1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (transaction_cache) 46 return 0; 47 return -ENOMEM; 48 } 49 50 void jbd2_journal_destroy_transaction_cache(void) 51 { 52 kmem_cache_destroy(transaction_cache); 53 transaction_cache = NULL; 54 } 55 56 void jbd2_journal_free_transaction(transaction_t *transaction) 57 { 58 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 59 return; 60 kmem_cache_free(transaction_cache, transaction); 61 } 62 63 /* 64 * jbd2_get_transaction: obtain a new transaction_t object. 65 * 66 * Simply allocate and initialise a new transaction. Create it in 67 * RUNNING state and add it to the current journal (which should not 68 * have an existing running transaction: we only make a new transaction 69 * once we have started to commit the old one). 70 * 71 * Preconditions: 72 * The journal MUST be locked. We don't perform atomic mallocs on the 73 * new transaction and we can't block without protecting against other 74 * processes trying to touch the journal while it is in transition. 75 * 76 */ 77 78 static transaction_t * 79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 80 { 81 transaction->t_journal = journal; 82 transaction->t_state = T_RUNNING; 83 transaction->t_start_time = ktime_get(); 84 transaction->t_tid = journal->j_transaction_sequence++; 85 transaction->t_expires = jiffies + journal->j_commit_interval; 86 spin_lock_init(&transaction->t_handle_lock); 87 atomic_set(&transaction->t_updates, 0); 88 atomic_set(&transaction->t_outstanding_credits, 89 atomic_read(&journal->j_reserved_credits)); 90 atomic_set(&transaction->t_handle_count, 0); 91 INIT_LIST_HEAD(&transaction->t_inode_list); 92 INIT_LIST_HEAD(&transaction->t_private_list); 93 94 /* Set up the commit timer for the new transaction. */ 95 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 96 add_timer(&journal->j_commit_timer); 97 98 J_ASSERT(journal->j_running_transaction == NULL); 99 journal->j_running_transaction = transaction; 100 transaction->t_max_wait = 0; 101 transaction->t_start = jiffies; 102 transaction->t_requested = 0; 103 104 return transaction; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * Update transaction's maximum wait time, if debugging is enabled. 117 * 118 * In order for t_max_wait to be reliable, it must be protected by a 119 * lock. But doing so will mean that start_this_handle() can not be 120 * run in parallel on SMP systems, which limits our scalability. So 121 * unless debugging is enabled, we no longer update t_max_wait, which 122 * means that maximum wait time reported by the jbd2_run_stats 123 * tracepoint will always be zero. 124 */ 125 static inline void update_t_max_wait(transaction_t *transaction, 126 unsigned long ts) 127 { 128 #ifdef CONFIG_JBD2_DEBUG 129 if (jbd2_journal_enable_debug && 130 time_after(transaction->t_start, ts)) { 131 ts = jbd2_time_diff(ts, transaction->t_start); 132 spin_lock(&transaction->t_handle_lock); 133 if (ts > transaction->t_max_wait) 134 transaction->t_max_wait = ts; 135 spin_unlock(&transaction->t_handle_lock); 136 } 137 #endif 138 } 139 140 /* 141 * Wait until running transaction passes T_LOCKED state. Also starts the commit 142 * if needed. The function expects running transaction to exist and releases 143 * j_state_lock. 144 */ 145 static void wait_transaction_locked(journal_t *journal) 146 __releases(journal->j_state_lock) 147 { 148 DEFINE_WAIT(wait); 149 int need_to_start; 150 tid_t tid = journal->j_running_transaction->t_tid; 151 152 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 153 TASK_UNINTERRUPTIBLE); 154 need_to_start = !tid_geq(journal->j_commit_request, tid); 155 read_unlock(&journal->j_state_lock); 156 if (need_to_start) 157 jbd2_log_start_commit(journal, tid); 158 jbd2_might_wait_for_commit(journal); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 } 162 163 static void sub_reserved_credits(journal_t *journal, int blocks) 164 { 165 atomic_sub(blocks, &journal->j_reserved_credits); 166 wake_up(&journal->j_wait_reserved); 167 } 168 169 /* 170 * Wait until we can add credits for handle to the running transaction. Called 171 * with j_state_lock held for reading. Returns 0 if handle joined the running 172 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 173 * caller must retry. 174 */ 175 static int add_transaction_credits(journal_t *journal, int blocks, 176 int rsv_blocks) 177 { 178 transaction_t *t = journal->j_running_transaction; 179 int needed; 180 int total = blocks + rsv_blocks; 181 182 /* 183 * If the current transaction is locked down for commit, wait 184 * for the lock to be released. 185 */ 186 if (t->t_state == T_LOCKED) { 187 wait_transaction_locked(journal); 188 return 1; 189 } 190 191 /* 192 * If there is not enough space left in the log to write all 193 * potential buffers requested by this operation, we need to 194 * stall pending a log checkpoint to free some more log space. 195 */ 196 needed = atomic_add_return(total, &t->t_outstanding_credits); 197 if (needed > journal->j_max_transaction_buffers) { 198 /* 199 * If the current transaction is already too large, 200 * then start to commit it: we can then go back and 201 * attach this handle to a new transaction. 202 */ 203 atomic_sub(total, &t->t_outstanding_credits); 204 205 /* 206 * Is the number of reserved credits in the current transaction too 207 * big to fit this handle? Wait until reserved credits are freed. 208 */ 209 if (atomic_read(&journal->j_reserved_credits) + total > 210 journal->j_max_transaction_buffers) { 211 read_unlock(&journal->j_state_lock); 212 jbd2_might_wait_for_commit(journal); 213 wait_event(journal->j_wait_reserved, 214 atomic_read(&journal->j_reserved_credits) + total <= 215 journal->j_max_transaction_buffers); 216 return 1; 217 } 218 219 wait_transaction_locked(journal); 220 return 1; 221 } 222 223 /* 224 * The commit code assumes that it can get enough log space 225 * without forcing a checkpoint. This is *critical* for 226 * correctness: a checkpoint of a buffer which is also 227 * associated with a committing transaction creates a deadlock, 228 * so commit simply cannot force through checkpoints. 229 * 230 * We must therefore ensure the necessary space in the journal 231 * *before* starting to dirty potentially checkpointed buffers 232 * in the new transaction. 233 */ 234 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 235 atomic_sub(total, &t->t_outstanding_credits); 236 read_unlock(&journal->j_state_lock); 237 jbd2_might_wait_for_commit(journal); 238 write_lock(&journal->j_state_lock); 239 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 240 __jbd2_log_wait_for_space(journal); 241 write_unlock(&journal->j_state_lock); 242 return 1; 243 } 244 245 /* No reservation? We are done... */ 246 if (!rsv_blocks) 247 return 0; 248 249 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 250 /* We allow at most half of a transaction to be reserved */ 251 if (needed > journal->j_max_transaction_buffers / 2) { 252 sub_reserved_credits(journal, rsv_blocks); 253 atomic_sub(total, &t->t_outstanding_credits); 254 read_unlock(&journal->j_state_lock); 255 jbd2_might_wait_for_commit(journal); 256 wait_event(journal->j_wait_reserved, 257 atomic_read(&journal->j_reserved_credits) + rsv_blocks 258 <= journal->j_max_transaction_buffers / 2); 259 return 1; 260 } 261 return 0; 262 } 263 264 /* 265 * start_this_handle: Given a handle, deal with any locking or stalling 266 * needed to make sure that there is enough journal space for the handle 267 * to begin. Attach the handle to a transaction and set up the 268 * transaction's buffer credits. 269 */ 270 271 static int start_this_handle(journal_t *journal, handle_t *handle, 272 gfp_t gfp_mask) 273 { 274 transaction_t *transaction, *new_transaction = NULL; 275 int blocks = handle->h_buffer_credits; 276 int rsv_blocks = 0; 277 unsigned long ts = jiffies; 278 279 if (handle->h_rsv_handle) 280 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 281 282 /* 283 * Limit the number of reserved credits to 1/2 of maximum transaction 284 * size and limit the number of total credits to not exceed maximum 285 * transaction size per operation. 286 */ 287 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 288 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 289 printk(KERN_ERR "JBD2: %s wants too many credits " 290 "credits:%d rsv_credits:%d max:%d\n", 291 current->comm, blocks, rsv_blocks, 292 journal->j_max_transaction_buffers); 293 WARN_ON(1); 294 return -ENOSPC; 295 } 296 297 alloc_transaction: 298 if (!journal->j_running_transaction) { 299 /* 300 * If __GFP_FS is not present, then we may be being called from 301 * inside the fs writeback layer, so we MUST NOT fail. 302 */ 303 if ((gfp_mask & __GFP_FS) == 0) 304 gfp_mask |= __GFP_NOFAIL; 305 new_transaction = kmem_cache_zalloc(transaction_cache, 306 gfp_mask); 307 if (!new_transaction) 308 return -ENOMEM; 309 } 310 311 jbd_debug(3, "New handle %p going live.\n", handle); 312 313 /* 314 * We need to hold j_state_lock until t_updates has been incremented, 315 * for proper journal barrier handling 316 */ 317 repeat: 318 read_lock(&journal->j_state_lock); 319 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 320 if (is_journal_aborted(journal) || 321 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 322 read_unlock(&journal->j_state_lock); 323 jbd2_journal_free_transaction(new_transaction); 324 return -EROFS; 325 } 326 327 /* 328 * Wait on the journal's transaction barrier if necessary. Specifically 329 * we allow reserved handles to proceed because otherwise commit could 330 * deadlock on page writeback not being able to complete. 331 */ 332 if (!handle->h_reserved && journal->j_barrier_count) { 333 read_unlock(&journal->j_state_lock); 334 wait_event(journal->j_wait_transaction_locked, 335 journal->j_barrier_count == 0); 336 goto repeat; 337 } 338 339 if (!journal->j_running_transaction) { 340 read_unlock(&journal->j_state_lock); 341 if (!new_transaction) 342 goto alloc_transaction; 343 write_lock(&journal->j_state_lock); 344 if (!journal->j_running_transaction && 345 (handle->h_reserved || !journal->j_barrier_count)) { 346 jbd2_get_transaction(journal, new_transaction); 347 new_transaction = NULL; 348 } 349 write_unlock(&journal->j_state_lock); 350 goto repeat; 351 } 352 353 transaction = journal->j_running_transaction; 354 355 if (!handle->h_reserved) { 356 /* We may have dropped j_state_lock - restart in that case */ 357 if (add_transaction_credits(journal, blocks, rsv_blocks)) 358 goto repeat; 359 } else { 360 /* 361 * We have handle reserved so we are allowed to join T_LOCKED 362 * transaction and we don't have to check for transaction size 363 * and journal space. 364 */ 365 sub_reserved_credits(journal, blocks); 366 handle->h_reserved = 0; 367 } 368 369 /* OK, account for the buffers that this operation expects to 370 * use and add the handle to the running transaction. 371 */ 372 update_t_max_wait(transaction, ts); 373 handle->h_transaction = transaction; 374 handle->h_requested_credits = blocks; 375 handle->h_start_jiffies = jiffies; 376 atomic_inc(&transaction->t_updates); 377 atomic_inc(&transaction->t_handle_count); 378 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 379 handle, blocks, 380 atomic_read(&transaction->t_outstanding_credits), 381 jbd2_log_space_left(journal)); 382 read_unlock(&journal->j_state_lock); 383 current->journal_info = handle; 384 385 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 386 jbd2_journal_free_transaction(new_transaction); 387 /* 388 * Ensure that no allocations done while the transaction is open are 389 * going to recurse back to the fs layer. 390 */ 391 handle->saved_alloc_context = memalloc_nofs_save(); 392 return 0; 393 } 394 395 /* Allocate a new handle. This should probably be in a slab... */ 396 static handle_t *new_handle(int nblocks) 397 { 398 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 399 if (!handle) 400 return NULL; 401 handle->h_buffer_credits = nblocks; 402 handle->h_ref = 1; 403 404 return handle; 405 } 406 407 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 408 gfp_t gfp_mask, unsigned int type, 409 unsigned int line_no) 410 { 411 handle_t *handle = journal_current_handle(); 412 int err; 413 414 if (!journal) 415 return ERR_PTR(-EROFS); 416 417 if (handle) { 418 J_ASSERT(handle->h_transaction->t_journal == journal); 419 handle->h_ref++; 420 return handle; 421 } 422 423 handle = new_handle(nblocks); 424 if (!handle) 425 return ERR_PTR(-ENOMEM); 426 if (rsv_blocks) { 427 handle_t *rsv_handle; 428 429 rsv_handle = new_handle(rsv_blocks); 430 if (!rsv_handle) { 431 jbd2_free_handle(handle); 432 return ERR_PTR(-ENOMEM); 433 } 434 rsv_handle->h_reserved = 1; 435 rsv_handle->h_journal = journal; 436 handle->h_rsv_handle = rsv_handle; 437 } 438 439 err = start_this_handle(journal, handle, gfp_mask); 440 if (err < 0) { 441 if (handle->h_rsv_handle) 442 jbd2_free_handle(handle->h_rsv_handle); 443 jbd2_free_handle(handle); 444 return ERR_PTR(err); 445 } 446 handle->h_type = type; 447 handle->h_line_no = line_no; 448 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 449 handle->h_transaction->t_tid, type, 450 line_no, nblocks); 451 452 return handle; 453 } 454 EXPORT_SYMBOL(jbd2__journal_start); 455 456 457 /** 458 * handle_t *jbd2_journal_start() - Obtain a new handle. 459 * @journal: Journal to start transaction on. 460 * @nblocks: number of block buffer we might modify 461 * 462 * We make sure that the transaction can guarantee at least nblocks of 463 * modified buffers in the log. We block until the log can guarantee 464 * that much space. Additionally, if rsv_blocks > 0, we also create another 465 * handle with rsv_blocks reserved blocks in the journal. This handle is 466 * is stored in h_rsv_handle. It is not attached to any particular transaction 467 * and thus doesn't block transaction commit. If the caller uses this reserved 468 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 469 * on the parent handle will dispose the reserved one. Reserved handle has to 470 * be converted to a normal handle using jbd2_journal_start_reserved() before 471 * it can be used. 472 * 473 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 474 * on failure. 475 */ 476 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 477 { 478 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 479 } 480 EXPORT_SYMBOL(jbd2_journal_start); 481 482 void jbd2_journal_free_reserved(handle_t *handle) 483 { 484 journal_t *journal = handle->h_journal; 485 486 WARN_ON(!handle->h_reserved); 487 sub_reserved_credits(journal, handle->h_buffer_credits); 488 jbd2_free_handle(handle); 489 } 490 EXPORT_SYMBOL(jbd2_journal_free_reserved); 491 492 /** 493 * int jbd2_journal_start_reserved() - start reserved handle 494 * @handle: handle to start 495 * @type: for handle statistics 496 * @line_no: for handle statistics 497 * 498 * Start handle that has been previously reserved with jbd2_journal_reserve(). 499 * This attaches @handle to the running transaction (or creates one if there's 500 * not transaction running). Unlike jbd2_journal_start() this function cannot 501 * block on journal commit, checkpointing, or similar stuff. It can block on 502 * memory allocation or frozen journal though. 503 * 504 * Return 0 on success, non-zero on error - handle is freed in that case. 505 */ 506 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 507 unsigned int line_no) 508 { 509 journal_t *journal = handle->h_journal; 510 int ret = -EIO; 511 512 if (WARN_ON(!handle->h_reserved)) { 513 /* Someone passed in normal handle? Just stop it. */ 514 jbd2_journal_stop(handle); 515 return ret; 516 } 517 /* 518 * Usefulness of mixing of reserved and unreserved handles is 519 * questionable. So far nobody seems to need it so just error out. 520 */ 521 if (WARN_ON(current->journal_info)) { 522 jbd2_journal_free_reserved(handle); 523 return ret; 524 } 525 526 handle->h_journal = NULL; 527 /* 528 * GFP_NOFS is here because callers are likely from writeback or 529 * similarly constrained call sites 530 */ 531 ret = start_this_handle(journal, handle, GFP_NOFS); 532 if (ret < 0) { 533 handle->h_journal = journal; 534 jbd2_journal_free_reserved(handle); 535 return ret; 536 } 537 handle->h_type = type; 538 handle->h_line_no = line_no; 539 return 0; 540 } 541 EXPORT_SYMBOL(jbd2_journal_start_reserved); 542 543 /** 544 * int jbd2_journal_extend() - extend buffer credits. 545 * @handle: handle to 'extend' 546 * @nblocks: nr blocks to try to extend by. 547 * 548 * Some transactions, such as large extends and truncates, can be done 549 * atomically all at once or in several stages. The operation requests 550 * a credit for a number of buffer modifications in advance, but can 551 * extend its credit if it needs more. 552 * 553 * jbd2_journal_extend tries to give the running handle more buffer credits. 554 * It does not guarantee that allocation - this is a best-effort only. 555 * The calling process MUST be able to deal cleanly with a failure to 556 * extend here. 557 * 558 * Return 0 on success, non-zero on failure. 559 * 560 * return code < 0 implies an error 561 * return code > 0 implies normal transaction-full status. 562 */ 563 int jbd2_journal_extend(handle_t *handle, int nblocks) 564 { 565 transaction_t *transaction = handle->h_transaction; 566 journal_t *journal; 567 int result; 568 int wanted; 569 570 if (is_handle_aborted(handle)) 571 return -EROFS; 572 journal = transaction->t_journal; 573 574 result = 1; 575 576 read_lock(&journal->j_state_lock); 577 578 /* Don't extend a locked-down transaction! */ 579 if (transaction->t_state != T_RUNNING) { 580 jbd_debug(3, "denied handle %p %d blocks: " 581 "transaction not running\n", handle, nblocks); 582 goto error_out; 583 } 584 585 spin_lock(&transaction->t_handle_lock); 586 wanted = atomic_add_return(nblocks, 587 &transaction->t_outstanding_credits); 588 589 if (wanted > journal->j_max_transaction_buffers) { 590 jbd_debug(3, "denied handle %p %d blocks: " 591 "transaction too large\n", handle, nblocks); 592 atomic_sub(nblocks, &transaction->t_outstanding_credits); 593 goto unlock; 594 } 595 596 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 597 jbd2_log_space_left(journal)) { 598 jbd_debug(3, "denied handle %p %d blocks: " 599 "insufficient log space\n", handle, nblocks); 600 atomic_sub(nblocks, &transaction->t_outstanding_credits); 601 goto unlock; 602 } 603 604 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 605 transaction->t_tid, 606 handle->h_type, handle->h_line_no, 607 handle->h_buffer_credits, 608 nblocks); 609 610 handle->h_buffer_credits += nblocks; 611 handle->h_requested_credits += nblocks; 612 result = 0; 613 614 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 615 unlock: 616 spin_unlock(&transaction->t_handle_lock); 617 error_out: 618 read_unlock(&journal->j_state_lock); 619 return result; 620 } 621 622 623 /** 624 * int jbd2_journal_restart() - restart a handle . 625 * @handle: handle to restart 626 * @nblocks: nr credits requested 627 * @gfp_mask: memory allocation flags (for start_this_handle) 628 * 629 * Restart a handle for a multi-transaction filesystem 630 * operation. 631 * 632 * If the jbd2_journal_extend() call above fails to grant new buffer credits 633 * to a running handle, a call to jbd2_journal_restart will commit the 634 * handle's transaction so far and reattach the handle to a new 635 * transaction capable of guaranteeing the requested number of 636 * credits. We preserve reserved handle if there's any attached to the 637 * passed in handle. 638 */ 639 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 640 { 641 transaction_t *transaction = handle->h_transaction; 642 journal_t *journal; 643 tid_t tid; 644 int need_to_start, ret; 645 646 /* If we've had an abort of any type, don't even think about 647 * actually doing the restart! */ 648 if (is_handle_aborted(handle)) 649 return 0; 650 journal = transaction->t_journal; 651 652 /* 653 * First unlink the handle from its current transaction, and start the 654 * commit on that. 655 */ 656 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 657 J_ASSERT(journal_current_handle() == handle); 658 659 read_lock(&journal->j_state_lock); 660 spin_lock(&transaction->t_handle_lock); 661 atomic_sub(handle->h_buffer_credits, 662 &transaction->t_outstanding_credits); 663 if (handle->h_rsv_handle) { 664 sub_reserved_credits(journal, 665 handle->h_rsv_handle->h_buffer_credits); 666 } 667 if (atomic_dec_and_test(&transaction->t_updates)) 668 wake_up(&journal->j_wait_updates); 669 tid = transaction->t_tid; 670 spin_unlock(&transaction->t_handle_lock); 671 handle->h_transaction = NULL; 672 current->journal_info = NULL; 673 674 jbd_debug(2, "restarting handle %p\n", handle); 675 need_to_start = !tid_geq(journal->j_commit_request, tid); 676 read_unlock(&journal->j_state_lock); 677 if (need_to_start) 678 jbd2_log_start_commit(journal, tid); 679 680 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 681 handle->h_buffer_credits = nblocks; 682 /* 683 * Restore the original nofs context because the journal restart 684 * is basically the same thing as journal stop and start. 685 * start_this_handle will start a new nofs context. 686 */ 687 memalloc_nofs_restore(handle->saved_alloc_context); 688 ret = start_this_handle(journal, handle, gfp_mask); 689 return ret; 690 } 691 EXPORT_SYMBOL(jbd2__journal_restart); 692 693 694 int jbd2_journal_restart(handle_t *handle, int nblocks) 695 { 696 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 697 } 698 EXPORT_SYMBOL(jbd2_journal_restart); 699 700 /** 701 * void jbd2_journal_lock_updates () - establish a transaction barrier. 702 * @journal: Journal to establish a barrier on. 703 * 704 * This locks out any further updates from being started, and blocks 705 * until all existing updates have completed, returning only once the 706 * journal is in a quiescent state with no updates running. 707 * 708 * The journal lock should not be held on entry. 709 */ 710 void jbd2_journal_lock_updates(journal_t *journal) 711 { 712 DEFINE_WAIT(wait); 713 714 jbd2_might_wait_for_commit(journal); 715 716 write_lock(&journal->j_state_lock); 717 ++journal->j_barrier_count; 718 719 /* Wait until there are no reserved handles */ 720 if (atomic_read(&journal->j_reserved_credits)) { 721 write_unlock(&journal->j_state_lock); 722 wait_event(journal->j_wait_reserved, 723 atomic_read(&journal->j_reserved_credits) == 0); 724 write_lock(&journal->j_state_lock); 725 } 726 727 /* Wait until there are no running updates */ 728 while (1) { 729 transaction_t *transaction = journal->j_running_transaction; 730 731 if (!transaction) 732 break; 733 734 spin_lock(&transaction->t_handle_lock); 735 prepare_to_wait(&journal->j_wait_updates, &wait, 736 TASK_UNINTERRUPTIBLE); 737 if (!atomic_read(&transaction->t_updates)) { 738 spin_unlock(&transaction->t_handle_lock); 739 finish_wait(&journal->j_wait_updates, &wait); 740 break; 741 } 742 spin_unlock(&transaction->t_handle_lock); 743 write_unlock(&journal->j_state_lock); 744 schedule(); 745 finish_wait(&journal->j_wait_updates, &wait); 746 write_lock(&journal->j_state_lock); 747 } 748 write_unlock(&journal->j_state_lock); 749 750 /* 751 * We have now established a barrier against other normal updates, but 752 * we also need to barrier against other jbd2_journal_lock_updates() calls 753 * to make sure that we serialise special journal-locked operations 754 * too. 755 */ 756 mutex_lock(&journal->j_barrier); 757 } 758 759 /** 760 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 761 * @journal: Journal to release the barrier on. 762 * 763 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 764 * 765 * Should be called without the journal lock held. 766 */ 767 void jbd2_journal_unlock_updates (journal_t *journal) 768 { 769 J_ASSERT(journal->j_barrier_count != 0); 770 771 mutex_unlock(&journal->j_barrier); 772 write_lock(&journal->j_state_lock); 773 --journal->j_barrier_count; 774 write_unlock(&journal->j_state_lock); 775 wake_up(&journal->j_wait_transaction_locked); 776 } 777 778 static void warn_dirty_buffer(struct buffer_head *bh) 779 { 780 printk(KERN_WARNING 781 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 782 "There's a risk of filesystem corruption in case of system " 783 "crash.\n", 784 bh->b_bdev, (unsigned long long)bh->b_blocknr); 785 } 786 787 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 788 static void jbd2_freeze_jh_data(struct journal_head *jh) 789 { 790 struct page *page; 791 int offset; 792 char *source; 793 struct buffer_head *bh = jh2bh(jh); 794 795 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 796 page = bh->b_page; 797 offset = offset_in_page(bh->b_data); 798 source = kmap_atomic(page); 799 /* Fire data frozen trigger just before we copy the data */ 800 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 801 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 802 kunmap_atomic(source); 803 804 /* 805 * Now that the frozen data is saved off, we need to store any matching 806 * triggers. 807 */ 808 jh->b_frozen_triggers = jh->b_triggers; 809 } 810 811 /* 812 * If the buffer is already part of the current transaction, then there 813 * is nothing we need to do. If it is already part of a prior 814 * transaction which we are still committing to disk, then we need to 815 * make sure that we do not overwrite the old copy: we do copy-out to 816 * preserve the copy going to disk. We also account the buffer against 817 * the handle's metadata buffer credits (unless the buffer is already 818 * part of the transaction, that is). 819 * 820 */ 821 static int 822 do_get_write_access(handle_t *handle, struct journal_head *jh, 823 int force_copy) 824 { 825 struct buffer_head *bh; 826 transaction_t *transaction = handle->h_transaction; 827 journal_t *journal; 828 int error; 829 char *frozen_buffer = NULL; 830 unsigned long start_lock, time_lock; 831 832 if (is_handle_aborted(handle)) 833 return -EROFS; 834 journal = transaction->t_journal; 835 836 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 837 838 JBUFFER_TRACE(jh, "entry"); 839 repeat: 840 bh = jh2bh(jh); 841 842 /* @@@ Need to check for errors here at some point. */ 843 844 start_lock = jiffies; 845 lock_buffer(bh); 846 jbd_lock_bh_state(bh); 847 848 /* If it takes too long to lock the buffer, trace it */ 849 time_lock = jbd2_time_diff(start_lock, jiffies); 850 if (time_lock > HZ/10) 851 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 852 jiffies_to_msecs(time_lock)); 853 854 /* We now hold the buffer lock so it is safe to query the buffer 855 * state. Is the buffer dirty? 856 * 857 * If so, there are two possibilities. The buffer may be 858 * non-journaled, and undergoing a quite legitimate writeback. 859 * Otherwise, it is journaled, and we don't expect dirty buffers 860 * in that state (the buffers should be marked JBD_Dirty 861 * instead.) So either the IO is being done under our own 862 * control and this is a bug, or it's a third party IO such as 863 * dump(8) (which may leave the buffer scheduled for read --- 864 * ie. locked but not dirty) or tune2fs (which may actually have 865 * the buffer dirtied, ugh.) */ 866 867 if (buffer_dirty(bh)) { 868 /* 869 * First question: is this buffer already part of the current 870 * transaction or the existing committing transaction? 871 */ 872 if (jh->b_transaction) { 873 J_ASSERT_JH(jh, 874 jh->b_transaction == transaction || 875 jh->b_transaction == 876 journal->j_committing_transaction); 877 if (jh->b_next_transaction) 878 J_ASSERT_JH(jh, jh->b_next_transaction == 879 transaction); 880 warn_dirty_buffer(bh); 881 } 882 /* 883 * In any case we need to clean the dirty flag and we must 884 * do it under the buffer lock to be sure we don't race 885 * with running write-out. 886 */ 887 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 888 clear_buffer_dirty(bh); 889 set_buffer_jbddirty(bh); 890 } 891 892 unlock_buffer(bh); 893 894 error = -EROFS; 895 if (is_handle_aborted(handle)) { 896 jbd_unlock_bh_state(bh); 897 goto out; 898 } 899 error = 0; 900 901 /* 902 * The buffer is already part of this transaction if b_transaction or 903 * b_next_transaction points to it 904 */ 905 if (jh->b_transaction == transaction || 906 jh->b_next_transaction == transaction) 907 goto done; 908 909 /* 910 * this is the first time this transaction is touching this buffer, 911 * reset the modified flag 912 */ 913 jh->b_modified = 0; 914 915 /* 916 * If the buffer is not journaled right now, we need to make sure it 917 * doesn't get written to disk before the caller actually commits the 918 * new data 919 */ 920 if (!jh->b_transaction) { 921 JBUFFER_TRACE(jh, "no transaction"); 922 J_ASSERT_JH(jh, !jh->b_next_transaction); 923 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 924 /* 925 * Make sure all stores to jh (b_modified, b_frozen_data) are 926 * visible before attaching it to the running transaction. 927 * Paired with barrier in jbd2_write_access_granted() 928 */ 929 smp_wmb(); 930 spin_lock(&journal->j_list_lock); 931 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 932 spin_unlock(&journal->j_list_lock); 933 goto done; 934 } 935 /* 936 * If there is already a copy-out version of this buffer, then we don't 937 * need to make another one 938 */ 939 if (jh->b_frozen_data) { 940 JBUFFER_TRACE(jh, "has frozen data"); 941 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 942 goto attach_next; 943 } 944 945 JBUFFER_TRACE(jh, "owned by older transaction"); 946 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 947 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 948 949 /* 950 * There is one case we have to be very careful about. If the 951 * committing transaction is currently writing this buffer out to disk 952 * and has NOT made a copy-out, then we cannot modify the buffer 953 * contents at all right now. The essence of copy-out is that it is 954 * the extra copy, not the primary copy, which gets journaled. If the 955 * primary copy is already going to disk then we cannot do copy-out 956 * here. 957 */ 958 if (buffer_shadow(bh)) { 959 JBUFFER_TRACE(jh, "on shadow: sleep"); 960 jbd_unlock_bh_state(bh); 961 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 962 goto repeat; 963 } 964 965 /* 966 * Only do the copy if the currently-owning transaction still needs it. 967 * If buffer isn't on BJ_Metadata list, the committing transaction is 968 * past that stage (here we use the fact that BH_Shadow is set under 969 * bh_state lock together with refiling to BJ_Shadow list and at this 970 * point we know the buffer doesn't have BH_Shadow set). 971 * 972 * Subtle point, though: if this is a get_undo_access, then we will be 973 * relying on the frozen_data to contain the new value of the 974 * committed_data record after the transaction, so we HAVE to force the 975 * frozen_data copy in that case. 976 */ 977 if (jh->b_jlist == BJ_Metadata || force_copy) { 978 JBUFFER_TRACE(jh, "generate frozen data"); 979 if (!frozen_buffer) { 980 JBUFFER_TRACE(jh, "allocate memory for buffer"); 981 jbd_unlock_bh_state(bh); 982 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 983 GFP_NOFS | __GFP_NOFAIL); 984 goto repeat; 985 } 986 jh->b_frozen_data = frozen_buffer; 987 frozen_buffer = NULL; 988 jbd2_freeze_jh_data(jh); 989 } 990 attach_next: 991 /* 992 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 993 * before attaching it to the running transaction. Paired with barrier 994 * in jbd2_write_access_granted() 995 */ 996 smp_wmb(); 997 jh->b_next_transaction = transaction; 998 999 done: 1000 jbd_unlock_bh_state(bh); 1001 1002 /* 1003 * If we are about to journal a buffer, then any revoke pending on it is 1004 * no longer valid 1005 */ 1006 jbd2_journal_cancel_revoke(handle, jh); 1007 1008 out: 1009 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1010 jbd2_free(frozen_buffer, bh->b_size); 1011 1012 JBUFFER_TRACE(jh, "exit"); 1013 return error; 1014 } 1015 1016 /* Fast check whether buffer is already attached to the required transaction */ 1017 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1018 bool undo) 1019 { 1020 struct journal_head *jh; 1021 bool ret = false; 1022 1023 /* Dirty buffers require special handling... */ 1024 if (buffer_dirty(bh)) 1025 return false; 1026 1027 /* 1028 * RCU protects us from dereferencing freed pages. So the checks we do 1029 * are guaranteed not to oops. However the jh slab object can get freed 1030 * & reallocated while we work with it. So we have to be careful. When 1031 * we see jh attached to the running transaction, we know it must stay 1032 * so until the transaction is committed. Thus jh won't be freed and 1033 * will be attached to the same bh while we run. However it can 1034 * happen jh gets freed, reallocated, and attached to the transaction 1035 * just after we get pointer to it from bh. So we have to be careful 1036 * and recheck jh still belongs to our bh before we return success. 1037 */ 1038 rcu_read_lock(); 1039 if (!buffer_jbd(bh)) 1040 goto out; 1041 /* This should be bh2jh() but that doesn't work with inline functions */ 1042 jh = READ_ONCE(bh->b_private); 1043 if (!jh) 1044 goto out; 1045 /* For undo access buffer must have data copied */ 1046 if (undo && !jh->b_committed_data) 1047 goto out; 1048 if (jh->b_transaction != handle->h_transaction && 1049 jh->b_next_transaction != handle->h_transaction) 1050 goto out; 1051 /* 1052 * There are two reasons for the barrier here: 1053 * 1) Make sure to fetch b_bh after we did previous checks so that we 1054 * detect when jh went through free, realloc, attach to transaction 1055 * while we were checking. Paired with implicit barrier in that path. 1056 * 2) So that access to bh done after jbd2_write_access_granted() 1057 * doesn't get reordered and see inconsistent state of concurrent 1058 * do_get_write_access(). 1059 */ 1060 smp_mb(); 1061 if (unlikely(jh->b_bh != bh)) 1062 goto out; 1063 ret = true; 1064 out: 1065 rcu_read_unlock(); 1066 return ret; 1067 } 1068 1069 /** 1070 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1071 * @handle: transaction to add buffer modifications to 1072 * @bh: bh to be used for metadata writes 1073 * 1074 * Returns: error code or 0 on success. 1075 * 1076 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1077 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1078 */ 1079 1080 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1081 { 1082 struct journal_head *jh; 1083 int rc; 1084 1085 if (jbd2_write_access_granted(handle, bh, false)) 1086 return 0; 1087 1088 jh = jbd2_journal_add_journal_head(bh); 1089 /* We do not want to get caught playing with fields which the 1090 * log thread also manipulates. Make sure that the buffer 1091 * completes any outstanding IO before proceeding. */ 1092 rc = do_get_write_access(handle, jh, 0); 1093 jbd2_journal_put_journal_head(jh); 1094 return rc; 1095 } 1096 1097 1098 /* 1099 * When the user wants to journal a newly created buffer_head 1100 * (ie. getblk() returned a new buffer and we are going to populate it 1101 * manually rather than reading off disk), then we need to keep the 1102 * buffer_head locked until it has been completely filled with new 1103 * data. In this case, we should be able to make the assertion that 1104 * the bh is not already part of an existing transaction. 1105 * 1106 * The buffer should already be locked by the caller by this point. 1107 * There is no lock ranking violation: it was a newly created, 1108 * unlocked buffer beforehand. */ 1109 1110 /** 1111 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1112 * @handle: transaction to new buffer to 1113 * @bh: new buffer. 1114 * 1115 * Call this if you create a new bh. 1116 */ 1117 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1118 { 1119 transaction_t *transaction = handle->h_transaction; 1120 journal_t *journal; 1121 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1122 int err; 1123 1124 jbd_debug(5, "journal_head %p\n", jh); 1125 err = -EROFS; 1126 if (is_handle_aborted(handle)) 1127 goto out; 1128 journal = transaction->t_journal; 1129 err = 0; 1130 1131 JBUFFER_TRACE(jh, "entry"); 1132 /* 1133 * The buffer may already belong to this transaction due to pre-zeroing 1134 * in the filesystem's new_block code. It may also be on the previous, 1135 * committing transaction's lists, but it HAS to be in Forget state in 1136 * that case: the transaction must have deleted the buffer for it to be 1137 * reused here. 1138 */ 1139 jbd_lock_bh_state(bh); 1140 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1141 jh->b_transaction == NULL || 1142 (jh->b_transaction == journal->j_committing_transaction && 1143 jh->b_jlist == BJ_Forget))); 1144 1145 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1146 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1147 1148 if (jh->b_transaction == NULL) { 1149 /* 1150 * Previous jbd2_journal_forget() could have left the buffer 1151 * with jbddirty bit set because it was being committed. When 1152 * the commit finished, we've filed the buffer for 1153 * checkpointing and marked it dirty. Now we are reallocating 1154 * the buffer so the transaction freeing it must have 1155 * committed and so it's safe to clear the dirty bit. 1156 */ 1157 clear_buffer_dirty(jh2bh(jh)); 1158 /* first access by this transaction */ 1159 jh->b_modified = 0; 1160 1161 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1162 spin_lock(&journal->j_list_lock); 1163 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1164 spin_unlock(&journal->j_list_lock); 1165 } else if (jh->b_transaction == journal->j_committing_transaction) { 1166 /* first access by this transaction */ 1167 jh->b_modified = 0; 1168 1169 JBUFFER_TRACE(jh, "set next transaction"); 1170 spin_lock(&journal->j_list_lock); 1171 jh->b_next_transaction = transaction; 1172 spin_unlock(&journal->j_list_lock); 1173 } 1174 jbd_unlock_bh_state(bh); 1175 1176 /* 1177 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1178 * blocks which contain freed but then revoked metadata. We need 1179 * to cancel the revoke in case we end up freeing it yet again 1180 * and the reallocating as data - this would cause a second revoke, 1181 * which hits an assertion error. 1182 */ 1183 JBUFFER_TRACE(jh, "cancelling revoke"); 1184 jbd2_journal_cancel_revoke(handle, jh); 1185 out: 1186 jbd2_journal_put_journal_head(jh); 1187 return err; 1188 } 1189 1190 /** 1191 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1192 * non-rewindable consequences 1193 * @handle: transaction 1194 * @bh: buffer to undo 1195 * 1196 * Sometimes there is a need to distinguish between metadata which has 1197 * been committed to disk and that which has not. The ext3fs code uses 1198 * this for freeing and allocating space, we have to make sure that we 1199 * do not reuse freed space until the deallocation has been committed, 1200 * since if we overwrote that space we would make the delete 1201 * un-rewindable in case of a crash. 1202 * 1203 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1204 * buffer for parts of non-rewindable operations such as delete 1205 * operations on the bitmaps. The journaling code must keep a copy of 1206 * the buffer's contents prior to the undo_access call until such time 1207 * as we know that the buffer has definitely been committed to disk. 1208 * 1209 * We never need to know which transaction the committed data is part 1210 * of, buffers touched here are guaranteed to be dirtied later and so 1211 * will be committed to a new transaction in due course, at which point 1212 * we can discard the old committed data pointer. 1213 * 1214 * Returns error number or 0 on success. 1215 */ 1216 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1217 { 1218 int err; 1219 struct journal_head *jh; 1220 char *committed_data = NULL; 1221 1222 JBUFFER_TRACE(jh, "entry"); 1223 if (jbd2_write_access_granted(handle, bh, true)) 1224 return 0; 1225 1226 jh = jbd2_journal_add_journal_head(bh); 1227 /* 1228 * Do this first --- it can drop the journal lock, so we want to 1229 * make sure that obtaining the committed_data is done 1230 * atomically wrt. completion of any outstanding commits. 1231 */ 1232 err = do_get_write_access(handle, jh, 1); 1233 if (err) 1234 goto out; 1235 1236 repeat: 1237 if (!jh->b_committed_data) 1238 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1239 GFP_NOFS|__GFP_NOFAIL); 1240 1241 jbd_lock_bh_state(bh); 1242 if (!jh->b_committed_data) { 1243 /* Copy out the current buffer contents into the 1244 * preserved, committed copy. */ 1245 JBUFFER_TRACE(jh, "generate b_committed data"); 1246 if (!committed_data) { 1247 jbd_unlock_bh_state(bh); 1248 goto repeat; 1249 } 1250 1251 jh->b_committed_data = committed_data; 1252 committed_data = NULL; 1253 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1254 } 1255 jbd_unlock_bh_state(bh); 1256 out: 1257 jbd2_journal_put_journal_head(jh); 1258 if (unlikely(committed_data)) 1259 jbd2_free(committed_data, bh->b_size); 1260 return err; 1261 } 1262 1263 /** 1264 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1265 * @bh: buffer to trigger on 1266 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1267 * 1268 * Set any triggers on this journal_head. This is always safe, because 1269 * triggers for a committing buffer will be saved off, and triggers for 1270 * a running transaction will match the buffer in that transaction. 1271 * 1272 * Call with NULL to clear the triggers. 1273 */ 1274 void jbd2_journal_set_triggers(struct buffer_head *bh, 1275 struct jbd2_buffer_trigger_type *type) 1276 { 1277 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1278 1279 if (WARN_ON(!jh)) 1280 return; 1281 jh->b_triggers = type; 1282 jbd2_journal_put_journal_head(jh); 1283 } 1284 1285 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1286 struct jbd2_buffer_trigger_type *triggers) 1287 { 1288 struct buffer_head *bh = jh2bh(jh); 1289 1290 if (!triggers || !triggers->t_frozen) 1291 return; 1292 1293 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1294 } 1295 1296 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1297 struct jbd2_buffer_trigger_type *triggers) 1298 { 1299 if (!triggers || !triggers->t_abort) 1300 return; 1301 1302 triggers->t_abort(triggers, jh2bh(jh)); 1303 } 1304 1305 /** 1306 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1307 * @handle: transaction to add buffer to. 1308 * @bh: buffer to mark 1309 * 1310 * mark dirty metadata which needs to be journaled as part of the current 1311 * transaction. 1312 * 1313 * The buffer must have previously had jbd2_journal_get_write_access() 1314 * called so that it has a valid journal_head attached to the buffer 1315 * head. 1316 * 1317 * The buffer is placed on the transaction's metadata list and is marked 1318 * as belonging to the transaction. 1319 * 1320 * Returns error number or 0 on success. 1321 * 1322 * Special care needs to be taken if the buffer already belongs to the 1323 * current committing transaction (in which case we should have frozen 1324 * data present for that commit). In that case, we don't relink the 1325 * buffer: that only gets done when the old transaction finally 1326 * completes its commit. 1327 */ 1328 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1329 { 1330 transaction_t *transaction = handle->h_transaction; 1331 journal_t *journal; 1332 struct journal_head *jh; 1333 int ret = 0; 1334 1335 if (is_handle_aborted(handle)) 1336 return -EROFS; 1337 if (!buffer_jbd(bh)) { 1338 ret = -EUCLEAN; 1339 goto out; 1340 } 1341 /* 1342 * We don't grab jh reference here since the buffer must be part 1343 * of the running transaction. 1344 */ 1345 jh = bh2jh(bh); 1346 /* 1347 * This and the following assertions are unreliable since we may see jh 1348 * in inconsistent state unless we grab bh_state lock. But this is 1349 * crucial to catch bugs so let's do a reliable check until the 1350 * lockless handling is fully proven. 1351 */ 1352 if (jh->b_transaction != transaction && 1353 jh->b_next_transaction != transaction) { 1354 jbd_lock_bh_state(bh); 1355 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1356 jh->b_next_transaction == transaction); 1357 jbd_unlock_bh_state(bh); 1358 } 1359 if (jh->b_modified == 1) { 1360 /* If it's in our transaction it must be in BJ_Metadata list. */ 1361 if (jh->b_transaction == transaction && 1362 jh->b_jlist != BJ_Metadata) { 1363 jbd_lock_bh_state(bh); 1364 if (jh->b_transaction == transaction && 1365 jh->b_jlist != BJ_Metadata) 1366 pr_err("JBD2: assertion failure: h_type=%u " 1367 "h_line_no=%u block_no=%llu jlist=%u\n", 1368 handle->h_type, handle->h_line_no, 1369 (unsigned long long) bh->b_blocknr, 1370 jh->b_jlist); 1371 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1372 jh->b_jlist == BJ_Metadata); 1373 jbd_unlock_bh_state(bh); 1374 } 1375 goto out; 1376 } 1377 1378 journal = transaction->t_journal; 1379 jbd_debug(5, "journal_head %p\n", jh); 1380 JBUFFER_TRACE(jh, "entry"); 1381 1382 jbd_lock_bh_state(bh); 1383 1384 if (jh->b_modified == 0) { 1385 /* 1386 * This buffer's got modified and becoming part 1387 * of the transaction. This needs to be done 1388 * once a transaction -bzzz 1389 */ 1390 if (handle->h_buffer_credits <= 0) { 1391 ret = -ENOSPC; 1392 goto out_unlock_bh; 1393 } 1394 jh->b_modified = 1; 1395 handle->h_buffer_credits--; 1396 } 1397 1398 /* 1399 * fastpath, to avoid expensive locking. If this buffer is already 1400 * on the running transaction's metadata list there is nothing to do. 1401 * Nobody can take it off again because there is a handle open. 1402 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1403 * result in this test being false, so we go in and take the locks. 1404 */ 1405 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1406 JBUFFER_TRACE(jh, "fastpath"); 1407 if (unlikely(jh->b_transaction != 1408 journal->j_running_transaction)) { 1409 printk(KERN_ERR "JBD2: %s: " 1410 "jh->b_transaction (%llu, %p, %u) != " 1411 "journal->j_running_transaction (%p, %u)\n", 1412 journal->j_devname, 1413 (unsigned long long) bh->b_blocknr, 1414 jh->b_transaction, 1415 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1416 journal->j_running_transaction, 1417 journal->j_running_transaction ? 1418 journal->j_running_transaction->t_tid : 0); 1419 ret = -EINVAL; 1420 } 1421 goto out_unlock_bh; 1422 } 1423 1424 set_buffer_jbddirty(bh); 1425 1426 /* 1427 * Metadata already on the current transaction list doesn't 1428 * need to be filed. Metadata on another transaction's list must 1429 * be committing, and will be refiled once the commit completes: 1430 * leave it alone for now. 1431 */ 1432 if (jh->b_transaction != transaction) { 1433 JBUFFER_TRACE(jh, "already on other transaction"); 1434 if (unlikely(((jh->b_transaction != 1435 journal->j_committing_transaction)) || 1436 (jh->b_next_transaction != transaction))) { 1437 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1438 "bad jh for block %llu: " 1439 "transaction (%p, %u), " 1440 "jh->b_transaction (%p, %u), " 1441 "jh->b_next_transaction (%p, %u), jlist %u\n", 1442 journal->j_devname, 1443 (unsigned long long) bh->b_blocknr, 1444 transaction, transaction->t_tid, 1445 jh->b_transaction, 1446 jh->b_transaction ? 1447 jh->b_transaction->t_tid : 0, 1448 jh->b_next_transaction, 1449 jh->b_next_transaction ? 1450 jh->b_next_transaction->t_tid : 0, 1451 jh->b_jlist); 1452 WARN_ON(1); 1453 ret = -EINVAL; 1454 } 1455 /* And this case is illegal: we can't reuse another 1456 * transaction's data buffer, ever. */ 1457 goto out_unlock_bh; 1458 } 1459 1460 /* That test should have eliminated the following case: */ 1461 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1462 1463 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1464 spin_lock(&journal->j_list_lock); 1465 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1466 spin_unlock(&journal->j_list_lock); 1467 out_unlock_bh: 1468 jbd_unlock_bh_state(bh); 1469 out: 1470 JBUFFER_TRACE(jh, "exit"); 1471 return ret; 1472 } 1473 1474 /** 1475 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1476 * @handle: transaction handle 1477 * @bh: bh to 'forget' 1478 * 1479 * We can only do the bforget if there are no commits pending against the 1480 * buffer. If the buffer is dirty in the current running transaction we 1481 * can safely unlink it. 1482 * 1483 * bh may not be a journalled buffer at all - it may be a non-JBD 1484 * buffer which came off the hashtable. Check for this. 1485 * 1486 * Decrements bh->b_count by one. 1487 * 1488 * Allow this call even if the handle has aborted --- it may be part of 1489 * the caller's cleanup after an abort. 1490 */ 1491 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1492 { 1493 transaction_t *transaction = handle->h_transaction; 1494 journal_t *journal; 1495 struct journal_head *jh; 1496 int drop_reserve = 0; 1497 int err = 0; 1498 int was_modified = 0; 1499 1500 if (is_handle_aborted(handle)) 1501 return -EROFS; 1502 journal = transaction->t_journal; 1503 1504 BUFFER_TRACE(bh, "entry"); 1505 1506 jbd_lock_bh_state(bh); 1507 1508 if (!buffer_jbd(bh)) 1509 goto not_jbd; 1510 jh = bh2jh(bh); 1511 1512 /* Critical error: attempting to delete a bitmap buffer, maybe? 1513 * Don't do any jbd operations, and return an error. */ 1514 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1515 "inconsistent data on disk")) { 1516 err = -EIO; 1517 goto not_jbd; 1518 } 1519 1520 /* keep track of whether or not this transaction modified us */ 1521 was_modified = jh->b_modified; 1522 1523 /* 1524 * The buffer's going from the transaction, we must drop 1525 * all references -bzzz 1526 */ 1527 jh->b_modified = 0; 1528 1529 if (jh->b_transaction == transaction) { 1530 J_ASSERT_JH(jh, !jh->b_frozen_data); 1531 1532 /* If we are forgetting a buffer which is already part 1533 * of this transaction, then we can just drop it from 1534 * the transaction immediately. */ 1535 clear_buffer_dirty(bh); 1536 clear_buffer_jbddirty(bh); 1537 1538 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1539 1540 /* 1541 * we only want to drop a reference if this transaction 1542 * modified the buffer 1543 */ 1544 if (was_modified) 1545 drop_reserve = 1; 1546 1547 /* 1548 * We are no longer going to journal this buffer. 1549 * However, the commit of this transaction is still 1550 * important to the buffer: the delete that we are now 1551 * processing might obsolete an old log entry, so by 1552 * committing, we can satisfy the buffer's checkpoint. 1553 * 1554 * So, if we have a checkpoint on the buffer, we should 1555 * now refile the buffer on our BJ_Forget list so that 1556 * we know to remove the checkpoint after we commit. 1557 */ 1558 1559 spin_lock(&journal->j_list_lock); 1560 if (jh->b_cp_transaction) { 1561 __jbd2_journal_temp_unlink_buffer(jh); 1562 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1563 } else { 1564 __jbd2_journal_unfile_buffer(jh); 1565 if (!buffer_jbd(bh)) { 1566 spin_unlock(&journal->j_list_lock); 1567 jbd_unlock_bh_state(bh); 1568 __bforget(bh); 1569 goto drop; 1570 } 1571 } 1572 spin_unlock(&journal->j_list_lock); 1573 } else if (jh->b_transaction) { 1574 J_ASSERT_JH(jh, (jh->b_transaction == 1575 journal->j_committing_transaction)); 1576 /* However, if the buffer is still owned by a prior 1577 * (committing) transaction, we can't drop it yet... */ 1578 JBUFFER_TRACE(jh, "belongs to older transaction"); 1579 /* ... but we CAN drop it from the new transaction if we 1580 * have also modified it since the original commit. */ 1581 1582 if (jh->b_next_transaction) { 1583 J_ASSERT(jh->b_next_transaction == transaction); 1584 spin_lock(&journal->j_list_lock); 1585 jh->b_next_transaction = NULL; 1586 spin_unlock(&journal->j_list_lock); 1587 1588 /* 1589 * only drop a reference if this transaction modified 1590 * the buffer 1591 */ 1592 if (was_modified) 1593 drop_reserve = 1; 1594 } 1595 } 1596 1597 not_jbd: 1598 jbd_unlock_bh_state(bh); 1599 __brelse(bh); 1600 drop: 1601 if (drop_reserve) { 1602 /* no need to reserve log space for this block -bzzz */ 1603 handle->h_buffer_credits++; 1604 } 1605 return err; 1606 } 1607 1608 /** 1609 * int jbd2_journal_stop() - complete a transaction 1610 * @handle: transaction to complete. 1611 * 1612 * All done for a particular handle. 1613 * 1614 * There is not much action needed here. We just return any remaining 1615 * buffer credits to the transaction and remove the handle. The only 1616 * complication is that we need to start a commit operation if the 1617 * filesystem is marked for synchronous update. 1618 * 1619 * jbd2_journal_stop itself will not usually return an error, but it may 1620 * do so in unusual circumstances. In particular, expect it to 1621 * return -EIO if a jbd2_journal_abort has been executed since the 1622 * transaction began. 1623 */ 1624 int jbd2_journal_stop(handle_t *handle) 1625 { 1626 transaction_t *transaction = handle->h_transaction; 1627 journal_t *journal; 1628 int err = 0, wait_for_commit = 0; 1629 tid_t tid; 1630 pid_t pid; 1631 1632 if (!transaction) { 1633 /* 1634 * Handle is already detached from the transaction so 1635 * there is nothing to do other than decrease a refcount, 1636 * or free the handle if refcount drops to zero 1637 */ 1638 if (--handle->h_ref > 0) { 1639 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1640 handle->h_ref); 1641 return err; 1642 } else { 1643 if (handle->h_rsv_handle) 1644 jbd2_free_handle(handle->h_rsv_handle); 1645 goto free_and_exit; 1646 } 1647 } 1648 journal = transaction->t_journal; 1649 1650 J_ASSERT(journal_current_handle() == handle); 1651 1652 if (is_handle_aborted(handle)) 1653 err = -EIO; 1654 else 1655 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1656 1657 if (--handle->h_ref > 0) { 1658 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1659 handle->h_ref); 1660 return err; 1661 } 1662 1663 jbd_debug(4, "Handle %p going down\n", handle); 1664 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1665 transaction->t_tid, 1666 handle->h_type, handle->h_line_no, 1667 jiffies - handle->h_start_jiffies, 1668 handle->h_sync, handle->h_requested_credits, 1669 (handle->h_requested_credits - 1670 handle->h_buffer_credits)); 1671 1672 /* 1673 * Implement synchronous transaction batching. If the handle 1674 * was synchronous, don't force a commit immediately. Let's 1675 * yield and let another thread piggyback onto this 1676 * transaction. Keep doing that while new threads continue to 1677 * arrive. It doesn't cost much - we're about to run a commit 1678 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1679 * operations by 30x or more... 1680 * 1681 * We try and optimize the sleep time against what the 1682 * underlying disk can do, instead of having a static sleep 1683 * time. This is useful for the case where our storage is so 1684 * fast that it is more optimal to go ahead and force a flush 1685 * and wait for the transaction to be committed than it is to 1686 * wait for an arbitrary amount of time for new writers to 1687 * join the transaction. We achieve this by measuring how 1688 * long it takes to commit a transaction, and compare it with 1689 * how long this transaction has been running, and if run time 1690 * < commit time then we sleep for the delta and commit. This 1691 * greatly helps super fast disks that would see slowdowns as 1692 * more threads started doing fsyncs. 1693 * 1694 * But don't do this if this process was the most recent one 1695 * to perform a synchronous write. We do this to detect the 1696 * case where a single process is doing a stream of sync 1697 * writes. No point in waiting for joiners in that case. 1698 * 1699 * Setting max_batch_time to 0 disables this completely. 1700 */ 1701 pid = current->pid; 1702 if (handle->h_sync && journal->j_last_sync_writer != pid && 1703 journal->j_max_batch_time) { 1704 u64 commit_time, trans_time; 1705 1706 journal->j_last_sync_writer = pid; 1707 1708 read_lock(&journal->j_state_lock); 1709 commit_time = journal->j_average_commit_time; 1710 read_unlock(&journal->j_state_lock); 1711 1712 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1713 transaction->t_start_time)); 1714 1715 commit_time = max_t(u64, commit_time, 1716 1000*journal->j_min_batch_time); 1717 commit_time = min_t(u64, commit_time, 1718 1000*journal->j_max_batch_time); 1719 1720 if (trans_time < commit_time) { 1721 ktime_t expires = ktime_add_ns(ktime_get(), 1722 commit_time); 1723 set_current_state(TASK_UNINTERRUPTIBLE); 1724 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1725 } 1726 } 1727 1728 if (handle->h_sync) 1729 transaction->t_synchronous_commit = 1; 1730 current->journal_info = NULL; 1731 atomic_sub(handle->h_buffer_credits, 1732 &transaction->t_outstanding_credits); 1733 1734 /* 1735 * If the handle is marked SYNC, we need to set another commit 1736 * going! We also want to force a commit if the current 1737 * transaction is occupying too much of the log, or if the 1738 * transaction is too old now. 1739 */ 1740 if (handle->h_sync || 1741 (atomic_read(&transaction->t_outstanding_credits) > 1742 journal->j_max_transaction_buffers) || 1743 time_after_eq(jiffies, transaction->t_expires)) { 1744 /* Do this even for aborted journals: an abort still 1745 * completes the commit thread, it just doesn't write 1746 * anything to disk. */ 1747 1748 jbd_debug(2, "transaction too old, requesting commit for " 1749 "handle %p\n", handle); 1750 /* This is non-blocking */ 1751 jbd2_log_start_commit(journal, transaction->t_tid); 1752 1753 /* 1754 * Special case: JBD2_SYNC synchronous updates require us 1755 * to wait for the commit to complete. 1756 */ 1757 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1758 wait_for_commit = 1; 1759 } 1760 1761 /* 1762 * Once we drop t_updates, if it goes to zero the transaction 1763 * could start committing on us and eventually disappear. So 1764 * once we do this, we must not dereference transaction 1765 * pointer again. 1766 */ 1767 tid = transaction->t_tid; 1768 if (atomic_dec_and_test(&transaction->t_updates)) { 1769 wake_up(&journal->j_wait_updates); 1770 if (journal->j_barrier_count) 1771 wake_up(&journal->j_wait_transaction_locked); 1772 } 1773 1774 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1775 1776 if (wait_for_commit) 1777 err = jbd2_log_wait_commit(journal, tid); 1778 1779 if (handle->h_rsv_handle) 1780 jbd2_journal_free_reserved(handle->h_rsv_handle); 1781 free_and_exit: 1782 /* 1783 * Scope of the GFP_NOFS context is over here and so we can restore the 1784 * original alloc context. 1785 */ 1786 memalloc_nofs_restore(handle->saved_alloc_context); 1787 jbd2_free_handle(handle); 1788 return err; 1789 } 1790 1791 /* 1792 * 1793 * List management code snippets: various functions for manipulating the 1794 * transaction buffer lists. 1795 * 1796 */ 1797 1798 /* 1799 * Append a buffer to a transaction list, given the transaction's list head 1800 * pointer. 1801 * 1802 * j_list_lock is held. 1803 * 1804 * jbd_lock_bh_state(jh2bh(jh)) is held. 1805 */ 1806 1807 static inline void 1808 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1809 { 1810 if (!*list) { 1811 jh->b_tnext = jh->b_tprev = jh; 1812 *list = jh; 1813 } else { 1814 /* Insert at the tail of the list to preserve order */ 1815 struct journal_head *first = *list, *last = first->b_tprev; 1816 jh->b_tprev = last; 1817 jh->b_tnext = first; 1818 last->b_tnext = first->b_tprev = jh; 1819 } 1820 } 1821 1822 /* 1823 * Remove a buffer from a transaction list, given the transaction's list 1824 * head pointer. 1825 * 1826 * Called with j_list_lock held, and the journal may not be locked. 1827 * 1828 * jbd_lock_bh_state(jh2bh(jh)) is held. 1829 */ 1830 1831 static inline void 1832 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1833 { 1834 if (*list == jh) { 1835 *list = jh->b_tnext; 1836 if (*list == jh) 1837 *list = NULL; 1838 } 1839 jh->b_tprev->b_tnext = jh->b_tnext; 1840 jh->b_tnext->b_tprev = jh->b_tprev; 1841 } 1842 1843 /* 1844 * Remove a buffer from the appropriate transaction list. 1845 * 1846 * Note that this function can *change* the value of 1847 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1848 * t_reserved_list. If the caller is holding onto a copy of one of these 1849 * pointers, it could go bad. Generally the caller needs to re-read the 1850 * pointer from the transaction_t. 1851 * 1852 * Called under j_list_lock. 1853 */ 1854 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1855 { 1856 struct journal_head **list = NULL; 1857 transaction_t *transaction; 1858 struct buffer_head *bh = jh2bh(jh); 1859 1860 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1861 transaction = jh->b_transaction; 1862 if (transaction) 1863 assert_spin_locked(&transaction->t_journal->j_list_lock); 1864 1865 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1866 if (jh->b_jlist != BJ_None) 1867 J_ASSERT_JH(jh, transaction != NULL); 1868 1869 switch (jh->b_jlist) { 1870 case BJ_None: 1871 return; 1872 case BJ_Metadata: 1873 transaction->t_nr_buffers--; 1874 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1875 list = &transaction->t_buffers; 1876 break; 1877 case BJ_Forget: 1878 list = &transaction->t_forget; 1879 break; 1880 case BJ_Shadow: 1881 list = &transaction->t_shadow_list; 1882 break; 1883 case BJ_Reserved: 1884 list = &transaction->t_reserved_list; 1885 break; 1886 } 1887 1888 __blist_del_buffer(list, jh); 1889 jh->b_jlist = BJ_None; 1890 if (transaction && is_journal_aborted(transaction->t_journal)) 1891 clear_buffer_jbddirty(bh); 1892 else if (test_clear_buffer_jbddirty(bh)) 1893 mark_buffer_dirty(bh); /* Expose it to the VM */ 1894 } 1895 1896 /* 1897 * Remove buffer from all transactions. 1898 * 1899 * Called with bh_state lock and j_list_lock 1900 * 1901 * jh and bh may be already freed when this function returns. 1902 */ 1903 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1904 { 1905 __jbd2_journal_temp_unlink_buffer(jh); 1906 jh->b_transaction = NULL; 1907 jbd2_journal_put_journal_head(jh); 1908 } 1909 1910 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1911 { 1912 struct buffer_head *bh = jh2bh(jh); 1913 1914 /* Get reference so that buffer cannot be freed before we unlock it */ 1915 get_bh(bh); 1916 jbd_lock_bh_state(bh); 1917 spin_lock(&journal->j_list_lock); 1918 __jbd2_journal_unfile_buffer(jh); 1919 spin_unlock(&journal->j_list_lock); 1920 jbd_unlock_bh_state(bh); 1921 __brelse(bh); 1922 } 1923 1924 /* 1925 * Called from jbd2_journal_try_to_free_buffers(). 1926 * 1927 * Called under jbd_lock_bh_state(bh) 1928 */ 1929 static void 1930 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1931 { 1932 struct journal_head *jh; 1933 1934 jh = bh2jh(bh); 1935 1936 if (buffer_locked(bh) || buffer_dirty(bh)) 1937 goto out; 1938 1939 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1940 goto out; 1941 1942 spin_lock(&journal->j_list_lock); 1943 if (jh->b_cp_transaction != NULL) { 1944 /* written-back checkpointed metadata buffer */ 1945 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1946 __jbd2_journal_remove_checkpoint(jh); 1947 } 1948 spin_unlock(&journal->j_list_lock); 1949 out: 1950 return; 1951 } 1952 1953 /** 1954 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1955 * @journal: journal for operation 1956 * @page: to try and free 1957 * @gfp_mask: we use the mask to detect how hard should we try to release 1958 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1959 * code to release the buffers. 1960 * 1961 * 1962 * For all the buffers on this page, 1963 * if they are fully written out ordered data, move them onto BUF_CLEAN 1964 * so try_to_free_buffers() can reap them. 1965 * 1966 * This function returns non-zero if we wish try_to_free_buffers() 1967 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1968 * We also do it if the page has locked or dirty buffers and the caller wants 1969 * us to perform sync or async writeout. 1970 * 1971 * This complicates JBD locking somewhat. We aren't protected by the 1972 * BKL here. We wish to remove the buffer from its committing or 1973 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1974 * 1975 * This may *change* the value of transaction_t->t_datalist, so anyone 1976 * who looks at t_datalist needs to lock against this function. 1977 * 1978 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1979 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1980 * will come out of the lock with the buffer dirty, which makes it 1981 * ineligible for release here. 1982 * 1983 * Who else is affected by this? hmm... Really the only contender 1984 * is do_get_write_access() - it could be looking at the buffer while 1985 * journal_try_to_free_buffer() is changing its state. But that 1986 * cannot happen because we never reallocate freed data as metadata 1987 * while the data is part of a transaction. Yes? 1988 * 1989 * Return 0 on failure, 1 on success 1990 */ 1991 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1992 struct page *page, gfp_t gfp_mask) 1993 { 1994 struct buffer_head *head; 1995 struct buffer_head *bh; 1996 int ret = 0; 1997 1998 J_ASSERT(PageLocked(page)); 1999 2000 head = page_buffers(page); 2001 bh = head; 2002 do { 2003 struct journal_head *jh; 2004 2005 /* 2006 * We take our own ref against the journal_head here to avoid 2007 * having to add tons of locking around each instance of 2008 * jbd2_journal_put_journal_head(). 2009 */ 2010 jh = jbd2_journal_grab_journal_head(bh); 2011 if (!jh) 2012 continue; 2013 2014 jbd_lock_bh_state(bh); 2015 __journal_try_to_free_buffer(journal, bh); 2016 jbd2_journal_put_journal_head(jh); 2017 jbd_unlock_bh_state(bh); 2018 if (buffer_jbd(bh)) 2019 goto busy; 2020 } while ((bh = bh->b_this_page) != head); 2021 2022 ret = try_to_free_buffers(page); 2023 2024 busy: 2025 return ret; 2026 } 2027 2028 /* 2029 * This buffer is no longer needed. If it is on an older transaction's 2030 * checkpoint list we need to record it on this transaction's forget list 2031 * to pin this buffer (and hence its checkpointing transaction) down until 2032 * this transaction commits. If the buffer isn't on a checkpoint list, we 2033 * release it. 2034 * Returns non-zero if JBD no longer has an interest in the buffer. 2035 * 2036 * Called under j_list_lock. 2037 * 2038 * Called under jbd_lock_bh_state(bh). 2039 */ 2040 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2041 { 2042 int may_free = 1; 2043 struct buffer_head *bh = jh2bh(jh); 2044 2045 if (jh->b_cp_transaction) { 2046 JBUFFER_TRACE(jh, "on running+cp transaction"); 2047 __jbd2_journal_temp_unlink_buffer(jh); 2048 /* 2049 * We don't want to write the buffer anymore, clear the 2050 * bit so that we don't confuse checks in 2051 * __journal_file_buffer 2052 */ 2053 clear_buffer_dirty(bh); 2054 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2055 may_free = 0; 2056 } else { 2057 JBUFFER_TRACE(jh, "on running transaction"); 2058 __jbd2_journal_unfile_buffer(jh); 2059 } 2060 return may_free; 2061 } 2062 2063 /* 2064 * jbd2_journal_invalidatepage 2065 * 2066 * This code is tricky. It has a number of cases to deal with. 2067 * 2068 * There are two invariants which this code relies on: 2069 * 2070 * i_size must be updated on disk before we start calling invalidatepage on the 2071 * data. 2072 * 2073 * This is done in ext3 by defining an ext3_setattr method which 2074 * updates i_size before truncate gets going. By maintaining this 2075 * invariant, we can be sure that it is safe to throw away any buffers 2076 * attached to the current transaction: once the transaction commits, 2077 * we know that the data will not be needed. 2078 * 2079 * Note however that we can *not* throw away data belonging to the 2080 * previous, committing transaction! 2081 * 2082 * Any disk blocks which *are* part of the previous, committing 2083 * transaction (and which therefore cannot be discarded immediately) are 2084 * not going to be reused in the new running transaction 2085 * 2086 * The bitmap committed_data images guarantee this: any block which is 2087 * allocated in one transaction and removed in the next will be marked 2088 * as in-use in the committed_data bitmap, so cannot be reused until 2089 * the next transaction to delete the block commits. This means that 2090 * leaving committing buffers dirty is quite safe: the disk blocks 2091 * cannot be reallocated to a different file and so buffer aliasing is 2092 * not possible. 2093 * 2094 * 2095 * The above applies mainly to ordered data mode. In writeback mode we 2096 * don't make guarantees about the order in which data hits disk --- in 2097 * particular we don't guarantee that new dirty data is flushed before 2098 * transaction commit --- so it is always safe just to discard data 2099 * immediately in that mode. --sct 2100 */ 2101 2102 /* 2103 * The journal_unmap_buffer helper function returns zero if the buffer 2104 * concerned remains pinned as an anonymous buffer belonging to an older 2105 * transaction. 2106 * 2107 * We're outside-transaction here. Either or both of j_running_transaction 2108 * and j_committing_transaction may be NULL. 2109 */ 2110 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2111 int partial_page) 2112 { 2113 transaction_t *transaction; 2114 struct journal_head *jh; 2115 int may_free = 1; 2116 2117 BUFFER_TRACE(bh, "entry"); 2118 2119 /* 2120 * It is safe to proceed here without the j_list_lock because the 2121 * buffers cannot be stolen by try_to_free_buffers as long as we are 2122 * holding the page lock. --sct 2123 */ 2124 2125 if (!buffer_jbd(bh)) 2126 goto zap_buffer_unlocked; 2127 2128 /* OK, we have data buffer in journaled mode */ 2129 write_lock(&journal->j_state_lock); 2130 jbd_lock_bh_state(bh); 2131 spin_lock(&journal->j_list_lock); 2132 2133 jh = jbd2_journal_grab_journal_head(bh); 2134 if (!jh) 2135 goto zap_buffer_no_jh; 2136 2137 /* 2138 * We cannot remove the buffer from checkpoint lists until the 2139 * transaction adding inode to orphan list (let's call it T) 2140 * is committed. Otherwise if the transaction changing the 2141 * buffer would be cleaned from the journal before T is 2142 * committed, a crash will cause that the correct contents of 2143 * the buffer will be lost. On the other hand we have to 2144 * clear the buffer dirty bit at latest at the moment when the 2145 * transaction marking the buffer as freed in the filesystem 2146 * structures is committed because from that moment on the 2147 * block can be reallocated and used by a different page. 2148 * Since the block hasn't been freed yet but the inode has 2149 * already been added to orphan list, it is safe for us to add 2150 * the buffer to BJ_Forget list of the newest transaction. 2151 * 2152 * Also we have to clear buffer_mapped flag of a truncated buffer 2153 * because the buffer_head may be attached to the page straddling 2154 * i_size (can happen only when blocksize < pagesize) and thus the 2155 * buffer_head can be reused when the file is extended again. So we end 2156 * up keeping around invalidated buffers attached to transactions' 2157 * BJ_Forget list just to stop checkpointing code from cleaning up 2158 * the transaction this buffer was modified in. 2159 */ 2160 transaction = jh->b_transaction; 2161 if (transaction == NULL) { 2162 /* First case: not on any transaction. If it 2163 * has no checkpoint link, then we can zap it: 2164 * it's a writeback-mode buffer so we don't care 2165 * if it hits disk safely. */ 2166 if (!jh->b_cp_transaction) { 2167 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2168 goto zap_buffer; 2169 } 2170 2171 if (!buffer_dirty(bh)) { 2172 /* bdflush has written it. We can drop it now */ 2173 __jbd2_journal_remove_checkpoint(jh); 2174 goto zap_buffer; 2175 } 2176 2177 /* OK, it must be in the journal but still not 2178 * written fully to disk: it's metadata or 2179 * journaled data... */ 2180 2181 if (journal->j_running_transaction) { 2182 /* ... and once the current transaction has 2183 * committed, the buffer won't be needed any 2184 * longer. */ 2185 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2186 may_free = __dispose_buffer(jh, 2187 journal->j_running_transaction); 2188 goto zap_buffer; 2189 } else { 2190 /* There is no currently-running transaction. So the 2191 * orphan record which we wrote for this file must have 2192 * passed into commit. We must attach this buffer to 2193 * the committing transaction, if it exists. */ 2194 if (journal->j_committing_transaction) { 2195 JBUFFER_TRACE(jh, "give to committing trans"); 2196 may_free = __dispose_buffer(jh, 2197 journal->j_committing_transaction); 2198 goto zap_buffer; 2199 } else { 2200 /* The orphan record's transaction has 2201 * committed. We can cleanse this buffer */ 2202 clear_buffer_jbddirty(bh); 2203 __jbd2_journal_remove_checkpoint(jh); 2204 goto zap_buffer; 2205 } 2206 } 2207 } else if (transaction == journal->j_committing_transaction) { 2208 JBUFFER_TRACE(jh, "on committing transaction"); 2209 /* 2210 * The buffer is committing, we simply cannot touch 2211 * it. If the page is straddling i_size we have to wait 2212 * for commit and try again. 2213 */ 2214 if (partial_page) { 2215 jbd2_journal_put_journal_head(jh); 2216 spin_unlock(&journal->j_list_lock); 2217 jbd_unlock_bh_state(bh); 2218 write_unlock(&journal->j_state_lock); 2219 return -EBUSY; 2220 } 2221 /* 2222 * OK, buffer won't be reachable after truncate. We just set 2223 * j_next_transaction to the running transaction (if there is 2224 * one) and mark buffer as freed so that commit code knows it 2225 * should clear dirty bits when it is done with the buffer. 2226 */ 2227 set_buffer_freed(bh); 2228 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2229 jh->b_next_transaction = journal->j_running_transaction; 2230 jbd2_journal_put_journal_head(jh); 2231 spin_unlock(&journal->j_list_lock); 2232 jbd_unlock_bh_state(bh); 2233 write_unlock(&journal->j_state_lock); 2234 return 0; 2235 } else { 2236 /* Good, the buffer belongs to the running transaction. 2237 * We are writing our own transaction's data, not any 2238 * previous one's, so it is safe to throw it away 2239 * (remember that we expect the filesystem to have set 2240 * i_size already for this truncate so recovery will not 2241 * expose the disk blocks we are discarding here.) */ 2242 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2243 JBUFFER_TRACE(jh, "on running transaction"); 2244 may_free = __dispose_buffer(jh, transaction); 2245 } 2246 2247 zap_buffer: 2248 /* 2249 * This is tricky. Although the buffer is truncated, it may be reused 2250 * if blocksize < pagesize and it is attached to the page straddling 2251 * EOF. Since the buffer might have been added to BJ_Forget list of the 2252 * running transaction, journal_get_write_access() won't clear 2253 * b_modified and credit accounting gets confused. So clear b_modified 2254 * here. 2255 */ 2256 jh->b_modified = 0; 2257 jbd2_journal_put_journal_head(jh); 2258 zap_buffer_no_jh: 2259 spin_unlock(&journal->j_list_lock); 2260 jbd_unlock_bh_state(bh); 2261 write_unlock(&journal->j_state_lock); 2262 zap_buffer_unlocked: 2263 clear_buffer_dirty(bh); 2264 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2265 clear_buffer_mapped(bh); 2266 clear_buffer_req(bh); 2267 clear_buffer_new(bh); 2268 clear_buffer_delay(bh); 2269 clear_buffer_unwritten(bh); 2270 bh->b_bdev = NULL; 2271 return may_free; 2272 } 2273 2274 /** 2275 * void jbd2_journal_invalidatepage() 2276 * @journal: journal to use for flush... 2277 * @page: page to flush 2278 * @offset: start of the range to invalidate 2279 * @length: length of the range to invalidate 2280 * 2281 * Reap page buffers containing data after in the specified range in page. 2282 * Can return -EBUSY if buffers are part of the committing transaction and 2283 * the page is straddling i_size. Caller then has to wait for current commit 2284 * and try again. 2285 */ 2286 int jbd2_journal_invalidatepage(journal_t *journal, 2287 struct page *page, 2288 unsigned int offset, 2289 unsigned int length) 2290 { 2291 struct buffer_head *head, *bh, *next; 2292 unsigned int stop = offset + length; 2293 unsigned int curr_off = 0; 2294 int partial_page = (offset || length < PAGE_SIZE); 2295 int may_free = 1; 2296 int ret = 0; 2297 2298 if (!PageLocked(page)) 2299 BUG(); 2300 if (!page_has_buffers(page)) 2301 return 0; 2302 2303 BUG_ON(stop > PAGE_SIZE || stop < length); 2304 2305 /* We will potentially be playing with lists other than just the 2306 * data lists (especially for journaled data mode), so be 2307 * cautious in our locking. */ 2308 2309 head = bh = page_buffers(page); 2310 do { 2311 unsigned int next_off = curr_off + bh->b_size; 2312 next = bh->b_this_page; 2313 2314 if (next_off > stop) 2315 return 0; 2316 2317 if (offset <= curr_off) { 2318 /* This block is wholly outside the truncation point */ 2319 lock_buffer(bh); 2320 ret = journal_unmap_buffer(journal, bh, partial_page); 2321 unlock_buffer(bh); 2322 if (ret < 0) 2323 return ret; 2324 may_free &= ret; 2325 } 2326 curr_off = next_off; 2327 bh = next; 2328 2329 } while (bh != head); 2330 2331 if (!partial_page) { 2332 if (may_free && try_to_free_buffers(page)) 2333 J_ASSERT(!page_has_buffers(page)); 2334 } 2335 return 0; 2336 } 2337 2338 /* 2339 * File a buffer on the given transaction list. 2340 */ 2341 void __jbd2_journal_file_buffer(struct journal_head *jh, 2342 transaction_t *transaction, int jlist) 2343 { 2344 struct journal_head **list = NULL; 2345 int was_dirty = 0; 2346 struct buffer_head *bh = jh2bh(jh); 2347 2348 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2349 assert_spin_locked(&transaction->t_journal->j_list_lock); 2350 2351 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2352 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2353 jh->b_transaction == NULL); 2354 2355 if (jh->b_transaction && jh->b_jlist == jlist) 2356 return; 2357 2358 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2359 jlist == BJ_Shadow || jlist == BJ_Forget) { 2360 /* 2361 * For metadata buffers, we track dirty bit in buffer_jbddirty 2362 * instead of buffer_dirty. We should not see a dirty bit set 2363 * here because we clear it in do_get_write_access but e.g. 2364 * tune2fs can modify the sb and set the dirty bit at any time 2365 * so we try to gracefully handle that. 2366 */ 2367 if (buffer_dirty(bh)) 2368 warn_dirty_buffer(bh); 2369 if (test_clear_buffer_dirty(bh) || 2370 test_clear_buffer_jbddirty(bh)) 2371 was_dirty = 1; 2372 } 2373 2374 if (jh->b_transaction) 2375 __jbd2_journal_temp_unlink_buffer(jh); 2376 else 2377 jbd2_journal_grab_journal_head(bh); 2378 jh->b_transaction = transaction; 2379 2380 switch (jlist) { 2381 case BJ_None: 2382 J_ASSERT_JH(jh, !jh->b_committed_data); 2383 J_ASSERT_JH(jh, !jh->b_frozen_data); 2384 return; 2385 case BJ_Metadata: 2386 transaction->t_nr_buffers++; 2387 list = &transaction->t_buffers; 2388 break; 2389 case BJ_Forget: 2390 list = &transaction->t_forget; 2391 break; 2392 case BJ_Shadow: 2393 list = &transaction->t_shadow_list; 2394 break; 2395 case BJ_Reserved: 2396 list = &transaction->t_reserved_list; 2397 break; 2398 } 2399 2400 __blist_add_buffer(list, jh); 2401 jh->b_jlist = jlist; 2402 2403 if (was_dirty) 2404 set_buffer_jbddirty(bh); 2405 } 2406 2407 void jbd2_journal_file_buffer(struct journal_head *jh, 2408 transaction_t *transaction, int jlist) 2409 { 2410 jbd_lock_bh_state(jh2bh(jh)); 2411 spin_lock(&transaction->t_journal->j_list_lock); 2412 __jbd2_journal_file_buffer(jh, transaction, jlist); 2413 spin_unlock(&transaction->t_journal->j_list_lock); 2414 jbd_unlock_bh_state(jh2bh(jh)); 2415 } 2416 2417 /* 2418 * Remove a buffer from its current buffer list in preparation for 2419 * dropping it from its current transaction entirely. If the buffer has 2420 * already started to be used by a subsequent transaction, refile the 2421 * buffer on that transaction's metadata list. 2422 * 2423 * Called under j_list_lock 2424 * Called under jbd_lock_bh_state(jh2bh(jh)) 2425 * 2426 * jh and bh may be already free when this function returns 2427 */ 2428 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2429 { 2430 int was_dirty, jlist; 2431 struct buffer_head *bh = jh2bh(jh); 2432 2433 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2434 if (jh->b_transaction) 2435 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2436 2437 /* If the buffer is now unused, just drop it. */ 2438 if (jh->b_next_transaction == NULL) { 2439 __jbd2_journal_unfile_buffer(jh); 2440 return; 2441 } 2442 2443 /* 2444 * It has been modified by a later transaction: add it to the new 2445 * transaction's metadata list. 2446 */ 2447 2448 was_dirty = test_clear_buffer_jbddirty(bh); 2449 __jbd2_journal_temp_unlink_buffer(jh); 2450 /* 2451 * We set b_transaction here because b_next_transaction will inherit 2452 * our jh reference and thus __jbd2_journal_file_buffer() must not 2453 * take a new one. 2454 */ 2455 jh->b_transaction = jh->b_next_transaction; 2456 jh->b_next_transaction = NULL; 2457 if (buffer_freed(bh)) 2458 jlist = BJ_Forget; 2459 else if (jh->b_modified) 2460 jlist = BJ_Metadata; 2461 else 2462 jlist = BJ_Reserved; 2463 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2464 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2465 2466 if (was_dirty) 2467 set_buffer_jbddirty(bh); 2468 } 2469 2470 /* 2471 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2472 * bh reference so that we can safely unlock bh. 2473 * 2474 * The jh and bh may be freed by this call. 2475 */ 2476 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2477 { 2478 struct buffer_head *bh = jh2bh(jh); 2479 2480 /* Get reference so that buffer cannot be freed before we unlock it */ 2481 get_bh(bh); 2482 jbd_lock_bh_state(bh); 2483 spin_lock(&journal->j_list_lock); 2484 __jbd2_journal_refile_buffer(jh); 2485 jbd_unlock_bh_state(bh); 2486 spin_unlock(&journal->j_list_lock); 2487 __brelse(bh); 2488 } 2489 2490 /* 2491 * File inode in the inode list of the handle's transaction 2492 */ 2493 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2494 unsigned long flags) 2495 { 2496 transaction_t *transaction = handle->h_transaction; 2497 journal_t *journal; 2498 2499 if (is_handle_aborted(handle)) 2500 return -EROFS; 2501 journal = transaction->t_journal; 2502 2503 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2504 transaction->t_tid); 2505 2506 /* 2507 * First check whether inode isn't already on the transaction's 2508 * lists without taking the lock. Note that this check is safe 2509 * without the lock as we cannot race with somebody removing inode 2510 * from the transaction. The reason is that we remove inode from the 2511 * transaction only in journal_release_jbd_inode() and when we commit 2512 * the transaction. We are guarded from the first case by holding 2513 * a reference to the inode. We are safe against the second case 2514 * because if jinode->i_transaction == transaction, commit code 2515 * cannot touch the transaction because we hold reference to it, 2516 * and if jinode->i_next_transaction == transaction, commit code 2517 * will only file the inode where we want it. 2518 */ 2519 if ((jinode->i_transaction == transaction || 2520 jinode->i_next_transaction == transaction) && 2521 (jinode->i_flags & flags) == flags) 2522 return 0; 2523 2524 spin_lock(&journal->j_list_lock); 2525 jinode->i_flags |= flags; 2526 /* Is inode already attached where we need it? */ 2527 if (jinode->i_transaction == transaction || 2528 jinode->i_next_transaction == transaction) 2529 goto done; 2530 2531 /* 2532 * We only ever set this variable to 1 so the test is safe. Since 2533 * t_need_data_flush is likely to be set, we do the test to save some 2534 * cacheline bouncing 2535 */ 2536 if (!transaction->t_need_data_flush) 2537 transaction->t_need_data_flush = 1; 2538 /* On some different transaction's list - should be 2539 * the committing one */ 2540 if (jinode->i_transaction) { 2541 J_ASSERT(jinode->i_next_transaction == NULL); 2542 J_ASSERT(jinode->i_transaction == 2543 journal->j_committing_transaction); 2544 jinode->i_next_transaction = transaction; 2545 goto done; 2546 } 2547 /* Not on any transaction list... */ 2548 J_ASSERT(!jinode->i_next_transaction); 2549 jinode->i_transaction = transaction; 2550 list_add(&jinode->i_list, &transaction->t_inode_list); 2551 done: 2552 spin_unlock(&journal->j_list_lock); 2553 2554 return 0; 2555 } 2556 2557 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2558 { 2559 return jbd2_journal_file_inode(handle, jinode, 2560 JI_WRITE_DATA | JI_WAIT_DATA); 2561 } 2562 2563 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2564 { 2565 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2566 } 2567 2568 /* 2569 * File truncate and transaction commit interact with each other in a 2570 * non-trivial way. If a transaction writing data block A is 2571 * committing, we cannot discard the data by truncate until we have 2572 * written them. Otherwise if we crashed after the transaction with 2573 * write has committed but before the transaction with truncate has 2574 * committed, we could see stale data in block A. This function is a 2575 * helper to solve this problem. It starts writeout of the truncated 2576 * part in case it is in the committing transaction. 2577 * 2578 * Filesystem code must call this function when inode is journaled in 2579 * ordered mode before truncation happens and after the inode has been 2580 * placed on orphan list with the new inode size. The second condition 2581 * avoids the race that someone writes new data and we start 2582 * committing the transaction after this function has been called but 2583 * before a transaction for truncate is started (and furthermore it 2584 * allows us to optimize the case where the addition to orphan list 2585 * happens in the same transaction as write --- we don't have to write 2586 * any data in such case). 2587 */ 2588 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2589 struct jbd2_inode *jinode, 2590 loff_t new_size) 2591 { 2592 transaction_t *inode_trans, *commit_trans; 2593 int ret = 0; 2594 2595 /* This is a quick check to avoid locking if not necessary */ 2596 if (!jinode->i_transaction) 2597 goto out; 2598 /* Locks are here just to force reading of recent values, it is 2599 * enough that the transaction was not committing before we started 2600 * a transaction adding the inode to orphan list */ 2601 read_lock(&journal->j_state_lock); 2602 commit_trans = journal->j_committing_transaction; 2603 read_unlock(&journal->j_state_lock); 2604 spin_lock(&journal->j_list_lock); 2605 inode_trans = jinode->i_transaction; 2606 spin_unlock(&journal->j_list_lock); 2607 if (inode_trans == commit_trans) { 2608 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2609 new_size, LLONG_MAX); 2610 if (ret) 2611 jbd2_journal_abort(journal, ret); 2612 } 2613 out: 2614 return ret; 2615 } 2616