xref: /openbmc/linux/fs/jbd2/transaction.c (revision 9da8320b)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 
208 		/*
209 		 * Is the number of reserved credits in the current transaction too
210 		 * big to fit this handle? Wait until reserved credits are freed.
211 		 */
212 		if (atomic_read(&journal->j_reserved_credits) + total >
213 		    journal->j_max_transaction_buffers) {
214 			read_unlock(&journal->j_state_lock);
215 			wait_event(journal->j_wait_reserved,
216 				   atomic_read(&journal->j_reserved_credits) + total <=
217 				   journal->j_max_transaction_buffers);
218 			return 1;
219 		}
220 
221 		wait_transaction_locked(journal);
222 		return 1;
223 	}
224 
225 	/*
226 	 * The commit code assumes that it can get enough log space
227 	 * without forcing a checkpoint.  This is *critical* for
228 	 * correctness: a checkpoint of a buffer which is also
229 	 * associated with a committing transaction creates a deadlock,
230 	 * so commit simply cannot force through checkpoints.
231 	 *
232 	 * We must therefore ensure the necessary space in the journal
233 	 * *before* starting to dirty potentially checkpointed buffers
234 	 * in the new transaction.
235 	 */
236 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 		atomic_sub(total, &t->t_outstanding_credits);
238 		read_unlock(&journal->j_state_lock);
239 		write_lock(&journal->j_state_lock);
240 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241 			__jbd2_log_wait_for_space(journal);
242 		write_unlock(&journal->j_state_lock);
243 		return 1;
244 	}
245 
246 	/* No reservation? We are done... */
247 	if (!rsv_blocks)
248 		return 0;
249 
250 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251 	/* We allow at most half of a transaction to be reserved */
252 	if (needed > journal->j_max_transaction_buffers / 2) {
253 		sub_reserved_credits(journal, rsv_blocks);
254 		atomic_sub(total, &t->t_outstanding_credits);
255 		read_unlock(&journal->j_state_lock);
256 		wait_event(journal->j_wait_reserved,
257 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 			 <= journal->j_max_transaction_buffers / 2);
259 		return 1;
260 	}
261 	return 0;
262 }
263 
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270 
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 			     gfp_t gfp_mask)
273 {
274 	transaction_t	*transaction, *new_transaction = NULL;
275 	int		blocks = handle->h_buffer_credits;
276 	int		rsv_blocks = 0;
277 	unsigned long ts = jiffies;
278 
279 	if (handle->h_rsv_handle)
280 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281 
282 	/*
283 	 * Limit the number of reserved credits to 1/2 of maximum transaction
284 	 * size and limit the number of total credits to not exceed maximum
285 	 * transaction size per operation.
286 	 */
287 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 		printk(KERN_ERR "JBD2: %s wants too many credits "
290 		       "credits:%d rsv_credits:%d max:%d\n",
291 		       current->comm, blocks, rsv_blocks,
292 		       journal->j_max_transaction_buffers);
293 		WARN_ON(1);
294 		return -ENOSPC;
295 	}
296 
297 alloc_transaction:
298 	if (!journal->j_running_transaction) {
299 		/*
300 		 * If __GFP_FS is not present, then we may be being called from
301 		 * inside the fs writeback layer, so we MUST NOT fail.
302 		 */
303 		if ((gfp_mask & __GFP_FS) == 0)
304 			gfp_mask |= __GFP_NOFAIL;
305 		new_transaction = kmem_cache_zalloc(transaction_cache,
306 						    gfp_mask);
307 		if (!new_transaction)
308 			return -ENOMEM;
309 	}
310 
311 	jbd_debug(3, "New handle %p going live.\n", handle);
312 
313 	/*
314 	 * We need to hold j_state_lock until t_updates has been incremented,
315 	 * for proper journal barrier handling
316 	 */
317 repeat:
318 	read_lock(&journal->j_state_lock);
319 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 	if (is_journal_aborted(journal) ||
321 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 		read_unlock(&journal->j_state_lock);
323 		jbd2_journal_free_transaction(new_transaction);
324 		return -EROFS;
325 	}
326 
327 	/*
328 	 * Wait on the journal's transaction barrier if necessary. Specifically
329 	 * we allow reserved handles to proceed because otherwise commit could
330 	 * deadlock on page writeback not being able to complete.
331 	 */
332 	if (!handle->h_reserved && journal->j_barrier_count) {
333 		read_unlock(&journal->j_state_lock);
334 		wait_event(journal->j_wait_transaction_locked,
335 				journal->j_barrier_count == 0);
336 		goto repeat;
337 	}
338 
339 	if (!journal->j_running_transaction) {
340 		read_unlock(&journal->j_state_lock);
341 		if (!new_transaction)
342 			goto alloc_transaction;
343 		write_lock(&journal->j_state_lock);
344 		if (!journal->j_running_transaction &&
345 		    (handle->h_reserved || !journal->j_barrier_count)) {
346 			jbd2_get_transaction(journal, new_transaction);
347 			new_transaction = NULL;
348 		}
349 		write_unlock(&journal->j_state_lock);
350 		goto repeat;
351 	}
352 
353 	transaction = journal->j_running_transaction;
354 
355 	if (!handle->h_reserved) {
356 		/* We may have dropped j_state_lock - restart in that case */
357 		if (add_transaction_credits(journal, blocks, rsv_blocks))
358 			goto repeat;
359 	} else {
360 		/*
361 		 * We have handle reserved so we are allowed to join T_LOCKED
362 		 * transaction and we don't have to check for transaction size
363 		 * and journal space.
364 		 */
365 		sub_reserved_credits(journal, blocks);
366 		handle->h_reserved = 0;
367 	}
368 
369 	/* OK, account for the buffers that this operation expects to
370 	 * use and add the handle to the running transaction.
371 	 */
372 	update_t_max_wait(transaction, ts);
373 	handle->h_transaction = transaction;
374 	handle->h_requested_credits = blocks;
375 	handle->h_start_jiffies = jiffies;
376 	atomic_inc(&transaction->t_updates);
377 	atomic_inc(&transaction->t_handle_count);
378 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 		  handle, blocks,
380 		  atomic_read(&transaction->t_outstanding_credits),
381 		  jbd2_log_space_left(journal));
382 	read_unlock(&journal->j_state_lock);
383 	current->journal_info = handle;
384 
385 	lock_map_acquire(&handle->h_lockdep_map);
386 	jbd2_journal_free_transaction(new_transaction);
387 	return 0;
388 }
389 
390 static struct lock_class_key jbd2_handle_key;
391 
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396 	if (!handle)
397 		return NULL;
398 	handle->h_buffer_credits = nblocks;
399 	handle->h_ref = 1;
400 
401 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402 						&jbd2_handle_key, 0);
403 
404 	return handle;
405 }
406 
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427 			      gfp_t gfp_mask, unsigned int type,
428 			      unsigned int line_no)
429 {
430 	handle_t *handle = journal_current_handle();
431 	int err;
432 
433 	if (!journal)
434 		return ERR_PTR(-EROFS);
435 
436 	if (handle) {
437 		J_ASSERT(handle->h_transaction->t_journal == journal);
438 		handle->h_ref++;
439 		return handle;
440 	}
441 
442 	handle = new_handle(nblocks);
443 	if (!handle)
444 		return ERR_PTR(-ENOMEM);
445 	if (rsv_blocks) {
446 		handle_t *rsv_handle;
447 
448 		rsv_handle = new_handle(rsv_blocks);
449 		if (!rsv_handle) {
450 			jbd2_free_handle(handle);
451 			return ERR_PTR(-ENOMEM);
452 		}
453 		rsv_handle->h_reserved = 1;
454 		rsv_handle->h_journal = journal;
455 		handle->h_rsv_handle = rsv_handle;
456 	}
457 
458 	err = start_this_handle(journal, handle, gfp_mask);
459 	if (err < 0) {
460 		if (handle->h_rsv_handle)
461 			jbd2_free_handle(handle->h_rsv_handle);
462 		jbd2_free_handle(handle);
463 		return ERR_PTR(err);
464 	}
465 	handle->h_type = type;
466 	handle->h_line_no = line_no;
467 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468 				handle->h_transaction->t_tid, type,
469 				line_no, nblocks);
470 	return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473 
474 
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480 
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483 	journal_t *journal = handle->h_journal;
484 
485 	WARN_ON(!handle->h_reserved);
486 	sub_reserved_credits(journal, handle->h_buffer_credits);
487 	jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490 
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504 				unsigned int line_no)
505 {
506 	journal_t *journal = handle->h_journal;
507 	int ret = -EIO;
508 
509 	if (WARN_ON(!handle->h_reserved)) {
510 		/* Someone passed in normal handle? Just stop it. */
511 		jbd2_journal_stop(handle);
512 		return ret;
513 	}
514 	/*
515 	 * Usefulness of mixing of reserved and unreserved handles is
516 	 * questionable. So far nobody seems to need it so just error out.
517 	 */
518 	if (WARN_ON(current->journal_info)) {
519 		jbd2_journal_free_reserved(handle);
520 		return ret;
521 	}
522 
523 	handle->h_journal = NULL;
524 	/*
525 	 * GFP_NOFS is here because callers are likely from writeback or
526 	 * similarly constrained call sites
527 	 */
528 	ret = start_this_handle(journal, handle, GFP_NOFS);
529 	if (ret < 0) {
530 		jbd2_journal_free_reserved(handle);
531 		return ret;
532 	}
533 	handle->h_type = type;
534 	handle->h_line_no = line_no;
535 	return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538 
539 /**
540  * int jbd2_journal_extend() - extend buffer credits.
541  * @handle:  handle to 'extend'
542  * @nblocks: nr blocks to try to extend by.
543  *
544  * Some transactions, such as large extends and truncates, can be done
545  * atomically all at once or in several stages.  The operation requests
546  * a credit for a number of buffer modications in advance, but can
547  * extend its credit if it needs more.
548  *
549  * jbd2_journal_extend tries to give the running handle more buffer credits.
550  * It does not guarantee that allocation - this is a best-effort only.
551  * The calling process MUST be able to deal cleanly with a failure to
552  * extend here.
553  *
554  * Return 0 on success, non-zero on failure.
555  *
556  * return code < 0 implies an error
557  * return code > 0 implies normal transaction-full status.
558  */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561 	transaction_t *transaction = handle->h_transaction;
562 	journal_t *journal;
563 	int result;
564 	int wanted;
565 
566 	if (is_handle_aborted(handle))
567 		return -EROFS;
568 	journal = transaction->t_journal;
569 
570 	result = 1;
571 
572 	read_lock(&journal->j_state_lock);
573 
574 	/* Don't extend a locked-down transaction! */
575 	if (transaction->t_state != T_RUNNING) {
576 		jbd_debug(3, "denied handle %p %d blocks: "
577 			  "transaction not running\n", handle, nblocks);
578 		goto error_out;
579 	}
580 
581 	spin_lock(&transaction->t_handle_lock);
582 	wanted = atomic_add_return(nblocks,
583 				   &transaction->t_outstanding_credits);
584 
585 	if (wanted > journal->j_max_transaction_buffers) {
586 		jbd_debug(3, "denied handle %p %d blocks: "
587 			  "transaction too large\n", handle, nblocks);
588 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
589 		goto unlock;
590 	}
591 
592 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593 	    jbd2_log_space_left(journal)) {
594 		jbd_debug(3, "denied handle %p %d blocks: "
595 			  "insufficient log space\n", handle, nblocks);
596 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
597 		goto unlock;
598 	}
599 
600 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601 				 transaction->t_tid,
602 				 handle->h_type, handle->h_line_no,
603 				 handle->h_buffer_credits,
604 				 nblocks);
605 
606 	handle->h_buffer_credits += nblocks;
607 	handle->h_requested_credits += nblocks;
608 	result = 0;
609 
610 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612 	spin_unlock(&transaction->t_handle_lock);
613 error_out:
614 	read_unlock(&journal->j_state_lock);
615 	return result;
616 }
617 
618 
619 /**
620  * int jbd2_journal_restart() - restart a handle .
621  * @handle:  handle to restart
622  * @nblocks: nr credits requested
623  *
624  * Restart a handle for a multi-transaction filesystem
625  * operation.
626  *
627  * If the jbd2_journal_extend() call above fails to grant new buffer credits
628  * to a running handle, a call to jbd2_journal_restart will commit the
629  * handle's transaction so far and reattach the handle to a new
630  * transaction capabable of guaranteeing the requested number of
631  * credits. We preserve reserved handle if there's any attached to the
632  * passed in handle.
633  */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636 	transaction_t *transaction = handle->h_transaction;
637 	journal_t *journal;
638 	tid_t		tid;
639 	int		need_to_start, ret;
640 
641 	/* If we've had an abort of any type, don't even think about
642 	 * actually doing the restart! */
643 	if (is_handle_aborted(handle))
644 		return 0;
645 	journal = transaction->t_journal;
646 
647 	/*
648 	 * First unlink the handle from its current transaction, and start the
649 	 * commit on that.
650 	 */
651 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652 	J_ASSERT(journal_current_handle() == handle);
653 
654 	read_lock(&journal->j_state_lock);
655 	spin_lock(&transaction->t_handle_lock);
656 	atomic_sub(handle->h_buffer_credits,
657 		   &transaction->t_outstanding_credits);
658 	if (handle->h_rsv_handle) {
659 		sub_reserved_credits(journal,
660 				     handle->h_rsv_handle->h_buffer_credits);
661 	}
662 	if (atomic_dec_and_test(&transaction->t_updates))
663 		wake_up(&journal->j_wait_updates);
664 	tid = transaction->t_tid;
665 	spin_unlock(&transaction->t_handle_lock);
666 	handle->h_transaction = NULL;
667 	current->journal_info = NULL;
668 
669 	jbd_debug(2, "restarting handle %p\n", handle);
670 	need_to_start = !tid_geq(journal->j_commit_request, tid);
671 	read_unlock(&journal->j_state_lock);
672 	if (need_to_start)
673 		jbd2_log_start_commit(journal, tid);
674 
675 	lock_map_release(&handle->h_lockdep_map);
676 	handle->h_buffer_credits = nblocks;
677 	ret = start_this_handle(journal, handle, gfp_mask);
678 	return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681 
682 
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688 
689 /**
690  * void jbd2_journal_lock_updates () - establish a transaction barrier.
691  * @journal:  Journal to establish a barrier on.
692  *
693  * This locks out any further updates from being started, and blocks
694  * until all existing updates have completed, returning only once the
695  * journal is in a quiescent state with no updates running.
696  *
697  * The journal lock should not be held on entry.
698  */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701 	DEFINE_WAIT(wait);
702 
703 	write_lock(&journal->j_state_lock);
704 	++journal->j_barrier_count;
705 
706 	/* Wait until there are no reserved handles */
707 	if (atomic_read(&journal->j_reserved_credits)) {
708 		write_unlock(&journal->j_state_lock);
709 		wait_event(journal->j_wait_reserved,
710 			   atomic_read(&journal->j_reserved_credits) == 0);
711 		write_lock(&journal->j_state_lock);
712 	}
713 
714 	/* Wait until there are no running updates */
715 	while (1) {
716 		transaction_t *transaction = journal->j_running_transaction;
717 
718 		if (!transaction)
719 			break;
720 
721 		spin_lock(&transaction->t_handle_lock);
722 		prepare_to_wait(&journal->j_wait_updates, &wait,
723 				TASK_UNINTERRUPTIBLE);
724 		if (!atomic_read(&transaction->t_updates)) {
725 			spin_unlock(&transaction->t_handle_lock);
726 			finish_wait(&journal->j_wait_updates, &wait);
727 			break;
728 		}
729 		spin_unlock(&transaction->t_handle_lock);
730 		write_unlock(&journal->j_state_lock);
731 		schedule();
732 		finish_wait(&journal->j_wait_updates, &wait);
733 		write_lock(&journal->j_state_lock);
734 	}
735 	write_unlock(&journal->j_state_lock);
736 
737 	/*
738 	 * We have now established a barrier against other normal updates, but
739 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
740 	 * to make sure that we serialise special journal-locked operations
741 	 * too.
742 	 */
743 	mutex_lock(&journal->j_barrier);
744 }
745 
746 /**
747  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748  * @journal:  Journal to release the barrier on.
749  *
750  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751  *
752  * Should be called without the journal lock held.
753  */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756 	J_ASSERT(journal->j_barrier_count != 0);
757 
758 	mutex_unlock(&journal->j_barrier);
759 	write_lock(&journal->j_state_lock);
760 	--journal->j_barrier_count;
761 	write_unlock(&journal->j_state_lock);
762 	wake_up(&journal->j_wait_transaction_locked);
763 }
764 
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767 	char b[BDEVNAME_SIZE];
768 
769 	printk(KERN_WARNING
770 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
771 	       "There's a risk of filesystem corruption in case of system "
772 	       "crash.\n",
773 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
774 }
775 
776 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
777 static void jbd2_freeze_jh_data(struct journal_head *jh)
778 {
779 	struct page *page;
780 	int offset;
781 	char *source;
782 	struct buffer_head *bh = jh2bh(jh);
783 
784 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
785 	page = bh->b_page;
786 	offset = offset_in_page(bh->b_data);
787 	source = kmap_atomic(page);
788 	/* Fire data frozen trigger just before we copy the data */
789 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
790 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
791 	kunmap_atomic(source);
792 
793 	/*
794 	 * Now that the frozen data is saved off, we need to store any matching
795 	 * triggers.
796 	 */
797 	jh->b_frozen_triggers = jh->b_triggers;
798 }
799 
800 /*
801  * If the buffer is already part of the current transaction, then there
802  * is nothing we need to do.  If it is already part of a prior
803  * transaction which we are still committing to disk, then we need to
804  * make sure that we do not overwrite the old copy: we do copy-out to
805  * preserve the copy going to disk.  We also account the buffer against
806  * the handle's metadata buffer credits (unless the buffer is already
807  * part of the transaction, that is).
808  *
809  */
810 static int
811 do_get_write_access(handle_t *handle, struct journal_head *jh,
812 			int force_copy)
813 {
814 	struct buffer_head *bh;
815 	transaction_t *transaction = handle->h_transaction;
816 	journal_t *journal;
817 	int error;
818 	char *frozen_buffer = NULL;
819 	unsigned long start_lock, time_lock;
820 
821 	if (is_handle_aborted(handle))
822 		return -EROFS;
823 	journal = transaction->t_journal;
824 
825 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
826 
827 	JBUFFER_TRACE(jh, "entry");
828 repeat:
829 	bh = jh2bh(jh);
830 
831 	/* @@@ Need to check for errors here at some point. */
832 
833  	start_lock = jiffies;
834 	lock_buffer(bh);
835 	jbd_lock_bh_state(bh);
836 
837 	/* If it takes too long to lock the buffer, trace it */
838 	time_lock = jbd2_time_diff(start_lock, jiffies);
839 	if (time_lock > HZ/10)
840 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
841 			jiffies_to_msecs(time_lock));
842 
843 	/* We now hold the buffer lock so it is safe to query the buffer
844 	 * state.  Is the buffer dirty?
845 	 *
846 	 * If so, there are two possibilities.  The buffer may be
847 	 * non-journaled, and undergoing a quite legitimate writeback.
848 	 * Otherwise, it is journaled, and we don't expect dirty buffers
849 	 * in that state (the buffers should be marked JBD_Dirty
850 	 * instead.)  So either the IO is being done under our own
851 	 * control and this is a bug, or it's a third party IO such as
852 	 * dump(8) (which may leave the buffer scheduled for read ---
853 	 * ie. locked but not dirty) or tune2fs (which may actually have
854 	 * the buffer dirtied, ugh.)  */
855 
856 	if (buffer_dirty(bh)) {
857 		/*
858 		 * First question: is this buffer already part of the current
859 		 * transaction or the existing committing transaction?
860 		 */
861 		if (jh->b_transaction) {
862 			J_ASSERT_JH(jh,
863 				jh->b_transaction == transaction ||
864 				jh->b_transaction ==
865 					journal->j_committing_transaction);
866 			if (jh->b_next_transaction)
867 				J_ASSERT_JH(jh, jh->b_next_transaction ==
868 							transaction);
869 			warn_dirty_buffer(bh);
870 		}
871 		/*
872 		 * In any case we need to clean the dirty flag and we must
873 		 * do it under the buffer lock to be sure we don't race
874 		 * with running write-out.
875 		 */
876 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
877 		clear_buffer_dirty(bh);
878 		set_buffer_jbddirty(bh);
879 	}
880 
881 	unlock_buffer(bh);
882 
883 	error = -EROFS;
884 	if (is_handle_aborted(handle)) {
885 		jbd_unlock_bh_state(bh);
886 		goto out;
887 	}
888 	error = 0;
889 
890 	/*
891 	 * The buffer is already part of this transaction if b_transaction or
892 	 * b_next_transaction points to it
893 	 */
894 	if (jh->b_transaction == transaction ||
895 	    jh->b_next_transaction == transaction)
896 		goto done;
897 
898 	/*
899 	 * this is the first time this transaction is touching this buffer,
900 	 * reset the modified flag
901 	 */
902        jh->b_modified = 0;
903 
904 	/*
905 	 * If the buffer is not journaled right now, we need to make sure it
906 	 * doesn't get written to disk before the caller actually commits the
907 	 * new data
908 	 */
909 	if (!jh->b_transaction) {
910 		JBUFFER_TRACE(jh, "no transaction");
911 		J_ASSERT_JH(jh, !jh->b_next_transaction);
912 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
913 		/*
914 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
915 		 * visible before attaching it to the running transaction.
916 		 * Paired with barrier in jbd2_write_access_granted()
917 		 */
918 		smp_wmb();
919 		spin_lock(&journal->j_list_lock);
920 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
921 		spin_unlock(&journal->j_list_lock);
922 		goto done;
923 	}
924 	/*
925 	 * If there is already a copy-out version of this buffer, then we don't
926 	 * need to make another one
927 	 */
928 	if (jh->b_frozen_data) {
929 		JBUFFER_TRACE(jh, "has frozen data");
930 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
931 		goto attach_next;
932 	}
933 
934 	JBUFFER_TRACE(jh, "owned by older transaction");
935 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
936 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
937 
938 	/*
939 	 * There is one case we have to be very careful about.  If the
940 	 * committing transaction is currently writing this buffer out to disk
941 	 * and has NOT made a copy-out, then we cannot modify the buffer
942 	 * contents at all right now.  The essence of copy-out is that it is
943 	 * the extra copy, not the primary copy, which gets journaled.  If the
944 	 * primary copy is already going to disk then we cannot do copy-out
945 	 * here.
946 	 */
947 	if (buffer_shadow(bh)) {
948 		JBUFFER_TRACE(jh, "on shadow: sleep");
949 		jbd_unlock_bh_state(bh);
950 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
951 		goto repeat;
952 	}
953 
954 	/*
955 	 * Only do the copy if the currently-owning transaction still needs it.
956 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
957 	 * past that stage (here we use the fact that BH_Shadow is set under
958 	 * bh_state lock together with refiling to BJ_Shadow list and at this
959 	 * point we know the buffer doesn't have BH_Shadow set).
960 	 *
961 	 * Subtle point, though: if this is a get_undo_access, then we will be
962 	 * relying on the frozen_data to contain the new value of the
963 	 * committed_data record after the transaction, so we HAVE to force the
964 	 * frozen_data copy in that case.
965 	 */
966 	if (jh->b_jlist == BJ_Metadata || force_copy) {
967 		JBUFFER_TRACE(jh, "generate frozen data");
968 		if (!frozen_buffer) {
969 			JBUFFER_TRACE(jh, "allocate memory for buffer");
970 			jbd_unlock_bh_state(bh);
971 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
972 			if (!frozen_buffer) {
973 				printk(KERN_ERR "%s: OOM for frozen_buffer\n",
974 				       __func__);
975 				JBUFFER_TRACE(jh, "oom!");
976 				error = -ENOMEM;
977 				goto out;
978 			}
979 			goto repeat;
980 		}
981 		jh->b_frozen_data = frozen_buffer;
982 		frozen_buffer = NULL;
983 		jbd2_freeze_jh_data(jh);
984 	}
985 attach_next:
986 	/*
987 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
988 	 * before attaching it to the running transaction. Paired with barrier
989 	 * in jbd2_write_access_granted()
990 	 */
991 	smp_wmb();
992 	jh->b_next_transaction = transaction;
993 
994 done:
995 	jbd_unlock_bh_state(bh);
996 
997 	/*
998 	 * If we are about to journal a buffer, then any revoke pending on it is
999 	 * no longer valid
1000 	 */
1001 	jbd2_journal_cancel_revoke(handle, jh);
1002 
1003 out:
1004 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1005 		jbd2_free(frozen_buffer, bh->b_size);
1006 
1007 	JBUFFER_TRACE(jh, "exit");
1008 	return error;
1009 }
1010 
1011 /* Fast check whether buffer is already attached to the required transaction */
1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1013 							bool undo)
1014 {
1015 	struct journal_head *jh;
1016 	bool ret = false;
1017 
1018 	/* Dirty buffers require special handling... */
1019 	if (buffer_dirty(bh))
1020 		return false;
1021 
1022 	/*
1023 	 * RCU protects us from dereferencing freed pages. So the checks we do
1024 	 * are guaranteed not to oops. However the jh slab object can get freed
1025 	 * & reallocated while we work with it. So we have to be careful. When
1026 	 * we see jh attached to the running transaction, we know it must stay
1027 	 * so until the transaction is committed. Thus jh won't be freed and
1028 	 * will be attached to the same bh while we run.  However it can
1029 	 * happen jh gets freed, reallocated, and attached to the transaction
1030 	 * just after we get pointer to it from bh. So we have to be careful
1031 	 * and recheck jh still belongs to our bh before we return success.
1032 	 */
1033 	rcu_read_lock();
1034 	if (!buffer_jbd(bh))
1035 		goto out;
1036 	/* This should be bh2jh() but that doesn't work with inline functions */
1037 	jh = READ_ONCE(bh->b_private);
1038 	if (!jh)
1039 		goto out;
1040 	/* For undo access buffer must have data copied */
1041 	if (undo && !jh->b_committed_data)
1042 		goto out;
1043 	if (jh->b_transaction != handle->h_transaction &&
1044 	    jh->b_next_transaction != handle->h_transaction)
1045 		goto out;
1046 	/*
1047 	 * There are two reasons for the barrier here:
1048 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1049 	 * detect when jh went through free, realloc, attach to transaction
1050 	 * while we were checking. Paired with implicit barrier in that path.
1051 	 * 2) So that access to bh done after jbd2_write_access_granted()
1052 	 * doesn't get reordered and see inconsistent state of concurrent
1053 	 * do_get_write_access().
1054 	 */
1055 	smp_mb();
1056 	if (unlikely(jh->b_bh != bh))
1057 		goto out;
1058 	ret = true;
1059 out:
1060 	rcu_read_unlock();
1061 	return ret;
1062 }
1063 
1064 /**
1065  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1066  * @handle: transaction to add buffer modifications to
1067  * @bh:     bh to be used for metadata writes
1068  *
1069  * Returns an error code or 0 on success.
1070  *
1071  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1072  * because we're write()ing a buffer which is also part of a shared mapping.
1073  */
1074 
1075 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1076 {
1077 	struct journal_head *jh;
1078 	int rc;
1079 
1080 	if (jbd2_write_access_granted(handle, bh, false))
1081 		return 0;
1082 
1083 	jh = jbd2_journal_add_journal_head(bh);
1084 	/* We do not want to get caught playing with fields which the
1085 	 * log thread also manipulates.  Make sure that the buffer
1086 	 * completes any outstanding IO before proceeding. */
1087 	rc = do_get_write_access(handle, jh, 0);
1088 	jbd2_journal_put_journal_head(jh);
1089 	return rc;
1090 }
1091 
1092 
1093 /*
1094  * When the user wants to journal a newly created buffer_head
1095  * (ie. getblk() returned a new buffer and we are going to populate it
1096  * manually rather than reading off disk), then we need to keep the
1097  * buffer_head locked until it has been completely filled with new
1098  * data.  In this case, we should be able to make the assertion that
1099  * the bh is not already part of an existing transaction.
1100  *
1101  * The buffer should already be locked by the caller by this point.
1102  * There is no lock ranking violation: it was a newly created,
1103  * unlocked buffer beforehand. */
1104 
1105 /**
1106  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1107  * @handle: transaction to new buffer to
1108  * @bh: new buffer.
1109  *
1110  * Call this if you create a new bh.
1111  */
1112 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1113 {
1114 	transaction_t *transaction = handle->h_transaction;
1115 	journal_t *journal;
1116 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1117 	int err;
1118 
1119 	jbd_debug(5, "journal_head %p\n", jh);
1120 	err = -EROFS;
1121 	if (is_handle_aborted(handle))
1122 		goto out;
1123 	journal = transaction->t_journal;
1124 	err = 0;
1125 
1126 	JBUFFER_TRACE(jh, "entry");
1127 	/*
1128 	 * The buffer may already belong to this transaction due to pre-zeroing
1129 	 * in the filesystem's new_block code.  It may also be on the previous,
1130 	 * committing transaction's lists, but it HAS to be in Forget state in
1131 	 * that case: the transaction must have deleted the buffer for it to be
1132 	 * reused here.
1133 	 */
1134 	jbd_lock_bh_state(bh);
1135 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1136 		jh->b_transaction == NULL ||
1137 		(jh->b_transaction == journal->j_committing_transaction &&
1138 			  jh->b_jlist == BJ_Forget)));
1139 
1140 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1141 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1142 
1143 	if (jh->b_transaction == NULL) {
1144 		/*
1145 		 * Previous jbd2_journal_forget() could have left the buffer
1146 		 * with jbddirty bit set because it was being committed. When
1147 		 * the commit finished, we've filed the buffer for
1148 		 * checkpointing and marked it dirty. Now we are reallocating
1149 		 * the buffer so the transaction freeing it must have
1150 		 * committed and so it's safe to clear the dirty bit.
1151 		 */
1152 		clear_buffer_dirty(jh2bh(jh));
1153 		/* first access by this transaction */
1154 		jh->b_modified = 0;
1155 
1156 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1157 		spin_lock(&journal->j_list_lock);
1158 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1159 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1160 		/* first access by this transaction */
1161 		jh->b_modified = 0;
1162 
1163 		JBUFFER_TRACE(jh, "set next transaction");
1164 		spin_lock(&journal->j_list_lock);
1165 		jh->b_next_transaction = transaction;
1166 	}
1167 	spin_unlock(&journal->j_list_lock);
1168 	jbd_unlock_bh_state(bh);
1169 
1170 	/*
1171 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1172 	 * blocks which contain freed but then revoked metadata.  We need
1173 	 * to cancel the revoke in case we end up freeing it yet again
1174 	 * and the reallocating as data - this would cause a second revoke,
1175 	 * which hits an assertion error.
1176 	 */
1177 	JBUFFER_TRACE(jh, "cancelling revoke");
1178 	jbd2_journal_cancel_revoke(handle, jh);
1179 out:
1180 	jbd2_journal_put_journal_head(jh);
1181 	return err;
1182 }
1183 
1184 /**
1185  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1186  *     non-rewindable consequences
1187  * @handle: transaction
1188  * @bh: buffer to undo
1189  *
1190  * Sometimes there is a need to distinguish between metadata which has
1191  * been committed to disk and that which has not.  The ext3fs code uses
1192  * this for freeing and allocating space, we have to make sure that we
1193  * do not reuse freed space until the deallocation has been committed,
1194  * since if we overwrote that space we would make the delete
1195  * un-rewindable in case of a crash.
1196  *
1197  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1198  * buffer for parts of non-rewindable operations such as delete
1199  * operations on the bitmaps.  The journaling code must keep a copy of
1200  * the buffer's contents prior to the undo_access call until such time
1201  * as we know that the buffer has definitely been committed to disk.
1202  *
1203  * We never need to know which transaction the committed data is part
1204  * of, buffers touched here are guaranteed to be dirtied later and so
1205  * will be committed to a new transaction in due course, at which point
1206  * we can discard the old committed data pointer.
1207  *
1208  * Returns error number or 0 on success.
1209  */
1210 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1211 {
1212 	int err;
1213 	struct journal_head *jh;
1214 	char *committed_data = NULL;
1215 
1216 	JBUFFER_TRACE(jh, "entry");
1217 	if (jbd2_write_access_granted(handle, bh, true))
1218 		return 0;
1219 
1220 	jh = jbd2_journal_add_journal_head(bh);
1221 	/*
1222 	 * Do this first --- it can drop the journal lock, so we want to
1223 	 * make sure that obtaining the committed_data is done
1224 	 * atomically wrt. completion of any outstanding commits.
1225 	 */
1226 	err = do_get_write_access(handle, jh, 1);
1227 	if (err)
1228 		goto out;
1229 
1230 repeat:
1231 	if (!jh->b_committed_data) {
1232 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1233 		if (!committed_data) {
1234 			printk(KERN_ERR "%s: No memory for committed data\n",
1235 				__func__);
1236 			err = -ENOMEM;
1237 			goto out;
1238 		}
1239 	}
1240 
1241 	jbd_lock_bh_state(bh);
1242 	if (!jh->b_committed_data) {
1243 		/* Copy out the current buffer contents into the
1244 		 * preserved, committed copy. */
1245 		JBUFFER_TRACE(jh, "generate b_committed data");
1246 		if (!committed_data) {
1247 			jbd_unlock_bh_state(bh);
1248 			goto repeat;
1249 		}
1250 
1251 		jh->b_committed_data = committed_data;
1252 		committed_data = NULL;
1253 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1254 	}
1255 	jbd_unlock_bh_state(bh);
1256 out:
1257 	jbd2_journal_put_journal_head(jh);
1258 	if (unlikely(committed_data))
1259 		jbd2_free(committed_data, bh->b_size);
1260 	return err;
1261 }
1262 
1263 /**
1264  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1265  * @bh: buffer to trigger on
1266  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1267  *
1268  * Set any triggers on this journal_head.  This is always safe, because
1269  * triggers for a committing buffer will be saved off, and triggers for
1270  * a running transaction will match the buffer in that transaction.
1271  *
1272  * Call with NULL to clear the triggers.
1273  */
1274 void jbd2_journal_set_triggers(struct buffer_head *bh,
1275 			       struct jbd2_buffer_trigger_type *type)
1276 {
1277 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1278 
1279 	if (WARN_ON(!jh))
1280 		return;
1281 	jh->b_triggers = type;
1282 	jbd2_journal_put_journal_head(jh);
1283 }
1284 
1285 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1286 				struct jbd2_buffer_trigger_type *triggers)
1287 {
1288 	struct buffer_head *bh = jh2bh(jh);
1289 
1290 	if (!triggers || !triggers->t_frozen)
1291 		return;
1292 
1293 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1294 }
1295 
1296 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1297 			       struct jbd2_buffer_trigger_type *triggers)
1298 {
1299 	if (!triggers || !triggers->t_abort)
1300 		return;
1301 
1302 	triggers->t_abort(triggers, jh2bh(jh));
1303 }
1304 
1305 /**
1306  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1307  * @handle: transaction to add buffer to.
1308  * @bh: buffer to mark
1309  *
1310  * mark dirty metadata which needs to be journaled as part of the current
1311  * transaction.
1312  *
1313  * The buffer must have previously had jbd2_journal_get_write_access()
1314  * called so that it has a valid journal_head attached to the buffer
1315  * head.
1316  *
1317  * The buffer is placed on the transaction's metadata list and is marked
1318  * as belonging to the transaction.
1319  *
1320  * Returns error number or 0 on success.
1321  *
1322  * Special care needs to be taken if the buffer already belongs to the
1323  * current committing transaction (in which case we should have frozen
1324  * data present for that commit).  In that case, we don't relink the
1325  * buffer: that only gets done when the old transaction finally
1326  * completes its commit.
1327  */
1328 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1329 {
1330 	transaction_t *transaction = handle->h_transaction;
1331 	journal_t *journal;
1332 	struct journal_head *jh;
1333 	int ret = 0;
1334 
1335 	if (is_handle_aborted(handle))
1336 		return -EROFS;
1337 	if (!buffer_jbd(bh)) {
1338 		ret = -EUCLEAN;
1339 		goto out;
1340 	}
1341 	/*
1342 	 * We don't grab jh reference here since the buffer must be part
1343 	 * of the running transaction.
1344 	 */
1345 	jh = bh2jh(bh);
1346 	/*
1347 	 * This and the following assertions are unreliable since we may see jh
1348 	 * in inconsistent state unless we grab bh_state lock. But this is
1349 	 * crucial to catch bugs so let's do a reliable check until the
1350 	 * lockless handling is fully proven.
1351 	 */
1352 	if (jh->b_transaction != transaction &&
1353 	    jh->b_next_transaction != transaction) {
1354 		jbd_lock_bh_state(bh);
1355 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1356 				jh->b_next_transaction == transaction);
1357 		jbd_unlock_bh_state(bh);
1358 	}
1359 	if (jh->b_modified == 1) {
1360 		/* If it's in our transaction it must be in BJ_Metadata list. */
1361 		if (jh->b_transaction == transaction &&
1362 		    jh->b_jlist != BJ_Metadata) {
1363 			jbd_lock_bh_state(bh);
1364 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1365 					jh->b_jlist == BJ_Metadata);
1366 			jbd_unlock_bh_state(bh);
1367 		}
1368 		goto out;
1369 	}
1370 
1371 	journal = transaction->t_journal;
1372 	jbd_debug(5, "journal_head %p\n", jh);
1373 	JBUFFER_TRACE(jh, "entry");
1374 
1375 	jbd_lock_bh_state(bh);
1376 
1377 	if (jh->b_modified == 0) {
1378 		/*
1379 		 * This buffer's got modified and becoming part
1380 		 * of the transaction. This needs to be done
1381 		 * once a transaction -bzzz
1382 		 */
1383 		jh->b_modified = 1;
1384 		if (handle->h_buffer_credits <= 0) {
1385 			ret = -ENOSPC;
1386 			goto out_unlock_bh;
1387 		}
1388 		handle->h_buffer_credits--;
1389 	}
1390 
1391 	/*
1392 	 * fastpath, to avoid expensive locking.  If this buffer is already
1393 	 * on the running transaction's metadata list there is nothing to do.
1394 	 * Nobody can take it off again because there is a handle open.
1395 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1396 	 * result in this test being false, so we go in and take the locks.
1397 	 */
1398 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1399 		JBUFFER_TRACE(jh, "fastpath");
1400 		if (unlikely(jh->b_transaction !=
1401 			     journal->j_running_transaction)) {
1402 			printk(KERN_ERR "JBD2: %s: "
1403 			       "jh->b_transaction (%llu, %p, %u) != "
1404 			       "journal->j_running_transaction (%p, %u)\n",
1405 			       journal->j_devname,
1406 			       (unsigned long long) bh->b_blocknr,
1407 			       jh->b_transaction,
1408 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1409 			       journal->j_running_transaction,
1410 			       journal->j_running_transaction ?
1411 			       journal->j_running_transaction->t_tid : 0);
1412 			ret = -EINVAL;
1413 		}
1414 		goto out_unlock_bh;
1415 	}
1416 
1417 	set_buffer_jbddirty(bh);
1418 
1419 	/*
1420 	 * Metadata already on the current transaction list doesn't
1421 	 * need to be filed.  Metadata on another transaction's list must
1422 	 * be committing, and will be refiled once the commit completes:
1423 	 * leave it alone for now.
1424 	 */
1425 	if (jh->b_transaction != transaction) {
1426 		JBUFFER_TRACE(jh, "already on other transaction");
1427 		if (unlikely(((jh->b_transaction !=
1428 			       journal->j_committing_transaction)) ||
1429 			     (jh->b_next_transaction != transaction))) {
1430 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1431 			       "bad jh for block %llu: "
1432 			       "transaction (%p, %u), "
1433 			       "jh->b_transaction (%p, %u), "
1434 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1435 			       journal->j_devname,
1436 			       (unsigned long long) bh->b_blocknr,
1437 			       transaction, transaction->t_tid,
1438 			       jh->b_transaction,
1439 			       jh->b_transaction ?
1440 			       jh->b_transaction->t_tid : 0,
1441 			       jh->b_next_transaction,
1442 			       jh->b_next_transaction ?
1443 			       jh->b_next_transaction->t_tid : 0,
1444 			       jh->b_jlist);
1445 			WARN_ON(1);
1446 			ret = -EINVAL;
1447 		}
1448 		/* And this case is illegal: we can't reuse another
1449 		 * transaction's data buffer, ever. */
1450 		goto out_unlock_bh;
1451 	}
1452 
1453 	/* That test should have eliminated the following case: */
1454 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1455 
1456 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1457 	spin_lock(&journal->j_list_lock);
1458 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1459 	spin_unlock(&journal->j_list_lock);
1460 out_unlock_bh:
1461 	jbd_unlock_bh_state(bh);
1462 out:
1463 	JBUFFER_TRACE(jh, "exit");
1464 	return ret;
1465 }
1466 
1467 /**
1468  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1469  * @handle: transaction handle
1470  * @bh:     bh to 'forget'
1471  *
1472  * We can only do the bforget if there are no commits pending against the
1473  * buffer.  If the buffer is dirty in the current running transaction we
1474  * can safely unlink it.
1475  *
1476  * bh may not be a journalled buffer at all - it may be a non-JBD
1477  * buffer which came off the hashtable.  Check for this.
1478  *
1479  * Decrements bh->b_count by one.
1480  *
1481  * Allow this call even if the handle has aborted --- it may be part of
1482  * the caller's cleanup after an abort.
1483  */
1484 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1485 {
1486 	transaction_t *transaction = handle->h_transaction;
1487 	journal_t *journal;
1488 	struct journal_head *jh;
1489 	int drop_reserve = 0;
1490 	int err = 0;
1491 	int was_modified = 0;
1492 
1493 	if (is_handle_aborted(handle))
1494 		return -EROFS;
1495 	journal = transaction->t_journal;
1496 
1497 	BUFFER_TRACE(bh, "entry");
1498 
1499 	jbd_lock_bh_state(bh);
1500 
1501 	if (!buffer_jbd(bh))
1502 		goto not_jbd;
1503 	jh = bh2jh(bh);
1504 
1505 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1506 	 * Don't do any jbd operations, and return an error. */
1507 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1508 			 "inconsistent data on disk")) {
1509 		err = -EIO;
1510 		goto not_jbd;
1511 	}
1512 
1513 	/* keep track of whether or not this transaction modified us */
1514 	was_modified = jh->b_modified;
1515 
1516 	/*
1517 	 * The buffer's going from the transaction, we must drop
1518 	 * all references -bzzz
1519 	 */
1520 	jh->b_modified = 0;
1521 
1522 	if (jh->b_transaction == transaction) {
1523 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1524 
1525 		/* If we are forgetting a buffer which is already part
1526 		 * of this transaction, then we can just drop it from
1527 		 * the transaction immediately. */
1528 		clear_buffer_dirty(bh);
1529 		clear_buffer_jbddirty(bh);
1530 
1531 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1532 
1533 		/*
1534 		 * we only want to drop a reference if this transaction
1535 		 * modified the buffer
1536 		 */
1537 		if (was_modified)
1538 			drop_reserve = 1;
1539 
1540 		/*
1541 		 * We are no longer going to journal this buffer.
1542 		 * However, the commit of this transaction is still
1543 		 * important to the buffer: the delete that we are now
1544 		 * processing might obsolete an old log entry, so by
1545 		 * committing, we can satisfy the buffer's checkpoint.
1546 		 *
1547 		 * So, if we have a checkpoint on the buffer, we should
1548 		 * now refile the buffer on our BJ_Forget list so that
1549 		 * we know to remove the checkpoint after we commit.
1550 		 */
1551 
1552 		spin_lock(&journal->j_list_lock);
1553 		if (jh->b_cp_transaction) {
1554 			__jbd2_journal_temp_unlink_buffer(jh);
1555 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1556 		} else {
1557 			__jbd2_journal_unfile_buffer(jh);
1558 			if (!buffer_jbd(bh)) {
1559 				spin_unlock(&journal->j_list_lock);
1560 				jbd_unlock_bh_state(bh);
1561 				__bforget(bh);
1562 				goto drop;
1563 			}
1564 		}
1565 		spin_unlock(&journal->j_list_lock);
1566 	} else if (jh->b_transaction) {
1567 		J_ASSERT_JH(jh, (jh->b_transaction ==
1568 				 journal->j_committing_transaction));
1569 		/* However, if the buffer is still owned by a prior
1570 		 * (committing) transaction, we can't drop it yet... */
1571 		JBUFFER_TRACE(jh, "belongs to older transaction");
1572 		/* ... but we CAN drop it from the new transaction if we
1573 		 * have also modified it since the original commit. */
1574 
1575 		if (jh->b_next_transaction) {
1576 			J_ASSERT(jh->b_next_transaction == transaction);
1577 			spin_lock(&journal->j_list_lock);
1578 			jh->b_next_transaction = NULL;
1579 			spin_unlock(&journal->j_list_lock);
1580 
1581 			/*
1582 			 * only drop a reference if this transaction modified
1583 			 * the buffer
1584 			 */
1585 			if (was_modified)
1586 				drop_reserve = 1;
1587 		}
1588 	}
1589 
1590 not_jbd:
1591 	jbd_unlock_bh_state(bh);
1592 	__brelse(bh);
1593 drop:
1594 	if (drop_reserve) {
1595 		/* no need to reserve log space for this block -bzzz */
1596 		handle->h_buffer_credits++;
1597 	}
1598 	return err;
1599 }
1600 
1601 /**
1602  * int jbd2_journal_stop() - complete a transaction
1603  * @handle: tranaction to complete.
1604  *
1605  * All done for a particular handle.
1606  *
1607  * There is not much action needed here.  We just return any remaining
1608  * buffer credits to the transaction and remove the handle.  The only
1609  * complication is that we need to start a commit operation if the
1610  * filesystem is marked for synchronous update.
1611  *
1612  * jbd2_journal_stop itself will not usually return an error, but it may
1613  * do so in unusual circumstances.  In particular, expect it to
1614  * return -EIO if a jbd2_journal_abort has been executed since the
1615  * transaction began.
1616  */
1617 int jbd2_journal_stop(handle_t *handle)
1618 {
1619 	transaction_t *transaction = handle->h_transaction;
1620 	journal_t *journal;
1621 	int err = 0, wait_for_commit = 0;
1622 	tid_t tid;
1623 	pid_t pid;
1624 
1625 	if (!transaction) {
1626 		/*
1627 		 * Handle is already detached from the transaction so
1628 		 * there is nothing to do other than decrease a refcount,
1629 		 * or free the handle if refcount drops to zero
1630 		 */
1631 		if (--handle->h_ref > 0) {
1632 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1633 							 handle->h_ref);
1634 			return err;
1635 		} else {
1636 			if (handle->h_rsv_handle)
1637 				jbd2_free_handle(handle->h_rsv_handle);
1638 			goto free_and_exit;
1639 		}
1640 	}
1641 	journal = transaction->t_journal;
1642 
1643 	J_ASSERT(journal_current_handle() == handle);
1644 
1645 	if (is_handle_aborted(handle))
1646 		err = -EIO;
1647 	else
1648 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1649 
1650 	if (--handle->h_ref > 0) {
1651 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1652 			  handle->h_ref);
1653 		return err;
1654 	}
1655 
1656 	jbd_debug(4, "Handle %p going down\n", handle);
1657 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1658 				transaction->t_tid,
1659 				handle->h_type, handle->h_line_no,
1660 				jiffies - handle->h_start_jiffies,
1661 				handle->h_sync, handle->h_requested_credits,
1662 				(handle->h_requested_credits -
1663 				 handle->h_buffer_credits));
1664 
1665 	/*
1666 	 * Implement synchronous transaction batching.  If the handle
1667 	 * was synchronous, don't force a commit immediately.  Let's
1668 	 * yield and let another thread piggyback onto this
1669 	 * transaction.  Keep doing that while new threads continue to
1670 	 * arrive.  It doesn't cost much - we're about to run a commit
1671 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1672 	 * operations by 30x or more...
1673 	 *
1674 	 * We try and optimize the sleep time against what the
1675 	 * underlying disk can do, instead of having a static sleep
1676 	 * time.  This is useful for the case where our storage is so
1677 	 * fast that it is more optimal to go ahead and force a flush
1678 	 * and wait for the transaction to be committed than it is to
1679 	 * wait for an arbitrary amount of time for new writers to
1680 	 * join the transaction.  We achieve this by measuring how
1681 	 * long it takes to commit a transaction, and compare it with
1682 	 * how long this transaction has been running, and if run time
1683 	 * < commit time then we sleep for the delta and commit.  This
1684 	 * greatly helps super fast disks that would see slowdowns as
1685 	 * more threads started doing fsyncs.
1686 	 *
1687 	 * But don't do this if this process was the most recent one
1688 	 * to perform a synchronous write.  We do this to detect the
1689 	 * case where a single process is doing a stream of sync
1690 	 * writes.  No point in waiting for joiners in that case.
1691 	 *
1692 	 * Setting max_batch_time to 0 disables this completely.
1693 	 */
1694 	pid = current->pid;
1695 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1696 	    journal->j_max_batch_time) {
1697 		u64 commit_time, trans_time;
1698 
1699 		journal->j_last_sync_writer = pid;
1700 
1701 		read_lock(&journal->j_state_lock);
1702 		commit_time = journal->j_average_commit_time;
1703 		read_unlock(&journal->j_state_lock);
1704 
1705 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1706 						   transaction->t_start_time));
1707 
1708 		commit_time = max_t(u64, commit_time,
1709 				    1000*journal->j_min_batch_time);
1710 		commit_time = min_t(u64, commit_time,
1711 				    1000*journal->j_max_batch_time);
1712 
1713 		if (trans_time < commit_time) {
1714 			ktime_t expires = ktime_add_ns(ktime_get(),
1715 						       commit_time);
1716 			set_current_state(TASK_UNINTERRUPTIBLE);
1717 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1718 		}
1719 	}
1720 
1721 	if (handle->h_sync)
1722 		transaction->t_synchronous_commit = 1;
1723 	current->journal_info = NULL;
1724 	atomic_sub(handle->h_buffer_credits,
1725 		   &transaction->t_outstanding_credits);
1726 
1727 	/*
1728 	 * If the handle is marked SYNC, we need to set another commit
1729 	 * going!  We also want to force a commit if the current
1730 	 * transaction is occupying too much of the log, or if the
1731 	 * transaction is too old now.
1732 	 */
1733 	if (handle->h_sync ||
1734 	    (atomic_read(&transaction->t_outstanding_credits) >
1735 	     journal->j_max_transaction_buffers) ||
1736 	    time_after_eq(jiffies, transaction->t_expires)) {
1737 		/* Do this even for aborted journals: an abort still
1738 		 * completes the commit thread, it just doesn't write
1739 		 * anything to disk. */
1740 
1741 		jbd_debug(2, "transaction too old, requesting commit for "
1742 					"handle %p\n", handle);
1743 		/* This is non-blocking */
1744 		jbd2_log_start_commit(journal, transaction->t_tid);
1745 
1746 		/*
1747 		 * Special case: JBD2_SYNC synchronous updates require us
1748 		 * to wait for the commit to complete.
1749 		 */
1750 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1751 			wait_for_commit = 1;
1752 	}
1753 
1754 	/*
1755 	 * Once we drop t_updates, if it goes to zero the transaction
1756 	 * could start committing on us and eventually disappear.  So
1757 	 * once we do this, we must not dereference transaction
1758 	 * pointer again.
1759 	 */
1760 	tid = transaction->t_tid;
1761 	if (atomic_dec_and_test(&transaction->t_updates)) {
1762 		wake_up(&journal->j_wait_updates);
1763 		if (journal->j_barrier_count)
1764 			wake_up(&journal->j_wait_transaction_locked);
1765 	}
1766 
1767 	if (wait_for_commit)
1768 		err = jbd2_log_wait_commit(journal, tid);
1769 
1770 	lock_map_release(&handle->h_lockdep_map);
1771 
1772 	if (handle->h_rsv_handle)
1773 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1774 free_and_exit:
1775 	jbd2_free_handle(handle);
1776 	return err;
1777 }
1778 
1779 /*
1780  *
1781  * List management code snippets: various functions for manipulating the
1782  * transaction buffer lists.
1783  *
1784  */
1785 
1786 /*
1787  * Append a buffer to a transaction list, given the transaction's list head
1788  * pointer.
1789  *
1790  * j_list_lock is held.
1791  *
1792  * jbd_lock_bh_state(jh2bh(jh)) is held.
1793  */
1794 
1795 static inline void
1796 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1797 {
1798 	if (!*list) {
1799 		jh->b_tnext = jh->b_tprev = jh;
1800 		*list = jh;
1801 	} else {
1802 		/* Insert at the tail of the list to preserve order */
1803 		struct journal_head *first = *list, *last = first->b_tprev;
1804 		jh->b_tprev = last;
1805 		jh->b_tnext = first;
1806 		last->b_tnext = first->b_tprev = jh;
1807 	}
1808 }
1809 
1810 /*
1811  * Remove a buffer from a transaction list, given the transaction's list
1812  * head pointer.
1813  *
1814  * Called with j_list_lock held, and the journal may not be locked.
1815  *
1816  * jbd_lock_bh_state(jh2bh(jh)) is held.
1817  */
1818 
1819 static inline void
1820 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1821 {
1822 	if (*list == jh) {
1823 		*list = jh->b_tnext;
1824 		if (*list == jh)
1825 			*list = NULL;
1826 	}
1827 	jh->b_tprev->b_tnext = jh->b_tnext;
1828 	jh->b_tnext->b_tprev = jh->b_tprev;
1829 }
1830 
1831 /*
1832  * Remove a buffer from the appropriate transaction list.
1833  *
1834  * Note that this function can *change* the value of
1835  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1836  * t_reserved_list.  If the caller is holding onto a copy of one of these
1837  * pointers, it could go bad.  Generally the caller needs to re-read the
1838  * pointer from the transaction_t.
1839  *
1840  * Called under j_list_lock.
1841  */
1842 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1843 {
1844 	struct journal_head **list = NULL;
1845 	transaction_t *transaction;
1846 	struct buffer_head *bh = jh2bh(jh);
1847 
1848 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1849 	transaction = jh->b_transaction;
1850 	if (transaction)
1851 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1852 
1853 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1854 	if (jh->b_jlist != BJ_None)
1855 		J_ASSERT_JH(jh, transaction != NULL);
1856 
1857 	switch (jh->b_jlist) {
1858 	case BJ_None:
1859 		return;
1860 	case BJ_Metadata:
1861 		transaction->t_nr_buffers--;
1862 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1863 		list = &transaction->t_buffers;
1864 		break;
1865 	case BJ_Forget:
1866 		list = &transaction->t_forget;
1867 		break;
1868 	case BJ_Shadow:
1869 		list = &transaction->t_shadow_list;
1870 		break;
1871 	case BJ_Reserved:
1872 		list = &transaction->t_reserved_list;
1873 		break;
1874 	}
1875 
1876 	__blist_del_buffer(list, jh);
1877 	jh->b_jlist = BJ_None;
1878 	if (test_clear_buffer_jbddirty(bh))
1879 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1880 }
1881 
1882 /*
1883  * Remove buffer from all transactions.
1884  *
1885  * Called with bh_state lock and j_list_lock
1886  *
1887  * jh and bh may be already freed when this function returns.
1888  */
1889 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1890 {
1891 	__jbd2_journal_temp_unlink_buffer(jh);
1892 	jh->b_transaction = NULL;
1893 	jbd2_journal_put_journal_head(jh);
1894 }
1895 
1896 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1897 {
1898 	struct buffer_head *bh = jh2bh(jh);
1899 
1900 	/* Get reference so that buffer cannot be freed before we unlock it */
1901 	get_bh(bh);
1902 	jbd_lock_bh_state(bh);
1903 	spin_lock(&journal->j_list_lock);
1904 	__jbd2_journal_unfile_buffer(jh);
1905 	spin_unlock(&journal->j_list_lock);
1906 	jbd_unlock_bh_state(bh);
1907 	__brelse(bh);
1908 }
1909 
1910 /*
1911  * Called from jbd2_journal_try_to_free_buffers().
1912  *
1913  * Called under jbd_lock_bh_state(bh)
1914  */
1915 static void
1916 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1917 {
1918 	struct journal_head *jh;
1919 
1920 	jh = bh2jh(bh);
1921 
1922 	if (buffer_locked(bh) || buffer_dirty(bh))
1923 		goto out;
1924 
1925 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1926 		goto out;
1927 
1928 	spin_lock(&journal->j_list_lock);
1929 	if (jh->b_cp_transaction != NULL) {
1930 		/* written-back checkpointed metadata buffer */
1931 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1932 		__jbd2_journal_remove_checkpoint(jh);
1933 	}
1934 	spin_unlock(&journal->j_list_lock);
1935 out:
1936 	return;
1937 }
1938 
1939 /**
1940  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1941  * @journal: journal for operation
1942  * @page: to try and free
1943  * @gfp_mask: we use the mask to detect how hard should we try to release
1944  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1945  * code to release the buffers.
1946  *
1947  *
1948  * For all the buffers on this page,
1949  * if they are fully written out ordered data, move them onto BUF_CLEAN
1950  * so try_to_free_buffers() can reap them.
1951  *
1952  * This function returns non-zero if we wish try_to_free_buffers()
1953  * to be called. We do this if the page is releasable by try_to_free_buffers().
1954  * We also do it if the page has locked or dirty buffers and the caller wants
1955  * us to perform sync or async writeout.
1956  *
1957  * This complicates JBD locking somewhat.  We aren't protected by the
1958  * BKL here.  We wish to remove the buffer from its committing or
1959  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1960  *
1961  * This may *change* the value of transaction_t->t_datalist, so anyone
1962  * who looks at t_datalist needs to lock against this function.
1963  *
1964  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1965  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1966  * will come out of the lock with the buffer dirty, which makes it
1967  * ineligible for release here.
1968  *
1969  * Who else is affected by this?  hmm...  Really the only contender
1970  * is do_get_write_access() - it could be looking at the buffer while
1971  * journal_try_to_free_buffer() is changing its state.  But that
1972  * cannot happen because we never reallocate freed data as metadata
1973  * while the data is part of a transaction.  Yes?
1974  *
1975  * Return 0 on failure, 1 on success
1976  */
1977 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1978 				struct page *page, gfp_t gfp_mask)
1979 {
1980 	struct buffer_head *head;
1981 	struct buffer_head *bh;
1982 	int ret = 0;
1983 
1984 	J_ASSERT(PageLocked(page));
1985 
1986 	head = page_buffers(page);
1987 	bh = head;
1988 	do {
1989 		struct journal_head *jh;
1990 
1991 		/*
1992 		 * We take our own ref against the journal_head here to avoid
1993 		 * having to add tons of locking around each instance of
1994 		 * jbd2_journal_put_journal_head().
1995 		 */
1996 		jh = jbd2_journal_grab_journal_head(bh);
1997 		if (!jh)
1998 			continue;
1999 
2000 		jbd_lock_bh_state(bh);
2001 		__journal_try_to_free_buffer(journal, bh);
2002 		jbd2_journal_put_journal_head(jh);
2003 		jbd_unlock_bh_state(bh);
2004 		if (buffer_jbd(bh))
2005 			goto busy;
2006 	} while ((bh = bh->b_this_page) != head);
2007 
2008 	ret = try_to_free_buffers(page);
2009 
2010 busy:
2011 	return ret;
2012 }
2013 
2014 /*
2015  * This buffer is no longer needed.  If it is on an older transaction's
2016  * checkpoint list we need to record it on this transaction's forget list
2017  * to pin this buffer (and hence its checkpointing transaction) down until
2018  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2019  * release it.
2020  * Returns non-zero if JBD no longer has an interest in the buffer.
2021  *
2022  * Called under j_list_lock.
2023  *
2024  * Called under jbd_lock_bh_state(bh).
2025  */
2026 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2027 {
2028 	int may_free = 1;
2029 	struct buffer_head *bh = jh2bh(jh);
2030 
2031 	if (jh->b_cp_transaction) {
2032 		JBUFFER_TRACE(jh, "on running+cp transaction");
2033 		__jbd2_journal_temp_unlink_buffer(jh);
2034 		/*
2035 		 * We don't want to write the buffer anymore, clear the
2036 		 * bit so that we don't confuse checks in
2037 		 * __journal_file_buffer
2038 		 */
2039 		clear_buffer_dirty(bh);
2040 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2041 		may_free = 0;
2042 	} else {
2043 		JBUFFER_TRACE(jh, "on running transaction");
2044 		__jbd2_journal_unfile_buffer(jh);
2045 	}
2046 	return may_free;
2047 }
2048 
2049 /*
2050  * jbd2_journal_invalidatepage
2051  *
2052  * This code is tricky.  It has a number of cases to deal with.
2053  *
2054  * There are two invariants which this code relies on:
2055  *
2056  * i_size must be updated on disk before we start calling invalidatepage on the
2057  * data.
2058  *
2059  *  This is done in ext3 by defining an ext3_setattr method which
2060  *  updates i_size before truncate gets going.  By maintaining this
2061  *  invariant, we can be sure that it is safe to throw away any buffers
2062  *  attached to the current transaction: once the transaction commits,
2063  *  we know that the data will not be needed.
2064  *
2065  *  Note however that we can *not* throw away data belonging to the
2066  *  previous, committing transaction!
2067  *
2068  * Any disk blocks which *are* part of the previous, committing
2069  * transaction (and which therefore cannot be discarded immediately) are
2070  * not going to be reused in the new running transaction
2071  *
2072  *  The bitmap committed_data images guarantee this: any block which is
2073  *  allocated in one transaction and removed in the next will be marked
2074  *  as in-use in the committed_data bitmap, so cannot be reused until
2075  *  the next transaction to delete the block commits.  This means that
2076  *  leaving committing buffers dirty is quite safe: the disk blocks
2077  *  cannot be reallocated to a different file and so buffer aliasing is
2078  *  not possible.
2079  *
2080  *
2081  * The above applies mainly to ordered data mode.  In writeback mode we
2082  * don't make guarantees about the order in which data hits disk --- in
2083  * particular we don't guarantee that new dirty data is flushed before
2084  * transaction commit --- so it is always safe just to discard data
2085  * immediately in that mode.  --sct
2086  */
2087 
2088 /*
2089  * The journal_unmap_buffer helper function returns zero if the buffer
2090  * concerned remains pinned as an anonymous buffer belonging to an older
2091  * transaction.
2092  *
2093  * We're outside-transaction here.  Either or both of j_running_transaction
2094  * and j_committing_transaction may be NULL.
2095  */
2096 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2097 				int partial_page)
2098 {
2099 	transaction_t *transaction;
2100 	struct journal_head *jh;
2101 	int may_free = 1;
2102 
2103 	BUFFER_TRACE(bh, "entry");
2104 
2105 	/*
2106 	 * It is safe to proceed here without the j_list_lock because the
2107 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2108 	 * holding the page lock. --sct
2109 	 */
2110 
2111 	if (!buffer_jbd(bh))
2112 		goto zap_buffer_unlocked;
2113 
2114 	/* OK, we have data buffer in journaled mode */
2115 	write_lock(&journal->j_state_lock);
2116 	jbd_lock_bh_state(bh);
2117 	spin_lock(&journal->j_list_lock);
2118 
2119 	jh = jbd2_journal_grab_journal_head(bh);
2120 	if (!jh)
2121 		goto zap_buffer_no_jh;
2122 
2123 	/*
2124 	 * We cannot remove the buffer from checkpoint lists until the
2125 	 * transaction adding inode to orphan list (let's call it T)
2126 	 * is committed.  Otherwise if the transaction changing the
2127 	 * buffer would be cleaned from the journal before T is
2128 	 * committed, a crash will cause that the correct contents of
2129 	 * the buffer will be lost.  On the other hand we have to
2130 	 * clear the buffer dirty bit at latest at the moment when the
2131 	 * transaction marking the buffer as freed in the filesystem
2132 	 * structures is committed because from that moment on the
2133 	 * block can be reallocated and used by a different page.
2134 	 * Since the block hasn't been freed yet but the inode has
2135 	 * already been added to orphan list, it is safe for us to add
2136 	 * the buffer to BJ_Forget list of the newest transaction.
2137 	 *
2138 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2139 	 * because the buffer_head may be attached to the page straddling
2140 	 * i_size (can happen only when blocksize < pagesize) and thus the
2141 	 * buffer_head can be reused when the file is extended again. So we end
2142 	 * up keeping around invalidated buffers attached to transactions'
2143 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2144 	 * the transaction this buffer was modified in.
2145 	 */
2146 	transaction = jh->b_transaction;
2147 	if (transaction == NULL) {
2148 		/* First case: not on any transaction.  If it
2149 		 * has no checkpoint link, then we can zap it:
2150 		 * it's a writeback-mode buffer so we don't care
2151 		 * if it hits disk safely. */
2152 		if (!jh->b_cp_transaction) {
2153 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2154 			goto zap_buffer;
2155 		}
2156 
2157 		if (!buffer_dirty(bh)) {
2158 			/* bdflush has written it.  We can drop it now */
2159 			__jbd2_journal_remove_checkpoint(jh);
2160 			goto zap_buffer;
2161 		}
2162 
2163 		/* OK, it must be in the journal but still not
2164 		 * written fully to disk: it's metadata or
2165 		 * journaled data... */
2166 
2167 		if (journal->j_running_transaction) {
2168 			/* ... and once the current transaction has
2169 			 * committed, the buffer won't be needed any
2170 			 * longer. */
2171 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2172 			may_free = __dispose_buffer(jh,
2173 					journal->j_running_transaction);
2174 			goto zap_buffer;
2175 		} else {
2176 			/* There is no currently-running transaction. So the
2177 			 * orphan record which we wrote for this file must have
2178 			 * passed into commit.  We must attach this buffer to
2179 			 * the committing transaction, if it exists. */
2180 			if (journal->j_committing_transaction) {
2181 				JBUFFER_TRACE(jh, "give to committing trans");
2182 				may_free = __dispose_buffer(jh,
2183 					journal->j_committing_transaction);
2184 				goto zap_buffer;
2185 			} else {
2186 				/* The orphan record's transaction has
2187 				 * committed.  We can cleanse this buffer */
2188 				clear_buffer_jbddirty(bh);
2189 				__jbd2_journal_remove_checkpoint(jh);
2190 				goto zap_buffer;
2191 			}
2192 		}
2193 	} else if (transaction == journal->j_committing_transaction) {
2194 		JBUFFER_TRACE(jh, "on committing transaction");
2195 		/*
2196 		 * The buffer is committing, we simply cannot touch
2197 		 * it. If the page is straddling i_size we have to wait
2198 		 * for commit and try again.
2199 		 */
2200 		if (partial_page) {
2201 			jbd2_journal_put_journal_head(jh);
2202 			spin_unlock(&journal->j_list_lock);
2203 			jbd_unlock_bh_state(bh);
2204 			write_unlock(&journal->j_state_lock);
2205 			return -EBUSY;
2206 		}
2207 		/*
2208 		 * OK, buffer won't be reachable after truncate. We just set
2209 		 * j_next_transaction to the running transaction (if there is
2210 		 * one) and mark buffer as freed so that commit code knows it
2211 		 * should clear dirty bits when it is done with the buffer.
2212 		 */
2213 		set_buffer_freed(bh);
2214 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2215 			jh->b_next_transaction = journal->j_running_transaction;
2216 		jbd2_journal_put_journal_head(jh);
2217 		spin_unlock(&journal->j_list_lock);
2218 		jbd_unlock_bh_state(bh);
2219 		write_unlock(&journal->j_state_lock);
2220 		return 0;
2221 	} else {
2222 		/* Good, the buffer belongs to the running transaction.
2223 		 * We are writing our own transaction's data, not any
2224 		 * previous one's, so it is safe to throw it away
2225 		 * (remember that we expect the filesystem to have set
2226 		 * i_size already for this truncate so recovery will not
2227 		 * expose the disk blocks we are discarding here.) */
2228 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2229 		JBUFFER_TRACE(jh, "on running transaction");
2230 		may_free = __dispose_buffer(jh, transaction);
2231 	}
2232 
2233 zap_buffer:
2234 	/*
2235 	 * This is tricky. Although the buffer is truncated, it may be reused
2236 	 * if blocksize < pagesize and it is attached to the page straddling
2237 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2238 	 * running transaction, journal_get_write_access() won't clear
2239 	 * b_modified and credit accounting gets confused. So clear b_modified
2240 	 * here.
2241 	 */
2242 	jh->b_modified = 0;
2243 	jbd2_journal_put_journal_head(jh);
2244 zap_buffer_no_jh:
2245 	spin_unlock(&journal->j_list_lock);
2246 	jbd_unlock_bh_state(bh);
2247 	write_unlock(&journal->j_state_lock);
2248 zap_buffer_unlocked:
2249 	clear_buffer_dirty(bh);
2250 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2251 	clear_buffer_mapped(bh);
2252 	clear_buffer_req(bh);
2253 	clear_buffer_new(bh);
2254 	clear_buffer_delay(bh);
2255 	clear_buffer_unwritten(bh);
2256 	bh->b_bdev = NULL;
2257 	return may_free;
2258 }
2259 
2260 /**
2261  * void jbd2_journal_invalidatepage()
2262  * @journal: journal to use for flush...
2263  * @page:    page to flush
2264  * @offset:  start of the range to invalidate
2265  * @length:  length of the range to invalidate
2266  *
2267  * Reap page buffers containing data after in the specified range in page.
2268  * Can return -EBUSY if buffers are part of the committing transaction and
2269  * the page is straddling i_size. Caller then has to wait for current commit
2270  * and try again.
2271  */
2272 int jbd2_journal_invalidatepage(journal_t *journal,
2273 				struct page *page,
2274 				unsigned int offset,
2275 				unsigned int length)
2276 {
2277 	struct buffer_head *head, *bh, *next;
2278 	unsigned int stop = offset + length;
2279 	unsigned int curr_off = 0;
2280 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2281 	int may_free = 1;
2282 	int ret = 0;
2283 
2284 	if (!PageLocked(page))
2285 		BUG();
2286 	if (!page_has_buffers(page))
2287 		return 0;
2288 
2289 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2290 
2291 	/* We will potentially be playing with lists other than just the
2292 	 * data lists (especially for journaled data mode), so be
2293 	 * cautious in our locking. */
2294 
2295 	head = bh = page_buffers(page);
2296 	do {
2297 		unsigned int next_off = curr_off + bh->b_size;
2298 		next = bh->b_this_page;
2299 
2300 		if (next_off > stop)
2301 			return 0;
2302 
2303 		if (offset <= curr_off) {
2304 			/* This block is wholly outside the truncation point */
2305 			lock_buffer(bh);
2306 			ret = journal_unmap_buffer(journal, bh, partial_page);
2307 			unlock_buffer(bh);
2308 			if (ret < 0)
2309 				return ret;
2310 			may_free &= ret;
2311 		}
2312 		curr_off = next_off;
2313 		bh = next;
2314 
2315 	} while (bh != head);
2316 
2317 	if (!partial_page) {
2318 		if (may_free && try_to_free_buffers(page))
2319 			J_ASSERT(!page_has_buffers(page));
2320 	}
2321 	return 0;
2322 }
2323 
2324 /*
2325  * File a buffer on the given transaction list.
2326  */
2327 void __jbd2_journal_file_buffer(struct journal_head *jh,
2328 			transaction_t *transaction, int jlist)
2329 {
2330 	struct journal_head **list = NULL;
2331 	int was_dirty = 0;
2332 	struct buffer_head *bh = jh2bh(jh);
2333 
2334 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2335 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2336 
2337 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2338 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2339 				jh->b_transaction == NULL);
2340 
2341 	if (jh->b_transaction && jh->b_jlist == jlist)
2342 		return;
2343 
2344 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2345 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2346 		/*
2347 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2348 		 * instead of buffer_dirty. We should not see a dirty bit set
2349 		 * here because we clear it in do_get_write_access but e.g.
2350 		 * tune2fs can modify the sb and set the dirty bit at any time
2351 		 * so we try to gracefully handle that.
2352 		 */
2353 		if (buffer_dirty(bh))
2354 			warn_dirty_buffer(bh);
2355 		if (test_clear_buffer_dirty(bh) ||
2356 		    test_clear_buffer_jbddirty(bh))
2357 			was_dirty = 1;
2358 	}
2359 
2360 	if (jh->b_transaction)
2361 		__jbd2_journal_temp_unlink_buffer(jh);
2362 	else
2363 		jbd2_journal_grab_journal_head(bh);
2364 	jh->b_transaction = transaction;
2365 
2366 	switch (jlist) {
2367 	case BJ_None:
2368 		J_ASSERT_JH(jh, !jh->b_committed_data);
2369 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2370 		return;
2371 	case BJ_Metadata:
2372 		transaction->t_nr_buffers++;
2373 		list = &transaction->t_buffers;
2374 		break;
2375 	case BJ_Forget:
2376 		list = &transaction->t_forget;
2377 		break;
2378 	case BJ_Shadow:
2379 		list = &transaction->t_shadow_list;
2380 		break;
2381 	case BJ_Reserved:
2382 		list = &transaction->t_reserved_list;
2383 		break;
2384 	}
2385 
2386 	__blist_add_buffer(list, jh);
2387 	jh->b_jlist = jlist;
2388 
2389 	if (was_dirty)
2390 		set_buffer_jbddirty(bh);
2391 }
2392 
2393 void jbd2_journal_file_buffer(struct journal_head *jh,
2394 				transaction_t *transaction, int jlist)
2395 {
2396 	jbd_lock_bh_state(jh2bh(jh));
2397 	spin_lock(&transaction->t_journal->j_list_lock);
2398 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2399 	spin_unlock(&transaction->t_journal->j_list_lock);
2400 	jbd_unlock_bh_state(jh2bh(jh));
2401 }
2402 
2403 /*
2404  * Remove a buffer from its current buffer list in preparation for
2405  * dropping it from its current transaction entirely.  If the buffer has
2406  * already started to be used by a subsequent transaction, refile the
2407  * buffer on that transaction's metadata list.
2408  *
2409  * Called under j_list_lock
2410  * Called under jbd_lock_bh_state(jh2bh(jh))
2411  *
2412  * jh and bh may be already free when this function returns
2413  */
2414 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2415 {
2416 	int was_dirty, jlist;
2417 	struct buffer_head *bh = jh2bh(jh);
2418 
2419 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2420 	if (jh->b_transaction)
2421 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2422 
2423 	/* If the buffer is now unused, just drop it. */
2424 	if (jh->b_next_transaction == NULL) {
2425 		__jbd2_journal_unfile_buffer(jh);
2426 		return;
2427 	}
2428 
2429 	/*
2430 	 * It has been modified by a later transaction: add it to the new
2431 	 * transaction's metadata list.
2432 	 */
2433 
2434 	was_dirty = test_clear_buffer_jbddirty(bh);
2435 	__jbd2_journal_temp_unlink_buffer(jh);
2436 	/*
2437 	 * We set b_transaction here because b_next_transaction will inherit
2438 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2439 	 * take a new one.
2440 	 */
2441 	jh->b_transaction = jh->b_next_transaction;
2442 	jh->b_next_transaction = NULL;
2443 	if (buffer_freed(bh))
2444 		jlist = BJ_Forget;
2445 	else if (jh->b_modified)
2446 		jlist = BJ_Metadata;
2447 	else
2448 		jlist = BJ_Reserved;
2449 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2450 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2451 
2452 	if (was_dirty)
2453 		set_buffer_jbddirty(bh);
2454 }
2455 
2456 /*
2457  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2458  * bh reference so that we can safely unlock bh.
2459  *
2460  * The jh and bh may be freed by this call.
2461  */
2462 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2463 {
2464 	struct buffer_head *bh = jh2bh(jh);
2465 
2466 	/* Get reference so that buffer cannot be freed before we unlock it */
2467 	get_bh(bh);
2468 	jbd_lock_bh_state(bh);
2469 	spin_lock(&journal->j_list_lock);
2470 	__jbd2_journal_refile_buffer(jh);
2471 	jbd_unlock_bh_state(bh);
2472 	spin_unlock(&journal->j_list_lock);
2473 	__brelse(bh);
2474 }
2475 
2476 /*
2477  * File inode in the inode list of the handle's transaction
2478  */
2479 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2480 {
2481 	transaction_t *transaction = handle->h_transaction;
2482 	journal_t *journal;
2483 
2484 	if (is_handle_aborted(handle))
2485 		return -EROFS;
2486 	journal = transaction->t_journal;
2487 
2488 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2489 			transaction->t_tid);
2490 
2491 	/*
2492 	 * First check whether inode isn't already on the transaction's
2493 	 * lists without taking the lock. Note that this check is safe
2494 	 * without the lock as we cannot race with somebody removing inode
2495 	 * from the transaction. The reason is that we remove inode from the
2496 	 * transaction only in journal_release_jbd_inode() and when we commit
2497 	 * the transaction. We are guarded from the first case by holding
2498 	 * a reference to the inode. We are safe against the second case
2499 	 * because if jinode->i_transaction == transaction, commit code
2500 	 * cannot touch the transaction because we hold reference to it,
2501 	 * and if jinode->i_next_transaction == transaction, commit code
2502 	 * will only file the inode where we want it.
2503 	 */
2504 	if (jinode->i_transaction == transaction ||
2505 	    jinode->i_next_transaction == transaction)
2506 		return 0;
2507 
2508 	spin_lock(&journal->j_list_lock);
2509 
2510 	if (jinode->i_transaction == transaction ||
2511 	    jinode->i_next_transaction == transaction)
2512 		goto done;
2513 
2514 	/*
2515 	 * We only ever set this variable to 1 so the test is safe. Since
2516 	 * t_need_data_flush is likely to be set, we do the test to save some
2517 	 * cacheline bouncing
2518 	 */
2519 	if (!transaction->t_need_data_flush)
2520 		transaction->t_need_data_flush = 1;
2521 	/* On some different transaction's list - should be
2522 	 * the committing one */
2523 	if (jinode->i_transaction) {
2524 		J_ASSERT(jinode->i_next_transaction == NULL);
2525 		J_ASSERT(jinode->i_transaction ==
2526 					journal->j_committing_transaction);
2527 		jinode->i_next_transaction = transaction;
2528 		goto done;
2529 	}
2530 	/* Not on any transaction list... */
2531 	J_ASSERT(!jinode->i_next_transaction);
2532 	jinode->i_transaction = transaction;
2533 	list_add(&jinode->i_list, &transaction->t_inode_list);
2534 done:
2535 	spin_unlock(&journal->j_list_lock);
2536 
2537 	return 0;
2538 }
2539 
2540 /*
2541  * File truncate and transaction commit interact with each other in a
2542  * non-trivial way.  If a transaction writing data block A is
2543  * committing, we cannot discard the data by truncate until we have
2544  * written them.  Otherwise if we crashed after the transaction with
2545  * write has committed but before the transaction with truncate has
2546  * committed, we could see stale data in block A.  This function is a
2547  * helper to solve this problem.  It starts writeout of the truncated
2548  * part in case it is in the committing transaction.
2549  *
2550  * Filesystem code must call this function when inode is journaled in
2551  * ordered mode before truncation happens and after the inode has been
2552  * placed on orphan list with the new inode size. The second condition
2553  * avoids the race that someone writes new data and we start
2554  * committing the transaction after this function has been called but
2555  * before a transaction for truncate is started (and furthermore it
2556  * allows us to optimize the case where the addition to orphan list
2557  * happens in the same transaction as write --- we don't have to write
2558  * any data in such case).
2559  */
2560 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2561 					struct jbd2_inode *jinode,
2562 					loff_t new_size)
2563 {
2564 	transaction_t *inode_trans, *commit_trans;
2565 	int ret = 0;
2566 
2567 	/* This is a quick check to avoid locking if not necessary */
2568 	if (!jinode->i_transaction)
2569 		goto out;
2570 	/* Locks are here just to force reading of recent values, it is
2571 	 * enough that the transaction was not committing before we started
2572 	 * a transaction adding the inode to orphan list */
2573 	read_lock(&journal->j_state_lock);
2574 	commit_trans = journal->j_committing_transaction;
2575 	read_unlock(&journal->j_state_lock);
2576 	spin_lock(&journal->j_list_lock);
2577 	inode_trans = jinode->i_transaction;
2578 	spin_unlock(&journal->j_list_lock);
2579 	if (inode_trans == commit_trans) {
2580 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2581 			new_size, LLONG_MAX);
2582 		if (ret)
2583 			jbd2_journal_abort(journal, ret);
2584 	}
2585 out:
2586 	return ret;
2587 }
2588