1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 wait_transaction_locked(journal); 208 return 1; 209 } 210 211 /* 212 * The commit code assumes that it can get enough log space 213 * without forcing a checkpoint. This is *critical* for 214 * correctness: a checkpoint of a buffer which is also 215 * associated with a committing transaction creates a deadlock, 216 * so commit simply cannot force through checkpoints. 217 * 218 * We must therefore ensure the necessary space in the journal 219 * *before* starting to dirty potentially checkpointed buffers 220 * in the new transaction. 221 */ 222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 223 atomic_sub(total, &t->t_outstanding_credits); 224 read_unlock(&journal->j_state_lock); 225 write_lock(&journal->j_state_lock); 226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 227 __jbd2_log_wait_for_space(journal); 228 write_unlock(&journal->j_state_lock); 229 return 1; 230 } 231 232 /* No reservation? We are done... */ 233 if (!rsv_blocks) 234 return 0; 235 236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 237 /* We allow at most half of a transaction to be reserved */ 238 if (needed > journal->j_max_transaction_buffers / 2) { 239 sub_reserved_credits(journal, rsv_blocks); 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_reserved, 243 atomic_read(&journal->j_reserved_credits) + rsv_blocks 244 <= journal->j_max_transaction_buffers / 2); 245 return 1; 246 } 247 return 0; 248 } 249 250 /* 251 * start_this_handle: Given a handle, deal with any locking or stalling 252 * needed to make sure that there is enough journal space for the handle 253 * to begin. Attach the handle to a transaction and set up the 254 * transaction's buffer credits. 255 */ 256 257 static int start_this_handle(journal_t *journal, handle_t *handle, 258 gfp_t gfp_mask) 259 { 260 transaction_t *transaction, *new_transaction = NULL; 261 int blocks = handle->h_buffer_credits; 262 int rsv_blocks = 0; 263 unsigned long ts = jiffies; 264 265 /* 266 * 1/2 of transaction can be reserved so we can practically handle 267 * only 1/2 of maximum transaction size per operation 268 */ 269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) { 270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 271 current->comm, blocks, 272 journal->j_max_transaction_buffers / 2); 273 return -ENOSPC; 274 } 275 276 if (handle->h_rsv_handle) 277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 278 279 alloc_transaction: 280 if (!journal->j_running_transaction) { 281 new_transaction = kmem_cache_zalloc(transaction_cache, 282 gfp_mask); 283 if (!new_transaction) { 284 /* 285 * If __GFP_FS is not present, then we may be 286 * being called from inside the fs writeback 287 * layer, so we MUST NOT fail. Since 288 * __GFP_NOFAIL is going away, we will arrange 289 * to retry the allocation ourselves. 290 */ 291 if ((gfp_mask & __GFP_FS) == 0) { 292 congestion_wait(BLK_RW_ASYNC, HZ/50); 293 goto alloc_transaction; 294 } 295 return -ENOMEM; 296 } 297 } 298 299 jbd_debug(3, "New handle %p going live.\n", handle); 300 301 /* 302 * We need to hold j_state_lock until t_updates has been incremented, 303 * for proper journal barrier handling 304 */ 305 repeat: 306 read_lock(&journal->j_state_lock); 307 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 308 if (is_journal_aborted(journal) || 309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 310 read_unlock(&journal->j_state_lock); 311 jbd2_journal_free_transaction(new_transaction); 312 return -EROFS; 313 } 314 315 /* 316 * Wait on the journal's transaction barrier if necessary. Specifically 317 * we allow reserved handles to proceed because otherwise commit could 318 * deadlock on page writeback not being able to complete. 319 */ 320 if (!handle->h_reserved && journal->j_barrier_count) { 321 read_unlock(&journal->j_state_lock); 322 wait_event(journal->j_wait_transaction_locked, 323 journal->j_barrier_count == 0); 324 goto repeat; 325 } 326 327 if (!journal->j_running_transaction) { 328 read_unlock(&journal->j_state_lock); 329 if (!new_transaction) 330 goto alloc_transaction; 331 write_lock(&journal->j_state_lock); 332 if (!journal->j_running_transaction && 333 (handle->h_reserved || !journal->j_barrier_count)) { 334 jbd2_get_transaction(journal, new_transaction); 335 new_transaction = NULL; 336 } 337 write_unlock(&journal->j_state_lock); 338 goto repeat; 339 } 340 341 transaction = journal->j_running_transaction; 342 343 if (!handle->h_reserved) { 344 /* We may have dropped j_state_lock - restart in that case */ 345 if (add_transaction_credits(journal, blocks, rsv_blocks)) 346 goto repeat; 347 } else { 348 /* 349 * We have handle reserved so we are allowed to join T_LOCKED 350 * transaction and we don't have to check for transaction size 351 * and journal space. 352 */ 353 sub_reserved_credits(journal, blocks); 354 handle->h_reserved = 0; 355 } 356 357 /* OK, account for the buffers that this operation expects to 358 * use and add the handle to the running transaction. 359 */ 360 update_t_max_wait(transaction, ts); 361 handle->h_transaction = transaction; 362 handle->h_requested_credits = blocks; 363 handle->h_start_jiffies = jiffies; 364 atomic_inc(&transaction->t_updates); 365 atomic_inc(&transaction->t_handle_count); 366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 367 handle, blocks, 368 atomic_read(&transaction->t_outstanding_credits), 369 jbd2_log_space_left(journal)); 370 read_unlock(&journal->j_state_lock); 371 current->journal_info = handle; 372 373 lock_map_acquire(&handle->h_lockdep_map); 374 jbd2_journal_free_transaction(new_transaction); 375 return 0; 376 } 377 378 static struct lock_class_key jbd2_handle_key; 379 380 /* Allocate a new handle. This should probably be in a slab... */ 381 static handle_t *new_handle(int nblocks) 382 { 383 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 384 if (!handle) 385 return NULL; 386 handle->h_buffer_credits = nblocks; 387 handle->h_ref = 1; 388 389 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 390 &jbd2_handle_key, 0); 391 392 return handle; 393 } 394 395 /** 396 * handle_t *jbd2_journal_start() - Obtain a new handle. 397 * @journal: Journal to start transaction on. 398 * @nblocks: number of block buffer we might modify 399 * 400 * We make sure that the transaction can guarantee at least nblocks of 401 * modified buffers in the log. We block until the log can guarantee 402 * that much space. Additionally, if rsv_blocks > 0, we also create another 403 * handle with rsv_blocks reserved blocks in the journal. This handle is 404 * is stored in h_rsv_handle. It is not attached to any particular transaction 405 * and thus doesn't block transaction commit. If the caller uses this reserved 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 407 * on the parent handle will dispose the reserved one. Reserved handle has to 408 * be converted to a normal handle using jbd2_journal_start_reserved() before 409 * it can be used. 410 * 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 412 * on failure. 413 */ 414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 415 gfp_t gfp_mask, unsigned int type, 416 unsigned int line_no) 417 { 418 handle_t *handle = journal_current_handle(); 419 int err; 420 421 if (!journal) 422 return ERR_PTR(-EROFS); 423 424 if (handle) { 425 J_ASSERT(handle->h_transaction->t_journal == journal); 426 handle->h_ref++; 427 return handle; 428 } 429 430 handle = new_handle(nblocks); 431 if (!handle) 432 return ERR_PTR(-ENOMEM); 433 if (rsv_blocks) { 434 handle_t *rsv_handle; 435 436 rsv_handle = new_handle(rsv_blocks); 437 if (!rsv_handle) { 438 jbd2_free_handle(handle); 439 return ERR_PTR(-ENOMEM); 440 } 441 rsv_handle->h_reserved = 1; 442 rsv_handle->h_journal = journal; 443 handle->h_rsv_handle = rsv_handle; 444 } 445 446 err = start_this_handle(journal, handle, gfp_mask); 447 if (err < 0) { 448 if (handle->h_rsv_handle) 449 jbd2_free_handle(handle->h_rsv_handle); 450 jbd2_free_handle(handle); 451 return ERR_PTR(err); 452 } 453 handle->h_type = type; 454 handle->h_line_no = line_no; 455 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 456 handle->h_transaction->t_tid, type, 457 line_no, nblocks); 458 return handle; 459 } 460 EXPORT_SYMBOL(jbd2__journal_start); 461 462 463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 464 { 465 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 466 } 467 EXPORT_SYMBOL(jbd2_journal_start); 468 469 void jbd2_journal_free_reserved(handle_t *handle) 470 { 471 journal_t *journal = handle->h_journal; 472 473 WARN_ON(!handle->h_reserved); 474 sub_reserved_credits(journal, handle->h_buffer_credits); 475 jbd2_free_handle(handle); 476 } 477 EXPORT_SYMBOL(jbd2_journal_free_reserved); 478 479 /** 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 481 * @handle: handle to start 482 * 483 * Start handle that has been previously reserved with jbd2_journal_reserve(). 484 * This attaches @handle to the running transaction (or creates one if there's 485 * not transaction running). Unlike jbd2_journal_start() this function cannot 486 * block on journal commit, checkpointing, or similar stuff. It can block on 487 * memory allocation or frozen journal though. 488 * 489 * Return 0 on success, non-zero on error - handle is freed in that case. 490 */ 491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 492 unsigned int line_no) 493 { 494 journal_t *journal = handle->h_journal; 495 int ret = -EIO; 496 497 if (WARN_ON(!handle->h_reserved)) { 498 /* Someone passed in normal handle? Just stop it. */ 499 jbd2_journal_stop(handle); 500 return ret; 501 } 502 /* 503 * Usefulness of mixing of reserved and unreserved handles is 504 * questionable. So far nobody seems to need it so just error out. 505 */ 506 if (WARN_ON(current->journal_info)) { 507 jbd2_journal_free_reserved(handle); 508 return ret; 509 } 510 511 handle->h_journal = NULL; 512 /* 513 * GFP_NOFS is here because callers are likely from writeback or 514 * similarly constrained call sites 515 */ 516 ret = start_this_handle(journal, handle, GFP_NOFS); 517 if (ret < 0) 518 jbd2_journal_free_reserved(handle); 519 handle->h_type = type; 520 handle->h_line_no = line_no; 521 return ret; 522 } 523 EXPORT_SYMBOL(jbd2_journal_start_reserved); 524 525 /** 526 * int jbd2_journal_extend() - extend buffer credits. 527 * @handle: handle to 'extend' 528 * @nblocks: nr blocks to try to extend by. 529 * 530 * Some transactions, such as large extends and truncates, can be done 531 * atomically all at once or in several stages. The operation requests 532 * a credit for a number of buffer modications in advance, but can 533 * extend its credit if it needs more. 534 * 535 * jbd2_journal_extend tries to give the running handle more buffer credits. 536 * It does not guarantee that allocation - this is a best-effort only. 537 * The calling process MUST be able to deal cleanly with a failure to 538 * extend here. 539 * 540 * Return 0 on success, non-zero on failure. 541 * 542 * return code < 0 implies an error 543 * return code > 0 implies normal transaction-full status. 544 */ 545 int jbd2_journal_extend(handle_t *handle, int nblocks) 546 { 547 transaction_t *transaction = handle->h_transaction; 548 journal_t *journal; 549 int result; 550 int wanted; 551 552 WARN_ON(!transaction); 553 if (is_handle_aborted(handle)) 554 return -EROFS; 555 journal = transaction->t_journal; 556 557 result = 1; 558 559 read_lock(&journal->j_state_lock); 560 561 /* Don't extend a locked-down transaction! */ 562 if (transaction->t_state != T_RUNNING) { 563 jbd_debug(3, "denied handle %p %d blocks: " 564 "transaction not running\n", handle, nblocks); 565 goto error_out; 566 } 567 568 spin_lock(&transaction->t_handle_lock); 569 wanted = atomic_add_return(nblocks, 570 &transaction->t_outstanding_credits); 571 572 if (wanted > journal->j_max_transaction_buffers) { 573 jbd_debug(3, "denied handle %p %d blocks: " 574 "transaction too large\n", handle, nblocks); 575 atomic_sub(nblocks, &transaction->t_outstanding_credits); 576 goto unlock; 577 } 578 579 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 580 jbd2_log_space_left(journal)) { 581 jbd_debug(3, "denied handle %p %d blocks: " 582 "insufficient log space\n", handle, nblocks); 583 atomic_sub(nblocks, &transaction->t_outstanding_credits); 584 goto unlock; 585 } 586 587 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 588 transaction->t_tid, 589 handle->h_type, handle->h_line_no, 590 handle->h_buffer_credits, 591 nblocks); 592 593 handle->h_buffer_credits += nblocks; 594 handle->h_requested_credits += nblocks; 595 result = 0; 596 597 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 598 unlock: 599 spin_unlock(&transaction->t_handle_lock); 600 error_out: 601 read_unlock(&journal->j_state_lock); 602 return result; 603 } 604 605 606 /** 607 * int jbd2_journal_restart() - restart a handle . 608 * @handle: handle to restart 609 * @nblocks: nr credits requested 610 * 611 * Restart a handle for a multi-transaction filesystem 612 * operation. 613 * 614 * If the jbd2_journal_extend() call above fails to grant new buffer credits 615 * to a running handle, a call to jbd2_journal_restart will commit the 616 * handle's transaction so far and reattach the handle to a new 617 * transaction capabable of guaranteeing the requested number of 618 * credits. We preserve reserved handle if there's any attached to the 619 * passed in handle. 620 */ 621 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 622 { 623 transaction_t *transaction = handle->h_transaction; 624 journal_t *journal; 625 tid_t tid; 626 int need_to_start, ret; 627 628 WARN_ON(!transaction); 629 /* If we've had an abort of any type, don't even think about 630 * actually doing the restart! */ 631 if (is_handle_aborted(handle)) 632 return 0; 633 journal = transaction->t_journal; 634 635 /* 636 * First unlink the handle from its current transaction, and start the 637 * commit on that. 638 */ 639 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 640 J_ASSERT(journal_current_handle() == handle); 641 642 read_lock(&journal->j_state_lock); 643 spin_lock(&transaction->t_handle_lock); 644 atomic_sub(handle->h_buffer_credits, 645 &transaction->t_outstanding_credits); 646 if (handle->h_rsv_handle) { 647 sub_reserved_credits(journal, 648 handle->h_rsv_handle->h_buffer_credits); 649 } 650 if (atomic_dec_and_test(&transaction->t_updates)) 651 wake_up(&journal->j_wait_updates); 652 tid = transaction->t_tid; 653 spin_unlock(&transaction->t_handle_lock); 654 handle->h_transaction = NULL; 655 current->journal_info = NULL; 656 657 jbd_debug(2, "restarting handle %p\n", handle); 658 need_to_start = !tid_geq(journal->j_commit_request, tid); 659 read_unlock(&journal->j_state_lock); 660 if (need_to_start) 661 jbd2_log_start_commit(journal, tid); 662 663 lock_map_release(&handle->h_lockdep_map); 664 handle->h_buffer_credits = nblocks; 665 ret = start_this_handle(journal, handle, gfp_mask); 666 return ret; 667 } 668 EXPORT_SYMBOL(jbd2__journal_restart); 669 670 671 int jbd2_journal_restart(handle_t *handle, int nblocks) 672 { 673 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 674 } 675 EXPORT_SYMBOL(jbd2_journal_restart); 676 677 /** 678 * void jbd2_journal_lock_updates () - establish a transaction barrier. 679 * @journal: Journal to establish a barrier on. 680 * 681 * This locks out any further updates from being started, and blocks 682 * until all existing updates have completed, returning only once the 683 * journal is in a quiescent state with no updates running. 684 * 685 * The journal lock should not be held on entry. 686 */ 687 void jbd2_journal_lock_updates(journal_t *journal) 688 { 689 DEFINE_WAIT(wait); 690 691 write_lock(&journal->j_state_lock); 692 ++journal->j_barrier_count; 693 694 /* Wait until there are no reserved handles */ 695 if (atomic_read(&journal->j_reserved_credits)) { 696 write_unlock(&journal->j_state_lock); 697 wait_event(journal->j_wait_reserved, 698 atomic_read(&journal->j_reserved_credits) == 0); 699 write_lock(&journal->j_state_lock); 700 } 701 702 /* Wait until there are no running updates */ 703 while (1) { 704 transaction_t *transaction = journal->j_running_transaction; 705 706 if (!transaction) 707 break; 708 709 spin_lock(&transaction->t_handle_lock); 710 prepare_to_wait(&journal->j_wait_updates, &wait, 711 TASK_UNINTERRUPTIBLE); 712 if (!atomic_read(&transaction->t_updates)) { 713 spin_unlock(&transaction->t_handle_lock); 714 finish_wait(&journal->j_wait_updates, &wait); 715 break; 716 } 717 spin_unlock(&transaction->t_handle_lock); 718 write_unlock(&journal->j_state_lock); 719 schedule(); 720 finish_wait(&journal->j_wait_updates, &wait); 721 write_lock(&journal->j_state_lock); 722 } 723 write_unlock(&journal->j_state_lock); 724 725 /* 726 * We have now established a barrier against other normal updates, but 727 * we also need to barrier against other jbd2_journal_lock_updates() calls 728 * to make sure that we serialise special journal-locked operations 729 * too. 730 */ 731 mutex_lock(&journal->j_barrier); 732 } 733 734 /** 735 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 736 * @journal: Journal to release the barrier on. 737 * 738 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 739 * 740 * Should be called without the journal lock held. 741 */ 742 void jbd2_journal_unlock_updates (journal_t *journal) 743 { 744 J_ASSERT(journal->j_barrier_count != 0); 745 746 mutex_unlock(&journal->j_barrier); 747 write_lock(&journal->j_state_lock); 748 --journal->j_barrier_count; 749 write_unlock(&journal->j_state_lock); 750 wake_up(&journal->j_wait_transaction_locked); 751 } 752 753 static void warn_dirty_buffer(struct buffer_head *bh) 754 { 755 char b[BDEVNAME_SIZE]; 756 757 printk(KERN_WARNING 758 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 759 "There's a risk of filesystem corruption in case of system " 760 "crash.\n", 761 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 762 } 763 764 static int sleep_on_shadow_bh(void *word) 765 { 766 io_schedule(); 767 return 0; 768 } 769 770 /* 771 * If the buffer is already part of the current transaction, then there 772 * is nothing we need to do. If it is already part of a prior 773 * transaction which we are still committing to disk, then we need to 774 * make sure that we do not overwrite the old copy: we do copy-out to 775 * preserve the copy going to disk. We also account the buffer against 776 * the handle's metadata buffer credits (unless the buffer is already 777 * part of the transaction, that is). 778 * 779 */ 780 static int 781 do_get_write_access(handle_t *handle, struct journal_head *jh, 782 int force_copy) 783 { 784 struct buffer_head *bh; 785 transaction_t *transaction = handle->h_transaction; 786 journal_t *journal; 787 int error; 788 char *frozen_buffer = NULL; 789 int need_copy = 0; 790 unsigned long start_lock, time_lock; 791 792 WARN_ON(!transaction); 793 if (is_handle_aborted(handle)) 794 return -EROFS; 795 journal = transaction->t_journal; 796 797 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 798 799 JBUFFER_TRACE(jh, "entry"); 800 repeat: 801 bh = jh2bh(jh); 802 803 /* @@@ Need to check for errors here at some point. */ 804 805 start_lock = jiffies; 806 lock_buffer(bh); 807 jbd_lock_bh_state(bh); 808 809 /* If it takes too long to lock the buffer, trace it */ 810 time_lock = jbd2_time_diff(start_lock, jiffies); 811 if (time_lock > HZ/10) 812 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 813 jiffies_to_msecs(time_lock)); 814 815 /* We now hold the buffer lock so it is safe to query the buffer 816 * state. Is the buffer dirty? 817 * 818 * If so, there are two possibilities. The buffer may be 819 * non-journaled, and undergoing a quite legitimate writeback. 820 * Otherwise, it is journaled, and we don't expect dirty buffers 821 * in that state (the buffers should be marked JBD_Dirty 822 * instead.) So either the IO is being done under our own 823 * control and this is a bug, or it's a third party IO such as 824 * dump(8) (which may leave the buffer scheduled for read --- 825 * ie. locked but not dirty) or tune2fs (which may actually have 826 * the buffer dirtied, ugh.) */ 827 828 if (buffer_dirty(bh)) { 829 /* 830 * First question: is this buffer already part of the current 831 * transaction or the existing committing transaction? 832 */ 833 if (jh->b_transaction) { 834 J_ASSERT_JH(jh, 835 jh->b_transaction == transaction || 836 jh->b_transaction == 837 journal->j_committing_transaction); 838 if (jh->b_next_transaction) 839 J_ASSERT_JH(jh, jh->b_next_transaction == 840 transaction); 841 warn_dirty_buffer(bh); 842 } 843 /* 844 * In any case we need to clean the dirty flag and we must 845 * do it under the buffer lock to be sure we don't race 846 * with running write-out. 847 */ 848 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 849 clear_buffer_dirty(bh); 850 set_buffer_jbddirty(bh); 851 } 852 853 unlock_buffer(bh); 854 855 error = -EROFS; 856 if (is_handle_aborted(handle)) { 857 jbd_unlock_bh_state(bh); 858 goto out; 859 } 860 error = 0; 861 862 /* 863 * The buffer is already part of this transaction if b_transaction or 864 * b_next_transaction points to it 865 */ 866 if (jh->b_transaction == transaction || 867 jh->b_next_transaction == transaction) 868 goto done; 869 870 /* 871 * this is the first time this transaction is touching this buffer, 872 * reset the modified flag 873 */ 874 jh->b_modified = 0; 875 876 /* 877 * If there is already a copy-out version of this buffer, then we don't 878 * need to make another one 879 */ 880 if (jh->b_frozen_data) { 881 JBUFFER_TRACE(jh, "has frozen data"); 882 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 883 jh->b_next_transaction = transaction; 884 goto done; 885 } 886 887 /* Is there data here we need to preserve? */ 888 889 if (jh->b_transaction && jh->b_transaction != transaction) { 890 JBUFFER_TRACE(jh, "owned by older transaction"); 891 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 892 J_ASSERT_JH(jh, jh->b_transaction == 893 journal->j_committing_transaction); 894 895 /* There is one case we have to be very careful about. 896 * If the committing transaction is currently writing 897 * this buffer out to disk and has NOT made a copy-out, 898 * then we cannot modify the buffer contents at all 899 * right now. The essence of copy-out is that it is the 900 * extra copy, not the primary copy, which gets 901 * journaled. If the primary copy is already going to 902 * disk then we cannot do copy-out here. */ 903 904 if (buffer_shadow(bh)) { 905 JBUFFER_TRACE(jh, "on shadow: sleep"); 906 jbd_unlock_bh_state(bh); 907 wait_on_bit(&bh->b_state, BH_Shadow, 908 sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE); 909 goto repeat; 910 } 911 912 /* 913 * Only do the copy if the currently-owning transaction still 914 * needs it. If buffer isn't on BJ_Metadata list, the 915 * committing transaction is past that stage (here we use the 916 * fact that BH_Shadow is set under bh_state lock together with 917 * refiling to BJ_Shadow list and at this point we know the 918 * buffer doesn't have BH_Shadow set). 919 * 920 * Subtle point, though: if this is a get_undo_access, 921 * then we will be relying on the frozen_data to contain 922 * the new value of the committed_data record after the 923 * transaction, so we HAVE to force the frozen_data copy 924 * in that case. 925 */ 926 if (jh->b_jlist == BJ_Metadata || force_copy) { 927 JBUFFER_TRACE(jh, "generate frozen data"); 928 if (!frozen_buffer) { 929 JBUFFER_TRACE(jh, "allocate memory for buffer"); 930 jbd_unlock_bh_state(bh); 931 frozen_buffer = 932 jbd2_alloc(jh2bh(jh)->b_size, 933 GFP_NOFS); 934 if (!frozen_buffer) { 935 printk(KERN_ERR 936 "%s: OOM for frozen_buffer\n", 937 __func__); 938 JBUFFER_TRACE(jh, "oom!"); 939 error = -ENOMEM; 940 jbd_lock_bh_state(bh); 941 goto done; 942 } 943 goto repeat; 944 } 945 jh->b_frozen_data = frozen_buffer; 946 frozen_buffer = NULL; 947 need_copy = 1; 948 } 949 jh->b_next_transaction = transaction; 950 } 951 952 953 /* 954 * Finally, if the buffer is not journaled right now, we need to make 955 * sure it doesn't get written to disk before the caller actually 956 * commits the new data 957 */ 958 if (!jh->b_transaction) { 959 JBUFFER_TRACE(jh, "no transaction"); 960 J_ASSERT_JH(jh, !jh->b_next_transaction); 961 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 962 spin_lock(&journal->j_list_lock); 963 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 964 spin_unlock(&journal->j_list_lock); 965 } 966 967 done: 968 if (need_copy) { 969 struct page *page; 970 int offset; 971 char *source; 972 973 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 974 "Possible IO failure.\n"); 975 page = jh2bh(jh)->b_page; 976 offset = offset_in_page(jh2bh(jh)->b_data); 977 source = kmap_atomic(page); 978 /* Fire data frozen trigger just before we copy the data */ 979 jbd2_buffer_frozen_trigger(jh, source + offset, 980 jh->b_triggers); 981 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 982 kunmap_atomic(source); 983 984 /* 985 * Now that the frozen data is saved off, we need to store 986 * any matching triggers. 987 */ 988 jh->b_frozen_triggers = jh->b_triggers; 989 } 990 jbd_unlock_bh_state(bh); 991 992 /* 993 * If we are about to journal a buffer, then any revoke pending on it is 994 * no longer valid 995 */ 996 jbd2_journal_cancel_revoke(handle, jh); 997 998 out: 999 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1000 jbd2_free(frozen_buffer, bh->b_size); 1001 1002 JBUFFER_TRACE(jh, "exit"); 1003 return error; 1004 } 1005 1006 /** 1007 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1008 * @handle: transaction to add buffer modifications to 1009 * @bh: bh to be used for metadata writes 1010 * 1011 * Returns an error code or 0 on success. 1012 * 1013 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1014 * because we're write()ing a buffer which is also part of a shared mapping. 1015 */ 1016 1017 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1018 { 1019 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1020 int rc; 1021 1022 /* We do not want to get caught playing with fields which the 1023 * log thread also manipulates. Make sure that the buffer 1024 * completes any outstanding IO before proceeding. */ 1025 rc = do_get_write_access(handle, jh, 0); 1026 jbd2_journal_put_journal_head(jh); 1027 return rc; 1028 } 1029 1030 1031 /* 1032 * When the user wants to journal a newly created buffer_head 1033 * (ie. getblk() returned a new buffer and we are going to populate it 1034 * manually rather than reading off disk), then we need to keep the 1035 * buffer_head locked until it has been completely filled with new 1036 * data. In this case, we should be able to make the assertion that 1037 * the bh is not already part of an existing transaction. 1038 * 1039 * The buffer should already be locked by the caller by this point. 1040 * There is no lock ranking violation: it was a newly created, 1041 * unlocked buffer beforehand. */ 1042 1043 /** 1044 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1045 * @handle: transaction to new buffer to 1046 * @bh: new buffer. 1047 * 1048 * Call this if you create a new bh. 1049 */ 1050 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1051 { 1052 transaction_t *transaction = handle->h_transaction; 1053 journal_t *journal; 1054 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1055 int err; 1056 1057 jbd_debug(5, "journal_head %p\n", jh); 1058 WARN_ON(!transaction); 1059 err = -EROFS; 1060 if (is_handle_aborted(handle)) 1061 goto out; 1062 journal = transaction->t_journal; 1063 err = 0; 1064 1065 JBUFFER_TRACE(jh, "entry"); 1066 /* 1067 * The buffer may already belong to this transaction due to pre-zeroing 1068 * in the filesystem's new_block code. It may also be on the previous, 1069 * committing transaction's lists, but it HAS to be in Forget state in 1070 * that case: the transaction must have deleted the buffer for it to be 1071 * reused here. 1072 */ 1073 jbd_lock_bh_state(bh); 1074 spin_lock(&journal->j_list_lock); 1075 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1076 jh->b_transaction == NULL || 1077 (jh->b_transaction == journal->j_committing_transaction && 1078 jh->b_jlist == BJ_Forget))); 1079 1080 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1081 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1082 1083 if (jh->b_transaction == NULL) { 1084 /* 1085 * Previous jbd2_journal_forget() could have left the buffer 1086 * with jbddirty bit set because it was being committed. When 1087 * the commit finished, we've filed the buffer for 1088 * checkpointing and marked it dirty. Now we are reallocating 1089 * the buffer so the transaction freeing it must have 1090 * committed and so it's safe to clear the dirty bit. 1091 */ 1092 clear_buffer_dirty(jh2bh(jh)); 1093 /* first access by this transaction */ 1094 jh->b_modified = 0; 1095 1096 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1097 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1098 } else if (jh->b_transaction == journal->j_committing_transaction) { 1099 /* first access by this transaction */ 1100 jh->b_modified = 0; 1101 1102 JBUFFER_TRACE(jh, "set next transaction"); 1103 jh->b_next_transaction = transaction; 1104 } 1105 spin_unlock(&journal->j_list_lock); 1106 jbd_unlock_bh_state(bh); 1107 1108 /* 1109 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1110 * blocks which contain freed but then revoked metadata. We need 1111 * to cancel the revoke in case we end up freeing it yet again 1112 * and the reallocating as data - this would cause a second revoke, 1113 * which hits an assertion error. 1114 */ 1115 JBUFFER_TRACE(jh, "cancelling revoke"); 1116 jbd2_journal_cancel_revoke(handle, jh); 1117 out: 1118 jbd2_journal_put_journal_head(jh); 1119 return err; 1120 } 1121 1122 /** 1123 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1124 * non-rewindable consequences 1125 * @handle: transaction 1126 * @bh: buffer to undo 1127 * 1128 * Sometimes there is a need to distinguish between metadata which has 1129 * been committed to disk and that which has not. The ext3fs code uses 1130 * this for freeing and allocating space, we have to make sure that we 1131 * do not reuse freed space until the deallocation has been committed, 1132 * since if we overwrote that space we would make the delete 1133 * un-rewindable in case of a crash. 1134 * 1135 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1136 * buffer for parts of non-rewindable operations such as delete 1137 * operations on the bitmaps. The journaling code must keep a copy of 1138 * the buffer's contents prior to the undo_access call until such time 1139 * as we know that the buffer has definitely been committed to disk. 1140 * 1141 * We never need to know which transaction the committed data is part 1142 * of, buffers touched here are guaranteed to be dirtied later and so 1143 * will be committed to a new transaction in due course, at which point 1144 * we can discard the old committed data pointer. 1145 * 1146 * Returns error number or 0 on success. 1147 */ 1148 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1149 { 1150 int err; 1151 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1152 char *committed_data = NULL; 1153 1154 JBUFFER_TRACE(jh, "entry"); 1155 1156 /* 1157 * Do this first --- it can drop the journal lock, so we want to 1158 * make sure that obtaining the committed_data is done 1159 * atomically wrt. completion of any outstanding commits. 1160 */ 1161 err = do_get_write_access(handle, jh, 1); 1162 if (err) 1163 goto out; 1164 1165 repeat: 1166 if (!jh->b_committed_data) { 1167 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1168 if (!committed_data) { 1169 printk(KERN_ERR "%s: No memory for committed data\n", 1170 __func__); 1171 err = -ENOMEM; 1172 goto out; 1173 } 1174 } 1175 1176 jbd_lock_bh_state(bh); 1177 if (!jh->b_committed_data) { 1178 /* Copy out the current buffer contents into the 1179 * preserved, committed copy. */ 1180 JBUFFER_TRACE(jh, "generate b_committed data"); 1181 if (!committed_data) { 1182 jbd_unlock_bh_state(bh); 1183 goto repeat; 1184 } 1185 1186 jh->b_committed_data = committed_data; 1187 committed_data = NULL; 1188 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1189 } 1190 jbd_unlock_bh_state(bh); 1191 out: 1192 jbd2_journal_put_journal_head(jh); 1193 if (unlikely(committed_data)) 1194 jbd2_free(committed_data, bh->b_size); 1195 return err; 1196 } 1197 1198 /** 1199 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1200 * @bh: buffer to trigger on 1201 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1202 * 1203 * Set any triggers on this journal_head. This is always safe, because 1204 * triggers for a committing buffer will be saved off, and triggers for 1205 * a running transaction will match the buffer in that transaction. 1206 * 1207 * Call with NULL to clear the triggers. 1208 */ 1209 void jbd2_journal_set_triggers(struct buffer_head *bh, 1210 struct jbd2_buffer_trigger_type *type) 1211 { 1212 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1213 1214 if (WARN_ON(!jh)) 1215 return; 1216 jh->b_triggers = type; 1217 jbd2_journal_put_journal_head(jh); 1218 } 1219 1220 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1221 struct jbd2_buffer_trigger_type *triggers) 1222 { 1223 struct buffer_head *bh = jh2bh(jh); 1224 1225 if (!triggers || !triggers->t_frozen) 1226 return; 1227 1228 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1229 } 1230 1231 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1232 struct jbd2_buffer_trigger_type *triggers) 1233 { 1234 if (!triggers || !triggers->t_abort) 1235 return; 1236 1237 triggers->t_abort(triggers, jh2bh(jh)); 1238 } 1239 1240 1241 1242 /** 1243 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1244 * @handle: transaction to add buffer to. 1245 * @bh: buffer to mark 1246 * 1247 * mark dirty metadata which needs to be journaled as part of the current 1248 * transaction. 1249 * 1250 * The buffer must have previously had jbd2_journal_get_write_access() 1251 * called so that it has a valid journal_head attached to the buffer 1252 * head. 1253 * 1254 * The buffer is placed on the transaction's metadata list and is marked 1255 * as belonging to the transaction. 1256 * 1257 * Returns error number or 0 on success. 1258 * 1259 * Special care needs to be taken if the buffer already belongs to the 1260 * current committing transaction (in which case we should have frozen 1261 * data present for that commit). In that case, we don't relink the 1262 * buffer: that only gets done when the old transaction finally 1263 * completes its commit. 1264 */ 1265 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1266 { 1267 transaction_t *transaction = handle->h_transaction; 1268 journal_t *journal; 1269 struct journal_head *jh; 1270 int ret = 0; 1271 1272 WARN_ON(!transaction); 1273 if (is_handle_aborted(handle)) 1274 return -EROFS; 1275 journal = transaction->t_journal; 1276 jh = jbd2_journal_grab_journal_head(bh); 1277 if (!jh) { 1278 ret = -EUCLEAN; 1279 goto out; 1280 } 1281 jbd_debug(5, "journal_head %p\n", jh); 1282 JBUFFER_TRACE(jh, "entry"); 1283 1284 jbd_lock_bh_state(bh); 1285 1286 if (jh->b_modified == 0) { 1287 /* 1288 * This buffer's got modified and becoming part 1289 * of the transaction. This needs to be done 1290 * once a transaction -bzzz 1291 */ 1292 jh->b_modified = 1; 1293 if (handle->h_buffer_credits <= 0) { 1294 ret = -ENOSPC; 1295 goto out_unlock_bh; 1296 } 1297 handle->h_buffer_credits--; 1298 } 1299 1300 /* 1301 * fastpath, to avoid expensive locking. If this buffer is already 1302 * on the running transaction's metadata list there is nothing to do. 1303 * Nobody can take it off again because there is a handle open. 1304 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1305 * result in this test being false, so we go in and take the locks. 1306 */ 1307 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1308 JBUFFER_TRACE(jh, "fastpath"); 1309 if (unlikely(jh->b_transaction != 1310 journal->j_running_transaction)) { 1311 printk(KERN_ERR "JBD2: %s: " 1312 "jh->b_transaction (%llu, %p, %u) != " 1313 "journal->j_running_transaction (%p, %u)", 1314 journal->j_devname, 1315 (unsigned long long) bh->b_blocknr, 1316 jh->b_transaction, 1317 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1318 journal->j_running_transaction, 1319 journal->j_running_transaction ? 1320 journal->j_running_transaction->t_tid : 0); 1321 ret = -EINVAL; 1322 } 1323 goto out_unlock_bh; 1324 } 1325 1326 set_buffer_jbddirty(bh); 1327 1328 /* 1329 * Metadata already on the current transaction list doesn't 1330 * need to be filed. Metadata on another transaction's list must 1331 * be committing, and will be refiled once the commit completes: 1332 * leave it alone for now. 1333 */ 1334 if (jh->b_transaction != transaction) { 1335 JBUFFER_TRACE(jh, "already on other transaction"); 1336 if (unlikely(jh->b_transaction != 1337 journal->j_committing_transaction)) { 1338 printk(KERN_ERR "JBD2: %s: " 1339 "jh->b_transaction (%llu, %p, %u) != " 1340 "journal->j_committing_transaction (%p, %u)", 1341 journal->j_devname, 1342 (unsigned long long) bh->b_blocknr, 1343 jh->b_transaction, 1344 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1345 journal->j_committing_transaction, 1346 journal->j_committing_transaction ? 1347 journal->j_committing_transaction->t_tid : 0); 1348 ret = -EINVAL; 1349 } 1350 if (unlikely(jh->b_next_transaction != transaction)) { 1351 printk(KERN_ERR "JBD2: %s: " 1352 "jh->b_next_transaction (%llu, %p, %u) != " 1353 "transaction (%p, %u)", 1354 journal->j_devname, 1355 (unsigned long long) bh->b_blocknr, 1356 jh->b_next_transaction, 1357 jh->b_next_transaction ? 1358 jh->b_next_transaction->t_tid : 0, 1359 transaction, transaction->t_tid); 1360 ret = -EINVAL; 1361 } 1362 /* And this case is illegal: we can't reuse another 1363 * transaction's data buffer, ever. */ 1364 goto out_unlock_bh; 1365 } 1366 1367 /* That test should have eliminated the following case: */ 1368 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1369 1370 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1371 spin_lock(&journal->j_list_lock); 1372 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1373 spin_unlock(&journal->j_list_lock); 1374 out_unlock_bh: 1375 jbd_unlock_bh_state(bh); 1376 jbd2_journal_put_journal_head(jh); 1377 out: 1378 JBUFFER_TRACE(jh, "exit"); 1379 return ret; 1380 } 1381 1382 /** 1383 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1384 * @handle: transaction handle 1385 * @bh: bh to 'forget' 1386 * 1387 * We can only do the bforget if there are no commits pending against the 1388 * buffer. If the buffer is dirty in the current running transaction we 1389 * can safely unlink it. 1390 * 1391 * bh may not be a journalled buffer at all - it may be a non-JBD 1392 * buffer which came off the hashtable. Check for this. 1393 * 1394 * Decrements bh->b_count by one. 1395 * 1396 * Allow this call even if the handle has aborted --- it may be part of 1397 * the caller's cleanup after an abort. 1398 */ 1399 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1400 { 1401 transaction_t *transaction = handle->h_transaction; 1402 journal_t *journal; 1403 struct journal_head *jh; 1404 int drop_reserve = 0; 1405 int err = 0; 1406 int was_modified = 0; 1407 1408 WARN_ON(!transaction); 1409 if (is_handle_aborted(handle)) 1410 return -EROFS; 1411 journal = transaction->t_journal; 1412 1413 BUFFER_TRACE(bh, "entry"); 1414 1415 jbd_lock_bh_state(bh); 1416 spin_lock(&journal->j_list_lock); 1417 1418 if (!buffer_jbd(bh)) 1419 goto not_jbd; 1420 jh = bh2jh(bh); 1421 1422 /* Critical error: attempting to delete a bitmap buffer, maybe? 1423 * Don't do any jbd operations, and return an error. */ 1424 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1425 "inconsistent data on disk")) { 1426 err = -EIO; 1427 goto not_jbd; 1428 } 1429 1430 /* keep track of whether or not this transaction modified us */ 1431 was_modified = jh->b_modified; 1432 1433 /* 1434 * The buffer's going from the transaction, we must drop 1435 * all references -bzzz 1436 */ 1437 jh->b_modified = 0; 1438 1439 if (jh->b_transaction == transaction) { 1440 J_ASSERT_JH(jh, !jh->b_frozen_data); 1441 1442 /* If we are forgetting a buffer which is already part 1443 * of this transaction, then we can just drop it from 1444 * the transaction immediately. */ 1445 clear_buffer_dirty(bh); 1446 clear_buffer_jbddirty(bh); 1447 1448 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1449 1450 /* 1451 * we only want to drop a reference if this transaction 1452 * modified the buffer 1453 */ 1454 if (was_modified) 1455 drop_reserve = 1; 1456 1457 /* 1458 * We are no longer going to journal this buffer. 1459 * However, the commit of this transaction is still 1460 * important to the buffer: the delete that we are now 1461 * processing might obsolete an old log entry, so by 1462 * committing, we can satisfy the buffer's checkpoint. 1463 * 1464 * So, if we have a checkpoint on the buffer, we should 1465 * now refile the buffer on our BJ_Forget list so that 1466 * we know to remove the checkpoint after we commit. 1467 */ 1468 1469 if (jh->b_cp_transaction) { 1470 __jbd2_journal_temp_unlink_buffer(jh); 1471 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1472 } else { 1473 __jbd2_journal_unfile_buffer(jh); 1474 if (!buffer_jbd(bh)) { 1475 spin_unlock(&journal->j_list_lock); 1476 jbd_unlock_bh_state(bh); 1477 __bforget(bh); 1478 goto drop; 1479 } 1480 } 1481 } else if (jh->b_transaction) { 1482 J_ASSERT_JH(jh, (jh->b_transaction == 1483 journal->j_committing_transaction)); 1484 /* However, if the buffer is still owned by a prior 1485 * (committing) transaction, we can't drop it yet... */ 1486 JBUFFER_TRACE(jh, "belongs to older transaction"); 1487 /* ... but we CAN drop it from the new transaction if we 1488 * have also modified it since the original commit. */ 1489 1490 if (jh->b_next_transaction) { 1491 J_ASSERT(jh->b_next_transaction == transaction); 1492 jh->b_next_transaction = NULL; 1493 1494 /* 1495 * only drop a reference if this transaction modified 1496 * the buffer 1497 */ 1498 if (was_modified) 1499 drop_reserve = 1; 1500 } 1501 } 1502 1503 not_jbd: 1504 spin_unlock(&journal->j_list_lock); 1505 jbd_unlock_bh_state(bh); 1506 __brelse(bh); 1507 drop: 1508 if (drop_reserve) { 1509 /* no need to reserve log space for this block -bzzz */ 1510 handle->h_buffer_credits++; 1511 } 1512 return err; 1513 } 1514 1515 /** 1516 * int jbd2_journal_stop() - complete a transaction 1517 * @handle: tranaction to complete. 1518 * 1519 * All done for a particular handle. 1520 * 1521 * There is not much action needed here. We just return any remaining 1522 * buffer credits to the transaction and remove the handle. The only 1523 * complication is that we need to start a commit operation if the 1524 * filesystem is marked for synchronous update. 1525 * 1526 * jbd2_journal_stop itself will not usually return an error, but it may 1527 * do so in unusual circumstances. In particular, expect it to 1528 * return -EIO if a jbd2_journal_abort has been executed since the 1529 * transaction began. 1530 */ 1531 int jbd2_journal_stop(handle_t *handle) 1532 { 1533 transaction_t *transaction = handle->h_transaction; 1534 journal_t *journal; 1535 int err = 0, wait_for_commit = 0; 1536 tid_t tid; 1537 pid_t pid; 1538 1539 if (!transaction) 1540 goto free_and_exit; 1541 journal = transaction->t_journal; 1542 1543 J_ASSERT(journal_current_handle() == handle); 1544 1545 if (is_handle_aborted(handle)) 1546 err = -EIO; 1547 else 1548 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1549 1550 if (--handle->h_ref > 0) { 1551 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1552 handle->h_ref); 1553 return err; 1554 } 1555 1556 jbd_debug(4, "Handle %p going down\n", handle); 1557 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1558 transaction->t_tid, 1559 handle->h_type, handle->h_line_no, 1560 jiffies - handle->h_start_jiffies, 1561 handle->h_sync, handle->h_requested_credits, 1562 (handle->h_requested_credits - 1563 handle->h_buffer_credits)); 1564 1565 /* 1566 * Implement synchronous transaction batching. If the handle 1567 * was synchronous, don't force a commit immediately. Let's 1568 * yield and let another thread piggyback onto this 1569 * transaction. Keep doing that while new threads continue to 1570 * arrive. It doesn't cost much - we're about to run a commit 1571 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1572 * operations by 30x or more... 1573 * 1574 * We try and optimize the sleep time against what the 1575 * underlying disk can do, instead of having a static sleep 1576 * time. This is useful for the case where our storage is so 1577 * fast that it is more optimal to go ahead and force a flush 1578 * and wait for the transaction to be committed than it is to 1579 * wait for an arbitrary amount of time for new writers to 1580 * join the transaction. We achieve this by measuring how 1581 * long it takes to commit a transaction, and compare it with 1582 * how long this transaction has been running, and if run time 1583 * < commit time then we sleep for the delta and commit. This 1584 * greatly helps super fast disks that would see slowdowns as 1585 * more threads started doing fsyncs. 1586 * 1587 * But don't do this if this process was the most recent one 1588 * to perform a synchronous write. We do this to detect the 1589 * case where a single process is doing a stream of sync 1590 * writes. No point in waiting for joiners in that case. 1591 */ 1592 pid = current->pid; 1593 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1594 u64 commit_time, trans_time; 1595 1596 journal->j_last_sync_writer = pid; 1597 1598 read_lock(&journal->j_state_lock); 1599 commit_time = journal->j_average_commit_time; 1600 read_unlock(&journal->j_state_lock); 1601 1602 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1603 transaction->t_start_time)); 1604 1605 commit_time = max_t(u64, commit_time, 1606 1000*journal->j_min_batch_time); 1607 commit_time = min_t(u64, commit_time, 1608 1000*journal->j_max_batch_time); 1609 1610 if (trans_time < commit_time) { 1611 ktime_t expires = ktime_add_ns(ktime_get(), 1612 commit_time); 1613 set_current_state(TASK_UNINTERRUPTIBLE); 1614 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1615 } 1616 } 1617 1618 if (handle->h_sync) 1619 transaction->t_synchronous_commit = 1; 1620 current->journal_info = NULL; 1621 atomic_sub(handle->h_buffer_credits, 1622 &transaction->t_outstanding_credits); 1623 1624 /* 1625 * If the handle is marked SYNC, we need to set another commit 1626 * going! We also want to force a commit if the current 1627 * transaction is occupying too much of the log, or if the 1628 * transaction is too old now. 1629 */ 1630 if (handle->h_sync || 1631 (atomic_read(&transaction->t_outstanding_credits) > 1632 journal->j_max_transaction_buffers) || 1633 time_after_eq(jiffies, transaction->t_expires)) { 1634 /* Do this even for aborted journals: an abort still 1635 * completes the commit thread, it just doesn't write 1636 * anything to disk. */ 1637 1638 jbd_debug(2, "transaction too old, requesting commit for " 1639 "handle %p\n", handle); 1640 /* This is non-blocking */ 1641 jbd2_log_start_commit(journal, transaction->t_tid); 1642 1643 /* 1644 * Special case: JBD2_SYNC synchronous updates require us 1645 * to wait for the commit to complete. 1646 */ 1647 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1648 wait_for_commit = 1; 1649 } 1650 1651 /* 1652 * Once we drop t_updates, if it goes to zero the transaction 1653 * could start committing on us and eventually disappear. So 1654 * once we do this, we must not dereference transaction 1655 * pointer again. 1656 */ 1657 tid = transaction->t_tid; 1658 if (atomic_dec_and_test(&transaction->t_updates)) { 1659 wake_up(&journal->j_wait_updates); 1660 if (journal->j_barrier_count) 1661 wake_up(&journal->j_wait_transaction_locked); 1662 } 1663 1664 if (wait_for_commit) 1665 err = jbd2_log_wait_commit(journal, tid); 1666 1667 lock_map_release(&handle->h_lockdep_map); 1668 1669 if (handle->h_rsv_handle) 1670 jbd2_journal_free_reserved(handle->h_rsv_handle); 1671 free_and_exit: 1672 jbd2_free_handle(handle); 1673 return err; 1674 } 1675 1676 /* 1677 * 1678 * List management code snippets: various functions for manipulating the 1679 * transaction buffer lists. 1680 * 1681 */ 1682 1683 /* 1684 * Append a buffer to a transaction list, given the transaction's list head 1685 * pointer. 1686 * 1687 * j_list_lock is held. 1688 * 1689 * jbd_lock_bh_state(jh2bh(jh)) is held. 1690 */ 1691 1692 static inline void 1693 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1694 { 1695 if (!*list) { 1696 jh->b_tnext = jh->b_tprev = jh; 1697 *list = jh; 1698 } else { 1699 /* Insert at the tail of the list to preserve order */ 1700 struct journal_head *first = *list, *last = first->b_tprev; 1701 jh->b_tprev = last; 1702 jh->b_tnext = first; 1703 last->b_tnext = first->b_tprev = jh; 1704 } 1705 } 1706 1707 /* 1708 * Remove a buffer from a transaction list, given the transaction's list 1709 * head pointer. 1710 * 1711 * Called with j_list_lock held, and the journal may not be locked. 1712 * 1713 * jbd_lock_bh_state(jh2bh(jh)) is held. 1714 */ 1715 1716 static inline void 1717 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1718 { 1719 if (*list == jh) { 1720 *list = jh->b_tnext; 1721 if (*list == jh) 1722 *list = NULL; 1723 } 1724 jh->b_tprev->b_tnext = jh->b_tnext; 1725 jh->b_tnext->b_tprev = jh->b_tprev; 1726 } 1727 1728 /* 1729 * Remove a buffer from the appropriate transaction list. 1730 * 1731 * Note that this function can *change* the value of 1732 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1733 * t_reserved_list. If the caller is holding onto a copy of one of these 1734 * pointers, it could go bad. Generally the caller needs to re-read the 1735 * pointer from the transaction_t. 1736 * 1737 * Called under j_list_lock. 1738 */ 1739 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1740 { 1741 struct journal_head **list = NULL; 1742 transaction_t *transaction; 1743 struct buffer_head *bh = jh2bh(jh); 1744 1745 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1746 transaction = jh->b_transaction; 1747 if (transaction) 1748 assert_spin_locked(&transaction->t_journal->j_list_lock); 1749 1750 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1751 if (jh->b_jlist != BJ_None) 1752 J_ASSERT_JH(jh, transaction != NULL); 1753 1754 switch (jh->b_jlist) { 1755 case BJ_None: 1756 return; 1757 case BJ_Metadata: 1758 transaction->t_nr_buffers--; 1759 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1760 list = &transaction->t_buffers; 1761 break; 1762 case BJ_Forget: 1763 list = &transaction->t_forget; 1764 break; 1765 case BJ_Shadow: 1766 list = &transaction->t_shadow_list; 1767 break; 1768 case BJ_Reserved: 1769 list = &transaction->t_reserved_list; 1770 break; 1771 } 1772 1773 __blist_del_buffer(list, jh); 1774 jh->b_jlist = BJ_None; 1775 if (test_clear_buffer_jbddirty(bh)) 1776 mark_buffer_dirty(bh); /* Expose it to the VM */ 1777 } 1778 1779 /* 1780 * Remove buffer from all transactions. 1781 * 1782 * Called with bh_state lock and j_list_lock 1783 * 1784 * jh and bh may be already freed when this function returns. 1785 */ 1786 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1787 { 1788 __jbd2_journal_temp_unlink_buffer(jh); 1789 jh->b_transaction = NULL; 1790 jbd2_journal_put_journal_head(jh); 1791 } 1792 1793 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1794 { 1795 struct buffer_head *bh = jh2bh(jh); 1796 1797 /* Get reference so that buffer cannot be freed before we unlock it */ 1798 get_bh(bh); 1799 jbd_lock_bh_state(bh); 1800 spin_lock(&journal->j_list_lock); 1801 __jbd2_journal_unfile_buffer(jh); 1802 spin_unlock(&journal->j_list_lock); 1803 jbd_unlock_bh_state(bh); 1804 __brelse(bh); 1805 } 1806 1807 /* 1808 * Called from jbd2_journal_try_to_free_buffers(). 1809 * 1810 * Called under jbd_lock_bh_state(bh) 1811 */ 1812 static void 1813 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1814 { 1815 struct journal_head *jh; 1816 1817 jh = bh2jh(bh); 1818 1819 if (buffer_locked(bh) || buffer_dirty(bh)) 1820 goto out; 1821 1822 if (jh->b_next_transaction != NULL) 1823 goto out; 1824 1825 spin_lock(&journal->j_list_lock); 1826 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1827 /* written-back checkpointed metadata buffer */ 1828 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1829 __jbd2_journal_remove_checkpoint(jh); 1830 } 1831 spin_unlock(&journal->j_list_lock); 1832 out: 1833 return; 1834 } 1835 1836 /** 1837 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1838 * @journal: journal for operation 1839 * @page: to try and free 1840 * @gfp_mask: we use the mask to detect how hard should we try to release 1841 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1842 * release the buffers. 1843 * 1844 * 1845 * For all the buffers on this page, 1846 * if they are fully written out ordered data, move them onto BUF_CLEAN 1847 * so try_to_free_buffers() can reap them. 1848 * 1849 * This function returns non-zero if we wish try_to_free_buffers() 1850 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1851 * We also do it if the page has locked or dirty buffers and the caller wants 1852 * us to perform sync or async writeout. 1853 * 1854 * This complicates JBD locking somewhat. We aren't protected by the 1855 * BKL here. We wish to remove the buffer from its committing or 1856 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1857 * 1858 * This may *change* the value of transaction_t->t_datalist, so anyone 1859 * who looks at t_datalist needs to lock against this function. 1860 * 1861 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1862 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1863 * will come out of the lock with the buffer dirty, which makes it 1864 * ineligible for release here. 1865 * 1866 * Who else is affected by this? hmm... Really the only contender 1867 * is do_get_write_access() - it could be looking at the buffer while 1868 * journal_try_to_free_buffer() is changing its state. But that 1869 * cannot happen because we never reallocate freed data as metadata 1870 * while the data is part of a transaction. Yes? 1871 * 1872 * Return 0 on failure, 1 on success 1873 */ 1874 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1875 struct page *page, gfp_t gfp_mask) 1876 { 1877 struct buffer_head *head; 1878 struct buffer_head *bh; 1879 int ret = 0; 1880 1881 J_ASSERT(PageLocked(page)); 1882 1883 head = page_buffers(page); 1884 bh = head; 1885 do { 1886 struct journal_head *jh; 1887 1888 /* 1889 * We take our own ref against the journal_head here to avoid 1890 * having to add tons of locking around each instance of 1891 * jbd2_journal_put_journal_head(). 1892 */ 1893 jh = jbd2_journal_grab_journal_head(bh); 1894 if (!jh) 1895 continue; 1896 1897 jbd_lock_bh_state(bh); 1898 __journal_try_to_free_buffer(journal, bh); 1899 jbd2_journal_put_journal_head(jh); 1900 jbd_unlock_bh_state(bh); 1901 if (buffer_jbd(bh)) 1902 goto busy; 1903 } while ((bh = bh->b_this_page) != head); 1904 1905 ret = try_to_free_buffers(page); 1906 1907 busy: 1908 return ret; 1909 } 1910 1911 /* 1912 * This buffer is no longer needed. If it is on an older transaction's 1913 * checkpoint list we need to record it on this transaction's forget list 1914 * to pin this buffer (and hence its checkpointing transaction) down until 1915 * this transaction commits. If the buffer isn't on a checkpoint list, we 1916 * release it. 1917 * Returns non-zero if JBD no longer has an interest in the buffer. 1918 * 1919 * Called under j_list_lock. 1920 * 1921 * Called under jbd_lock_bh_state(bh). 1922 */ 1923 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1924 { 1925 int may_free = 1; 1926 struct buffer_head *bh = jh2bh(jh); 1927 1928 if (jh->b_cp_transaction) { 1929 JBUFFER_TRACE(jh, "on running+cp transaction"); 1930 __jbd2_journal_temp_unlink_buffer(jh); 1931 /* 1932 * We don't want to write the buffer anymore, clear the 1933 * bit so that we don't confuse checks in 1934 * __journal_file_buffer 1935 */ 1936 clear_buffer_dirty(bh); 1937 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1938 may_free = 0; 1939 } else { 1940 JBUFFER_TRACE(jh, "on running transaction"); 1941 __jbd2_journal_unfile_buffer(jh); 1942 } 1943 return may_free; 1944 } 1945 1946 /* 1947 * jbd2_journal_invalidatepage 1948 * 1949 * This code is tricky. It has a number of cases to deal with. 1950 * 1951 * There are two invariants which this code relies on: 1952 * 1953 * i_size must be updated on disk before we start calling invalidatepage on the 1954 * data. 1955 * 1956 * This is done in ext3 by defining an ext3_setattr method which 1957 * updates i_size before truncate gets going. By maintaining this 1958 * invariant, we can be sure that it is safe to throw away any buffers 1959 * attached to the current transaction: once the transaction commits, 1960 * we know that the data will not be needed. 1961 * 1962 * Note however that we can *not* throw away data belonging to the 1963 * previous, committing transaction! 1964 * 1965 * Any disk blocks which *are* part of the previous, committing 1966 * transaction (and which therefore cannot be discarded immediately) are 1967 * not going to be reused in the new running transaction 1968 * 1969 * The bitmap committed_data images guarantee this: any block which is 1970 * allocated in one transaction and removed in the next will be marked 1971 * as in-use in the committed_data bitmap, so cannot be reused until 1972 * the next transaction to delete the block commits. This means that 1973 * leaving committing buffers dirty is quite safe: the disk blocks 1974 * cannot be reallocated to a different file and so buffer aliasing is 1975 * not possible. 1976 * 1977 * 1978 * The above applies mainly to ordered data mode. In writeback mode we 1979 * don't make guarantees about the order in which data hits disk --- in 1980 * particular we don't guarantee that new dirty data is flushed before 1981 * transaction commit --- so it is always safe just to discard data 1982 * immediately in that mode. --sct 1983 */ 1984 1985 /* 1986 * The journal_unmap_buffer helper function returns zero if the buffer 1987 * concerned remains pinned as an anonymous buffer belonging to an older 1988 * transaction. 1989 * 1990 * We're outside-transaction here. Either or both of j_running_transaction 1991 * and j_committing_transaction may be NULL. 1992 */ 1993 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1994 int partial_page) 1995 { 1996 transaction_t *transaction; 1997 struct journal_head *jh; 1998 int may_free = 1; 1999 2000 BUFFER_TRACE(bh, "entry"); 2001 2002 /* 2003 * It is safe to proceed here without the j_list_lock because the 2004 * buffers cannot be stolen by try_to_free_buffers as long as we are 2005 * holding the page lock. --sct 2006 */ 2007 2008 if (!buffer_jbd(bh)) 2009 goto zap_buffer_unlocked; 2010 2011 /* OK, we have data buffer in journaled mode */ 2012 write_lock(&journal->j_state_lock); 2013 jbd_lock_bh_state(bh); 2014 spin_lock(&journal->j_list_lock); 2015 2016 jh = jbd2_journal_grab_journal_head(bh); 2017 if (!jh) 2018 goto zap_buffer_no_jh; 2019 2020 /* 2021 * We cannot remove the buffer from checkpoint lists until the 2022 * transaction adding inode to orphan list (let's call it T) 2023 * is committed. Otherwise if the transaction changing the 2024 * buffer would be cleaned from the journal before T is 2025 * committed, a crash will cause that the correct contents of 2026 * the buffer will be lost. On the other hand we have to 2027 * clear the buffer dirty bit at latest at the moment when the 2028 * transaction marking the buffer as freed in the filesystem 2029 * structures is committed because from that moment on the 2030 * block can be reallocated and used by a different page. 2031 * Since the block hasn't been freed yet but the inode has 2032 * already been added to orphan list, it is safe for us to add 2033 * the buffer to BJ_Forget list of the newest transaction. 2034 * 2035 * Also we have to clear buffer_mapped flag of a truncated buffer 2036 * because the buffer_head may be attached to the page straddling 2037 * i_size (can happen only when blocksize < pagesize) and thus the 2038 * buffer_head can be reused when the file is extended again. So we end 2039 * up keeping around invalidated buffers attached to transactions' 2040 * BJ_Forget list just to stop checkpointing code from cleaning up 2041 * the transaction this buffer was modified in. 2042 */ 2043 transaction = jh->b_transaction; 2044 if (transaction == NULL) { 2045 /* First case: not on any transaction. If it 2046 * has no checkpoint link, then we can zap it: 2047 * it's a writeback-mode buffer so we don't care 2048 * if it hits disk safely. */ 2049 if (!jh->b_cp_transaction) { 2050 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2051 goto zap_buffer; 2052 } 2053 2054 if (!buffer_dirty(bh)) { 2055 /* bdflush has written it. We can drop it now */ 2056 goto zap_buffer; 2057 } 2058 2059 /* OK, it must be in the journal but still not 2060 * written fully to disk: it's metadata or 2061 * journaled data... */ 2062 2063 if (journal->j_running_transaction) { 2064 /* ... and once the current transaction has 2065 * committed, the buffer won't be needed any 2066 * longer. */ 2067 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2068 may_free = __dispose_buffer(jh, 2069 journal->j_running_transaction); 2070 goto zap_buffer; 2071 } else { 2072 /* There is no currently-running transaction. So the 2073 * orphan record which we wrote for this file must have 2074 * passed into commit. We must attach this buffer to 2075 * the committing transaction, if it exists. */ 2076 if (journal->j_committing_transaction) { 2077 JBUFFER_TRACE(jh, "give to committing trans"); 2078 may_free = __dispose_buffer(jh, 2079 journal->j_committing_transaction); 2080 goto zap_buffer; 2081 } else { 2082 /* The orphan record's transaction has 2083 * committed. We can cleanse this buffer */ 2084 clear_buffer_jbddirty(bh); 2085 goto zap_buffer; 2086 } 2087 } 2088 } else if (transaction == journal->j_committing_transaction) { 2089 JBUFFER_TRACE(jh, "on committing transaction"); 2090 /* 2091 * The buffer is committing, we simply cannot touch 2092 * it. If the page is straddling i_size we have to wait 2093 * for commit and try again. 2094 */ 2095 if (partial_page) { 2096 jbd2_journal_put_journal_head(jh); 2097 spin_unlock(&journal->j_list_lock); 2098 jbd_unlock_bh_state(bh); 2099 write_unlock(&journal->j_state_lock); 2100 return -EBUSY; 2101 } 2102 /* 2103 * OK, buffer won't be reachable after truncate. We just set 2104 * j_next_transaction to the running transaction (if there is 2105 * one) and mark buffer as freed so that commit code knows it 2106 * should clear dirty bits when it is done with the buffer. 2107 */ 2108 set_buffer_freed(bh); 2109 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2110 jh->b_next_transaction = journal->j_running_transaction; 2111 jbd2_journal_put_journal_head(jh); 2112 spin_unlock(&journal->j_list_lock); 2113 jbd_unlock_bh_state(bh); 2114 write_unlock(&journal->j_state_lock); 2115 return 0; 2116 } else { 2117 /* Good, the buffer belongs to the running transaction. 2118 * We are writing our own transaction's data, not any 2119 * previous one's, so it is safe to throw it away 2120 * (remember that we expect the filesystem to have set 2121 * i_size already for this truncate so recovery will not 2122 * expose the disk blocks we are discarding here.) */ 2123 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2124 JBUFFER_TRACE(jh, "on running transaction"); 2125 may_free = __dispose_buffer(jh, transaction); 2126 } 2127 2128 zap_buffer: 2129 /* 2130 * This is tricky. Although the buffer is truncated, it may be reused 2131 * if blocksize < pagesize and it is attached to the page straddling 2132 * EOF. Since the buffer might have been added to BJ_Forget list of the 2133 * running transaction, journal_get_write_access() won't clear 2134 * b_modified and credit accounting gets confused. So clear b_modified 2135 * here. 2136 */ 2137 jh->b_modified = 0; 2138 jbd2_journal_put_journal_head(jh); 2139 zap_buffer_no_jh: 2140 spin_unlock(&journal->j_list_lock); 2141 jbd_unlock_bh_state(bh); 2142 write_unlock(&journal->j_state_lock); 2143 zap_buffer_unlocked: 2144 clear_buffer_dirty(bh); 2145 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2146 clear_buffer_mapped(bh); 2147 clear_buffer_req(bh); 2148 clear_buffer_new(bh); 2149 clear_buffer_delay(bh); 2150 clear_buffer_unwritten(bh); 2151 bh->b_bdev = NULL; 2152 return may_free; 2153 } 2154 2155 /** 2156 * void jbd2_journal_invalidatepage() 2157 * @journal: journal to use for flush... 2158 * @page: page to flush 2159 * @offset: start of the range to invalidate 2160 * @length: length of the range to invalidate 2161 * 2162 * Reap page buffers containing data after in the specified range in page. 2163 * Can return -EBUSY if buffers are part of the committing transaction and 2164 * the page is straddling i_size. Caller then has to wait for current commit 2165 * and try again. 2166 */ 2167 int jbd2_journal_invalidatepage(journal_t *journal, 2168 struct page *page, 2169 unsigned int offset, 2170 unsigned int length) 2171 { 2172 struct buffer_head *head, *bh, *next; 2173 unsigned int stop = offset + length; 2174 unsigned int curr_off = 0; 2175 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2176 int may_free = 1; 2177 int ret = 0; 2178 2179 if (!PageLocked(page)) 2180 BUG(); 2181 if (!page_has_buffers(page)) 2182 return 0; 2183 2184 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2185 2186 /* We will potentially be playing with lists other than just the 2187 * data lists (especially for journaled data mode), so be 2188 * cautious in our locking. */ 2189 2190 head = bh = page_buffers(page); 2191 do { 2192 unsigned int next_off = curr_off + bh->b_size; 2193 next = bh->b_this_page; 2194 2195 if (next_off > stop) 2196 return 0; 2197 2198 if (offset <= curr_off) { 2199 /* This block is wholly outside the truncation point */ 2200 lock_buffer(bh); 2201 ret = journal_unmap_buffer(journal, bh, partial_page); 2202 unlock_buffer(bh); 2203 if (ret < 0) 2204 return ret; 2205 may_free &= ret; 2206 } 2207 curr_off = next_off; 2208 bh = next; 2209 2210 } while (bh != head); 2211 2212 if (!partial_page) { 2213 if (may_free && try_to_free_buffers(page)) 2214 J_ASSERT(!page_has_buffers(page)); 2215 } 2216 return 0; 2217 } 2218 2219 /* 2220 * File a buffer on the given transaction list. 2221 */ 2222 void __jbd2_journal_file_buffer(struct journal_head *jh, 2223 transaction_t *transaction, int jlist) 2224 { 2225 struct journal_head **list = NULL; 2226 int was_dirty = 0; 2227 struct buffer_head *bh = jh2bh(jh); 2228 2229 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2230 assert_spin_locked(&transaction->t_journal->j_list_lock); 2231 2232 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2233 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2234 jh->b_transaction == NULL); 2235 2236 if (jh->b_transaction && jh->b_jlist == jlist) 2237 return; 2238 2239 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2240 jlist == BJ_Shadow || jlist == BJ_Forget) { 2241 /* 2242 * For metadata buffers, we track dirty bit in buffer_jbddirty 2243 * instead of buffer_dirty. We should not see a dirty bit set 2244 * here because we clear it in do_get_write_access but e.g. 2245 * tune2fs can modify the sb and set the dirty bit at any time 2246 * so we try to gracefully handle that. 2247 */ 2248 if (buffer_dirty(bh)) 2249 warn_dirty_buffer(bh); 2250 if (test_clear_buffer_dirty(bh) || 2251 test_clear_buffer_jbddirty(bh)) 2252 was_dirty = 1; 2253 } 2254 2255 if (jh->b_transaction) 2256 __jbd2_journal_temp_unlink_buffer(jh); 2257 else 2258 jbd2_journal_grab_journal_head(bh); 2259 jh->b_transaction = transaction; 2260 2261 switch (jlist) { 2262 case BJ_None: 2263 J_ASSERT_JH(jh, !jh->b_committed_data); 2264 J_ASSERT_JH(jh, !jh->b_frozen_data); 2265 return; 2266 case BJ_Metadata: 2267 transaction->t_nr_buffers++; 2268 list = &transaction->t_buffers; 2269 break; 2270 case BJ_Forget: 2271 list = &transaction->t_forget; 2272 break; 2273 case BJ_Shadow: 2274 list = &transaction->t_shadow_list; 2275 break; 2276 case BJ_Reserved: 2277 list = &transaction->t_reserved_list; 2278 break; 2279 } 2280 2281 __blist_add_buffer(list, jh); 2282 jh->b_jlist = jlist; 2283 2284 if (was_dirty) 2285 set_buffer_jbddirty(bh); 2286 } 2287 2288 void jbd2_journal_file_buffer(struct journal_head *jh, 2289 transaction_t *transaction, int jlist) 2290 { 2291 jbd_lock_bh_state(jh2bh(jh)); 2292 spin_lock(&transaction->t_journal->j_list_lock); 2293 __jbd2_journal_file_buffer(jh, transaction, jlist); 2294 spin_unlock(&transaction->t_journal->j_list_lock); 2295 jbd_unlock_bh_state(jh2bh(jh)); 2296 } 2297 2298 /* 2299 * Remove a buffer from its current buffer list in preparation for 2300 * dropping it from its current transaction entirely. If the buffer has 2301 * already started to be used by a subsequent transaction, refile the 2302 * buffer on that transaction's metadata list. 2303 * 2304 * Called under j_list_lock 2305 * Called under jbd_lock_bh_state(jh2bh(jh)) 2306 * 2307 * jh and bh may be already free when this function returns 2308 */ 2309 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2310 { 2311 int was_dirty, jlist; 2312 struct buffer_head *bh = jh2bh(jh); 2313 2314 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2315 if (jh->b_transaction) 2316 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2317 2318 /* If the buffer is now unused, just drop it. */ 2319 if (jh->b_next_transaction == NULL) { 2320 __jbd2_journal_unfile_buffer(jh); 2321 return; 2322 } 2323 2324 /* 2325 * It has been modified by a later transaction: add it to the new 2326 * transaction's metadata list. 2327 */ 2328 2329 was_dirty = test_clear_buffer_jbddirty(bh); 2330 __jbd2_journal_temp_unlink_buffer(jh); 2331 /* 2332 * We set b_transaction here because b_next_transaction will inherit 2333 * our jh reference and thus __jbd2_journal_file_buffer() must not 2334 * take a new one. 2335 */ 2336 jh->b_transaction = jh->b_next_transaction; 2337 jh->b_next_transaction = NULL; 2338 if (buffer_freed(bh)) 2339 jlist = BJ_Forget; 2340 else if (jh->b_modified) 2341 jlist = BJ_Metadata; 2342 else 2343 jlist = BJ_Reserved; 2344 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2345 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2346 2347 if (was_dirty) 2348 set_buffer_jbddirty(bh); 2349 } 2350 2351 /* 2352 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2353 * bh reference so that we can safely unlock bh. 2354 * 2355 * The jh and bh may be freed by this call. 2356 */ 2357 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2358 { 2359 struct buffer_head *bh = jh2bh(jh); 2360 2361 /* Get reference so that buffer cannot be freed before we unlock it */ 2362 get_bh(bh); 2363 jbd_lock_bh_state(bh); 2364 spin_lock(&journal->j_list_lock); 2365 __jbd2_journal_refile_buffer(jh); 2366 jbd_unlock_bh_state(bh); 2367 spin_unlock(&journal->j_list_lock); 2368 __brelse(bh); 2369 } 2370 2371 /* 2372 * File inode in the inode list of the handle's transaction 2373 */ 2374 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2375 { 2376 transaction_t *transaction = handle->h_transaction; 2377 journal_t *journal; 2378 2379 WARN_ON(!transaction); 2380 if (is_handle_aborted(handle)) 2381 return -EROFS; 2382 journal = transaction->t_journal; 2383 2384 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2385 transaction->t_tid); 2386 2387 /* 2388 * First check whether inode isn't already on the transaction's 2389 * lists without taking the lock. Note that this check is safe 2390 * without the lock as we cannot race with somebody removing inode 2391 * from the transaction. The reason is that we remove inode from the 2392 * transaction only in journal_release_jbd_inode() and when we commit 2393 * the transaction. We are guarded from the first case by holding 2394 * a reference to the inode. We are safe against the second case 2395 * because if jinode->i_transaction == transaction, commit code 2396 * cannot touch the transaction because we hold reference to it, 2397 * and if jinode->i_next_transaction == transaction, commit code 2398 * will only file the inode where we want it. 2399 */ 2400 if (jinode->i_transaction == transaction || 2401 jinode->i_next_transaction == transaction) 2402 return 0; 2403 2404 spin_lock(&journal->j_list_lock); 2405 2406 if (jinode->i_transaction == transaction || 2407 jinode->i_next_transaction == transaction) 2408 goto done; 2409 2410 /* 2411 * We only ever set this variable to 1 so the test is safe. Since 2412 * t_need_data_flush is likely to be set, we do the test to save some 2413 * cacheline bouncing 2414 */ 2415 if (!transaction->t_need_data_flush) 2416 transaction->t_need_data_flush = 1; 2417 /* On some different transaction's list - should be 2418 * the committing one */ 2419 if (jinode->i_transaction) { 2420 J_ASSERT(jinode->i_next_transaction == NULL); 2421 J_ASSERT(jinode->i_transaction == 2422 journal->j_committing_transaction); 2423 jinode->i_next_transaction = transaction; 2424 goto done; 2425 } 2426 /* Not on any transaction list... */ 2427 J_ASSERT(!jinode->i_next_transaction); 2428 jinode->i_transaction = transaction; 2429 list_add(&jinode->i_list, &transaction->t_inode_list); 2430 done: 2431 spin_unlock(&journal->j_list_lock); 2432 2433 return 0; 2434 } 2435 2436 /* 2437 * File truncate and transaction commit interact with each other in a 2438 * non-trivial way. If a transaction writing data block A is 2439 * committing, we cannot discard the data by truncate until we have 2440 * written them. Otherwise if we crashed after the transaction with 2441 * write has committed but before the transaction with truncate has 2442 * committed, we could see stale data in block A. This function is a 2443 * helper to solve this problem. It starts writeout of the truncated 2444 * part in case it is in the committing transaction. 2445 * 2446 * Filesystem code must call this function when inode is journaled in 2447 * ordered mode before truncation happens and after the inode has been 2448 * placed on orphan list with the new inode size. The second condition 2449 * avoids the race that someone writes new data and we start 2450 * committing the transaction after this function has been called but 2451 * before a transaction for truncate is started (and furthermore it 2452 * allows us to optimize the case where the addition to orphan list 2453 * happens in the same transaction as write --- we don't have to write 2454 * any data in such case). 2455 */ 2456 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2457 struct jbd2_inode *jinode, 2458 loff_t new_size) 2459 { 2460 transaction_t *inode_trans, *commit_trans; 2461 int ret = 0; 2462 2463 /* This is a quick check to avoid locking if not necessary */ 2464 if (!jinode->i_transaction) 2465 goto out; 2466 /* Locks are here just to force reading of recent values, it is 2467 * enough that the transaction was not committing before we started 2468 * a transaction adding the inode to orphan list */ 2469 read_lock(&journal->j_state_lock); 2470 commit_trans = journal->j_committing_transaction; 2471 read_unlock(&journal->j_state_lock); 2472 spin_lock(&journal->j_list_lock); 2473 inode_trans = jinode->i_transaction; 2474 spin_unlock(&journal->j_list_lock); 2475 if (inode_trans == commit_trans) { 2476 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2477 new_size, LLONG_MAX); 2478 if (ret) 2479 jbd2_journal_abort(journal, ret); 2480 } 2481 out: 2482 return ret; 2483 } 2484