1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 wait_transaction_locked(journal); 208 return 1; 209 } 210 211 /* 212 * The commit code assumes that it can get enough log space 213 * without forcing a checkpoint. This is *critical* for 214 * correctness: a checkpoint of a buffer which is also 215 * associated with a committing transaction creates a deadlock, 216 * so commit simply cannot force through checkpoints. 217 * 218 * We must therefore ensure the necessary space in the journal 219 * *before* starting to dirty potentially checkpointed buffers 220 * in the new transaction. 221 */ 222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 223 atomic_sub(total, &t->t_outstanding_credits); 224 read_unlock(&journal->j_state_lock); 225 write_lock(&journal->j_state_lock); 226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 227 __jbd2_log_wait_for_space(journal); 228 write_unlock(&journal->j_state_lock); 229 return 1; 230 } 231 232 /* No reservation? We are done... */ 233 if (!rsv_blocks) 234 return 0; 235 236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 237 /* We allow at most half of a transaction to be reserved */ 238 if (needed > journal->j_max_transaction_buffers / 2) { 239 sub_reserved_credits(journal, rsv_blocks); 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_reserved, 243 atomic_read(&journal->j_reserved_credits) + rsv_blocks 244 <= journal->j_max_transaction_buffers / 2); 245 return 1; 246 } 247 return 0; 248 } 249 250 /* 251 * start_this_handle: Given a handle, deal with any locking or stalling 252 * needed to make sure that there is enough journal space for the handle 253 * to begin. Attach the handle to a transaction and set up the 254 * transaction's buffer credits. 255 */ 256 257 static int start_this_handle(journal_t *journal, handle_t *handle, 258 gfp_t gfp_mask) 259 { 260 transaction_t *transaction, *new_transaction = NULL; 261 int blocks = handle->h_buffer_credits; 262 int rsv_blocks = 0; 263 unsigned long ts = jiffies; 264 265 /* 266 * 1/2 of transaction can be reserved so we can practically handle 267 * only 1/2 of maximum transaction size per operation 268 */ 269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) { 270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 271 current->comm, blocks, 272 journal->j_max_transaction_buffers / 2); 273 return -ENOSPC; 274 } 275 276 if (handle->h_rsv_handle) 277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 278 279 alloc_transaction: 280 if (!journal->j_running_transaction) { 281 new_transaction = kmem_cache_zalloc(transaction_cache, 282 gfp_mask); 283 if (!new_transaction) { 284 /* 285 * If __GFP_FS is not present, then we may be 286 * being called from inside the fs writeback 287 * layer, so we MUST NOT fail. Since 288 * __GFP_NOFAIL is going away, we will arrange 289 * to retry the allocation ourselves. 290 */ 291 if ((gfp_mask & __GFP_FS) == 0) { 292 congestion_wait(BLK_RW_ASYNC, HZ/50); 293 goto alloc_transaction; 294 } 295 return -ENOMEM; 296 } 297 } 298 299 jbd_debug(3, "New handle %p going live.\n", handle); 300 301 /* 302 * We need to hold j_state_lock until t_updates has been incremented, 303 * for proper journal barrier handling 304 */ 305 repeat: 306 read_lock(&journal->j_state_lock); 307 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 308 if (is_journal_aborted(journal) || 309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 310 read_unlock(&journal->j_state_lock); 311 jbd2_journal_free_transaction(new_transaction); 312 return -EROFS; 313 } 314 315 /* 316 * Wait on the journal's transaction barrier if necessary. Specifically 317 * we allow reserved handles to proceed because otherwise commit could 318 * deadlock on page writeback not being able to complete. 319 */ 320 if (!handle->h_reserved && journal->j_barrier_count) { 321 read_unlock(&journal->j_state_lock); 322 wait_event(journal->j_wait_transaction_locked, 323 journal->j_barrier_count == 0); 324 goto repeat; 325 } 326 327 if (!journal->j_running_transaction) { 328 read_unlock(&journal->j_state_lock); 329 if (!new_transaction) 330 goto alloc_transaction; 331 write_lock(&journal->j_state_lock); 332 if (!journal->j_running_transaction && 333 (handle->h_reserved || !journal->j_barrier_count)) { 334 jbd2_get_transaction(journal, new_transaction); 335 new_transaction = NULL; 336 } 337 write_unlock(&journal->j_state_lock); 338 goto repeat; 339 } 340 341 transaction = journal->j_running_transaction; 342 343 if (!handle->h_reserved) { 344 /* We may have dropped j_state_lock - restart in that case */ 345 if (add_transaction_credits(journal, blocks, rsv_blocks)) 346 goto repeat; 347 } else { 348 /* 349 * We have handle reserved so we are allowed to join T_LOCKED 350 * transaction and we don't have to check for transaction size 351 * and journal space. 352 */ 353 sub_reserved_credits(journal, blocks); 354 handle->h_reserved = 0; 355 } 356 357 /* OK, account for the buffers that this operation expects to 358 * use and add the handle to the running transaction. 359 */ 360 update_t_max_wait(transaction, ts); 361 handle->h_transaction = transaction; 362 handle->h_requested_credits = blocks; 363 handle->h_start_jiffies = jiffies; 364 atomic_inc(&transaction->t_updates); 365 atomic_inc(&transaction->t_handle_count); 366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 367 handle, blocks, 368 atomic_read(&transaction->t_outstanding_credits), 369 jbd2_log_space_left(journal)); 370 read_unlock(&journal->j_state_lock); 371 current->journal_info = handle; 372 373 lock_map_acquire(&handle->h_lockdep_map); 374 jbd2_journal_free_transaction(new_transaction); 375 return 0; 376 } 377 378 static struct lock_class_key jbd2_handle_key; 379 380 /* Allocate a new handle. This should probably be in a slab... */ 381 static handle_t *new_handle(int nblocks) 382 { 383 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 384 if (!handle) 385 return NULL; 386 handle->h_buffer_credits = nblocks; 387 handle->h_ref = 1; 388 389 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 390 &jbd2_handle_key, 0); 391 392 return handle; 393 } 394 395 /** 396 * handle_t *jbd2_journal_start() - Obtain a new handle. 397 * @journal: Journal to start transaction on. 398 * @nblocks: number of block buffer we might modify 399 * 400 * We make sure that the transaction can guarantee at least nblocks of 401 * modified buffers in the log. We block until the log can guarantee 402 * that much space. Additionally, if rsv_blocks > 0, we also create another 403 * handle with rsv_blocks reserved blocks in the journal. This handle is 404 * is stored in h_rsv_handle. It is not attached to any particular transaction 405 * and thus doesn't block transaction commit. If the caller uses this reserved 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 407 * on the parent handle will dispose the reserved one. Reserved handle has to 408 * be converted to a normal handle using jbd2_journal_start_reserved() before 409 * it can be used. 410 * 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 412 * on failure. 413 */ 414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 415 gfp_t gfp_mask, unsigned int type, 416 unsigned int line_no) 417 { 418 handle_t *handle = journal_current_handle(); 419 int err; 420 421 if (!journal) 422 return ERR_PTR(-EROFS); 423 424 if (handle) { 425 J_ASSERT(handle->h_transaction->t_journal == journal); 426 handle->h_ref++; 427 return handle; 428 } 429 430 handle = new_handle(nblocks); 431 if (!handle) 432 return ERR_PTR(-ENOMEM); 433 if (rsv_blocks) { 434 handle_t *rsv_handle; 435 436 rsv_handle = new_handle(rsv_blocks); 437 if (!rsv_handle) { 438 jbd2_free_handle(handle); 439 return ERR_PTR(-ENOMEM); 440 } 441 rsv_handle->h_reserved = 1; 442 rsv_handle->h_journal = journal; 443 handle->h_rsv_handle = rsv_handle; 444 } 445 446 err = start_this_handle(journal, handle, gfp_mask); 447 if (err < 0) { 448 if (handle->h_rsv_handle) 449 jbd2_free_handle(handle->h_rsv_handle); 450 jbd2_free_handle(handle); 451 return ERR_PTR(err); 452 } 453 handle->h_type = type; 454 handle->h_line_no = line_no; 455 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 456 handle->h_transaction->t_tid, type, 457 line_no, nblocks); 458 return handle; 459 } 460 EXPORT_SYMBOL(jbd2__journal_start); 461 462 463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 464 { 465 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 466 } 467 EXPORT_SYMBOL(jbd2_journal_start); 468 469 void jbd2_journal_free_reserved(handle_t *handle) 470 { 471 journal_t *journal = handle->h_journal; 472 473 WARN_ON(!handle->h_reserved); 474 sub_reserved_credits(journal, handle->h_buffer_credits); 475 jbd2_free_handle(handle); 476 } 477 EXPORT_SYMBOL(jbd2_journal_free_reserved); 478 479 /** 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 481 * @handle: handle to start 482 * 483 * Start handle that has been previously reserved with jbd2_journal_reserve(). 484 * This attaches @handle to the running transaction (or creates one if there's 485 * not transaction running). Unlike jbd2_journal_start() this function cannot 486 * block on journal commit, checkpointing, or similar stuff. It can block on 487 * memory allocation or frozen journal though. 488 * 489 * Return 0 on success, non-zero on error - handle is freed in that case. 490 */ 491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 492 unsigned int line_no) 493 { 494 journal_t *journal = handle->h_journal; 495 int ret = -EIO; 496 497 if (WARN_ON(!handle->h_reserved)) { 498 /* Someone passed in normal handle? Just stop it. */ 499 jbd2_journal_stop(handle); 500 return ret; 501 } 502 /* 503 * Usefulness of mixing of reserved and unreserved handles is 504 * questionable. So far nobody seems to need it so just error out. 505 */ 506 if (WARN_ON(current->journal_info)) { 507 jbd2_journal_free_reserved(handle); 508 return ret; 509 } 510 511 handle->h_journal = NULL; 512 /* 513 * GFP_NOFS is here because callers are likely from writeback or 514 * similarly constrained call sites 515 */ 516 ret = start_this_handle(journal, handle, GFP_NOFS); 517 if (ret < 0) { 518 jbd2_journal_free_reserved(handle); 519 return ret; 520 } 521 handle->h_type = type; 522 handle->h_line_no = line_no; 523 return 0; 524 } 525 EXPORT_SYMBOL(jbd2_journal_start_reserved); 526 527 /** 528 * int jbd2_journal_extend() - extend buffer credits. 529 * @handle: handle to 'extend' 530 * @nblocks: nr blocks to try to extend by. 531 * 532 * Some transactions, such as large extends and truncates, can be done 533 * atomically all at once or in several stages. The operation requests 534 * a credit for a number of buffer modications in advance, but can 535 * extend its credit if it needs more. 536 * 537 * jbd2_journal_extend tries to give the running handle more buffer credits. 538 * It does not guarantee that allocation - this is a best-effort only. 539 * The calling process MUST be able to deal cleanly with a failure to 540 * extend here. 541 * 542 * Return 0 on success, non-zero on failure. 543 * 544 * return code < 0 implies an error 545 * return code > 0 implies normal transaction-full status. 546 */ 547 int jbd2_journal_extend(handle_t *handle, int nblocks) 548 { 549 transaction_t *transaction = handle->h_transaction; 550 journal_t *journal; 551 int result; 552 int wanted; 553 554 WARN_ON(!transaction); 555 if (is_handle_aborted(handle)) 556 return -EROFS; 557 journal = transaction->t_journal; 558 559 result = 1; 560 561 read_lock(&journal->j_state_lock); 562 563 /* Don't extend a locked-down transaction! */ 564 if (transaction->t_state != T_RUNNING) { 565 jbd_debug(3, "denied handle %p %d blocks: " 566 "transaction not running\n", handle, nblocks); 567 goto error_out; 568 } 569 570 spin_lock(&transaction->t_handle_lock); 571 wanted = atomic_add_return(nblocks, 572 &transaction->t_outstanding_credits); 573 574 if (wanted > journal->j_max_transaction_buffers) { 575 jbd_debug(3, "denied handle %p %d blocks: " 576 "transaction too large\n", handle, nblocks); 577 atomic_sub(nblocks, &transaction->t_outstanding_credits); 578 goto unlock; 579 } 580 581 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 582 jbd2_log_space_left(journal)) { 583 jbd_debug(3, "denied handle %p %d blocks: " 584 "insufficient log space\n", handle, nblocks); 585 atomic_sub(nblocks, &transaction->t_outstanding_credits); 586 goto unlock; 587 } 588 589 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 590 transaction->t_tid, 591 handle->h_type, handle->h_line_no, 592 handle->h_buffer_credits, 593 nblocks); 594 595 handle->h_buffer_credits += nblocks; 596 handle->h_requested_credits += nblocks; 597 result = 0; 598 599 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 600 unlock: 601 spin_unlock(&transaction->t_handle_lock); 602 error_out: 603 read_unlock(&journal->j_state_lock); 604 return result; 605 } 606 607 608 /** 609 * int jbd2_journal_restart() - restart a handle . 610 * @handle: handle to restart 611 * @nblocks: nr credits requested 612 * 613 * Restart a handle for a multi-transaction filesystem 614 * operation. 615 * 616 * If the jbd2_journal_extend() call above fails to grant new buffer credits 617 * to a running handle, a call to jbd2_journal_restart will commit the 618 * handle's transaction so far and reattach the handle to a new 619 * transaction capabable of guaranteeing the requested number of 620 * credits. We preserve reserved handle if there's any attached to the 621 * passed in handle. 622 */ 623 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 624 { 625 transaction_t *transaction = handle->h_transaction; 626 journal_t *journal; 627 tid_t tid; 628 int need_to_start, ret; 629 630 WARN_ON(!transaction); 631 /* If we've had an abort of any type, don't even think about 632 * actually doing the restart! */ 633 if (is_handle_aborted(handle)) 634 return 0; 635 journal = transaction->t_journal; 636 637 /* 638 * First unlink the handle from its current transaction, and start the 639 * commit on that. 640 */ 641 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 642 J_ASSERT(journal_current_handle() == handle); 643 644 read_lock(&journal->j_state_lock); 645 spin_lock(&transaction->t_handle_lock); 646 atomic_sub(handle->h_buffer_credits, 647 &transaction->t_outstanding_credits); 648 if (handle->h_rsv_handle) { 649 sub_reserved_credits(journal, 650 handle->h_rsv_handle->h_buffer_credits); 651 } 652 if (atomic_dec_and_test(&transaction->t_updates)) 653 wake_up(&journal->j_wait_updates); 654 tid = transaction->t_tid; 655 spin_unlock(&transaction->t_handle_lock); 656 handle->h_transaction = NULL; 657 current->journal_info = NULL; 658 659 jbd_debug(2, "restarting handle %p\n", handle); 660 need_to_start = !tid_geq(journal->j_commit_request, tid); 661 read_unlock(&journal->j_state_lock); 662 if (need_to_start) 663 jbd2_log_start_commit(journal, tid); 664 665 lock_map_release(&handle->h_lockdep_map); 666 handle->h_buffer_credits = nblocks; 667 ret = start_this_handle(journal, handle, gfp_mask); 668 return ret; 669 } 670 EXPORT_SYMBOL(jbd2__journal_restart); 671 672 673 int jbd2_journal_restart(handle_t *handle, int nblocks) 674 { 675 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 676 } 677 EXPORT_SYMBOL(jbd2_journal_restart); 678 679 /** 680 * void jbd2_journal_lock_updates () - establish a transaction barrier. 681 * @journal: Journal to establish a barrier on. 682 * 683 * This locks out any further updates from being started, and blocks 684 * until all existing updates have completed, returning only once the 685 * journal is in a quiescent state with no updates running. 686 * 687 * The journal lock should not be held on entry. 688 */ 689 void jbd2_journal_lock_updates(journal_t *journal) 690 { 691 DEFINE_WAIT(wait); 692 693 write_lock(&journal->j_state_lock); 694 ++journal->j_barrier_count; 695 696 /* Wait until there are no reserved handles */ 697 if (atomic_read(&journal->j_reserved_credits)) { 698 write_unlock(&journal->j_state_lock); 699 wait_event(journal->j_wait_reserved, 700 atomic_read(&journal->j_reserved_credits) == 0); 701 write_lock(&journal->j_state_lock); 702 } 703 704 /* Wait until there are no running updates */ 705 while (1) { 706 transaction_t *transaction = journal->j_running_transaction; 707 708 if (!transaction) 709 break; 710 711 spin_lock(&transaction->t_handle_lock); 712 prepare_to_wait(&journal->j_wait_updates, &wait, 713 TASK_UNINTERRUPTIBLE); 714 if (!atomic_read(&transaction->t_updates)) { 715 spin_unlock(&transaction->t_handle_lock); 716 finish_wait(&journal->j_wait_updates, &wait); 717 break; 718 } 719 spin_unlock(&transaction->t_handle_lock); 720 write_unlock(&journal->j_state_lock); 721 schedule(); 722 finish_wait(&journal->j_wait_updates, &wait); 723 write_lock(&journal->j_state_lock); 724 } 725 write_unlock(&journal->j_state_lock); 726 727 /* 728 * We have now established a barrier against other normal updates, but 729 * we also need to barrier against other jbd2_journal_lock_updates() calls 730 * to make sure that we serialise special journal-locked operations 731 * too. 732 */ 733 mutex_lock(&journal->j_barrier); 734 } 735 736 /** 737 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 738 * @journal: Journal to release the barrier on. 739 * 740 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 741 * 742 * Should be called without the journal lock held. 743 */ 744 void jbd2_journal_unlock_updates (journal_t *journal) 745 { 746 J_ASSERT(journal->j_barrier_count != 0); 747 748 mutex_unlock(&journal->j_barrier); 749 write_lock(&journal->j_state_lock); 750 --journal->j_barrier_count; 751 write_unlock(&journal->j_state_lock); 752 wake_up(&journal->j_wait_transaction_locked); 753 } 754 755 static void warn_dirty_buffer(struct buffer_head *bh) 756 { 757 char b[BDEVNAME_SIZE]; 758 759 printk(KERN_WARNING 760 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 761 "There's a risk of filesystem corruption in case of system " 762 "crash.\n", 763 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 764 } 765 766 static int sleep_on_shadow_bh(void *word) 767 { 768 io_schedule(); 769 return 0; 770 } 771 772 /* 773 * If the buffer is already part of the current transaction, then there 774 * is nothing we need to do. If it is already part of a prior 775 * transaction which we are still committing to disk, then we need to 776 * make sure that we do not overwrite the old copy: we do copy-out to 777 * preserve the copy going to disk. We also account the buffer against 778 * the handle's metadata buffer credits (unless the buffer is already 779 * part of the transaction, that is). 780 * 781 */ 782 static int 783 do_get_write_access(handle_t *handle, struct journal_head *jh, 784 int force_copy) 785 { 786 struct buffer_head *bh; 787 transaction_t *transaction = handle->h_transaction; 788 journal_t *journal; 789 int error; 790 char *frozen_buffer = NULL; 791 int need_copy = 0; 792 unsigned long start_lock, time_lock; 793 794 WARN_ON(!transaction); 795 if (is_handle_aborted(handle)) 796 return -EROFS; 797 journal = transaction->t_journal; 798 799 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 800 801 JBUFFER_TRACE(jh, "entry"); 802 repeat: 803 bh = jh2bh(jh); 804 805 /* @@@ Need to check for errors here at some point. */ 806 807 start_lock = jiffies; 808 lock_buffer(bh); 809 jbd_lock_bh_state(bh); 810 811 /* If it takes too long to lock the buffer, trace it */ 812 time_lock = jbd2_time_diff(start_lock, jiffies); 813 if (time_lock > HZ/10) 814 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 815 jiffies_to_msecs(time_lock)); 816 817 /* We now hold the buffer lock so it is safe to query the buffer 818 * state. Is the buffer dirty? 819 * 820 * If so, there are two possibilities. The buffer may be 821 * non-journaled, and undergoing a quite legitimate writeback. 822 * Otherwise, it is journaled, and we don't expect dirty buffers 823 * in that state (the buffers should be marked JBD_Dirty 824 * instead.) So either the IO is being done under our own 825 * control and this is a bug, or it's a third party IO such as 826 * dump(8) (which may leave the buffer scheduled for read --- 827 * ie. locked but not dirty) or tune2fs (which may actually have 828 * the buffer dirtied, ugh.) */ 829 830 if (buffer_dirty(bh)) { 831 /* 832 * First question: is this buffer already part of the current 833 * transaction or the existing committing transaction? 834 */ 835 if (jh->b_transaction) { 836 J_ASSERT_JH(jh, 837 jh->b_transaction == transaction || 838 jh->b_transaction == 839 journal->j_committing_transaction); 840 if (jh->b_next_transaction) 841 J_ASSERT_JH(jh, jh->b_next_transaction == 842 transaction); 843 warn_dirty_buffer(bh); 844 } 845 /* 846 * In any case we need to clean the dirty flag and we must 847 * do it under the buffer lock to be sure we don't race 848 * with running write-out. 849 */ 850 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 851 clear_buffer_dirty(bh); 852 set_buffer_jbddirty(bh); 853 } 854 855 unlock_buffer(bh); 856 857 error = -EROFS; 858 if (is_handle_aborted(handle)) { 859 jbd_unlock_bh_state(bh); 860 goto out; 861 } 862 error = 0; 863 864 /* 865 * The buffer is already part of this transaction if b_transaction or 866 * b_next_transaction points to it 867 */ 868 if (jh->b_transaction == transaction || 869 jh->b_next_transaction == transaction) 870 goto done; 871 872 /* 873 * this is the first time this transaction is touching this buffer, 874 * reset the modified flag 875 */ 876 jh->b_modified = 0; 877 878 /* 879 * If there is already a copy-out version of this buffer, then we don't 880 * need to make another one 881 */ 882 if (jh->b_frozen_data) { 883 JBUFFER_TRACE(jh, "has frozen data"); 884 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 885 jh->b_next_transaction = transaction; 886 goto done; 887 } 888 889 /* Is there data here we need to preserve? */ 890 891 if (jh->b_transaction && jh->b_transaction != transaction) { 892 JBUFFER_TRACE(jh, "owned by older transaction"); 893 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 894 J_ASSERT_JH(jh, jh->b_transaction == 895 journal->j_committing_transaction); 896 897 /* There is one case we have to be very careful about. 898 * If the committing transaction is currently writing 899 * this buffer out to disk and has NOT made a copy-out, 900 * then we cannot modify the buffer contents at all 901 * right now. The essence of copy-out is that it is the 902 * extra copy, not the primary copy, which gets 903 * journaled. If the primary copy is already going to 904 * disk then we cannot do copy-out here. */ 905 906 if (buffer_shadow(bh)) { 907 JBUFFER_TRACE(jh, "on shadow: sleep"); 908 jbd_unlock_bh_state(bh); 909 wait_on_bit(&bh->b_state, BH_Shadow, 910 sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE); 911 goto repeat; 912 } 913 914 /* 915 * Only do the copy if the currently-owning transaction still 916 * needs it. If buffer isn't on BJ_Metadata list, the 917 * committing transaction is past that stage (here we use the 918 * fact that BH_Shadow is set under bh_state lock together with 919 * refiling to BJ_Shadow list and at this point we know the 920 * buffer doesn't have BH_Shadow set). 921 * 922 * Subtle point, though: if this is a get_undo_access, 923 * then we will be relying on the frozen_data to contain 924 * the new value of the committed_data record after the 925 * transaction, so we HAVE to force the frozen_data copy 926 * in that case. 927 */ 928 if (jh->b_jlist == BJ_Metadata || force_copy) { 929 JBUFFER_TRACE(jh, "generate frozen data"); 930 if (!frozen_buffer) { 931 JBUFFER_TRACE(jh, "allocate memory for buffer"); 932 jbd_unlock_bh_state(bh); 933 frozen_buffer = 934 jbd2_alloc(jh2bh(jh)->b_size, 935 GFP_NOFS); 936 if (!frozen_buffer) { 937 printk(KERN_ERR 938 "%s: OOM for frozen_buffer\n", 939 __func__); 940 JBUFFER_TRACE(jh, "oom!"); 941 error = -ENOMEM; 942 jbd_lock_bh_state(bh); 943 goto done; 944 } 945 goto repeat; 946 } 947 jh->b_frozen_data = frozen_buffer; 948 frozen_buffer = NULL; 949 need_copy = 1; 950 } 951 jh->b_next_transaction = transaction; 952 } 953 954 955 /* 956 * Finally, if the buffer is not journaled right now, we need to make 957 * sure it doesn't get written to disk before the caller actually 958 * commits the new data 959 */ 960 if (!jh->b_transaction) { 961 JBUFFER_TRACE(jh, "no transaction"); 962 J_ASSERT_JH(jh, !jh->b_next_transaction); 963 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 964 spin_lock(&journal->j_list_lock); 965 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 966 spin_unlock(&journal->j_list_lock); 967 } 968 969 done: 970 if (need_copy) { 971 struct page *page; 972 int offset; 973 char *source; 974 975 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 976 "Possible IO failure.\n"); 977 page = jh2bh(jh)->b_page; 978 offset = offset_in_page(jh2bh(jh)->b_data); 979 source = kmap_atomic(page); 980 /* Fire data frozen trigger just before we copy the data */ 981 jbd2_buffer_frozen_trigger(jh, source + offset, 982 jh->b_triggers); 983 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 984 kunmap_atomic(source); 985 986 /* 987 * Now that the frozen data is saved off, we need to store 988 * any matching triggers. 989 */ 990 jh->b_frozen_triggers = jh->b_triggers; 991 } 992 jbd_unlock_bh_state(bh); 993 994 /* 995 * If we are about to journal a buffer, then any revoke pending on it is 996 * no longer valid 997 */ 998 jbd2_journal_cancel_revoke(handle, jh); 999 1000 out: 1001 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1002 jbd2_free(frozen_buffer, bh->b_size); 1003 1004 JBUFFER_TRACE(jh, "exit"); 1005 return error; 1006 } 1007 1008 /** 1009 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1010 * @handle: transaction to add buffer modifications to 1011 * @bh: bh to be used for metadata writes 1012 * 1013 * Returns an error code or 0 on success. 1014 * 1015 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1016 * because we're write()ing a buffer which is also part of a shared mapping. 1017 */ 1018 1019 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1020 { 1021 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1022 int rc; 1023 1024 /* We do not want to get caught playing with fields which the 1025 * log thread also manipulates. Make sure that the buffer 1026 * completes any outstanding IO before proceeding. */ 1027 rc = do_get_write_access(handle, jh, 0); 1028 jbd2_journal_put_journal_head(jh); 1029 return rc; 1030 } 1031 1032 1033 /* 1034 * When the user wants to journal a newly created buffer_head 1035 * (ie. getblk() returned a new buffer and we are going to populate it 1036 * manually rather than reading off disk), then we need to keep the 1037 * buffer_head locked until it has been completely filled with new 1038 * data. In this case, we should be able to make the assertion that 1039 * the bh is not already part of an existing transaction. 1040 * 1041 * The buffer should already be locked by the caller by this point. 1042 * There is no lock ranking violation: it was a newly created, 1043 * unlocked buffer beforehand. */ 1044 1045 /** 1046 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1047 * @handle: transaction to new buffer to 1048 * @bh: new buffer. 1049 * 1050 * Call this if you create a new bh. 1051 */ 1052 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1053 { 1054 transaction_t *transaction = handle->h_transaction; 1055 journal_t *journal; 1056 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1057 int err; 1058 1059 jbd_debug(5, "journal_head %p\n", jh); 1060 WARN_ON(!transaction); 1061 err = -EROFS; 1062 if (is_handle_aborted(handle)) 1063 goto out; 1064 journal = transaction->t_journal; 1065 err = 0; 1066 1067 JBUFFER_TRACE(jh, "entry"); 1068 /* 1069 * The buffer may already belong to this transaction due to pre-zeroing 1070 * in the filesystem's new_block code. It may also be on the previous, 1071 * committing transaction's lists, but it HAS to be in Forget state in 1072 * that case: the transaction must have deleted the buffer for it to be 1073 * reused here. 1074 */ 1075 jbd_lock_bh_state(bh); 1076 spin_lock(&journal->j_list_lock); 1077 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1078 jh->b_transaction == NULL || 1079 (jh->b_transaction == journal->j_committing_transaction && 1080 jh->b_jlist == BJ_Forget))); 1081 1082 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1083 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1084 1085 if (jh->b_transaction == NULL) { 1086 /* 1087 * Previous jbd2_journal_forget() could have left the buffer 1088 * with jbddirty bit set because it was being committed. When 1089 * the commit finished, we've filed the buffer for 1090 * checkpointing and marked it dirty. Now we are reallocating 1091 * the buffer so the transaction freeing it must have 1092 * committed and so it's safe to clear the dirty bit. 1093 */ 1094 clear_buffer_dirty(jh2bh(jh)); 1095 /* first access by this transaction */ 1096 jh->b_modified = 0; 1097 1098 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1099 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1100 } else if (jh->b_transaction == journal->j_committing_transaction) { 1101 /* first access by this transaction */ 1102 jh->b_modified = 0; 1103 1104 JBUFFER_TRACE(jh, "set next transaction"); 1105 jh->b_next_transaction = transaction; 1106 } 1107 spin_unlock(&journal->j_list_lock); 1108 jbd_unlock_bh_state(bh); 1109 1110 /* 1111 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1112 * blocks which contain freed but then revoked metadata. We need 1113 * to cancel the revoke in case we end up freeing it yet again 1114 * and the reallocating as data - this would cause a second revoke, 1115 * which hits an assertion error. 1116 */ 1117 JBUFFER_TRACE(jh, "cancelling revoke"); 1118 jbd2_journal_cancel_revoke(handle, jh); 1119 out: 1120 jbd2_journal_put_journal_head(jh); 1121 return err; 1122 } 1123 1124 /** 1125 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1126 * non-rewindable consequences 1127 * @handle: transaction 1128 * @bh: buffer to undo 1129 * 1130 * Sometimes there is a need to distinguish between metadata which has 1131 * been committed to disk and that which has not. The ext3fs code uses 1132 * this for freeing and allocating space, we have to make sure that we 1133 * do not reuse freed space until the deallocation has been committed, 1134 * since if we overwrote that space we would make the delete 1135 * un-rewindable in case of a crash. 1136 * 1137 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1138 * buffer for parts of non-rewindable operations such as delete 1139 * operations on the bitmaps. The journaling code must keep a copy of 1140 * the buffer's contents prior to the undo_access call until such time 1141 * as we know that the buffer has definitely been committed to disk. 1142 * 1143 * We never need to know which transaction the committed data is part 1144 * of, buffers touched here are guaranteed to be dirtied later and so 1145 * will be committed to a new transaction in due course, at which point 1146 * we can discard the old committed data pointer. 1147 * 1148 * Returns error number or 0 on success. 1149 */ 1150 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1151 { 1152 int err; 1153 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1154 char *committed_data = NULL; 1155 1156 JBUFFER_TRACE(jh, "entry"); 1157 1158 /* 1159 * Do this first --- it can drop the journal lock, so we want to 1160 * make sure that obtaining the committed_data is done 1161 * atomically wrt. completion of any outstanding commits. 1162 */ 1163 err = do_get_write_access(handle, jh, 1); 1164 if (err) 1165 goto out; 1166 1167 repeat: 1168 if (!jh->b_committed_data) { 1169 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1170 if (!committed_data) { 1171 printk(KERN_ERR "%s: No memory for committed data\n", 1172 __func__); 1173 err = -ENOMEM; 1174 goto out; 1175 } 1176 } 1177 1178 jbd_lock_bh_state(bh); 1179 if (!jh->b_committed_data) { 1180 /* Copy out the current buffer contents into the 1181 * preserved, committed copy. */ 1182 JBUFFER_TRACE(jh, "generate b_committed data"); 1183 if (!committed_data) { 1184 jbd_unlock_bh_state(bh); 1185 goto repeat; 1186 } 1187 1188 jh->b_committed_data = committed_data; 1189 committed_data = NULL; 1190 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1191 } 1192 jbd_unlock_bh_state(bh); 1193 out: 1194 jbd2_journal_put_journal_head(jh); 1195 if (unlikely(committed_data)) 1196 jbd2_free(committed_data, bh->b_size); 1197 return err; 1198 } 1199 1200 /** 1201 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1202 * @bh: buffer to trigger on 1203 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1204 * 1205 * Set any triggers on this journal_head. This is always safe, because 1206 * triggers for a committing buffer will be saved off, and triggers for 1207 * a running transaction will match the buffer in that transaction. 1208 * 1209 * Call with NULL to clear the triggers. 1210 */ 1211 void jbd2_journal_set_triggers(struct buffer_head *bh, 1212 struct jbd2_buffer_trigger_type *type) 1213 { 1214 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1215 1216 if (WARN_ON(!jh)) 1217 return; 1218 jh->b_triggers = type; 1219 jbd2_journal_put_journal_head(jh); 1220 } 1221 1222 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1223 struct jbd2_buffer_trigger_type *triggers) 1224 { 1225 struct buffer_head *bh = jh2bh(jh); 1226 1227 if (!triggers || !triggers->t_frozen) 1228 return; 1229 1230 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1231 } 1232 1233 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1234 struct jbd2_buffer_trigger_type *triggers) 1235 { 1236 if (!triggers || !triggers->t_abort) 1237 return; 1238 1239 triggers->t_abort(triggers, jh2bh(jh)); 1240 } 1241 1242 1243 1244 /** 1245 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1246 * @handle: transaction to add buffer to. 1247 * @bh: buffer to mark 1248 * 1249 * mark dirty metadata which needs to be journaled as part of the current 1250 * transaction. 1251 * 1252 * The buffer must have previously had jbd2_journal_get_write_access() 1253 * called so that it has a valid journal_head attached to the buffer 1254 * head. 1255 * 1256 * The buffer is placed on the transaction's metadata list and is marked 1257 * as belonging to the transaction. 1258 * 1259 * Returns error number or 0 on success. 1260 * 1261 * Special care needs to be taken if the buffer already belongs to the 1262 * current committing transaction (in which case we should have frozen 1263 * data present for that commit). In that case, we don't relink the 1264 * buffer: that only gets done when the old transaction finally 1265 * completes its commit. 1266 */ 1267 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1268 { 1269 transaction_t *transaction = handle->h_transaction; 1270 journal_t *journal; 1271 struct journal_head *jh; 1272 int ret = 0; 1273 1274 WARN_ON(!transaction); 1275 if (is_handle_aborted(handle)) 1276 return -EROFS; 1277 journal = transaction->t_journal; 1278 jh = jbd2_journal_grab_journal_head(bh); 1279 if (!jh) { 1280 ret = -EUCLEAN; 1281 goto out; 1282 } 1283 jbd_debug(5, "journal_head %p\n", jh); 1284 JBUFFER_TRACE(jh, "entry"); 1285 1286 jbd_lock_bh_state(bh); 1287 1288 if (jh->b_modified == 0) { 1289 /* 1290 * This buffer's got modified and becoming part 1291 * of the transaction. This needs to be done 1292 * once a transaction -bzzz 1293 */ 1294 jh->b_modified = 1; 1295 if (handle->h_buffer_credits <= 0) { 1296 ret = -ENOSPC; 1297 goto out_unlock_bh; 1298 } 1299 handle->h_buffer_credits--; 1300 } 1301 1302 /* 1303 * fastpath, to avoid expensive locking. If this buffer is already 1304 * on the running transaction's metadata list there is nothing to do. 1305 * Nobody can take it off again because there is a handle open. 1306 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1307 * result in this test being false, so we go in and take the locks. 1308 */ 1309 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1310 JBUFFER_TRACE(jh, "fastpath"); 1311 if (unlikely(jh->b_transaction != 1312 journal->j_running_transaction)) { 1313 printk(KERN_ERR "JBD2: %s: " 1314 "jh->b_transaction (%llu, %p, %u) != " 1315 "journal->j_running_transaction (%p, %u)", 1316 journal->j_devname, 1317 (unsigned long long) bh->b_blocknr, 1318 jh->b_transaction, 1319 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1320 journal->j_running_transaction, 1321 journal->j_running_transaction ? 1322 journal->j_running_transaction->t_tid : 0); 1323 ret = -EINVAL; 1324 } 1325 goto out_unlock_bh; 1326 } 1327 1328 set_buffer_jbddirty(bh); 1329 1330 /* 1331 * Metadata already on the current transaction list doesn't 1332 * need to be filed. Metadata on another transaction's list must 1333 * be committing, and will be refiled once the commit completes: 1334 * leave it alone for now. 1335 */ 1336 if (jh->b_transaction != transaction) { 1337 JBUFFER_TRACE(jh, "already on other transaction"); 1338 if (unlikely(jh->b_transaction != 1339 journal->j_committing_transaction)) { 1340 printk(KERN_ERR "JBD2: %s: " 1341 "jh->b_transaction (%llu, %p, %u) != " 1342 "journal->j_committing_transaction (%p, %u)", 1343 journal->j_devname, 1344 (unsigned long long) bh->b_blocknr, 1345 jh->b_transaction, 1346 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1347 journal->j_committing_transaction, 1348 journal->j_committing_transaction ? 1349 journal->j_committing_transaction->t_tid : 0); 1350 ret = -EINVAL; 1351 } 1352 if (unlikely(jh->b_next_transaction != transaction)) { 1353 printk(KERN_ERR "JBD2: %s: " 1354 "jh->b_next_transaction (%llu, %p, %u) != " 1355 "transaction (%p, %u)", 1356 journal->j_devname, 1357 (unsigned long long) bh->b_blocknr, 1358 jh->b_next_transaction, 1359 jh->b_next_transaction ? 1360 jh->b_next_transaction->t_tid : 0, 1361 transaction, transaction->t_tid); 1362 ret = -EINVAL; 1363 } 1364 /* And this case is illegal: we can't reuse another 1365 * transaction's data buffer, ever. */ 1366 goto out_unlock_bh; 1367 } 1368 1369 /* That test should have eliminated the following case: */ 1370 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1371 1372 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1373 spin_lock(&journal->j_list_lock); 1374 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1375 spin_unlock(&journal->j_list_lock); 1376 out_unlock_bh: 1377 jbd_unlock_bh_state(bh); 1378 jbd2_journal_put_journal_head(jh); 1379 out: 1380 JBUFFER_TRACE(jh, "exit"); 1381 return ret; 1382 } 1383 1384 /** 1385 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1386 * @handle: transaction handle 1387 * @bh: bh to 'forget' 1388 * 1389 * We can only do the bforget if there are no commits pending against the 1390 * buffer. If the buffer is dirty in the current running transaction we 1391 * can safely unlink it. 1392 * 1393 * bh may not be a journalled buffer at all - it may be a non-JBD 1394 * buffer which came off the hashtable. Check for this. 1395 * 1396 * Decrements bh->b_count by one. 1397 * 1398 * Allow this call even if the handle has aborted --- it may be part of 1399 * the caller's cleanup after an abort. 1400 */ 1401 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1402 { 1403 transaction_t *transaction = handle->h_transaction; 1404 journal_t *journal; 1405 struct journal_head *jh; 1406 int drop_reserve = 0; 1407 int err = 0; 1408 int was_modified = 0; 1409 1410 WARN_ON(!transaction); 1411 if (is_handle_aborted(handle)) 1412 return -EROFS; 1413 journal = transaction->t_journal; 1414 1415 BUFFER_TRACE(bh, "entry"); 1416 1417 jbd_lock_bh_state(bh); 1418 spin_lock(&journal->j_list_lock); 1419 1420 if (!buffer_jbd(bh)) 1421 goto not_jbd; 1422 jh = bh2jh(bh); 1423 1424 /* Critical error: attempting to delete a bitmap buffer, maybe? 1425 * Don't do any jbd operations, and return an error. */ 1426 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1427 "inconsistent data on disk")) { 1428 err = -EIO; 1429 goto not_jbd; 1430 } 1431 1432 /* keep track of whether or not this transaction modified us */ 1433 was_modified = jh->b_modified; 1434 1435 /* 1436 * The buffer's going from the transaction, we must drop 1437 * all references -bzzz 1438 */ 1439 jh->b_modified = 0; 1440 1441 if (jh->b_transaction == transaction) { 1442 J_ASSERT_JH(jh, !jh->b_frozen_data); 1443 1444 /* If we are forgetting a buffer which is already part 1445 * of this transaction, then we can just drop it from 1446 * the transaction immediately. */ 1447 clear_buffer_dirty(bh); 1448 clear_buffer_jbddirty(bh); 1449 1450 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1451 1452 /* 1453 * we only want to drop a reference if this transaction 1454 * modified the buffer 1455 */ 1456 if (was_modified) 1457 drop_reserve = 1; 1458 1459 /* 1460 * We are no longer going to journal this buffer. 1461 * However, the commit of this transaction is still 1462 * important to the buffer: the delete that we are now 1463 * processing might obsolete an old log entry, so by 1464 * committing, we can satisfy the buffer's checkpoint. 1465 * 1466 * So, if we have a checkpoint on the buffer, we should 1467 * now refile the buffer on our BJ_Forget list so that 1468 * we know to remove the checkpoint after we commit. 1469 */ 1470 1471 if (jh->b_cp_transaction) { 1472 __jbd2_journal_temp_unlink_buffer(jh); 1473 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1474 } else { 1475 __jbd2_journal_unfile_buffer(jh); 1476 if (!buffer_jbd(bh)) { 1477 spin_unlock(&journal->j_list_lock); 1478 jbd_unlock_bh_state(bh); 1479 __bforget(bh); 1480 goto drop; 1481 } 1482 } 1483 } else if (jh->b_transaction) { 1484 J_ASSERT_JH(jh, (jh->b_transaction == 1485 journal->j_committing_transaction)); 1486 /* However, if the buffer is still owned by a prior 1487 * (committing) transaction, we can't drop it yet... */ 1488 JBUFFER_TRACE(jh, "belongs to older transaction"); 1489 /* ... but we CAN drop it from the new transaction if we 1490 * have also modified it since the original commit. */ 1491 1492 if (jh->b_next_transaction) { 1493 J_ASSERT(jh->b_next_transaction == transaction); 1494 jh->b_next_transaction = NULL; 1495 1496 /* 1497 * only drop a reference if this transaction modified 1498 * the buffer 1499 */ 1500 if (was_modified) 1501 drop_reserve = 1; 1502 } 1503 } 1504 1505 not_jbd: 1506 spin_unlock(&journal->j_list_lock); 1507 jbd_unlock_bh_state(bh); 1508 __brelse(bh); 1509 drop: 1510 if (drop_reserve) { 1511 /* no need to reserve log space for this block -bzzz */ 1512 handle->h_buffer_credits++; 1513 } 1514 return err; 1515 } 1516 1517 /** 1518 * int jbd2_journal_stop() - complete a transaction 1519 * @handle: tranaction to complete. 1520 * 1521 * All done for a particular handle. 1522 * 1523 * There is not much action needed here. We just return any remaining 1524 * buffer credits to the transaction and remove the handle. The only 1525 * complication is that we need to start a commit operation if the 1526 * filesystem is marked for synchronous update. 1527 * 1528 * jbd2_journal_stop itself will not usually return an error, but it may 1529 * do so in unusual circumstances. In particular, expect it to 1530 * return -EIO if a jbd2_journal_abort has been executed since the 1531 * transaction began. 1532 */ 1533 int jbd2_journal_stop(handle_t *handle) 1534 { 1535 transaction_t *transaction = handle->h_transaction; 1536 journal_t *journal; 1537 int err = 0, wait_for_commit = 0; 1538 tid_t tid; 1539 pid_t pid; 1540 1541 if (!transaction) 1542 goto free_and_exit; 1543 journal = transaction->t_journal; 1544 1545 J_ASSERT(journal_current_handle() == handle); 1546 1547 if (is_handle_aborted(handle)) 1548 err = -EIO; 1549 else 1550 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1551 1552 if (--handle->h_ref > 0) { 1553 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1554 handle->h_ref); 1555 return err; 1556 } 1557 1558 jbd_debug(4, "Handle %p going down\n", handle); 1559 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1560 transaction->t_tid, 1561 handle->h_type, handle->h_line_no, 1562 jiffies - handle->h_start_jiffies, 1563 handle->h_sync, handle->h_requested_credits, 1564 (handle->h_requested_credits - 1565 handle->h_buffer_credits)); 1566 1567 /* 1568 * Implement synchronous transaction batching. If the handle 1569 * was synchronous, don't force a commit immediately. Let's 1570 * yield and let another thread piggyback onto this 1571 * transaction. Keep doing that while new threads continue to 1572 * arrive. It doesn't cost much - we're about to run a commit 1573 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1574 * operations by 30x or more... 1575 * 1576 * We try and optimize the sleep time against what the 1577 * underlying disk can do, instead of having a static sleep 1578 * time. This is useful for the case where our storage is so 1579 * fast that it is more optimal to go ahead and force a flush 1580 * and wait for the transaction to be committed than it is to 1581 * wait for an arbitrary amount of time for new writers to 1582 * join the transaction. We achieve this by measuring how 1583 * long it takes to commit a transaction, and compare it with 1584 * how long this transaction has been running, and if run time 1585 * < commit time then we sleep for the delta and commit. This 1586 * greatly helps super fast disks that would see slowdowns as 1587 * more threads started doing fsyncs. 1588 * 1589 * But don't do this if this process was the most recent one 1590 * to perform a synchronous write. We do this to detect the 1591 * case where a single process is doing a stream of sync 1592 * writes. No point in waiting for joiners in that case. 1593 */ 1594 pid = current->pid; 1595 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1596 u64 commit_time, trans_time; 1597 1598 journal->j_last_sync_writer = pid; 1599 1600 read_lock(&journal->j_state_lock); 1601 commit_time = journal->j_average_commit_time; 1602 read_unlock(&journal->j_state_lock); 1603 1604 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1605 transaction->t_start_time)); 1606 1607 commit_time = max_t(u64, commit_time, 1608 1000*journal->j_min_batch_time); 1609 commit_time = min_t(u64, commit_time, 1610 1000*journal->j_max_batch_time); 1611 1612 if (trans_time < commit_time) { 1613 ktime_t expires = ktime_add_ns(ktime_get(), 1614 commit_time); 1615 set_current_state(TASK_UNINTERRUPTIBLE); 1616 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1617 } 1618 } 1619 1620 if (handle->h_sync) 1621 transaction->t_synchronous_commit = 1; 1622 current->journal_info = NULL; 1623 atomic_sub(handle->h_buffer_credits, 1624 &transaction->t_outstanding_credits); 1625 1626 /* 1627 * If the handle is marked SYNC, we need to set another commit 1628 * going! We also want to force a commit if the current 1629 * transaction is occupying too much of the log, or if the 1630 * transaction is too old now. 1631 */ 1632 if (handle->h_sync || 1633 (atomic_read(&transaction->t_outstanding_credits) > 1634 journal->j_max_transaction_buffers) || 1635 time_after_eq(jiffies, transaction->t_expires)) { 1636 /* Do this even for aborted journals: an abort still 1637 * completes the commit thread, it just doesn't write 1638 * anything to disk. */ 1639 1640 jbd_debug(2, "transaction too old, requesting commit for " 1641 "handle %p\n", handle); 1642 /* This is non-blocking */ 1643 jbd2_log_start_commit(journal, transaction->t_tid); 1644 1645 /* 1646 * Special case: JBD2_SYNC synchronous updates require us 1647 * to wait for the commit to complete. 1648 */ 1649 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1650 wait_for_commit = 1; 1651 } 1652 1653 /* 1654 * Once we drop t_updates, if it goes to zero the transaction 1655 * could start committing on us and eventually disappear. So 1656 * once we do this, we must not dereference transaction 1657 * pointer again. 1658 */ 1659 tid = transaction->t_tid; 1660 if (atomic_dec_and_test(&transaction->t_updates)) { 1661 wake_up(&journal->j_wait_updates); 1662 if (journal->j_barrier_count) 1663 wake_up(&journal->j_wait_transaction_locked); 1664 } 1665 1666 if (wait_for_commit) 1667 err = jbd2_log_wait_commit(journal, tid); 1668 1669 lock_map_release(&handle->h_lockdep_map); 1670 1671 if (handle->h_rsv_handle) 1672 jbd2_journal_free_reserved(handle->h_rsv_handle); 1673 free_and_exit: 1674 jbd2_free_handle(handle); 1675 return err; 1676 } 1677 1678 /* 1679 * 1680 * List management code snippets: various functions for manipulating the 1681 * transaction buffer lists. 1682 * 1683 */ 1684 1685 /* 1686 * Append a buffer to a transaction list, given the transaction's list head 1687 * pointer. 1688 * 1689 * j_list_lock is held. 1690 * 1691 * jbd_lock_bh_state(jh2bh(jh)) is held. 1692 */ 1693 1694 static inline void 1695 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1696 { 1697 if (!*list) { 1698 jh->b_tnext = jh->b_tprev = jh; 1699 *list = jh; 1700 } else { 1701 /* Insert at the tail of the list to preserve order */ 1702 struct journal_head *first = *list, *last = first->b_tprev; 1703 jh->b_tprev = last; 1704 jh->b_tnext = first; 1705 last->b_tnext = first->b_tprev = jh; 1706 } 1707 } 1708 1709 /* 1710 * Remove a buffer from a transaction list, given the transaction's list 1711 * head pointer. 1712 * 1713 * Called with j_list_lock held, and the journal may not be locked. 1714 * 1715 * jbd_lock_bh_state(jh2bh(jh)) is held. 1716 */ 1717 1718 static inline void 1719 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1720 { 1721 if (*list == jh) { 1722 *list = jh->b_tnext; 1723 if (*list == jh) 1724 *list = NULL; 1725 } 1726 jh->b_tprev->b_tnext = jh->b_tnext; 1727 jh->b_tnext->b_tprev = jh->b_tprev; 1728 } 1729 1730 /* 1731 * Remove a buffer from the appropriate transaction list. 1732 * 1733 * Note that this function can *change* the value of 1734 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1735 * t_reserved_list. If the caller is holding onto a copy of one of these 1736 * pointers, it could go bad. Generally the caller needs to re-read the 1737 * pointer from the transaction_t. 1738 * 1739 * Called under j_list_lock. 1740 */ 1741 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1742 { 1743 struct journal_head **list = NULL; 1744 transaction_t *transaction; 1745 struct buffer_head *bh = jh2bh(jh); 1746 1747 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1748 transaction = jh->b_transaction; 1749 if (transaction) 1750 assert_spin_locked(&transaction->t_journal->j_list_lock); 1751 1752 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1753 if (jh->b_jlist != BJ_None) 1754 J_ASSERT_JH(jh, transaction != NULL); 1755 1756 switch (jh->b_jlist) { 1757 case BJ_None: 1758 return; 1759 case BJ_Metadata: 1760 transaction->t_nr_buffers--; 1761 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1762 list = &transaction->t_buffers; 1763 break; 1764 case BJ_Forget: 1765 list = &transaction->t_forget; 1766 break; 1767 case BJ_Shadow: 1768 list = &transaction->t_shadow_list; 1769 break; 1770 case BJ_Reserved: 1771 list = &transaction->t_reserved_list; 1772 break; 1773 } 1774 1775 __blist_del_buffer(list, jh); 1776 jh->b_jlist = BJ_None; 1777 if (test_clear_buffer_jbddirty(bh)) 1778 mark_buffer_dirty(bh); /* Expose it to the VM */ 1779 } 1780 1781 /* 1782 * Remove buffer from all transactions. 1783 * 1784 * Called with bh_state lock and j_list_lock 1785 * 1786 * jh and bh may be already freed when this function returns. 1787 */ 1788 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1789 { 1790 __jbd2_journal_temp_unlink_buffer(jh); 1791 jh->b_transaction = NULL; 1792 jbd2_journal_put_journal_head(jh); 1793 } 1794 1795 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1796 { 1797 struct buffer_head *bh = jh2bh(jh); 1798 1799 /* Get reference so that buffer cannot be freed before we unlock it */ 1800 get_bh(bh); 1801 jbd_lock_bh_state(bh); 1802 spin_lock(&journal->j_list_lock); 1803 __jbd2_journal_unfile_buffer(jh); 1804 spin_unlock(&journal->j_list_lock); 1805 jbd_unlock_bh_state(bh); 1806 __brelse(bh); 1807 } 1808 1809 /* 1810 * Called from jbd2_journal_try_to_free_buffers(). 1811 * 1812 * Called under jbd_lock_bh_state(bh) 1813 */ 1814 static void 1815 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1816 { 1817 struct journal_head *jh; 1818 1819 jh = bh2jh(bh); 1820 1821 if (buffer_locked(bh) || buffer_dirty(bh)) 1822 goto out; 1823 1824 if (jh->b_next_transaction != NULL) 1825 goto out; 1826 1827 spin_lock(&journal->j_list_lock); 1828 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1829 /* written-back checkpointed metadata buffer */ 1830 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1831 __jbd2_journal_remove_checkpoint(jh); 1832 } 1833 spin_unlock(&journal->j_list_lock); 1834 out: 1835 return; 1836 } 1837 1838 /** 1839 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1840 * @journal: journal for operation 1841 * @page: to try and free 1842 * @gfp_mask: we use the mask to detect how hard should we try to release 1843 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1844 * release the buffers. 1845 * 1846 * 1847 * For all the buffers on this page, 1848 * if they are fully written out ordered data, move them onto BUF_CLEAN 1849 * so try_to_free_buffers() can reap them. 1850 * 1851 * This function returns non-zero if we wish try_to_free_buffers() 1852 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1853 * We also do it if the page has locked or dirty buffers and the caller wants 1854 * us to perform sync or async writeout. 1855 * 1856 * This complicates JBD locking somewhat. We aren't protected by the 1857 * BKL here. We wish to remove the buffer from its committing or 1858 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1859 * 1860 * This may *change* the value of transaction_t->t_datalist, so anyone 1861 * who looks at t_datalist needs to lock against this function. 1862 * 1863 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1864 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1865 * will come out of the lock with the buffer dirty, which makes it 1866 * ineligible for release here. 1867 * 1868 * Who else is affected by this? hmm... Really the only contender 1869 * is do_get_write_access() - it could be looking at the buffer while 1870 * journal_try_to_free_buffer() is changing its state. But that 1871 * cannot happen because we never reallocate freed data as metadata 1872 * while the data is part of a transaction. Yes? 1873 * 1874 * Return 0 on failure, 1 on success 1875 */ 1876 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1877 struct page *page, gfp_t gfp_mask) 1878 { 1879 struct buffer_head *head; 1880 struct buffer_head *bh; 1881 int ret = 0; 1882 1883 J_ASSERT(PageLocked(page)); 1884 1885 head = page_buffers(page); 1886 bh = head; 1887 do { 1888 struct journal_head *jh; 1889 1890 /* 1891 * We take our own ref against the journal_head here to avoid 1892 * having to add tons of locking around each instance of 1893 * jbd2_journal_put_journal_head(). 1894 */ 1895 jh = jbd2_journal_grab_journal_head(bh); 1896 if (!jh) 1897 continue; 1898 1899 jbd_lock_bh_state(bh); 1900 __journal_try_to_free_buffer(journal, bh); 1901 jbd2_journal_put_journal_head(jh); 1902 jbd_unlock_bh_state(bh); 1903 if (buffer_jbd(bh)) 1904 goto busy; 1905 } while ((bh = bh->b_this_page) != head); 1906 1907 ret = try_to_free_buffers(page); 1908 1909 busy: 1910 return ret; 1911 } 1912 1913 /* 1914 * This buffer is no longer needed. If it is on an older transaction's 1915 * checkpoint list we need to record it on this transaction's forget list 1916 * to pin this buffer (and hence its checkpointing transaction) down until 1917 * this transaction commits. If the buffer isn't on a checkpoint list, we 1918 * release it. 1919 * Returns non-zero if JBD no longer has an interest in the buffer. 1920 * 1921 * Called under j_list_lock. 1922 * 1923 * Called under jbd_lock_bh_state(bh). 1924 */ 1925 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1926 { 1927 int may_free = 1; 1928 struct buffer_head *bh = jh2bh(jh); 1929 1930 if (jh->b_cp_transaction) { 1931 JBUFFER_TRACE(jh, "on running+cp transaction"); 1932 __jbd2_journal_temp_unlink_buffer(jh); 1933 /* 1934 * We don't want to write the buffer anymore, clear the 1935 * bit so that we don't confuse checks in 1936 * __journal_file_buffer 1937 */ 1938 clear_buffer_dirty(bh); 1939 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1940 may_free = 0; 1941 } else { 1942 JBUFFER_TRACE(jh, "on running transaction"); 1943 __jbd2_journal_unfile_buffer(jh); 1944 } 1945 return may_free; 1946 } 1947 1948 /* 1949 * jbd2_journal_invalidatepage 1950 * 1951 * This code is tricky. It has a number of cases to deal with. 1952 * 1953 * There are two invariants which this code relies on: 1954 * 1955 * i_size must be updated on disk before we start calling invalidatepage on the 1956 * data. 1957 * 1958 * This is done in ext3 by defining an ext3_setattr method which 1959 * updates i_size before truncate gets going. By maintaining this 1960 * invariant, we can be sure that it is safe to throw away any buffers 1961 * attached to the current transaction: once the transaction commits, 1962 * we know that the data will not be needed. 1963 * 1964 * Note however that we can *not* throw away data belonging to the 1965 * previous, committing transaction! 1966 * 1967 * Any disk blocks which *are* part of the previous, committing 1968 * transaction (and which therefore cannot be discarded immediately) are 1969 * not going to be reused in the new running transaction 1970 * 1971 * The bitmap committed_data images guarantee this: any block which is 1972 * allocated in one transaction and removed in the next will be marked 1973 * as in-use in the committed_data bitmap, so cannot be reused until 1974 * the next transaction to delete the block commits. This means that 1975 * leaving committing buffers dirty is quite safe: the disk blocks 1976 * cannot be reallocated to a different file and so buffer aliasing is 1977 * not possible. 1978 * 1979 * 1980 * The above applies mainly to ordered data mode. In writeback mode we 1981 * don't make guarantees about the order in which data hits disk --- in 1982 * particular we don't guarantee that new dirty data is flushed before 1983 * transaction commit --- so it is always safe just to discard data 1984 * immediately in that mode. --sct 1985 */ 1986 1987 /* 1988 * The journal_unmap_buffer helper function returns zero if the buffer 1989 * concerned remains pinned as an anonymous buffer belonging to an older 1990 * transaction. 1991 * 1992 * We're outside-transaction here. Either or both of j_running_transaction 1993 * and j_committing_transaction may be NULL. 1994 */ 1995 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1996 int partial_page) 1997 { 1998 transaction_t *transaction; 1999 struct journal_head *jh; 2000 int may_free = 1; 2001 2002 BUFFER_TRACE(bh, "entry"); 2003 2004 /* 2005 * It is safe to proceed here without the j_list_lock because the 2006 * buffers cannot be stolen by try_to_free_buffers as long as we are 2007 * holding the page lock. --sct 2008 */ 2009 2010 if (!buffer_jbd(bh)) 2011 goto zap_buffer_unlocked; 2012 2013 /* OK, we have data buffer in journaled mode */ 2014 write_lock(&journal->j_state_lock); 2015 jbd_lock_bh_state(bh); 2016 spin_lock(&journal->j_list_lock); 2017 2018 jh = jbd2_journal_grab_journal_head(bh); 2019 if (!jh) 2020 goto zap_buffer_no_jh; 2021 2022 /* 2023 * We cannot remove the buffer from checkpoint lists until the 2024 * transaction adding inode to orphan list (let's call it T) 2025 * is committed. Otherwise if the transaction changing the 2026 * buffer would be cleaned from the journal before T is 2027 * committed, a crash will cause that the correct contents of 2028 * the buffer will be lost. On the other hand we have to 2029 * clear the buffer dirty bit at latest at the moment when the 2030 * transaction marking the buffer as freed in the filesystem 2031 * structures is committed because from that moment on the 2032 * block can be reallocated and used by a different page. 2033 * Since the block hasn't been freed yet but the inode has 2034 * already been added to orphan list, it is safe for us to add 2035 * the buffer to BJ_Forget list of the newest transaction. 2036 * 2037 * Also we have to clear buffer_mapped flag of a truncated buffer 2038 * because the buffer_head may be attached to the page straddling 2039 * i_size (can happen only when blocksize < pagesize) and thus the 2040 * buffer_head can be reused when the file is extended again. So we end 2041 * up keeping around invalidated buffers attached to transactions' 2042 * BJ_Forget list just to stop checkpointing code from cleaning up 2043 * the transaction this buffer was modified in. 2044 */ 2045 transaction = jh->b_transaction; 2046 if (transaction == NULL) { 2047 /* First case: not on any transaction. If it 2048 * has no checkpoint link, then we can zap it: 2049 * it's a writeback-mode buffer so we don't care 2050 * if it hits disk safely. */ 2051 if (!jh->b_cp_transaction) { 2052 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2053 goto zap_buffer; 2054 } 2055 2056 if (!buffer_dirty(bh)) { 2057 /* bdflush has written it. We can drop it now */ 2058 goto zap_buffer; 2059 } 2060 2061 /* OK, it must be in the journal but still not 2062 * written fully to disk: it's metadata or 2063 * journaled data... */ 2064 2065 if (journal->j_running_transaction) { 2066 /* ... and once the current transaction has 2067 * committed, the buffer won't be needed any 2068 * longer. */ 2069 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2070 may_free = __dispose_buffer(jh, 2071 journal->j_running_transaction); 2072 goto zap_buffer; 2073 } else { 2074 /* There is no currently-running transaction. So the 2075 * orphan record which we wrote for this file must have 2076 * passed into commit. We must attach this buffer to 2077 * the committing transaction, if it exists. */ 2078 if (journal->j_committing_transaction) { 2079 JBUFFER_TRACE(jh, "give to committing trans"); 2080 may_free = __dispose_buffer(jh, 2081 journal->j_committing_transaction); 2082 goto zap_buffer; 2083 } else { 2084 /* The orphan record's transaction has 2085 * committed. We can cleanse this buffer */ 2086 clear_buffer_jbddirty(bh); 2087 goto zap_buffer; 2088 } 2089 } 2090 } else if (transaction == journal->j_committing_transaction) { 2091 JBUFFER_TRACE(jh, "on committing transaction"); 2092 /* 2093 * The buffer is committing, we simply cannot touch 2094 * it. If the page is straddling i_size we have to wait 2095 * for commit and try again. 2096 */ 2097 if (partial_page) { 2098 jbd2_journal_put_journal_head(jh); 2099 spin_unlock(&journal->j_list_lock); 2100 jbd_unlock_bh_state(bh); 2101 write_unlock(&journal->j_state_lock); 2102 return -EBUSY; 2103 } 2104 /* 2105 * OK, buffer won't be reachable after truncate. We just set 2106 * j_next_transaction to the running transaction (if there is 2107 * one) and mark buffer as freed so that commit code knows it 2108 * should clear dirty bits when it is done with the buffer. 2109 */ 2110 set_buffer_freed(bh); 2111 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2112 jh->b_next_transaction = journal->j_running_transaction; 2113 jbd2_journal_put_journal_head(jh); 2114 spin_unlock(&journal->j_list_lock); 2115 jbd_unlock_bh_state(bh); 2116 write_unlock(&journal->j_state_lock); 2117 return 0; 2118 } else { 2119 /* Good, the buffer belongs to the running transaction. 2120 * We are writing our own transaction's data, not any 2121 * previous one's, so it is safe to throw it away 2122 * (remember that we expect the filesystem to have set 2123 * i_size already for this truncate so recovery will not 2124 * expose the disk blocks we are discarding here.) */ 2125 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2126 JBUFFER_TRACE(jh, "on running transaction"); 2127 may_free = __dispose_buffer(jh, transaction); 2128 } 2129 2130 zap_buffer: 2131 /* 2132 * This is tricky. Although the buffer is truncated, it may be reused 2133 * if blocksize < pagesize and it is attached to the page straddling 2134 * EOF. Since the buffer might have been added to BJ_Forget list of the 2135 * running transaction, journal_get_write_access() won't clear 2136 * b_modified and credit accounting gets confused. So clear b_modified 2137 * here. 2138 */ 2139 jh->b_modified = 0; 2140 jbd2_journal_put_journal_head(jh); 2141 zap_buffer_no_jh: 2142 spin_unlock(&journal->j_list_lock); 2143 jbd_unlock_bh_state(bh); 2144 write_unlock(&journal->j_state_lock); 2145 zap_buffer_unlocked: 2146 clear_buffer_dirty(bh); 2147 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2148 clear_buffer_mapped(bh); 2149 clear_buffer_req(bh); 2150 clear_buffer_new(bh); 2151 clear_buffer_delay(bh); 2152 clear_buffer_unwritten(bh); 2153 bh->b_bdev = NULL; 2154 return may_free; 2155 } 2156 2157 /** 2158 * void jbd2_journal_invalidatepage() 2159 * @journal: journal to use for flush... 2160 * @page: page to flush 2161 * @offset: start of the range to invalidate 2162 * @length: length of the range to invalidate 2163 * 2164 * Reap page buffers containing data after in the specified range in page. 2165 * Can return -EBUSY if buffers are part of the committing transaction and 2166 * the page is straddling i_size. Caller then has to wait for current commit 2167 * and try again. 2168 */ 2169 int jbd2_journal_invalidatepage(journal_t *journal, 2170 struct page *page, 2171 unsigned int offset, 2172 unsigned int length) 2173 { 2174 struct buffer_head *head, *bh, *next; 2175 unsigned int stop = offset + length; 2176 unsigned int curr_off = 0; 2177 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2178 int may_free = 1; 2179 int ret = 0; 2180 2181 if (!PageLocked(page)) 2182 BUG(); 2183 if (!page_has_buffers(page)) 2184 return 0; 2185 2186 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2187 2188 /* We will potentially be playing with lists other than just the 2189 * data lists (especially for journaled data mode), so be 2190 * cautious in our locking. */ 2191 2192 head = bh = page_buffers(page); 2193 do { 2194 unsigned int next_off = curr_off + bh->b_size; 2195 next = bh->b_this_page; 2196 2197 if (next_off > stop) 2198 return 0; 2199 2200 if (offset <= curr_off) { 2201 /* This block is wholly outside the truncation point */ 2202 lock_buffer(bh); 2203 ret = journal_unmap_buffer(journal, bh, partial_page); 2204 unlock_buffer(bh); 2205 if (ret < 0) 2206 return ret; 2207 may_free &= ret; 2208 } 2209 curr_off = next_off; 2210 bh = next; 2211 2212 } while (bh != head); 2213 2214 if (!partial_page) { 2215 if (may_free && try_to_free_buffers(page)) 2216 J_ASSERT(!page_has_buffers(page)); 2217 } 2218 return 0; 2219 } 2220 2221 /* 2222 * File a buffer on the given transaction list. 2223 */ 2224 void __jbd2_journal_file_buffer(struct journal_head *jh, 2225 transaction_t *transaction, int jlist) 2226 { 2227 struct journal_head **list = NULL; 2228 int was_dirty = 0; 2229 struct buffer_head *bh = jh2bh(jh); 2230 2231 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2232 assert_spin_locked(&transaction->t_journal->j_list_lock); 2233 2234 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2235 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2236 jh->b_transaction == NULL); 2237 2238 if (jh->b_transaction && jh->b_jlist == jlist) 2239 return; 2240 2241 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2242 jlist == BJ_Shadow || jlist == BJ_Forget) { 2243 /* 2244 * For metadata buffers, we track dirty bit in buffer_jbddirty 2245 * instead of buffer_dirty. We should not see a dirty bit set 2246 * here because we clear it in do_get_write_access but e.g. 2247 * tune2fs can modify the sb and set the dirty bit at any time 2248 * so we try to gracefully handle that. 2249 */ 2250 if (buffer_dirty(bh)) 2251 warn_dirty_buffer(bh); 2252 if (test_clear_buffer_dirty(bh) || 2253 test_clear_buffer_jbddirty(bh)) 2254 was_dirty = 1; 2255 } 2256 2257 if (jh->b_transaction) 2258 __jbd2_journal_temp_unlink_buffer(jh); 2259 else 2260 jbd2_journal_grab_journal_head(bh); 2261 jh->b_transaction = transaction; 2262 2263 switch (jlist) { 2264 case BJ_None: 2265 J_ASSERT_JH(jh, !jh->b_committed_data); 2266 J_ASSERT_JH(jh, !jh->b_frozen_data); 2267 return; 2268 case BJ_Metadata: 2269 transaction->t_nr_buffers++; 2270 list = &transaction->t_buffers; 2271 break; 2272 case BJ_Forget: 2273 list = &transaction->t_forget; 2274 break; 2275 case BJ_Shadow: 2276 list = &transaction->t_shadow_list; 2277 break; 2278 case BJ_Reserved: 2279 list = &transaction->t_reserved_list; 2280 break; 2281 } 2282 2283 __blist_add_buffer(list, jh); 2284 jh->b_jlist = jlist; 2285 2286 if (was_dirty) 2287 set_buffer_jbddirty(bh); 2288 } 2289 2290 void jbd2_journal_file_buffer(struct journal_head *jh, 2291 transaction_t *transaction, int jlist) 2292 { 2293 jbd_lock_bh_state(jh2bh(jh)); 2294 spin_lock(&transaction->t_journal->j_list_lock); 2295 __jbd2_journal_file_buffer(jh, transaction, jlist); 2296 spin_unlock(&transaction->t_journal->j_list_lock); 2297 jbd_unlock_bh_state(jh2bh(jh)); 2298 } 2299 2300 /* 2301 * Remove a buffer from its current buffer list in preparation for 2302 * dropping it from its current transaction entirely. If the buffer has 2303 * already started to be used by a subsequent transaction, refile the 2304 * buffer on that transaction's metadata list. 2305 * 2306 * Called under j_list_lock 2307 * Called under jbd_lock_bh_state(jh2bh(jh)) 2308 * 2309 * jh and bh may be already free when this function returns 2310 */ 2311 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2312 { 2313 int was_dirty, jlist; 2314 struct buffer_head *bh = jh2bh(jh); 2315 2316 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2317 if (jh->b_transaction) 2318 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2319 2320 /* If the buffer is now unused, just drop it. */ 2321 if (jh->b_next_transaction == NULL) { 2322 __jbd2_journal_unfile_buffer(jh); 2323 return; 2324 } 2325 2326 /* 2327 * It has been modified by a later transaction: add it to the new 2328 * transaction's metadata list. 2329 */ 2330 2331 was_dirty = test_clear_buffer_jbddirty(bh); 2332 __jbd2_journal_temp_unlink_buffer(jh); 2333 /* 2334 * We set b_transaction here because b_next_transaction will inherit 2335 * our jh reference and thus __jbd2_journal_file_buffer() must not 2336 * take a new one. 2337 */ 2338 jh->b_transaction = jh->b_next_transaction; 2339 jh->b_next_transaction = NULL; 2340 if (buffer_freed(bh)) 2341 jlist = BJ_Forget; 2342 else if (jh->b_modified) 2343 jlist = BJ_Metadata; 2344 else 2345 jlist = BJ_Reserved; 2346 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2347 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2348 2349 if (was_dirty) 2350 set_buffer_jbddirty(bh); 2351 } 2352 2353 /* 2354 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2355 * bh reference so that we can safely unlock bh. 2356 * 2357 * The jh and bh may be freed by this call. 2358 */ 2359 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2360 { 2361 struct buffer_head *bh = jh2bh(jh); 2362 2363 /* Get reference so that buffer cannot be freed before we unlock it */ 2364 get_bh(bh); 2365 jbd_lock_bh_state(bh); 2366 spin_lock(&journal->j_list_lock); 2367 __jbd2_journal_refile_buffer(jh); 2368 jbd_unlock_bh_state(bh); 2369 spin_unlock(&journal->j_list_lock); 2370 __brelse(bh); 2371 } 2372 2373 /* 2374 * File inode in the inode list of the handle's transaction 2375 */ 2376 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2377 { 2378 transaction_t *transaction = handle->h_transaction; 2379 journal_t *journal; 2380 2381 WARN_ON(!transaction); 2382 if (is_handle_aborted(handle)) 2383 return -EROFS; 2384 journal = transaction->t_journal; 2385 2386 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2387 transaction->t_tid); 2388 2389 /* 2390 * First check whether inode isn't already on the transaction's 2391 * lists without taking the lock. Note that this check is safe 2392 * without the lock as we cannot race with somebody removing inode 2393 * from the transaction. The reason is that we remove inode from the 2394 * transaction only in journal_release_jbd_inode() and when we commit 2395 * the transaction. We are guarded from the first case by holding 2396 * a reference to the inode. We are safe against the second case 2397 * because if jinode->i_transaction == transaction, commit code 2398 * cannot touch the transaction because we hold reference to it, 2399 * and if jinode->i_next_transaction == transaction, commit code 2400 * will only file the inode where we want it. 2401 */ 2402 if (jinode->i_transaction == transaction || 2403 jinode->i_next_transaction == transaction) 2404 return 0; 2405 2406 spin_lock(&journal->j_list_lock); 2407 2408 if (jinode->i_transaction == transaction || 2409 jinode->i_next_transaction == transaction) 2410 goto done; 2411 2412 /* 2413 * We only ever set this variable to 1 so the test is safe. Since 2414 * t_need_data_flush is likely to be set, we do the test to save some 2415 * cacheline bouncing 2416 */ 2417 if (!transaction->t_need_data_flush) 2418 transaction->t_need_data_flush = 1; 2419 /* On some different transaction's list - should be 2420 * the committing one */ 2421 if (jinode->i_transaction) { 2422 J_ASSERT(jinode->i_next_transaction == NULL); 2423 J_ASSERT(jinode->i_transaction == 2424 journal->j_committing_transaction); 2425 jinode->i_next_transaction = transaction; 2426 goto done; 2427 } 2428 /* Not on any transaction list... */ 2429 J_ASSERT(!jinode->i_next_transaction); 2430 jinode->i_transaction = transaction; 2431 list_add(&jinode->i_list, &transaction->t_inode_list); 2432 done: 2433 spin_unlock(&journal->j_list_lock); 2434 2435 return 0; 2436 } 2437 2438 /* 2439 * File truncate and transaction commit interact with each other in a 2440 * non-trivial way. If a transaction writing data block A is 2441 * committing, we cannot discard the data by truncate until we have 2442 * written them. Otherwise if we crashed after the transaction with 2443 * write has committed but before the transaction with truncate has 2444 * committed, we could see stale data in block A. This function is a 2445 * helper to solve this problem. It starts writeout of the truncated 2446 * part in case it is in the committing transaction. 2447 * 2448 * Filesystem code must call this function when inode is journaled in 2449 * ordered mode before truncation happens and after the inode has been 2450 * placed on orphan list with the new inode size. The second condition 2451 * avoids the race that someone writes new data and we start 2452 * committing the transaction after this function has been called but 2453 * before a transaction for truncate is started (and furthermore it 2454 * allows us to optimize the case where the addition to orphan list 2455 * happens in the same transaction as write --- we don't have to write 2456 * any data in such case). 2457 */ 2458 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2459 struct jbd2_inode *jinode, 2460 loff_t new_size) 2461 { 2462 transaction_t *inode_trans, *commit_trans; 2463 int ret = 0; 2464 2465 /* This is a quick check to avoid locking if not necessary */ 2466 if (!jinode->i_transaction) 2467 goto out; 2468 /* Locks are here just to force reading of recent values, it is 2469 * enough that the transaction was not committing before we started 2470 * a transaction adding the inode to orphan list */ 2471 read_lock(&journal->j_state_lock); 2472 commit_trans = journal->j_committing_transaction; 2473 read_unlock(&journal->j_state_lock); 2474 spin_lock(&journal->j_list_lock); 2475 inode_trans = jinode->i_transaction; 2476 spin_unlock(&journal->j_list_lock); 2477 if (inode_trans == commit_trans) { 2478 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2479 new_size, LLONG_MAX); 2480 if (ret) 2481 jbd2_journal_abort(journal, ret); 2482 } 2483 out: 2484 return ret; 2485 } 2486