1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 atomic_set(&transaction->t_updates, 0); 111 atomic_set(&transaction->t_outstanding_credits, 112 jbd2_descriptor_blocks_per_trans(journal) + 113 atomic_read(&journal->j_reserved_credits)); 114 atomic_set(&transaction->t_outstanding_revokes, 0); 115 atomic_set(&transaction->t_handle_count, 0); 116 INIT_LIST_HEAD(&transaction->t_inode_list); 117 INIT_LIST_HEAD(&transaction->t_private_list); 118 119 /* Set up the commit timer for the new transaction. */ 120 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 121 add_timer(&journal->j_commit_timer); 122 123 J_ASSERT(journal->j_running_transaction == NULL); 124 journal->j_running_transaction = transaction; 125 transaction->t_max_wait = 0; 126 transaction->t_start = jiffies; 127 transaction->t_requested = 0; 128 } 129 130 /* 131 * Handle management. 132 * 133 * A handle_t is an object which represents a single atomic update to a 134 * filesystem, and which tracks all of the modifications which form part 135 * of that one update. 136 */ 137 138 /* 139 * Update transaction's maximum wait time, if debugging is enabled. 140 * 141 * t_max_wait is carefully updated here with use of atomic compare exchange. 142 * Note that there could be multiplre threads trying to do this simultaneously 143 * hence using cmpxchg to avoid any use of locks in this case. 144 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug. 145 */ 146 static inline void update_t_max_wait(transaction_t *transaction, 147 unsigned long ts) 148 { 149 unsigned long oldts, newts; 150 151 if (time_after(transaction->t_start, ts)) { 152 newts = jbd2_time_diff(ts, transaction->t_start); 153 oldts = READ_ONCE(transaction->t_max_wait); 154 while (oldts < newts) 155 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts); 156 } 157 } 158 159 /* 160 * Wait until running transaction passes to T_FLUSH state and new transaction 161 * can thus be started. Also starts the commit if needed. The function expects 162 * running transaction to exist and releases j_state_lock. 163 */ 164 static void wait_transaction_locked(journal_t *journal) 165 __releases(journal->j_state_lock) 166 { 167 DEFINE_WAIT(wait); 168 int need_to_start; 169 tid_t tid = journal->j_running_transaction->t_tid; 170 171 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 172 TASK_UNINTERRUPTIBLE); 173 need_to_start = !tid_geq(journal->j_commit_request, tid); 174 read_unlock(&journal->j_state_lock); 175 if (need_to_start) 176 jbd2_log_start_commit(journal, tid); 177 jbd2_might_wait_for_commit(journal); 178 schedule(); 179 finish_wait(&journal->j_wait_transaction_locked, &wait); 180 } 181 182 /* 183 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 184 * state and new transaction can thus be started. The function releases 185 * j_state_lock. 186 */ 187 static void wait_transaction_switching(journal_t *journal) 188 __releases(journal->j_state_lock) 189 { 190 DEFINE_WAIT(wait); 191 192 if (WARN_ON(!journal->j_running_transaction || 193 journal->j_running_transaction->t_state != T_SWITCH)) { 194 read_unlock(&journal->j_state_lock); 195 return; 196 } 197 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 198 TASK_UNINTERRUPTIBLE); 199 read_unlock(&journal->j_state_lock); 200 /* 201 * We don't call jbd2_might_wait_for_commit() here as there's no 202 * waiting for outstanding handles happening anymore in T_SWITCH state 203 * and handling of reserved handles actually relies on that for 204 * correctness. 205 */ 206 schedule(); 207 finish_wait(&journal->j_wait_transaction_locked, &wait); 208 } 209 210 static void sub_reserved_credits(journal_t *journal, int blocks) 211 { 212 atomic_sub(blocks, &journal->j_reserved_credits); 213 wake_up(&journal->j_wait_reserved); 214 } 215 216 /* 217 * Wait until we can add credits for handle to the running transaction. Called 218 * with j_state_lock held for reading. Returns 0 if handle joined the running 219 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 220 * caller must retry. 221 * 222 * Note: because j_state_lock may be dropped depending on the return 223 * value, we need to fake out sparse so ti doesn't complain about a 224 * locking imbalance. Callers of add_transaction_credits will need to 225 * make a similar accomodation. 226 */ 227 static int add_transaction_credits(journal_t *journal, int blocks, 228 int rsv_blocks) 229 __must_hold(&journal->j_state_lock) 230 { 231 transaction_t *t = journal->j_running_transaction; 232 int needed; 233 int total = blocks + rsv_blocks; 234 235 /* 236 * If the current transaction is locked down for commit, wait 237 * for the lock to be released. 238 */ 239 if (t->t_state != T_RUNNING) { 240 WARN_ON_ONCE(t->t_state >= T_FLUSH); 241 wait_transaction_locked(journal); 242 __acquire(&journal->j_state_lock); /* fake out sparse */ 243 return 1; 244 } 245 246 /* 247 * If there is not enough space left in the log to write all 248 * potential buffers requested by this operation, we need to 249 * stall pending a log checkpoint to free some more log space. 250 */ 251 needed = atomic_add_return(total, &t->t_outstanding_credits); 252 if (needed > journal->j_max_transaction_buffers) { 253 /* 254 * If the current transaction is already too large, 255 * then start to commit it: we can then go back and 256 * attach this handle to a new transaction. 257 */ 258 atomic_sub(total, &t->t_outstanding_credits); 259 260 /* 261 * Is the number of reserved credits in the current transaction too 262 * big to fit this handle? Wait until reserved credits are freed. 263 */ 264 if (atomic_read(&journal->j_reserved_credits) + total > 265 journal->j_max_transaction_buffers) { 266 read_unlock(&journal->j_state_lock); 267 jbd2_might_wait_for_commit(journal); 268 wait_event(journal->j_wait_reserved, 269 atomic_read(&journal->j_reserved_credits) + total <= 270 journal->j_max_transaction_buffers); 271 __acquire(&journal->j_state_lock); /* fake out sparse */ 272 return 1; 273 } 274 275 wait_transaction_locked(journal); 276 __acquire(&journal->j_state_lock); /* fake out sparse */ 277 return 1; 278 } 279 280 /* 281 * The commit code assumes that it can get enough log space 282 * without forcing a checkpoint. This is *critical* for 283 * correctness: a checkpoint of a buffer which is also 284 * associated with a committing transaction creates a deadlock, 285 * so commit simply cannot force through checkpoints. 286 * 287 * We must therefore ensure the necessary space in the journal 288 * *before* starting to dirty potentially checkpointed buffers 289 * in the new transaction. 290 */ 291 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 292 atomic_sub(total, &t->t_outstanding_credits); 293 read_unlock(&journal->j_state_lock); 294 jbd2_might_wait_for_commit(journal); 295 write_lock(&journal->j_state_lock); 296 if (jbd2_log_space_left(journal) < 297 journal->j_max_transaction_buffers) 298 __jbd2_log_wait_for_space(journal); 299 write_unlock(&journal->j_state_lock); 300 __acquire(&journal->j_state_lock); /* fake out sparse */ 301 return 1; 302 } 303 304 /* No reservation? We are done... */ 305 if (!rsv_blocks) 306 return 0; 307 308 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 309 /* We allow at most half of a transaction to be reserved */ 310 if (needed > journal->j_max_transaction_buffers / 2) { 311 sub_reserved_credits(journal, rsv_blocks); 312 atomic_sub(total, &t->t_outstanding_credits); 313 read_unlock(&journal->j_state_lock); 314 jbd2_might_wait_for_commit(journal); 315 wait_event(journal->j_wait_reserved, 316 atomic_read(&journal->j_reserved_credits) + rsv_blocks 317 <= journal->j_max_transaction_buffers / 2); 318 __acquire(&journal->j_state_lock); /* fake out sparse */ 319 return 1; 320 } 321 return 0; 322 } 323 324 /* 325 * start_this_handle: Given a handle, deal with any locking or stalling 326 * needed to make sure that there is enough journal space for the handle 327 * to begin. Attach the handle to a transaction and set up the 328 * transaction's buffer credits. 329 */ 330 331 static int start_this_handle(journal_t *journal, handle_t *handle, 332 gfp_t gfp_mask) 333 { 334 transaction_t *transaction, *new_transaction = NULL; 335 int blocks = handle->h_total_credits; 336 int rsv_blocks = 0; 337 unsigned long ts = jiffies; 338 339 if (handle->h_rsv_handle) 340 rsv_blocks = handle->h_rsv_handle->h_total_credits; 341 342 /* 343 * Limit the number of reserved credits to 1/2 of maximum transaction 344 * size and limit the number of total credits to not exceed maximum 345 * transaction size per operation. 346 */ 347 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 348 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 349 printk(KERN_ERR "JBD2: %s wants too many credits " 350 "credits:%d rsv_credits:%d max:%d\n", 351 current->comm, blocks, rsv_blocks, 352 journal->j_max_transaction_buffers); 353 WARN_ON(1); 354 return -ENOSPC; 355 } 356 357 alloc_transaction: 358 /* 359 * This check is racy but it is just an optimization of allocating new 360 * transaction early if there are high chances we'll need it. If we 361 * guess wrong, we'll retry or free unused transaction. 362 */ 363 if (!data_race(journal->j_running_transaction)) { 364 /* 365 * If __GFP_FS is not present, then we may be being called from 366 * inside the fs writeback layer, so we MUST NOT fail. 367 */ 368 if ((gfp_mask & __GFP_FS) == 0) 369 gfp_mask |= __GFP_NOFAIL; 370 new_transaction = kmem_cache_zalloc(transaction_cache, 371 gfp_mask); 372 if (!new_transaction) 373 return -ENOMEM; 374 } 375 376 jbd2_debug(3, "New handle %p going live.\n", handle); 377 378 /* 379 * We need to hold j_state_lock until t_updates has been incremented, 380 * for proper journal barrier handling 381 */ 382 repeat: 383 read_lock(&journal->j_state_lock); 384 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 385 if (is_journal_aborted(journal) || 386 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 387 read_unlock(&journal->j_state_lock); 388 jbd2_journal_free_transaction(new_transaction); 389 return -EROFS; 390 } 391 392 /* 393 * Wait on the journal's transaction barrier if necessary. Specifically 394 * we allow reserved handles to proceed because otherwise commit could 395 * deadlock on page writeback not being able to complete. 396 */ 397 if (!handle->h_reserved && journal->j_barrier_count) { 398 read_unlock(&journal->j_state_lock); 399 wait_event(journal->j_wait_transaction_locked, 400 journal->j_barrier_count == 0); 401 goto repeat; 402 } 403 404 if (!journal->j_running_transaction) { 405 read_unlock(&journal->j_state_lock); 406 if (!new_transaction) 407 goto alloc_transaction; 408 write_lock(&journal->j_state_lock); 409 if (!journal->j_running_transaction && 410 (handle->h_reserved || !journal->j_barrier_count)) { 411 jbd2_get_transaction(journal, new_transaction); 412 new_transaction = NULL; 413 } 414 write_unlock(&journal->j_state_lock); 415 goto repeat; 416 } 417 418 transaction = journal->j_running_transaction; 419 420 if (!handle->h_reserved) { 421 /* We may have dropped j_state_lock - restart in that case */ 422 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 423 /* 424 * add_transaction_credits releases 425 * j_state_lock on a non-zero return 426 */ 427 __release(&journal->j_state_lock); 428 goto repeat; 429 } 430 } else { 431 /* 432 * We have handle reserved so we are allowed to join T_LOCKED 433 * transaction and we don't have to check for transaction size 434 * and journal space. But we still have to wait while running 435 * transaction is being switched to a committing one as it 436 * won't wait for any handles anymore. 437 */ 438 if (transaction->t_state == T_SWITCH) { 439 wait_transaction_switching(journal); 440 goto repeat; 441 } 442 sub_reserved_credits(journal, blocks); 443 handle->h_reserved = 0; 444 } 445 446 /* OK, account for the buffers that this operation expects to 447 * use and add the handle to the running transaction. 448 */ 449 update_t_max_wait(transaction, ts); 450 handle->h_transaction = transaction; 451 handle->h_requested_credits = blocks; 452 handle->h_revoke_credits_requested = handle->h_revoke_credits; 453 handle->h_start_jiffies = jiffies; 454 atomic_inc(&transaction->t_updates); 455 atomic_inc(&transaction->t_handle_count); 456 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 457 handle, blocks, 458 atomic_read(&transaction->t_outstanding_credits), 459 jbd2_log_space_left(journal)); 460 read_unlock(&journal->j_state_lock); 461 current->journal_info = handle; 462 463 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 464 jbd2_journal_free_transaction(new_transaction); 465 /* 466 * Ensure that no allocations done while the transaction is open are 467 * going to recurse back to the fs layer. 468 */ 469 handle->saved_alloc_context = memalloc_nofs_save(); 470 return 0; 471 } 472 473 /* Allocate a new handle. This should probably be in a slab... */ 474 static handle_t *new_handle(int nblocks) 475 { 476 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 477 if (!handle) 478 return NULL; 479 handle->h_total_credits = nblocks; 480 handle->h_ref = 1; 481 482 return handle; 483 } 484 485 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 486 int revoke_records, gfp_t gfp_mask, 487 unsigned int type, unsigned int line_no) 488 { 489 handle_t *handle = journal_current_handle(); 490 int err; 491 492 if (!journal) 493 return ERR_PTR(-EROFS); 494 495 if (handle) { 496 J_ASSERT(handle->h_transaction->t_journal == journal); 497 handle->h_ref++; 498 return handle; 499 } 500 501 nblocks += DIV_ROUND_UP(revoke_records, 502 journal->j_revoke_records_per_block); 503 handle = new_handle(nblocks); 504 if (!handle) 505 return ERR_PTR(-ENOMEM); 506 if (rsv_blocks) { 507 handle_t *rsv_handle; 508 509 rsv_handle = new_handle(rsv_blocks); 510 if (!rsv_handle) { 511 jbd2_free_handle(handle); 512 return ERR_PTR(-ENOMEM); 513 } 514 rsv_handle->h_reserved = 1; 515 rsv_handle->h_journal = journal; 516 handle->h_rsv_handle = rsv_handle; 517 } 518 handle->h_revoke_credits = revoke_records; 519 520 err = start_this_handle(journal, handle, gfp_mask); 521 if (err < 0) { 522 if (handle->h_rsv_handle) 523 jbd2_free_handle(handle->h_rsv_handle); 524 jbd2_free_handle(handle); 525 return ERR_PTR(err); 526 } 527 handle->h_type = type; 528 handle->h_line_no = line_no; 529 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 530 handle->h_transaction->t_tid, type, 531 line_no, nblocks); 532 533 return handle; 534 } 535 EXPORT_SYMBOL(jbd2__journal_start); 536 537 538 /** 539 * jbd2_journal_start() - Obtain a new handle. 540 * @journal: Journal to start transaction on. 541 * @nblocks: number of block buffer we might modify 542 * 543 * We make sure that the transaction can guarantee at least nblocks of 544 * modified buffers in the log. We block until the log can guarantee 545 * that much space. Additionally, if rsv_blocks > 0, we also create another 546 * handle with rsv_blocks reserved blocks in the journal. This handle is 547 * stored in h_rsv_handle. It is not attached to any particular transaction 548 * and thus doesn't block transaction commit. If the caller uses this reserved 549 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 550 * on the parent handle will dispose the reserved one. Reserved handle has to 551 * be converted to a normal handle using jbd2_journal_start_reserved() before 552 * it can be used. 553 * 554 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 555 * on failure. 556 */ 557 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 558 { 559 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 560 } 561 EXPORT_SYMBOL(jbd2_journal_start); 562 563 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 564 { 565 journal_t *journal = handle->h_journal; 566 567 WARN_ON(!handle->h_reserved); 568 sub_reserved_credits(journal, handle->h_total_credits); 569 if (t) 570 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 571 } 572 573 void jbd2_journal_free_reserved(handle_t *handle) 574 { 575 journal_t *journal = handle->h_journal; 576 577 /* Get j_state_lock to pin running transaction if it exists */ 578 read_lock(&journal->j_state_lock); 579 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 580 read_unlock(&journal->j_state_lock); 581 jbd2_free_handle(handle); 582 } 583 EXPORT_SYMBOL(jbd2_journal_free_reserved); 584 585 /** 586 * jbd2_journal_start_reserved() - start reserved handle 587 * @handle: handle to start 588 * @type: for handle statistics 589 * @line_no: for handle statistics 590 * 591 * Start handle that has been previously reserved with jbd2_journal_reserve(). 592 * This attaches @handle to the running transaction (or creates one if there's 593 * not transaction running). Unlike jbd2_journal_start() this function cannot 594 * block on journal commit, checkpointing, or similar stuff. It can block on 595 * memory allocation or frozen journal though. 596 * 597 * Return 0 on success, non-zero on error - handle is freed in that case. 598 */ 599 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 600 unsigned int line_no) 601 { 602 journal_t *journal = handle->h_journal; 603 int ret = -EIO; 604 605 if (WARN_ON(!handle->h_reserved)) { 606 /* Someone passed in normal handle? Just stop it. */ 607 jbd2_journal_stop(handle); 608 return ret; 609 } 610 /* 611 * Usefulness of mixing of reserved and unreserved handles is 612 * questionable. So far nobody seems to need it so just error out. 613 */ 614 if (WARN_ON(current->journal_info)) { 615 jbd2_journal_free_reserved(handle); 616 return ret; 617 } 618 619 handle->h_journal = NULL; 620 /* 621 * GFP_NOFS is here because callers are likely from writeback or 622 * similarly constrained call sites 623 */ 624 ret = start_this_handle(journal, handle, GFP_NOFS); 625 if (ret < 0) { 626 handle->h_journal = journal; 627 jbd2_journal_free_reserved(handle); 628 return ret; 629 } 630 handle->h_type = type; 631 handle->h_line_no = line_no; 632 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 633 handle->h_transaction->t_tid, type, 634 line_no, handle->h_total_credits); 635 return 0; 636 } 637 EXPORT_SYMBOL(jbd2_journal_start_reserved); 638 639 /** 640 * jbd2_journal_extend() - extend buffer credits. 641 * @handle: handle to 'extend' 642 * @nblocks: nr blocks to try to extend by. 643 * @revoke_records: number of revoke records to try to extend by. 644 * 645 * Some transactions, such as large extends and truncates, can be done 646 * atomically all at once or in several stages. The operation requests 647 * a credit for a number of buffer modifications in advance, but can 648 * extend its credit if it needs more. 649 * 650 * jbd2_journal_extend tries to give the running handle more buffer credits. 651 * It does not guarantee that allocation - this is a best-effort only. 652 * The calling process MUST be able to deal cleanly with a failure to 653 * extend here. 654 * 655 * Return 0 on success, non-zero on failure. 656 * 657 * return code < 0 implies an error 658 * return code > 0 implies normal transaction-full status. 659 */ 660 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 661 { 662 transaction_t *transaction = handle->h_transaction; 663 journal_t *journal; 664 int result; 665 int wanted; 666 667 if (is_handle_aborted(handle)) 668 return -EROFS; 669 journal = transaction->t_journal; 670 671 result = 1; 672 673 read_lock(&journal->j_state_lock); 674 675 /* Don't extend a locked-down transaction! */ 676 if (transaction->t_state != T_RUNNING) { 677 jbd2_debug(3, "denied handle %p %d blocks: " 678 "transaction not running\n", handle, nblocks); 679 goto error_out; 680 } 681 682 nblocks += DIV_ROUND_UP( 683 handle->h_revoke_credits_requested + revoke_records, 684 journal->j_revoke_records_per_block) - 685 DIV_ROUND_UP( 686 handle->h_revoke_credits_requested, 687 journal->j_revoke_records_per_block); 688 wanted = atomic_add_return(nblocks, 689 &transaction->t_outstanding_credits); 690 691 if (wanted > journal->j_max_transaction_buffers) { 692 jbd2_debug(3, "denied handle %p %d blocks: " 693 "transaction too large\n", handle, nblocks); 694 atomic_sub(nblocks, &transaction->t_outstanding_credits); 695 goto error_out; 696 } 697 698 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 699 transaction->t_tid, 700 handle->h_type, handle->h_line_no, 701 handle->h_total_credits, 702 nblocks); 703 704 handle->h_total_credits += nblocks; 705 handle->h_requested_credits += nblocks; 706 handle->h_revoke_credits += revoke_records; 707 handle->h_revoke_credits_requested += revoke_records; 708 result = 0; 709 710 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks); 711 error_out: 712 read_unlock(&journal->j_state_lock); 713 return result; 714 } 715 716 static void stop_this_handle(handle_t *handle) 717 { 718 transaction_t *transaction = handle->h_transaction; 719 journal_t *journal = transaction->t_journal; 720 int revokes; 721 722 J_ASSERT(journal_current_handle() == handle); 723 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 724 current->journal_info = NULL; 725 /* 726 * Subtract necessary revoke descriptor blocks from handle credits. We 727 * take care to account only for revoke descriptor blocks the 728 * transaction will really need as large sequences of transactions with 729 * small numbers of revokes are relatively common. 730 */ 731 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 732 if (revokes) { 733 int t_revokes, revoke_descriptors; 734 int rr_per_blk = journal->j_revoke_records_per_block; 735 736 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 737 > handle->h_total_credits); 738 t_revokes = atomic_add_return(revokes, 739 &transaction->t_outstanding_revokes); 740 revoke_descriptors = 741 DIV_ROUND_UP(t_revokes, rr_per_blk) - 742 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 743 handle->h_total_credits -= revoke_descriptors; 744 } 745 atomic_sub(handle->h_total_credits, 746 &transaction->t_outstanding_credits); 747 if (handle->h_rsv_handle) 748 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 749 transaction); 750 if (atomic_dec_and_test(&transaction->t_updates)) 751 wake_up(&journal->j_wait_updates); 752 753 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 754 /* 755 * Scope of the GFP_NOFS context is over here and so we can restore the 756 * original alloc context. 757 */ 758 memalloc_nofs_restore(handle->saved_alloc_context); 759 } 760 761 /** 762 * jbd2__journal_restart() - restart a handle . 763 * @handle: handle to restart 764 * @nblocks: nr credits requested 765 * @revoke_records: number of revoke record credits requested 766 * @gfp_mask: memory allocation flags (for start_this_handle) 767 * 768 * Restart a handle for a multi-transaction filesystem 769 * operation. 770 * 771 * If the jbd2_journal_extend() call above fails to grant new buffer credits 772 * to a running handle, a call to jbd2_journal_restart will commit the 773 * handle's transaction so far and reattach the handle to a new 774 * transaction capable of guaranteeing the requested number of 775 * credits. We preserve reserved handle if there's any attached to the 776 * passed in handle. 777 */ 778 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 779 gfp_t gfp_mask) 780 { 781 transaction_t *transaction = handle->h_transaction; 782 journal_t *journal; 783 tid_t tid; 784 int need_to_start; 785 int ret; 786 787 /* If we've had an abort of any type, don't even think about 788 * actually doing the restart! */ 789 if (is_handle_aborted(handle)) 790 return 0; 791 journal = transaction->t_journal; 792 tid = transaction->t_tid; 793 794 /* 795 * First unlink the handle from its current transaction, and start the 796 * commit on that. 797 */ 798 jbd2_debug(2, "restarting handle %p\n", handle); 799 stop_this_handle(handle); 800 handle->h_transaction = NULL; 801 802 /* 803 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 804 * get rid of pointless j_state_lock traffic like this. 805 */ 806 read_lock(&journal->j_state_lock); 807 need_to_start = !tid_geq(journal->j_commit_request, tid); 808 read_unlock(&journal->j_state_lock); 809 if (need_to_start) 810 jbd2_log_start_commit(journal, tid); 811 handle->h_total_credits = nblocks + 812 DIV_ROUND_UP(revoke_records, 813 journal->j_revoke_records_per_block); 814 handle->h_revoke_credits = revoke_records; 815 ret = start_this_handle(journal, handle, gfp_mask); 816 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 817 ret ? 0 : handle->h_transaction->t_tid, 818 handle->h_type, handle->h_line_no, 819 handle->h_total_credits); 820 return ret; 821 } 822 EXPORT_SYMBOL(jbd2__journal_restart); 823 824 825 int jbd2_journal_restart(handle_t *handle, int nblocks) 826 { 827 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 828 } 829 EXPORT_SYMBOL(jbd2_journal_restart); 830 831 /* 832 * Waits for any outstanding t_updates to finish. 833 * This is called with write j_state_lock held. 834 */ 835 void jbd2_journal_wait_updates(journal_t *journal) 836 { 837 DEFINE_WAIT(wait); 838 839 while (1) { 840 /* 841 * Note that the running transaction can get freed under us if 842 * this transaction is getting committed in 843 * jbd2_journal_commit_transaction() -> 844 * jbd2_journal_free_transaction(). This can only happen when we 845 * release j_state_lock -> schedule() -> acquire j_state_lock. 846 * Hence we should everytime retrieve new j_running_transaction 847 * value (after j_state_lock release acquire cycle), else it may 848 * lead to use-after-free of old freed transaction. 849 */ 850 transaction_t *transaction = journal->j_running_transaction; 851 852 if (!transaction) 853 break; 854 855 prepare_to_wait(&journal->j_wait_updates, &wait, 856 TASK_UNINTERRUPTIBLE); 857 if (!atomic_read(&transaction->t_updates)) { 858 finish_wait(&journal->j_wait_updates, &wait); 859 break; 860 } 861 write_unlock(&journal->j_state_lock); 862 schedule(); 863 finish_wait(&journal->j_wait_updates, &wait); 864 write_lock(&journal->j_state_lock); 865 } 866 } 867 868 /** 869 * jbd2_journal_lock_updates () - establish a transaction barrier. 870 * @journal: Journal to establish a barrier on. 871 * 872 * This locks out any further updates from being started, and blocks 873 * until all existing updates have completed, returning only once the 874 * journal is in a quiescent state with no updates running. 875 * 876 * The journal lock should not be held on entry. 877 */ 878 void jbd2_journal_lock_updates(journal_t *journal) 879 { 880 jbd2_might_wait_for_commit(journal); 881 882 write_lock(&journal->j_state_lock); 883 ++journal->j_barrier_count; 884 885 /* Wait until there are no reserved handles */ 886 if (atomic_read(&journal->j_reserved_credits)) { 887 write_unlock(&journal->j_state_lock); 888 wait_event(journal->j_wait_reserved, 889 atomic_read(&journal->j_reserved_credits) == 0); 890 write_lock(&journal->j_state_lock); 891 } 892 893 /* Wait until there are no running t_updates */ 894 jbd2_journal_wait_updates(journal); 895 896 write_unlock(&journal->j_state_lock); 897 898 /* 899 * We have now established a barrier against other normal updates, but 900 * we also need to barrier against other jbd2_journal_lock_updates() calls 901 * to make sure that we serialise special journal-locked operations 902 * too. 903 */ 904 mutex_lock(&journal->j_barrier); 905 } 906 907 /** 908 * jbd2_journal_unlock_updates () - release barrier 909 * @journal: Journal to release the barrier on. 910 * 911 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 912 * 913 * Should be called without the journal lock held. 914 */ 915 void jbd2_journal_unlock_updates (journal_t *journal) 916 { 917 J_ASSERT(journal->j_barrier_count != 0); 918 919 mutex_unlock(&journal->j_barrier); 920 write_lock(&journal->j_state_lock); 921 --journal->j_barrier_count; 922 write_unlock(&journal->j_state_lock); 923 wake_up_all(&journal->j_wait_transaction_locked); 924 } 925 926 static void warn_dirty_buffer(struct buffer_head *bh) 927 { 928 printk(KERN_WARNING 929 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 930 "There's a risk of filesystem corruption in case of system " 931 "crash.\n", 932 bh->b_bdev, (unsigned long long)bh->b_blocknr); 933 } 934 935 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 936 static void jbd2_freeze_jh_data(struct journal_head *jh) 937 { 938 char *source; 939 struct buffer_head *bh = jh2bh(jh); 940 941 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 942 source = kmap_local_folio(bh->b_folio, bh_offset(bh)); 943 /* Fire data frozen trigger just before we copy the data */ 944 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers); 945 memcpy(jh->b_frozen_data, source, bh->b_size); 946 kunmap_local(source); 947 948 /* 949 * Now that the frozen data is saved off, we need to store any matching 950 * triggers. 951 */ 952 jh->b_frozen_triggers = jh->b_triggers; 953 } 954 955 /* 956 * If the buffer is already part of the current transaction, then there 957 * is nothing we need to do. If it is already part of a prior 958 * transaction which we are still committing to disk, then we need to 959 * make sure that we do not overwrite the old copy: we do copy-out to 960 * preserve the copy going to disk. We also account the buffer against 961 * the handle's metadata buffer credits (unless the buffer is already 962 * part of the transaction, that is). 963 * 964 */ 965 static int 966 do_get_write_access(handle_t *handle, struct journal_head *jh, 967 int force_copy) 968 { 969 struct buffer_head *bh; 970 transaction_t *transaction = handle->h_transaction; 971 journal_t *journal; 972 int error; 973 char *frozen_buffer = NULL; 974 unsigned long start_lock, time_lock; 975 976 journal = transaction->t_journal; 977 978 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 979 980 JBUFFER_TRACE(jh, "entry"); 981 repeat: 982 bh = jh2bh(jh); 983 984 /* @@@ Need to check for errors here at some point. */ 985 986 start_lock = jiffies; 987 lock_buffer(bh); 988 spin_lock(&jh->b_state_lock); 989 990 /* If it takes too long to lock the buffer, trace it */ 991 time_lock = jbd2_time_diff(start_lock, jiffies); 992 if (time_lock > HZ/10) 993 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 994 jiffies_to_msecs(time_lock)); 995 996 /* We now hold the buffer lock so it is safe to query the buffer 997 * state. Is the buffer dirty? 998 * 999 * If so, there are two possibilities. The buffer may be 1000 * non-journaled, and undergoing a quite legitimate writeback. 1001 * Otherwise, it is journaled, and we don't expect dirty buffers 1002 * in that state (the buffers should be marked JBD_Dirty 1003 * instead.) So either the IO is being done under our own 1004 * control and this is a bug, or it's a third party IO such as 1005 * dump(8) (which may leave the buffer scheduled for read --- 1006 * ie. locked but not dirty) or tune2fs (which may actually have 1007 * the buffer dirtied, ugh.) */ 1008 1009 if (buffer_dirty(bh) && jh->b_transaction) { 1010 warn_dirty_buffer(bh); 1011 /* 1012 * We need to clean the dirty flag and we must do it under the 1013 * buffer lock to be sure we don't race with running write-out. 1014 */ 1015 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1016 clear_buffer_dirty(bh); 1017 /* 1018 * The buffer is going to be added to BJ_Reserved list now and 1019 * nothing guarantees jbd2_journal_dirty_metadata() will be 1020 * ever called for it. So we need to set jbddirty bit here to 1021 * make sure the buffer is dirtied and written out when the 1022 * journaling machinery is done with it. 1023 */ 1024 set_buffer_jbddirty(bh); 1025 } 1026 1027 error = -EROFS; 1028 if (is_handle_aborted(handle)) { 1029 spin_unlock(&jh->b_state_lock); 1030 unlock_buffer(bh); 1031 goto out; 1032 } 1033 error = 0; 1034 1035 /* 1036 * The buffer is already part of this transaction if b_transaction or 1037 * b_next_transaction points to it 1038 */ 1039 if (jh->b_transaction == transaction || 1040 jh->b_next_transaction == transaction) { 1041 unlock_buffer(bh); 1042 goto done; 1043 } 1044 1045 /* 1046 * this is the first time this transaction is touching this buffer, 1047 * reset the modified flag 1048 */ 1049 jh->b_modified = 0; 1050 1051 /* 1052 * If the buffer is not journaled right now, we need to make sure it 1053 * doesn't get written to disk before the caller actually commits the 1054 * new data 1055 */ 1056 if (!jh->b_transaction) { 1057 JBUFFER_TRACE(jh, "no transaction"); 1058 J_ASSERT_JH(jh, !jh->b_next_transaction); 1059 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1060 /* 1061 * Make sure all stores to jh (b_modified, b_frozen_data) are 1062 * visible before attaching it to the running transaction. 1063 * Paired with barrier in jbd2_write_access_granted() 1064 */ 1065 smp_wmb(); 1066 spin_lock(&journal->j_list_lock); 1067 if (test_clear_buffer_dirty(bh)) { 1068 /* 1069 * Execute buffer dirty clearing and jh->b_transaction 1070 * assignment under journal->j_list_lock locked to 1071 * prevent bh being removed from checkpoint list if 1072 * the buffer is in an intermediate state (not dirty 1073 * and jh->b_transaction is NULL). 1074 */ 1075 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1076 set_buffer_jbddirty(bh); 1077 } 1078 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1079 spin_unlock(&journal->j_list_lock); 1080 unlock_buffer(bh); 1081 goto done; 1082 } 1083 unlock_buffer(bh); 1084 1085 /* 1086 * If there is already a copy-out version of this buffer, then we don't 1087 * need to make another one 1088 */ 1089 if (jh->b_frozen_data) { 1090 JBUFFER_TRACE(jh, "has frozen data"); 1091 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1092 goto attach_next; 1093 } 1094 1095 JBUFFER_TRACE(jh, "owned by older transaction"); 1096 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1097 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1098 1099 /* 1100 * There is one case we have to be very careful about. If the 1101 * committing transaction is currently writing this buffer out to disk 1102 * and has NOT made a copy-out, then we cannot modify the buffer 1103 * contents at all right now. The essence of copy-out is that it is 1104 * the extra copy, not the primary copy, which gets journaled. If the 1105 * primary copy is already going to disk then we cannot do copy-out 1106 * here. 1107 */ 1108 if (buffer_shadow(bh)) { 1109 JBUFFER_TRACE(jh, "on shadow: sleep"); 1110 spin_unlock(&jh->b_state_lock); 1111 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1112 goto repeat; 1113 } 1114 1115 /* 1116 * Only do the copy if the currently-owning transaction still needs it. 1117 * If buffer isn't on BJ_Metadata list, the committing transaction is 1118 * past that stage (here we use the fact that BH_Shadow is set under 1119 * bh_state lock together with refiling to BJ_Shadow list and at this 1120 * point we know the buffer doesn't have BH_Shadow set). 1121 * 1122 * Subtle point, though: if this is a get_undo_access, then we will be 1123 * relying on the frozen_data to contain the new value of the 1124 * committed_data record after the transaction, so we HAVE to force the 1125 * frozen_data copy in that case. 1126 */ 1127 if (jh->b_jlist == BJ_Metadata || force_copy) { 1128 JBUFFER_TRACE(jh, "generate frozen data"); 1129 if (!frozen_buffer) { 1130 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1131 spin_unlock(&jh->b_state_lock); 1132 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1133 GFP_NOFS | __GFP_NOFAIL); 1134 goto repeat; 1135 } 1136 jh->b_frozen_data = frozen_buffer; 1137 frozen_buffer = NULL; 1138 jbd2_freeze_jh_data(jh); 1139 } 1140 attach_next: 1141 /* 1142 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1143 * before attaching it to the running transaction. Paired with barrier 1144 * in jbd2_write_access_granted() 1145 */ 1146 smp_wmb(); 1147 jh->b_next_transaction = transaction; 1148 1149 done: 1150 spin_unlock(&jh->b_state_lock); 1151 1152 /* 1153 * If we are about to journal a buffer, then any revoke pending on it is 1154 * no longer valid 1155 */ 1156 jbd2_journal_cancel_revoke(handle, jh); 1157 1158 out: 1159 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1160 jbd2_free(frozen_buffer, bh->b_size); 1161 1162 JBUFFER_TRACE(jh, "exit"); 1163 return error; 1164 } 1165 1166 /* Fast check whether buffer is already attached to the required transaction */ 1167 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1168 bool undo) 1169 { 1170 struct journal_head *jh; 1171 bool ret = false; 1172 1173 /* Dirty buffers require special handling... */ 1174 if (buffer_dirty(bh)) 1175 return false; 1176 1177 /* 1178 * RCU protects us from dereferencing freed pages. So the checks we do 1179 * are guaranteed not to oops. However the jh slab object can get freed 1180 * & reallocated while we work with it. So we have to be careful. When 1181 * we see jh attached to the running transaction, we know it must stay 1182 * so until the transaction is committed. Thus jh won't be freed and 1183 * will be attached to the same bh while we run. However it can 1184 * happen jh gets freed, reallocated, and attached to the transaction 1185 * just after we get pointer to it from bh. So we have to be careful 1186 * and recheck jh still belongs to our bh before we return success. 1187 */ 1188 rcu_read_lock(); 1189 if (!buffer_jbd(bh)) 1190 goto out; 1191 /* This should be bh2jh() but that doesn't work with inline functions */ 1192 jh = READ_ONCE(bh->b_private); 1193 if (!jh) 1194 goto out; 1195 /* For undo access buffer must have data copied */ 1196 if (undo && !jh->b_committed_data) 1197 goto out; 1198 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1199 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1200 goto out; 1201 /* 1202 * There are two reasons for the barrier here: 1203 * 1) Make sure to fetch b_bh after we did previous checks so that we 1204 * detect when jh went through free, realloc, attach to transaction 1205 * while we were checking. Paired with implicit barrier in that path. 1206 * 2) So that access to bh done after jbd2_write_access_granted() 1207 * doesn't get reordered and see inconsistent state of concurrent 1208 * do_get_write_access(). 1209 */ 1210 smp_mb(); 1211 if (unlikely(jh->b_bh != bh)) 1212 goto out; 1213 ret = true; 1214 out: 1215 rcu_read_unlock(); 1216 return ret; 1217 } 1218 1219 /** 1220 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1221 * for metadata (not data) update. 1222 * @handle: transaction to add buffer modifications to 1223 * @bh: bh to be used for metadata writes 1224 * 1225 * Returns: error code or 0 on success. 1226 * 1227 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1228 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1229 */ 1230 1231 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1232 { 1233 struct journal_head *jh; 1234 int rc; 1235 1236 if (is_handle_aborted(handle)) 1237 return -EROFS; 1238 1239 if (jbd2_write_access_granted(handle, bh, false)) 1240 return 0; 1241 1242 jh = jbd2_journal_add_journal_head(bh); 1243 /* We do not want to get caught playing with fields which the 1244 * log thread also manipulates. Make sure that the buffer 1245 * completes any outstanding IO before proceeding. */ 1246 rc = do_get_write_access(handle, jh, 0); 1247 jbd2_journal_put_journal_head(jh); 1248 return rc; 1249 } 1250 1251 1252 /* 1253 * When the user wants to journal a newly created buffer_head 1254 * (ie. getblk() returned a new buffer and we are going to populate it 1255 * manually rather than reading off disk), then we need to keep the 1256 * buffer_head locked until it has been completely filled with new 1257 * data. In this case, we should be able to make the assertion that 1258 * the bh is not already part of an existing transaction. 1259 * 1260 * The buffer should already be locked by the caller by this point. 1261 * There is no lock ranking violation: it was a newly created, 1262 * unlocked buffer beforehand. */ 1263 1264 /** 1265 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1266 * @handle: transaction to new buffer to 1267 * @bh: new buffer. 1268 * 1269 * Call this if you create a new bh. 1270 */ 1271 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1272 { 1273 transaction_t *transaction = handle->h_transaction; 1274 journal_t *journal; 1275 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1276 int err; 1277 1278 jbd2_debug(5, "journal_head %p\n", jh); 1279 err = -EROFS; 1280 if (is_handle_aborted(handle)) 1281 goto out; 1282 journal = transaction->t_journal; 1283 err = 0; 1284 1285 JBUFFER_TRACE(jh, "entry"); 1286 /* 1287 * The buffer may already belong to this transaction due to pre-zeroing 1288 * in the filesystem's new_block code. It may also be on the previous, 1289 * committing transaction's lists, but it HAS to be in Forget state in 1290 * that case: the transaction must have deleted the buffer for it to be 1291 * reused here. 1292 */ 1293 spin_lock(&jh->b_state_lock); 1294 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1295 jh->b_transaction == NULL || 1296 (jh->b_transaction == journal->j_committing_transaction && 1297 jh->b_jlist == BJ_Forget))); 1298 1299 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1300 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1301 1302 if (jh->b_transaction == NULL) { 1303 /* 1304 * Previous jbd2_journal_forget() could have left the buffer 1305 * with jbddirty bit set because it was being committed. When 1306 * the commit finished, we've filed the buffer for 1307 * checkpointing and marked it dirty. Now we are reallocating 1308 * the buffer so the transaction freeing it must have 1309 * committed and so it's safe to clear the dirty bit. 1310 */ 1311 clear_buffer_dirty(jh2bh(jh)); 1312 /* first access by this transaction */ 1313 jh->b_modified = 0; 1314 1315 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1316 spin_lock(&journal->j_list_lock); 1317 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1318 spin_unlock(&journal->j_list_lock); 1319 } else if (jh->b_transaction == journal->j_committing_transaction) { 1320 /* first access by this transaction */ 1321 jh->b_modified = 0; 1322 1323 JBUFFER_TRACE(jh, "set next transaction"); 1324 spin_lock(&journal->j_list_lock); 1325 jh->b_next_transaction = transaction; 1326 spin_unlock(&journal->j_list_lock); 1327 } 1328 spin_unlock(&jh->b_state_lock); 1329 1330 /* 1331 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1332 * blocks which contain freed but then revoked metadata. We need 1333 * to cancel the revoke in case we end up freeing it yet again 1334 * and the reallocating as data - this would cause a second revoke, 1335 * which hits an assertion error. 1336 */ 1337 JBUFFER_TRACE(jh, "cancelling revoke"); 1338 jbd2_journal_cancel_revoke(handle, jh); 1339 out: 1340 jbd2_journal_put_journal_head(jh); 1341 return err; 1342 } 1343 1344 /** 1345 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1346 * non-rewindable consequences 1347 * @handle: transaction 1348 * @bh: buffer to undo 1349 * 1350 * Sometimes there is a need to distinguish between metadata which has 1351 * been committed to disk and that which has not. The ext3fs code uses 1352 * this for freeing and allocating space, we have to make sure that we 1353 * do not reuse freed space until the deallocation has been committed, 1354 * since if we overwrote that space we would make the delete 1355 * un-rewindable in case of a crash. 1356 * 1357 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1358 * buffer for parts of non-rewindable operations such as delete 1359 * operations on the bitmaps. The journaling code must keep a copy of 1360 * the buffer's contents prior to the undo_access call until such time 1361 * as we know that the buffer has definitely been committed to disk. 1362 * 1363 * We never need to know which transaction the committed data is part 1364 * of, buffers touched here are guaranteed to be dirtied later and so 1365 * will be committed to a new transaction in due course, at which point 1366 * we can discard the old committed data pointer. 1367 * 1368 * Returns error number or 0 on success. 1369 */ 1370 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1371 { 1372 int err; 1373 struct journal_head *jh; 1374 char *committed_data = NULL; 1375 1376 if (is_handle_aborted(handle)) 1377 return -EROFS; 1378 1379 if (jbd2_write_access_granted(handle, bh, true)) 1380 return 0; 1381 1382 jh = jbd2_journal_add_journal_head(bh); 1383 JBUFFER_TRACE(jh, "entry"); 1384 1385 /* 1386 * Do this first --- it can drop the journal lock, so we want to 1387 * make sure that obtaining the committed_data is done 1388 * atomically wrt. completion of any outstanding commits. 1389 */ 1390 err = do_get_write_access(handle, jh, 1); 1391 if (err) 1392 goto out; 1393 1394 repeat: 1395 if (!jh->b_committed_data) 1396 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1397 GFP_NOFS|__GFP_NOFAIL); 1398 1399 spin_lock(&jh->b_state_lock); 1400 if (!jh->b_committed_data) { 1401 /* Copy out the current buffer contents into the 1402 * preserved, committed copy. */ 1403 JBUFFER_TRACE(jh, "generate b_committed data"); 1404 if (!committed_data) { 1405 spin_unlock(&jh->b_state_lock); 1406 goto repeat; 1407 } 1408 1409 jh->b_committed_data = committed_data; 1410 committed_data = NULL; 1411 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1412 } 1413 spin_unlock(&jh->b_state_lock); 1414 out: 1415 jbd2_journal_put_journal_head(jh); 1416 if (unlikely(committed_data)) 1417 jbd2_free(committed_data, bh->b_size); 1418 return err; 1419 } 1420 1421 /** 1422 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1423 * @bh: buffer to trigger on 1424 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1425 * 1426 * Set any triggers on this journal_head. This is always safe, because 1427 * triggers for a committing buffer will be saved off, and triggers for 1428 * a running transaction will match the buffer in that transaction. 1429 * 1430 * Call with NULL to clear the triggers. 1431 */ 1432 void jbd2_journal_set_triggers(struct buffer_head *bh, 1433 struct jbd2_buffer_trigger_type *type) 1434 { 1435 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1436 1437 if (WARN_ON_ONCE(!jh)) 1438 return; 1439 jh->b_triggers = type; 1440 jbd2_journal_put_journal_head(jh); 1441 } 1442 1443 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1444 struct jbd2_buffer_trigger_type *triggers) 1445 { 1446 struct buffer_head *bh = jh2bh(jh); 1447 1448 if (!triggers || !triggers->t_frozen) 1449 return; 1450 1451 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1452 } 1453 1454 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1455 struct jbd2_buffer_trigger_type *triggers) 1456 { 1457 if (!triggers || !triggers->t_abort) 1458 return; 1459 1460 triggers->t_abort(triggers, jh2bh(jh)); 1461 } 1462 1463 /** 1464 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1465 * @handle: transaction to add buffer to. 1466 * @bh: buffer to mark 1467 * 1468 * mark dirty metadata which needs to be journaled as part of the current 1469 * transaction. 1470 * 1471 * The buffer must have previously had jbd2_journal_get_write_access() 1472 * called so that it has a valid journal_head attached to the buffer 1473 * head. 1474 * 1475 * The buffer is placed on the transaction's metadata list and is marked 1476 * as belonging to the transaction. 1477 * 1478 * Returns error number or 0 on success. 1479 * 1480 * Special care needs to be taken if the buffer already belongs to the 1481 * current committing transaction (in which case we should have frozen 1482 * data present for that commit). In that case, we don't relink the 1483 * buffer: that only gets done when the old transaction finally 1484 * completes its commit. 1485 */ 1486 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1487 { 1488 transaction_t *transaction = handle->h_transaction; 1489 journal_t *journal; 1490 struct journal_head *jh; 1491 int ret = 0; 1492 1493 if (!buffer_jbd(bh)) 1494 return -EUCLEAN; 1495 1496 /* 1497 * We don't grab jh reference here since the buffer must be part 1498 * of the running transaction. 1499 */ 1500 jh = bh2jh(bh); 1501 jbd2_debug(5, "journal_head %p\n", jh); 1502 JBUFFER_TRACE(jh, "entry"); 1503 1504 /* 1505 * This and the following assertions are unreliable since we may see jh 1506 * in inconsistent state unless we grab bh_state lock. But this is 1507 * crucial to catch bugs so let's do a reliable check until the 1508 * lockless handling is fully proven. 1509 */ 1510 if (data_race(jh->b_transaction != transaction && 1511 jh->b_next_transaction != transaction)) { 1512 spin_lock(&jh->b_state_lock); 1513 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1514 jh->b_next_transaction == transaction); 1515 spin_unlock(&jh->b_state_lock); 1516 } 1517 if (jh->b_modified == 1) { 1518 /* If it's in our transaction it must be in BJ_Metadata list. */ 1519 if (data_race(jh->b_transaction == transaction && 1520 jh->b_jlist != BJ_Metadata)) { 1521 spin_lock(&jh->b_state_lock); 1522 if (jh->b_transaction == transaction && 1523 jh->b_jlist != BJ_Metadata) 1524 pr_err("JBD2: assertion failure: h_type=%u " 1525 "h_line_no=%u block_no=%llu jlist=%u\n", 1526 handle->h_type, handle->h_line_no, 1527 (unsigned long long) bh->b_blocknr, 1528 jh->b_jlist); 1529 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1530 jh->b_jlist == BJ_Metadata); 1531 spin_unlock(&jh->b_state_lock); 1532 } 1533 goto out; 1534 } 1535 1536 journal = transaction->t_journal; 1537 spin_lock(&jh->b_state_lock); 1538 1539 if (is_handle_aborted(handle)) { 1540 /* 1541 * Check journal aborting with @jh->b_state_lock locked, 1542 * since 'jh->b_transaction' could be replaced with 1543 * 'jh->b_next_transaction' during old transaction 1544 * committing if journal aborted, which may fail 1545 * assertion on 'jh->b_frozen_data == NULL'. 1546 */ 1547 ret = -EROFS; 1548 goto out_unlock_bh; 1549 } 1550 1551 if (jh->b_modified == 0) { 1552 /* 1553 * This buffer's got modified and becoming part 1554 * of the transaction. This needs to be done 1555 * once a transaction -bzzz 1556 */ 1557 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1558 ret = -ENOSPC; 1559 goto out_unlock_bh; 1560 } 1561 jh->b_modified = 1; 1562 handle->h_total_credits--; 1563 } 1564 1565 /* 1566 * fastpath, to avoid expensive locking. If this buffer is already 1567 * on the running transaction's metadata list there is nothing to do. 1568 * Nobody can take it off again because there is a handle open. 1569 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1570 * result in this test being false, so we go in and take the locks. 1571 */ 1572 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1573 JBUFFER_TRACE(jh, "fastpath"); 1574 if (unlikely(jh->b_transaction != 1575 journal->j_running_transaction)) { 1576 printk(KERN_ERR "JBD2: %s: " 1577 "jh->b_transaction (%llu, %p, %u) != " 1578 "journal->j_running_transaction (%p, %u)\n", 1579 journal->j_devname, 1580 (unsigned long long) bh->b_blocknr, 1581 jh->b_transaction, 1582 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1583 journal->j_running_transaction, 1584 journal->j_running_transaction ? 1585 journal->j_running_transaction->t_tid : 0); 1586 ret = -EINVAL; 1587 } 1588 goto out_unlock_bh; 1589 } 1590 1591 set_buffer_jbddirty(bh); 1592 1593 /* 1594 * Metadata already on the current transaction list doesn't 1595 * need to be filed. Metadata on another transaction's list must 1596 * be committing, and will be refiled once the commit completes: 1597 * leave it alone for now. 1598 */ 1599 if (jh->b_transaction != transaction) { 1600 JBUFFER_TRACE(jh, "already on other transaction"); 1601 if (unlikely(((jh->b_transaction != 1602 journal->j_committing_transaction)) || 1603 (jh->b_next_transaction != transaction))) { 1604 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1605 "bad jh for block %llu: " 1606 "transaction (%p, %u), " 1607 "jh->b_transaction (%p, %u), " 1608 "jh->b_next_transaction (%p, %u), jlist %u\n", 1609 journal->j_devname, 1610 (unsigned long long) bh->b_blocknr, 1611 transaction, transaction->t_tid, 1612 jh->b_transaction, 1613 jh->b_transaction ? 1614 jh->b_transaction->t_tid : 0, 1615 jh->b_next_transaction, 1616 jh->b_next_transaction ? 1617 jh->b_next_transaction->t_tid : 0, 1618 jh->b_jlist); 1619 WARN_ON(1); 1620 ret = -EINVAL; 1621 } 1622 /* And this case is illegal: we can't reuse another 1623 * transaction's data buffer, ever. */ 1624 goto out_unlock_bh; 1625 } 1626 1627 /* That test should have eliminated the following case: */ 1628 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1629 1630 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1631 spin_lock(&journal->j_list_lock); 1632 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1633 spin_unlock(&journal->j_list_lock); 1634 out_unlock_bh: 1635 spin_unlock(&jh->b_state_lock); 1636 out: 1637 JBUFFER_TRACE(jh, "exit"); 1638 return ret; 1639 } 1640 1641 /** 1642 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1643 * @handle: transaction handle 1644 * @bh: bh to 'forget' 1645 * 1646 * We can only do the bforget if there are no commits pending against the 1647 * buffer. If the buffer is dirty in the current running transaction we 1648 * can safely unlink it. 1649 * 1650 * bh may not be a journalled buffer at all - it may be a non-JBD 1651 * buffer which came off the hashtable. Check for this. 1652 * 1653 * Decrements bh->b_count by one. 1654 * 1655 * Allow this call even if the handle has aborted --- it may be part of 1656 * the caller's cleanup after an abort. 1657 */ 1658 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1659 { 1660 transaction_t *transaction = handle->h_transaction; 1661 journal_t *journal; 1662 struct journal_head *jh; 1663 int drop_reserve = 0; 1664 int err = 0; 1665 int was_modified = 0; 1666 1667 if (is_handle_aborted(handle)) 1668 return -EROFS; 1669 journal = transaction->t_journal; 1670 1671 BUFFER_TRACE(bh, "entry"); 1672 1673 jh = jbd2_journal_grab_journal_head(bh); 1674 if (!jh) { 1675 __bforget(bh); 1676 return 0; 1677 } 1678 1679 spin_lock(&jh->b_state_lock); 1680 1681 /* Critical error: attempting to delete a bitmap buffer, maybe? 1682 * Don't do any jbd operations, and return an error. */ 1683 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1684 "inconsistent data on disk")) { 1685 err = -EIO; 1686 goto drop; 1687 } 1688 1689 /* keep track of whether or not this transaction modified us */ 1690 was_modified = jh->b_modified; 1691 1692 /* 1693 * The buffer's going from the transaction, we must drop 1694 * all references -bzzz 1695 */ 1696 jh->b_modified = 0; 1697 1698 if (jh->b_transaction == transaction) { 1699 J_ASSERT_JH(jh, !jh->b_frozen_data); 1700 1701 /* If we are forgetting a buffer which is already part 1702 * of this transaction, then we can just drop it from 1703 * the transaction immediately. */ 1704 clear_buffer_dirty(bh); 1705 clear_buffer_jbddirty(bh); 1706 1707 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1708 1709 /* 1710 * we only want to drop a reference if this transaction 1711 * modified the buffer 1712 */ 1713 if (was_modified) 1714 drop_reserve = 1; 1715 1716 /* 1717 * We are no longer going to journal this buffer. 1718 * However, the commit of this transaction is still 1719 * important to the buffer: the delete that we are now 1720 * processing might obsolete an old log entry, so by 1721 * committing, we can satisfy the buffer's checkpoint. 1722 * 1723 * So, if we have a checkpoint on the buffer, we should 1724 * now refile the buffer on our BJ_Forget list so that 1725 * we know to remove the checkpoint after we commit. 1726 */ 1727 1728 spin_lock(&journal->j_list_lock); 1729 if (jh->b_cp_transaction) { 1730 __jbd2_journal_temp_unlink_buffer(jh); 1731 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1732 } else { 1733 __jbd2_journal_unfile_buffer(jh); 1734 jbd2_journal_put_journal_head(jh); 1735 } 1736 spin_unlock(&journal->j_list_lock); 1737 } else if (jh->b_transaction) { 1738 J_ASSERT_JH(jh, (jh->b_transaction == 1739 journal->j_committing_transaction)); 1740 /* However, if the buffer is still owned by a prior 1741 * (committing) transaction, we can't drop it yet... */ 1742 JBUFFER_TRACE(jh, "belongs to older transaction"); 1743 /* ... but we CAN drop it from the new transaction through 1744 * marking the buffer as freed and set j_next_transaction to 1745 * the new transaction, so that not only the commit code 1746 * knows it should clear dirty bits when it is done with the 1747 * buffer, but also the buffer can be checkpointed only 1748 * after the new transaction commits. */ 1749 1750 set_buffer_freed(bh); 1751 1752 if (!jh->b_next_transaction) { 1753 spin_lock(&journal->j_list_lock); 1754 jh->b_next_transaction = transaction; 1755 spin_unlock(&journal->j_list_lock); 1756 } else { 1757 J_ASSERT(jh->b_next_transaction == transaction); 1758 1759 /* 1760 * only drop a reference if this transaction modified 1761 * the buffer 1762 */ 1763 if (was_modified) 1764 drop_reserve = 1; 1765 } 1766 } else { 1767 /* 1768 * Finally, if the buffer is not belongs to any 1769 * transaction, we can just drop it now if it has no 1770 * checkpoint. 1771 */ 1772 spin_lock(&journal->j_list_lock); 1773 if (!jh->b_cp_transaction) { 1774 JBUFFER_TRACE(jh, "belongs to none transaction"); 1775 spin_unlock(&journal->j_list_lock); 1776 goto drop; 1777 } 1778 1779 /* 1780 * Otherwise, if the buffer has been written to disk, 1781 * it is safe to remove the checkpoint and drop it. 1782 */ 1783 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) { 1784 spin_unlock(&journal->j_list_lock); 1785 goto drop; 1786 } 1787 1788 /* 1789 * The buffer is still not written to disk, we should 1790 * attach this buffer to current transaction so that the 1791 * buffer can be checkpointed only after the current 1792 * transaction commits. 1793 */ 1794 clear_buffer_dirty(bh); 1795 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1796 spin_unlock(&journal->j_list_lock); 1797 } 1798 drop: 1799 __brelse(bh); 1800 spin_unlock(&jh->b_state_lock); 1801 jbd2_journal_put_journal_head(jh); 1802 if (drop_reserve) { 1803 /* no need to reserve log space for this block -bzzz */ 1804 handle->h_total_credits++; 1805 } 1806 return err; 1807 } 1808 1809 /** 1810 * jbd2_journal_stop() - complete a transaction 1811 * @handle: transaction to complete. 1812 * 1813 * All done for a particular handle. 1814 * 1815 * There is not much action needed here. We just return any remaining 1816 * buffer credits to the transaction and remove the handle. The only 1817 * complication is that we need to start a commit operation if the 1818 * filesystem is marked for synchronous update. 1819 * 1820 * jbd2_journal_stop itself will not usually return an error, but it may 1821 * do so in unusual circumstances. In particular, expect it to 1822 * return -EIO if a jbd2_journal_abort has been executed since the 1823 * transaction began. 1824 */ 1825 int jbd2_journal_stop(handle_t *handle) 1826 { 1827 transaction_t *transaction = handle->h_transaction; 1828 journal_t *journal; 1829 int err = 0, wait_for_commit = 0; 1830 tid_t tid; 1831 pid_t pid; 1832 1833 if (--handle->h_ref > 0) { 1834 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1835 handle->h_ref); 1836 if (is_handle_aborted(handle)) 1837 return -EIO; 1838 return 0; 1839 } 1840 if (!transaction) { 1841 /* 1842 * Handle is already detached from the transaction so there is 1843 * nothing to do other than free the handle. 1844 */ 1845 memalloc_nofs_restore(handle->saved_alloc_context); 1846 goto free_and_exit; 1847 } 1848 journal = transaction->t_journal; 1849 tid = transaction->t_tid; 1850 1851 if (is_handle_aborted(handle)) 1852 err = -EIO; 1853 1854 jbd2_debug(4, "Handle %p going down\n", handle); 1855 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1856 tid, handle->h_type, handle->h_line_no, 1857 jiffies - handle->h_start_jiffies, 1858 handle->h_sync, handle->h_requested_credits, 1859 (handle->h_requested_credits - 1860 handle->h_total_credits)); 1861 1862 /* 1863 * Implement synchronous transaction batching. If the handle 1864 * was synchronous, don't force a commit immediately. Let's 1865 * yield and let another thread piggyback onto this 1866 * transaction. Keep doing that while new threads continue to 1867 * arrive. It doesn't cost much - we're about to run a commit 1868 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1869 * operations by 30x or more... 1870 * 1871 * We try and optimize the sleep time against what the 1872 * underlying disk can do, instead of having a static sleep 1873 * time. This is useful for the case where our storage is so 1874 * fast that it is more optimal to go ahead and force a flush 1875 * and wait for the transaction to be committed than it is to 1876 * wait for an arbitrary amount of time for new writers to 1877 * join the transaction. We achieve this by measuring how 1878 * long it takes to commit a transaction, and compare it with 1879 * how long this transaction has been running, and if run time 1880 * < commit time then we sleep for the delta and commit. This 1881 * greatly helps super fast disks that would see slowdowns as 1882 * more threads started doing fsyncs. 1883 * 1884 * But don't do this if this process was the most recent one 1885 * to perform a synchronous write. We do this to detect the 1886 * case where a single process is doing a stream of sync 1887 * writes. No point in waiting for joiners in that case. 1888 * 1889 * Setting max_batch_time to 0 disables this completely. 1890 */ 1891 pid = current->pid; 1892 if (handle->h_sync && journal->j_last_sync_writer != pid && 1893 journal->j_max_batch_time) { 1894 u64 commit_time, trans_time; 1895 1896 journal->j_last_sync_writer = pid; 1897 1898 read_lock(&journal->j_state_lock); 1899 commit_time = journal->j_average_commit_time; 1900 read_unlock(&journal->j_state_lock); 1901 1902 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1903 transaction->t_start_time)); 1904 1905 commit_time = max_t(u64, commit_time, 1906 1000*journal->j_min_batch_time); 1907 commit_time = min_t(u64, commit_time, 1908 1000*journal->j_max_batch_time); 1909 1910 if (trans_time < commit_time) { 1911 ktime_t expires = ktime_add_ns(ktime_get(), 1912 commit_time); 1913 set_current_state(TASK_UNINTERRUPTIBLE); 1914 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1915 } 1916 } 1917 1918 if (handle->h_sync) 1919 transaction->t_synchronous_commit = 1; 1920 1921 /* 1922 * If the handle is marked SYNC, we need to set another commit 1923 * going! We also want to force a commit if the transaction is too 1924 * old now. 1925 */ 1926 if (handle->h_sync || 1927 time_after_eq(jiffies, transaction->t_expires)) { 1928 /* Do this even for aborted journals: an abort still 1929 * completes the commit thread, it just doesn't write 1930 * anything to disk. */ 1931 1932 jbd2_debug(2, "transaction too old, requesting commit for " 1933 "handle %p\n", handle); 1934 /* This is non-blocking */ 1935 jbd2_log_start_commit(journal, tid); 1936 1937 /* 1938 * Special case: JBD2_SYNC synchronous updates require us 1939 * to wait for the commit to complete. 1940 */ 1941 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1942 wait_for_commit = 1; 1943 } 1944 1945 /* 1946 * Once stop_this_handle() drops t_updates, the transaction could start 1947 * committing on us and eventually disappear. So we must not 1948 * dereference transaction pointer again after calling 1949 * stop_this_handle(). 1950 */ 1951 stop_this_handle(handle); 1952 1953 if (wait_for_commit) 1954 err = jbd2_log_wait_commit(journal, tid); 1955 1956 free_and_exit: 1957 if (handle->h_rsv_handle) 1958 jbd2_free_handle(handle->h_rsv_handle); 1959 jbd2_free_handle(handle); 1960 return err; 1961 } 1962 1963 /* 1964 * 1965 * List management code snippets: various functions for manipulating the 1966 * transaction buffer lists. 1967 * 1968 */ 1969 1970 /* 1971 * Append a buffer to a transaction list, given the transaction's list head 1972 * pointer. 1973 * 1974 * j_list_lock is held. 1975 * 1976 * jh->b_state_lock is held. 1977 */ 1978 1979 static inline void 1980 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1981 { 1982 if (!*list) { 1983 jh->b_tnext = jh->b_tprev = jh; 1984 *list = jh; 1985 } else { 1986 /* Insert at the tail of the list to preserve order */ 1987 struct journal_head *first = *list, *last = first->b_tprev; 1988 jh->b_tprev = last; 1989 jh->b_tnext = first; 1990 last->b_tnext = first->b_tprev = jh; 1991 } 1992 } 1993 1994 /* 1995 * Remove a buffer from a transaction list, given the transaction's list 1996 * head pointer. 1997 * 1998 * Called with j_list_lock held, and the journal may not be locked. 1999 * 2000 * jh->b_state_lock is held. 2001 */ 2002 2003 static inline void 2004 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 2005 { 2006 if (*list == jh) { 2007 *list = jh->b_tnext; 2008 if (*list == jh) 2009 *list = NULL; 2010 } 2011 jh->b_tprev->b_tnext = jh->b_tnext; 2012 jh->b_tnext->b_tprev = jh->b_tprev; 2013 } 2014 2015 /* 2016 * Remove a buffer from the appropriate transaction list. 2017 * 2018 * Note that this function can *change* the value of 2019 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 2020 * t_reserved_list. If the caller is holding onto a copy of one of these 2021 * pointers, it could go bad. Generally the caller needs to re-read the 2022 * pointer from the transaction_t. 2023 * 2024 * Called under j_list_lock. 2025 */ 2026 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2027 { 2028 struct journal_head **list = NULL; 2029 transaction_t *transaction; 2030 struct buffer_head *bh = jh2bh(jh); 2031 2032 lockdep_assert_held(&jh->b_state_lock); 2033 transaction = jh->b_transaction; 2034 if (transaction) 2035 assert_spin_locked(&transaction->t_journal->j_list_lock); 2036 2037 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2038 if (jh->b_jlist != BJ_None) 2039 J_ASSERT_JH(jh, transaction != NULL); 2040 2041 switch (jh->b_jlist) { 2042 case BJ_None: 2043 return; 2044 case BJ_Metadata: 2045 transaction->t_nr_buffers--; 2046 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2047 list = &transaction->t_buffers; 2048 break; 2049 case BJ_Forget: 2050 list = &transaction->t_forget; 2051 break; 2052 case BJ_Shadow: 2053 list = &transaction->t_shadow_list; 2054 break; 2055 case BJ_Reserved: 2056 list = &transaction->t_reserved_list; 2057 break; 2058 } 2059 2060 __blist_del_buffer(list, jh); 2061 jh->b_jlist = BJ_None; 2062 if (transaction && is_journal_aborted(transaction->t_journal)) 2063 clear_buffer_jbddirty(bh); 2064 else if (test_clear_buffer_jbddirty(bh)) 2065 mark_buffer_dirty(bh); /* Expose it to the VM */ 2066 } 2067 2068 /* 2069 * Remove buffer from all transactions. The caller is responsible for dropping 2070 * the jh reference that belonged to the transaction. 2071 * 2072 * Called with bh_state lock and j_list_lock 2073 */ 2074 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2075 { 2076 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2077 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2078 2079 __jbd2_journal_temp_unlink_buffer(jh); 2080 jh->b_transaction = NULL; 2081 } 2082 2083 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2084 { 2085 struct buffer_head *bh = jh2bh(jh); 2086 2087 /* Get reference so that buffer cannot be freed before we unlock it */ 2088 get_bh(bh); 2089 spin_lock(&jh->b_state_lock); 2090 spin_lock(&journal->j_list_lock); 2091 __jbd2_journal_unfile_buffer(jh); 2092 spin_unlock(&journal->j_list_lock); 2093 spin_unlock(&jh->b_state_lock); 2094 jbd2_journal_put_journal_head(jh); 2095 __brelse(bh); 2096 } 2097 2098 /** 2099 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2100 * @journal: journal for operation 2101 * @folio: Folio to detach data from. 2102 * 2103 * For all the buffers on this page, 2104 * if they are fully written out ordered data, move them onto BUF_CLEAN 2105 * so try_to_free_buffers() can reap them. 2106 * 2107 * This function returns non-zero if we wish try_to_free_buffers() 2108 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2109 * We also do it if the page has locked or dirty buffers and the caller wants 2110 * us to perform sync or async writeout. 2111 * 2112 * This complicates JBD locking somewhat. We aren't protected by the 2113 * BKL here. We wish to remove the buffer from its committing or 2114 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2115 * 2116 * This may *change* the value of transaction_t->t_datalist, so anyone 2117 * who looks at t_datalist needs to lock against this function. 2118 * 2119 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2120 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2121 * will come out of the lock with the buffer dirty, which makes it 2122 * ineligible for release here. 2123 * 2124 * Who else is affected by this? hmm... Really the only contender 2125 * is do_get_write_access() - it could be looking at the buffer while 2126 * journal_try_to_free_buffer() is changing its state. But that 2127 * cannot happen because we never reallocate freed data as metadata 2128 * while the data is part of a transaction. Yes? 2129 * 2130 * Return false on failure, true on success 2131 */ 2132 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio) 2133 { 2134 struct buffer_head *head; 2135 struct buffer_head *bh; 2136 bool ret = false; 2137 2138 J_ASSERT(folio_test_locked(folio)); 2139 2140 head = folio_buffers(folio); 2141 bh = head; 2142 do { 2143 struct journal_head *jh; 2144 2145 /* 2146 * We take our own ref against the journal_head here to avoid 2147 * having to add tons of locking around each instance of 2148 * jbd2_journal_put_journal_head(). 2149 */ 2150 jh = jbd2_journal_grab_journal_head(bh); 2151 if (!jh) 2152 continue; 2153 2154 spin_lock(&jh->b_state_lock); 2155 if (!jh->b_transaction && !jh->b_next_transaction) { 2156 spin_lock(&journal->j_list_lock); 2157 /* Remove written-back checkpointed metadata buffer */ 2158 if (jh->b_cp_transaction != NULL) 2159 jbd2_journal_try_remove_checkpoint(jh); 2160 spin_unlock(&journal->j_list_lock); 2161 } 2162 spin_unlock(&jh->b_state_lock); 2163 jbd2_journal_put_journal_head(jh); 2164 if (buffer_jbd(bh)) 2165 goto busy; 2166 } while ((bh = bh->b_this_page) != head); 2167 2168 ret = try_to_free_buffers(folio); 2169 busy: 2170 return ret; 2171 } 2172 2173 /* 2174 * This buffer is no longer needed. If it is on an older transaction's 2175 * checkpoint list we need to record it on this transaction's forget list 2176 * to pin this buffer (and hence its checkpointing transaction) down until 2177 * this transaction commits. If the buffer isn't on a checkpoint list, we 2178 * release it. 2179 * Returns non-zero if JBD no longer has an interest in the buffer. 2180 * 2181 * Called under j_list_lock. 2182 * 2183 * Called under jh->b_state_lock. 2184 */ 2185 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2186 { 2187 int may_free = 1; 2188 struct buffer_head *bh = jh2bh(jh); 2189 2190 if (jh->b_cp_transaction) { 2191 JBUFFER_TRACE(jh, "on running+cp transaction"); 2192 __jbd2_journal_temp_unlink_buffer(jh); 2193 /* 2194 * We don't want to write the buffer anymore, clear the 2195 * bit so that we don't confuse checks in 2196 * __journal_file_buffer 2197 */ 2198 clear_buffer_dirty(bh); 2199 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2200 may_free = 0; 2201 } else { 2202 JBUFFER_TRACE(jh, "on running transaction"); 2203 __jbd2_journal_unfile_buffer(jh); 2204 jbd2_journal_put_journal_head(jh); 2205 } 2206 return may_free; 2207 } 2208 2209 /* 2210 * jbd2_journal_invalidate_folio 2211 * 2212 * This code is tricky. It has a number of cases to deal with. 2213 * 2214 * There are two invariants which this code relies on: 2215 * 2216 * i_size must be updated on disk before we start calling invalidate_folio 2217 * on the data. 2218 * 2219 * This is done in ext3 by defining an ext3_setattr method which 2220 * updates i_size before truncate gets going. By maintaining this 2221 * invariant, we can be sure that it is safe to throw away any buffers 2222 * attached to the current transaction: once the transaction commits, 2223 * we know that the data will not be needed. 2224 * 2225 * Note however that we can *not* throw away data belonging to the 2226 * previous, committing transaction! 2227 * 2228 * Any disk blocks which *are* part of the previous, committing 2229 * transaction (and which therefore cannot be discarded immediately) are 2230 * not going to be reused in the new running transaction 2231 * 2232 * The bitmap committed_data images guarantee this: any block which is 2233 * allocated in one transaction and removed in the next will be marked 2234 * as in-use in the committed_data bitmap, so cannot be reused until 2235 * the next transaction to delete the block commits. This means that 2236 * leaving committing buffers dirty is quite safe: the disk blocks 2237 * cannot be reallocated to a different file and so buffer aliasing is 2238 * not possible. 2239 * 2240 * 2241 * The above applies mainly to ordered data mode. In writeback mode we 2242 * don't make guarantees about the order in which data hits disk --- in 2243 * particular we don't guarantee that new dirty data is flushed before 2244 * transaction commit --- so it is always safe just to discard data 2245 * immediately in that mode. --sct 2246 */ 2247 2248 /* 2249 * The journal_unmap_buffer helper function returns zero if the buffer 2250 * concerned remains pinned as an anonymous buffer belonging to an older 2251 * transaction. 2252 * 2253 * We're outside-transaction here. Either or both of j_running_transaction 2254 * and j_committing_transaction may be NULL. 2255 */ 2256 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2257 int partial_page) 2258 { 2259 transaction_t *transaction; 2260 struct journal_head *jh; 2261 int may_free = 1; 2262 2263 BUFFER_TRACE(bh, "entry"); 2264 2265 /* 2266 * It is safe to proceed here without the j_list_lock because the 2267 * buffers cannot be stolen by try_to_free_buffers as long as we are 2268 * holding the page lock. --sct 2269 */ 2270 2271 jh = jbd2_journal_grab_journal_head(bh); 2272 if (!jh) 2273 goto zap_buffer_unlocked; 2274 2275 /* OK, we have data buffer in journaled mode */ 2276 write_lock(&journal->j_state_lock); 2277 spin_lock(&jh->b_state_lock); 2278 spin_lock(&journal->j_list_lock); 2279 2280 /* 2281 * We cannot remove the buffer from checkpoint lists until the 2282 * transaction adding inode to orphan list (let's call it T) 2283 * is committed. Otherwise if the transaction changing the 2284 * buffer would be cleaned from the journal before T is 2285 * committed, a crash will cause that the correct contents of 2286 * the buffer will be lost. On the other hand we have to 2287 * clear the buffer dirty bit at latest at the moment when the 2288 * transaction marking the buffer as freed in the filesystem 2289 * structures is committed because from that moment on the 2290 * block can be reallocated and used by a different page. 2291 * Since the block hasn't been freed yet but the inode has 2292 * already been added to orphan list, it is safe for us to add 2293 * the buffer to BJ_Forget list of the newest transaction. 2294 * 2295 * Also we have to clear buffer_mapped flag of a truncated buffer 2296 * because the buffer_head may be attached to the page straddling 2297 * i_size (can happen only when blocksize < pagesize) and thus the 2298 * buffer_head can be reused when the file is extended again. So we end 2299 * up keeping around invalidated buffers attached to transactions' 2300 * BJ_Forget list just to stop checkpointing code from cleaning up 2301 * the transaction this buffer was modified in. 2302 */ 2303 transaction = jh->b_transaction; 2304 if (transaction == NULL) { 2305 /* First case: not on any transaction. If it 2306 * has no checkpoint link, then we can zap it: 2307 * it's a writeback-mode buffer so we don't care 2308 * if it hits disk safely. */ 2309 if (!jh->b_cp_transaction) { 2310 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2311 goto zap_buffer; 2312 } 2313 2314 if (!buffer_dirty(bh)) { 2315 /* bdflush has written it. We can drop it now */ 2316 __jbd2_journal_remove_checkpoint(jh); 2317 goto zap_buffer; 2318 } 2319 2320 /* OK, it must be in the journal but still not 2321 * written fully to disk: it's metadata or 2322 * journaled data... */ 2323 2324 if (journal->j_running_transaction) { 2325 /* ... and once the current transaction has 2326 * committed, the buffer won't be needed any 2327 * longer. */ 2328 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2329 may_free = __dispose_buffer(jh, 2330 journal->j_running_transaction); 2331 goto zap_buffer; 2332 } else { 2333 /* There is no currently-running transaction. So the 2334 * orphan record which we wrote for this file must have 2335 * passed into commit. We must attach this buffer to 2336 * the committing transaction, if it exists. */ 2337 if (journal->j_committing_transaction) { 2338 JBUFFER_TRACE(jh, "give to committing trans"); 2339 may_free = __dispose_buffer(jh, 2340 journal->j_committing_transaction); 2341 goto zap_buffer; 2342 } else { 2343 /* The orphan record's transaction has 2344 * committed. We can cleanse this buffer */ 2345 clear_buffer_jbddirty(bh); 2346 __jbd2_journal_remove_checkpoint(jh); 2347 goto zap_buffer; 2348 } 2349 } 2350 } else if (transaction == journal->j_committing_transaction) { 2351 JBUFFER_TRACE(jh, "on committing transaction"); 2352 /* 2353 * The buffer is committing, we simply cannot touch 2354 * it. If the page is straddling i_size we have to wait 2355 * for commit and try again. 2356 */ 2357 if (partial_page) { 2358 spin_unlock(&journal->j_list_lock); 2359 spin_unlock(&jh->b_state_lock); 2360 write_unlock(&journal->j_state_lock); 2361 jbd2_journal_put_journal_head(jh); 2362 /* Already zapped buffer? Nothing to do... */ 2363 if (!bh->b_bdev) 2364 return 0; 2365 return -EBUSY; 2366 } 2367 /* 2368 * OK, buffer won't be reachable after truncate. We just clear 2369 * b_modified to not confuse transaction credit accounting, and 2370 * set j_next_transaction to the running transaction (if there 2371 * is one) and mark buffer as freed so that commit code knows 2372 * it should clear dirty bits when it is done with the buffer. 2373 */ 2374 set_buffer_freed(bh); 2375 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2376 jh->b_next_transaction = journal->j_running_transaction; 2377 jh->b_modified = 0; 2378 spin_unlock(&journal->j_list_lock); 2379 spin_unlock(&jh->b_state_lock); 2380 write_unlock(&journal->j_state_lock); 2381 jbd2_journal_put_journal_head(jh); 2382 return 0; 2383 } else { 2384 /* Good, the buffer belongs to the running transaction. 2385 * We are writing our own transaction's data, not any 2386 * previous one's, so it is safe to throw it away 2387 * (remember that we expect the filesystem to have set 2388 * i_size already for this truncate so recovery will not 2389 * expose the disk blocks we are discarding here.) */ 2390 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2391 JBUFFER_TRACE(jh, "on running transaction"); 2392 may_free = __dispose_buffer(jh, transaction); 2393 } 2394 2395 zap_buffer: 2396 /* 2397 * This is tricky. Although the buffer is truncated, it may be reused 2398 * if blocksize < pagesize and it is attached to the page straddling 2399 * EOF. Since the buffer might have been added to BJ_Forget list of the 2400 * running transaction, journal_get_write_access() won't clear 2401 * b_modified and credit accounting gets confused. So clear b_modified 2402 * here. 2403 */ 2404 jh->b_modified = 0; 2405 spin_unlock(&journal->j_list_lock); 2406 spin_unlock(&jh->b_state_lock); 2407 write_unlock(&journal->j_state_lock); 2408 jbd2_journal_put_journal_head(jh); 2409 zap_buffer_unlocked: 2410 clear_buffer_dirty(bh); 2411 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2412 clear_buffer_mapped(bh); 2413 clear_buffer_req(bh); 2414 clear_buffer_new(bh); 2415 clear_buffer_delay(bh); 2416 clear_buffer_unwritten(bh); 2417 bh->b_bdev = NULL; 2418 return may_free; 2419 } 2420 2421 /** 2422 * jbd2_journal_invalidate_folio() 2423 * @journal: journal to use for flush... 2424 * @folio: folio to flush 2425 * @offset: start of the range to invalidate 2426 * @length: length of the range to invalidate 2427 * 2428 * Reap page buffers containing data after in the specified range in page. 2429 * Can return -EBUSY if buffers are part of the committing transaction and 2430 * the page is straddling i_size. Caller then has to wait for current commit 2431 * and try again. 2432 */ 2433 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio, 2434 size_t offset, size_t length) 2435 { 2436 struct buffer_head *head, *bh, *next; 2437 unsigned int stop = offset + length; 2438 unsigned int curr_off = 0; 2439 int partial_page = (offset || length < folio_size(folio)); 2440 int may_free = 1; 2441 int ret = 0; 2442 2443 if (!folio_test_locked(folio)) 2444 BUG(); 2445 head = folio_buffers(folio); 2446 if (!head) 2447 return 0; 2448 2449 BUG_ON(stop > folio_size(folio) || stop < length); 2450 2451 /* We will potentially be playing with lists other than just the 2452 * data lists (especially for journaled data mode), so be 2453 * cautious in our locking. */ 2454 2455 bh = head; 2456 do { 2457 unsigned int next_off = curr_off + bh->b_size; 2458 next = bh->b_this_page; 2459 2460 if (next_off > stop) 2461 return 0; 2462 2463 if (offset <= curr_off) { 2464 /* This block is wholly outside the truncation point */ 2465 lock_buffer(bh); 2466 ret = journal_unmap_buffer(journal, bh, partial_page); 2467 unlock_buffer(bh); 2468 if (ret < 0) 2469 return ret; 2470 may_free &= ret; 2471 } 2472 curr_off = next_off; 2473 bh = next; 2474 2475 } while (bh != head); 2476 2477 if (!partial_page) { 2478 if (may_free && try_to_free_buffers(folio)) 2479 J_ASSERT(!folio_buffers(folio)); 2480 } 2481 return 0; 2482 } 2483 2484 /* 2485 * File a buffer on the given transaction list. 2486 */ 2487 void __jbd2_journal_file_buffer(struct journal_head *jh, 2488 transaction_t *transaction, int jlist) 2489 { 2490 struct journal_head **list = NULL; 2491 int was_dirty = 0; 2492 struct buffer_head *bh = jh2bh(jh); 2493 2494 lockdep_assert_held(&jh->b_state_lock); 2495 assert_spin_locked(&transaction->t_journal->j_list_lock); 2496 2497 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2498 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2499 jh->b_transaction == NULL); 2500 2501 if (jh->b_transaction && jh->b_jlist == jlist) 2502 return; 2503 2504 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2505 jlist == BJ_Shadow || jlist == BJ_Forget) { 2506 /* 2507 * For metadata buffers, we track dirty bit in buffer_jbddirty 2508 * instead of buffer_dirty. We should not see a dirty bit set 2509 * here because we clear it in do_get_write_access but e.g. 2510 * tune2fs can modify the sb and set the dirty bit at any time 2511 * so we try to gracefully handle that. 2512 */ 2513 if (buffer_dirty(bh)) 2514 warn_dirty_buffer(bh); 2515 if (test_clear_buffer_dirty(bh) || 2516 test_clear_buffer_jbddirty(bh)) 2517 was_dirty = 1; 2518 } 2519 2520 if (jh->b_transaction) 2521 __jbd2_journal_temp_unlink_buffer(jh); 2522 else 2523 jbd2_journal_grab_journal_head(bh); 2524 jh->b_transaction = transaction; 2525 2526 switch (jlist) { 2527 case BJ_None: 2528 J_ASSERT_JH(jh, !jh->b_committed_data); 2529 J_ASSERT_JH(jh, !jh->b_frozen_data); 2530 return; 2531 case BJ_Metadata: 2532 transaction->t_nr_buffers++; 2533 list = &transaction->t_buffers; 2534 break; 2535 case BJ_Forget: 2536 list = &transaction->t_forget; 2537 break; 2538 case BJ_Shadow: 2539 list = &transaction->t_shadow_list; 2540 break; 2541 case BJ_Reserved: 2542 list = &transaction->t_reserved_list; 2543 break; 2544 } 2545 2546 __blist_add_buffer(list, jh); 2547 jh->b_jlist = jlist; 2548 2549 if (was_dirty) 2550 set_buffer_jbddirty(bh); 2551 } 2552 2553 void jbd2_journal_file_buffer(struct journal_head *jh, 2554 transaction_t *transaction, int jlist) 2555 { 2556 spin_lock(&jh->b_state_lock); 2557 spin_lock(&transaction->t_journal->j_list_lock); 2558 __jbd2_journal_file_buffer(jh, transaction, jlist); 2559 spin_unlock(&transaction->t_journal->j_list_lock); 2560 spin_unlock(&jh->b_state_lock); 2561 } 2562 2563 /* 2564 * Remove a buffer from its current buffer list in preparation for 2565 * dropping it from its current transaction entirely. If the buffer has 2566 * already started to be used by a subsequent transaction, refile the 2567 * buffer on that transaction's metadata list. 2568 * 2569 * Called under j_list_lock 2570 * Called under jh->b_state_lock 2571 * 2572 * When this function returns true, there's no next transaction to refile to 2573 * and the caller has to drop jh reference through 2574 * jbd2_journal_put_journal_head(). 2575 */ 2576 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2577 { 2578 int was_dirty, jlist; 2579 struct buffer_head *bh = jh2bh(jh); 2580 2581 lockdep_assert_held(&jh->b_state_lock); 2582 if (jh->b_transaction) 2583 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2584 2585 /* If the buffer is now unused, just drop it. */ 2586 if (jh->b_next_transaction == NULL) { 2587 __jbd2_journal_unfile_buffer(jh); 2588 return true; 2589 } 2590 2591 /* 2592 * It has been modified by a later transaction: add it to the new 2593 * transaction's metadata list. 2594 */ 2595 2596 was_dirty = test_clear_buffer_jbddirty(bh); 2597 __jbd2_journal_temp_unlink_buffer(jh); 2598 2599 /* 2600 * b_transaction must be set, otherwise the new b_transaction won't 2601 * be holding jh reference 2602 */ 2603 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2604 2605 /* 2606 * We set b_transaction here because b_next_transaction will inherit 2607 * our jh reference and thus __jbd2_journal_file_buffer() must not 2608 * take a new one. 2609 */ 2610 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2611 WRITE_ONCE(jh->b_next_transaction, NULL); 2612 if (buffer_freed(bh)) 2613 jlist = BJ_Forget; 2614 else if (jh->b_modified) 2615 jlist = BJ_Metadata; 2616 else 2617 jlist = BJ_Reserved; 2618 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2619 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2620 2621 if (was_dirty) 2622 set_buffer_jbddirty(bh); 2623 return false; 2624 } 2625 2626 /* 2627 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2628 * bh reference so that we can safely unlock bh. 2629 * 2630 * The jh and bh may be freed by this call. 2631 */ 2632 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2633 { 2634 bool drop; 2635 2636 spin_lock(&jh->b_state_lock); 2637 spin_lock(&journal->j_list_lock); 2638 drop = __jbd2_journal_refile_buffer(jh); 2639 spin_unlock(&jh->b_state_lock); 2640 spin_unlock(&journal->j_list_lock); 2641 if (drop) 2642 jbd2_journal_put_journal_head(jh); 2643 } 2644 2645 /* 2646 * File inode in the inode list of the handle's transaction 2647 */ 2648 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2649 unsigned long flags, loff_t start_byte, loff_t end_byte) 2650 { 2651 transaction_t *transaction = handle->h_transaction; 2652 journal_t *journal; 2653 2654 if (is_handle_aborted(handle)) 2655 return -EROFS; 2656 journal = transaction->t_journal; 2657 2658 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2659 transaction->t_tid); 2660 2661 spin_lock(&journal->j_list_lock); 2662 jinode->i_flags |= flags; 2663 2664 if (jinode->i_dirty_end) { 2665 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2666 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2667 } else { 2668 jinode->i_dirty_start = start_byte; 2669 jinode->i_dirty_end = end_byte; 2670 } 2671 2672 /* Is inode already attached where we need it? */ 2673 if (jinode->i_transaction == transaction || 2674 jinode->i_next_transaction == transaction) 2675 goto done; 2676 2677 /* 2678 * We only ever set this variable to 1 so the test is safe. Since 2679 * t_need_data_flush is likely to be set, we do the test to save some 2680 * cacheline bouncing 2681 */ 2682 if (!transaction->t_need_data_flush) 2683 transaction->t_need_data_flush = 1; 2684 /* On some different transaction's list - should be 2685 * the committing one */ 2686 if (jinode->i_transaction) { 2687 J_ASSERT(jinode->i_next_transaction == NULL); 2688 J_ASSERT(jinode->i_transaction == 2689 journal->j_committing_transaction); 2690 jinode->i_next_transaction = transaction; 2691 goto done; 2692 } 2693 /* Not on any transaction list... */ 2694 J_ASSERT(!jinode->i_next_transaction); 2695 jinode->i_transaction = transaction; 2696 list_add(&jinode->i_list, &transaction->t_inode_list); 2697 done: 2698 spin_unlock(&journal->j_list_lock); 2699 2700 return 0; 2701 } 2702 2703 int jbd2_journal_inode_ranged_write(handle_t *handle, 2704 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2705 { 2706 return jbd2_journal_file_inode(handle, jinode, 2707 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2708 start_byte + length - 1); 2709 } 2710 2711 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2712 loff_t start_byte, loff_t length) 2713 { 2714 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2715 start_byte, start_byte + length - 1); 2716 } 2717 2718 /* 2719 * File truncate and transaction commit interact with each other in a 2720 * non-trivial way. If a transaction writing data block A is 2721 * committing, we cannot discard the data by truncate until we have 2722 * written them. Otherwise if we crashed after the transaction with 2723 * write has committed but before the transaction with truncate has 2724 * committed, we could see stale data in block A. This function is a 2725 * helper to solve this problem. It starts writeout of the truncated 2726 * part in case it is in the committing transaction. 2727 * 2728 * Filesystem code must call this function when inode is journaled in 2729 * ordered mode before truncation happens and after the inode has been 2730 * placed on orphan list with the new inode size. The second condition 2731 * avoids the race that someone writes new data and we start 2732 * committing the transaction after this function has been called but 2733 * before a transaction for truncate is started (and furthermore it 2734 * allows us to optimize the case where the addition to orphan list 2735 * happens in the same transaction as write --- we don't have to write 2736 * any data in such case). 2737 */ 2738 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2739 struct jbd2_inode *jinode, 2740 loff_t new_size) 2741 { 2742 transaction_t *inode_trans, *commit_trans; 2743 int ret = 0; 2744 2745 /* This is a quick check to avoid locking if not necessary */ 2746 if (!jinode->i_transaction) 2747 goto out; 2748 /* Locks are here just to force reading of recent values, it is 2749 * enough that the transaction was not committing before we started 2750 * a transaction adding the inode to orphan list */ 2751 read_lock(&journal->j_state_lock); 2752 commit_trans = journal->j_committing_transaction; 2753 read_unlock(&journal->j_state_lock); 2754 spin_lock(&journal->j_list_lock); 2755 inode_trans = jinode->i_transaction; 2756 spin_unlock(&journal->j_list_lock); 2757 if (inode_trans == commit_trans) { 2758 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2759 new_size, LLONG_MAX); 2760 if (ret) 2761 jbd2_journal_abort(journal, ret); 2762 } 2763 out: 2764 return ret; 2765 } 2766