xref: /openbmc/linux/fs/jbd2/transaction.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 	int tags_per_block;
72 
73 	/* Subtract UUID */
74 	tag_space -= 16;
75 	if (jbd2_journal_has_csum_v2or3(journal))
76 		tag_space -= sizeof(struct jbd2_journal_block_tail);
77 	/* Commit code leaves a slack space of 16 bytes at the end of block */
78 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 	/*
80 	 * Revoke descriptors are accounted separately so we need to reserve
81 	 * space for commit block and normal transaction descriptor blocks.
82 	 */
83 	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 				tags_per_block);
85 }
86 
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *	The journal MUST be locked.  We don't perform atomic mallocs on the
97  *	new transaction	and we can't block without protecting against other
98  *	processes trying to touch the journal while it is in transition.
99  *
100  */
101 
102 static void jbd2_get_transaction(journal_t *journal,
103 				transaction_t *transaction)
104 {
105 	transaction->t_journal = journal;
106 	transaction->t_state = T_RUNNING;
107 	transaction->t_start_time = ktime_get();
108 	transaction->t_tid = journal->j_transaction_sequence++;
109 	transaction->t_expires = jiffies + journal->j_commit_interval;
110 	spin_lock_init(&transaction->t_handle_lock);
111 	atomic_set(&transaction->t_updates, 0);
112 	atomic_set(&transaction->t_outstanding_credits,
113 		   jbd2_descriptor_blocks_per_trans(journal) +
114 		   atomic_read(&journal->j_reserved_credits));
115 	atomic_set(&transaction->t_outstanding_revokes, 0);
116 	atomic_set(&transaction->t_handle_count, 0);
117 	INIT_LIST_HEAD(&transaction->t_inode_list);
118 	INIT_LIST_HEAD(&transaction->t_private_list);
119 
120 	/* Set up the commit timer for the new transaction. */
121 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122 	add_timer(&journal->j_commit_timer);
123 
124 	J_ASSERT(journal->j_running_transaction == NULL);
125 	journal->j_running_transaction = transaction;
126 	transaction->t_max_wait = 0;
127 	transaction->t_start = jiffies;
128 	transaction->t_requested = 0;
129 }
130 
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138 
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150 				     unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153 	if (jbd2_journal_enable_debug &&
154 	    time_after(transaction->t_start, ts)) {
155 		ts = jbd2_time_diff(ts, transaction->t_start);
156 		spin_lock(&transaction->t_handle_lock);
157 		if (ts > transaction->t_max_wait)
158 			transaction->t_max_wait = ts;
159 		spin_unlock(&transaction->t_handle_lock);
160 	}
161 #endif
162 }
163 
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170 	__releases(journal->j_state_lock)
171 {
172 	DEFINE_WAIT(wait);
173 	int need_to_start;
174 	tid_t tid = journal->j_running_transaction->t_tid;
175 
176 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	need_to_start = !tid_geq(journal->j_commit_request, tid);
179 	read_unlock(&journal->j_state_lock);
180 	if (need_to_start)
181 		jbd2_log_start_commit(journal, tid);
182 	jbd2_might_wait_for_commit(journal);
183 	schedule();
184 	finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186 
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193 	__releases(journal->j_state_lock)
194 {
195 	DEFINE_WAIT(wait);
196 
197 	if (WARN_ON(!journal->j_running_transaction ||
198 		    journal->j_running_transaction->t_state != T_SWITCH)) {
199 		read_unlock(&journal->j_state_lock);
200 		return;
201 	}
202 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
203 			TASK_UNINTERRUPTIBLE);
204 	read_unlock(&journal->j_state_lock);
205 	/*
206 	 * We don't call jbd2_might_wait_for_commit() here as there's no
207 	 * waiting for outstanding handles happening anymore in T_SWITCH state
208 	 * and handling of reserved handles actually relies on that for
209 	 * correctness.
210 	 */
211 	schedule();
212 	finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214 
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217 	atomic_sub(blocks, &journal->j_reserved_credits);
218 	wake_up(&journal->j_wait_reserved);
219 }
220 
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228 				   int rsv_blocks)
229 {
230 	transaction_t *t = journal->j_running_transaction;
231 	int needed;
232 	int total = blocks + rsv_blocks;
233 
234 	/*
235 	 * If the current transaction is locked down for commit, wait
236 	 * for the lock to be released.
237 	 */
238 	if (t->t_state != T_RUNNING) {
239 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
240 		wait_transaction_locked(journal);
241 		return 1;
242 	}
243 
244 	/*
245 	 * If there is not enough space left in the log to write all
246 	 * potential buffers requested by this operation, we need to
247 	 * stall pending a log checkpoint to free some more log space.
248 	 */
249 	needed = atomic_add_return(total, &t->t_outstanding_credits);
250 	if (needed > journal->j_max_transaction_buffers) {
251 		/*
252 		 * If the current transaction is already too large,
253 		 * then start to commit it: we can then go back and
254 		 * attach this handle to a new transaction.
255 		 */
256 		atomic_sub(total, &t->t_outstanding_credits);
257 
258 		/*
259 		 * Is the number of reserved credits in the current transaction too
260 		 * big to fit this handle? Wait until reserved credits are freed.
261 		 */
262 		if (atomic_read(&journal->j_reserved_credits) + total >
263 		    journal->j_max_transaction_buffers) {
264 			read_unlock(&journal->j_state_lock);
265 			jbd2_might_wait_for_commit(journal);
266 			wait_event(journal->j_wait_reserved,
267 				   atomic_read(&journal->j_reserved_credits) + total <=
268 				   journal->j_max_transaction_buffers);
269 			return 1;
270 		}
271 
272 		wait_transaction_locked(journal);
273 		return 1;
274 	}
275 
276 	/*
277 	 * The commit code assumes that it can get enough log space
278 	 * without forcing a checkpoint.  This is *critical* for
279 	 * correctness: a checkpoint of a buffer which is also
280 	 * associated with a committing transaction creates a deadlock,
281 	 * so commit simply cannot force through checkpoints.
282 	 *
283 	 * We must therefore ensure the necessary space in the journal
284 	 * *before* starting to dirty potentially checkpointed buffers
285 	 * in the new transaction.
286 	 */
287 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288 		atomic_sub(total, &t->t_outstanding_credits);
289 		read_unlock(&journal->j_state_lock);
290 		jbd2_might_wait_for_commit(journal);
291 		write_lock(&journal->j_state_lock);
292 		if (jbd2_log_space_left(journal) <
293 					journal->j_max_transaction_buffers)
294 			__jbd2_log_wait_for_space(journal);
295 		write_unlock(&journal->j_state_lock);
296 		return 1;
297 	}
298 
299 	/* No reservation? We are done... */
300 	if (!rsv_blocks)
301 		return 0;
302 
303 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304 	/* We allow at most half of a transaction to be reserved */
305 	if (needed > journal->j_max_transaction_buffers / 2) {
306 		sub_reserved_credits(journal, rsv_blocks);
307 		atomic_sub(total, &t->t_outstanding_credits);
308 		read_unlock(&journal->j_state_lock);
309 		jbd2_might_wait_for_commit(journal);
310 		wait_event(journal->j_wait_reserved,
311 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
312 			 <= journal->j_max_transaction_buffers / 2);
313 		return 1;
314 	}
315 	return 0;
316 }
317 
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324 
325 static int start_this_handle(journal_t *journal, handle_t *handle,
326 			     gfp_t gfp_mask)
327 {
328 	transaction_t	*transaction, *new_transaction = NULL;
329 	int		blocks = handle->h_total_credits;
330 	int		rsv_blocks = 0;
331 	unsigned long ts = jiffies;
332 
333 	if (handle->h_rsv_handle)
334 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
335 
336 	/*
337 	 * Limit the number of reserved credits to 1/2 of maximum transaction
338 	 * size and limit the number of total credits to not exceed maximum
339 	 * transaction size per operation.
340 	 */
341 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343 		printk(KERN_ERR "JBD2: %s wants too many credits "
344 		       "credits:%d rsv_credits:%d max:%d\n",
345 		       current->comm, blocks, rsv_blocks,
346 		       journal->j_max_transaction_buffers);
347 		WARN_ON(1);
348 		return -ENOSPC;
349 	}
350 
351 alloc_transaction:
352 	if (!journal->j_running_transaction) {
353 		/*
354 		 * If __GFP_FS is not present, then we may be being called from
355 		 * inside the fs writeback layer, so we MUST NOT fail.
356 		 */
357 		if ((gfp_mask & __GFP_FS) == 0)
358 			gfp_mask |= __GFP_NOFAIL;
359 		new_transaction = kmem_cache_zalloc(transaction_cache,
360 						    gfp_mask);
361 		if (!new_transaction)
362 			return -ENOMEM;
363 	}
364 
365 	jbd_debug(3, "New handle %p going live.\n", handle);
366 
367 	/*
368 	 * We need to hold j_state_lock until t_updates has been incremented,
369 	 * for proper journal barrier handling
370 	 */
371 repeat:
372 	read_lock(&journal->j_state_lock);
373 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
374 	if (is_journal_aborted(journal) ||
375 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
376 		read_unlock(&journal->j_state_lock);
377 		jbd2_journal_free_transaction(new_transaction);
378 		return -EROFS;
379 	}
380 
381 	/*
382 	 * Wait on the journal's transaction barrier if necessary. Specifically
383 	 * we allow reserved handles to proceed because otherwise commit could
384 	 * deadlock on page writeback not being able to complete.
385 	 */
386 	if (!handle->h_reserved && journal->j_barrier_count) {
387 		read_unlock(&journal->j_state_lock);
388 		wait_event(journal->j_wait_transaction_locked,
389 				journal->j_barrier_count == 0);
390 		goto repeat;
391 	}
392 
393 	if (!journal->j_running_transaction) {
394 		read_unlock(&journal->j_state_lock);
395 		if (!new_transaction)
396 			goto alloc_transaction;
397 		write_lock(&journal->j_state_lock);
398 		if (!journal->j_running_transaction &&
399 		    (handle->h_reserved || !journal->j_barrier_count)) {
400 			jbd2_get_transaction(journal, new_transaction);
401 			new_transaction = NULL;
402 		}
403 		write_unlock(&journal->j_state_lock);
404 		goto repeat;
405 	}
406 
407 	transaction = journal->j_running_transaction;
408 
409 	if (!handle->h_reserved) {
410 		/* We may have dropped j_state_lock - restart in that case */
411 		if (add_transaction_credits(journal, blocks, rsv_blocks))
412 			goto repeat;
413 	} else {
414 		/*
415 		 * We have handle reserved so we are allowed to join T_LOCKED
416 		 * transaction and we don't have to check for transaction size
417 		 * and journal space. But we still have to wait while running
418 		 * transaction is being switched to a committing one as it
419 		 * won't wait for any handles anymore.
420 		 */
421 		if (transaction->t_state == T_SWITCH) {
422 			wait_transaction_switching(journal);
423 			goto repeat;
424 		}
425 		sub_reserved_credits(journal, blocks);
426 		handle->h_reserved = 0;
427 	}
428 
429 	/* OK, account for the buffers that this operation expects to
430 	 * use and add the handle to the running transaction.
431 	 */
432 	update_t_max_wait(transaction, ts);
433 	handle->h_transaction = transaction;
434 	handle->h_requested_credits = blocks;
435 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
436 	handle->h_start_jiffies = jiffies;
437 	atomic_inc(&transaction->t_updates);
438 	atomic_inc(&transaction->t_handle_count);
439 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
440 		  handle, blocks,
441 		  atomic_read(&transaction->t_outstanding_credits),
442 		  jbd2_log_space_left(journal));
443 	read_unlock(&journal->j_state_lock);
444 	current->journal_info = handle;
445 
446 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
447 	jbd2_journal_free_transaction(new_transaction);
448 	/*
449 	 * Ensure that no allocations done while the transaction is open are
450 	 * going to recurse back to the fs layer.
451 	 */
452 	handle->saved_alloc_context = memalloc_nofs_save();
453 	return 0;
454 }
455 
456 /* Allocate a new handle.  This should probably be in a slab... */
457 static handle_t *new_handle(int nblocks)
458 {
459 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
460 	if (!handle)
461 		return NULL;
462 	handle->h_total_credits = nblocks;
463 	handle->h_ref = 1;
464 
465 	return handle;
466 }
467 
468 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
469 			      int revoke_records, gfp_t gfp_mask,
470 			      unsigned int type, unsigned int line_no)
471 {
472 	handle_t *handle = journal_current_handle();
473 	int err;
474 
475 	if (!journal)
476 		return ERR_PTR(-EROFS);
477 
478 	if (handle) {
479 		J_ASSERT(handle->h_transaction->t_journal == journal);
480 		handle->h_ref++;
481 		return handle;
482 	}
483 
484 	nblocks += DIV_ROUND_UP(revoke_records,
485 				journal->j_revoke_records_per_block);
486 	handle = new_handle(nblocks);
487 	if (!handle)
488 		return ERR_PTR(-ENOMEM);
489 	if (rsv_blocks) {
490 		handle_t *rsv_handle;
491 
492 		rsv_handle = new_handle(rsv_blocks);
493 		if (!rsv_handle) {
494 			jbd2_free_handle(handle);
495 			return ERR_PTR(-ENOMEM);
496 		}
497 		rsv_handle->h_reserved = 1;
498 		rsv_handle->h_journal = journal;
499 		handle->h_rsv_handle = rsv_handle;
500 	}
501 	handle->h_revoke_credits = revoke_records;
502 
503 	err = start_this_handle(journal, handle, gfp_mask);
504 	if (err < 0) {
505 		if (handle->h_rsv_handle)
506 			jbd2_free_handle(handle->h_rsv_handle);
507 		jbd2_free_handle(handle);
508 		return ERR_PTR(err);
509 	}
510 	handle->h_type = type;
511 	handle->h_line_no = line_no;
512 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
513 				handle->h_transaction->t_tid, type,
514 				line_no, nblocks);
515 
516 	return handle;
517 }
518 EXPORT_SYMBOL(jbd2__journal_start);
519 
520 
521 /**
522  * handle_t *jbd2_journal_start() - Obtain a new handle.
523  * @journal: Journal to start transaction on.
524  * @nblocks: number of block buffer we might modify
525  *
526  * We make sure that the transaction can guarantee at least nblocks of
527  * modified buffers in the log.  We block until the log can guarantee
528  * that much space. Additionally, if rsv_blocks > 0, we also create another
529  * handle with rsv_blocks reserved blocks in the journal. This handle is
530  * stored in h_rsv_handle. It is not attached to any particular transaction
531  * and thus doesn't block transaction commit. If the caller uses this reserved
532  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
533  * on the parent handle will dispose the reserved one. Reserved handle has to
534  * be converted to a normal handle using jbd2_journal_start_reserved() before
535  * it can be used.
536  *
537  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
538  * on failure.
539  */
540 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
541 {
542 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
543 }
544 EXPORT_SYMBOL(jbd2_journal_start);
545 
546 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
547 {
548 	journal_t *journal = handle->h_journal;
549 
550 	WARN_ON(!handle->h_reserved);
551 	sub_reserved_credits(journal, handle->h_total_credits);
552 	if (t)
553 		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
554 }
555 
556 void jbd2_journal_free_reserved(handle_t *handle)
557 {
558 	journal_t *journal = handle->h_journal;
559 
560 	/* Get j_state_lock to pin running transaction if it exists */
561 	read_lock(&journal->j_state_lock);
562 	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
563 	read_unlock(&journal->j_state_lock);
564 	jbd2_free_handle(handle);
565 }
566 EXPORT_SYMBOL(jbd2_journal_free_reserved);
567 
568 /**
569  * int jbd2_journal_start_reserved() - start reserved handle
570  * @handle: handle to start
571  * @type: for handle statistics
572  * @line_no: for handle statistics
573  *
574  * Start handle that has been previously reserved with jbd2_journal_reserve().
575  * This attaches @handle to the running transaction (or creates one if there's
576  * not transaction running). Unlike jbd2_journal_start() this function cannot
577  * block on journal commit, checkpointing, or similar stuff. It can block on
578  * memory allocation or frozen journal though.
579  *
580  * Return 0 on success, non-zero on error - handle is freed in that case.
581  */
582 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
583 				unsigned int line_no)
584 {
585 	journal_t *journal = handle->h_journal;
586 	int ret = -EIO;
587 
588 	if (WARN_ON(!handle->h_reserved)) {
589 		/* Someone passed in normal handle? Just stop it. */
590 		jbd2_journal_stop(handle);
591 		return ret;
592 	}
593 	/*
594 	 * Usefulness of mixing of reserved and unreserved handles is
595 	 * questionable. So far nobody seems to need it so just error out.
596 	 */
597 	if (WARN_ON(current->journal_info)) {
598 		jbd2_journal_free_reserved(handle);
599 		return ret;
600 	}
601 
602 	handle->h_journal = NULL;
603 	/*
604 	 * GFP_NOFS is here because callers are likely from writeback or
605 	 * similarly constrained call sites
606 	 */
607 	ret = start_this_handle(journal, handle, GFP_NOFS);
608 	if (ret < 0) {
609 		handle->h_journal = journal;
610 		jbd2_journal_free_reserved(handle);
611 		return ret;
612 	}
613 	handle->h_type = type;
614 	handle->h_line_no = line_no;
615 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
616 				handle->h_transaction->t_tid, type,
617 				line_no, handle->h_total_credits);
618 	return 0;
619 }
620 EXPORT_SYMBOL(jbd2_journal_start_reserved);
621 
622 /**
623  * int jbd2_journal_extend() - extend buffer credits.
624  * @handle:  handle to 'extend'
625  * @nblocks: nr blocks to try to extend by.
626  * @revoke_records: number of revoke records to try to extend by.
627  *
628  * Some transactions, such as large extends and truncates, can be done
629  * atomically all at once or in several stages.  The operation requests
630  * a credit for a number of buffer modifications in advance, but can
631  * extend its credit if it needs more.
632  *
633  * jbd2_journal_extend tries to give the running handle more buffer credits.
634  * It does not guarantee that allocation - this is a best-effort only.
635  * The calling process MUST be able to deal cleanly with a failure to
636  * extend here.
637  *
638  * Return 0 on success, non-zero on failure.
639  *
640  * return code < 0 implies an error
641  * return code > 0 implies normal transaction-full status.
642  */
643 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
644 {
645 	transaction_t *transaction = handle->h_transaction;
646 	journal_t *journal;
647 	int result;
648 	int wanted;
649 
650 	if (is_handle_aborted(handle))
651 		return -EROFS;
652 	journal = transaction->t_journal;
653 
654 	result = 1;
655 
656 	read_lock(&journal->j_state_lock);
657 
658 	/* Don't extend a locked-down transaction! */
659 	if (transaction->t_state != T_RUNNING) {
660 		jbd_debug(3, "denied handle %p %d blocks: "
661 			  "transaction not running\n", handle, nblocks);
662 		goto error_out;
663 	}
664 
665 	nblocks += DIV_ROUND_UP(
666 			handle->h_revoke_credits_requested + revoke_records,
667 			journal->j_revoke_records_per_block) -
668 		DIV_ROUND_UP(
669 			handle->h_revoke_credits_requested,
670 			journal->j_revoke_records_per_block);
671 	spin_lock(&transaction->t_handle_lock);
672 	wanted = atomic_add_return(nblocks,
673 				   &transaction->t_outstanding_credits);
674 
675 	if (wanted > journal->j_max_transaction_buffers) {
676 		jbd_debug(3, "denied handle %p %d blocks: "
677 			  "transaction too large\n", handle, nblocks);
678 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
679 		goto unlock;
680 	}
681 
682 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
683 				 transaction->t_tid,
684 				 handle->h_type, handle->h_line_no,
685 				 handle->h_total_credits,
686 				 nblocks);
687 
688 	handle->h_total_credits += nblocks;
689 	handle->h_requested_credits += nblocks;
690 	handle->h_revoke_credits += revoke_records;
691 	handle->h_revoke_credits_requested += revoke_records;
692 	result = 0;
693 
694 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
695 unlock:
696 	spin_unlock(&transaction->t_handle_lock);
697 error_out:
698 	read_unlock(&journal->j_state_lock);
699 	return result;
700 }
701 
702 static void stop_this_handle(handle_t *handle)
703 {
704 	transaction_t *transaction = handle->h_transaction;
705 	journal_t *journal = transaction->t_journal;
706 	int revokes;
707 
708 	J_ASSERT(journal_current_handle() == handle);
709 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
710 	current->journal_info = NULL;
711 	/*
712 	 * Subtract necessary revoke descriptor blocks from handle credits. We
713 	 * take care to account only for revoke descriptor blocks the
714 	 * transaction will really need as large sequences of transactions with
715 	 * small numbers of revokes are relatively common.
716 	 */
717 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
718 	if (revokes) {
719 		int t_revokes, revoke_descriptors;
720 		int rr_per_blk = journal->j_revoke_records_per_block;
721 
722 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
723 				> handle->h_total_credits);
724 		t_revokes = atomic_add_return(revokes,
725 				&transaction->t_outstanding_revokes);
726 		revoke_descriptors =
727 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
728 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
729 		handle->h_total_credits -= revoke_descriptors;
730 	}
731 	atomic_sub(handle->h_total_credits,
732 		   &transaction->t_outstanding_credits);
733 	if (handle->h_rsv_handle)
734 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
735 						transaction);
736 	if (atomic_dec_and_test(&transaction->t_updates))
737 		wake_up(&journal->j_wait_updates);
738 
739 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
740 	/*
741 	 * Scope of the GFP_NOFS context is over here and so we can restore the
742 	 * original alloc context.
743 	 */
744 	memalloc_nofs_restore(handle->saved_alloc_context);
745 }
746 
747 /**
748  * int jbd2_journal_restart() - restart a handle .
749  * @handle:  handle to restart
750  * @nblocks: nr credits requested
751  * @revoke_records: number of revoke record credits requested
752  * @gfp_mask: memory allocation flags (for start_this_handle)
753  *
754  * Restart a handle for a multi-transaction filesystem
755  * operation.
756  *
757  * If the jbd2_journal_extend() call above fails to grant new buffer credits
758  * to a running handle, a call to jbd2_journal_restart will commit the
759  * handle's transaction so far and reattach the handle to a new
760  * transaction capable of guaranteeing the requested number of
761  * credits. We preserve reserved handle if there's any attached to the
762  * passed in handle.
763  */
764 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
765 			  gfp_t gfp_mask)
766 {
767 	transaction_t *transaction = handle->h_transaction;
768 	journal_t *journal;
769 	tid_t		tid;
770 	int		need_to_start;
771 	int		ret;
772 
773 	/* If we've had an abort of any type, don't even think about
774 	 * actually doing the restart! */
775 	if (is_handle_aborted(handle))
776 		return 0;
777 	journal = transaction->t_journal;
778 	tid = transaction->t_tid;
779 
780 	/*
781 	 * First unlink the handle from its current transaction, and start the
782 	 * commit on that.
783 	 */
784 	jbd_debug(2, "restarting handle %p\n", handle);
785 	stop_this_handle(handle);
786 	handle->h_transaction = NULL;
787 
788 	/*
789 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
790  	 * get rid of pointless j_state_lock traffic like this.
791 	 */
792 	read_lock(&journal->j_state_lock);
793 	need_to_start = !tid_geq(journal->j_commit_request, tid);
794 	read_unlock(&journal->j_state_lock);
795 	if (need_to_start)
796 		jbd2_log_start_commit(journal, tid);
797 	handle->h_total_credits = nblocks +
798 		DIV_ROUND_UP(revoke_records,
799 			     journal->j_revoke_records_per_block);
800 	handle->h_revoke_credits = revoke_records;
801 	ret = start_this_handle(journal, handle, gfp_mask);
802 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
803 				 ret ? 0 : handle->h_transaction->t_tid,
804 				 handle->h_type, handle->h_line_no,
805 				 handle->h_total_credits);
806 	return ret;
807 }
808 EXPORT_SYMBOL(jbd2__journal_restart);
809 
810 
811 int jbd2_journal_restart(handle_t *handle, int nblocks)
812 {
813 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
814 }
815 EXPORT_SYMBOL(jbd2_journal_restart);
816 
817 /**
818  * void jbd2_journal_lock_updates () - establish a transaction barrier.
819  * @journal:  Journal to establish a barrier on.
820  *
821  * This locks out any further updates from being started, and blocks
822  * until all existing updates have completed, returning only once the
823  * journal is in a quiescent state with no updates running.
824  *
825  * The journal lock should not be held on entry.
826  */
827 void jbd2_journal_lock_updates(journal_t *journal)
828 {
829 	DEFINE_WAIT(wait);
830 
831 	jbd2_might_wait_for_commit(journal);
832 
833 	write_lock(&journal->j_state_lock);
834 	++journal->j_barrier_count;
835 
836 	/* Wait until there are no reserved handles */
837 	if (atomic_read(&journal->j_reserved_credits)) {
838 		write_unlock(&journal->j_state_lock);
839 		wait_event(journal->j_wait_reserved,
840 			   atomic_read(&journal->j_reserved_credits) == 0);
841 		write_lock(&journal->j_state_lock);
842 	}
843 
844 	/* Wait until there are no running updates */
845 	while (1) {
846 		transaction_t *transaction = journal->j_running_transaction;
847 
848 		if (!transaction)
849 			break;
850 
851 		spin_lock(&transaction->t_handle_lock);
852 		prepare_to_wait(&journal->j_wait_updates, &wait,
853 				TASK_UNINTERRUPTIBLE);
854 		if (!atomic_read(&transaction->t_updates)) {
855 			spin_unlock(&transaction->t_handle_lock);
856 			finish_wait(&journal->j_wait_updates, &wait);
857 			break;
858 		}
859 		spin_unlock(&transaction->t_handle_lock);
860 		write_unlock(&journal->j_state_lock);
861 		schedule();
862 		finish_wait(&journal->j_wait_updates, &wait);
863 		write_lock(&journal->j_state_lock);
864 	}
865 	write_unlock(&journal->j_state_lock);
866 
867 	/*
868 	 * We have now established a barrier against other normal updates, but
869 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
870 	 * to make sure that we serialise special journal-locked operations
871 	 * too.
872 	 */
873 	mutex_lock(&journal->j_barrier);
874 }
875 
876 /**
877  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
878  * @journal:  Journal to release the barrier on.
879  *
880  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
881  *
882  * Should be called without the journal lock held.
883  */
884 void jbd2_journal_unlock_updates (journal_t *journal)
885 {
886 	J_ASSERT(journal->j_barrier_count != 0);
887 
888 	mutex_unlock(&journal->j_barrier);
889 	write_lock(&journal->j_state_lock);
890 	--journal->j_barrier_count;
891 	write_unlock(&journal->j_state_lock);
892 	wake_up(&journal->j_wait_transaction_locked);
893 }
894 
895 static void warn_dirty_buffer(struct buffer_head *bh)
896 {
897 	printk(KERN_WARNING
898 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
899 	       "There's a risk of filesystem corruption in case of system "
900 	       "crash.\n",
901 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
902 }
903 
904 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
905 static void jbd2_freeze_jh_data(struct journal_head *jh)
906 {
907 	struct page *page;
908 	int offset;
909 	char *source;
910 	struct buffer_head *bh = jh2bh(jh);
911 
912 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
913 	page = bh->b_page;
914 	offset = offset_in_page(bh->b_data);
915 	source = kmap_atomic(page);
916 	/* Fire data frozen trigger just before we copy the data */
917 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
918 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
919 	kunmap_atomic(source);
920 
921 	/*
922 	 * Now that the frozen data is saved off, we need to store any matching
923 	 * triggers.
924 	 */
925 	jh->b_frozen_triggers = jh->b_triggers;
926 }
927 
928 /*
929  * If the buffer is already part of the current transaction, then there
930  * is nothing we need to do.  If it is already part of a prior
931  * transaction which we are still committing to disk, then we need to
932  * make sure that we do not overwrite the old copy: we do copy-out to
933  * preserve the copy going to disk.  We also account the buffer against
934  * the handle's metadata buffer credits (unless the buffer is already
935  * part of the transaction, that is).
936  *
937  */
938 static int
939 do_get_write_access(handle_t *handle, struct journal_head *jh,
940 			int force_copy)
941 {
942 	struct buffer_head *bh;
943 	transaction_t *transaction = handle->h_transaction;
944 	journal_t *journal;
945 	int error;
946 	char *frozen_buffer = NULL;
947 	unsigned long start_lock, time_lock;
948 
949 	journal = transaction->t_journal;
950 
951 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
952 
953 	JBUFFER_TRACE(jh, "entry");
954 repeat:
955 	bh = jh2bh(jh);
956 
957 	/* @@@ Need to check for errors here at some point. */
958 
959  	start_lock = jiffies;
960 	lock_buffer(bh);
961 	spin_lock(&jh->b_state_lock);
962 
963 	/* If it takes too long to lock the buffer, trace it */
964 	time_lock = jbd2_time_diff(start_lock, jiffies);
965 	if (time_lock > HZ/10)
966 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
967 			jiffies_to_msecs(time_lock));
968 
969 	/* We now hold the buffer lock so it is safe to query the buffer
970 	 * state.  Is the buffer dirty?
971 	 *
972 	 * If so, there are two possibilities.  The buffer may be
973 	 * non-journaled, and undergoing a quite legitimate writeback.
974 	 * Otherwise, it is journaled, and we don't expect dirty buffers
975 	 * in that state (the buffers should be marked JBD_Dirty
976 	 * instead.)  So either the IO is being done under our own
977 	 * control and this is a bug, or it's a third party IO such as
978 	 * dump(8) (which may leave the buffer scheduled for read ---
979 	 * ie. locked but not dirty) or tune2fs (which may actually have
980 	 * the buffer dirtied, ugh.)  */
981 
982 	if (buffer_dirty(bh)) {
983 		/*
984 		 * First question: is this buffer already part of the current
985 		 * transaction or the existing committing transaction?
986 		 */
987 		if (jh->b_transaction) {
988 			J_ASSERT_JH(jh,
989 				jh->b_transaction == transaction ||
990 				jh->b_transaction ==
991 					journal->j_committing_transaction);
992 			if (jh->b_next_transaction)
993 				J_ASSERT_JH(jh, jh->b_next_transaction ==
994 							transaction);
995 			warn_dirty_buffer(bh);
996 		}
997 		/*
998 		 * In any case we need to clean the dirty flag and we must
999 		 * do it under the buffer lock to be sure we don't race
1000 		 * with running write-out.
1001 		 */
1002 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1003 		clear_buffer_dirty(bh);
1004 		set_buffer_jbddirty(bh);
1005 	}
1006 
1007 	unlock_buffer(bh);
1008 
1009 	error = -EROFS;
1010 	if (is_handle_aborted(handle)) {
1011 		spin_unlock(&jh->b_state_lock);
1012 		goto out;
1013 	}
1014 	error = 0;
1015 
1016 	/*
1017 	 * The buffer is already part of this transaction if b_transaction or
1018 	 * b_next_transaction points to it
1019 	 */
1020 	if (jh->b_transaction == transaction ||
1021 	    jh->b_next_transaction == transaction)
1022 		goto done;
1023 
1024 	/*
1025 	 * this is the first time this transaction is touching this buffer,
1026 	 * reset the modified flag
1027 	 */
1028 	jh->b_modified = 0;
1029 
1030 	/*
1031 	 * If the buffer is not journaled right now, we need to make sure it
1032 	 * doesn't get written to disk before the caller actually commits the
1033 	 * new data
1034 	 */
1035 	if (!jh->b_transaction) {
1036 		JBUFFER_TRACE(jh, "no transaction");
1037 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1038 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1039 		/*
1040 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1041 		 * visible before attaching it to the running transaction.
1042 		 * Paired with barrier in jbd2_write_access_granted()
1043 		 */
1044 		smp_wmb();
1045 		spin_lock(&journal->j_list_lock);
1046 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1047 		spin_unlock(&journal->j_list_lock);
1048 		goto done;
1049 	}
1050 	/*
1051 	 * If there is already a copy-out version of this buffer, then we don't
1052 	 * need to make another one
1053 	 */
1054 	if (jh->b_frozen_data) {
1055 		JBUFFER_TRACE(jh, "has frozen data");
1056 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1057 		goto attach_next;
1058 	}
1059 
1060 	JBUFFER_TRACE(jh, "owned by older transaction");
1061 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1063 
1064 	/*
1065 	 * There is one case we have to be very careful about.  If the
1066 	 * committing transaction is currently writing this buffer out to disk
1067 	 * and has NOT made a copy-out, then we cannot modify the buffer
1068 	 * contents at all right now.  The essence of copy-out is that it is
1069 	 * the extra copy, not the primary copy, which gets journaled.  If the
1070 	 * primary copy is already going to disk then we cannot do copy-out
1071 	 * here.
1072 	 */
1073 	if (buffer_shadow(bh)) {
1074 		JBUFFER_TRACE(jh, "on shadow: sleep");
1075 		spin_unlock(&jh->b_state_lock);
1076 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1077 		goto repeat;
1078 	}
1079 
1080 	/*
1081 	 * Only do the copy if the currently-owning transaction still needs it.
1082 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1083 	 * past that stage (here we use the fact that BH_Shadow is set under
1084 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1085 	 * point we know the buffer doesn't have BH_Shadow set).
1086 	 *
1087 	 * Subtle point, though: if this is a get_undo_access, then we will be
1088 	 * relying on the frozen_data to contain the new value of the
1089 	 * committed_data record after the transaction, so we HAVE to force the
1090 	 * frozen_data copy in that case.
1091 	 */
1092 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1093 		JBUFFER_TRACE(jh, "generate frozen data");
1094 		if (!frozen_buffer) {
1095 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1096 			spin_unlock(&jh->b_state_lock);
1097 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1098 						   GFP_NOFS | __GFP_NOFAIL);
1099 			goto repeat;
1100 		}
1101 		jh->b_frozen_data = frozen_buffer;
1102 		frozen_buffer = NULL;
1103 		jbd2_freeze_jh_data(jh);
1104 	}
1105 attach_next:
1106 	/*
1107 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1108 	 * before attaching it to the running transaction. Paired with barrier
1109 	 * in jbd2_write_access_granted()
1110 	 */
1111 	smp_wmb();
1112 	jh->b_next_transaction = transaction;
1113 
1114 done:
1115 	spin_unlock(&jh->b_state_lock);
1116 
1117 	/*
1118 	 * If we are about to journal a buffer, then any revoke pending on it is
1119 	 * no longer valid
1120 	 */
1121 	jbd2_journal_cancel_revoke(handle, jh);
1122 
1123 out:
1124 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1125 		jbd2_free(frozen_buffer, bh->b_size);
1126 
1127 	JBUFFER_TRACE(jh, "exit");
1128 	return error;
1129 }
1130 
1131 /* Fast check whether buffer is already attached to the required transaction */
1132 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1133 							bool undo)
1134 {
1135 	struct journal_head *jh;
1136 	bool ret = false;
1137 
1138 	/* Dirty buffers require special handling... */
1139 	if (buffer_dirty(bh))
1140 		return false;
1141 
1142 	/*
1143 	 * RCU protects us from dereferencing freed pages. So the checks we do
1144 	 * are guaranteed not to oops. However the jh slab object can get freed
1145 	 * & reallocated while we work with it. So we have to be careful. When
1146 	 * we see jh attached to the running transaction, we know it must stay
1147 	 * so until the transaction is committed. Thus jh won't be freed and
1148 	 * will be attached to the same bh while we run.  However it can
1149 	 * happen jh gets freed, reallocated, and attached to the transaction
1150 	 * just after we get pointer to it from bh. So we have to be careful
1151 	 * and recheck jh still belongs to our bh before we return success.
1152 	 */
1153 	rcu_read_lock();
1154 	if (!buffer_jbd(bh))
1155 		goto out;
1156 	/* This should be bh2jh() but that doesn't work with inline functions */
1157 	jh = READ_ONCE(bh->b_private);
1158 	if (!jh)
1159 		goto out;
1160 	/* For undo access buffer must have data copied */
1161 	if (undo && !jh->b_committed_data)
1162 		goto out;
1163 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1164 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1165 		goto out;
1166 	/*
1167 	 * There are two reasons for the barrier here:
1168 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1169 	 * detect when jh went through free, realloc, attach to transaction
1170 	 * while we were checking. Paired with implicit barrier in that path.
1171 	 * 2) So that access to bh done after jbd2_write_access_granted()
1172 	 * doesn't get reordered and see inconsistent state of concurrent
1173 	 * do_get_write_access().
1174 	 */
1175 	smp_mb();
1176 	if (unlikely(jh->b_bh != bh))
1177 		goto out;
1178 	ret = true;
1179 out:
1180 	rcu_read_unlock();
1181 	return ret;
1182 }
1183 
1184 /**
1185  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1186  * @handle: transaction to add buffer modifications to
1187  * @bh:     bh to be used for metadata writes
1188  *
1189  * Returns: error code or 0 on success.
1190  *
1191  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1192  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1193  */
1194 
1195 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1196 {
1197 	struct journal_head *jh;
1198 	int rc;
1199 
1200 	if (is_handle_aborted(handle))
1201 		return -EROFS;
1202 
1203 	if (jbd2_write_access_granted(handle, bh, false))
1204 		return 0;
1205 
1206 	jh = jbd2_journal_add_journal_head(bh);
1207 	/* We do not want to get caught playing with fields which the
1208 	 * log thread also manipulates.  Make sure that the buffer
1209 	 * completes any outstanding IO before proceeding. */
1210 	rc = do_get_write_access(handle, jh, 0);
1211 	jbd2_journal_put_journal_head(jh);
1212 	return rc;
1213 }
1214 
1215 
1216 /*
1217  * When the user wants to journal a newly created buffer_head
1218  * (ie. getblk() returned a new buffer and we are going to populate it
1219  * manually rather than reading off disk), then we need to keep the
1220  * buffer_head locked until it has been completely filled with new
1221  * data.  In this case, we should be able to make the assertion that
1222  * the bh is not already part of an existing transaction.
1223  *
1224  * The buffer should already be locked by the caller by this point.
1225  * There is no lock ranking violation: it was a newly created,
1226  * unlocked buffer beforehand. */
1227 
1228 /**
1229  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1230  * @handle: transaction to new buffer to
1231  * @bh: new buffer.
1232  *
1233  * Call this if you create a new bh.
1234  */
1235 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1236 {
1237 	transaction_t *transaction = handle->h_transaction;
1238 	journal_t *journal;
1239 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1240 	int err;
1241 
1242 	jbd_debug(5, "journal_head %p\n", jh);
1243 	err = -EROFS;
1244 	if (is_handle_aborted(handle))
1245 		goto out;
1246 	journal = transaction->t_journal;
1247 	err = 0;
1248 
1249 	JBUFFER_TRACE(jh, "entry");
1250 	/*
1251 	 * The buffer may already belong to this transaction due to pre-zeroing
1252 	 * in the filesystem's new_block code.  It may also be on the previous,
1253 	 * committing transaction's lists, but it HAS to be in Forget state in
1254 	 * that case: the transaction must have deleted the buffer for it to be
1255 	 * reused here.
1256 	 */
1257 	spin_lock(&jh->b_state_lock);
1258 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1259 		jh->b_transaction == NULL ||
1260 		(jh->b_transaction == journal->j_committing_transaction &&
1261 			  jh->b_jlist == BJ_Forget)));
1262 
1263 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1264 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1265 
1266 	if (jh->b_transaction == NULL) {
1267 		/*
1268 		 * Previous jbd2_journal_forget() could have left the buffer
1269 		 * with jbddirty bit set because it was being committed. When
1270 		 * the commit finished, we've filed the buffer for
1271 		 * checkpointing and marked it dirty. Now we are reallocating
1272 		 * the buffer so the transaction freeing it must have
1273 		 * committed and so it's safe to clear the dirty bit.
1274 		 */
1275 		clear_buffer_dirty(jh2bh(jh));
1276 		/* first access by this transaction */
1277 		jh->b_modified = 0;
1278 
1279 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1280 		spin_lock(&journal->j_list_lock);
1281 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1282 		spin_unlock(&journal->j_list_lock);
1283 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1284 		/* first access by this transaction */
1285 		jh->b_modified = 0;
1286 
1287 		JBUFFER_TRACE(jh, "set next transaction");
1288 		spin_lock(&journal->j_list_lock);
1289 		jh->b_next_transaction = transaction;
1290 		spin_unlock(&journal->j_list_lock);
1291 	}
1292 	spin_unlock(&jh->b_state_lock);
1293 
1294 	/*
1295 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1296 	 * blocks which contain freed but then revoked metadata.  We need
1297 	 * to cancel the revoke in case we end up freeing it yet again
1298 	 * and the reallocating as data - this would cause a second revoke,
1299 	 * which hits an assertion error.
1300 	 */
1301 	JBUFFER_TRACE(jh, "cancelling revoke");
1302 	jbd2_journal_cancel_revoke(handle, jh);
1303 out:
1304 	jbd2_journal_put_journal_head(jh);
1305 	return err;
1306 }
1307 
1308 /**
1309  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1310  *     non-rewindable consequences
1311  * @handle: transaction
1312  * @bh: buffer to undo
1313  *
1314  * Sometimes there is a need to distinguish between metadata which has
1315  * been committed to disk and that which has not.  The ext3fs code uses
1316  * this for freeing and allocating space, we have to make sure that we
1317  * do not reuse freed space until the deallocation has been committed,
1318  * since if we overwrote that space we would make the delete
1319  * un-rewindable in case of a crash.
1320  *
1321  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1322  * buffer for parts of non-rewindable operations such as delete
1323  * operations on the bitmaps.  The journaling code must keep a copy of
1324  * the buffer's contents prior to the undo_access call until such time
1325  * as we know that the buffer has definitely been committed to disk.
1326  *
1327  * We never need to know which transaction the committed data is part
1328  * of, buffers touched here are guaranteed to be dirtied later and so
1329  * will be committed to a new transaction in due course, at which point
1330  * we can discard the old committed data pointer.
1331  *
1332  * Returns error number or 0 on success.
1333  */
1334 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1335 {
1336 	int err;
1337 	struct journal_head *jh;
1338 	char *committed_data = NULL;
1339 
1340 	if (is_handle_aborted(handle))
1341 		return -EROFS;
1342 
1343 	if (jbd2_write_access_granted(handle, bh, true))
1344 		return 0;
1345 
1346 	jh = jbd2_journal_add_journal_head(bh);
1347 	JBUFFER_TRACE(jh, "entry");
1348 
1349 	/*
1350 	 * Do this first --- it can drop the journal lock, so we want to
1351 	 * make sure that obtaining the committed_data is done
1352 	 * atomically wrt. completion of any outstanding commits.
1353 	 */
1354 	err = do_get_write_access(handle, jh, 1);
1355 	if (err)
1356 		goto out;
1357 
1358 repeat:
1359 	if (!jh->b_committed_data)
1360 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1361 					    GFP_NOFS|__GFP_NOFAIL);
1362 
1363 	spin_lock(&jh->b_state_lock);
1364 	if (!jh->b_committed_data) {
1365 		/* Copy out the current buffer contents into the
1366 		 * preserved, committed copy. */
1367 		JBUFFER_TRACE(jh, "generate b_committed data");
1368 		if (!committed_data) {
1369 			spin_unlock(&jh->b_state_lock);
1370 			goto repeat;
1371 		}
1372 
1373 		jh->b_committed_data = committed_data;
1374 		committed_data = NULL;
1375 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1376 	}
1377 	spin_unlock(&jh->b_state_lock);
1378 out:
1379 	jbd2_journal_put_journal_head(jh);
1380 	if (unlikely(committed_data))
1381 		jbd2_free(committed_data, bh->b_size);
1382 	return err;
1383 }
1384 
1385 /**
1386  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1387  * @bh: buffer to trigger on
1388  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1389  *
1390  * Set any triggers on this journal_head.  This is always safe, because
1391  * triggers for a committing buffer will be saved off, and triggers for
1392  * a running transaction will match the buffer in that transaction.
1393  *
1394  * Call with NULL to clear the triggers.
1395  */
1396 void jbd2_journal_set_triggers(struct buffer_head *bh,
1397 			       struct jbd2_buffer_trigger_type *type)
1398 {
1399 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1400 
1401 	if (WARN_ON(!jh))
1402 		return;
1403 	jh->b_triggers = type;
1404 	jbd2_journal_put_journal_head(jh);
1405 }
1406 
1407 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1408 				struct jbd2_buffer_trigger_type *triggers)
1409 {
1410 	struct buffer_head *bh = jh2bh(jh);
1411 
1412 	if (!triggers || !triggers->t_frozen)
1413 		return;
1414 
1415 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1416 }
1417 
1418 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1419 			       struct jbd2_buffer_trigger_type *triggers)
1420 {
1421 	if (!triggers || !triggers->t_abort)
1422 		return;
1423 
1424 	triggers->t_abort(triggers, jh2bh(jh));
1425 }
1426 
1427 /**
1428  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1429  * @handle: transaction to add buffer to.
1430  * @bh: buffer to mark
1431  *
1432  * mark dirty metadata which needs to be journaled as part of the current
1433  * transaction.
1434  *
1435  * The buffer must have previously had jbd2_journal_get_write_access()
1436  * called so that it has a valid journal_head attached to the buffer
1437  * head.
1438  *
1439  * The buffer is placed on the transaction's metadata list and is marked
1440  * as belonging to the transaction.
1441  *
1442  * Returns error number or 0 on success.
1443  *
1444  * Special care needs to be taken if the buffer already belongs to the
1445  * current committing transaction (in which case we should have frozen
1446  * data present for that commit).  In that case, we don't relink the
1447  * buffer: that only gets done when the old transaction finally
1448  * completes its commit.
1449  */
1450 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1451 {
1452 	transaction_t *transaction = handle->h_transaction;
1453 	journal_t *journal;
1454 	struct journal_head *jh;
1455 	int ret = 0;
1456 
1457 	if (is_handle_aborted(handle))
1458 		return -EROFS;
1459 	if (!buffer_jbd(bh))
1460 		return -EUCLEAN;
1461 
1462 	/*
1463 	 * We don't grab jh reference here since the buffer must be part
1464 	 * of the running transaction.
1465 	 */
1466 	jh = bh2jh(bh);
1467 	jbd_debug(5, "journal_head %p\n", jh);
1468 	JBUFFER_TRACE(jh, "entry");
1469 
1470 	/*
1471 	 * This and the following assertions are unreliable since we may see jh
1472 	 * in inconsistent state unless we grab bh_state lock. But this is
1473 	 * crucial to catch bugs so let's do a reliable check until the
1474 	 * lockless handling is fully proven.
1475 	 */
1476 	if (jh->b_transaction != transaction &&
1477 	    jh->b_next_transaction != transaction) {
1478 		spin_lock(&jh->b_state_lock);
1479 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1480 				jh->b_next_transaction == transaction);
1481 		spin_unlock(&jh->b_state_lock);
1482 	}
1483 	if (jh->b_modified == 1) {
1484 		/* If it's in our transaction it must be in BJ_Metadata list. */
1485 		if (jh->b_transaction == transaction &&
1486 		    jh->b_jlist != BJ_Metadata) {
1487 			spin_lock(&jh->b_state_lock);
1488 			if (jh->b_transaction == transaction &&
1489 			    jh->b_jlist != BJ_Metadata)
1490 				pr_err("JBD2: assertion failure: h_type=%u "
1491 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1492 				       handle->h_type, handle->h_line_no,
1493 				       (unsigned long long) bh->b_blocknr,
1494 				       jh->b_jlist);
1495 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1496 					jh->b_jlist == BJ_Metadata);
1497 			spin_unlock(&jh->b_state_lock);
1498 		}
1499 		goto out;
1500 	}
1501 
1502 	journal = transaction->t_journal;
1503 	spin_lock(&jh->b_state_lock);
1504 
1505 	if (jh->b_modified == 0) {
1506 		/*
1507 		 * This buffer's got modified and becoming part
1508 		 * of the transaction. This needs to be done
1509 		 * once a transaction -bzzz
1510 		 */
1511 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1512 			ret = -ENOSPC;
1513 			goto out_unlock_bh;
1514 		}
1515 		jh->b_modified = 1;
1516 		handle->h_total_credits--;
1517 	}
1518 
1519 	/*
1520 	 * fastpath, to avoid expensive locking.  If this buffer is already
1521 	 * on the running transaction's metadata list there is nothing to do.
1522 	 * Nobody can take it off again because there is a handle open.
1523 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1524 	 * result in this test being false, so we go in and take the locks.
1525 	 */
1526 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1527 		JBUFFER_TRACE(jh, "fastpath");
1528 		if (unlikely(jh->b_transaction !=
1529 			     journal->j_running_transaction)) {
1530 			printk(KERN_ERR "JBD2: %s: "
1531 			       "jh->b_transaction (%llu, %p, %u) != "
1532 			       "journal->j_running_transaction (%p, %u)\n",
1533 			       journal->j_devname,
1534 			       (unsigned long long) bh->b_blocknr,
1535 			       jh->b_transaction,
1536 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1537 			       journal->j_running_transaction,
1538 			       journal->j_running_transaction ?
1539 			       journal->j_running_transaction->t_tid : 0);
1540 			ret = -EINVAL;
1541 		}
1542 		goto out_unlock_bh;
1543 	}
1544 
1545 	set_buffer_jbddirty(bh);
1546 
1547 	/*
1548 	 * Metadata already on the current transaction list doesn't
1549 	 * need to be filed.  Metadata on another transaction's list must
1550 	 * be committing, and will be refiled once the commit completes:
1551 	 * leave it alone for now.
1552 	 */
1553 	if (jh->b_transaction != transaction) {
1554 		JBUFFER_TRACE(jh, "already on other transaction");
1555 		if (unlikely(((jh->b_transaction !=
1556 			       journal->j_committing_transaction)) ||
1557 			     (jh->b_next_transaction != transaction))) {
1558 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1559 			       "bad jh for block %llu: "
1560 			       "transaction (%p, %u), "
1561 			       "jh->b_transaction (%p, %u), "
1562 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1563 			       journal->j_devname,
1564 			       (unsigned long long) bh->b_blocknr,
1565 			       transaction, transaction->t_tid,
1566 			       jh->b_transaction,
1567 			       jh->b_transaction ?
1568 			       jh->b_transaction->t_tid : 0,
1569 			       jh->b_next_transaction,
1570 			       jh->b_next_transaction ?
1571 			       jh->b_next_transaction->t_tid : 0,
1572 			       jh->b_jlist);
1573 			WARN_ON(1);
1574 			ret = -EINVAL;
1575 		}
1576 		/* And this case is illegal: we can't reuse another
1577 		 * transaction's data buffer, ever. */
1578 		goto out_unlock_bh;
1579 	}
1580 
1581 	/* That test should have eliminated the following case: */
1582 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1583 
1584 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1585 	spin_lock(&journal->j_list_lock);
1586 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1587 	spin_unlock(&journal->j_list_lock);
1588 out_unlock_bh:
1589 	spin_unlock(&jh->b_state_lock);
1590 out:
1591 	JBUFFER_TRACE(jh, "exit");
1592 	return ret;
1593 }
1594 
1595 /**
1596  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1597  * @handle: transaction handle
1598  * @bh:     bh to 'forget'
1599  *
1600  * We can only do the bforget if there are no commits pending against the
1601  * buffer.  If the buffer is dirty in the current running transaction we
1602  * can safely unlink it.
1603  *
1604  * bh may not be a journalled buffer at all - it may be a non-JBD
1605  * buffer which came off the hashtable.  Check for this.
1606  *
1607  * Decrements bh->b_count by one.
1608  *
1609  * Allow this call even if the handle has aborted --- it may be part of
1610  * the caller's cleanup after an abort.
1611  */
1612 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1613 {
1614 	transaction_t *transaction = handle->h_transaction;
1615 	journal_t *journal;
1616 	struct journal_head *jh;
1617 	int drop_reserve = 0;
1618 	int err = 0;
1619 	int was_modified = 0;
1620 
1621 	if (is_handle_aborted(handle))
1622 		return -EROFS;
1623 	journal = transaction->t_journal;
1624 
1625 	BUFFER_TRACE(bh, "entry");
1626 
1627 	jh = jbd2_journal_grab_journal_head(bh);
1628 	if (!jh) {
1629 		__bforget(bh);
1630 		return 0;
1631 	}
1632 
1633 	spin_lock(&jh->b_state_lock);
1634 
1635 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1636 	 * Don't do any jbd operations, and return an error. */
1637 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1638 			 "inconsistent data on disk")) {
1639 		err = -EIO;
1640 		goto drop;
1641 	}
1642 
1643 	/* keep track of whether or not this transaction modified us */
1644 	was_modified = jh->b_modified;
1645 
1646 	/*
1647 	 * The buffer's going from the transaction, we must drop
1648 	 * all references -bzzz
1649 	 */
1650 	jh->b_modified = 0;
1651 
1652 	if (jh->b_transaction == transaction) {
1653 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1654 
1655 		/* If we are forgetting a buffer which is already part
1656 		 * of this transaction, then we can just drop it from
1657 		 * the transaction immediately. */
1658 		clear_buffer_dirty(bh);
1659 		clear_buffer_jbddirty(bh);
1660 
1661 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1662 
1663 		/*
1664 		 * we only want to drop a reference if this transaction
1665 		 * modified the buffer
1666 		 */
1667 		if (was_modified)
1668 			drop_reserve = 1;
1669 
1670 		/*
1671 		 * We are no longer going to journal this buffer.
1672 		 * However, the commit of this transaction is still
1673 		 * important to the buffer: the delete that we are now
1674 		 * processing might obsolete an old log entry, so by
1675 		 * committing, we can satisfy the buffer's checkpoint.
1676 		 *
1677 		 * So, if we have a checkpoint on the buffer, we should
1678 		 * now refile the buffer on our BJ_Forget list so that
1679 		 * we know to remove the checkpoint after we commit.
1680 		 */
1681 
1682 		spin_lock(&journal->j_list_lock);
1683 		if (jh->b_cp_transaction) {
1684 			__jbd2_journal_temp_unlink_buffer(jh);
1685 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1686 		} else {
1687 			__jbd2_journal_unfile_buffer(jh);
1688 			jbd2_journal_put_journal_head(jh);
1689 		}
1690 		spin_unlock(&journal->j_list_lock);
1691 	} else if (jh->b_transaction) {
1692 		J_ASSERT_JH(jh, (jh->b_transaction ==
1693 				 journal->j_committing_transaction));
1694 		/* However, if the buffer is still owned by a prior
1695 		 * (committing) transaction, we can't drop it yet... */
1696 		JBUFFER_TRACE(jh, "belongs to older transaction");
1697 		/* ... but we CAN drop it from the new transaction through
1698 		 * marking the buffer as freed and set j_next_transaction to
1699 		 * the new transaction, so that not only the commit code
1700 		 * knows it should clear dirty bits when it is done with the
1701 		 * buffer, but also the buffer can be checkpointed only
1702 		 * after the new transaction commits. */
1703 
1704 		set_buffer_freed(bh);
1705 
1706 		if (!jh->b_next_transaction) {
1707 			spin_lock(&journal->j_list_lock);
1708 			jh->b_next_transaction = transaction;
1709 			spin_unlock(&journal->j_list_lock);
1710 		} else {
1711 			J_ASSERT(jh->b_next_transaction == transaction);
1712 
1713 			/*
1714 			 * only drop a reference if this transaction modified
1715 			 * the buffer
1716 			 */
1717 			if (was_modified)
1718 				drop_reserve = 1;
1719 		}
1720 	} else {
1721 		/*
1722 		 * Finally, if the buffer is not belongs to any
1723 		 * transaction, we can just drop it now if it has no
1724 		 * checkpoint.
1725 		 */
1726 		spin_lock(&journal->j_list_lock);
1727 		if (!jh->b_cp_transaction) {
1728 			JBUFFER_TRACE(jh, "belongs to none transaction");
1729 			spin_unlock(&journal->j_list_lock);
1730 			goto drop;
1731 		}
1732 
1733 		/*
1734 		 * Otherwise, if the buffer has been written to disk,
1735 		 * it is safe to remove the checkpoint and drop it.
1736 		 */
1737 		if (!buffer_dirty(bh)) {
1738 			__jbd2_journal_remove_checkpoint(jh);
1739 			spin_unlock(&journal->j_list_lock);
1740 			goto drop;
1741 		}
1742 
1743 		/*
1744 		 * The buffer is still not written to disk, we should
1745 		 * attach this buffer to current transaction so that the
1746 		 * buffer can be checkpointed only after the current
1747 		 * transaction commits.
1748 		 */
1749 		clear_buffer_dirty(bh);
1750 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1751 		spin_unlock(&journal->j_list_lock);
1752 	}
1753 drop:
1754 	__brelse(bh);
1755 	spin_unlock(&jh->b_state_lock);
1756 	jbd2_journal_put_journal_head(jh);
1757 	if (drop_reserve) {
1758 		/* no need to reserve log space for this block -bzzz */
1759 		handle->h_total_credits++;
1760 	}
1761 	return err;
1762 }
1763 
1764 /**
1765  * int jbd2_journal_stop() - complete a transaction
1766  * @handle: transaction to complete.
1767  *
1768  * All done for a particular handle.
1769  *
1770  * There is not much action needed here.  We just return any remaining
1771  * buffer credits to the transaction and remove the handle.  The only
1772  * complication is that we need to start a commit operation if the
1773  * filesystem is marked for synchronous update.
1774  *
1775  * jbd2_journal_stop itself will not usually return an error, but it may
1776  * do so in unusual circumstances.  In particular, expect it to
1777  * return -EIO if a jbd2_journal_abort has been executed since the
1778  * transaction began.
1779  */
1780 int jbd2_journal_stop(handle_t *handle)
1781 {
1782 	transaction_t *transaction = handle->h_transaction;
1783 	journal_t *journal;
1784 	int err = 0, wait_for_commit = 0;
1785 	tid_t tid;
1786 	pid_t pid;
1787 
1788 	if (--handle->h_ref > 0) {
1789 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1790 						 handle->h_ref);
1791 		if (is_handle_aborted(handle))
1792 			return -EIO;
1793 		return 0;
1794 	}
1795 	if (!transaction) {
1796 		/*
1797 		 * Handle is already detached from the transaction so there is
1798 		 * nothing to do other than free the handle.
1799 		 */
1800 		memalloc_nofs_restore(handle->saved_alloc_context);
1801 		goto free_and_exit;
1802 	}
1803 	journal = transaction->t_journal;
1804 	tid = transaction->t_tid;
1805 
1806 	if (is_handle_aborted(handle))
1807 		err = -EIO;
1808 
1809 	jbd_debug(4, "Handle %p going down\n", handle);
1810 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1811 				tid, handle->h_type, handle->h_line_no,
1812 				jiffies - handle->h_start_jiffies,
1813 				handle->h_sync, handle->h_requested_credits,
1814 				(handle->h_requested_credits -
1815 				 handle->h_total_credits));
1816 
1817 	/*
1818 	 * Implement synchronous transaction batching.  If the handle
1819 	 * was synchronous, don't force a commit immediately.  Let's
1820 	 * yield and let another thread piggyback onto this
1821 	 * transaction.  Keep doing that while new threads continue to
1822 	 * arrive.  It doesn't cost much - we're about to run a commit
1823 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1824 	 * operations by 30x or more...
1825 	 *
1826 	 * We try and optimize the sleep time against what the
1827 	 * underlying disk can do, instead of having a static sleep
1828 	 * time.  This is useful for the case where our storage is so
1829 	 * fast that it is more optimal to go ahead and force a flush
1830 	 * and wait for the transaction to be committed than it is to
1831 	 * wait for an arbitrary amount of time for new writers to
1832 	 * join the transaction.  We achieve this by measuring how
1833 	 * long it takes to commit a transaction, and compare it with
1834 	 * how long this transaction has been running, and if run time
1835 	 * < commit time then we sleep for the delta and commit.  This
1836 	 * greatly helps super fast disks that would see slowdowns as
1837 	 * more threads started doing fsyncs.
1838 	 *
1839 	 * But don't do this if this process was the most recent one
1840 	 * to perform a synchronous write.  We do this to detect the
1841 	 * case where a single process is doing a stream of sync
1842 	 * writes.  No point in waiting for joiners in that case.
1843 	 *
1844 	 * Setting max_batch_time to 0 disables this completely.
1845 	 */
1846 	pid = current->pid;
1847 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1848 	    journal->j_max_batch_time) {
1849 		u64 commit_time, trans_time;
1850 
1851 		journal->j_last_sync_writer = pid;
1852 
1853 		read_lock(&journal->j_state_lock);
1854 		commit_time = journal->j_average_commit_time;
1855 		read_unlock(&journal->j_state_lock);
1856 
1857 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1858 						   transaction->t_start_time));
1859 
1860 		commit_time = max_t(u64, commit_time,
1861 				    1000*journal->j_min_batch_time);
1862 		commit_time = min_t(u64, commit_time,
1863 				    1000*journal->j_max_batch_time);
1864 
1865 		if (trans_time < commit_time) {
1866 			ktime_t expires = ktime_add_ns(ktime_get(),
1867 						       commit_time);
1868 			set_current_state(TASK_UNINTERRUPTIBLE);
1869 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1870 		}
1871 	}
1872 
1873 	if (handle->h_sync)
1874 		transaction->t_synchronous_commit = 1;
1875 
1876 	/*
1877 	 * If the handle is marked SYNC, we need to set another commit
1878 	 * going!  We also want to force a commit if the transaction is too
1879 	 * old now.
1880 	 */
1881 	if (handle->h_sync ||
1882 	    time_after_eq(jiffies, transaction->t_expires)) {
1883 		/* Do this even for aborted journals: an abort still
1884 		 * completes the commit thread, it just doesn't write
1885 		 * anything to disk. */
1886 
1887 		jbd_debug(2, "transaction too old, requesting commit for "
1888 					"handle %p\n", handle);
1889 		/* This is non-blocking */
1890 		jbd2_log_start_commit(journal, tid);
1891 
1892 		/*
1893 		 * Special case: JBD2_SYNC synchronous updates require us
1894 		 * to wait for the commit to complete.
1895 		 */
1896 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1897 			wait_for_commit = 1;
1898 	}
1899 
1900 	/*
1901 	 * Once stop_this_handle() drops t_updates, the transaction could start
1902 	 * committing on us and eventually disappear.  So we must not
1903 	 * dereference transaction pointer again after calling
1904 	 * stop_this_handle().
1905 	 */
1906 	stop_this_handle(handle);
1907 
1908 	if (wait_for_commit)
1909 		err = jbd2_log_wait_commit(journal, tid);
1910 
1911 free_and_exit:
1912 	if (handle->h_rsv_handle)
1913 		jbd2_free_handle(handle->h_rsv_handle);
1914 	jbd2_free_handle(handle);
1915 	return err;
1916 }
1917 
1918 /*
1919  *
1920  * List management code snippets: various functions for manipulating the
1921  * transaction buffer lists.
1922  *
1923  */
1924 
1925 /*
1926  * Append a buffer to a transaction list, given the transaction's list head
1927  * pointer.
1928  *
1929  * j_list_lock is held.
1930  *
1931  * jh->b_state_lock is held.
1932  */
1933 
1934 static inline void
1935 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1936 {
1937 	if (!*list) {
1938 		jh->b_tnext = jh->b_tprev = jh;
1939 		*list = jh;
1940 	} else {
1941 		/* Insert at the tail of the list to preserve order */
1942 		struct journal_head *first = *list, *last = first->b_tprev;
1943 		jh->b_tprev = last;
1944 		jh->b_tnext = first;
1945 		last->b_tnext = first->b_tprev = jh;
1946 	}
1947 }
1948 
1949 /*
1950  * Remove a buffer from a transaction list, given the transaction's list
1951  * head pointer.
1952  *
1953  * Called with j_list_lock held, and the journal may not be locked.
1954  *
1955  * jh->b_state_lock is held.
1956  */
1957 
1958 static inline void
1959 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1960 {
1961 	if (*list == jh) {
1962 		*list = jh->b_tnext;
1963 		if (*list == jh)
1964 			*list = NULL;
1965 	}
1966 	jh->b_tprev->b_tnext = jh->b_tnext;
1967 	jh->b_tnext->b_tprev = jh->b_tprev;
1968 }
1969 
1970 /*
1971  * Remove a buffer from the appropriate transaction list.
1972  *
1973  * Note that this function can *change* the value of
1974  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1975  * t_reserved_list.  If the caller is holding onto a copy of one of these
1976  * pointers, it could go bad.  Generally the caller needs to re-read the
1977  * pointer from the transaction_t.
1978  *
1979  * Called under j_list_lock.
1980  */
1981 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1982 {
1983 	struct journal_head **list = NULL;
1984 	transaction_t *transaction;
1985 	struct buffer_head *bh = jh2bh(jh);
1986 
1987 	lockdep_assert_held(&jh->b_state_lock);
1988 	transaction = jh->b_transaction;
1989 	if (transaction)
1990 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1991 
1992 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1993 	if (jh->b_jlist != BJ_None)
1994 		J_ASSERT_JH(jh, transaction != NULL);
1995 
1996 	switch (jh->b_jlist) {
1997 	case BJ_None:
1998 		return;
1999 	case BJ_Metadata:
2000 		transaction->t_nr_buffers--;
2001 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2002 		list = &transaction->t_buffers;
2003 		break;
2004 	case BJ_Forget:
2005 		list = &transaction->t_forget;
2006 		break;
2007 	case BJ_Shadow:
2008 		list = &transaction->t_shadow_list;
2009 		break;
2010 	case BJ_Reserved:
2011 		list = &transaction->t_reserved_list;
2012 		break;
2013 	}
2014 
2015 	__blist_del_buffer(list, jh);
2016 	jh->b_jlist = BJ_None;
2017 	if (transaction && is_journal_aborted(transaction->t_journal))
2018 		clear_buffer_jbddirty(bh);
2019 	else if (test_clear_buffer_jbddirty(bh))
2020 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2021 }
2022 
2023 /*
2024  * Remove buffer from all transactions. The caller is responsible for dropping
2025  * the jh reference that belonged to the transaction.
2026  *
2027  * Called with bh_state lock and j_list_lock
2028  */
2029 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2030 {
2031 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2032 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2033 
2034 	__jbd2_journal_temp_unlink_buffer(jh);
2035 	jh->b_transaction = NULL;
2036 }
2037 
2038 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2039 {
2040 	struct buffer_head *bh = jh2bh(jh);
2041 
2042 	/* Get reference so that buffer cannot be freed before we unlock it */
2043 	get_bh(bh);
2044 	spin_lock(&jh->b_state_lock);
2045 	spin_lock(&journal->j_list_lock);
2046 	__jbd2_journal_unfile_buffer(jh);
2047 	spin_unlock(&journal->j_list_lock);
2048 	spin_unlock(&jh->b_state_lock);
2049 	jbd2_journal_put_journal_head(jh);
2050 	__brelse(bh);
2051 }
2052 
2053 /*
2054  * Called from jbd2_journal_try_to_free_buffers().
2055  *
2056  * Called under jh->b_state_lock
2057  */
2058 static void
2059 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2060 {
2061 	struct journal_head *jh;
2062 
2063 	jh = bh2jh(bh);
2064 
2065 	if (buffer_locked(bh) || buffer_dirty(bh))
2066 		goto out;
2067 
2068 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2069 		goto out;
2070 
2071 	spin_lock(&journal->j_list_lock);
2072 	if (jh->b_cp_transaction != NULL) {
2073 		/* written-back checkpointed metadata buffer */
2074 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2075 		__jbd2_journal_remove_checkpoint(jh);
2076 	}
2077 	spin_unlock(&journal->j_list_lock);
2078 out:
2079 	return;
2080 }
2081 
2082 /**
2083  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2084  * @journal: journal for operation
2085  * @page: to try and free
2086  *
2087  * For all the buffers on this page,
2088  * if they are fully written out ordered data, move them onto BUF_CLEAN
2089  * so try_to_free_buffers() can reap them.
2090  *
2091  * This function returns non-zero if we wish try_to_free_buffers()
2092  * to be called. We do this if the page is releasable by try_to_free_buffers().
2093  * We also do it if the page has locked or dirty buffers and the caller wants
2094  * us to perform sync or async writeout.
2095  *
2096  * This complicates JBD locking somewhat.  We aren't protected by the
2097  * BKL here.  We wish to remove the buffer from its committing or
2098  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2099  *
2100  * This may *change* the value of transaction_t->t_datalist, so anyone
2101  * who looks at t_datalist needs to lock against this function.
2102  *
2103  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2104  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2105  * will come out of the lock with the buffer dirty, which makes it
2106  * ineligible for release here.
2107  *
2108  * Who else is affected by this?  hmm...  Really the only contender
2109  * is do_get_write_access() - it could be looking at the buffer while
2110  * journal_try_to_free_buffer() is changing its state.  But that
2111  * cannot happen because we never reallocate freed data as metadata
2112  * while the data is part of a transaction.  Yes?
2113  *
2114  * Return 0 on failure, 1 on success
2115  */
2116 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2117 {
2118 	struct buffer_head *head;
2119 	struct buffer_head *bh;
2120 	bool has_write_io_error = false;
2121 	int ret = 0;
2122 
2123 	J_ASSERT(PageLocked(page));
2124 
2125 	head = page_buffers(page);
2126 	bh = head;
2127 	do {
2128 		struct journal_head *jh;
2129 
2130 		/*
2131 		 * We take our own ref against the journal_head here to avoid
2132 		 * having to add tons of locking around each instance of
2133 		 * jbd2_journal_put_journal_head().
2134 		 */
2135 		jh = jbd2_journal_grab_journal_head(bh);
2136 		if (!jh)
2137 			continue;
2138 
2139 		spin_lock(&jh->b_state_lock);
2140 		__journal_try_to_free_buffer(journal, bh);
2141 		spin_unlock(&jh->b_state_lock);
2142 		jbd2_journal_put_journal_head(jh);
2143 		if (buffer_jbd(bh))
2144 			goto busy;
2145 
2146 		/*
2147 		 * If we free a metadata buffer which has been failed to
2148 		 * write out, the jbd2 checkpoint procedure will not detect
2149 		 * this failure and may lead to filesystem inconsistency
2150 		 * after cleanup journal tail.
2151 		 */
2152 		if (buffer_write_io_error(bh)) {
2153 			pr_err("JBD2: Error while async write back metadata bh %llu.",
2154 			       (unsigned long long)bh->b_blocknr);
2155 			has_write_io_error = true;
2156 		}
2157 	} while ((bh = bh->b_this_page) != head);
2158 
2159 	ret = try_to_free_buffers(page);
2160 
2161 busy:
2162 	if (has_write_io_error)
2163 		jbd2_journal_abort(journal, -EIO);
2164 
2165 	return ret;
2166 }
2167 
2168 /*
2169  * This buffer is no longer needed.  If it is on an older transaction's
2170  * checkpoint list we need to record it on this transaction's forget list
2171  * to pin this buffer (and hence its checkpointing transaction) down until
2172  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2173  * release it.
2174  * Returns non-zero if JBD no longer has an interest in the buffer.
2175  *
2176  * Called under j_list_lock.
2177  *
2178  * Called under jh->b_state_lock.
2179  */
2180 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2181 {
2182 	int may_free = 1;
2183 	struct buffer_head *bh = jh2bh(jh);
2184 
2185 	if (jh->b_cp_transaction) {
2186 		JBUFFER_TRACE(jh, "on running+cp transaction");
2187 		__jbd2_journal_temp_unlink_buffer(jh);
2188 		/*
2189 		 * We don't want to write the buffer anymore, clear the
2190 		 * bit so that we don't confuse checks in
2191 		 * __journal_file_buffer
2192 		 */
2193 		clear_buffer_dirty(bh);
2194 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2195 		may_free = 0;
2196 	} else {
2197 		JBUFFER_TRACE(jh, "on running transaction");
2198 		__jbd2_journal_unfile_buffer(jh);
2199 		jbd2_journal_put_journal_head(jh);
2200 	}
2201 	return may_free;
2202 }
2203 
2204 /*
2205  * jbd2_journal_invalidatepage
2206  *
2207  * This code is tricky.  It has a number of cases to deal with.
2208  *
2209  * There are two invariants which this code relies on:
2210  *
2211  * i_size must be updated on disk before we start calling invalidatepage on the
2212  * data.
2213  *
2214  *  This is done in ext3 by defining an ext3_setattr method which
2215  *  updates i_size before truncate gets going.  By maintaining this
2216  *  invariant, we can be sure that it is safe to throw away any buffers
2217  *  attached to the current transaction: once the transaction commits,
2218  *  we know that the data will not be needed.
2219  *
2220  *  Note however that we can *not* throw away data belonging to the
2221  *  previous, committing transaction!
2222  *
2223  * Any disk blocks which *are* part of the previous, committing
2224  * transaction (and which therefore cannot be discarded immediately) are
2225  * not going to be reused in the new running transaction
2226  *
2227  *  The bitmap committed_data images guarantee this: any block which is
2228  *  allocated in one transaction and removed in the next will be marked
2229  *  as in-use in the committed_data bitmap, so cannot be reused until
2230  *  the next transaction to delete the block commits.  This means that
2231  *  leaving committing buffers dirty is quite safe: the disk blocks
2232  *  cannot be reallocated to a different file and so buffer aliasing is
2233  *  not possible.
2234  *
2235  *
2236  * The above applies mainly to ordered data mode.  In writeback mode we
2237  * don't make guarantees about the order in which data hits disk --- in
2238  * particular we don't guarantee that new dirty data is flushed before
2239  * transaction commit --- so it is always safe just to discard data
2240  * immediately in that mode.  --sct
2241  */
2242 
2243 /*
2244  * The journal_unmap_buffer helper function returns zero if the buffer
2245  * concerned remains pinned as an anonymous buffer belonging to an older
2246  * transaction.
2247  *
2248  * We're outside-transaction here.  Either or both of j_running_transaction
2249  * and j_committing_transaction may be NULL.
2250  */
2251 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2252 				int partial_page)
2253 {
2254 	transaction_t *transaction;
2255 	struct journal_head *jh;
2256 	int may_free = 1;
2257 
2258 	BUFFER_TRACE(bh, "entry");
2259 
2260 	/*
2261 	 * It is safe to proceed here without the j_list_lock because the
2262 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2263 	 * holding the page lock. --sct
2264 	 */
2265 
2266 	jh = jbd2_journal_grab_journal_head(bh);
2267 	if (!jh)
2268 		goto zap_buffer_unlocked;
2269 
2270 	/* OK, we have data buffer in journaled mode */
2271 	write_lock(&journal->j_state_lock);
2272 	spin_lock(&jh->b_state_lock);
2273 	spin_lock(&journal->j_list_lock);
2274 
2275 	/*
2276 	 * We cannot remove the buffer from checkpoint lists until the
2277 	 * transaction adding inode to orphan list (let's call it T)
2278 	 * is committed.  Otherwise if the transaction changing the
2279 	 * buffer would be cleaned from the journal before T is
2280 	 * committed, a crash will cause that the correct contents of
2281 	 * the buffer will be lost.  On the other hand we have to
2282 	 * clear the buffer dirty bit at latest at the moment when the
2283 	 * transaction marking the buffer as freed in the filesystem
2284 	 * structures is committed because from that moment on the
2285 	 * block can be reallocated and used by a different page.
2286 	 * Since the block hasn't been freed yet but the inode has
2287 	 * already been added to orphan list, it is safe for us to add
2288 	 * the buffer to BJ_Forget list of the newest transaction.
2289 	 *
2290 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2291 	 * because the buffer_head may be attached to the page straddling
2292 	 * i_size (can happen only when blocksize < pagesize) and thus the
2293 	 * buffer_head can be reused when the file is extended again. So we end
2294 	 * up keeping around invalidated buffers attached to transactions'
2295 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2296 	 * the transaction this buffer was modified in.
2297 	 */
2298 	transaction = jh->b_transaction;
2299 	if (transaction == NULL) {
2300 		/* First case: not on any transaction.  If it
2301 		 * has no checkpoint link, then we can zap it:
2302 		 * it's a writeback-mode buffer so we don't care
2303 		 * if it hits disk safely. */
2304 		if (!jh->b_cp_transaction) {
2305 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2306 			goto zap_buffer;
2307 		}
2308 
2309 		if (!buffer_dirty(bh)) {
2310 			/* bdflush has written it.  We can drop it now */
2311 			__jbd2_journal_remove_checkpoint(jh);
2312 			goto zap_buffer;
2313 		}
2314 
2315 		/* OK, it must be in the journal but still not
2316 		 * written fully to disk: it's metadata or
2317 		 * journaled data... */
2318 
2319 		if (journal->j_running_transaction) {
2320 			/* ... and once the current transaction has
2321 			 * committed, the buffer won't be needed any
2322 			 * longer. */
2323 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2324 			may_free = __dispose_buffer(jh,
2325 					journal->j_running_transaction);
2326 			goto zap_buffer;
2327 		} else {
2328 			/* There is no currently-running transaction. So the
2329 			 * orphan record which we wrote for this file must have
2330 			 * passed into commit.  We must attach this buffer to
2331 			 * the committing transaction, if it exists. */
2332 			if (journal->j_committing_transaction) {
2333 				JBUFFER_TRACE(jh, "give to committing trans");
2334 				may_free = __dispose_buffer(jh,
2335 					journal->j_committing_transaction);
2336 				goto zap_buffer;
2337 			} else {
2338 				/* The orphan record's transaction has
2339 				 * committed.  We can cleanse this buffer */
2340 				clear_buffer_jbddirty(bh);
2341 				__jbd2_journal_remove_checkpoint(jh);
2342 				goto zap_buffer;
2343 			}
2344 		}
2345 	} else if (transaction == journal->j_committing_transaction) {
2346 		JBUFFER_TRACE(jh, "on committing transaction");
2347 		/*
2348 		 * The buffer is committing, we simply cannot touch
2349 		 * it. If the page is straddling i_size we have to wait
2350 		 * for commit and try again.
2351 		 */
2352 		if (partial_page) {
2353 			spin_unlock(&journal->j_list_lock);
2354 			spin_unlock(&jh->b_state_lock);
2355 			write_unlock(&journal->j_state_lock);
2356 			jbd2_journal_put_journal_head(jh);
2357 			return -EBUSY;
2358 		}
2359 		/*
2360 		 * OK, buffer won't be reachable after truncate. We just clear
2361 		 * b_modified to not confuse transaction credit accounting, and
2362 		 * set j_next_transaction to the running transaction (if there
2363 		 * is one) and mark buffer as freed so that commit code knows
2364 		 * it should clear dirty bits when it is done with the buffer.
2365 		 */
2366 		set_buffer_freed(bh);
2367 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2368 			jh->b_next_transaction = journal->j_running_transaction;
2369 		jh->b_modified = 0;
2370 		spin_unlock(&journal->j_list_lock);
2371 		spin_unlock(&jh->b_state_lock);
2372 		write_unlock(&journal->j_state_lock);
2373 		jbd2_journal_put_journal_head(jh);
2374 		return 0;
2375 	} else {
2376 		/* Good, the buffer belongs to the running transaction.
2377 		 * We are writing our own transaction's data, not any
2378 		 * previous one's, so it is safe to throw it away
2379 		 * (remember that we expect the filesystem to have set
2380 		 * i_size already for this truncate so recovery will not
2381 		 * expose the disk blocks we are discarding here.) */
2382 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2383 		JBUFFER_TRACE(jh, "on running transaction");
2384 		may_free = __dispose_buffer(jh, transaction);
2385 	}
2386 
2387 zap_buffer:
2388 	/*
2389 	 * This is tricky. Although the buffer is truncated, it may be reused
2390 	 * if blocksize < pagesize and it is attached to the page straddling
2391 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2392 	 * running transaction, journal_get_write_access() won't clear
2393 	 * b_modified and credit accounting gets confused. So clear b_modified
2394 	 * here.
2395 	 */
2396 	jh->b_modified = 0;
2397 	spin_unlock(&journal->j_list_lock);
2398 	spin_unlock(&jh->b_state_lock);
2399 	write_unlock(&journal->j_state_lock);
2400 	jbd2_journal_put_journal_head(jh);
2401 zap_buffer_unlocked:
2402 	clear_buffer_dirty(bh);
2403 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2404 	clear_buffer_mapped(bh);
2405 	clear_buffer_req(bh);
2406 	clear_buffer_new(bh);
2407 	clear_buffer_delay(bh);
2408 	clear_buffer_unwritten(bh);
2409 	bh->b_bdev = NULL;
2410 	return may_free;
2411 }
2412 
2413 /**
2414  * void jbd2_journal_invalidatepage()
2415  * @journal: journal to use for flush...
2416  * @page:    page to flush
2417  * @offset:  start of the range to invalidate
2418  * @length:  length of the range to invalidate
2419  *
2420  * Reap page buffers containing data after in the specified range in page.
2421  * Can return -EBUSY if buffers are part of the committing transaction and
2422  * the page is straddling i_size. Caller then has to wait for current commit
2423  * and try again.
2424  */
2425 int jbd2_journal_invalidatepage(journal_t *journal,
2426 				struct page *page,
2427 				unsigned int offset,
2428 				unsigned int length)
2429 {
2430 	struct buffer_head *head, *bh, *next;
2431 	unsigned int stop = offset + length;
2432 	unsigned int curr_off = 0;
2433 	int partial_page = (offset || length < PAGE_SIZE);
2434 	int may_free = 1;
2435 	int ret = 0;
2436 
2437 	if (!PageLocked(page))
2438 		BUG();
2439 	if (!page_has_buffers(page))
2440 		return 0;
2441 
2442 	BUG_ON(stop > PAGE_SIZE || stop < length);
2443 
2444 	/* We will potentially be playing with lists other than just the
2445 	 * data lists (especially for journaled data mode), so be
2446 	 * cautious in our locking. */
2447 
2448 	head = bh = page_buffers(page);
2449 	do {
2450 		unsigned int next_off = curr_off + bh->b_size;
2451 		next = bh->b_this_page;
2452 
2453 		if (next_off > stop)
2454 			return 0;
2455 
2456 		if (offset <= curr_off) {
2457 			/* This block is wholly outside the truncation point */
2458 			lock_buffer(bh);
2459 			ret = journal_unmap_buffer(journal, bh, partial_page);
2460 			unlock_buffer(bh);
2461 			if (ret < 0)
2462 				return ret;
2463 			may_free &= ret;
2464 		}
2465 		curr_off = next_off;
2466 		bh = next;
2467 
2468 	} while (bh != head);
2469 
2470 	if (!partial_page) {
2471 		if (may_free && try_to_free_buffers(page))
2472 			J_ASSERT(!page_has_buffers(page));
2473 	}
2474 	return 0;
2475 }
2476 
2477 /*
2478  * File a buffer on the given transaction list.
2479  */
2480 void __jbd2_journal_file_buffer(struct journal_head *jh,
2481 			transaction_t *transaction, int jlist)
2482 {
2483 	struct journal_head **list = NULL;
2484 	int was_dirty = 0;
2485 	struct buffer_head *bh = jh2bh(jh);
2486 
2487 	lockdep_assert_held(&jh->b_state_lock);
2488 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2489 
2490 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2491 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2492 				jh->b_transaction == NULL);
2493 
2494 	if (jh->b_transaction && jh->b_jlist == jlist)
2495 		return;
2496 
2497 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2498 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2499 		/*
2500 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2501 		 * instead of buffer_dirty. We should not see a dirty bit set
2502 		 * here because we clear it in do_get_write_access but e.g.
2503 		 * tune2fs can modify the sb and set the dirty bit at any time
2504 		 * so we try to gracefully handle that.
2505 		 */
2506 		if (buffer_dirty(bh))
2507 			warn_dirty_buffer(bh);
2508 		if (test_clear_buffer_dirty(bh) ||
2509 		    test_clear_buffer_jbddirty(bh))
2510 			was_dirty = 1;
2511 	}
2512 
2513 	if (jh->b_transaction)
2514 		__jbd2_journal_temp_unlink_buffer(jh);
2515 	else
2516 		jbd2_journal_grab_journal_head(bh);
2517 	jh->b_transaction = transaction;
2518 
2519 	switch (jlist) {
2520 	case BJ_None:
2521 		J_ASSERT_JH(jh, !jh->b_committed_data);
2522 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2523 		return;
2524 	case BJ_Metadata:
2525 		transaction->t_nr_buffers++;
2526 		list = &transaction->t_buffers;
2527 		break;
2528 	case BJ_Forget:
2529 		list = &transaction->t_forget;
2530 		break;
2531 	case BJ_Shadow:
2532 		list = &transaction->t_shadow_list;
2533 		break;
2534 	case BJ_Reserved:
2535 		list = &transaction->t_reserved_list;
2536 		break;
2537 	}
2538 
2539 	__blist_add_buffer(list, jh);
2540 	jh->b_jlist = jlist;
2541 
2542 	if (was_dirty)
2543 		set_buffer_jbddirty(bh);
2544 }
2545 
2546 void jbd2_journal_file_buffer(struct journal_head *jh,
2547 				transaction_t *transaction, int jlist)
2548 {
2549 	spin_lock(&jh->b_state_lock);
2550 	spin_lock(&transaction->t_journal->j_list_lock);
2551 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2552 	spin_unlock(&transaction->t_journal->j_list_lock);
2553 	spin_unlock(&jh->b_state_lock);
2554 }
2555 
2556 /*
2557  * Remove a buffer from its current buffer list in preparation for
2558  * dropping it from its current transaction entirely.  If the buffer has
2559  * already started to be used by a subsequent transaction, refile the
2560  * buffer on that transaction's metadata list.
2561  *
2562  * Called under j_list_lock
2563  * Called under jh->b_state_lock
2564  *
2565  * When this function returns true, there's no next transaction to refile to
2566  * and the caller has to drop jh reference through
2567  * jbd2_journal_put_journal_head().
2568  */
2569 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2570 {
2571 	int was_dirty, jlist;
2572 	struct buffer_head *bh = jh2bh(jh);
2573 
2574 	lockdep_assert_held(&jh->b_state_lock);
2575 	if (jh->b_transaction)
2576 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2577 
2578 	/* If the buffer is now unused, just drop it. */
2579 	if (jh->b_next_transaction == NULL) {
2580 		__jbd2_journal_unfile_buffer(jh);
2581 		return true;
2582 	}
2583 
2584 	/*
2585 	 * It has been modified by a later transaction: add it to the new
2586 	 * transaction's metadata list.
2587 	 */
2588 
2589 	was_dirty = test_clear_buffer_jbddirty(bh);
2590 	__jbd2_journal_temp_unlink_buffer(jh);
2591 
2592 	/*
2593 	 * b_transaction must be set, otherwise the new b_transaction won't
2594 	 * be holding jh reference
2595 	 */
2596 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2597 
2598 	/*
2599 	 * We set b_transaction here because b_next_transaction will inherit
2600 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2601 	 * take a new one.
2602 	 */
2603 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2604 	WRITE_ONCE(jh->b_next_transaction, NULL);
2605 	if (buffer_freed(bh))
2606 		jlist = BJ_Forget;
2607 	else if (jh->b_modified)
2608 		jlist = BJ_Metadata;
2609 	else
2610 		jlist = BJ_Reserved;
2611 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2612 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2613 
2614 	if (was_dirty)
2615 		set_buffer_jbddirty(bh);
2616 	return false;
2617 }
2618 
2619 /*
2620  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2621  * bh reference so that we can safely unlock bh.
2622  *
2623  * The jh and bh may be freed by this call.
2624  */
2625 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2626 {
2627 	bool drop;
2628 
2629 	spin_lock(&jh->b_state_lock);
2630 	spin_lock(&journal->j_list_lock);
2631 	drop = __jbd2_journal_refile_buffer(jh);
2632 	spin_unlock(&jh->b_state_lock);
2633 	spin_unlock(&journal->j_list_lock);
2634 	if (drop)
2635 		jbd2_journal_put_journal_head(jh);
2636 }
2637 
2638 /*
2639  * File inode in the inode list of the handle's transaction
2640  */
2641 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2642 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2643 {
2644 	transaction_t *transaction = handle->h_transaction;
2645 	journal_t *journal;
2646 
2647 	if (is_handle_aborted(handle))
2648 		return -EROFS;
2649 	journal = transaction->t_journal;
2650 
2651 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2652 			transaction->t_tid);
2653 
2654 	spin_lock(&journal->j_list_lock);
2655 	jinode->i_flags |= flags;
2656 
2657 	if (jinode->i_dirty_end) {
2658 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2659 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2660 	} else {
2661 		jinode->i_dirty_start = start_byte;
2662 		jinode->i_dirty_end = end_byte;
2663 	}
2664 
2665 	/* Is inode already attached where we need it? */
2666 	if (jinode->i_transaction == transaction ||
2667 	    jinode->i_next_transaction == transaction)
2668 		goto done;
2669 
2670 	/*
2671 	 * We only ever set this variable to 1 so the test is safe. Since
2672 	 * t_need_data_flush is likely to be set, we do the test to save some
2673 	 * cacheline bouncing
2674 	 */
2675 	if (!transaction->t_need_data_flush)
2676 		transaction->t_need_data_flush = 1;
2677 	/* On some different transaction's list - should be
2678 	 * the committing one */
2679 	if (jinode->i_transaction) {
2680 		J_ASSERT(jinode->i_next_transaction == NULL);
2681 		J_ASSERT(jinode->i_transaction ==
2682 					journal->j_committing_transaction);
2683 		jinode->i_next_transaction = transaction;
2684 		goto done;
2685 	}
2686 	/* Not on any transaction list... */
2687 	J_ASSERT(!jinode->i_next_transaction);
2688 	jinode->i_transaction = transaction;
2689 	list_add(&jinode->i_list, &transaction->t_inode_list);
2690 done:
2691 	spin_unlock(&journal->j_list_lock);
2692 
2693 	return 0;
2694 }
2695 
2696 int jbd2_journal_inode_ranged_write(handle_t *handle,
2697 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2698 {
2699 	return jbd2_journal_file_inode(handle, jinode,
2700 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2701 			start_byte + length - 1);
2702 }
2703 
2704 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2705 		loff_t start_byte, loff_t length)
2706 {
2707 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2708 			start_byte, start_byte + length - 1);
2709 }
2710 
2711 /*
2712  * File truncate and transaction commit interact with each other in a
2713  * non-trivial way.  If a transaction writing data block A is
2714  * committing, we cannot discard the data by truncate until we have
2715  * written them.  Otherwise if we crashed after the transaction with
2716  * write has committed but before the transaction with truncate has
2717  * committed, we could see stale data in block A.  This function is a
2718  * helper to solve this problem.  It starts writeout of the truncated
2719  * part in case it is in the committing transaction.
2720  *
2721  * Filesystem code must call this function when inode is journaled in
2722  * ordered mode before truncation happens and after the inode has been
2723  * placed on orphan list with the new inode size. The second condition
2724  * avoids the race that someone writes new data and we start
2725  * committing the transaction after this function has been called but
2726  * before a transaction for truncate is started (and furthermore it
2727  * allows us to optimize the case where the addition to orphan list
2728  * happens in the same transaction as write --- we don't have to write
2729  * any data in such case).
2730  */
2731 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2732 					struct jbd2_inode *jinode,
2733 					loff_t new_size)
2734 {
2735 	transaction_t *inode_trans, *commit_trans;
2736 	int ret = 0;
2737 
2738 	/* This is a quick check to avoid locking if not necessary */
2739 	if (!jinode->i_transaction)
2740 		goto out;
2741 	/* Locks are here just to force reading of recent values, it is
2742 	 * enough that the transaction was not committing before we started
2743 	 * a transaction adding the inode to orphan list */
2744 	read_lock(&journal->j_state_lock);
2745 	commit_trans = journal->j_committing_transaction;
2746 	read_unlock(&journal->j_state_lock);
2747 	spin_lock(&journal->j_list_lock);
2748 	inode_trans = jinode->i_transaction;
2749 	spin_unlock(&journal->j_list_lock);
2750 	if (inode_trans == commit_trans) {
2751 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2752 			new_size, LLONG_MAX);
2753 		if (ret)
2754 			jbd2_journal_abort(journal, ret);
2755 	}
2756 out:
2757 	return ret;
2758 }
2759