if the page has locked or dirty buffers and the caller wants 1596 * us to perform sync or async writeout. 1597 * 1598 * This complicates JBD locking somewhat. We aren't protected by the 1599 * BKL here. We wish to remove the buffer from its committing or 1600 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1601 * 1602 * This may *change* the value of transaction_t->t_datalist, so anyone 1603 * who looks at t_datalist needs to lock against this function. 1604 * 1605 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1606 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1607 * will come out of the lock with the buffer dirty, which makes it 1608 * ineligible for release here. 1609 * 1610 * Who else is affected by this? hmm... Really the only contender 1611 * is do_get_write_access() - it could be looking at the buffer while 1612 * journal_try_to_free_buffer() is changing its state. But that 1613 * cannot happen because we never reallocate freed data as metadata 1614 * while the data is part of a transaction. Yes? 1615 * 1616 * Return 0 on failure, 1 on success 1617 */ 1618 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1619 struct page *page, gfp_t gfp_mask) 1620 { 1621 struct buffer_head *head; 1622 struct buffer_head *bh; 1623 int ret = 0; 1624 1625 J_ASSERT(PageLocked(page)); 1626 1627 head = page_buffers(page); 1628 bh = head; 1629 do { 1630 struct journal_head *jh; 1631 1632 /* 1633 * We take our own ref against the journal_head here to avoid 1634 * having to add tons of locking around each instance of 1635 * jbd2_journal_remove_journal_head() and 1636 * jbd2_journal_put_journal_head(). 1637 */ 1638 jh = jbd2_journal_grab_journal_head(bh); 1639 if (!jh) 1640 continue; 1641 1642 jbd_lock_bh_state(bh); 1643 __journal_try_to_free_buffer(journal, bh); 1644 jbd2_journal_put_journal_head(jh); 1645 jbd_unlock_bh_state(bh); 1646 if (buffer_jbd(bh)) 1647 goto busy; 1648 } while ((bh = bh->b_this_page) != head); 1649 1650 ret = try_to_free_buffers(page); 1651 1652 /* 1653 * There are a number of places where jbd2_journal_try_to_free_buffers() 1654 * could race with jbd2_journal_commit_transaction(), the later still 1655 * holds the reference to the buffers to free while processing them. 1656 * try_to_free_buffers() failed to free those buffers. Some of the 1657 * caller of releasepage() request page buffers to be dropped, otherwise 1658 * treat the fail-to-free as errors (such as generic_file_direct_IO()) 1659 * 1660 * So, if the caller of try_to_release_page() wants the synchronous 1661 * behaviour(i.e make sure buffers are dropped upon return), 1662 * let's wait for the current transaction to finish flush of 1663 * dirty data buffers, then try to free those buffers again, 1664 * with the journal locked. 1665 */ 1666 if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) { 1667 jbd2_journal_wait_for_transaction_sync_data(journal); 1668 ret = try_to_free_buffers(page); 1669 } 1670 1671 busy: 1672 return ret; 1673 } 1674 1675 /* 1676 * This buffer is no longer needed. If it is on an older transaction's 1677 * checkpoint list we need to record it on this transaction's forget list 1678 * to pin this buffer (and hence its checkpointing transaction) down until 1679 * this transaction commits. If the buffer isn't on a checkpoint list, we 1680 * release it. 1681 * Returns non-zero if JBD no longer has an interest in the buffer. 1682 * 1683 * Called under j_list_lock. 1684 * 1685 * Called under jbd_lock_bh_state(bh). 1686 */ 1687 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1688 { 1689 int may_free = 1; 1690 struct buffer_head *bh = jh2bh(jh); 1691 1692 __jbd2_journal_unfile_buffer(jh); 1693 1694 if (jh->b_cp_transaction) { 1695 JBUFFER_TRACE(jh, "on running+cp transaction"); 1696 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1697 clear_buffer_jbddirty(bh); 1698 may_free = 0; 1699 } else { 1700 JBUFFER_TRACE(jh, "on running transaction"); 1701 jbd2_journal_remove_journal_head(bh); 1702 __brelse(bh); 1703 } 1704 return may_free; 1705 } 1706 1707 /* 1708 * jbd2_journal_invalidatepage 1709 * 1710 * This code is tricky. It has a number of cases to deal with. 1711 * 1712 * There are two invariants which this code relies on: 1713 * 1714 * i_size must be updated on disk before we start calling invalidatepage on the 1715 * data. 1716 * 1717 * This is done in ext3 by defining an ext3_setattr method which 1718 * updates i_size before truncate gets going. By maintaining this 1719 * invariant, we can be sure that it is safe to throw away any buffers 1720 * attached to the current transaction: once the transaction commits, 1721 * we know that the data will not be needed. 1722 * 1723 * Note however that we can *not* throw away data belonging to the 1724 * previous, committing transaction! 1725 * 1726 * Any disk blocks which *are* part of the previous, committing 1727 * transaction (and which therefore cannot be discarded immediately) are 1728 * not going to be reused in the new running transaction 1729 * 1730 * The bitmap committed_data images guarantee this: any block which is 1731 * allocated in one transaction and removed in the next will be marked 1732 * as in-use in the committed_data bitmap, so cannot be reused until 1733 * the next transaction to delete the block commits. This means that 1734 * leaving committing buffers dirty is quite safe: the disk blocks 1735 * cannot be reallocated to a different file and so buffer aliasing is 1736 * not possible. 1737 * 1738 * 1739 * The above applies mainly to ordered data mode. In writeback mode we 1740 * don't make guarantees about the order in which data hits disk --- in 1741 * particular we don't guarantee that new dirty data is flushed before 1742 * transaction commit --- so it is always safe just to discard data 1743 * immediately in that mode. --sct 1744 */ 1745 1746 /* 1747 * The journal_unmap_buffer helper function returns zero if the buffer 1748 * concerned remains pinned as an anonymous buffer belonging to an older 1749 * transaction. 1750 * 1751 * We're outside-transaction here. Either or both of j_running_transaction 1752 * and j_committing_transaction may be NULL. 1753 */ 1754 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1755 { 1756 transaction_t *transaction; 1757 struct journal_head *jh; 1758 int may_free = 1; 1759 int ret; 1760 1761 BUFFER_TRACE(bh, "entry"); 1762 1763 /* 1764 * It is safe to proceed here without the j_list_lock because the 1765 * buffers cannot be stolen by try_to_free_buffers as long as we are 1766 * holding the page lock. --sct 1767 */ 1768 1769 if (!buffer_jbd(bh)) 1770 goto zap_buffer_unlocked; 1771 1772 /* OK, we have data buffer in journaled mode */ 1773 spin_lock(&journal->j_state_lock); 1774 jbd_lock_bh_state(bh); 1775 spin_lock(&journal->j_list_lock); 1776 1777 jh = jbd2_journal_grab_journal_head(bh); 1778 if (!jh) 1779 goto zap_buffer_no_jh; 1780 1781 transaction = jh->b_transaction; 1782 if (transaction == NULL) { 1783 /* First case: not on any transaction. If it 1784 * has no checkpoint link, then we can zap it: 1785 * it's a writeback-mode buffer so we don't care 1786 * if it hits disk safely. */ 1787 if (!jh->b_cp_transaction) { 1788 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1789 goto zap_buffer; 1790 } 1791 1792 if (!buffer_dirty(bh)) { 1793 /* bdflush has written it. We can drop it now */ 1794 goto zap_buffer; 1795 } 1796 1797 /* OK, it must be in the journal but still not 1798 * written fully to disk: it's metadata or 1799 * journaled data... */ 1800 1801 if (journal->j_running_transaction) { 1802 /* ... and once the current transaction has 1803 * committed, the buffer won't be needed any 1804 * longer. */ 1805 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1806 ret = __dispose_buffer(jh, 1807 journal->j_running_transaction); 1808 jbd2_journal_put_journal_head(jh); 1809 spin_unlock(&journal->j_list_lock); 1810 jbd_unlock_bh_state(bh); 1811 spin_unlock(&journal->j_state_lock); 1812 return ret; 1813 } else { 1814 /* There is no currently-running transaction. So the 1815 * orphan record which we wrote for this file must have 1816 * passed into commit. We must attach this buffer to 1817 * the committing transaction, if it exists. */ 1818 if (journal->j_committing_transaction) { 1819 JBUFFER_TRACE(jh, "give to committing trans"); 1820 ret = __dispose_buffer(jh, 1821 journal->j_committing_transaction); 1822 jbd2_journal_put_journal_head(jh); 1823 spin_unlock(&journal->j_list_lock); 1824 jbd_unlock_bh_state(bh); 1825 spin_unlock(&journal->j_state_lock); 1826 return ret; 1827 } else { 1828 /* The orphan record's transaction has 1829 * committed. We can cleanse this buffer */ 1830 clear_buffer_jbddirty(bh); 1831 goto zap_buffer; 1832 } 1833 } 1834 } else if (transaction == journal->j_committing_transaction) { 1835 JBUFFER_TRACE(jh, "on committing transaction"); 1836 /* 1837 * If it is committing, we simply cannot touch it. We 1838 * can remove it's next_transaction pointer from the 1839 * running transaction if that is set, but nothing 1840 * else. */ 1841 set_buffer_freed(bh); 1842 if (jh->b_next_transaction) { 1843 J_ASSERT(jh->b_next_transaction == 1844 journal->j_running_transaction); 1845 jh->b_next_transaction = NULL; 1846 } 1847 jbd2_journal_put_journal_head(jh); 1848 spin_unlock(&journal->j_list_lock); 1849 jbd_unlock_bh_state(bh); 1850 spin_unlock(&journal->j_state_lock); 1851 return 0; 1852 } else { 1853 /* Good, the buffer belongs to the running transaction. 1854 * We are writing our own transaction's data, not any 1855 * previous one's, so it is safe to throw it away 1856 * (remember that we expect the filesystem to have set 1857 * i_size already for this truncate so recovery will not 1858 * expose the disk blocks we are discarding here.) */ 1859 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1860 JBUFFER_TRACE(jh, "on running transaction"); 1861 may_free = __dispose_buffer(jh, transaction); 1862 } 1863 1864 zap_buffer: 1865 jbd2_journal_put_journal_head(jh); 1866 zap_buffer_no_jh: 1867 spin_unlock(&journal->j_list_lock); 1868 jbd_unlock_bh_state(bh); 1869 spin_unlock(&journal->j_state_lock); 1870 zap_buffer_unlocked: 1871 clear_buffer_dirty(bh); 1872 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1873 clear_buffer_mapped(bh); 1874 clear_buffer_req(bh); 1875 clear_buffer_new(bh); 1876 bh->b_bdev = NULL; 1877 return may_free; 1878 } 1879 1880 /** 1881 * void jbd2_journal_invalidatepage() 1882 * @journal: journal to use for flush... 1883 * @page: page to flush 1884 * @offset: length of page to invalidate. 1885 * 1886 * Reap page buffers containing data after offset in page. 1887 * 1888 */ 1889 void jbd2_journal_invalidatepage(journal_t *journal, 1890 struct page *page, 1891 unsigned long offset) 1892 { 1893 struct buffer_head *head, *bh, *next; 1894 unsigned int curr_off = 0; 1895 int may_free = 1; 1896 1897 if (!PageLocked(page)) 1898 BUG(); 1899 if (!page_has_buffers(page)) 1900 return; 1901 1902 /* We will potentially be playing with lists other than just the 1903 * data lists (especially for journaled data mode), so be 1904 * cautious in our locking. */ 1905 1906 head = bh = page_buffers(page); 1907 do { 1908 unsigned int next_off = curr_off + bh->b_size; 1909 next = bh->b_this_page; 1910 1911 if (offset <= curr_off) { 1912 /* This block is wholly outside the truncation point */ 1913 lock_buffer(bh); 1914 may_free &= journal_unmap_buffer(journal, bh); 1915 unlock_buffer(bh); 1916 } 1917 curr_off = next_off; 1918 bh = next; 1919 1920 } while (bh != head); 1921 1922 if (!offset) { 1923 if (may_free && try_to_free_buffers(page)) 1924 J_ASSERT(!page_has_buffers(page)); 1925 } 1926 } 1927 1928 /* 1929 * File a buffer on the given transaction list. 1930 */ 1931 void __jbd2_journal_file_buffer(struct journal_head *jh, 1932 transaction_t *transaction, int jlist) 1933 { 1934 struct journal_head **list = NULL; 1935 int was_dirty = 0; 1936 struct buffer_head *bh = jh2bh(jh); 1937 1938 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1939 assert_spin_locked(&transaction->t_journal->j_list_lock); 1940 1941 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1942 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1943 jh->b_transaction == NULL); 1944 1945 if (jh->b_transaction && jh->b_jlist == jlist) 1946 return; 1947 1948 /* The following list of buffer states needs to be consistent 1949 * with __jbd_unexpected_dirty_buffer()'s handling of dirty 1950 * state. */ 1951 1952 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1953 jlist == BJ_Shadow || jlist == BJ_Forget) { 1954 if (test_clear_buffer_dirty(bh) || 1955 test_clear_buffer_jbddirty(bh)) 1956 was_dirty = 1; 1957 } 1958 1959 if (jh->b_transaction) 1960 __jbd2_journal_temp_unlink_buffer(jh); 1961 jh->b_transaction = transaction; 1962 1963 switch (jlist) { 1964 case BJ_None: 1965 J_ASSERT_JH(jh, !jh->b_committed_data); 1966 J_ASSERT_JH(jh, !jh->b_frozen_data); 1967 return; 1968 case BJ_Metadata: 1969 transaction->t_nr_buffers++; 1970 list = &transaction->t_buffers; 1971 break; 1972 case BJ_Forget: 1973 list = &transaction->t_forget; 1974 break; 1975 case BJ_IO: 1976 list = &transaction->t_iobuf_list; 1977 break; 1978 case BJ_Shadow: 1979 list = &transaction->t_shadow_list; 1980 break; 1981 case BJ_LogCtl: 1982 list = &transaction->t_log_list; 1983 break; 1984 case BJ_Reserved: 1985 list = &transaction->t_reserved_list; 1986 break; 1987 } 1988 1989 __blist_add_buffer(list, jh); 1990 jh->b_jlist = jlist; 1991 1992 if (was_dirty) 1993 set_buffer_jbddirty(bh); 1994 } 1995 1996 void jbd2_journal_file_buffer(struct journal_head *jh, 1997 transaction_t *transaction, int jlist) 1998 { 1999 jbd_lock_bh_state(jh2bh(jh)); 2000 spin_lock(&transaction->t_journal->j_list_lock); 2001 __jbd2_journal_file_buffer(jh, transaction, jlist); 2002 spin_unlock(&transaction->t_journal->j_list_lock); 2003 jbd_unlock_bh_state(jh2bh(jh)); 2004 } 2005 2006 /* 2007 * Remove a buffer from its current buffer list in preparation for 2008 * dropping it from its current transaction entirely. If the buffer has 2009 * already started to be used by a subsequent transaction, refile the 2010 * buffer on that transaction's metadata list. 2011 * 2012 * Called under journal->j_list_lock 2013 * 2014 * Called under jbd_lock_bh_state(jh2bh(jh)) 2015 */ 2016 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2017 { 2018 int was_dirty; 2019 struct buffer_head *bh = jh2bh(jh); 2020 2021 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2022 if (jh->b_transaction) 2023 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2024 2025 /* If the buffer is now unused, just drop it. */ 2026 if (jh->b_next_transaction == NULL) { 2027 __jbd2_journal_unfile_buffer(jh); 2028 return; 2029 } 2030 2031 /* 2032 * It has been modified by a later transaction: add it to the new 2033 * transaction's metadata list. 2034 */ 2035 2036 was_dirty = test_clear_buffer_jbddirty(bh); 2037 __jbd2_journal_temp_unlink_buffer(jh); 2038 jh->b_transaction = jh->b_next_transaction; 2039 jh->b_next_transaction = NULL; 2040 __jbd2_journal_file_buffer(jh, jh->b_transaction, 2041 jh->b_modified ? BJ_Metadata : BJ_Reserved); 2042 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2043 2044 if (was_dirty) 2045 set_buffer_jbddirty(bh); 2046 } 2047 2048 /* 2049 * For the unlocked version of this call, also make sure that any 2050 * hanging journal_head is cleaned up if necessary. 2051 * 2052 * __jbd2_journal_refile_buffer is usually called as part of a single locked 2053 * operation on a buffer_head, in which the caller is probably going to 2054 * be hooking the journal_head onto other lists. In that case it is up 2055 * to the caller to remove the journal_head if necessary. For the 2056 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 2057 * doing anything else to the buffer so we need to do the cleanup 2058 * ourselves to avoid a jh leak. 2059 * 2060 * *** The journal_head may be freed by this call! *** 2061 */ 2062 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2063 { 2064 struct buffer_head *bh = jh2bh(jh); 2065 2066 jbd_lock_bh_state(bh); 2067 spin_lock(&journal->j_list_lock); 2068 2069 __jbd2_journal_refile_buffer(jh); 2070 jbd_unlock_bh_state(bh); 2071 jbd2_journal_remove_journal_head(bh); 2072 2073 spin_unlock(&journal->j_list_lock); 2074 __brelse(bh); 2075 } 2076 2077 /* 2078 * File inode in the inode list of the handle's transaction 2079 */ 2080 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2081 { 2082 transaction_t *transaction = handle->h_transaction; 2083 journal_t *journal = transaction->t_journal; 2084 2085 if (is_handle_aborted(handle)) 2086 return -EIO; 2087 2088 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2089 transaction->t_tid); 2090 2091 /* 2092 * First check whether inode isn't already on the transaction's 2093 * lists without taking the lock. Note that this check is safe 2094 * without the lock as we cannot race with somebody removing inode 2095 * from the transaction. The reason is that we remove inode from the 2096 * transaction only in journal_release_jbd_inode() and when we commit 2097 * the transaction. We are guarded from the first case by holding 2098 * a reference to the inode. We are safe against the second case 2099 * because if jinode->i_transaction == transaction, commit code 2100 * cannot touch the transaction because we hold reference to it, 2101 * and if jinode->i_next_transaction == transaction, commit code 2102 * will only file the inode where we want it. 2103 */ 2104 if (jinode->i_transaction == transaction || 2105 jinode->i_next_transaction == transaction) 2106 return 0; 2107 2108 spin_lock(&journal->j_list_lock); 2109 2110 if (jinode->i_transaction == transaction || 2111 jinode->i_next_transaction == transaction) 2112 goto done; 2113 2114 /* On some different transaction's list - should be 2115 * the committing one */ 2116 if (jinode->i_transaction) { 2117 J_ASSERT(jinode->i_next_transaction == NULL); 2118 J_ASSERT(jinode->i_transaction == 2119 journal->j_committing_transaction); 2120 jinode->i_next_transaction = transaction; 2121 goto done; 2122 } 2123 /* Not on any transaction list... */ 2124 J_ASSERT(!jinode->i_next_transaction); 2125 jinode->i_transaction = transaction; 2126 list_add(&jinode->i_list, &transaction->t_inode_list); 2127 done: 2128 spin_unlock(&journal->j_list_lock); 2129 2130 return 0; 2131 } 2132 2133 /* 2134 * File truncate and transaction commit interact with each other in a 2135 * non-trivial way. If a transaction writing data block A is 2136 * committing, we cannot discard the data by truncate until we have 2137 * written them. Otherwise if we crashed after the transaction with 2138 * write has committed but before the transaction with truncate has 2139 * committed, we could see stale data in block A. This function is a 2140 * helper to solve this problem. It starts writeout of the truncated 2141 * part in case it is in the committing transaction. 2142 * 2143 * Filesystem code must call this function when inode is journaled in 2144 * ordered mode before truncation happens and after the inode has been 2145 * placed on orphan list with the new inode size. The second condition 2146 * avoids the race that someone writes new data and we start 2147 * committing the transaction after this function has been called but 2148 * before a transaction for truncate is started (and furthermore it 2149 * allows us to optimize the case where the addition to orphan list 2150 * happens in the same transaction as write --- we don't have to write 2151 * any data in such case). 2152 */ 2153 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2154 struct jbd2_inode *jinode, 2155 loff_t new_size) 2156 { 2157 transaction_t *inode_trans, *commit_trans; 2158 int ret = 0; 2159 2160 /* This is a quick check to avoid locking if not necessary */ 2161 if (!jinode->i_transaction) 2162 goto out; 2163 /* Locks are here just to force reading of recent values, it is 2164 * enough that the transaction was not committing before we started 2165 * a transaction adding the inode to orphan list */ 2166 spin_lock(&journal->j_state_lock); 2167 commit_trans = journal->j_committing_transaction; 2168 spin_unlock(&journal->j_state_lock); 2169 spin_lock(&journal->j_list_lock); 2170 inode_trans = jinode->i_transaction; 2171 spin_unlock(&journal->j_list_lock); 2172 if (inode_trans == commit_trans) { 2173 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2174 new_size, LLONG_MAX); 2175 if (ret) 2176 jbd2_journal_abort(journal, ret); 2177 } 2178 out: 2179 return ret; 2180 } 2181