xref: /openbmc/linux/fs/jbd2/transaction.c (revision 80d0624d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static void jbd2_get_transaction(journal_t *journal,
81 				transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	atomic_set(&transaction->t_updates, 0);
89 	atomic_set(&transaction->t_outstanding_credits,
90 		   journal->j_transaction_overhead_buffers +
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_outstanding_revokes, 0);
93 	atomic_set(&transaction->t_handle_count, 0);
94 	INIT_LIST_HEAD(&transaction->t_inode_list);
95 	INIT_LIST_HEAD(&transaction->t_private_list);
96 
97 	/* Set up the commit timer for the new transaction. */
98 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 	add_timer(&journal->j_commit_timer);
100 
101 	J_ASSERT(journal->j_running_transaction == NULL);
102 	journal->j_running_transaction = transaction;
103 	transaction->t_max_wait = 0;
104 	transaction->t_start = jiffies;
105 	transaction->t_requested = 0;
106 }
107 
108 /*
109  * Handle management.
110  *
111  * A handle_t is an object which represents a single atomic update to a
112  * filesystem, and which tracks all of the modifications which form part
113  * of that one update.
114  */
115 
116 /*
117  * Update transaction's maximum wait time, if debugging is enabled.
118  *
119  * t_max_wait is carefully updated here with use of atomic compare exchange.
120  * Note that there could be multiplre threads trying to do this simultaneously
121  * hence using cmpxchg to avoid any use of locks in this case.
122  * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
123  */
124 static inline void update_t_max_wait(transaction_t *transaction,
125 				     unsigned long ts)
126 {
127 	unsigned long oldts, newts;
128 
129 	if (time_after(transaction->t_start, ts)) {
130 		newts = jbd2_time_diff(ts, transaction->t_start);
131 		oldts = READ_ONCE(transaction->t_max_wait);
132 		while (oldts < newts)
133 			oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
134 	}
135 }
136 
137 /*
138  * Wait until running transaction passes to T_FLUSH state and new transaction
139  * can thus be started. Also starts the commit if needed. The function expects
140  * running transaction to exist and releases j_state_lock.
141  */
142 static void wait_transaction_locked(journal_t *journal)
143 	__releases(journal->j_state_lock)
144 {
145 	DEFINE_WAIT(wait);
146 	int need_to_start;
147 	tid_t tid = journal->j_running_transaction->t_tid;
148 
149 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
150 			TASK_UNINTERRUPTIBLE);
151 	need_to_start = !tid_geq(journal->j_commit_request, tid);
152 	read_unlock(&journal->j_state_lock);
153 	if (need_to_start)
154 		jbd2_log_start_commit(journal, tid);
155 	jbd2_might_wait_for_commit(journal);
156 	schedule();
157 	finish_wait(&journal->j_wait_transaction_locked, &wait);
158 }
159 
160 /*
161  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
162  * state and new transaction can thus be started. The function releases
163  * j_state_lock.
164  */
165 static void wait_transaction_switching(journal_t *journal)
166 	__releases(journal->j_state_lock)
167 {
168 	DEFINE_WAIT(wait);
169 
170 	if (WARN_ON(!journal->j_running_transaction ||
171 		    journal->j_running_transaction->t_state != T_SWITCH)) {
172 		read_unlock(&journal->j_state_lock);
173 		return;
174 	}
175 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
176 			TASK_UNINTERRUPTIBLE);
177 	read_unlock(&journal->j_state_lock);
178 	/*
179 	 * We don't call jbd2_might_wait_for_commit() here as there's no
180 	 * waiting for outstanding handles happening anymore in T_SWITCH state
181 	 * and handling of reserved handles actually relies on that for
182 	 * correctness.
183 	 */
184 	schedule();
185 	finish_wait(&journal->j_wait_transaction_locked, &wait);
186 }
187 
188 static void sub_reserved_credits(journal_t *journal, int blocks)
189 {
190 	atomic_sub(blocks, &journal->j_reserved_credits);
191 	wake_up(&journal->j_wait_reserved);
192 }
193 
194 /* Maximum number of blocks for user transaction payload */
195 static int jbd2_max_user_trans_buffers(journal_t *journal)
196 {
197 	return journal->j_max_transaction_buffers -
198 				journal->j_transaction_overhead_buffers;
199 }
200 
201 /*
202  * Wait until we can add credits for handle to the running transaction.  Called
203  * with j_state_lock held for reading. Returns 0 if handle joined the running
204  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
205  * caller must retry.
206  *
207  * Note: because j_state_lock may be dropped depending on the return
208  * value, we need to fake out sparse so ti doesn't complain about a
209  * locking imbalance.  Callers of add_transaction_credits will need to
210  * make a similar accomodation.
211  */
212 static int add_transaction_credits(journal_t *journal, int blocks,
213 				   int rsv_blocks)
214 __must_hold(&journal->j_state_lock)
215 {
216 	transaction_t *t = journal->j_running_transaction;
217 	int needed;
218 	int total = blocks + rsv_blocks;
219 
220 	/*
221 	 * If the current transaction is locked down for commit, wait
222 	 * for the lock to be released.
223 	 */
224 	if (t->t_state != T_RUNNING) {
225 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
226 		wait_transaction_locked(journal);
227 		__acquire(&journal->j_state_lock); /* fake out sparse */
228 		return 1;
229 	}
230 
231 	/*
232 	 * If there is not enough space left in the log to write all
233 	 * potential buffers requested by this operation, we need to
234 	 * stall pending a log checkpoint to free some more log space.
235 	 */
236 	needed = atomic_add_return(total, &t->t_outstanding_credits);
237 	if (needed > journal->j_max_transaction_buffers) {
238 		/*
239 		 * If the current transaction is already too large,
240 		 * then start to commit it: we can then go back and
241 		 * attach this handle to a new transaction.
242 		 */
243 		atomic_sub(total, &t->t_outstanding_credits);
244 
245 		/*
246 		 * Is the number of reserved credits in the current transaction too
247 		 * big to fit this handle? Wait until reserved credits are freed.
248 		 */
249 		if (atomic_read(&journal->j_reserved_credits) + total >
250 		    jbd2_max_user_trans_buffers(journal)) {
251 			read_unlock(&journal->j_state_lock);
252 			jbd2_might_wait_for_commit(journal);
253 			wait_event(journal->j_wait_reserved,
254 				   atomic_read(&journal->j_reserved_credits) + total <=
255 				   jbd2_max_user_trans_buffers(journal));
256 			__acquire(&journal->j_state_lock); /* fake out sparse */
257 			return 1;
258 		}
259 
260 		wait_transaction_locked(journal);
261 		__acquire(&journal->j_state_lock); /* fake out sparse */
262 		return 1;
263 	}
264 
265 	/*
266 	 * The commit code assumes that it can get enough log space
267 	 * without forcing a checkpoint.  This is *critical* for
268 	 * correctness: a checkpoint of a buffer which is also
269 	 * associated with a committing transaction creates a deadlock,
270 	 * so commit simply cannot force through checkpoints.
271 	 *
272 	 * We must therefore ensure the necessary space in the journal
273 	 * *before* starting to dirty potentially checkpointed buffers
274 	 * in the new transaction.
275 	 */
276 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
277 		atomic_sub(total, &t->t_outstanding_credits);
278 		read_unlock(&journal->j_state_lock);
279 		jbd2_might_wait_for_commit(journal);
280 		write_lock(&journal->j_state_lock);
281 		if (jbd2_log_space_left(journal) <
282 					journal->j_max_transaction_buffers)
283 			__jbd2_log_wait_for_space(journal);
284 		write_unlock(&journal->j_state_lock);
285 		__acquire(&journal->j_state_lock); /* fake out sparse */
286 		return 1;
287 	}
288 
289 	/* No reservation? We are done... */
290 	if (!rsv_blocks)
291 		return 0;
292 
293 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
294 	/* We allow at most half of a transaction to be reserved */
295 	if (needed > jbd2_max_user_trans_buffers(journal) / 2) {
296 		sub_reserved_credits(journal, rsv_blocks);
297 		atomic_sub(total, &t->t_outstanding_credits);
298 		read_unlock(&journal->j_state_lock);
299 		jbd2_might_wait_for_commit(journal);
300 		wait_event(journal->j_wait_reserved,
301 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
302 			 <= jbd2_max_user_trans_buffers(journal) / 2);
303 		__acquire(&journal->j_state_lock); /* fake out sparse */
304 		return 1;
305 	}
306 	return 0;
307 }
308 
309 /*
310  * start_this_handle: Given a handle, deal with any locking or stalling
311  * needed to make sure that there is enough journal space for the handle
312  * to begin.  Attach the handle to a transaction and set up the
313  * transaction's buffer credits.
314  */
315 
316 static int start_this_handle(journal_t *journal, handle_t *handle,
317 			     gfp_t gfp_mask)
318 {
319 	transaction_t	*transaction, *new_transaction = NULL;
320 	int		blocks = handle->h_total_credits;
321 	int		rsv_blocks = 0;
322 	unsigned long ts = jiffies;
323 
324 	if (handle->h_rsv_handle)
325 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
326 
327 	/*
328 	 * Limit the number of reserved credits to 1/2 of maximum transaction
329 	 * size and limit the number of total credits to not exceed maximum
330 	 * transaction size per operation.
331 	 */
332 	if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 ||
333 	    rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) {
334 		printk(KERN_ERR "JBD2: %s wants too many credits "
335 		       "credits:%d rsv_credits:%d max:%d\n",
336 		       current->comm, blocks, rsv_blocks,
337 		       jbd2_max_user_trans_buffers(journal));
338 		WARN_ON(1);
339 		return -ENOSPC;
340 	}
341 
342 alloc_transaction:
343 	/*
344 	 * This check is racy but it is just an optimization of allocating new
345 	 * transaction early if there are high chances we'll need it. If we
346 	 * guess wrong, we'll retry or free unused transaction.
347 	 */
348 	if (!data_race(journal->j_running_transaction)) {
349 		/*
350 		 * If __GFP_FS is not present, then we may be being called from
351 		 * inside the fs writeback layer, so we MUST NOT fail.
352 		 */
353 		if ((gfp_mask & __GFP_FS) == 0)
354 			gfp_mask |= __GFP_NOFAIL;
355 		new_transaction = kmem_cache_zalloc(transaction_cache,
356 						    gfp_mask);
357 		if (!new_transaction)
358 			return -ENOMEM;
359 	}
360 
361 	jbd2_debug(3, "New handle %p going live.\n", handle);
362 
363 	/*
364 	 * We need to hold j_state_lock until t_updates has been incremented,
365 	 * for proper journal barrier handling
366 	 */
367 repeat:
368 	read_lock(&journal->j_state_lock);
369 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
370 	if (is_journal_aborted(journal) ||
371 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
372 		read_unlock(&journal->j_state_lock);
373 		jbd2_journal_free_transaction(new_transaction);
374 		return -EROFS;
375 	}
376 
377 	/*
378 	 * Wait on the journal's transaction barrier if necessary. Specifically
379 	 * we allow reserved handles to proceed because otherwise commit could
380 	 * deadlock on page writeback not being able to complete.
381 	 */
382 	if (!handle->h_reserved && journal->j_barrier_count) {
383 		read_unlock(&journal->j_state_lock);
384 		wait_event(journal->j_wait_transaction_locked,
385 				journal->j_barrier_count == 0);
386 		goto repeat;
387 	}
388 
389 	if (!journal->j_running_transaction) {
390 		read_unlock(&journal->j_state_lock);
391 		if (!new_transaction)
392 			goto alloc_transaction;
393 		write_lock(&journal->j_state_lock);
394 		if (!journal->j_running_transaction &&
395 		    (handle->h_reserved || !journal->j_barrier_count)) {
396 			jbd2_get_transaction(journal, new_transaction);
397 			new_transaction = NULL;
398 		}
399 		write_unlock(&journal->j_state_lock);
400 		goto repeat;
401 	}
402 
403 	transaction = journal->j_running_transaction;
404 
405 	if (!handle->h_reserved) {
406 		/* We may have dropped j_state_lock - restart in that case */
407 		if (add_transaction_credits(journal, blocks, rsv_blocks)) {
408 			/*
409 			 * add_transaction_credits releases
410 			 * j_state_lock on a non-zero return
411 			 */
412 			__release(&journal->j_state_lock);
413 			goto repeat;
414 		}
415 	} else {
416 		/*
417 		 * We have handle reserved so we are allowed to join T_LOCKED
418 		 * transaction and we don't have to check for transaction size
419 		 * and journal space. But we still have to wait while running
420 		 * transaction is being switched to a committing one as it
421 		 * won't wait for any handles anymore.
422 		 */
423 		if (transaction->t_state == T_SWITCH) {
424 			wait_transaction_switching(journal);
425 			goto repeat;
426 		}
427 		sub_reserved_credits(journal, blocks);
428 		handle->h_reserved = 0;
429 	}
430 
431 	/* OK, account for the buffers that this operation expects to
432 	 * use and add the handle to the running transaction.
433 	 */
434 	update_t_max_wait(transaction, ts);
435 	handle->h_transaction = transaction;
436 	handle->h_requested_credits = blocks;
437 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
438 	handle->h_start_jiffies = jiffies;
439 	atomic_inc(&transaction->t_updates);
440 	atomic_inc(&transaction->t_handle_count);
441 	jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
442 		  handle, blocks,
443 		  atomic_read(&transaction->t_outstanding_credits),
444 		  jbd2_log_space_left(journal));
445 	read_unlock(&journal->j_state_lock);
446 	current->journal_info = handle;
447 
448 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
449 	jbd2_journal_free_transaction(new_transaction);
450 	/*
451 	 * Ensure that no allocations done while the transaction is open are
452 	 * going to recurse back to the fs layer.
453 	 */
454 	handle->saved_alloc_context = memalloc_nofs_save();
455 	return 0;
456 }
457 
458 /* Allocate a new handle.  This should probably be in a slab... */
459 static handle_t *new_handle(int nblocks)
460 {
461 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
462 	if (!handle)
463 		return NULL;
464 	handle->h_total_credits = nblocks;
465 	handle->h_ref = 1;
466 
467 	return handle;
468 }
469 
470 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
471 			      int revoke_records, gfp_t gfp_mask,
472 			      unsigned int type, unsigned int line_no)
473 {
474 	handle_t *handle = journal_current_handle();
475 	int err;
476 
477 	if (!journal)
478 		return ERR_PTR(-EROFS);
479 
480 	if (handle) {
481 		J_ASSERT(handle->h_transaction->t_journal == journal);
482 		handle->h_ref++;
483 		return handle;
484 	}
485 
486 	nblocks += DIV_ROUND_UP(revoke_records,
487 				journal->j_revoke_records_per_block);
488 	handle = new_handle(nblocks);
489 	if (!handle)
490 		return ERR_PTR(-ENOMEM);
491 	if (rsv_blocks) {
492 		handle_t *rsv_handle;
493 
494 		rsv_handle = new_handle(rsv_blocks);
495 		if (!rsv_handle) {
496 			jbd2_free_handle(handle);
497 			return ERR_PTR(-ENOMEM);
498 		}
499 		rsv_handle->h_reserved = 1;
500 		rsv_handle->h_journal = journal;
501 		handle->h_rsv_handle = rsv_handle;
502 	}
503 	handle->h_revoke_credits = revoke_records;
504 
505 	err = start_this_handle(journal, handle, gfp_mask);
506 	if (err < 0) {
507 		if (handle->h_rsv_handle)
508 			jbd2_free_handle(handle->h_rsv_handle);
509 		jbd2_free_handle(handle);
510 		return ERR_PTR(err);
511 	}
512 	handle->h_type = type;
513 	handle->h_line_no = line_no;
514 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
515 				handle->h_transaction->t_tid, type,
516 				line_no, nblocks);
517 
518 	return handle;
519 }
520 EXPORT_SYMBOL(jbd2__journal_start);
521 
522 
523 /**
524  * jbd2_journal_start() - Obtain a new handle.
525  * @journal: Journal to start transaction on.
526  * @nblocks: number of block buffer we might modify
527  *
528  * We make sure that the transaction can guarantee at least nblocks of
529  * modified buffers in the log.  We block until the log can guarantee
530  * that much space. Additionally, if rsv_blocks > 0, we also create another
531  * handle with rsv_blocks reserved blocks in the journal. This handle is
532  * stored in h_rsv_handle. It is not attached to any particular transaction
533  * and thus doesn't block transaction commit. If the caller uses this reserved
534  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
535  * on the parent handle will dispose the reserved one. Reserved handle has to
536  * be converted to a normal handle using jbd2_journal_start_reserved() before
537  * it can be used.
538  *
539  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
540  * on failure.
541  */
542 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
543 {
544 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
545 }
546 EXPORT_SYMBOL(jbd2_journal_start);
547 
548 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
549 {
550 	journal_t *journal = handle->h_journal;
551 
552 	WARN_ON(!handle->h_reserved);
553 	sub_reserved_credits(journal, handle->h_total_credits);
554 	if (t)
555 		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
556 }
557 
558 void jbd2_journal_free_reserved(handle_t *handle)
559 {
560 	journal_t *journal = handle->h_journal;
561 
562 	/* Get j_state_lock to pin running transaction if it exists */
563 	read_lock(&journal->j_state_lock);
564 	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
565 	read_unlock(&journal->j_state_lock);
566 	jbd2_free_handle(handle);
567 }
568 EXPORT_SYMBOL(jbd2_journal_free_reserved);
569 
570 /**
571  * jbd2_journal_start_reserved() - start reserved handle
572  * @handle: handle to start
573  * @type: for handle statistics
574  * @line_no: for handle statistics
575  *
576  * Start handle that has been previously reserved with jbd2_journal_reserve().
577  * This attaches @handle to the running transaction (or creates one if there's
578  * not transaction running). Unlike jbd2_journal_start() this function cannot
579  * block on journal commit, checkpointing, or similar stuff. It can block on
580  * memory allocation or frozen journal though.
581  *
582  * Return 0 on success, non-zero on error - handle is freed in that case.
583  */
584 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
585 				unsigned int line_no)
586 {
587 	journal_t *journal = handle->h_journal;
588 	int ret = -EIO;
589 
590 	if (WARN_ON(!handle->h_reserved)) {
591 		/* Someone passed in normal handle? Just stop it. */
592 		jbd2_journal_stop(handle);
593 		return ret;
594 	}
595 	/*
596 	 * Usefulness of mixing of reserved and unreserved handles is
597 	 * questionable. So far nobody seems to need it so just error out.
598 	 */
599 	if (WARN_ON(current->journal_info)) {
600 		jbd2_journal_free_reserved(handle);
601 		return ret;
602 	}
603 
604 	handle->h_journal = NULL;
605 	/*
606 	 * GFP_NOFS is here because callers are likely from writeback or
607 	 * similarly constrained call sites
608 	 */
609 	ret = start_this_handle(journal, handle, GFP_NOFS);
610 	if (ret < 0) {
611 		handle->h_journal = journal;
612 		jbd2_journal_free_reserved(handle);
613 		return ret;
614 	}
615 	handle->h_type = type;
616 	handle->h_line_no = line_no;
617 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
618 				handle->h_transaction->t_tid, type,
619 				line_no, handle->h_total_credits);
620 	return 0;
621 }
622 EXPORT_SYMBOL(jbd2_journal_start_reserved);
623 
624 /**
625  * jbd2_journal_extend() - extend buffer credits.
626  * @handle:  handle to 'extend'
627  * @nblocks: nr blocks to try to extend by.
628  * @revoke_records: number of revoke records to try to extend by.
629  *
630  * Some transactions, such as large extends and truncates, can be done
631  * atomically all at once or in several stages.  The operation requests
632  * a credit for a number of buffer modifications in advance, but can
633  * extend its credit if it needs more.
634  *
635  * jbd2_journal_extend tries to give the running handle more buffer credits.
636  * It does not guarantee that allocation - this is a best-effort only.
637  * The calling process MUST be able to deal cleanly with a failure to
638  * extend here.
639  *
640  * Return 0 on success, non-zero on failure.
641  *
642  * return code < 0 implies an error
643  * return code > 0 implies normal transaction-full status.
644  */
645 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
646 {
647 	transaction_t *transaction = handle->h_transaction;
648 	journal_t *journal;
649 	int result;
650 	int wanted;
651 
652 	if (is_handle_aborted(handle))
653 		return -EROFS;
654 	journal = transaction->t_journal;
655 
656 	result = 1;
657 
658 	read_lock(&journal->j_state_lock);
659 
660 	/* Don't extend a locked-down transaction! */
661 	if (transaction->t_state != T_RUNNING) {
662 		jbd2_debug(3, "denied handle %p %d blocks: "
663 			  "transaction not running\n", handle, nblocks);
664 		goto error_out;
665 	}
666 
667 	nblocks += DIV_ROUND_UP(
668 			handle->h_revoke_credits_requested + revoke_records,
669 			journal->j_revoke_records_per_block) -
670 		DIV_ROUND_UP(
671 			handle->h_revoke_credits_requested,
672 			journal->j_revoke_records_per_block);
673 	wanted = atomic_add_return(nblocks,
674 				   &transaction->t_outstanding_credits);
675 
676 	if (wanted > journal->j_max_transaction_buffers) {
677 		jbd2_debug(3, "denied handle %p %d blocks: "
678 			  "transaction too large\n", handle, nblocks);
679 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
680 		goto error_out;
681 	}
682 
683 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
684 				 transaction->t_tid,
685 				 handle->h_type, handle->h_line_no,
686 				 handle->h_total_credits,
687 				 nblocks);
688 
689 	handle->h_total_credits += nblocks;
690 	handle->h_requested_credits += nblocks;
691 	handle->h_revoke_credits += revoke_records;
692 	handle->h_revoke_credits_requested += revoke_records;
693 	result = 0;
694 
695 	jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
696 error_out:
697 	read_unlock(&journal->j_state_lock);
698 	return result;
699 }
700 
701 static void stop_this_handle(handle_t *handle)
702 {
703 	transaction_t *transaction = handle->h_transaction;
704 	journal_t *journal = transaction->t_journal;
705 	int revokes;
706 
707 	J_ASSERT(journal_current_handle() == handle);
708 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
709 	current->journal_info = NULL;
710 	/*
711 	 * Subtract necessary revoke descriptor blocks from handle credits. We
712 	 * take care to account only for revoke descriptor blocks the
713 	 * transaction will really need as large sequences of transactions with
714 	 * small numbers of revokes are relatively common.
715 	 */
716 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
717 	if (revokes) {
718 		int t_revokes, revoke_descriptors;
719 		int rr_per_blk = journal->j_revoke_records_per_block;
720 
721 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
722 				> handle->h_total_credits);
723 		t_revokes = atomic_add_return(revokes,
724 				&transaction->t_outstanding_revokes);
725 		revoke_descriptors =
726 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
727 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
728 		handle->h_total_credits -= revoke_descriptors;
729 	}
730 	atomic_sub(handle->h_total_credits,
731 		   &transaction->t_outstanding_credits);
732 	if (handle->h_rsv_handle)
733 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
734 						transaction);
735 	if (atomic_dec_and_test(&transaction->t_updates))
736 		wake_up(&journal->j_wait_updates);
737 
738 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
739 	/*
740 	 * Scope of the GFP_NOFS context is over here and so we can restore the
741 	 * original alloc context.
742 	 */
743 	memalloc_nofs_restore(handle->saved_alloc_context);
744 }
745 
746 /**
747  * jbd2__journal_restart() - restart a handle .
748  * @handle:  handle to restart
749  * @nblocks: nr credits requested
750  * @revoke_records: number of revoke record credits requested
751  * @gfp_mask: memory allocation flags (for start_this_handle)
752  *
753  * Restart a handle for a multi-transaction filesystem
754  * operation.
755  *
756  * If the jbd2_journal_extend() call above fails to grant new buffer credits
757  * to a running handle, a call to jbd2_journal_restart will commit the
758  * handle's transaction so far and reattach the handle to a new
759  * transaction capable of guaranteeing the requested number of
760  * credits. We preserve reserved handle if there's any attached to the
761  * passed in handle.
762  */
763 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
764 			  gfp_t gfp_mask)
765 {
766 	transaction_t *transaction = handle->h_transaction;
767 	journal_t *journal;
768 	tid_t		tid;
769 	int		need_to_start;
770 	int		ret;
771 
772 	/* If we've had an abort of any type, don't even think about
773 	 * actually doing the restart! */
774 	if (is_handle_aborted(handle))
775 		return 0;
776 	journal = transaction->t_journal;
777 	tid = transaction->t_tid;
778 
779 	/*
780 	 * First unlink the handle from its current transaction, and start the
781 	 * commit on that.
782 	 */
783 	jbd2_debug(2, "restarting handle %p\n", handle);
784 	stop_this_handle(handle);
785 	handle->h_transaction = NULL;
786 
787 	/*
788 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
789  	 * get rid of pointless j_state_lock traffic like this.
790 	 */
791 	read_lock(&journal->j_state_lock);
792 	need_to_start = !tid_geq(journal->j_commit_request, tid);
793 	read_unlock(&journal->j_state_lock);
794 	if (need_to_start)
795 		jbd2_log_start_commit(journal, tid);
796 	handle->h_total_credits = nblocks +
797 		DIV_ROUND_UP(revoke_records,
798 			     journal->j_revoke_records_per_block);
799 	handle->h_revoke_credits = revoke_records;
800 	ret = start_this_handle(journal, handle, gfp_mask);
801 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
802 				 ret ? 0 : handle->h_transaction->t_tid,
803 				 handle->h_type, handle->h_line_no,
804 				 handle->h_total_credits);
805 	return ret;
806 }
807 EXPORT_SYMBOL(jbd2__journal_restart);
808 
809 
810 int jbd2_journal_restart(handle_t *handle, int nblocks)
811 {
812 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
813 }
814 EXPORT_SYMBOL(jbd2_journal_restart);
815 
816 /*
817  * Waits for any outstanding t_updates to finish.
818  * This is called with write j_state_lock held.
819  */
820 void jbd2_journal_wait_updates(journal_t *journal)
821 {
822 	DEFINE_WAIT(wait);
823 
824 	while (1) {
825 		/*
826 		 * Note that the running transaction can get freed under us if
827 		 * this transaction is getting committed in
828 		 * jbd2_journal_commit_transaction() ->
829 		 * jbd2_journal_free_transaction(). This can only happen when we
830 		 * release j_state_lock -> schedule() -> acquire j_state_lock.
831 		 * Hence we should everytime retrieve new j_running_transaction
832 		 * value (after j_state_lock release acquire cycle), else it may
833 		 * lead to use-after-free of old freed transaction.
834 		 */
835 		transaction_t *transaction = journal->j_running_transaction;
836 
837 		if (!transaction)
838 			break;
839 
840 		prepare_to_wait(&journal->j_wait_updates, &wait,
841 				TASK_UNINTERRUPTIBLE);
842 		if (!atomic_read(&transaction->t_updates)) {
843 			finish_wait(&journal->j_wait_updates, &wait);
844 			break;
845 		}
846 		write_unlock(&journal->j_state_lock);
847 		schedule();
848 		finish_wait(&journal->j_wait_updates, &wait);
849 		write_lock(&journal->j_state_lock);
850 	}
851 }
852 
853 /**
854  * jbd2_journal_lock_updates () - establish a transaction barrier.
855  * @journal:  Journal to establish a barrier on.
856  *
857  * This locks out any further updates from being started, and blocks
858  * until all existing updates have completed, returning only once the
859  * journal is in a quiescent state with no updates running.
860  *
861  * The journal lock should not be held on entry.
862  */
863 void jbd2_journal_lock_updates(journal_t *journal)
864 {
865 	jbd2_might_wait_for_commit(journal);
866 
867 	write_lock(&journal->j_state_lock);
868 	++journal->j_barrier_count;
869 
870 	/* Wait until there are no reserved handles */
871 	if (atomic_read(&journal->j_reserved_credits)) {
872 		write_unlock(&journal->j_state_lock);
873 		wait_event(journal->j_wait_reserved,
874 			   atomic_read(&journal->j_reserved_credits) == 0);
875 		write_lock(&journal->j_state_lock);
876 	}
877 
878 	/* Wait until there are no running t_updates */
879 	jbd2_journal_wait_updates(journal);
880 
881 	write_unlock(&journal->j_state_lock);
882 
883 	/*
884 	 * We have now established a barrier against other normal updates, but
885 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
886 	 * to make sure that we serialise special journal-locked operations
887 	 * too.
888 	 */
889 	mutex_lock(&journal->j_barrier);
890 }
891 
892 /**
893  * jbd2_journal_unlock_updates () - release barrier
894  * @journal:  Journal to release the barrier on.
895  *
896  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
897  *
898  * Should be called without the journal lock held.
899  */
900 void jbd2_journal_unlock_updates (journal_t *journal)
901 {
902 	J_ASSERT(journal->j_barrier_count != 0);
903 
904 	mutex_unlock(&journal->j_barrier);
905 	write_lock(&journal->j_state_lock);
906 	--journal->j_barrier_count;
907 	write_unlock(&journal->j_state_lock);
908 	wake_up_all(&journal->j_wait_transaction_locked);
909 }
910 
911 static void warn_dirty_buffer(struct buffer_head *bh)
912 {
913 	printk(KERN_WARNING
914 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
915 	       "There's a risk of filesystem corruption in case of system "
916 	       "crash.\n",
917 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
918 }
919 
920 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
921 static void jbd2_freeze_jh_data(struct journal_head *jh)
922 {
923 	char *source;
924 	struct buffer_head *bh = jh2bh(jh);
925 
926 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
927 	source = kmap_local_folio(bh->b_folio, bh_offset(bh));
928 	/* Fire data frozen trigger just before we copy the data */
929 	jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
930 	memcpy(jh->b_frozen_data, source, bh->b_size);
931 	kunmap_local(source);
932 
933 	/*
934 	 * Now that the frozen data is saved off, we need to store any matching
935 	 * triggers.
936 	 */
937 	jh->b_frozen_triggers = jh->b_triggers;
938 }
939 
940 /*
941  * If the buffer is already part of the current transaction, then there
942  * is nothing we need to do.  If it is already part of a prior
943  * transaction which we are still committing to disk, then we need to
944  * make sure that we do not overwrite the old copy: we do copy-out to
945  * preserve the copy going to disk.  We also account the buffer against
946  * the handle's metadata buffer credits (unless the buffer is already
947  * part of the transaction, that is).
948  *
949  */
950 static int
951 do_get_write_access(handle_t *handle, struct journal_head *jh,
952 			int force_copy)
953 {
954 	struct buffer_head *bh;
955 	transaction_t *transaction = handle->h_transaction;
956 	journal_t *journal;
957 	int error;
958 	char *frozen_buffer = NULL;
959 	unsigned long start_lock, time_lock;
960 
961 	journal = transaction->t_journal;
962 
963 	jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
964 
965 	JBUFFER_TRACE(jh, "entry");
966 repeat:
967 	bh = jh2bh(jh);
968 
969 	/* @@@ Need to check for errors here at some point. */
970 
971  	start_lock = jiffies;
972 	lock_buffer(bh);
973 	spin_lock(&jh->b_state_lock);
974 
975 	/* If it takes too long to lock the buffer, trace it */
976 	time_lock = jbd2_time_diff(start_lock, jiffies);
977 	if (time_lock > HZ/10)
978 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
979 			jiffies_to_msecs(time_lock));
980 
981 	/* We now hold the buffer lock so it is safe to query the buffer
982 	 * state.  Is the buffer dirty?
983 	 *
984 	 * If so, there are two possibilities.  The buffer may be
985 	 * non-journaled, and undergoing a quite legitimate writeback.
986 	 * Otherwise, it is journaled, and we don't expect dirty buffers
987 	 * in that state (the buffers should be marked JBD_Dirty
988 	 * instead.)  So either the IO is being done under our own
989 	 * control and this is a bug, or it's a third party IO such as
990 	 * dump(8) (which may leave the buffer scheduled for read ---
991 	 * ie. locked but not dirty) or tune2fs (which may actually have
992 	 * the buffer dirtied, ugh.)  */
993 
994 	if (buffer_dirty(bh) && jh->b_transaction) {
995 		warn_dirty_buffer(bh);
996 		/*
997 		 * We need to clean the dirty flag and we must do it under the
998 		 * buffer lock to be sure we don't race with running write-out.
999 		 */
1000 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001 		clear_buffer_dirty(bh);
1002 		/*
1003 		 * The buffer is going to be added to BJ_Reserved list now and
1004 		 * nothing guarantees jbd2_journal_dirty_metadata() will be
1005 		 * ever called for it. So we need to set jbddirty bit here to
1006 		 * make sure the buffer is dirtied and written out when the
1007 		 * journaling machinery is done with it.
1008 		 */
1009 		set_buffer_jbddirty(bh);
1010 	}
1011 
1012 	error = -EROFS;
1013 	if (is_handle_aborted(handle)) {
1014 		spin_unlock(&jh->b_state_lock);
1015 		unlock_buffer(bh);
1016 		goto out;
1017 	}
1018 	error = 0;
1019 
1020 	/*
1021 	 * The buffer is already part of this transaction if b_transaction or
1022 	 * b_next_transaction points to it
1023 	 */
1024 	if (jh->b_transaction == transaction ||
1025 	    jh->b_next_transaction == transaction) {
1026 		unlock_buffer(bh);
1027 		goto done;
1028 	}
1029 
1030 	/*
1031 	 * this is the first time this transaction is touching this buffer,
1032 	 * reset the modified flag
1033 	 */
1034 	jh->b_modified = 0;
1035 
1036 	/*
1037 	 * If the buffer is not journaled right now, we need to make sure it
1038 	 * doesn't get written to disk before the caller actually commits the
1039 	 * new data
1040 	 */
1041 	if (!jh->b_transaction) {
1042 		JBUFFER_TRACE(jh, "no transaction");
1043 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1044 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1045 		/*
1046 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1047 		 * visible before attaching it to the running transaction.
1048 		 * Paired with barrier in jbd2_write_access_granted()
1049 		 */
1050 		smp_wmb();
1051 		spin_lock(&journal->j_list_lock);
1052 		if (test_clear_buffer_dirty(bh)) {
1053 			/*
1054 			 * Execute buffer dirty clearing and jh->b_transaction
1055 			 * assignment under journal->j_list_lock locked to
1056 			 * prevent bh being removed from checkpoint list if
1057 			 * the buffer is in an intermediate state (not dirty
1058 			 * and jh->b_transaction is NULL).
1059 			 */
1060 			JBUFFER_TRACE(jh, "Journalling dirty buffer");
1061 			set_buffer_jbddirty(bh);
1062 		}
1063 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1064 		spin_unlock(&journal->j_list_lock);
1065 		unlock_buffer(bh);
1066 		goto done;
1067 	}
1068 	unlock_buffer(bh);
1069 
1070 	/*
1071 	 * If there is already a copy-out version of this buffer, then we don't
1072 	 * need to make another one
1073 	 */
1074 	if (jh->b_frozen_data) {
1075 		JBUFFER_TRACE(jh, "has frozen data");
1076 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1077 		goto attach_next;
1078 	}
1079 
1080 	JBUFFER_TRACE(jh, "owned by older transaction");
1081 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1083 
1084 	/*
1085 	 * There is one case we have to be very careful about.  If the
1086 	 * committing transaction is currently writing this buffer out to disk
1087 	 * and has NOT made a copy-out, then we cannot modify the buffer
1088 	 * contents at all right now.  The essence of copy-out is that it is
1089 	 * the extra copy, not the primary copy, which gets journaled.  If the
1090 	 * primary copy is already going to disk then we cannot do copy-out
1091 	 * here.
1092 	 */
1093 	if (buffer_shadow(bh)) {
1094 		JBUFFER_TRACE(jh, "on shadow: sleep");
1095 		spin_unlock(&jh->b_state_lock);
1096 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1097 		goto repeat;
1098 	}
1099 
1100 	/*
1101 	 * Only do the copy if the currently-owning transaction still needs it.
1102 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1103 	 * past that stage (here we use the fact that BH_Shadow is set under
1104 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1105 	 * point we know the buffer doesn't have BH_Shadow set).
1106 	 *
1107 	 * Subtle point, though: if this is a get_undo_access, then we will be
1108 	 * relying on the frozen_data to contain the new value of the
1109 	 * committed_data record after the transaction, so we HAVE to force the
1110 	 * frozen_data copy in that case.
1111 	 */
1112 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1113 		JBUFFER_TRACE(jh, "generate frozen data");
1114 		if (!frozen_buffer) {
1115 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1116 			spin_unlock(&jh->b_state_lock);
1117 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1118 						   GFP_NOFS | __GFP_NOFAIL);
1119 			goto repeat;
1120 		}
1121 		jh->b_frozen_data = frozen_buffer;
1122 		frozen_buffer = NULL;
1123 		jbd2_freeze_jh_data(jh);
1124 	}
1125 attach_next:
1126 	/*
1127 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1128 	 * before attaching it to the running transaction. Paired with barrier
1129 	 * in jbd2_write_access_granted()
1130 	 */
1131 	smp_wmb();
1132 	jh->b_next_transaction = transaction;
1133 
1134 done:
1135 	spin_unlock(&jh->b_state_lock);
1136 
1137 	/*
1138 	 * If we are about to journal a buffer, then any revoke pending on it is
1139 	 * no longer valid
1140 	 */
1141 	jbd2_journal_cancel_revoke(handle, jh);
1142 
1143 out:
1144 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1145 		jbd2_free(frozen_buffer, bh->b_size);
1146 
1147 	JBUFFER_TRACE(jh, "exit");
1148 	return error;
1149 }
1150 
1151 /* Fast check whether buffer is already attached to the required transaction */
1152 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1153 							bool undo)
1154 {
1155 	struct journal_head *jh;
1156 	bool ret = false;
1157 
1158 	/* Dirty buffers require special handling... */
1159 	if (buffer_dirty(bh))
1160 		return false;
1161 
1162 	/*
1163 	 * RCU protects us from dereferencing freed pages. So the checks we do
1164 	 * are guaranteed not to oops. However the jh slab object can get freed
1165 	 * & reallocated while we work with it. So we have to be careful. When
1166 	 * we see jh attached to the running transaction, we know it must stay
1167 	 * so until the transaction is committed. Thus jh won't be freed and
1168 	 * will be attached to the same bh while we run.  However it can
1169 	 * happen jh gets freed, reallocated, and attached to the transaction
1170 	 * just after we get pointer to it from bh. So we have to be careful
1171 	 * and recheck jh still belongs to our bh before we return success.
1172 	 */
1173 	rcu_read_lock();
1174 	if (!buffer_jbd(bh))
1175 		goto out;
1176 	/* This should be bh2jh() but that doesn't work with inline functions */
1177 	jh = READ_ONCE(bh->b_private);
1178 	if (!jh)
1179 		goto out;
1180 	/* For undo access buffer must have data copied */
1181 	if (undo && !jh->b_committed_data)
1182 		goto out;
1183 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1184 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1185 		goto out;
1186 	/*
1187 	 * There are two reasons for the barrier here:
1188 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1189 	 * detect when jh went through free, realloc, attach to transaction
1190 	 * while we were checking. Paired with implicit barrier in that path.
1191 	 * 2) So that access to bh done after jbd2_write_access_granted()
1192 	 * doesn't get reordered and see inconsistent state of concurrent
1193 	 * do_get_write_access().
1194 	 */
1195 	smp_mb();
1196 	if (unlikely(jh->b_bh != bh))
1197 		goto out;
1198 	ret = true;
1199 out:
1200 	rcu_read_unlock();
1201 	return ret;
1202 }
1203 
1204 /**
1205  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1206  *				     for metadata (not data) update.
1207  * @handle: transaction to add buffer modifications to
1208  * @bh:     bh to be used for metadata writes
1209  *
1210  * Returns: error code or 0 on success.
1211  *
1212  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1213  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1214  */
1215 
1216 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1217 {
1218 	struct journal_head *jh;
1219 	int rc;
1220 
1221 	if (is_handle_aborted(handle))
1222 		return -EROFS;
1223 
1224 	if (jbd2_write_access_granted(handle, bh, false))
1225 		return 0;
1226 
1227 	jh = jbd2_journal_add_journal_head(bh);
1228 	/* We do not want to get caught playing with fields which the
1229 	 * log thread also manipulates.  Make sure that the buffer
1230 	 * completes any outstanding IO before proceeding. */
1231 	rc = do_get_write_access(handle, jh, 0);
1232 	jbd2_journal_put_journal_head(jh);
1233 	return rc;
1234 }
1235 
1236 
1237 /*
1238  * When the user wants to journal a newly created buffer_head
1239  * (ie. getblk() returned a new buffer and we are going to populate it
1240  * manually rather than reading off disk), then we need to keep the
1241  * buffer_head locked until it has been completely filled with new
1242  * data.  In this case, we should be able to make the assertion that
1243  * the bh is not already part of an existing transaction.
1244  *
1245  * The buffer should already be locked by the caller by this point.
1246  * There is no lock ranking violation: it was a newly created,
1247  * unlocked buffer beforehand. */
1248 
1249 /**
1250  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1251  * @handle: transaction to new buffer to
1252  * @bh: new buffer.
1253  *
1254  * Call this if you create a new bh.
1255  */
1256 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1257 {
1258 	transaction_t *transaction = handle->h_transaction;
1259 	journal_t *journal;
1260 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1261 	int err;
1262 
1263 	jbd2_debug(5, "journal_head %p\n", jh);
1264 	err = -EROFS;
1265 	if (is_handle_aborted(handle))
1266 		goto out;
1267 	journal = transaction->t_journal;
1268 	err = 0;
1269 
1270 	JBUFFER_TRACE(jh, "entry");
1271 	/*
1272 	 * The buffer may already belong to this transaction due to pre-zeroing
1273 	 * in the filesystem's new_block code.  It may also be on the previous,
1274 	 * committing transaction's lists, but it HAS to be in Forget state in
1275 	 * that case: the transaction must have deleted the buffer for it to be
1276 	 * reused here.
1277 	 */
1278 	spin_lock(&jh->b_state_lock);
1279 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1280 		jh->b_transaction == NULL ||
1281 		(jh->b_transaction == journal->j_committing_transaction &&
1282 			  jh->b_jlist == BJ_Forget)));
1283 
1284 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1285 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1286 
1287 	if (jh->b_transaction == NULL) {
1288 		/*
1289 		 * Previous jbd2_journal_forget() could have left the buffer
1290 		 * with jbddirty bit set because it was being committed. When
1291 		 * the commit finished, we've filed the buffer for
1292 		 * checkpointing and marked it dirty. Now we are reallocating
1293 		 * the buffer so the transaction freeing it must have
1294 		 * committed and so it's safe to clear the dirty bit.
1295 		 */
1296 		clear_buffer_dirty(jh2bh(jh));
1297 		/* first access by this transaction */
1298 		jh->b_modified = 0;
1299 
1300 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1301 		spin_lock(&journal->j_list_lock);
1302 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1303 		spin_unlock(&journal->j_list_lock);
1304 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1305 		/* first access by this transaction */
1306 		jh->b_modified = 0;
1307 
1308 		JBUFFER_TRACE(jh, "set next transaction");
1309 		spin_lock(&journal->j_list_lock);
1310 		jh->b_next_transaction = transaction;
1311 		spin_unlock(&journal->j_list_lock);
1312 	}
1313 	spin_unlock(&jh->b_state_lock);
1314 
1315 	/*
1316 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1317 	 * blocks which contain freed but then revoked metadata.  We need
1318 	 * to cancel the revoke in case we end up freeing it yet again
1319 	 * and the reallocating as data - this would cause a second revoke,
1320 	 * which hits an assertion error.
1321 	 */
1322 	JBUFFER_TRACE(jh, "cancelling revoke");
1323 	jbd2_journal_cancel_revoke(handle, jh);
1324 out:
1325 	jbd2_journal_put_journal_head(jh);
1326 	return err;
1327 }
1328 
1329 /**
1330  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1331  *     non-rewindable consequences
1332  * @handle: transaction
1333  * @bh: buffer to undo
1334  *
1335  * Sometimes there is a need to distinguish between metadata which has
1336  * been committed to disk and that which has not.  The ext3fs code uses
1337  * this for freeing and allocating space, we have to make sure that we
1338  * do not reuse freed space until the deallocation has been committed,
1339  * since if we overwrote that space we would make the delete
1340  * un-rewindable in case of a crash.
1341  *
1342  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1343  * buffer for parts of non-rewindable operations such as delete
1344  * operations on the bitmaps.  The journaling code must keep a copy of
1345  * the buffer's contents prior to the undo_access call until such time
1346  * as we know that the buffer has definitely been committed to disk.
1347  *
1348  * We never need to know which transaction the committed data is part
1349  * of, buffers touched here are guaranteed to be dirtied later and so
1350  * will be committed to a new transaction in due course, at which point
1351  * we can discard the old committed data pointer.
1352  *
1353  * Returns error number or 0 on success.
1354  */
1355 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1356 {
1357 	int err;
1358 	struct journal_head *jh;
1359 	char *committed_data = NULL;
1360 
1361 	if (is_handle_aborted(handle))
1362 		return -EROFS;
1363 
1364 	if (jbd2_write_access_granted(handle, bh, true))
1365 		return 0;
1366 
1367 	jh = jbd2_journal_add_journal_head(bh);
1368 	JBUFFER_TRACE(jh, "entry");
1369 
1370 	/*
1371 	 * Do this first --- it can drop the journal lock, so we want to
1372 	 * make sure that obtaining the committed_data is done
1373 	 * atomically wrt. completion of any outstanding commits.
1374 	 */
1375 	err = do_get_write_access(handle, jh, 1);
1376 	if (err)
1377 		goto out;
1378 
1379 repeat:
1380 	if (!jh->b_committed_data)
1381 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1382 					    GFP_NOFS|__GFP_NOFAIL);
1383 
1384 	spin_lock(&jh->b_state_lock);
1385 	if (!jh->b_committed_data) {
1386 		/* Copy out the current buffer contents into the
1387 		 * preserved, committed copy. */
1388 		JBUFFER_TRACE(jh, "generate b_committed data");
1389 		if (!committed_data) {
1390 			spin_unlock(&jh->b_state_lock);
1391 			goto repeat;
1392 		}
1393 
1394 		jh->b_committed_data = committed_data;
1395 		committed_data = NULL;
1396 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1397 	}
1398 	spin_unlock(&jh->b_state_lock);
1399 out:
1400 	jbd2_journal_put_journal_head(jh);
1401 	if (unlikely(committed_data))
1402 		jbd2_free(committed_data, bh->b_size);
1403 	return err;
1404 }
1405 
1406 /**
1407  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1408  * @bh: buffer to trigger on
1409  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1410  *
1411  * Set any triggers on this journal_head.  This is always safe, because
1412  * triggers for a committing buffer will be saved off, and triggers for
1413  * a running transaction will match the buffer in that transaction.
1414  *
1415  * Call with NULL to clear the triggers.
1416  */
1417 void jbd2_journal_set_triggers(struct buffer_head *bh,
1418 			       struct jbd2_buffer_trigger_type *type)
1419 {
1420 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1421 
1422 	if (WARN_ON_ONCE(!jh))
1423 		return;
1424 	jh->b_triggers = type;
1425 	jbd2_journal_put_journal_head(jh);
1426 }
1427 
1428 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1429 				struct jbd2_buffer_trigger_type *triggers)
1430 {
1431 	struct buffer_head *bh = jh2bh(jh);
1432 
1433 	if (!triggers || !triggers->t_frozen)
1434 		return;
1435 
1436 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1437 }
1438 
1439 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1440 			       struct jbd2_buffer_trigger_type *triggers)
1441 {
1442 	if (!triggers || !triggers->t_abort)
1443 		return;
1444 
1445 	triggers->t_abort(triggers, jh2bh(jh));
1446 }
1447 
1448 /**
1449  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1450  * @handle: transaction to add buffer to.
1451  * @bh: buffer to mark
1452  *
1453  * mark dirty metadata which needs to be journaled as part of the current
1454  * transaction.
1455  *
1456  * The buffer must have previously had jbd2_journal_get_write_access()
1457  * called so that it has a valid journal_head attached to the buffer
1458  * head.
1459  *
1460  * The buffer is placed on the transaction's metadata list and is marked
1461  * as belonging to the transaction.
1462  *
1463  * Returns error number or 0 on success.
1464  *
1465  * Special care needs to be taken if the buffer already belongs to the
1466  * current committing transaction (in which case we should have frozen
1467  * data present for that commit).  In that case, we don't relink the
1468  * buffer: that only gets done when the old transaction finally
1469  * completes its commit.
1470  */
1471 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1472 {
1473 	transaction_t *transaction = handle->h_transaction;
1474 	journal_t *journal;
1475 	struct journal_head *jh;
1476 	int ret = 0;
1477 
1478 	if (!buffer_jbd(bh))
1479 		return -EUCLEAN;
1480 
1481 	/*
1482 	 * We don't grab jh reference here since the buffer must be part
1483 	 * of the running transaction.
1484 	 */
1485 	jh = bh2jh(bh);
1486 	jbd2_debug(5, "journal_head %p\n", jh);
1487 	JBUFFER_TRACE(jh, "entry");
1488 
1489 	/*
1490 	 * This and the following assertions are unreliable since we may see jh
1491 	 * in inconsistent state unless we grab bh_state lock. But this is
1492 	 * crucial to catch bugs so let's do a reliable check until the
1493 	 * lockless handling is fully proven.
1494 	 */
1495 	if (data_race(jh->b_transaction != transaction &&
1496 	    jh->b_next_transaction != transaction)) {
1497 		spin_lock(&jh->b_state_lock);
1498 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1499 				jh->b_next_transaction == transaction);
1500 		spin_unlock(&jh->b_state_lock);
1501 	}
1502 	if (jh->b_modified == 1) {
1503 		/* If it's in our transaction it must be in BJ_Metadata list. */
1504 		if (data_race(jh->b_transaction == transaction &&
1505 		    jh->b_jlist != BJ_Metadata)) {
1506 			spin_lock(&jh->b_state_lock);
1507 			if (jh->b_transaction == transaction &&
1508 			    jh->b_jlist != BJ_Metadata)
1509 				pr_err("JBD2: assertion failure: h_type=%u "
1510 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1511 				       handle->h_type, handle->h_line_no,
1512 				       (unsigned long long) bh->b_blocknr,
1513 				       jh->b_jlist);
1514 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1515 					jh->b_jlist == BJ_Metadata);
1516 			spin_unlock(&jh->b_state_lock);
1517 		}
1518 		goto out;
1519 	}
1520 
1521 	journal = transaction->t_journal;
1522 	spin_lock(&jh->b_state_lock);
1523 
1524 	if (is_handle_aborted(handle)) {
1525 		/*
1526 		 * Check journal aborting with @jh->b_state_lock locked,
1527 		 * since 'jh->b_transaction' could be replaced with
1528 		 * 'jh->b_next_transaction' during old transaction
1529 		 * committing if journal aborted, which may fail
1530 		 * assertion on 'jh->b_frozen_data == NULL'.
1531 		 */
1532 		ret = -EROFS;
1533 		goto out_unlock_bh;
1534 	}
1535 
1536 	if (jh->b_modified == 0) {
1537 		/*
1538 		 * This buffer's got modified and becoming part
1539 		 * of the transaction. This needs to be done
1540 		 * once a transaction -bzzz
1541 		 */
1542 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1543 			ret = -ENOSPC;
1544 			goto out_unlock_bh;
1545 		}
1546 		jh->b_modified = 1;
1547 		handle->h_total_credits--;
1548 	}
1549 
1550 	/*
1551 	 * fastpath, to avoid expensive locking.  If this buffer is already
1552 	 * on the running transaction's metadata list there is nothing to do.
1553 	 * Nobody can take it off again because there is a handle open.
1554 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1555 	 * result in this test being false, so we go in and take the locks.
1556 	 */
1557 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1558 		JBUFFER_TRACE(jh, "fastpath");
1559 		if (unlikely(jh->b_transaction !=
1560 			     journal->j_running_transaction)) {
1561 			printk(KERN_ERR "JBD2: %s: "
1562 			       "jh->b_transaction (%llu, %p, %u) != "
1563 			       "journal->j_running_transaction (%p, %u)\n",
1564 			       journal->j_devname,
1565 			       (unsigned long long) bh->b_blocknr,
1566 			       jh->b_transaction,
1567 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1568 			       journal->j_running_transaction,
1569 			       journal->j_running_transaction ?
1570 			       journal->j_running_transaction->t_tid : 0);
1571 			ret = -EINVAL;
1572 		}
1573 		goto out_unlock_bh;
1574 	}
1575 
1576 	set_buffer_jbddirty(bh);
1577 
1578 	/*
1579 	 * Metadata already on the current transaction list doesn't
1580 	 * need to be filed.  Metadata on another transaction's list must
1581 	 * be committing, and will be refiled once the commit completes:
1582 	 * leave it alone for now.
1583 	 */
1584 	if (jh->b_transaction != transaction) {
1585 		JBUFFER_TRACE(jh, "already on other transaction");
1586 		if (unlikely(((jh->b_transaction !=
1587 			       journal->j_committing_transaction)) ||
1588 			     (jh->b_next_transaction != transaction))) {
1589 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1590 			       "bad jh for block %llu: "
1591 			       "transaction (%p, %u), "
1592 			       "jh->b_transaction (%p, %u), "
1593 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1594 			       journal->j_devname,
1595 			       (unsigned long long) bh->b_blocknr,
1596 			       transaction, transaction->t_tid,
1597 			       jh->b_transaction,
1598 			       jh->b_transaction ?
1599 			       jh->b_transaction->t_tid : 0,
1600 			       jh->b_next_transaction,
1601 			       jh->b_next_transaction ?
1602 			       jh->b_next_transaction->t_tid : 0,
1603 			       jh->b_jlist);
1604 			WARN_ON(1);
1605 			ret = -EINVAL;
1606 		}
1607 		/* And this case is illegal: we can't reuse another
1608 		 * transaction's data buffer, ever. */
1609 		goto out_unlock_bh;
1610 	}
1611 
1612 	/* That test should have eliminated the following case: */
1613 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1614 
1615 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1616 	spin_lock(&journal->j_list_lock);
1617 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1618 	spin_unlock(&journal->j_list_lock);
1619 out_unlock_bh:
1620 	spin_unlock(&jh->b_state_lock);
1621 out:
1622 	JBUFFER_TRACE(jh, "exit");
1623 	return ret;
1624 }
1625 
1626 /**
1627  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1628  * @handle: transaction handle
1629  * @bh:     bh to 'forget'
1630  *
1631  * We can only do the bforget if there are no commits pending against the
1632  * buffer.  If the buffer is dirty in the current running transaction we
1633  * can safely unlink it.
1634  *
1635  * bh may not be a journalled buffer at all - it may be a non-JBD
1636  * buffer which came off the hashtable.  Check for this.
1637  *
1638  * Decrements bh->b_count by one.
1639  *
1640  * Allow this call even if the handle has aborted --- it may be part of
1641  * the caller's cleanup after an abort.
1642  */
1643 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1644 {
1645 	transaction_t *transaction = handle->h_transaction;
1646 	journal_t *journal;
1647 	struct journal_head *jh;
1648 	int drop_reserve = 0;
1649 	int err = 0;
1650 	int was_modified = 0;
1651 
1652 	if (is_handle_aborted(handle))
1653 		return -EROFS;
1654 	journal = transaction->t_journal;
1655 
1656 	BUFFER_TRACE(bh, "entry");
1657 
1658 	jh = jbd2_journal_grab_journal_head(bh);
1659 	if (!jh) {
1660 		__bforget(bh);
1661 		return 0;
1662 	}
1663 
1664 	spin_lock(&jh->b_state_lock);
1665 
1666 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1667 	 * Don't do any jbd operations, and return an error. */
1668 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1669 			 "inconsistent data on disk")) {
1670 		err = -EIO;
1671 		goto drop;
1672 	}
1673 
1674 	/* keep track of whether or not this transaction modified us */
1675 	was_modified = jh->b_modified;
1676 
1677 	/*
1678 	 * The buffer's going from the transaction, we must drop
1679 	 * all references -bzzz
1680 	 */
1681 	jh->b_modified = 0;
1682 
1683 	if (jh->b_transaction == transaction) {
1684 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1685 
1686 		/* If we are forgetting a buffer which is already part
1687 		 * of this transaction, then we can just drop it from
1688 		 * the transaction immediately. */
1689 		clear_buffer_dirty(bh);
1690 		clear_buffer_jbddirty(bh);
1691 
1692 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1693 
1694 		/*
1695 		 * we only want to drop a reference if this transaction
1696 		 * modified the buffer
1697 		 */
1698 		if (was_modified)
1699 			drop_reserve = 1;
1700 
1701 		/*
1702 		 * We are no longer going to journal this buffer.
1703 		 * However, the commit of this transaction is still
1704 		 * important to the buffer: the delete that we are now
1705 		 * processing might obsolete an old log entry, so by
1706 		 * committing, we can satisfy the buffer's checkpoint.
1707 		 *
1708 		 * So, if we have a checkpoint on the buffer, we should
1709 		 * now refile the buffer on our BJ_Forget list so that
1710 		 * we know to remove the checkpoint after we commit.
1711 		 */
1712 
1713 		spin_lock(&journal->j_list_lock);
1714 		if (jh->b_cp_transaction) {
1715 			__jbd2_journal_temp_unlink_buffer(jh);
1716 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1717 		} else {
1718 			__jbd2_journal_unfile_buffer(jh);
1719 			jbd2_journal_put_journal_head(jh);
1720 		}
1721 		spin_unlock(&journal->j_list_lock);
1722 	} else if (jh->b_transaction) {
1723 		J_ASSERT_JH(jh, (jh->b_transaction ==
1724 				 journal->j_committing_transaction));
1725 		/* However, if the buffer is still owned by a prior
1726 		 * (committing) transaction, we can't drop it yet... */
1727 		JBUFFER_TRACE(jh, "belongs to older transaction");
1728 		/* ... but we CAN drop it from the new transaction through
1729 		 * marking the buffer as freed and set j_next_transaction to
1730 		 * the new transaction, so that not only the commit code
1731 		 * knows it should clear dirty bits when it is done with the
1732 		 * buffer, but also the buffer can be checkpointed only
1733 		 * after the new transaction commits. */
1734 
1735 		set_buffer_freed(bh);
1736 
1737 		if (!jh->b_next_transaction) {
1738 			spin_lock(&journal->j_list_lock);
1739 			jh->b_next_transaction = transaction;
1740 			spin_unlock(&journal->j_list_lock);
1741 		} else {
1742 			J_ASSERT(jh->b_next_transaction == transaction);
1743 
1744 			/*
1745 			 * only drop a reference if this transaction modified
1746 			 * the buffer
1747 			 */
1748 			if (was_modified)
1749 				drop_reserve = 1;
1750 		}
1751 	} else {
1752 		/*
1753 		 * Finally, if the buffer is not belongs to any
1754 		 * transaction, we can just drop it now if it has no
1755 		 * checkpoint.
1756 		 */
1757 		spin_lock(&journal->j_list_lock);
1758 		if (!jh->b_cp_transaction) {
1759 			JBUFFER_TRACE(jh, "belongs to none transaction");
1760 			spin_unlock(&journal->j_list_lock);
1761 			goto drop;
1762 		}
1763 
1764 		/*
1765 		 * Otherwise, if the buffer has been written to disk,
1766 		 * it is safe to remove the checkpoint and drop it.
1767 		 */
1768 		if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1769 			spin_unlock(&journal->j_list_lock);
1770 			goto drop;
1771 		}
1772 
1773 		/*
1774 		 * The buffer is still not written to disk, we should
1775 		 * attach this buffer to current transaction so that the
1776 		 * buffer can be checkpointed only after the current
1777 		 * transaction commits.
1778 		 */
1779 		clear_buffer_dirty(bh);
1780 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1781 		spin_unlock(&journal->j_list_lock);
1782 	}
1783 drop:
1784 	__brelse(bh);
1785 	spin_unlock(&jh->b_state_lock);
1786 	jbd2_journal_put_journal_head(jh);
1787 	if (drop_reserve) {
1788 		/* no need to reserve log space for this block -bzzz */
1789 		handle->h_total_credits++;
1790 	}
1791 	return err;
1792 }
1793 
1794 /**
1795  * jbd2_journal_stop() - complete a transaction
1796  * @handle: transaction to complete.
1797  *
1798  * All done for a particular handle.
1799  *
1800  * There is not much action needed here.  We just return any remaining
1801  * buffer credits to the transaction and remove the handle.  The only
1802  * complication is that we need to start a commit operation if the
1803  * filesystem is marked for synchronous update.
1804  *
1805  * jbd2_journal_stop itself will not usually return an error, but it may
1806  * do so in unusual circumstances.  In particular, expect it to
1807  * return -EIO if a jbd2_journal_abort has been executed since the
1808  * transaction began.
1809  */
1810 int jbd2_journal_stop(handle_t *handle)
1811 {
1812 	transaction_t *transaction = handle->h_transaction;
1813 	journal_t *journal;
1814 	int err = 0, wait_for_commit = 0;
1815 	tid_t tid;
1816 	pid_t pid;
1817 
1818 	if (--handle->h_ref > 0) {
1819 		jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1820 						 handle->h_ref);
1821 		if (is_handle_aborted(handle))
1822 			return -EIO;
1823 		return 0;
1824 	}
1825 	if (!transaction) {
1826 		/*
1827 		 * Handle is already detached from the transaction so there is
1828 		 * nothing to do other than free the handle.
1829 		 */
1830 		memalloc_nofs_restore(handle->saved_alloc_context);
1831 		goto free_and_exit;
1832 	}
1833 	journal = transaction->t_journal;
1834 	tid = transaction->t_tid;
1835 
1836 	if (is_handle_aborted(handle))
1837 		err = -EIO;
1838 
1839 	jbd2_debug(4, "Handle %p going down\n", handle);
1840 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1841 				tid, handle->h_type, handle->h_line_no,
1842 				jiffies - handle->h_start_jiffies,
1843 				handle->h_sync, handle->h_requested_credits,
1844 				(handle->h_requested_credits -
1845 				 handle->h_total_credits));
1846 
1847 	/*
1848 	 * Implement synchronous transaction batching.  If the handle
1849 	 * was synchronous, don't force a commit immediately.  Let's
1850 	 * yield and let another thread piggyback onto this
1851 	 * transaction.  Keep doing that while new threads continue to
1852 	 * arrive.  It doesn't cost much - we're about to run a commit
1853 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1854 	 * operations by 30x or more...
1855 	 *
1856 	 * We try and optimize the sleep time against what the
1857 	 * underlying disk can do, instead of having a static sleep
1858 	 * time.  This is useful for the case where our storage is so
1859 	 * fast that it is more optimal to go ahead and force a flush
1860 	 * and wait for the transaction to be committed than it is to
1861 	 * wait for an arbitrary amount of time for new writers to
1862 	 * join the transaction.  We achieve this by measuring how
1863 	 * long it takes to commit a transaction, and compare it with
1864 	 * how long this transaction has been running, and if run time
1865 	 * < commit time then we sleep for the delta and commit.  This
1866 	 * greatly helps super fast disks that would see slowdowns as
1867 	 * more threads started doing fsyncs.
1868 	 *
1869 	 * But don't do this if this process was the most recent one
1870 	 * to perform a synchronous write.  We do this to detect the
1871 	 * case where a single process is doing a stream of sync
1872 	 * writes.  No point in waiting for joiners in that case.
1873 	 *
1874 	 * Setting max_batch_time to 0 disables this completely.
1875 	 */
1876 	pid = current->pid;
1877 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1878 	    journal->j_max_batch_time) {
1879 		u64 commit_time, trans_time;
1880 
1881 		journal->j_last_sync_writer = pid;
1882 
1883 		read_lock(&journal->j_state_lock);
1884 		commit_time = journal->j_average_commit_time;
1885 		read_unlock(&journal->j_state_lock);
1886 
1887 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1888 						   transaction->t_start_time));
1889 
1890 		commit_time = max_t(u64, commit_time,
1891 				    1000*journal->j_min_batch_time);
1892 		commit_time = min_t(u64, commit_time,
1893 				    1000*journal->j_max_batch_time);
1894 
1895 		if (trans_time < commit_time) {
1896 			ktime_t expires = ktime_add_ns(ktime_get(),
1897 						       commit_time);
1898 			set_current_state(TASK_UNINTERRUPTIBLE);
1899 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1900 		}
1901 	}
1902 
1903 	if (handle->h_sync)
1904 		transaction->t_synchronous_commit = 1;
1905 
1906 	/*
1907 	 * If the handle is marked SYNC, we need to set another commit
1908 	 * going!  We also want to force a commit if the transaction is too
1909 	 * old now.
1910 	 */
1911 	if (handle->h_sync ||
1912 	    time_after_eq(jiffies, transaction->t_expires)) {
1913 		/* Do this even for aborted journals: an abort still
1914 		 * completes the commit thread, it just doesn't write
1915 		 * anything to disk. */
1916 
1917 		jbd2_debug(2, "transaction too old, requesting commit for "
1918 					"handle %p\n", handle);
1919 		/* This is non-blocking */
1920 		jbd2_log_start_commit(journal, tid);
1921 
1922 		/*
1923 		 * Special case: JBD2_SYNC synchronous updates require us
1924 		 * to wait for the commit to complete.
1925 		 */
1926 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1927 			wait_for_commit = 1;
1928 	}
1929 
1930 	/*
1931 	 * Once stop_this_handle() drops t_updates, the transaction could start
1932 	 * committing on us and eventually disappear.  So we must not
1933 	 * dereference transaction pointer again after calling
1934 	 * stop_this_handle().
1935 	 */
1936 	stop_this_handle(handle);
1937 
1938 	if (wait_for_commit)
1939 		err = jbd2_log_wait_commit(journal, tid);
1940 
1941 free_and_exit:
1942 	if (handle->h_rsv_handle)
1943 		jbd2_free_handle(handle->h_rsv_handle);
1944 	jbd2_free_handle(handle);
1945 	return err;
1946 }
1947 
1948 /*
1949  *
1950  * List management code snippets: various functions for manipulating the
1951  * transaction buffer lists.
1952  *
1953  */
1954 
1955 /*
1956  * Append a buffer to a transaction list, given the transaction's list head
1957  * pointer.
1958  *
1959  * j_list_lock is held.
1960  *
1961  * jh->b_state_lock is held.
1962  */
1963 
1964 static inline void
1965 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1966 {
1967 	if (!*list) {
1968 		jh->b_tnext = jh->b_tprev = jh;
1969 		*list = jh;
1970 	} else {
1971 		/* Insert at the tail of the list to preserve order */
1972 		struct journal_head *first = *list, *last = first->b_tprev;
1973 		jh->b_tprev = last;
1974 		jh->b_tnext = first;
1975 		last->b_tnext = first->b_tprev = jh;
1976 	}
1977 }
1978 
1979 /*
1980  * Remove a buffer from a transaction list, given the transaction's list
1981  * head pointer.
1982  *
1983  * Called with j_list_lock held, and the journal may not be locked.
1984  *
1985  * jh->b_state_lock is held.
1986  */
1987 
1988 static inline void
1989 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1990 {
1991 	if (*list == jh) {
1992 		*list = jh->b_tnext;
1993 		if (*list == jh)
1994 			*list = NULL;
1995 	}
1996 	jh->b_tprev->b_tnext = jh->b_tnext;
1997 	jh->b_tnext->b_tprev = jh->b_tprev;
1998 }
1999 
2000 /*
2001  * Remove a buffer from the appropriate transaction list.
2002  *
2003  * Note that this function can *change* the value of
2004  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2005  * t_reserved_list.  If the caller is holding onto a copy of one of these
2006  * pointers, it could go bad.  Generally the caller needs to re-read the
2007  * pointer from the transaction_t.
2008  *
2009  * Called under j_list_lock.
2010  */
2011 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2012 {
2013 	struct journal_head **list = NULL;
2014 	transaction_t *transaction;
2015 	struct buffer_head *bh = jh2bh(jh);
2016 
2017 	lockdep_assert_held(&jh->b_state_lock);
2018 	transaction = jh->b_transaction;
2019 	if (transaction)
2020 		assert_spin_locked(&transaction->t_journal->j_list_lock);
2021 
2022 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2023 	if (jh->b_jlist != BJ_None)
2024 		J_ASSERT_JH(jh, transaction != NULL);
2025 
2026 	switch (jh->b_jlist) {
2027 	case BJ_None:
2028 		return;
2029 	case BJ_Metadata:
2030 		transaction->t_nr_buffers--;
2031 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2032 		list = &transaction->t_buffers;
2033 		break;
2034 	case BJ_Forget:
2035 		list = &transaction->t_forget;
2036 		break;
2037 	case BJ_Shadow:
2038 		list = &transaction->t_shadow_list;
2039 		break;
2040 	case BJ_Reserved:
2041 		list = &transaction->t_reserved_list;
2042 		break;
2043 	}
2044 
2045 	__blist_del_buffer(list, jh);
2046 	jh->b_jlist = BJ_None;
2047 	if (transaction && is_journal_aborted(transaction->t_journal))
2048 		clear_buffer_jbddirty(bh);
2049 	else if (test_clear_buffer_jbddirty(bh))
2050 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2051 }
2052 
2053 /*
2054  * Remove buffer from all transactions. The caller is responsible for dropping
2055  * the jh reference that belonged to the transaction.
2056  *
2057  * Called with bh_state lock and j_list_lock
2058  */
2059 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2060 {
2061 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2062 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2063 
2064 	__jbd2_journal_temp_unlink_buffer(jh);
2065 	jh->b_transaction = NULL;
2066 }
2067 
2068 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2069 {
2070 	struct buffer_head *bh = jh2bh(jh);
2071 
2072 	/* Get reference so that buffer cannot be freed before we unlock it */
2073 	get_bh(bh);
2074 	spin_lock(&jh->b_state_lock);
2075 	spin_lock(&journal->j_list_lock);
2076 	__jbd2_journal_unfile_buffer(jh);
2077 	spin_unlock(&journal->j_list_lock);
2078 	spin_unlock(&jh->b_state_lock);
2079 	jbd2_journal_put_journal_head(jh);
2080 	__brelse(bh);
2081 }
2082 
2083 /**
2084  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2085  * @journal: journal for operation
2086  * @folio: Folio to detach data from.
2087  *
2088  * For all the buffers on this page,
2089  * if they are fully written out ordered data, move them onto BUF_CLEAN
2090  * so try_to_free_buffers() can reap them.
2091  *
2092  * This function returns non-zero if we wish try_to_free_buffers()
2093  * to be called. We do this if the page is releasable by try_to_free_buffers().
2094  * We also do it if the page has locked or dirty buffers and the caller wants
2095  * us to perform sync or async writeout.
2096  *
2097  * This complicates JBD locking somewhat.  We aren't protected by the
2098  * BKL here.  We wish to remove the buffer from its committing or
2099  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2100  *
2101  * This may *change* the value of transaction_t->t_datalist, so anyone
2102  * who looks at t_datalist needs to lock against this function.
2103  *
2104  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2105  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2106  * will come out of the lock with the buffer dirty, which makes it
2107  * ineligible for release here.
2108  *
2109  * Who else is affected by this?  hmm...  Really the only contender
2110  * is do_get_write_access() - it could be looking at the buffer while
2111  * journal_try_to_free_buffer() is changing its state.  But that
2112  * cannot happen because we never reallocate freed data as metadata
2113  * while the data is part of a transaction.  Yes?
2114  *
2115  * Return false on failure, true on success
2116  */
2117 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2118 {
2119 	struct buffer_head *head;
2120 	struct buffer_head *bh;
2121 	bool ret = false;
2122 
2123 	J_ASSERT(folio_test_locked(folio));
2124 
2125 	head = folio_buffers(folio);
2126 	bh = head;
2127 	do {
2128 		struct journal_head *jh;
2129 
2130 		/*
2131 		 * We take our own ref against the journal_head here to avoid
2132 		 * having to add tons of locking around each instance of
2133 		 * jbd2_journal_put_journal_head().
2134 		 */
2135 		jh = jbd2_journal_grab_journal_head(bh);
2136 		if (!jh)
2137 			continue;
2138 
2139 		spin_lock(&jh->b_state_lock);
2140 		if (!jh->b_transaction && !jh->b_next_transaction) {
2141 			spin_lock(&journal->j_list_lock);
2142 			/* Remove written-back checkpointed metadata buffer */
2143 			if (jh->b_cp_transaction != NULL)
2144 				jbd2_journal_try_remove_checkpoint(jh);
2145 			spin_unlock(&journal->j_list_lock);
2146 		}
2147 		spin_unlock(&jh->b_state_lock);
2148 		jbd2_journal_put_journal_head(jh);
2149 		if (buffer_jbd(bh))
2150 			goto busy;
2151 	} while ((bh = bh->b_this_page) != head);
2152 
2153 	ret = try_to_free_buffers(folio);
2154 busy:
2155 	return ret;
2156 }
2157 
2158 /*
2159  * This buffer is no longer needed.  If it is on an older transaction's
2160  * checkpoint list we need to record it on this transaction's forget list
2161  * to pin this buffer (and hence its checkpointing transaction) down until
2162  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2163  * release it.
2164  * Returns non-zero if JBD no longer has an interest in the buffer.
2165  *
2166  * Called under j_list_lock.
2167  *
2168  * Called under jh->b_state_lock.
2169  */
2170 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2171 {
2172 	int may_free = 1;
2173 	struct buffer_head *bh = jh2bh(jh);
2174 
2175 	if (jh->b_cp_transaction) {
2176 		JBUFFER_TRACE(jh, "on running+cp transaction");
2177 		__jbd2_journal_temp_unlink_buffer(jh);
2178 		/*
2179 		 * We don't want to write the buffer anymore, clear the
2180 		 * bit so that we don't confuse checks in
2181 		 * __journal_file_buffer
2182 		 */
2183 		clear_buffer_dirty(bh);
2184 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2185 		may_free = 0;
2186 	} else {
2187 		JBUFFER_TRACE(jh, "on running transaction");
2188 		__jbd2_journal_unfile_buffer(jh);
2189 		jbd2_journal_put_journal_head(jh);
2190 	}
2191 	return may_free;
2192 }
2193 
2194 /*
2195  * jbd2_journal_invalidate_folio
2196  *
2197  * This code is tricky.  It has a number of cases to deal with.
2198  *
2199  * There are two invariants which this code relies on:
2200  *
2201  * i_size must be updated on disk before we start calling invalidate_folio
2202  * on the data.
2203  *
2204  *  This is done in ext3 by defining an ext3_setattr method which
2205  *  updates i_size before truncate gets going.  By maintaining this
2206  *  invariant, we can be sure that it is safe to throw away any buffers
2207  *  attached to the current transaction: once the transaction commits,
2208  *  we know that the data will not be needed.
2209  *
2210  *  Note however that we can *not* throw away data belonging to the
2211  *  previous, committing transaction!
2212  *
2213  * Any disk blocks which *are* part of the previous, committing
2214  * transaction (and which therefore cannot be discarded immediately) are
2215  * not going to be reused in the new running transaction
2216  *
2217  *  The bitmap committed_data images guarantee this: any block which is
2218  *  allocated in one transaction and removed in the next will be marked
2219  *  as in-use in the committed_data bitmap, so cannot be reused until
2220  *  the next transaction to delete the block commits.  This means that
2221  *  leaving committing buffers dirty is quite safe: the disk blocks
2222  *  cannot be reallocated to a different file and so buffer aliasing is
2223  *  not possible.
2224  *
2225  *
2226  * The above applies mainly to ordered data mode.  In writeback mode we
2227  * don't make guarantees about the order in which data hits disk --- in
2228  * particular we don't guarantee that new dirty data is flushed before
2229  * transaction commit --- so it is always safe just to discard data
2230  * immediately in that mode.  --sct
2231  */
2232 
2233 /*
2234  * The journal_unmap_buffer helper function returns zero if the buffer
2235  * concerned remains pinned as an anonymous buffer belonging to an older
2236  * transaction.
2237  *
2238  * We're outside-transaction here.  Either or both of j_running_transaction
2239  * and j_committing_transaction may be NULL.
2240  */
2241 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2242 				int partial_page)
2243 {
2244 	transaction_t *transaction;
2245 	struct journal_head *jh;
2246 	int may_free = 1;
2247 
2248 	BUFFER_TRACE(bh, "entry");
2249 
2250 	/*
2251 	 * It is safe to proceed here without the j_list_lock because the
2252 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2253 	 * holding the page lock. --sct
2254 	 */
2255 
2256 	jh = jbd2_journal_grab_journal_head(bh);
2257 	if (!jh)
2258 		goto zap_buffer_unlocked;
2259 
2260 	/* OK, we have data buffer in journaled mode */
2261 	write_lock(&journal->j_state_lock);
2262 	spin_lock(&jh->b_state_lock);
2263 	spin_lock(&journal->j_list_lock);
2264 
2265 	/*
2266 	 * We cannot remove the buffer from checkpoint lists until the
2267 	 * transaction adding inode to orphan list (let's call it T)
2268 	 * is committed.  Otherwise if the transaction changing the
2269 	 * buffer would be cleaned from the journal before T is
2270 	 * committed, a crash will cause that the correct contents of
2271 	 * the buffer will be lost.  On the other hand we have to
2272 	 * clear the buffer dirty bit at latest at the moment when the
2273 	 * transaction marking the buffer as freed in the filesystem
2274 	 * structures is committed because from that moment on the
2275 	 * block can be reallocated and used by a different page.
2276 	 * Since the block hasn't been freed yet but the inode has
2277 	 * already been added to orphan list, it is safe for us to add
2278 	 * the buffer to BJ_Forget list of the newest transaction.
2279 	 *
2280 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2281 	 * because the buffer_head may be attached to the page straddling
2282 	 * i_size (can happen only when blocksize < pagesize) and thus the
2283 	 * buffer_head can be reused when the file is extended again. So we end
2284 	 * up keeping around invalidated buffers attached to transactions'
2285 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2286 	 * the transaction this buffer was modified in.
2287 	 */
2288 	transaction = jh->b_transaction;
2289 	if (transaction == NULL) {
2290 		/* First case: not on any transaction.  If it
2291 		 * has no checkpoint link, then we can zap it:
2292 		 * it's a writeback-mode buffer so we don't care
2293 		 * if it hits disk safely. */
2294 		if (!jh->b_cp_transaction) {
2295 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2296 			goto zap_buffer;
2297 		}
2298 
2299 		if (!buffer_dirty(bh)) {
2300 			/* bdflush has written it.  We can drop it now */
2301 			__jbd2_journal_remove_checkpoint(jh);
2302 			goto zap_buffer;
2303 		}
2304 
2305 		/* OK, it must be in the journal but still not
2306 		 * written fully to disk: it's metadata or
2307 		 * journaled data... */
2308 
2309 		if (journal->j_running_transaction) {
2310 			/* ... and once the current transaction has
2311 			 * committed, the buffer won't be needed any
2312 			 * longer. */
2313 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2314 			may_free = __dispose_buffer(jh,
2315 					journal->j_running_transaction);
2316 			goto zap_buffer;
2317 		} else {
2318 			/* There is no currently-running transaction. So the
2319 			 * orphan record which we wrote for this file must have
2320 			 * passed into commit.  We must attach this buffer to
2321 			 * the committing transaction, if it exists. */
2322 			if (journal->j_committing_transaction) {
2323 				JBUFFER_TRACE(jh, "give to committing trans");
2324 				may_free = __dispose_buffer(jh,
2325 					journal->j_committing_transaction);
2326 				goto zap_buffer;
2327 			} else {
2328 				/* The orphan record's transaction has
2329 				 * committed.  We can cleanse this buffer */
2330 				clear_buffer_jbddirty(bh);
2331 				__jbd2_journal_remove_checkpoint(jh);
2332 				goto zap_buffer;
2333 			}
2334 		}
2335 	} else if (transaction == journal->j_committing_transaction) {
2336 		JBUFFER_TRACE(jh, "on committing transaction");
2337 		/*
2338 		 * The buffer is committing, we simply cannot touch
2339 		 * it. If the page is straddling i_size we have to wait
2340 		 * for commit and try again.
2341 		 */
2342 		if (partial_page) {
2343 			spin_unlock(&journal->j_list_lock);
2344 			spin_unlock(&jh->b_state_lock);
2345 			write_unlock(&journal->j_state_lock);
2346 			jbd2_journal_put_journal_head(jh);
2347 			/* Already zapped buffer? Nothing to do... */
2348 			if (!bh->b_bdev)
2349 				return 0;
2350 			return -EBUSY;
2351 		}
2352 		/*
2353 		 * OK, buffer won't be reachable after truncate. We just clear
2354 		 * b_modified to not confuse transaction credit accounting, and
2355 		 * set j_next_transaction to the running transaction (if there
2356 		 * is one) and mark buffer as freed so that commit code knows
2357 		 * it should clear dirty bits when it is done with the buffer.
2358 		 */
2359 		set_buffer_freed(bh);
2360 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2361 			jh->b_next_transaction = journal->j_running_transaction;
2362 		jh->b_modified = 0;
2363 		spin_unlock(&journal->j_list_lock);
2364 		spin_unlock(&jh->b_state_lock);
2365 		write_unlock(&journal->j_state_lock);
2366 		jbd2_journal_put_journal_head(jh);
2367 		return 0;
2368 	} else {
2369 		/* Good, the buffer belongs to the running transaction.
2370 		 * We are writing our own transaction's data, not any
2371 		 * previous one's, so it is safe to throw it away
2372 		 * (remember that we expect the filesystem to have set
2373 		 * i_size already for this truncate so recovery will not
2374 		 * expose the disk blocks we are discarding here.) */
2375 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2376 		JBUFFER_TRACE(jh, "on running transaction");
2377 		may_free = __dispose_buffer(jh, transaction);
2378 	}
2379 
2380 zap_buffer:
2381 	/*
2382 	 * This is tricky. Although the buffer is truncated, it may be reused
2383 	 * if blocksize < pagesize and it is attached to the page straddling
2384 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2385 	 * running transaction, journal_get_write_access() won't clear
2386 	 * b_modified and credit accounting gets confused. So clear b_modified
2387 	 * here.
2388 	 */
2389 	jh->b_modified = 0;
2390 	spin_unlock(&journal->j_list_lock);
2391 	spin_unlock(&jh->b_state_lock);
2392 	write_unlock(&journal->j_state_lock);
2393 	jbd2_journal_put_journal_head(jh);
2394 zap_buffer_unlocked:
2395 	clear_buffer_dirty(bh);
2396 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2397 	clear_buffer_mapped(bh);
2398 	clear_buffer_req(bh);
2399 	clear_buffer_new(bh);
2400 	clear_buffer_delay(bh);
2401 	clear_buffer_unwritten(bh);
2402 	bh->b_bdev = NULL;
2403 	return may_free;
2404 }
2405 
2406 /**
2407  * jbd2_journal_invalidate_folio()
2408  * @journal: journal to use for flush...
2409  * @folio:    folio to flush
2410  * @offset:  start of the range to invalidate
2411  * @length:  length of the range to invalidate
2412  *
2413  * Reap page buffers containing data after in the specified range in page.
2414  * Can return -EBUSY if buffers are part of the committing transaction and
2415  * the page is straddling i_size. Caller then has to wait for current commit
2416  * and try again.
2417  */
2418 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2419 				size_t offset, size_t length)
2420 {
2421 	struct buffer_head *head, *bh, *next;
2422 	unsigned int stop = offset + length;
2423 	unsigned int curr_off = 0;
2424 	int partial_page = (offset || length < folio_size(folio));
2425 	int may_free = 1;
2426 	int ret = 0;
2427 
2428 	if (!folio_test_locked(folio))
2429 		BUG();
2430 	head = folio_buffers(folio);
2431 	if (!head)
2432 		return 0;
2433 
2434 	BUG_ON(stop > folio_size(folio) || stop < length);
2435 
2436 	/* We will potentially be playing with lists other than just the
2437 	 * data lists (especially for journaled data mode), so be
2438 	 * cautious in our locking. */
2439 
2440 	bh = head;
2441 	do {
2442 		unsigned int next_off = curr_off + bh->b_size;
2443 		next = bh->b_this_page;
2444 
2445 		if (next_off > stop)
2446 			return 0;
2447 
2448 		if (offset <= curr_off) {
2449 			/* This block is wholly outside the truncation point */
2450 			lock_buffer(bh);
2451 			ret = journal_unmap_buffer(journal, bh, partial_page);
2452 			unlock_buffer(bh);
2453 			if (ret < 0)
2454 				return ret;
2455 			may_free &= ret;
2456 		}
2457 		curr_off = next_off;
2458 		bh = next;
2459 
2460 	} while (bh != head);
2461 
2462 	if (!partial_page) {
2463 		if (may_free && try_to_free_buffers(folio))
2464 			J_ASSERT(!folio_buffers(folio));
2465 	}
2466 	return 0;
2467 }
2468 
2469 /*
2470  * File a buffer on the given transaction list.
2471  */
2472 void __jbd2_journal_file_buffer(struct journal_head *jh,
2473 			transaction_t *transaction, int jlist)
2474 {
2475 	struct journal_head **list = NULL;
2476 	int was_dirty = 0;
2477 	struct buffer_head *bh = jh2bh(jh);
2478 
2479 	lockdep_assert_held(&jh->b_state_lock);
2480 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2481 
2482 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2483 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2484 				jh->b_transaction == NULL);
2485 
2486 	if (jh->b_transaction && jh->b_jlist == jlist)
2487 		return;
2488 
2489 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2490 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2491 		/*
2492 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2493 		 * instead of buffer_dirty. We should not see a dirty bit set
2494 		 * here because we clear it in do_get_write_access but e.g.
2495 		 * tune2fs can modify the sb and set the dirty bit at any time
2496 		 * so we try to gracefully handle that.
2497 		 */
2498 		if (buffer_dirty(bh))
2499 			warn_dirty_buffer(bh);
2500 		if (test_clear_buffer_dirty(bh) ||
2501 		    test_clear_buffer_jbddirty(bh))
2502 			was_dirty = 1;
2503 	}
2504 
2505 	if (jh->b_transaction)
2506 		__jbd2_journal_temp_unlink_buffer(jh);
2507 	else
2508 		jbd2_journal_grab_journal_head(bh);
2509 	jh->b_transaction = transaction;
2510 
2511 	switch (jlist) {
2512 	case BJ_None:
2513 		J_ASSERT_JH(jh, !jh->b_committed_data);
2514 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2515 		return;
2516 	case BJ_Metadata:
2517 		transaction->t_nr_buffers++;
2518 		list = &transaction->t_buffers;
2519 		break;
2520 	case BJ_Forget:
2521 		list = &transaction->t_forget;
2522 		break;
2523 	case BJ_Shadow:
2524 		list = &transaction->t_shadow_list;
2525 		break;
2526 	case BJ_Reserved:
2527 		list = &transaction->t_reserved_list;
2528 		break;
2529 	}
2530 
2531 	__blist_add_buffer(list, jh);
2532 	jh->b_jlist = jlist;
2533 
2534 	if (was_dirty)
2535 		set_buffer_jbddirty(bh);
2536 }
2537 
2538 void jbd2_journal_file_buffer(struct journal_head *jh,
2539 				transaction_t *transaction, int jlist)
2540 {
2541 	spin_lock(&jh->b_state_lock);
2542 	spin_lock(&transaction->t_journal->j_list_lock);
2543 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2544 	spin_unlock(&transaction->t_journal->j_list_lock);
2545 	spin_unlock(&jh->b_state_lock);
2546 }
2547 
2548 /*
2549  * Remove a buffer from its current buffer list in preparation for
2550  * dropping it from its current transaction entirely.  If the buffer has
2551  * already started to be used by a subsequent transaction, refile the
2552  * buffer on that transaction's metadata list.
2553  *
2554  * Called under j_list_lock
2555  * Called under jh->b_state_lock
2556  *
2557  * When this function returns true, there's no next transaction to refile to
2558  * and the caller has to drop jh reference through
2559  * jbd2_journal_put_journal_head().
2560  */
2561 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2562 {
2563 	int was_dirty, jlist;
2564 	struct buffer_head *bh = jh2bh(jh);
2565 
2566 	lockdep_assert_held(&jh->b_state_lock);
2567 	if (jh->b_transaction)
2568 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2569 
2570 	/* If the buffer is now unused, just drop it. */
2571 	if (jh->b_next_transaction == NULL) {
2572 		__jbd2_journal_unfile_buffer(jh);
2573 		return true;
2574 	}
2575 
2576 	/*
2577 	 * It has been modified by a later transaction: add it to the new
2578 	 * transaction's metadata list.
2579 	 */
2580 
2581 	was_dirty = test_clear_buffer_jbddirty(bh);
2582 	__jbd2_journal_temp_unlink_buffer(jh);
2583 
2584 	/*
2585 	 * b_transaction must be set, otherwise the new b_transaction won't
2586 	 * be holding jh reference
2587 	 */
2588 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2589 
2590 	/*
2591 	 * We set b_transaction here because b_next_transaction will inherit
2592 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2593 	 * take a new one.
2594 	 */
2595 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2596 	WRITE_ONCE(jh->b_next_transaction, NULL);
2597 	if (buffer_freed(bh))
2598 		jlist = BJ_Forget;
2599 	else if (jh->b_modified)
2600 		jlist = BJ_Metadata;
2601 	else
2602 		jlist = BJ_Reserved;
2603 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2604 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2605 
2606 	if (was_dirty)
2607 		set_buffer_jbddirty(bh);
2608 	return false;
2609 }
2610 
2611 /*
2612  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2613  * bh reference so that we can safely unlock bh.
2614  *
2615  * The jh and bh may be freed by this call.
2616  */
2617 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2618 {
2619 	bool drop;
2620 
2621 	spin_lock(&jh->b_state_lock);
2622 	spin_lock(&journal->j_list_lock);
2623 	drop = __jbd2_journal_refile_buffer(jh);
2624 	spin_unlock(&jh->b_state_lock);
2625 	spin_unlock(&journal->j_list_lock);
2626 	if (drop)
2627 		jbd2_journal_put_journal_head(jh);
2628 }
2629 
2630 /*
2631  * File inode in the inode list of the handle's transaction
2632  */
2633 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2634 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2635 {
2636 	transaction_t *transaction = handle->h_transaction;
2637 	journal_t *journal;
2638 
2639 	if (is_handle_aborted(handle))
2640 		return -EROFS;
2641 	journal = transaction->t_journal;
2642 
2643 	jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2644 			transaction->t_tid);
2645 
2646 	spin_lock(&journal->j_list_lock);
2647 	jinode->i_flags |= flags;
2648 
2649 	if (jinode->i_dirty_end) {
2650 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2651 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2652 	} else {
2653 		jinode->i_dirty_start = start_byte;
2654 		jinode->i_dirty_end = end_byte;
2655 	}
2656 
2657 	/* Is inode already attached where we need it? */
2658 	if (jinode->i_transaction == transaction ||
2659 	    jinode->i_next_transaction == transaction)
2660 		goto done;
2661 
2662 	/*
2663 	 * We only ever set this variable to 1 so the test is safe. Since
2664 	 * t_need_data_flush is likely to be set, we do the test to save some
2665 	 * cacheline bouncing
2666 	 */
2667 	if (!transaction->t_need_data_flush)
2668 		transaction->t_need_data_flush = 1;
2669 	/* On some different transaction's list - should be
2670 	 * the committing one */
2671 	if (jinode->i_transaction) {
2672 		J_ASSERT(jinode->i_next_transaction == NULL);
2673 		J_ASSERT(jinode->i_transaction ==
2674 					journal->j_committing_transaction);
2675 		jinode->i_next_transaction = transaction;
2676 		goto done;
2677 	}
2678 	/* Not on any transaction list... */
2679 	J_ASSERT(!jinode->i_next_transaction);
2680 	jinode->i_transaction = transaction;
2681 	list_add(&jinode->i_list, &transaction->t_inode_list);
2682 done:
2683 	spin_unlock(&journal->j_list_lock);
2684 
2685 	return 0;
2686 }
2687 
2688 int jbd2_journal_inode_ranged_write(handle_t *handle,
2689 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2690 {
2691 	return jbd2_journal_file_inode(handle, jinode,
2692 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2693 			start_byte + length - 1);
2694 }
2695 
2696 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2697 		loff_t start_byte, loff_t length)
2698 {
2699 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2700 			start_byte, start_byte + length - 1);
2701 }
2702 
2703 /*
2704  * File truncate and transaction commit interact with each other in a
2705  * non-trivial way.  If a transaction writing data block A is
2706  * committing, we cannot discard the data by truncate until we have
2707  * written them.  Otherwise if we crashed after the transaction with
2708  * write has committed but before the transaction with truncate has
2709  * committed, we could see stale data in block A.  This function is a
2710  * helper to solve this problem.  It starts writeout of the truncated
2711  * part in case it is in the committing transaction.
2712  *
2713  * Filesystem code must call this function when inode is journaled in
2714  * ordered mode before truncation happens and after the inode has been
2715  * placed on orphan list with the new inode size. The second condition
2716  * avoids the race that someone writes new data and we start
2717  * committing the transaction after this function has been called but
2718  * before a transaction for truncate is started (and furthermore it
2719  * allows us to optimize the case where the addition to orphan list
2720  * happens in the same transaction as write --- we don't have to write
2721  * any data in such case).
2722  */
2723 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2724 					struct jbd2_inode *jinode,
2725 					loff_t new_size)
2726 {
2727 	transaction_t *inode_trans, *commit_trans;
2728 	int ret = 0;
2729 
2730 	/* This is a quick check to avoid locking if not necessary */
2731 	if (!jinode->i_transaction)
2732 		goto out;
2733 	/* Locks are here just to force reading of recent values, it is
2734 	 * enough that the transaction was not committing before we started
2735 	 * a transaction adding the inode to orphan list */
2736 	read_lock(&journal->j_state_lock);
2737 	commit_trans = journal->j_committing_transaction;
2738 	read_unlock(&journal->j_state_lock);
2739 	spin_lock(&journal->j_list_lock);
2740 	inode_trans = jinode->i_transaction;
2741 	spin_unlock(&journal->j_list_lock);
2742 	if (inode_trans == commit_trans) {
2743 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2744 			new_size, LLONG_MAX);
2745 		if (ret)
2746 			jbd2_journal_abort(journal, ret);
2747 	}
2748 out:
2749 	return ret;
2750 }
2751