xref: /openbmc/linux/fs/jbd2/transaction.c (revision 96de2506)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (transaction_cache)
46 		return 0;
47 	return -ENOMEM;
48 }
49 
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 	kmem_cache_destroy(transaction_cache);
53 	transaction_cache = NULL;
54 }
55 
56 void jbd2_journal_free_transaction(transaction_t *transaction)
57 {
58 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
59 		return;
60 	kmem_cache_free(transaction_cache, transaction);
61 }
62 
63 /*
64  * jbd2_get_transaction: obtain a new transaction_t object.
65  *
66  * Simply allocate and initialise a new transaction.  Create it in
67  * RUNNING state and add it to the current journal (which should not
68  * have an existing running transaction: we only make a new transaction
69  * once we have started to commit the old one).
70  *
71  * Preconditions:
72  *	The journal MUST be locked.  We don't perform atomic mallocs on the
73  *	new transaction	and we can't block without protecting against other
74  *	processes trying to touch the journal while it is in transition.
75  *
76  */
77 
78 static transaction_t *
79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
80 {
81 	transaction->t_journal = journal;
82 	transaction->t_state = T_RUNNING;
83 	transaction->t_start_time = ktime_get();
84 	transaction->t_tid = journal->j_transaction_sequence++;
85 	transaction->t_expires = jiffies + journal->j_commit_interval;
86 	spin_lock_init(&transaction->t_handle_lock);
87 	atomic_set(&transaction->t_updates, 0);
88 	atomic_set(&transaction->t_outstanding_credits,
89 		   atomic_read(&journal->j_reserved_credits));
90 	atomic_set(&transaction->t_handle_count, 0);
91 	INIT_LIST_HEAD(&transaction->t_inode_list);
92 	INIT_LIST_HEAD(&transaction->t_private_list);
93 
94 	/* Set up the commit timer for the new transaction. */
95 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
96 	add_timer(&journal->j_commit_timer);
97 
98 	J_ASSERT(journal->j_running_transaction == NULL);
99 	journal->j_running_transaction = transaction;
100 	transaction->t_max_wait = 0;
101 	transaction->t_start = jiffies;
102 	transaction->t_requested = 0;
103 
104 	return transaction;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * Wait until running transaction passes T_LOCKED state. Also starts the commit
142  * if needed. The function expects running transaction to exist and releases
143  * j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146 	__releases(journal->j_state_lock)
147 {
148 	DEFINE_WAIT(wait);
149 	int need_to_start;
150 	tid_t tid = journal->j_running_transaction->t_tid;
151 
152 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153 			TASK_UNINTERRUPTIBLE);
154 	need_to_start = !tid_geq(journal->j_commit_request, tid);
155 	read_unlock(&journal->j_state_lock);
156 	if (need_to_start)
157 		jbd2_log_start_commit(journal, tid);
158 	jbd2_might_wait_for_commit(journal);
159 	schedule();
160 	finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162 
163 static void sub_reserved_credits(journal_t *journal, int blocks)
164 {
165 	atomic_sub(blocks, &journal->j_reserved_credits);
166 	wake_up(&journal->j_wait_reserved);
167 }
168 
169 /*
170  * Wait until we can add credits for handle to the running transaction.  Called
171  * with j_state_lock held for reading. Returns 0 if handle joined the running
172  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
173  * caller must retry.
174  */
175 static int add_transaction_credits(journal_t *journal, int blocks,
176 				   int rsv_blocks)
177 {
178 	transaction_t *t = journal->j_running_transaction;
179 	int needed;
180 	int total = blocks + rsv_blocks;
181 
182 	/*
183 	 * If the current transaction is locked down for commit, wait
184 	 * for the lock to be released.
185 	 */
186 	if (t->t_state == T_LOCKED) {
187 		wait_transaction_locked(journal);
188 		return 1;
189 	}
190 
191 	/*
192 	 * If there is not enough space left in the log to write all
193 	 * potential buffers requested by this operation, we need to
194 	 * stall pending a log checkpoint to free some more log space.
195 	 */
196 	needed = atomic_add_return(total, &t->t_outstanding_credits);
197 	if (needed > journal->j_max_transaction_buffers) {
198 		/*
199 		 * If the current transaction is already too large,
200 		 * then start to commit it: we can then go back and
201 		 * attach this handle to a new transaction.
202 		 */
203 		atomic_sub(total, &t->t_outstanding_credits);
204 
205 		/*
206 		 * Is the number of reserved credits in the current transaction too
207 		 * big to fit this handle? Wait until reserved credits are freed.
208 		 */
209 		if (atomic_read(&journal->j_reserved_credits) + total >
210 		    journal->j_max_transaction_buffers) {
211 			read_unlock(&journal->j_state_lock);
212 			jbd2_might_wait_for_commit(journal);
213 			wait_event(journal->j_wait_reserved,
214 				   atomic_read(&journal->j_reserved_credits) + total <=
215 				   journal->j_max_transaction_buffers);
216 			return 1;
217 		}
218 
219 		wait_transaction_locked(journal);
220 		return 1;
221 	}
222 
223 	/*
224 	 * The commit code assumes that it can get enough log space
225 	 * without forcing a checkpoint.  This is *critical* for
226 	 * correctness: a checkpoint of a buffer which is also
227 	 * associated with a committing transaction creates a deadlock,
228 	 * so commit simply cannot force through checkpoints.
229 	 *
230 	 * We must therefore ensure the necessary space in the journal
231 	 * *before* starting to dirty potentially checkpointed buffers
232 	 * in the new transaction.
233 	 */
234 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
235 		atomic_sub(total, &t->t_outstanding_credits);
236 		read_unlock(&journal->j_state_lock);
237 		jbd2_might_wait_for_commit(journal);
238 		write_lock(&journal->j_state_lock);
239 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
240 			__jbd2_log_wait_for_space(journal);
241 		write_unlock(&journal->j_state_lock);
242 		return 1;
243 	}
244 
245 	/* No reservation? We are done... */
246 	if (!rsv_blocks)
247 		return 0;
248 
249 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
250 	/* We allow at most half of a transaction to be reserved */
251 	if (needed > journal->j_max_transaction_buffers / 2) {
252 		sub_reserved_credits(journal, rsv_blocks);
253 		atomic_sub(total, &t->t_outstanding_credits);
254 		read_unlock(&journal->j_state_lock);
255 		jbd2_might_wait_for_commit(journal);
256 		wait_event(journal->j_wait_reserved,
257 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 			 <= journal->j_max_transaction_buffers / 2);
259 		return 1;
260 	}
261 	return 0;
262 }
263 
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270 
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 			     gfp_t gfp_mask)
273 {
274 	transaction_t	*transaction, *new_transaction = NULL;
275 	int		blocks = handle->h_buffer_credits;
276 	int		rsv_blocks = 0;
277 	unsigned long ts = jiffies;
278 
279 	if (handle->h_rsv_handle)
280 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281 
282 	/*
283 	 * Limit the number of reserved credits to 1/2 of maximum transaction
284 	 * size and limit the number of total credits to not exceed maximum
285 	 * transaction size per operation.
286 	 */
287 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 		printk(KERN_ERR "JBD2: %s wants too many credits "
290 		       "credits:%d rsv_credits:%d max:%d\n",
291 		       current->comm, blocks, rsv_blocks,
292 		       journal->j_max_transaction_buffers);
293 		WARN_ON(1);
294 		return -ENOSPC;
295 	}
296 
297 alloc_transaction:
298 	if (!journal->j_running_transaction) {
299 		/*
300 		 * If __GFP_FS is not present, then we may be being called from
301 		 * inside the fs writeback layer, so we MUST NOT fail.
302 		 */
303 		if ((gfp_mask & __GFP_FS) == 0)
304 			gfp_mask |= __GFP_NOFAIL;
305 		new_transaction = kmem_cache_zalloc(transaction_cache,
306 						    gfp_mask);
307 		if (!new_transaction)
308 			return -ENOMEM;
309 	}
310 
311 	jbd_debug(3, "New handle %p going live.\n", handle);
312 
313 	/*
314 	 * We need to hold j_state_lock until t_updates has been incremented,
315 	 * for proper journal barrier handling
316 	 */
317 repeat:
318 	read_lock(&journal->j_state_lock);
319 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 	if (is_journal_aborted(journal) ||
321 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 		read_unlock(&journal->j_state_lock);
323 		jbd2_journal_free_transaction(new_transaction);
324 		return -EROFS;
325 	}
326 
327 	/*
328 	 * Wait on the journal's transaction barrier if necessary. Specifically
329 	 * we allow reserved handles to proceed because otherwise commit could
330 	 * deadlock on page writeback not being able to complete.
331 	 */
332 	if (!handle->h_reserved && journal->j_barrier_count) {
333 		read_unlock(&journal->j_state_lock);
334 		wait_event(journal->j_wait_transaction_locked,
335 				journal->j_barrier_count == 0);
336 		goto repeat;
337 	}
338 
339 	if (!journal->j_running_transaction) {
340 		read_unlock(&journal->j_state_lock);
341 		if (!new_transaction)
342 			goto alloc_transaction;
343 		write_lock(&journal->j_state_lock);
344 		if (!journal->j_running_transaction &&
345 		    (handle->h_reserved || !journal->j_barrier_count)) {
346 			jbd2_get_transaction(journal, new_transaction);
347 			new_transaction = NULL;
348 		}
349 		write_unlock(&journal->j_state_lock);
350 		goto repeat;
351 	}
352 
353 	transaction = journal->j_running_transaction;
354 
355 	if (!handle->h_reserved) {
356 		/* We may have dropped j_state_lock - restart in that case */
357 		if (add_transaction_credits(journal, blocks, rsv_blocks))
358 			goto repeat;
359 	} else {
360 		/*
361 		 * We have handle reserved so we are allowed to join T_LOCKED
362 		 * transaction and we don't have to check for transaction size
363 		 * and journal space.
364 		 */
365 		sub_reserved_credits(journal, blocks);
366 		handle->h_reserved = 0;
367 	}
368 
369 	/* OK, account for the buffers that this operation expects to
370 	 * use and add the handle to the running transaction.
371 	 */
372 	update_t_max_wait(transaction, ts);
373 	handle->h_transaction = transaction;
374 	handle->h_requested_credits = blocks;
375 	handle->h_start_jiffies = jiffies;
376 	atomic_inc(&transaction->t_updates);
377 	atomic_inc(&transaction->t_handle_count);
378 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 		  handle, blocks,
380 		  atomic_read(&transaction->t_outstanding_credits),
381 		  jbd2_log_space_left(journal));
382 	read_unlock(&journal->j_state_lock);
383 	current->journal_info = handle;
384 
385 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
386 	jbd2_journal_free_transaction(new_transaction);
387 	/*
388 	 * Ensure that no allocations done while the transaction is open are
389 	 * going to recurse back to the fs layer.
390 	 */
391 	handle->saved_alloc_context = memalloc_nofs_save();
392 	return 0;
393 }
394 
395 /* Allocate a new handle.  This should probably be in a slab... */
396 static handle_t *new_handle(int nblocks)
397 {
398 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
399 	if (!handle)
400 		return NULL;
401 	handle->h_buffer_credits = nblocks;
402 	handle->h_ref = 1;
403 
404 	return handle;
405 }
406 
407 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
408 			      gfp_t gfp_mask, unsigned int type,
409 			      unsigned int line_no)
410 {
411 	handle_t *handle = journal_current_handle();
412 	int err;
413 
414 	if (!journal)
415 		return ERR_PTR(-EROFS);
416 
417 	if (handle) {
418 		J_ASSERT(handle->h_transaction->t_journal == journal);
419 		handle->h_ref++;
420 		return handle;
421 	}
422 
423 	handle = new_handle(nblocks);
424 	if (!handle)
425 		return ERR_PTR(-ENOMEM);
426 	if (rsv_blocks) {
427 		handle_t *rsv_handle;
428 
429 		rsv_handle = new_handle(rsv_blocks);
430 		if (!rsv_handle) {
431 			jbd2_free_handle(handle);
432 			return ERR_PTR(-ENOMEM);
433 		}
434 		rsv_handle->h_reserved = 1;
435 		rsv_handle->h_journal = journal;
436 		handle->h_rsv_handle = rsv_handle;
437 	}
438 
439 	err = start_this_handle(journal, handle, gfp_mask);
440 	if (err < 0) {
441 		if (handle->h_rsv_handle)
442 			jbd2_free_handle(handle->h_rsv_handle);
443 		jbd2_free_handle(handle);
444 		return ERR_PTR(err);
445 	}
446 	handle->h_type = type;
447 	handle->h_line_no = line_no;
448 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
449 				handle->h_transaction->t_tid, type,
450 				line_no, nblocks);
451 
452 	return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455 
456 
457 /**
458  * handle_t *jbd2_journal_start() - Obtain a new handle.
459  * @journal: Journal to start transaction on.
460  * @nblocks: number of block buffer we might modify
461  *
462  * We make sure that the transaction can guarantee at least nblocks of
463  * modified buffers in the log.  We block until the log can guarantee
464  * that much space. Additionally, if rsv_blocks > 0, we also create another
465  * handle with rsv_blocks reserved blocks in the journal. This handle is
466  * is stored in h_rsv_handle. It is not attached to any particular transaction
467  * and thus doesn't block transaction commit. If the caller uses this reserved
468  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
469  * on the parent handle will dispose the reserved one. Reserved handle has to
470  * be converted to a normal handle using jbd2_journal_start_reserved() before
471  * it can be used.
472  *
473  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
474  * on failure.
475  */
476 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
477 {
478 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
479 }
480 EXPORT_SYMBOL(jbd2_journal_start);
481 
482 void jbd2_journal_free_reserved(handle_t *handle)
483 {
484 	journal_t *journal = handle->h_journal;
485 
486 	WARN_ON(!handle->h_reserved);
487 	sub_reserved_credits(journal, handle->h_buffer_credits);
488 	jbd2_free_handle(handle);
489 }
490 EXPORT_SYMBOL(jbd2_journal_free_reserved);
491 
492 /**
493  * int jbd2_journal_start_reserved() - start reserved handle
494  * @handle: handle to start
495  * @type: for handle statistics
496  * @line_no: for handle statistics
497  *
498  * Start handle that has been previously reserved with jbd2_journal_reserve().
499  * This attaches @handle to the running transaction (or creates one if there's
500  * not transaction running). Unlike jbd2_journal_start() this function cannot
501  * block on journal commit, checkpointing, or similar stuff. It can block on
502  * memory allocation or frozen journal though.
503  *
504  * Return 0 on success, non-zero on error - handle is freed in that case.
505  */
506 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
507 				unsigned int line_no)
508 {
509 	journal_t *journal = handle->h_journal;
510 	int ret = -EIO;
511 
512 	if (WARN_ON(!handle->h_reserved)) {
513 		/* Someone passed in normal handle? Just stop it. */
514 		jbd2_journal_stop(handle);
515 		return ret;
516 	}
517 	/*
518 	 * Usefulness of mixing of reserved and unreserved handles is
519 	 * questionable. So far nobody seems to need it so just error out.
520 	 */
521 	if (WARN_ON(current->journal_info)) {
522 		jbd2_journal_free_reserved(handle);
523 		return ret;
524 	}
525 
526 	handle->h_journal = NULL;
527 	/*
528 	 * GFP_NOFS is here because callers are likely from writeback or
529 	 * similarly constrained call sites
530 	 */
531 	ret = start_this_handle(journal, handle, GFP_NOFS);
532 	if (ret < 0) {
533 		handle->h_journal = journal;
534 		jbd2_journal_free_reserved(handle);
535 		return ret;
536 	}
537 	handle->h_type = type;
538 	handle->h_line_no = line_no;
539 	return 0;
540 }
541 EXPORT_SYMBOL(jbd2_journal_start_reserved);
542 
543 /**
544  * int jbd2_journal_extend() - extend buffer credits.
545  * @handle:  handle to 'extend'
546  * @nblocks: nr blocks to try to extend by.
547  *
548  * Some transactions, such as large extends and truncates, can be done
549  * atomically all at once or in several stages.  The operation requests
550  * a credit for a number of buffer modifications in advance, but can
551  * extend its credit if it needs more.
552  *
553  * jbd2_journal_extend tries to give the running handle more buffer credits.
554  * It does not guarantee that allocation - this is a best-effort only.
555  * The calling process MUST be able to deal cleanly with a failure to
556  * extend here.
557  *
558  * Return 0 on success, non-zero on failure.
559  *
560  * return code < 0 implies an error
561  * return code > 0 implies normal transaction-full status.
562  */
563 int jbd2_journal_extend(handle_t *handle, int nblocks)
564 {
565 	transaction_t *transaction = handle->h_transaction;
566 	journal_t *journal;
567 	int result;
568 	int wanted;
569 
570 	if (is_handle_aborted(handle))
571 		return -EROFS;
572 	journal = transaction->t_journal;
573 
574 	result = 1;
575 
576 	read_lock(&journal->j_state_lock);
577 
578 	/* Don't extend a locked-down transaction! */
579 	if (transaction->t_state != T_RUNNING) {
580 		jbd_debug(3, "denied handle %p %d blocks: "
581 			  "transaction not running\n", handle, nblocks);
582 		goto error_out;
583 	}
584 
585 	spin_lock(&transaction->t_handle_lock);
586 	wanted = atomic_add_return(nblocks,
587 				   &transaction->t_outstanding_credits);
588 
589 	if (wanted > journal->j_max_transaction_buffers) {
590 		jbd_debug(3, "denied handle %p %d blocks: "
591 			  "transaction too large\n", handle, nblocks);
592 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
593 		goto unlock;
594 	}
595 
596 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
597 	    jbd2_log_space_left(journal)) {
598 		jbd_debug(3, "denied handle %p %d blocks: "
599 			  "insufficient log space\n", handle, nblocks);
600 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
601 		goto unlock;
602 	}
603 
604 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
605 				 transaction->t_tid,
606 				 handle->h_type, handle->h_line_no,
607 				 handle->h_buffer_credits,
608 				 nblocks);
609 
610 	handle->h_buffer_credits += nblocks;
611 	handle->h_requested_credits += nblocks;
612 	result = 0;
613 
614 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
615 unlock:
616 	spin_unlock(&transaction->t_handle_lock);
617 error_out:
618 	read_unlock(&journal->j_state_lock);
619 	return result;
620 }
621 
622 
623 /**
624  * int jbd2_journal_restart() - restart a handle .
625  * @handle:  handle to restart
626  * @nblocks: nr credits requested
627  * @gfp_mask: memory allocation flags (for start_this_handle)
628  *
629  * Restart a handle for a multi-transaction filesystem
630  * operation.
631  *
632  * If the jbd2_journal_extend() call above fails to grant new buffer credits
633  * to a running handle, a call to jbd2_journal_restart will commit the
634  * handle's transaction so far and reattach the handle to a new
635  * transaction capable of guaranteeing the requested number of
636  * credits. We preserve reserved handle if there's any attached to the
637  * passed in handle.
638  */
639 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
640 {
641 	transaction_t *transaction = handle->h_transaction;
642 	journal_t *journal;
643 	tid_t		tid;
644 	int		need_to_start, ret;
645 
646 	/* If we've had an abort of any type, don't even think about
647 	 * actually doing the restart! */
648 	if (is_handle_aborted(handle))
649 		return 0;
650 	journal = transaction->t_journal;
651 
652 	/*
653 	 * First unlink the handle from its current transaction, and start the
654 	 * commit on that.
655 	 */
656 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
657 	J_ASSERT(journal_current_handle() == handle);
658 
659 	read_lock(&journal->j_state_lock);
660 	spin_lock(&transaction->t_handle_lock);
661 	atomic_sub(handle->h_buffer_credits,
662 		   &transaction->t_outstanding_credits);
663 	if (handle->h_rsv_handle) {
664 		sub_reserved_credits(journal,
665 				     handle->h_rsv_handle->h_buffer_credits);
666 	}
667 	if (atomic_dec_and_test(&transaction->t_updates))
668 		wake_up(&journal->j_wait_updates);
669 	tid = transaction->t_tid;
670 	spin_unlock(&transaction->t_handle_lock);
671 	handle->h_transaction = NULL;
672 	current->journal_info = NULL;
673 
674 	jbd_debug(2, "restarting handle %p\n", handle);
675 	need_to_start = !tid_geq(journal->j_commit_request, tid);
676 	read_unlock(&journal->j_state_lock);
677 	if (need_to_start)
678 		jbd2_log_start_commit(journal, tid);
679 
680 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
681 	handle->h_buffer_credits = nblocks;
682 	/*
683 	 * Restore the original nofs context because the journal restart
684 	 * is basically the same thing as journal stop and start.
685 	 * start_this_handle will start a new nofs context.
686 	 */
687 	memalloc_nofs_restore(handle->saved_alloc_context);
688 	ret = start_this_handle(journal, handle, gfp_mask);
689 	return ret;
690 }
691 EXPORT_SYMBOL(jbd2__journal_restart);
692 
693 
694 int jbd2_journal_restart(handle_t *handle, int nblocks)
695 {
696 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
697 }
698 EXPORT_SYMBOL(jbd2_journal_restart);
699 
700 /**
701  * void jbd2_journal_lock_updates () - establish a transaction barrier.
702  * @journal:  Journal to establish a barrier on.
703  *
704  * This locks out any further updates from being started, and blocks
705  * until all existing updates have completed, returning only once the
706  * journal is in a quiescent state with no updates running.
707  *
708  * The journal lock should not be held on entry.
709  */
710 void jbd2_journal_lock_updates(journal_t *journal)
711 {
712 	DEFINE_WAIT(wait);
713 
714 	jbd2_might_wait_for_commit(journal);
715 
716 	write_lock(&journal->j_state_lock);
717 	++journal->j_barrier_count;
718 
719 	/* Wait until there are no reserved handles */
720 	if (atomic_read(&journal->j_reserved_credits)) {
721 		write_unlock(&journal->j_state_lock);
722 		wait_event(journal->j_wait_reserved,
723 			   atomic_read(&journal->j_reserved_credits) == 0);
724 		write_lock(&journal->j_state_lock);
725 	}
726 
727 	/* Wait until there are no running updates */
728 	while (1) {
729 		transaction_t *transaction = journal->j_running_transaction;
730 
731 		if (!transaction)
732 			break;
733 
734 		spin_lock(&transaction->t_handle_lock);
735 		prepare_to_wait(&journal->j_wait_updates, &wait,
736 				TASK_UNINTERRUPTIBLE);
737 		if (!atomic_read(&transaction->t_updates)) {
738 			spin_unlock(&transaction->t_handle_lock);
739 			finish_wait(&journal->j_wait_updates, &wait);
740 			break;
741 		}
742 		spin_unlock(&transaction->t_handle_lock);
743 		write_unlock(&journal->j_state_lock);
744 		schedule();
745 		finish_wait(&journal->j_wait_updates, &wait);
746 		write_lock(&journal->j_state_lock);
747 	}
748 	write_unlock(&journal->j_state_lock);
749 
750 	/*
751 	 * We have now established a barrier against other normal updates, but
752 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
753 	 * to make sure that we serialise special journal-locked operations
754 	 * too.
755 	 */
756 	mutex_lock(&journal->j_barrier);
757 }
758 
759 /**
760  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
761  * @journal:  Journal to release the barrier on.
762  *
763  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
764  *
765  * Should be called without the journal lock held.
766  */
767 void jbd2_journal_unlock_updates (journal_t *journal)
768 {
769 	J_ASSERT(journal->j_barrier_count != 0);
770 
771 	mutex_unlock(&journal->j_barrier);
772 	write_lock(&journal->j_state_lock);
773 	--journal->j_barrier_count;
774 	write_unlock(&journal->j_state_lock);
775 	wake_up(&journal->j_wait_transaction_locked);
776 }
777 
778 static void warn_dirty_buffer(struct buffer_head *bh)
779 {
780 	printk(KERN_WARNING
781 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
782 	       "There's a risk of filesystem corruption in case of system "
783 	       "crash.\n",
784 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
785 }
786 
787 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
788 static void jbd2_freeze_jh_data(struct journal_head *jh)
789 {
790 	struct page *page;
791 	int offset;
792 	char *source;
793 	struct buffer_head *bh = jh2bh(jh);
794 
795 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
796 	page = bh->b_page;
797 	offset = offset_in_page(bh->b_data);
798 	source = kmap_atomic(page);
799 	/* Fire data frozen trigger just before we copy the data */
800 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
801 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
802 	kunmap_atomic(source);
803 
804 	/*
805 	 * Now that the frozen data is saved off, we need to store any matching
806 	 * triggers.
807 	 */
808 	jh->b_frozen_triggers = jh->b_triggers;
809 }
810 
811 /*
812  * If the buffer is already part of the current transaction, then there
813  * is nothing we need to do.  If it is already part of a prior
814  * transaction which we are still committing to disk, then we need to
815  * make sure that we do not overwrite the old copy: we do copy-out to
816  * preserve the copy going to disk.  We also account the buffer against
817  * the handle's metadata buffer credits (unless the buffer is already
818  * part of the transaction, that is).
819  *
820  */
821 static int
822 do_get_write_access(handle_t *handle, struct journal_head *jh,
823 			int force_copy)
824 {
825 	struct buffer_head *bh;
826 	transaction_t *transaction = handle->h_transaction;
827 	journal_t *journal;
828 	int error;
829 	char *frozen_buffer = NULL;
830 	unsigned long start_lock, time_lock;
831 
832 	if (is_handle_aborted(handle))
833 		return -EROFS;
834 	journal = transaction->t_journal;
835 
836 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
837 
838 	JBUFFER_TRACE(jh, "entry");
839 repeat:
840 	bh = jh2bh(jh);
841 
842 	/* @@@ Need to check for errors here at some point. */
843 
844  	start_lock = jiffies;
845 	lock_buffer(bh);
846 	jbd_lock_bh_state(bh);
847 
848 	/* If it takes too long to lock the buffer, trace it */
849 	time_lock = jbd2_time_diff(start_lock, jiffies);
850 	if (time_lock > HZ/10)
851 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
852 			jiffies_to_msecs(time_lock));
853 
854 	/* We now hold the buffer lock so it is safe to query the buffer
855 	 * state.  Is the buffer dirty?
856 	 *
857 	 * If so, there are two possibilities.  The buffer may be
858 	 * non-journaled, and undergoing a quite legitimate writeback.
859 	 * Otherwise, it is journaled, and we don't expect dirty buffers
860 	 * in that state (the buffers should be marked JBD_Dirty
861 	 * instead.)  So either the IO is being done under our own
862 	 * control and this is a bug, or it's a third party IO such as
863 	 * dump(8) (which may leave the buffer scheduled for read ---
864 	 * ie. locked but not dirty) or tune2fs (which may actually have
865 	 * the buffer dirtied, ugh.)  */
866 
867 	if (buffer_dirty(bh)) {
868 		/*
869 		 * First question: is this buffer already part of the current
870 		 * transaction or the existing committing transaction?
871 		 */
872 		if (jh->b_transaction) {
873 			J_ASSERT_JH(jh,
874 				jh->b_transaction == transaction ||
875 				jh->b_transaction ==
876 					journal->j_committing_transaction);
877 			if (jh->b_next_transaction)
878 				J_ASSERT_JH(jh, jh->b_next_transaction ==
879 							transaction);
880 			warn_dirty_buffer(bh);
881 		}
882 		/*
883 		 * In any case we need to clean the dirty flag and we must
884 		 * do it under the buffer lock to be sure we don't race
885 		 * with running write-out.
886 		 */
887 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
888 		clear_buffer_dirty(bh);
889 		set_buffer_jbddirty(bh);
890 	}
891 
892 	unlock_buffer(bh);
893 
894 	error = -EROFS;
895 	if (is_handle_aborted(handle)) {
896 		jbd_unlock_bh_state(bh);
897 		goto out;
898 	}
899 	error = 0;
900 
901 	/*
902 	 * The buffer is already part of this transaction if b_transaction or
903 	 * b_next_transaction points to it
904 	 */
905 	if (jh->b_transaction == transaction ||
906 	    jh->b_next_transaction == transaction)
907 		goto done;
908 
909 	/*
910 	 * this is the first time this transaction is touching this buffer,
911 	 * reset the modified flag
912 	 */
913        jh->b_modified = 0;
914 
915 	/*
916 	 * If the buffer is not journaled right now, we need to make sure it
917 	 * doesn't get written to disk before the caller actually commits the
918 	 * new data
919 	 */
920 	if (!jh->b_transaction) {
921 		JBUFFER_TRACE(jh, "no transaction");
922 		J_ASSERT_JH(jh, !jh->b_next_transaction);
923 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
924 		/*
925 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
926 		 * visible before attaching it to the running transaction.
927 		 * Paired with barrier in jbd2_write_access_granted()
928 		 */
929 		smp_wmb();
930 		spin_lock(&journal->j_list_lock);
931 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
932 		spin_unlock(&journal->j_list_lock);
933 		goto done;
934 	}
935 	/*
936 	 * If there is already a copy-out version of this buffer, then we don't
937 	 * need to make another one
938 	 */
939 	if (jh->b_frozen_data) {
940 		JBUFFER_TRACE(jh, "has frozen data");
941 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942 		goto attach_next;
943 	}
944 
945 	JBUFFER_TRACE(jh, "owned by older transaction");
946 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
948 
949 	/*
950 	 * There is one case we have to be very careful about.  If the
951 	 * committing transaction is currently writing this buffer out to disk
952 	 * and has NOT made a copy-out, then we cannot modify the buffer
953 	 * contents at all right now.  The essence of copy-out is that it is
954 	 * the extra copy, not the primary copy, which gets journaled.  If the
955 	 * primary copy is already going to disk then we cannot do copy-out
956 	 * here.
957 	 */
958 	if (buffer_shadow(bh)) {
959 		JBUFFER_TRACE(jh, "on shadow: sleep");
960 		jbd_unlock_bh_state(bh);
961 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
962 		goto repeat;
963 	}
964 
965 	/*
966 	 * Only do the copy if the currently-owning transaction still needs it.
967 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
968 	 * past that stage (here we use the fact that BH_Shadow is set under
969 	 * bh_state lock together with refiling to BJ_Shadow list and at this
970 	 * point we know the buffer doesn't have BH_Shadow set).
971 	 *
972 	 * Subtle point, though: if this is a get_undo_access, then we will be
973 	 * relying on the frozen_data to contain the new value of the
974 	 * committed_data record after the transaction, so we HAVE to force the
975 	 * frozen_data copy in that case.
976 	 */
977 	if (jh->b_jlist == BJ_Metadata || force_copy) {
978 		JBUFFER_TRACE(jh, "generate frozen data");
979 		if (!frozen_buffer) {
980 			JBUFFER_TRACE(jh, "allocate memory for buffer");
981 			jbd_unlock_bh_state(bh);
982 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
983 						   GFP_NOFS | __GFP_NOFAIL);
984 			goto repeat;
985 		}
986 		jh->b_frozen_data = frozen_buffer;
987 		frozen_buffer = NULL;
988 		jbd2_freeze_jh_data(jh);
989 	}
990 attach_next:
991 	/*
992 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
993 	 * before attaching it to the running transaction. Paired with barrier
994 	 * in jbd2_write_access_granted()
995 	 */
996 	smp_wmb();
997 	jh->b_next_transaction = transaction;
998 
999 done:
1000 	jbd_unlock_bh_state(bh);
1001 
1002 	/*
1003 	 * If we are about to journal a buffer, then any revoke pending on it is
1004 	 * no longer valid
1005 	 */
1006 	jbd2_journal_cancel_revoke(handle, jh);
1007 
1008 out:
1009 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1010 		jbd2_free(frozen_buffer, bh->b_size);
1011 
1012 	JBUFFER_TRACE(jh, "exit");
1013 	return error;
1014 }
1015 
1016 /* Fast check whether buffer is already attached to the required transaction */
1017 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1018 							bool undo)
1019 {
1020 	struct journal_head *jh;
1021 	bool ret = false;
1022 
1023 	/* Dirty buffers require special handling... */
1024 	if (buffer_dirty(bh))
1025 		return false;
1026 
1027 	/*
1028 	 * RCU protects us from dereferencing freed pages. So the checks we do
1029 	 * are guaranteed not to oops. However the jh slab object can get freed
1030 	 * & reallocated while we work with it. So we have to be careful. When
1031 	 * we see jh attached to the running transaction, we know it must stay
1032 	 * so until the transaction is committed. Thus jh won't be freed and
1033 	 * will be attached to the same bh while we run.  However it can
1034 	 * happen jh gets freed, reallocated, and attached to the transaction
1035 	 * just after we get pointer to it from bh. So we have to be careful
1036 	 * and recheck jh still belongs to our bh before we return success.
1037 	 */
1038 	rcu_read_lock();
1039 	if (!buffer_jbd(bh))
1040 		goto out;
1041 	/* This should be bh2jh() but that doesn't work with inline functions */
1042 	jh = READ_ONCE(bh->b_private);
1043 	if (!jh)
1044 		goto out;
1045 	/* For undo access buffer must have data copied */
1046 	if (undo && !jh->b_committed_data)
1047 		goto out;
1048 	if (jh->b_transaction != handle->h_transaction &&
1049 	    jh->b_next_transaction != handle->h_transaction)
1050 		goto out;
1051 	/*
1052 	 * There are two reasons for the barrier here:
1053 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1054 	 * detect when jh went through free, realloc, attach to transaction
1055 	 * while we were checking. Paired with implicit barrier in that path.
1056 	 * 2) So that access to bh done after jbd2_write_access_granted()
1057 	 * doesn't get reordered and see inconsistent state of concurrent
1058 	 * do_get_write_access().
1059 	 */
1060 	smp_mb();
1061 	if (unlikely(jh->b_bh != bh))
1062 		goto out;
1063 	ret = true;
1064 out:
1065 	rcu_read_unlock();
1066 	return ret;
1067 }
1068 
1069 /**
1070  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1071  * @handle: transaction to add buffer modifications to
1072  * @bh:     bh to be used for metadata writes
1073  *
1074  * Returns: error code or 0 on success.
1075  *
1076  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1077  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1078  */
1079 
1080 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1081 {
1082 	struct journal_head *jh;
1083 	int rc;
1084 
1085 	if (jbd2_write_access_granted(handle, bh, false))
1086 		return 0;
1087 
1088 	jh = jbd2_journal_add_journal_head(bh);
1089 	/* We do not want to get caught playing with fields which the
1090 	 * log thread also manipulates.  Make sure that the buffer
1091 	 * completes any outstanding IO before proceeding. */
1092 	rc = do_get_write_access(handle, jh, 0);
1093 	jbd2_journal_put_journal_head(jh);
1094 	return rc;
1095 }
1096 
1097 
1098 /*
1099  * When the user wants to journal a newly created buffer_head
1100  * (ie. getblk() returned a new buffer and we are going to populate it
1101  * manually rather than reading off disk), then we need to keep the
1102  * buffer_head locked until it has been completely filled with new
1103  * data.  In this case, we should be able to make the assertion that
1104  * the bh is not already part of an existing transaction.
1105  *
1106  * The buffer should already be locked by the caller by this point.
1107  * There is no lock ranking violation: it was a newly created,
1108  * unlocked buffer beforehand. */
1109 
1110 /**
1111  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1112  * @handle: transaction to new buffer to
1113  * @bh: new buffer.
1114  *
1115  * Call this if you create a new bh.
1116  */
1117 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1118 {
1119 	transaction_t *transaction = handle->h_transaction;
1120 	journal_t *journal;
1121 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1122 	int err;
1123 
1124 	jbd_debug(5, "journal_head %p\n", jh);
1125 	err = -EROFS;
1126 	if (is_handle_aborted(handle))
1127 		goto out;
1128 	journal = transaction->t_journal;
1129 	err = 0;
1130 
1131 	JBUFFER_TRACE(jh, "entry");
1132 	/*
1133 	 * The buffer may already belong to this transaction due to pre-zeroing
1134 	 * in the filesystem's new_block code.  It may also be on the previous,
1135 	 * committing transaction's lists, but it HAS to be in Forget state in
1136 	 * that case: the transaction must have deleted the buffer for it to be
1137 	 * reused here.
1138 	 */
1139 	jbd_lock_bh_state(bh);
1140 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1141 		jh->b_transaction == NULL ||
1142 		(jh->b_transaction == journal->j_committing_transaction &&
1143 			  jh->b_jlist == BJ_Forget)));
1144 
1145 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1146 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1147 
1148 	if (jh->b_transaction == NULL) {
1149 		/*
1150 		 * Previous jbd2_journal_forget() could have left the buffer
1151 		 * with jbddirty bit set because it was being committed. When
1152 		 * the commit finished, we've filed the buffer for
1153 		 * checkpointing and marked it dirty. Now we are reallocating
1154 		 * the buffer so the transaction freeing it must have
1155 		 * committed and so it's safe to clear the dirty bit.
1156 		 */
1157 		clear_buffer_dirty(jh2bh(jh));
1158 		/* first access by this transaction */
1159 		jh->b_modified = 0;
1160 
1161 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1162 		spin_lock(&journal->j_list_lock);
1163 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1164 		spin_unlock(&journal->j_list_lock);
1165 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1166 		/* first access by this transaction */
1167 		jh->b_modified = 0;
1168 
1169 		JBUFFER_TRACE(jh, "set next transaction");
1170 		spin_lock(&journal->j_list_lock);
1171 		jh->b_next_transaction = transaction;
1172 		spin_unlock(&journal->j_list_lock);
1173 	}
1174 	jbd_unlock_bh_state(bh);
1175 
1176 	/*
1177 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1178 	 * blocks which contain freed but then revoked metadata.  We need
1179 	 * to cancel the revoke in case we end up freeing it yet again
1180 	 * and the reallocating as data - this would cause a second revoke,
1181 	 * which hits an assertion error.
1182 	 */
1183 	JBUFFER_TRACE(jh, "cancelling revoke");
1184 	jbd2_journal_cancel_revoke(handle, jh);
1185 out:
1186 	jbd2_journal_put_journal_head(jh);
1187 	return err;
1188 }
1189 
1190 /**
1191  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1192  *     non-rewindable consequences
1193  * @handle: transaction
1194  * @bh: buffer to undo
1195  *
1196  * Sometimes there is a need to distinguish between metadata which has
1197  * been committed to disk and that which has not.  The ext3fs code uses
1198  * this for freeing and allocating space, we have to make sure that we
1199  * do not reuse freed space until the deallocation has been committed,
1200  * since if we overwrote that space we would make the delete
1201  * un-rewindable in case of a crash.
1202  *
1203  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1204  * buffer for parts of non-rewindable operations such as delete
1205  * operations on the bitmaps.  The journaling code must keep a copy of
1206  * the buffer's contents prior to the undo_access call until such time
1207  * as we know that the buffer has definitely been committed to disk.
1208  *
1209  * We never need to know which transaction the committed data is part
1210  * of, buffers touched here are guaranteed to be dirtied later and so
1211  * will be committed to a new transaction in due course, at which point
1212  * we can discard the old committed data pointer.
1213  *
1214  * Returns error number or 0 on success.
1215  */
1216 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1217 {
1218 	int err;
1219 	struct journal_head *jh;
1220 	char *committed_data = NULL;
1221 
1222 	JBUFFER_TRACE(jh, "entry");
1223 	if (jbd2_write_access_granted(handle, bh, true))
1224 		return 0;
1225 
1226 	jh = jbd2_journal_add_journal_head(bh);
1227 	/*
1228 	 * Do this first --- it can drop the journal lock, so we want to
1229 	 * make sure that obtaining the committed_data is done
1230 	 * atomically wrt. completion of any outstanding commits.
1231 	 */
1232 	err = do_get_write_access(handle, jh, 1);
1233 	if (err)
1234 		goto out;
1235 
1236 repeat:
1237 	if (!jh->b_committed_data)
1238 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1239 					    GFP_NOFS|__GFP_NOFAIL);
1240 
1241 	jbd_lock_bh_state(bh);
1242 	if (!jh->b_committed_data) {
1243 		/* Copy out the current buffer contents into the
1244 		 * preserved, committed copy. */
1245 		JBUFFER_TRACE(jh, "generate b_committed data");
1246 		if (!committed_data) {
1247 			jbd_unlock_bh_state(bh);
1248 			goto repeat;
1249 		}
1250 
1251 		jh->b_committed_data = committed_data;
1252 		committed_data = NULL;
1253 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1254 	}
1255 	jbd_unlock_bh_state(bh);
1256 out:
1257 	jbd2_journal_put_journal_head(jh);
1258 	if (unlikely(committed_data))
1259 		jbd2_free(committed_data, bh->b_size);
1260 	return err;
1261 }
1262 
1263 /**
1264  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1265  * @bh: buffer to trigger on
1266  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1267  *
1268  * Set any triggers on this journal_head.  This is always safe, because
1269  * triggers for a committing buffer will be saved off, and triggers for
1270  * a running transaction will match the buffer in that transaction.
1271  *
1272  * Call with NULL to clear the triggers.
1273  */
1274 void jbd2_journal_set_triggers(struct buffer_head *bh,
1275 			       struct jbd2_buffer_trigger_type *type)
1276 {
1277 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1278 
1279 	if (WARN_ON(!jh))
1280 		return;
1281 	jh->b_triggers = type;
1282 	jbd2_journal_put_journal_head(jh);
1283 }
1284 
1285 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1286 				struct jbd2_buffer_trigger_type *triggers)
1287 {
1288 	struct buffer_head *bh = jh2bh(jh);
1289 
1290 	if (!triggers || !triggers->t_frozen)
1291 		return;
1292 
1293 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1294 }
1295 
1296 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1297 			       struct jbd2_buffer_trigger_type *triggers)
1298 {
1299 	if (!triggers || !triggers->t_abort)
1300 		return;
1301 
1302 	triggers->t_abort(triggers, jh2bh(jh));
1303 }
1304 
1305 /**
1306  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1307  * @handle: transaction to add buffer to.
1308  * @bh: buffer to mark
1309  *
1310  * mark dirty metadata which needs to be journaled as part of the current
1311  * transaction.
1312  *
1313  * The buffer must have previously had jbd2_journal_get_write_access()
1314  * called so that it has a valid journal_head attached to the buffer
1315  * head.
1316  *
1317  * The buffer is placed on the transaction's metadata list and is marked
1318  * as belonging to the transaction.
1319  *
1320  * Returns error number or 0 on success.
1321  *
1322  * Special care needs to be taken if the buffer already belongs to the
1323  * current committing transaction (in which case we should have frozen
1324  * data present for that commit).  In that case, we don't relink the
1325  * buffer: that only gets done when the old transaction finally
1326  * completes its commit.
1327  */
1328 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1329 {
1330 	transaction_t *transaction = handle->h_transaction;
1331 	journal_t *journal;
1332 	struct journal_head *jh;
1333 	int ret = 0;
1334 
1335 	if (is_handle_aborted(handle))
1336 		return -EROFS;
1337 	if (!buffer_jbd(bh)) {
1338 		ret = -EUCLEAN;
1339 		goto out;
1340 	}
1341 	/*
1342 	 * We don't grab jh reference here since the buffer must be part
1343 	 * of the running transaction.
1344 	 */
1345 	jh = bh2jh(bh);
1346 	/*
1347 	 * This and the following assertions are unreliable since we may see jh
1348 	 * in inconsistent state unless we grab bh_state lock. But this is
1349 	 * crucial to catch bugs so let's do a reliable check until the
1350 	 * lockless handling is fully proven.
1351 	 */
1352 	if (jh->b_transaction != transaction &&
1353 	    jh->b_next_transaction != transaction) {
1354 		jbd_lock_bh_state(bh);
1355 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1356 				jh->b_next_transaction == transaction);
1357 		jbd_unlock_bh_state(bh);
1358 	}
1359 	if (jh->b_modified == 1) {
1360 		/* If it's in our transaction it must be in BJ_Metadata list. */
1361 		if (jh->b_transaction == transaction &&
1362 		    jh->b_jlist != BJ_Metadata) {
1363 			jbd_lock_bh_state(bh);
1364 			if (jh->b_transaction == transaction &&
1365 			    jh->b_jlist != BJ_Metadata)
1366 				pr_err("JBD2: assertion failure: h_type=%u "
1367 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1368 				       handle->h_type, handle->h_line_no,
1369 				       (unsigned long long) bh->b_blocknr,
1370 				       jh->b_jlist);
1371 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1372 					jh->b_jlist == BJ_Metadata);
1373 			jbd_unlock_bh_state(bh);
1374 		}
1375 		goto out;
1376 	}
1377 
1378 	journal = transaction->t_journal;
1379 	jbd_debug(5, "journal_head %p\n", jh);
1380 	JBUFFER_TRACE(jh, "entry");
1381 
1382 	jbd_lock_bh_state(bh);
1383 
1384 	if (jh->b_modified == 0) {
1385 		/*
1386 		 * This buffer's got modified and becoming part
1387 		 * of the transaction. This needs to be done
1388 		 * once a transaction -bzzz
1389 		 */
1390 		if (handle->h_buffer_credits <= 0) {
1391 			ret = -ENOSPC;
1392 			goto out_unlock_bh;
1393 		}
1394 		jh->b_modified = 1;
1395 		handle->h_buffer_credits--;
1396 	}
1397 
1398 	/*
1399 	 * fastpath, to avoid expensive locking.  If this buffer is already
1400 	 * on the running transaction's metadata list there is nothing to do.
1401 	 * Nobody can take it off again because there is a handle open.
1402 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1403 	 * result in this test being false, so we go in and take the locks.
1404 	 */
1405 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1406 		JBUFFER_TRACE(jh, "fastpath");
1407 		if (unlikely(jh->b_transaction !=
1408 			     journal->j_running_transaction)) {
1409 			printk(KERN_ERR "JBD2: %s: "
1410 			       "jh->b_transaction (%llu, %p, %u) != "
1411 			       "journal->j_running_transaction (%p, %u)\n",
1412 			       journal->j_devname,
1413 			       (unsigned long long) bh->b_blocknr,
1414 			       jh->b_transaction,
1415 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1416 			       journal->j_running_transaction,
1417 			       journal->j_running_transaction ?
1418 			       journal->j_running_transaction->t_tid : 0);
1419 			ret = -EINVAL;
1420 		}
1421 		goto out_unlock_bh;
1422 	}
1423 
1424 	set_buffer_jbddirty(bh);
1425 
1426 	/*
1427 	 * Metadata already on the current transaction list doesn't
1428 	 * need to be filed.  Metadata on another transaction's list must
1429 	 * be committing, and will be refiled once the commit completes:
1430 	 * leave it alone for now.
1431 	 */
1432 	if (jh->b_transaction != transaction) {
1433 		JBUFFER_TRACE(jh, "already on other transaction");
1434 		if (unlikely(((jh->b_transaction !=
1435 			       journal->j_committing_transaction)) ||
1436 			     (jh->b_next_transaction != transaction))) {
1437 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1438 			       "bad jh for block %llu: "
1439 			       "transaction (%p, %u), "
1440 			       "jh->b_transaction (%p, %u), "
1441 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1442 			       journal->j_devname,
1443 			       (unsigned long long) bh->b_blocknr,
1444 			       transaction, transaction->t_tid,
1445 			       jh->b_transaction,
1446 			       jh->b_transaction ?
1447 			       jh->b_transaction->t_tid : 0,
1448 			       jh->b_next_transaction,
1449 			       jh->b_next_transaction ?
1450 			       jh->b_next_transaction->t_tid : 0,
1451 			       jh->b_jlist);
1452 			WARN_ON(1);
1453 			ret = -EINVAL;
1454 		}
1455 		/* And this case is illegal: we can't reuse another
1456 		 * transaction's data buffer, ever. */
1457 		goto out_unlock_bh;
1458 	}
1459 
1460 	/* That test should have eliminated the following case: */
1461 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1462 
1463 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1464 	spin_lock(&journal->j_list_lock);
1465 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1466 	spin_unlock(&journal->j_list_lock);
1467 out_unlock_bh:
1468 	jbd_unlock_bh_state(bh);
1469 out:
1470 	JBUFFER_TRACE(jh, "exit");
1471 	return ret;
1472 }
1473 
1474 /**
1475  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1476  * @handle: transaction handle
1477  * @bh:     bh to 'forget'
1478  *
1479  * We can only do the bforget if there are no commits pending against the
1480  * buffer.  If the buffer is dirty in the current running transaction we
1481  * can safely unlink it.
1482  *
1483  * bh may not be a journalled buffer at all - it may be a non-JBD
1484  * buffer which came off the hashtable.  Check for this.
1485  *
1486  * Decrements bh->b_count by one.
1487  *
1488  * Allow this call even if the handle has aborted --- it may be part of
1489  * the caller's cleanup after an abort.
1490  */
1491 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1492 {
1493 	transaction_t *transaction = handle->h_transaction;
1494 	journal_t *journal;
1495 	struct journal_head *jh;
1496 	int drop_reserve = 0;
1497 	int err = 0;
1498 	int was_modified = 0;
1499 
1500 	if (is_handle_aborted(handle))
1501 		return -EROFS;
1502 	journal = transaction->t_journal;
1503 
1504 	BUFFER_TRACE(bh, "entry");
1505 
1506 	jbd_lock_bh_state(bh);
1507 
1508 	if (!buffer_jbd(bh))
1509 		goto not_jbd;
1510 	jh = bh2jh(bh);
1511 
1512 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1513 	 * Don't do any jbd operations, and return an error. */
1514 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1515 			 "inconsistent data on disk")) {
1516 		err = -EIO;
1517 		goto not_jbd;
1518 	}
1519 
1520 	/* keep track of whether or not this transaction modified us */
1521 	was_modified = jh->b_modified;
1522 
1523 	/*
1524 	 * The buffer's going from the transaction, we must drop
1525 	 * all references -bzzz
1526 	 */
1527 	jh->b_modified = 0;
1528 
1529 	if (jh->b_transaction == transaction) {
1530 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1531 
1532 		/* If we are forgetting a buffer which is already part
1533 		 * of this transaction, then we can just drop it from
1534 		 * the transaction immediately. */
1535 		clear_buffer_dirty(bh);
1536 		clear_buffer_jbddirty(bh);
1537 
1538 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1539 
1540 		/*
1541 		 * we only want to drop a reference if this transaction
1542 		 * modified the buffer
1543 		 */
1544 		if (was_modified)
1545 			drop_reserve = 1;
1546 
1547 		/*
1548 		 * We are no longer going to journal this buffer.
1549 		 * However, the commit of this transaction is still
1550 		 * important to the buffer: the delete that we are now
1551 		 * processing might obsolete an old log entry, so by
1552 		 * committing, we can satisfy the buffer's checkpoint.
1553 		 *
1554 		 * So, if we have a checkpoint on the buffer, we should
1555 		 * now refile the buffer on our BJ_Forget list so that
1556 		 * we know to remove the checkpoint after we commit.
1557 		 */
1558 
1559 		spin_lock(&journal->j_list_lock);
1560 		if (jh->b_cp_transaction) {
1561 			__jbd2_journal_temp_unlink_buffer(jh);
1562 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1563 		} else {
1564 			__jbd2_journal_unfile_buffer(jh);
1565 			if (!buffer_jbd(bh)) {
1566 				spin_unlock(&journal->j_list_lock);
1567 				jbd_unlock_bh_state(bh);
1568 				__bforget(bh);
1569 				goto drop;
1570 			}
1571 		}
1572 		spin_unlock(&journal->j_list_lock);
1573 	} else if (jh->b_transaction) {
1574 		J_ASSERT_JH(jh, (jh->b_transaction ==
1575 				 journal->j_committing_transaction));
1576 		/* However, if the buffer is still owned by a prior
1577 		 * (committing) transaction, we can't drop it yet... */
1578 		JBUFFER_TRACE(jh, "belongs to older transaction");
1579 		/* ... but we CAN drop it from the new transaction if we
1580 		 * have also modified it since the original commit. */
1581 
1582 		if (jh->b_next_transaction) {
1583 			J_ASSERT(jh->b_next_transaction == transaction);
1584 			spin_lock(&journal->j_list_lock);
1585 			jh->b_next_transaction = NULL;
1586 			spin_unlock(&journal->j_list_lock);
1587 
1588 			/*
1589 			 * only drop a reference if this transaction modified
1590 			 * the buffer
1591 			 */
1592 			if (was_modified)
1593 				drop_reserve = 1;
1594 		}
1595 	}
1596 
1597 not_jbd:
1598 	jbd_unlock_bh_state(bh);
1599 	__brelse(bh);
1600 drop:
1601 	if (drop_reserve) {
1602 		/* no need to reserve log space for this block -bzzz */
1603 		handle->h_buffer_credits++;
1604 	}
1605 	return err;
1606 }
1607 
1608 /**
1609  * int jbd2_journal_stop() - complete a transaction
1610  * @handle: transaction to complete.
1611  *
1612  * All done for a particular handle.
1613  *
1614  * There is not much action needed here.  We just return any remaining
1615  * buffer credits to the transaction and remove the handle.  The only
1616  * complication is that we need to start a commit operation if the
1617  * filesystem is marked for synchronous update.
1618  *
1619  * jbd2_journal_stop itself will not usually return an error, but it may
1620  * do so in unusual circumstances.  In particular, expect it to
1621  * return -EIO if a jbd2_journal_abort has been executed since the
1622  * transaction began.
1623  */
1624 int jbd2_journal_stop(handle_t *handle)
1625 {
1626 	transaction_t *transaction = handle->h_transaction;
1627 	journal_t *journal;
1628 	int err = 0, wait_for_commit = 0;
1629 	tid_t tid;
1630 	pid_t pid;
1631 
1632 	if (!transaction) {
1633 		/*
1634 		 * Handle is already detached from the transaction so
1635 		 * there is nothing to do other than decrease a refcount,
1636 		 * or free the handle if refcount drops to zero
1637 		 */
1638 		if (--handle->h_ref > 0) {
1639 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1640 							 handle->h_ref);
1641 			return err;
1642 		} else {
1643 			if (handle->h_rsv_handle)
1644 				jbd2_free_handle(handle->h_rsv_handle);
1645 			goto free_and_exit;
1646 		}
1647 	}
1648 	journal = transaction->t_journal;
1649 
1650 	J_ASSERT(journal_current_handle() == handle);
1651 
1652 	if (is_handle_aborted(handle))
1653 		err = -EIO;
1654 	else
1655 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1656 
1657 	if (--handle->h_ref > 0) {
1658 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1659 			  handle->h_ref);
1660 		return err;
1661 	}
1662 
1663 	jbd_debug(4, "Handle %p going down\n", handle);
1664 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1665 				transaction->t_tid,
1666 				handle->h_type, handle->h_line_no,
1667 				jiffies - handle->h_start_jiffies,
1668 				handle->h_sync, handle->h_requested_credits,
1669 				(handle->h_requested_credits -
1670 				 handle->h_buffer_credits));
1671 
1672 	/*
1673 	 * Implement synchronous transaction batching.  If the handle
1674 	 * was synchronous, don't force a commit immediately.  Let's
1675 	 * yield and let another thread piggyback onto this
1676 	 * transaction.  Keep doing that while new threads continue to
1677 	 * arrive.  It doesn't cost much - we're about to run a commit
1678 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1679 	 * operations by 30x or more...
1680 	 *
1681 	 * We try and optimize the sleep time against what the
1682 	 * underlying disk can do, instead of having a static sleep
1683 	 * time.  This is useful for the case where our storage is so
1684 	 * fast that it is more optimal to go ahead and force a flush
1685 	 * and wait for the transaction to be committed than it is to
1686 	 * wait for an arbitrary amount of time for new writers to
1687 	 * join the transaction.  We achieve this by measuring how
1688 	 * long it takes to commit a transaction, and compare it with
1689 	 * how long this transaction has been running, and if run time
1690 	 * < commit time then we sleep for the delta and commit.  This
1691 	 * greatly helps super fast disks that would see slowdowns as
1692 	 * more threads started doing fsyncs.
1693 	 *
1694 	 * But don't do this if this process was the most recent one
1695 	 * to perform a synchronous write.  We do this to detect the
1696 	 * case where a single process is doing a stream of sync
1697 	 * writes.  No point in waiting for joiners in that case.
1698 	 *
1699 	 * Setting max_batch_time to 0 disables this completely.
1700 	 */
1701 	pid = current->pid;
1702 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1703 	    journal->j_max_batch_time) {
1704 		u64 commit_time, trans_time;
1705 
1706 		journal->j_last_sync_writer = pid;
1707 
1708 		read_lock(&journal->j_state_lock);
1709 		commit_time = journal->j_average_commit_time;
1710 		read_unlock(&journal->j_state_lock);
1711 
1712 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1713 						   transaction->t_start_time));
1714 
1715 		commit_time = max_t(u64, commit_time,
1716 				    1000*journal->j_min_batch_time);
1717 		commit_time = min_t(u64, commit_time,
1718 				    1000*journal->j_max_batch_time);
1719 
1720 		if (trans_time < commit_time) {
1721 			ktime_t expires = ktime_add_ns(ktime_get(),
1722 						       commit_time);
1723 			set_current_state(TASK_UNINTERRUPTIBLE);
1724 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1725 		}
1726 	}
1727 
1728 	if (handle->h_sync)
1729 		transaction->t_synchronous_commit = 1;
1730 	current->journal_info = NULL;
1731 	atomic_sub(handle->h_buffer_credits,
1732 		   &transaction->t_outstanding_credits);
1733 
1734 	/*
1735 	 * If the handle is marked SYNC, we need to set another commit
1736 	 * going!  We also want to force a commit if the current
1737 	 * transaction is occupying too much of the log, or if the
1738 	 * transaction is too old now.
1739 	 */
1740 	if (handle->h_sync ||
1741 	    (atomic_read(&transaction->t_outstanding_credits) >
1742 	     journal->j_max_transaction_buffers) ||
1743 	    time_after_eq(jiffies, transaction->t_expires)) {
1744 		/* Do this even for aborted journals: an abort still
1745 		 * completes the commit thread, it just doesn't write
1746 		 * anything to disk. */
1747 
1748 		jbd_debug(2, "transaction too old, requesting commit for "
1749 					"handle %p\n", handle);
1750 		/* This is non-blocking */
1751 		jbd2_log_start_commit(journal, transaction->t_tid);
1752 
1753 		/*
1754 		 * Special case: JBD2_SYNC synchronous updates require us
1755 		 * to wait for the commit to complete.
1756 		 */
1757 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1758 			wait_for_commit = 1;
1759 	}
1760 
1761 	/*
1762 	 * Once we drop t_updates, if it goes to zero the transaction
1763 	 * could start committing on us and eventually disappear.  So
1764 	 * once we do this, we must not dereference transaction
1765 	 * pointer again.
1766 	 */
1767 	tid = transaction->t_tid;
1768 	if (atomic_dec_and_test(&transaction->t_updates)) {
1769 		wake_up(&journal->j_wait_updates);
1770 		if (journal->j_barrier_count)
1771 			wake_up(&journal->j_wait_transaction_locked);
1772 	}
1773 
1774 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1775 
1776 	if (wait_for_commit)
1777 		err = jbd2_log_wait_commit(journal, tid);
1778 
1779 	if (handle->h_rsv_handle)
1780 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1781 free_and_exit:
1782 	/*
1783 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1784 	 * original alloc context.
1785 	 */
1786 	memalloc_nofs_restore(handle->saved_alloc_context);
1787 	jbd2_free_handle(handle);
1788 	return err;
1789 }
1790 
1791 /*
1792  *
1793  * List management code snippets: various functions for manipulating the
1794  * transaction buffer lists.
1795  *
1796  */
1797 
1798 /*
1799  * Append a buffer to a transaction list, given the transaction's list head
1800  * pointer.
1801  *
1802  * j_list_lock is held.
1803  *
1804  * jbd_lock_bh_state(jh2bh(jh)) is held.
1805  */
1806 
1807 static inline void
1808 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1809 {
1810 	if (!*list) {
1811 		jh->b_tnext = jh->b_tprev = jh;
1812 		*list = jh;
1813 	} else {
1814 		/* Insert at the tail of the list to preserve order */
1815 		struct journal_head *first = *list, *last = first->b_tprev;
1816 		jh->b_tprev = last;
1817 		jh->b_tnext = first;
1818 		last->b_tnext = first->b_tprev = jh;
1819 	}
1820 }
1821 
1822 /*
1823  * Remove a buffer from a transaction list, given the transaction's list
1824  * head pointer.
1825  *
1826  * Called with j_list_lock held, and the journal may not be locked.
1827  *
1828  * jbd_lock_bh_state(jh2bh(jh)) is held.
1829  */
1830 
1831 static inline void
1832 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1833 {
1834 	if (*list == jh) {
1835 		*list = jh->b_tnext;
1836 		if (*list == jh)
1837 			*list = NULL;
1838 	}
1839 	jh->b_tprev->b_tnext = jh->b_tnext;
1840 	jh->b_tnext->b_tprev = jh->b_tprev;
1841 }
1842 
1843 /*
1844  * Remove a buffer from the appropriate transaction list.
1845  *
1846  * Note that this function can *change* the value of
1847  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1848  * t_reserved_list.  If the caller is holding onto a copy of one of these
1849  * pointers, it could go bad.  Generally the caller needs to re-read the
1850  * pointer from the transaction_t.
1851  *
1852  * Called under j_list_lock.
1853  */
1854 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1855 {
1856 	struct journal_head **list = NULL;
1857 	transaction_t *transaction;
1858 	struct buffer_head *bh = jh2bh(jh);
1859 
1860 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1861 	transaction = jh->b_transaction;
1862 	if (transaction)
1863 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1864 
1865 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1866 	if (jh->b_jlist != BJ_None)
1867 		J_ASSERT_JH(jh, transaction != NULL);
1868 
1869 	switch (jh->b_jlist) {
1870 	case BJ_None:
1871 		return;
1872 	case BJ_Metadata:
1873 		transaction->t_nr_buffers--;
1874 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1875 		list = &transaction->t_buffers;
1876 		break;
1877 	case BJ_Forget:
1878 		list = &transaction->t_forget;
1879 		break;
1880 	case BJ_Shadow:
1881 		list = &transaction->t_shadow_list;
1882 		break;
1883 	case BJ_Reserved:
1884 		list = &transaction->t_reserved_list;
1885 		break;
1886 	}
1887 
1888 	__blist_del_buffer(list, jh);
1889 	jh->b_jlist = BJ_None;
1890 	if (transaction && is_journal_aborted(transaction->t_journal))
1891 		clear_buffer_jbddirty(bh);
1892 	else if (test_clear_buffer_jbddirty(bh))
1893 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1894 }
1895 
1896 /*
1897  * Remove buffer from all transactions.
1898  *
1899  * Called with bh_state lock and j_list_lock
1900  *
1901  * jh and bh may be already freed when this function returns.
1902  */
1903 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1904 {
1905 	__jbd2_journal_temp_unlink_buffer(jh);
1906 	jh->b_transaction = NULL;
1907 	jbd2_journal_put_journal_head(jh);
1908 }
1909 
1910 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1911 {
1912 	struct buffer_head *bh = jh2bh(jh);
1913 
1914 	/* Get reference so that buffer cannot be freed before we unlock it */
1915 	get_bh(bh);
1916 	jbd_lock_bh_state(bh);
1917 	spin_lock(&journal->j_list_lock);
1918 	__jbd2_journal_unfile_buffer(jh);
1919 	spin_unlock(&journal->j_list_lock);
1920 	jbd_unlock_bh_state(bh);
1921 	__brelse(bh);
1922 }
1923 
1924 /*
1925  * Called from jbd2_journal_try_to_free_buffers().
1926  *
1927  * Called under jbd_lock_bh_state(bh)
1928  */
1929 static void
1930 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1931 {
1932 	struct journal_head *jh;
1933 
1934 	jh = bh2jh(bh);
1935 
1936 	if (buffer_locked(bh) || buffer_dirty(bh))
1937 		goto out;
1938 
1939 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1940 		goto out;
1941 
1942 	spin_lock(&journal->j_list_lock);
1943 	if (jh->b_cp_transaction != NULL) {
1944 		/* written-back checkpointed metadata buffer */
1945 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1946 		__jbd2_journal_remove_checkpoint(jh);
1947 	}
1948 	spin_unlock(&journal->j_list_lock);
1949 out:
1950 	return;
1951 }
1952 
1953 /**
1954  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1955  * @journal: journal for operation
1956  * @page: to try and free
1957  * @gfp_mask: we use the mask to detect how hard should we try to release
1958  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1959  * code to release the buffers.
1960  *
1961  *
1962  * For all the buffers on this page,
1963  * if they are fully written out ordered data, move them onto BUF_CLEAN
1964  * so try_to_free_buffers() can reap them.
1965  *
1966  * This function returns non-zero if we wish try_to_free_buffers()
1967  * to be called. We do this if the page is releasable by try_to_free_buffers().
1968  * We also do it if the page has locked or dirty buffers and the caller wants
1969  * us to perform sync or async writeout.
1970  *
1971  * This complicates JBD locking somewhat.  We aren't protected by the
1972  * BKL here.  We wish to remove the buffer from its committing or
1973  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1974  *
1975  * This may *change* the value of transaction_t->t_datalist, so anyone
1976  * who looks at t_datalist needs to lock against this function.
1977  *
1978  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1979  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1980  * will come out of the lock with the buffer dirty, which makes it
1981  * ineligible for release here.
1982  *
1983  * Who else is affected by this?  hmm...  Really the only contender
1984  * is do_get_write_access() - it could be looking at the buffer while
1985  * journal_try_to_free_buffer() is changing its state.  But that
1986  * cannot happen because we never reallocate freed data as metadata
1987  * while the data is part of a transaction.  Yes?
1988  *
1989  * Return 0 on failure, 1 on success
1990  */
1991 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1992 				struct page *page, gfp_t gfp_mask)
1993 {
1994 	struct buffer_head *head;
1995 	struct buffer_head *bh;
1996 	int ret = 0;
1997 
1998 	J_ASSERT(PageLocked(page));
1999 
2000 	head = page_buffers(page);
2001 	bh = head;
2002 	do {
2003 		struct journal_head *jh;
2004 
2005 		/*
2006 		 * We take our own ref against the journal_head here to avoid
2007 		 * having to add tons of locking around each instance of
2008 		 * jbd2_journal_put_journal_head().
2009 		 */
2010 		jh = jbd2_journal_grab_journal_head(bh);
2011 		if (!jh)
2012 			continue;
2013 
2014 		jbd_lock_bh_state(bh);
2015 		__journal_try_to_free_buffer(journal, bh);
2016 		jbd2_journal_put_journal_head(jh);
2017 		jbd_unlock_bh_state(bh);
2018 		if (buffer_jbd(bh))
2019 			goto busy;
2020 	} while ((bh = bh->b_this_page) != head);
2021 
2022 	ret = try_to_free_buffers(page);
2023 
2024 busy:
2025 	return ret;
2026 }
2027 
2028 /*
2029  * This buffer is no longer needed.  If it is on an older transaction's
2030  * checkpoint list we need to record it on this transaction's forget list
2031  * to pin this buffer (and hence its checkpointing transaction) down until
2032  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2033  * release it.
2034  * Returns non-zero if JBD no longer has an interest in the buffer.
2035  *
2036  * Called under j_list_lock.
2037  *
2038  * Called under jbd_lock_bh_state(bh).
2039  */
2040 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2041 {
2042 	int may_free = 1;
2043 	struct buffer_head *bh = jh2bh(jh);
2044 
2045 	if (jh->b_cp_transaction) {
2046 		JBUFFER_TRACE(jh, "on running+cp transaction");
2047 		__jbd2_journal_temp_unlink_buffer(jh);
2048 		/*
2049 		 * We don't want to write the buffer anymore, clear the
2050 		 * bit so that we don't confuse checks in
2051 		 * __journal_file_buffer
2052 		 */
2053 		clear_buffer_dirty(bh);
2054 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2055 		may_free = 0;
2056 	} else {
2057 		JBUFFER_TRACE(jh, "on running transaction");
2058 		__jbd2_journal_unfile_buffer(jh);
2059 	}
2060 	return may_free;
2061 }
2062 
2063 /*
2064  * jbd2_journal_invalidatepage
2065  *
2066  * This code is tricky.  It has a number of cases to deal with.
2067  *
2068  * There are two invariants which this code relies on:
2069  *
2070  * i_size must be updated on disk before we start calling invalidatepage on the
2071  * data.
2072  *
2073  *  This is done in ext3 by defining an ext3_setattr method which
2074  *  updates i_size before truncate gets going.  By maintaining this
2075  *  invariant, we can be sure that it is safe to throw away any buffers
2076  *  attached to the current transaction: once the transaction commits,
2077  *  we know that the data will not be needed.
2078  *
2079  *  Note however that we can *not* throw away data belonging to the
2080  *  previous, committing transaction!
2081  *
2082  * Any disk blocks which *are* part of the previous, committing
2083  * transaction (and which therefore cannot be discarded immediately) are
2084  * not going to be reused in the new running transaction
2085  *
2086  *  The bitmap committed_data images guarantee this: any block which is
2087  *  allocated in one transaction and removed in the next will be marked
2088  *  as in-use in the committed_data bitmap, so cannot be reused until
2089  *  the next transaction to delete the block commits.  This means that
2090  *  leaving committing buffers dirty is quite safe: the disk blocks
2091  *  cannot be reallocated to a different file and so buffer aliasing is
2092  *  not possible.
2093  *
2094  *
2095  * The above applies mainly to ordered data mode.  In writeback mode we
2096  * don't make guarantees about the order in which data hits disk --- in
2097  * particular we don't guarantee that new dirty data is flushed before
2098  * transaction commit --- so it is always safe just to discard data
2099  * immediately in that mode.  --sct
2100  */
2101 
2102 /*
2103  * The journal_unmap_buffer helper function returns zero if the buffer
2104  * concerned remains pinned as an anonymous buffer belonging to an older
2105  * transaction.
2106  *
2107  * We're outside-transaction here.  Either or both of j_running_transaction
2108  * and j_committing_transaction may be NULL.
2109  */
2110 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2111 				int partial_page)
2112 {
2113 	transaction_t *transaction;
2114 	struct journal_head *jh;
2115 	int may_free = 1;
2116 
2117 	BUFFER_TRACE(bh, "entry");
2118 
2119 	/*
2120 	 * It is safe to proceed here without the j_list_lock because the
2121 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2122 	 * holding the page lock. --sct
2123 	 */
2124 
2125 	if (!buffer_jbd(bh))
2126 		goto zap_buffer_unlocked;
2127 
2128 	/* OK, we have data buffer in journaled mode */
2129 	write_lock(&journal->j_state_lock);
2130 	jbd_lock_bh_state(bh);
2131 	spin_lock(&journal->j_list_lock);
2132 
2133 	jh = jbd2_journal_grab_journal_head(bh);
2134 	if (!jh)
2135 		goto zap_buffer_no_jh;
2136 
2137 	/*
2138 	 * We cannot remove the buffer from checkpoint lists until the
2139 	 * transaction adding inode to orphan list (let's call it T)
2140 	 * is committed.  Otherwise if the transaction changing the
2141 	 * buffer would be cleaned from the journal before T is
2142 	 * committed, a crash will cause that the correct contents of
2143 	 * the buffer will be lost.  On the other hand we have to
2144 	 * clear the buffer dirty bit at latest at the moment when the
2145 	 * transaction marking the buffer as freed in the filesystem
2146 	 * structures is committed because from that moment on the
2147 	 * block can be reallocated and used by a different page.
2148 	 * Since the block hasn't been freed yet but the inode has
2149 	 * already been added to orphan list, it is safe for us to add
2150 	 * the buffer to BJ_Forget list of the newest transaction.
2151 	 *
2152 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2153 	 * because the buffer_head may be attached to the page straddling
2154 	 * i_size (can happen only when blocksize < pagesize) and thus the
2155 	 * buffer_head can be reused when the file is extended again. So we end
2156 	 * up keeping around invalidated buffers attached to transactions'
2157 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2158 	 * the transaction this buffer was modified in.
2159 	 */
2160 	transaction = jh->b_transaction;
2161 	if (transaction == NULL) {
2162 		/* First case: not on any transaction.  If it
2163 		 * has no checkpoint link, then we can zap it:
2164 		 * it's a writeback-mode buffer so we don't care
2165 		 * if it hits disk safely. */
2166 		if (!jh->b_cp_transaction) {
2167 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2168 			goto zap_buffer;
2169 		}
2170 
2171 		if (!buffer_dirty(bh)) {
2172 			/* bdflush has written it.  We can drop it now */
2173 			__jbd2_journal_remove_checkpoint(jh);
2174 			goto zap_buffer;
2175 		}
2176 
2177 		/* OK, it must be in the journal but still not
2178 		 * written fully to disk: it's metadata or
2179 		 * journaled data... */
2180 
2181 		if (journal->j_running_transaction) {
2182 			/* ... and once the current transaction has
2183 			 * committed, the buffer won't be needed any
2184 			 * longer. */
2185 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2186 			may_free = __dispose_buffer(jh,
2187 					journal->j_running_transaction);
2188 			goto zap_buffer;
2189 		} else {
2190 			/* There is no currently-running transaction. So the
2191 			 * orphan record which we wrote for this file must have
2192 			 * passed into commit.  We must attach this buffer to
2193 			 * the committing transaction, if it exists. */
2194 			if (journal->j_committing_transaction) {
2195 				JBUFFER_TRACE(jh, "give to committing trans");
2196 				may_free = __dispose_buffer(jh,
2197 					journal->j_committing_transaction);
2198 				goto zap_buffer;
2199 			} else {
2200 				/* The orphan record's transaction has
2201 				 * committed.  We can cleanse this buffer */
2202 				clear_buffer_jbddirty(bh);
2203 				__jbd2_journal_remove_checkpoint(jh);
2204 				goto zap_buffer;
2205 			}
2206 		}
2207 	} else if (transaction == journal->j_committing_transaction) {
2208 		JBUFFER_TRACE(jh, "on committing transaction");
2209 		/*
2210 		 * The buffer is committing, we simply cannot touch
2211 		 * it. If the page is straddling i_size we have to wait
2212 		 * for commit and try again.
2213 		 */
2214 		if (partial_page) {
2215 			jbd2_journal_put_journal_head(jh);
2216 			spin_unlock(&journal->j_list_lock);
2217 			jbd_unlock_bh_state(bh);
2218 			write_unlock(&journal->j_state_lock);
2219 			return -EBUSY;
2220 		}
2221 		/*
2222 		 * OK, buffer won't be reachable after truncate. We just set
2223 		 * j_next_transaction to the running transaction (if there is
2224 		 * one) and mark buffer as freed so that commit code knows it
2225 		 * should clear dirty bits when it is done with the buffer.
2226 		 */
2227 		set_buffer_freed(bh);
2228 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2229 			jh->b_next_transaction = journal->j_running_transaction;
2230 		jbd2_journal_put_journal_head(jh);
2231 		spin_unlock(&journal->j_list_lock);
2232 		jbd_unlock_bh_state(bh);
2233 		write_unlock(&journal->j_state_lock);
2234 		return 0;
2235 	} else {
2236 		/* Good, the buffer belongs to the running transaction.
2237 		 * We are writing our own transaction's data, not any
2238 		 * previous one's, so it is safe to throw it away
2239 		 * (remember that we expect the filesystem to have set
2240 		 * i_size already for this truncate so recovery will not
2241 		 * expose the disk blocks we are discarding here.) */
2242 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2243 		JBUFFER_TRACE(jh, "on running transaction");
2244 		may_free = __dispose_buffer(jh, transaction);
2245 	}
2246 
2247 zap_buffer:
2248 	/*
2249 	 * This is tricky. Although the buffer is truncated, it may be reused
2250 	 * if blocksize < pagesize and it is attached to the page straddling
2251 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2252 	 * running transaction, journal_get_write_access() won't clear
2253 	 * b_modified and credit accounting gets confused. So clear b_modified
2254 	 * here.
2255 	 */
2256 	jh->b_modified = 0;
2257 	jbd2_journal_put_journal_head(jh);
2258 zap_buffer_no_jh:
2259 	spin_unlock(&journal->j_list_lock);
2260 	jbd_unlock_bh_state(bh);
2261 	write_unlock(&journal->j_state_lock);
2262 zap_buffer_unlocked:
2263 	clear_buffer_dirty(bh);
2264 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2265 	clear_buffer_mapped(bh);
2266 	clear_buffer_req(bh);
2267 	clear_buffer_new(bh);
2268 	clear_buffer_delay(bh);
2269 	clear_buffer_unwritten(bh);
2270 	bh->b_bdev = NULL;
2271 	return may_free;
2272 }
2273 
2274 /**
2275  * void jbd2_journal_invalidatepage()
2276  * @journal: journal to use for flush...
2277  * @page:    page to flush
2278  * @offset:  start of the range to invalidate
2279  * @length:  length of the range to invalidate
2280  *
2281  * Reap page buffers containing data after in the specified range in page.
2282  * Can return -EBUSY if buffers are part of the committing transaction and
2283  * the page is straddling i_size. Caller then has to wait for current commit
2284  * and try again.
2285  */
2286 int jbd2_journal_invalidatepage(journal_t *journal,
2287 				struct page *page,
2288 				unsigned int offset,
2289 				unsigned int length)
2290 {
2291 	struct buffer_head *head, *bh, *next;
2292 	unsigned int stop = offset + length;
2293 	unsigned int curr_off = 0;
2294 	int partial_page = (offset || length < PAGE_SIZE);
2295 	int may_free = 1;
2296 	int ret = 0;
2297 
2298 	if (!PageLocked(page))
2299 		BUG();
2300 	if (!page_has_buffers(page))
2301 		return 0;
2302 
2303 	BUG_ON(stop > PAGE_SIZE || stop < length);
2304 
2305 	/* We will potentially be playing with lists other than just the
2306 	 * data lists (especially for journaled data mode), so be
2307 	 * cautious in our locking. */
2308 
2309 	head = bh = page_buffers(page);
2310 	do {
2311 		unsigned int next_off = curr_off + bh->b_size;
2312 		next = bh->b_this_page;
2313 
2314 		if (next_off > stop)
2315 			return 0;
2316 
2317 		if (offset <= curr_off) {
2318 			/* This block is wholly outside the truncation point */
2319 			lock_buffer(bh);
2320 			ret = journal_unmap_buffer(journal, bh, partial_page);
2321 			unlock_buffer(bh);
2322 			if (ret < 0)
2323 				return ret;
2324 			may_free &= ret;
2325 		}
2326 		curr_off = next_off;
2327 		bh = next;
2328 
2329 	} while (bh != head);
2330 
2331 	if (!partial_page) {
2332 		if (may_free && try_to_free_buffers(page))
2333 			J_ASSERT(!page_has_buffers(page));
2334 	}
2335 	return 0;
2336 }
2337 
2338 /*
2339  * File a buffer on the given transaction list.
2340  */
2341 void __jbd2_journal_file_buffer(struct journal_head *jh,
2342 			transaction_t *transaction, int jlist)
2343 {
2344 	struct journal_head **list = NULL;
2345 	int was_dirty = 0;
2346 	struct buffer_head *bh = jh2bh(jh);
2347 
2348 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2349 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2350 
2351 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2352 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2353 				jh->b_transaction == NULL);
2354 
2355 	if (jh->b_transaction && jh->b_jlist == jlist)
2356 		return;
2357 
2358 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2359 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2360 		/*
2361 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2362 		 * instead of buffer_dirty. We should not see a dirty bit set
2363 		 * here because we clear it in do_get_write_access but e.g.
2364 		 * tune2fs can modify the sb and set the dirty bit at any time
2365 		 * so we try to gracefully handle that.
2366 		 */
2367 		if (buffer_dirty(bh))
2368 			warn_dirty_buffer(bh);
2369 		if (test_clear_buffer_dirty(bh) ||
2370 		    test_clear_buffer_jbddirty(bh))
2371 			was_dirty = 1;
2372 	}
2373 
2374 	if (jh->b_transaction)
2375 		__jbd2_journal_temp_unlink_buffer(jh);
2376 	else
2377 		jbd2_journal_grab_journal_head(bh);
2378 	jh->b_transaction = transaction;
2379 
2380 	switch (jlist) {
2381 	case BJ_None:
2382 		J_ASSERT_JH(jh, !jh->b_committed_data);
2383 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2384 		return;
2385 	case BJ_Metadata:
2386 		transaction->t_nr_buffers++;
2387 		list = &transaction->t_buffers;
2388 		break;
2389 	case BJ_Forget:
2390 		list = &transaction->t_forget;
2391 		break;
2392 	case BJ_Shadow:
2393 		list = &transaction->t_shadow_list;
2394 		break;
2395 	case BJ_Reserved:
2396 		list = &transaction->t_reserved_list;
2397 		break;
2398 	}
2399 
2400 	__blist_add_buffer(list, jh);
2401 	jh->b_jlist = jlist;
2402 
2403 	if (was_dirty)
2404 		set_buffer_jbddirty(bh);
2405 }
2406 
2407 void jbd2_journal_file_buffer(struct journal_head *jh,
2408 				transaction_t *transaction, int jlist)
2409 {
2410 	jbd_lock_bh_state(jh2bh(jh));
2411 	spin_lock(&transaction->t_journal->j_list_lock);
2412 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2413 	spin_unlock(&transaction->t_journal->j_list_lock);
2414 	jbd_unlock_bh_state(jh2bh(jh));
2415 }
2416 
2417 /*
2418  * Remove a buffer from its current buffer list in preparation for
2419  * dropping it from its current transaction entirely.  If the buffer has
2420  * already started to be used by a subsequent transaction, refile the
2421  * buffer on that transaction's metadata list.
2422  *
2423  * Called under j_list_lock
2424  * Called under jbd_lock_bh_state(jh2bh(jh))
2425  *
2426  * jh and bh may be already free when this function returns
2427  */
2428 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2429 {
2430 	int was_dirty, jlist;
2431 	struct buffer_head *bh = jh2bh(jh);
2432 
2433 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2434 	if (jh->b_transaction)
2435 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2436 
2437 	/* If the buffer is now unused, just drop it. */
2438 	if (jh->b_next_transaction == NULL) {
2439 		__jbd2_journal_unfile_buffer(jh);
2440 		return;
2441 	}
2442 
2443 	/*
2444 	 * It has been modified by a later transaction: add it to the new
2445 	 * transaction's metadata list.
2446 	 */
2447 
2448 	was_dirty = test_clear_buffer_jbddirty(bh);
2449 	__jbd2_journal_temp_unlink_buffer(jh);
2450 	/*
2451 	 * We set b_transaction here because b_next_transaction will inherit
2452 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2453 	 * take a new one.
2454 	 */
2455 	jh->b_transaction = jh->b_next_transaction;
2456 	jh->b_next_transaction = NULL;
2457 	if (buffer_freed(bh))
2458 		jlist = BJ_Forget;
2459 	else if (jh->b_modified)
2460 		jlist = BJ_Metadata;
2461 	else
2462 		jlist = BJ_Reserved;
2463 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2464 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2465 
2466 	if (was_dirty)
2467 		set_buffer_jbddirty(bh);
2468 }
2469 
2470 /*
2471  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2472  * bh reference so that we can safely unlock bh.
2473  *
2474  * The jh and bh may be freed by this call.
2475  */
2476 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2477 {
2478 	struct buffer_head *bh = jh2bh(jh);
2479 
2480 	/* Get reference so that buffer cannot be freed before we unlock it */
2481 	get_bh(bh);
2482 	jbd_lock_bh_state(bh);
2483 	spin_lock(&journal->j_list_lock);
2484 	__jbd2_journal_refile_buffer(jh);
2485 	jbd_unlock_bh_state(bh);
2486 	spin_unlock(&journal->j_list_lock);
2487 	__brelse(bh);
2488 }
2489 
2490 /*
2491  * File inode in the inode list of the handle's transaction
2492  */
2493 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2494 				   unsigned long flags)
2495 {
2496 	transaction_t *transaction = handle->h_transaction;
2497 	journal_t *journal;
2498 
2499 	if (is_handle_aborted(handle))
2500 		return -EROFS;
2501 	journal = transaction->t_journal;
2502 
2503 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2504 			transaction->t_tid);
2505 
2506 	/*
2507 	 * First check whether inode isn't already on the transaction's
2508 	 * lists without taking the lock. Note that this check is safe
2509 	 * without the lock as we cannot race with somebody removing inode
2510 	 * from the transaction. The reason is that we remove inode from the
2511 	 * transaction only in journal_release_jbd_inode() and when we commit
2512 	 * the transaction. We are guarded from the first case by holding
2513 	 * a reference to the inode. We are safe against the second case
2514 	 * because if jinode->i_transaction == transaction, commit code
2515 	 * cannot touch the transaction because we hold reference to it,
2516 	 * and if jinode->i_next_transaction == transaction, commit code
2517 	 * will only file the inode where we want it.
2518 	 */
2519 	if ((jinode->i_transaction == transaction ||
2520 	    jinode->i_next_transaction == transaction) &&
2521 	    (jinode->i_flags & flags) == flags)
2522 		return 0;
2523 
2524 	spin_lock(&journal->j_list_lock);
2525 	jinode->i_flags |= flags;
2526 	/* Is inode already attached where we need it? */
2527 	if (jinode->i_transaction == transaction ||
2528 	    jinode->i_next_transaction == transaction)
2529 		goto done;
2530 
2531 	/*
2532 	 * We only ever set this variable to 1 so the test is safe. Since
2533 	 * t_need_data_flush is likely to be set, we do the test to save some
2534 	 * cacheline bouncing
2535 	 */
2536 	if (!transaction->t_need_data_flush)
2537 		transaction->t_need_data_flush = 1;
2538 	/* On some different transaction's list - should be
2539 	 * the committing one */
2540 	if (jinode->i_transaction) {
2541 		J_ASSERT(jinode->i_next_transaction == NULL);
2542 		J_ASSERT(jinode->i_transaction ==
2543 					journal->j_committing_transaction);
2544 		jinode->i_next_transaction = transaction;
2545 		goto done;
2546 	}
2547 	/* Not on any transaction list... */
2548 	J_ASSERT(!jinode->i_next_transaction);
2549 	jinode->i_transaction = transaction;
2550 	list_add(&jinode->i_list, &transaction->t_inode_list);
2551 done:
2552 	spin_unlock(&journal->j_list_lock);
2553 
2554 	return 0;
2555 }
2556 
2557 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2558 {
2559 	return jbd2_journal_file_inode(handle, jinode,
2560 				       JI_WRITE_DATA | JI_WAIT_DATA);
2561 }
2562 
2563 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2564 {
2565 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2566 }
2567 
2568 /*
2569  * File truncate and transaction commit interact with each other in a
2570  * non-trivial way.  If a transaction writing data block A is
2571  * committing, we cannot discard the data by truncate until we have
2572  * written them.  Otherwise if we crashed after the transaction with
2573  * write has committed but before the transaction with truncate has
2574  * committed, we could see stale data in block A.  This function is a
2575  * helper to solve this problem.  It starts writeout of the truncated
2576  * part in case it is in the committing transaction.
2577  *
2578  * Filesystem code must call this function when inode is journaled in
2579  * ordered mode before truncation happens and after the inode has been
2580  * placed on orphan list with the new inode size. The second condition
2581  * avoids the race that someone writes new data and we start
2582  * committing the transaction after this function has been called but
2583  * before a transaction for truncate is started (and furthermore it
2584  * allows us to optimize the case where the addition to orphan list
2585  * happens in the same transaction as write --- we don't have to write
2586  * any data in such case).
2587  */
2588 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2589 					struct jbd2_inode *jinode,
2590 					loff_t new_size)
2591 {
2592 	transaction_t *inode_trans, *commit_trans;
2593 	int ret = 0;
2594 
2595 	/* This is a quick check to avoid locking if not necessary */
2596 	if (!jinode->i_transaction)
2597 		goto out;
2598 	/* Locks are here just to force reading of recent values, it is
2599 	 * enough that the transaction was not committing before we started
2600 	 * a transaction adding the inode to orphan list */
2601 	read_lock(&journal->j_state_lock);
2602 	commit_trans = journal->j_committing_transaction;
2603 	read_unlock(&journal->j_state_lock);
2604 	spin_lock(&journal->j_list_lock);
2605 	inode_trans = jinode->i_transaction;
2606 	spin_unlock(&journal->j_list_lock);
2607 	if (inode_trans == commit_trans) {
2608 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2609 			new_size, LLONG_MAX);
2610 		if (ret)
2611 			jbd2_journal_abort(journal, ret);
2612 	}
2613 out:
2614 	return ret;
2615 }
2616