xref: /openbmc/linux/fs/jbd2/transaction.c (revision 7fe2f639)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
34 
35 /*
36  * jbd2_get_transaction: obtain a new transaction_t object.
37  *
38  * Simply allocate and initialise a new transaction.  Create it in
39  * RUNNING state and add it to the current journal (which should not
40  * have an existing running transaction: we only make a new transaction
41  * once we have started to commit the old one).
42  *
43  * Preconditions:
44  *	The journal MUST be locked.  We don't perform atomic mallocs on the
45  *	new transaction	and we can't block without protecting against other
46  *	processes trying to touch the journal while it is in transition.
47  *
48  */
49 
50 static transaction_t *
51 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
52 {
53 	transaction->t_journal = journal;
54 	transaction->t_state = T_RUNNING;
55 	transaction->t_start_time = ktime_get();
56 	transaction->t_tid = journal->j_transaction_sequence++;
57 	transaction->t_expires = jiffies + journal->j_commit_interval;
58 	spin_lock_init(&transaction->t_handle_lock);
59 	atomic_set(&transaction->t_updates, 0);
60 	atomic_set(&transaction->t_outstanding_credits, 0);
61 	atomic_set(&transaction->t_handle_count, 0);
62 	INIT_LIST_HEAD(&transaction->t_inode_list);
63 	INIT_LIST_HEAD(&transaction->t_private_list);
64 
65 	/* Set up the commit timer for the new transaction. */
66 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
67 	add_timer(&journal->j_commit_timer);
68 
69 	J_ASSERT(journal->j_running_transaction == NULL);
70 	journal->j_running_transaction = transaction;
71 	transaction->t_max_wait = 0;
72 	transaction->t_start = jiffies;
73 
74 	return transaction;
75 }
76 
77 /*
78  * Handle management.
79  *
80  * A handle_t is an object which represents a single atomic update to a
81  * filesystem, and which tracks all of the modifications which form part
82  * of that one update.
83  */
84 
85 /*
86  * Update transaction's maximum wait time, if debugging is enabled.
87  *
88  * In order for t_max_wait to be reliable, it must be protected by a
89  * lock.  But doing so will mean that start_this_handle() can not be
90  * run in parallel on SMP systems, which limits our scalability.  So
91  * unless debugging is enabled, we no longer update t_max_wait, which
92  * means that maximum wait time reported by the jbd2_run_stats
93  * tracepoint will always be zero.
94  */
95 static inline void update_t_max_wait(transaction_t *transaction,
96 				     unsigned long ts)
97 {
98 #ifdef CONFIG_JBD2_DEBUG
99 	if (jbd2_journal_enable_debug &&
100 	    time_after(transaction->t_start, ts)) {
101 		ts = jbd2_time_diff(ts, transaction->t_start);
102 		spin_lock(&transaction->t_handle_lock);
103 		if (ts > transaction->t_max_wait)
104 			transaction->t_max_wait = ts;
105 		spin_unlock(&transaction->t_handle_lock);
106 	}
107 #endif
108 }
109 
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116 
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118 			     int gfp_mask)
119 {
120 	transaction_t	*transaction, *new_transaction = NULL;
121 	tid_t		tid;
122 	int		needed, need_to_start;
123 	int		nblocks = handle->h_buffer_credits;
124 	unsigned long ts = jiffies;
125 
126 	if (nblocks > journal->j_max_transaction_buffers) {
127 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
128 		       current->comm, nblocks,
129 		       journal->j_max_transaction_buffers);
130 		return -ENOSPC;
131 	}
132 
133 alloc_transaction:
134 	if (!journal->j_running_transaction) {
135 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
136 		if (!new_transaction) {
137 			/*
138 			 * If __GFP_FS is not present, then we may be
139 			 * being called from inside the fs writeback
140 			 * layer, so we MUST NOT fail.  Since
141 			 * __GFP_NOFAIL is going away, we will arrange
142 			 * to retry the allocation ourselves.
143 			 */
144 			if ((gfp_mask & __GFP_FS) == 0) {
145 				congestion_wait(BLK_RW_ASYNC, HZ/50);
146 				goto alloc_transaction;
147 			}
148 			return -ENOMEM;
149 		}
150 	}
151 
152 	jbd_debug(3, "New handle %p going live.\n", handle);
153 
154 	/*
155 	 * We need to hold j_state_lock until t_updates has been incremented,
156 	 * for proper journal barrier handling
157 	 */
158 repeat:
159 	read_lock(&journal->j_state_lock);
160 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
161 	if (is_journal_aborted(journal) ||
162 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
163 		read_unlock(&journal->j_state_lock);
164 		kfree(new_transaction);
165 		return -EROFS;
166 	}
167 
168 	/* Wait on the journal's transaction barrier if necessary */
169 	if (journal->j_barrier_count) {
170 		read_unlock(&journal->j_state_lock);
171 		wait_event(journal->j_wait_transaction_locked,
172 				journal->j_barrier_count == 0);
173 		goto repeat;
174 	}
175 
176 	if (!journal->j_running_transaction) {
177 		read_unlock(&journal->j_state_lock);
178 		if (!new_transaction)
179 			goto alloc_transaction;
180 		write_lock(&journal->j_state_lock);
181 		if (!journal->j_running_transaction) {
182 			jbd2_get_transaction(journal, new_transaction);
183 			new_transaction = NULL;
184 		}
185 		write_unlock(&journal->j_state_lock);
186 		goto repeat;
187 	}
188 
189 	transaction = journal->j_running_transaction;
190 
191 	/*
192 	 * If the current transaction is locked down for commit, wait for the
193 	 * lock to be released.
194 	 */
195 	if (transaction->t_state == T_LOCKED) {
196 		DEFINE_WAIT(wait);
197 
198 		prepare_to_wait(&journal->j_wait_transaction_locked,
199 					&wait, TASK_UNINTERRUPTIBLE);
200 		read_unlock(&journal->j_state_lock);
201 		schedule();
202 		finish_wait(&journal->j_wait_transaction_locked, &wait);
203 		goto repeat;
204 	}
205 
206 	/*
207 	 * If there is not enough space left in the log to write all potential
208 	 * buffers requested by this operation, we need to stall pending a log
209 	 * checkpoint to free some more log space.
210 	 */
211 	needed = atomic_add_return(nblocks,
212 				   &transaction->t_outstanding_credits);
213 
214 	if (needed > journal->j_max_transaction_buffers) {
215 		/*
216 		 * If the current transaction is already too large, then start
217 		 * to commit it: we can then go back and attach this handle to
218 		 * a new transaction.
219 		 */
220 		DEFINE_WAIT(wait);
221 
222 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
223 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
224 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
225 				TASK_UNINTERRUPTIBLE);
226 		tid = transaction->t_tid;
227 		need_to_start = !tid_geq(journal->j_commit_request, tid);
228 		read_unlock(&journal->j_state_lock);
229 		if (need_to_start)
230 			jbd2_log_start_commit(journal, tid);
231 		schedule();
232 		finish_wait(&journal->j_wait_transaction_locked, &wait);
233 		goto repeat;
234 	}
235 
236 	/*
237 	 * The commit code assumes that it can get enough log space
238 	 * without forcing a checkpoint.  This is *critical* for
239 	 * correctness: a checkpoint of a buffer which is also
240 	 * associated with a committing transaction creates a deadlock,
241 	 * so commit simply cannot force through checkpoints.
242 	 *
243 	 * We must therefore ensure the necessary space in the journal
244 	 * *before* starting to dirty potentially checkpointed buffers
245 	 * in the new transaction.
246 	 *
247 	 * The worst part is, any transaction currently committing can
248 	 * reduce the free space arbitrarily.  Be careful to account for
249 	 * those buffers when checkpointing.
250 	 */
251 
252 	/*
253 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
254 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
255 	 * the committing transaction.  Really, we only need to give it
256 	 * committing_transaction->t_outstanding_credits plus "enough" for
257 	 * the log control blocks.
258 	 * Also, this test is inconsistent with the matching one in
259 	 * jbd2_journal_extend().
260 	 */
261 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
262 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
263 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
264 		read_unlock(&journal->j_state_lock);
265 		write_lock(&journal->j_state_lock);
266 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
267 			__jbd2_log_wait_for_space(journal);
268 		write_unlock(&journal->j_state_lock);
269 		goto repeat;
270 	}
271 
272 	/* OK, account for the buffers that this operation expects to
273 	 * use and add the handle to the running transaction.
274 	 */
275 	update_t_max_wait(transaction, ts);
276 	handle->h_transaction = transaction;
277 	atomic_inc(&transaction->t_updates);
278 	atomic_inc(&transaction->t_handle_count);
279 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
280 		  handle, nblocks,
281 		  atomic_read(&transaction->t_outstanding_credits),
282 		  __jbd2_log_space_left(journal));
283 	read_unlock(&journal->j_state_lock);
284 
285 	lock_map_acquire(&handle->h_lockdep_map);
286 	kfree(new_transaction);
287 	return 0;
288 }
289 
290 static struct lock_class_key jbd2_handle_key;
291 
292 /* Allocate a new handle.  This should probably be in a slab... */
293 static handle_t *new_handle(int nblocks)
294 {
295 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
296 	if (!handle)
297 		return NULL;
298 	memset(handle, 0, sizeof(*handle));
299 	handle->h_buffer_credits = nblocks;
300 	handle->h_ref = 1;
301 
302 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
303 						&jbd2_handle_key, 0);
304 
305 	return handle;
306 }
307 
308 /**
309  * handle_t *jbd2_journal_start() - Obtain a new handle.
310  * @journal: Journal to start transaction on.
311  * @nblocks: number of block buffer we might modify
312  *
313  * We make sure that the transaction can guarantee at least nblocks of
314  * modified buffers in the log.  We block until the log can guarantee
315  * that much space.
316  *
317  * This function is visible to journal users (like ext3fs), so is not
318  * called with the journal already locked.
319  *
320  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
321  * on failure.
322  */
323 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
324 {
325 	handle_t *handle = journal_current_handle();
326 	int err;
327 
328 	if (!journal)
329 		return ERR_PTR(-EROFS);
330 
331 	if (handle) {
332 		J_ASSERT(handle->h_transaction->t_journal == journal);
333 		handle->h_ref++;
334 		return handle;
335 	}
336 
337 	handle = new_handle(nblocks);
338 	if (!handle)
339 		return ERR_PTR(-ENOMEM);
340 
341 	current->journal_info = handle;
342 
343 	err = start_this_handle(journal, handle, gfp_mask);
344 	if (err < 0) {
345 		jbd2_free_handle(handle);
346 		current->journal_info = NULL;
347 		handle = ERR_PTR(err);
348 	}
349 	return handle;
350 }
351 EXPORT_SYMBOL(jbd2__journal_start);
352 
353 
354 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
355 {
356 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
357 }
358 EXPORT_SYMBOL(jbd2_journal_start);
359 
360 
361 /**
362  * int jbd2_journal_extend() - extend buffer credits.
363  * @handle:  handle to 'extend'
364  * @nblocks: nr blocks to try to extend by.
365  *
366  * Some transactions, such as large extends and truncates, can be done
367  * atomically all at once or in several stages.  The operation requests
368  * a credit for a number of buffer modications in advance, but can
369  * extend its credit if it needs more.
370  *
371  * jbd2_journal_extend tries to give the running handle more buffer credits.
372  * It does not guarantee that allocation - this is a best-effort only.
373  * The calling process MUST be able to deal cleanly with a failure to
374  * extend here.
375  *
376  * Return 0 on success, non-zero on failure.
377  *
378  * return code < 0 implies an error
379  * return code > 0 implies normal transaction-full status.
380  */
381 int jbd2_journal_extend(handle_t *handle, int nblocks)
382 {
383 	transaction_t *transaction = handle->h_transaction;
384 	journal_t *journal = transaction->t_journal;
385 	int result;
386 	int wanted;
387 
388 	result = -EIO;
389 	if (is_handle_aborted(handle))
390 		goto out;
391 
392 	result = 1;
393 
394 	read_lock(&journal->j_state_lock);
395 
396 	/* Don't extend a locked-down transaction! */
397 	if (handle->h_transaction->t_state != T_RUNNING) {
398 		jbd_debug(3, "denied handle %p %d blocks: "
399 			  "transaction not running\n", handle, nblocks);
400 		goto error_out;
401 	}
402 
403 	spin_lock(&transaction->t_handle_lock);
404 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
405 
406 	if (wanted > journal->j_max_transaction_buffers) {
407 		jbd_debug(3, "denied handle %p %d blocks: "
408 			  "transaction too large\n", handle, nblocks);
409 		goto unlock;
410 	}
411 
412 	if (wanted > __jbd2_log_space_left(journal)) {
413 		jbd_debug(3, "denied handle %p %d blocks: "
414 			  "insufficient log space\n", handle, nblocks);
415 		goto unlock;
416 	}
417 
418 	handle->h_buffer_credits += nblocks;
419 	atomic_add(nblocks, &transaction->t_outstanding_credits);
420 	result = 0;
421 
422 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
423 unlock:
424 	spin_unlock(&transaction->t_handle_lock);
425 error_out:
426 	read_unlock(&journal->j_state_lock);
427 out:
428 	return result;
429 }
430 
431 
432 /**
433  * int jbd2_journal_restart() - restart a handle .
434  * @handle:  handle to restart
435  * @nblocks: nr credits requested
436  *
437  * Restart a handle for a multi-transaction filesystem
438  * operation.
439  *
440  * If the jbd2_journal_extend() call above fails to grant new buffer credits
441  * to a running handle, a call to jbd2_journal_restart will commit the
442  * handle's transaction so far and reattach the handle to a new
443  * transaction capabable of guaranteeing the requested number of
444  * credits.
445  */
446 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
447 {
448 	transaction_t *transaction = handle->h_transaction;
449 	journal_t *journal = transaction->t_journal;
450 	tid_t		tid;
451 	int		need_to_start, ret;
452 
453 	/* If we've had an abort of any type, don't even think about
454 	 * actually doing the restart! */
455 	if (is_handle_aborted(handle))
456 		return 0;
457 
458 	/*
459 	 * First unlink the handle from its current transaction, and start the
460 	 * commit on that.
461 	 */
462 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
463 	J_ASSERT(journal_current_handle() == handle);
464 
465 	read_lock(&journal->j_state_lock);
466 	spin_lock(&transaction->t_handle_lock);
467 	atomic_sub(handle->h_buffer_credits,
468 		   &transaction->t_outstanding_credits);
469 	if (atomic_dec_and_test(&transaction->t_updates))
470 		wake_up(&journal->j_wait_updates);
471 	spin_unlock(&transaction->t_handle_lock);
472 
473 	jbd_debug(2, "restarting handle %p\n", handle);
474 	tid = transaction->t_tid;
475 	need_to_start = !tid_geq(journal->j_commit_request, tid);
476 	read_unlock(&journal->j_state_lock);
477 	if (need_to_start)
478 		jbd2_log_start_commit(journal, tid);
479 
480 	lock_map_release(&handle->h_lockdep_map);
481 	handle->h_buffer_credits = nblocks;
482 	ret = start_this_handle(journal, handle, gfp_mask);
483 	return ret;
484 }
485 EXPORT_SYMBOL(jbd2__journal_restart);
486 
487 
488 int jbd2_journal_restart(handle_t *handle, int nblocks)
489 {
490 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
491 }
492 EXPORT_SYMBOL(jbd2_journal_restart);
493 
494 /**
495  * void jbd2_journal_lock_updates () - establish a transaction barrier.
496  * @journal:  Journal to establish a barrier on.
497  *
498  * This locks out any further updates from being started, and blocks
499  * until all existing updates have completed, returning only once the
500  * journal is in a quiescent state with no updates running.
501  *
502  * The journal lock should not be held on entry.
503  */
504 void jbd2_journal_lock_updates(journal_t *journal)
505 {
506 	DEFINE_WAIT(wait);
507 
508 	write_lock(&journal->j_state_lock);
509 	++journal->j_barrier_count;
510 
511 	/* Wait until there are no running updates */
512 	while (1) {
513 		transaction_t *transaction = journal->j_running_transaction;
514 
515 		if (!transaction)
516 			break;
517 
518 		spin_lock(&transaction->t_handle_lock);
519 		if (!atomic_read(&transaction->t_updates)) {
520 			spin_unlock(&transaction->t_handle_lock);
521 			break;
522 		}
523 		prepare_to_wait(&journal->j_wait_updates, &wait,
524 				TASK_UNINTERRUPTIBLE);
525 		spin_unlock(&transaction->t_handle_lock);
526 		write_unlock(&journal->j_state_lock);
527 		schedule();
528 		finish_wait(&journal->j_wait_updates, &wait);
529 		write_lock(&journal->j_state_lock);
530 	}
531 	write_unlock(&journal->j_state_lock);
532 
533 	/*
534 	 * We have now established a barrier against other normal updates, but
535 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
536 	 * to make sure that we serialise special journal-locked operations
537 	 * too.
538 	 */
539 	mutex_lock(&journal->j_barrier);
540 }
541 
542 /**
543  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
544  * @journal:  Journal to release the barrier on.
545  *
546  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
547  *
548  * Should be called without the journal lock held.
549  */
550 void jbd2_journal_unlock_updates (journal_t *journal)
551 {
552 	J_ASSERT(journal->j_barrier_count != 0);
553 
554 	mutex_unlock(&journal->j_barrier);
555 	write_lock(&journal->j_state_lock);
556 	--journal->j_barrier_count;
557 	write_unlock(&journal->j_state_lock);
558 	wake_up(&journal->j_wait_transaction_locked);
559 }
560 
561 static void warn_dirty_buffer(struct buffer_head *bh)
562 {
563 	char b[BDEVNAME_SIZE];
564 
565 	printk(KERN_WARNING
566 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
567 	       "There's a risk of filesystem corruption in case of system "
568 	       "crash.\n",
569 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
570 }
571 
572 /*
573  * If the buffer is already part of the current transaction, then there
574  * is nothing we need to do.  If it is already part of a prior
575  * transaction which we are still committing to disk, then we need to
576  * make sure that we do not overwrite the old copy: we do copy-out to
577  * preserve the copy going to disk.  We also account the buffer against
578  * the handle's metadata buffer credits (unless the buffer is already
579  * part of the transaction, that is).
580  *
581  */
582 static int
583 do_get_write_access(handle_t *handle, struct journal_head *jh,
584 			int force_copy)
585 {
586 	struct buffer_head *bh;
587 	transaction_t *transaction;
588 	journal_t *journal;
589 	int error;
590 	char *frozen_buffer = NULL;
591 	int need_copy = 0;
592 
593 	if (is_handle_aborted(handle))
594 		return -EROFS;
595 
596 	transaction = handle->h_transaction;
597 	journal = transaction->t_journal;
598 
599 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
600 
601 	JBUFFER_TRACE(jh, "entry");
602 repeat:
603 	bh = jh2bh(jh);
604 
605 	/* @@@ Need to check for errors here at some point. */
606 
607 	lock_buffer(bh);
608 	jbd_lock_bh_state(bh);
609 
610 	/* We now hold the buffer lock so it is safe to query the buffer
611 	 * state.  Is the buffer dirty?
612 	 *
613 	 * If so, there are two possibilities.  The buffer may be
614 	 * non-journaled, and undergoing a quite legitimate writeback.
615 	 * Otherwise, it is journaled, and we don't expect dirty buffers
616 	 * in that state (the buffers should be marked JBD_Dirty
617 	 * instead.)  So either the IO is being done under our own
618 	 * control and this is a bug, or it's a third party IO such as
619 	 * dump(8) (which may leave the buffer scheduled for read ---
620 	 * ie. locked but not dirty) or tune2fs (which may actually have
621 	 * the buffer dirtied, ugh.)  */
622 
623 	if (buffer_dirty(bh)) {
624 		/*
625 		 * First question: is this buffer already part of the current
626 		 * transaction or the existing committing transaction?
627 		 */
628 		if (jh->b_transaction) {
629 			J_ASSERT_JH(jh,
630 				jh->b_transaction == transaction ||
631 				jh->b_transaction ==
632 					journal->j_committing_transaction);
633 			if (jh->b_next_transaction)
634 				J_ASSERT_JH(jh, jh->b_next_transaction ==
635 							transaction);
636 			warn_dirty_buffer(bh);
637 		}
638 		/*
639 		 * In any case we need to clean the dirty flag and we must
640 		 * do it under the buffer lock to be sure we don't race
641 		 * with running write-out.
642 		 */
643 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
644 		clear_buffer_dirty(bh);
645 		set_buffer_jbddirty(bh);
646 	}
647 
648 	unlock_buffer(bh);
649 
650 	error = -EROFS;
651 	if (is_handle_aborted(handle)) {
652 		jbd_unlock_bh_state(bh);
653 		goto out;
654 	}
655 	error = 0;
656 
657 	/*
658 	 * The buffer is already part of this transaction if b_transaction or
659 	 * b_next_transaction points to it
660 	 */
661 	if (jh->b_transaction == transaction ||
662 	    jh->b_next_transaction == transaction)
663 		goto done;
664 
665 	/*
666 	 * this is the first time this transaction is touching this buffer,
667 	 * reset the modified flag
668 	 */
669        jh->b_modified = 0;
670 
671 	/*
672 	 * If there is already a copy-out version of this buffer, then we don't
673 	 * need to make another one
674 	 */
675 	if (jh->b_frozen_data) {
676 		JBUFFER_TRACE(jh, "has frozen data");
677 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
678 		jh->b_next_transaction = transaction;
679 		goto done;
680 	}
681 
682 	/* Is there data here we need to preserve? */
683 
684 	if (jh->b_transaction && jh->b_transaction != transaction) {
685 		JBUFFER_TRACE(jh, "owned by older transaction");
686 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
687 		J_ASSERT_JH(jh, jh->b_transaction ==
688 					journal->j_committing_transaction);
689 
690 		/* There is one case we have to be very careful about.
691 		 * If the committing transaction is currently writing
692 		 * this buffer out to disk and has NOT made a copy-out,
693 		 * then we cannot modify the buffer contents at all
694 		 * right now.  The essence of copy-out is that it is the
695 		 * extra copy, not the primary copy, which gets
696 		 * journaled.  If the primary copy is already going to
697 		 * disk then we cannot do copy-out here. */
698 
699 		if (jh->b_jlist == BJ_Shadow) {
700 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
701 			wait_queue_head_t *wqh;
702 
703 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
704 
705 			JBUFFER_TRACE(jh, "on shadow: sleep");
706 			jbd_unlock_bh_state(bh);
707 			/* commit wakes up all shadow buffers after IO */
708 			for ( ; ; ) {
709 				prepare_to_wait(wqh, &wait.wait,
710 						TASK_UNINTERRUPTIBLE);
711 				if (jh->b_jlist != BJ_Shadow)
712 					break;
713 				schedule();
714 			}
715 			finish_wait(wqh, &wait.wait);
716 			goto repeat;
717 		}
718 
719 		/* Only do the copy if the currently-owning transaction
720 		 * still needs it.  If it is on the Forget list, the
721 		 * committing transaction is past that stage.  The
722 		 * buffer had better remain locked during the kmalloc,
723 		 * but that should be true --- we hold the journal lock
724 		 * still and the buffer is already on the BUF_JOURNAL
725 		 * list so won't be flushed.
726 		 *
727 		 * Subtle point, though: if this is a get_undo_access,
728 		 * then we will be relying on the frozen_data to contain
729 		 * the new value of the committed_data record after the
730 		 * transaction, so we HAVE to force the frozen_data copy
731 		 * in that case. */
732 
733 		if (jh->b_jlist != BJ_Forget || force_copy) {
734 			JBUFFER_TRACE(jh, "generate frozen data");
735 			if (!frozen_buffer) {
736 				JBUFFER_TRACE(jh, "allocate memory for buffer");
737 				jbd_unlock_bh_state(bh);
738 				frozen_buffer =
739 					jbd2_alloc(jh2bh(jh)->b_size,
740 							 GFP_NOFS);
741 				if (!frozen_buffer) {
742 					printk(KERN_EMERG
743 					       "%s: OOM for frozen_buffer\n",
744 					       __func__);
745 					JBUFFER_TRACE(jh, "oom!");
746 					error = -ENOMEM;
747 					jbd_lock_bh_state(bh);
748 					goto done;
749 				}
750 				goto repeat;
751 			}
752 			jh->b_frozen_data = frozen_buffer;
753 			frozen_buffer = NULL;
754 			need_copy = 1;
755 		}
756 		jh->b_next_transaction = transaction;
757 	}
758 
759 
760 	/*
761 	 * Finally, if the buffer is not journaled right now, we need to make
762 	 * sure it doesn't get written to disk before the caller actually
763 	 * commits the new data
764 	 */
765 	if (!jh->b_transaction) {
766 		JBUFFER_TRACE(jh, "no transaction");
767 		J_ASSERT_JH(jh, !jh->b_next_transaction);
768 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
769 		spin_lock(&journal->j_list_lock);
770 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
771 		spin_unlock(&journal->j_list_lock);
772 	}
773 
774 done:
775 	if (need_copy) {
776 		struct page *page;
777 		int offset;
778 		char *source;
779 
780 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
781 			    "Possible IO failure.\n");
782 		page = jh2bh(jh)->b_page;
783 		offset = offset_in_page(jh2bh(jh)->b_data);
784 		source = kmap_atomic(page, KM_USER0);
785 		/* Fire data frozen trigger just before we copy the data */
786 		jbd2_buffer_frozen_trigger(jh, source + offset,
787 					   jh->b_triggers);
788 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
789 		kunmap_atomic(source, KM_USER0);
790 
791 		/*
792 		 * Now that the frozen data is saved off, we need to store
793 		 * any matching triggers.
794 		 */
795 		jh->b_frozen_triggers = jh->b_triggers;
796 	}
797 	jbd_unlock_bh_state(bh);
798 
799 	/*
800 	 * If we are about to journal a buffer, then any revoke pending on it is
801 	 * no longer valid
802 	 */
803 	jbd2_journal_cancel_revoke(handle, jh);
804 
805 out:
806 	if (unlikely(frozen_buffer))	/* It's usually NULL */
807 		jbd2_free(frozen_buffer, bh->b_size);
808 
809 	JBUFFER_TRACE(jh, "exit");
810 	return error;
811 }
812 
813 /**
814  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
815  * @handle: transaction to add buffer modifications to
816  * @bh:     bh to be used for metadata writes
817  *
818  * Returns an error code or 0 on success.
819  *
820  * In full data journalling mode the buffer may be of type BJ_AsyncData,
821  * because we're write()ing a buffer which is also part of a shared mapping.
822  */
823 
824 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
825 {
826 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
827 	int rc;
828 
829 	/* We do not want to get caught playing with fields which the
830 	 * log thread also manipulates.  Make sure that the buffer
831 	 * completes any outstanding IO before proceeding. */
832 	rc = do_get_write_access(handle, jh, 0);
833 	jbd2_journal_put_journal_head(jh);
834 	return rc;
835 }
836 
837 
838 /*
839  * When the user wants to journal a newly created buffer_head
840  * (ie. getblk() returned a new buffer and we are going to populate it
841  * manually rather than reading off disk), then we need to keep the
842  * buffer_head locked until it has been completely filled with new
843  * data.  In this case, we should be able to make the assertion that
844  * the bh is not already part of an existing transaction.
845  *
846  * The buffer should already be locked by the caller by this point.
847  * There is no lock ranking violation: it was a newly created,
848  * unlocked buffer beforehand. */
849 
850 /**
851  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
852  * @handle: transaction to new buffer to
853  * @bh: new buffer.
854  *
855  * Call this if you create a new bh.
856  */
857 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
858 {
859 	transaction_t *transaction = handle->h_transaction;
860 	journal_t *journal = transaction->t_journal;
861 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
862 	int err;
863 
864 	jbd_debug(5, "journal_head %p\n", jh);
865 	err = -EROFS;
866 	if (is_handle_aborted(handle))
867 		goto out;
868 	err = 0;
869 
870 	JBUFFER_TRACE(jh, "entry");
871 	/*
872 	 * The buffer may already belong to this transaction due to pre-zeroing
873 	 * in the filesystem's new_block code.  It may also be on the previous,
874 	 * committing transaction's lists, but it HAS to be in Forget state in
875 	 * that case: the transaction must have deleted the buffer for it to be
876 	 * reused here.
877 	 */
878 	jbd_lock_bh_state(bh);
879 	spin_lock(&journal->j_list_lock);
880 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
881 		jh->b_transaction == NULL ||
882 		(jh->b_transaction == journal->j_committing_transaction &&
883 			  jh->b_jlist == BJ_Forget)));
884 
885 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
886 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
887 
888 	if (jh->b_transaction == NULL) {
889 		/*
890 		 * Previous jbd2_journal_forget() could have left the buffer
891 		 * with jbddirty bit set because it was being committed. When
892 		 * the commit finished, we've filed the buffer for
893 		 * checkpointing and marked it dirty. Now we are reallocating
894 		 * the buffer so the transaction freeing it must have
895 		 * committed and so it's safe to clear the dirty bit.
896 		 */
897 		clear_buffer_dirty(jh2bh(jh));
898 		/* first access by this transaction */
899 		jh->b_modified = 0;
900 
901 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
902 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
903 	} else if (jh->b_transaction == journal->j_committing_transaction) {
904 		/* first access by this transaction */
905 		jh->b_modified = 0;
906 
907 		JBUFFER_TRACE(jh, "set next transaction");
908 		jh->b_next_transaction = transaction;
909 	}
910 	spin_unlock(&journal->j_list_lock);
911 	jbd_unlock_bh_state(bh);
912 
913 	/*
914 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
915 	 * blocks which contain freed but then revoked metadata.  We need
916 	 * to cancel the revoke in case we end up freeing it yet again
917 	 * and the reallocating as data - this would cause a second revoke,
918 	 * which hits an assertion error.
919 	 */
920 	JBUFFER_TRACE(jh, "cancelling revoke");
921 	jbd2_journal_cancel_revoke(handle, jh);
922 out:
923 	jbd2_journal_put_journal_head(jh);
924 	return err;
925 }
926 
927 /**
928  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
929  *     non-rewindable consequences
930  * @handle: transaction
931  * @bh: buffer to undo
932  *
933  * Sometimes there is a need to distinguish between metadata which has
934  * been committed to disk and that which has not.  The ext3fs code uses
935  * this for freeing and allocating space, we have to make sure that we
936  * do not reuse freed space until the deallocation has been committed,
937  * since if we overwrote that space we would make the delete
938  * un-rewindable in case of a crash.
939  *
940  * To deal with that, jbd2_journal_get_undo_access requests write access to a
941  * buffer for parts of non-rewindable operations such as delete
942  * operations on the bitmaps.  The journaling code must keep a copy of
943  * the buffer's contents prior to the undo_access call until such time
944  * as we know that the buffer has definitely been committed to disk.
945  *
946  * We never need to know which transaction the committed data is part
947  * of, buffers touched here are guaranteed to be dirtied later and so
948  * will be committed to a new transaction in due course, at which point
949  * we can discard the old committed data pointer.
950  *
951  * Returns error number or 0 on success.
952  */
953 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
954 {
955 	int err;
956 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
957 	char *committed_data = NULL;
958 
959 	JBUFFER_TRACE(jh, "entry");
960 
961 	/*
962 	 * Do this first --- it can drop the journal lock, so we want to
963 	 * make sure that obtaining the committed_data is done
964 	 * atomically wrt. completion of any outstanding commits.
965 	 */
966 	err = do_get_write_access(handle, jh, 1);
967 	if (err)
968 		goto out;
969 
970 repeat:
971 	if (!jh->b_committed_data) {
972 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
973 		if (!committed_data) {
974 			printk(KERN_EMERG "%s: No memory for committed data\n",
975 				__func__);
976 			err = -ENOMEM;
977 			goto out;
978 		}
979 	}
980 
981 	jbd_lock_bh_state(bh);
982 	if (!jh->b_committed_data) {
983 		/* Copy out the current buffer contents into the
984 		 * preserved, committed copy. */
985 		JBUFFER_TRACE(jh, "generate b_committed data");
986 		if (!committed_data) {
987 			jbd_unlock_bh_state(bh);
988 			goto repeat;
989 		}
990 
991 		jh->b_committed_data = committed_data;
992 		committed_data = NULL;
993 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
994 	}
995 	jbd_unlock_bh_state(bh);
996 out:
997 	jbd2_journal_put_journal_head(jh);
998 	if (unlikely(committed_data))
999 		jbd2_free(committed_data, bh->b_size);
1000 	return err;
1001 }
1002 
1003 /**
1004  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1005  * @bh: buffer to trigger on
1006  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1007  *
1008  * Set any triggers on this journal_head.  This is always safe, because
1009  * triggers for a committing buffer will be saved off, and triggers for
1010  * a running transaction will match the buffer in that transaction.
1011  *
1012  * Call with NULL to clear the triggers.
1013  */
1014 void jbd2_journal_set_triggers(struct buffer_head *bh,
1015 			       struct jbd2_buffer_trigger_type *type)
1016 {
1017 	struct journal_head *jh = bh2jh(bh);
1018 
1019 	jh->b_triggers = type;
1020 }
1021 
1022 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1023 				struct jbd2_buffer_trigger_type *triggers)
1024 {
1025 	struct buffer_head *bh = jh2bh(jh);
1026 
1027 	if (!triggers || !triggers->t_frozen)
1028 		return;
1029 
1030 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1031 }
1032 
1033 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1034 			       struct jbd2_buffer_trigger_type *triggers)
1035 {
1036 	if (!triggers || !triggers->t_abort)
1037 		return;
1038 
1039 	triggers->t_abort(triggers, jh2bh(jh));
1040 }
1041 
1042 
1043 
1044 /**
1045  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1046  * @handle: transaction to add buffer to.
1047  * @bh: buffer to mark
1048  *
1049  * mark dirty metadata which needs to be journaled as part of the current
1050  * transaction.
1051  *
1052  * The buffer is placed on the transaction's metadata list and is marked
1053  * as belonging to the transaction.
1054  *
1055  * Returns error number or 0 on success.
1056  *
1057  * Special care needs to be taken if the buffer already belongs to the
1058  * current committing transaction (in which case we should have frozen
1059  * data present for that commit).  In that case, we don't relink the
1060  * buffer: that only gets done when the old transaction finally
1061  * completes its commit.
1062  */
1063 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1064 {
1065 	transaction_t *transaction = handle->h_transaction;
1066 	journal_t *journal = transaction->t_journal;
1067 	struct journal_head *jh = bh2jh(bh);
1068 
1069 	jbd_debug(5, "journal_head %p\n", jh);
1070 	JBUFFER_TRACE(jh, "entry");
1071 	if (is_handle_aborted(handle))
1072 		goto out;
1073 
1074 	jbd_lock_bh_state(bh);
1075 
1076 	if (jh->b_modified == 0) {
1077 		/*
1078 		 * This buffer's got modified and becoming part
1079 		 * of the transaction. This needs to be done
1080 		 * once a transaction -bzzz
1081 		 */
1082 		jh->b_modified = 1;
1083 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1084 		handle->h_buffer_credits--;
1085 	}
1086 
1087 	/*
1088 	 * fastpath, to avoid expensive locking.  If this buffer is already
1089 	 * on the running transaction's metadata list there is nothing to do.
1090 	 * Nobody can take it off again because there is a handle open.
1091 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1092 	 * result in this test being false, so we go in and take the locks.
1093 	 */
1094 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1095 		JBUFFER_TRACE(jh, "fastpath");
1096 		J_ASSERT_JH(jh, jh->b_transaction ==
1097 					journal->j_running_transaction);
1098 		goto out_unlock_bh;
1099 	}
1100 
1101 	set_buffer_jbddirty(bh);
1102 
1103 	/*
1104 	 * Metadata already on the current transaction list doesn't
1105 	 * need to be filed.  Metadata on another transaction's list must
1106 	 * be committing, and will be refiled once the commit completes:
1107 	 * leave it alone for now.
1108 	 */
1109 	if (jh->b_transaction != transaction) {
1110 		JBUFFER_TRACE(jh, "already on other transaction");
1111 		J_ASSERT_JH(jh, jh->b_transaction ==
1112 					journal->j_committing_transaction);
1113 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1114 		/* And this case is illegal: we can't reuse another
1115 		 * transaction's data buffer, ever. */
1116 		goto out_unlock_bh;
1117 	}
1118 
1119 	/* That test should have eliminated the following case: */
1120 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1121 
1122 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1123 	spin_lock(&journal->j_list_lock);
1124 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1125 	spin_unlock(&journal->j_list_lock);
1126 out_unlock_bh:
1127 	jbd_unlock_bh_state(bh);
1128 out:
1129 	JBUFFER_TRACE(jh, "exit");
1130 	return 0;
1131 }
1132 
1133 /*
1134  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1135  * updates, if the update decided in the end that it didn't need access.
1136  *
1137  */
1138 void
1139 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1140 {
1141 	BUFFER_TRACE(bh, "entry");
1142 }
1143 
1144 /**
1145  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1146  * @handle: transaction handle
1147  * @bh:     bh to 'forget'
1148  *
1149  * We can only do the bforget if there are no commits pending against the
1150  * buffer.  If the buffer is dirty in the current running transaction we
1151  * can safely unlink it.
1152  *
1153  * bh may not be a journalled buffer at all - it may be a non-JBD
1154  * buffer which came off the hashtable.  Check for this.
1155  *
1156  * Decrements bh->b_count by one.
1157  *
1158  * Allow this call even if the handle has aborted --- it may be part of
1159  * the caller's cleanup after an abort.
1160  */
1161 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1162 {
1163 	transaction_t *transaction = handle->h_transaction;
1164 	journal_t *journal = transaction->t_journal;
1165 	struct journal_head *jh;
1166 	int drop_reserve = 0;
1167 	int err = 0;
1168 	int was_modified = 0;
1169 
1170 	BUFFER_TRACE(bh, "entry");
1171 
1172 	jbd_lock_bh_state(bh);
1173 	spin_lock(&journal->j_list_lock);
1174 
1175 	if (!buffer_jbd(bh))
1176 		goto not_jbd;
1177 	jh = bh2jh(bh);
1178 
1179 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1180 	 * Don't do any jbd operations, and return an error. */
1181 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1182 			 "inconsistent data on disk")) {
1183 		err = -EIO;
1184 		goto not_jbd;
1185 	}
1186 
1187 	/* keep track of wether or not this transaction modified us */
1188 	was_modified = jh->b_modified;
1189 
1190 	/*
1191 	 * The buffer's going from the transaction, we must drop
1192 	 * all references -bzzz
1193 	 */
1194 	jh->b_modified = 0;
1195 
1196 	if (jh->b_transaction == handle->h_transaction) {
1197 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1198 
1199 		/* If we are forgetting a buffer which is already part
1200 		 * of this transaction, then we can just drop it from
1201 		 * the transaction immediately. */
1202 		clear_buffer_dirty(bh);
1203 		clear_buffer_jbddirty(bh);
1204 
1205 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1206 
1207 		/*
1208 		 * we only want to drop a reference if this transaction
1209 		 * modified the buffer
1210 		 */
1211 		if (was_modified)
1212 			drop_reserve = 1;
1213 
1214 		/*
1215 		 * We are no longer going to journal this buffer.
1216 		 * However, the commit of this transaction is still
1217 		 * important to the buffer: the delete that we are now
1218 		 * processing might obsolete an old log entry, so by
1219 		 * committing, we can satisfy the buffer's checkpoint.
1220 		 *
1221 		 * So, if we have a checkpoint on the buffer, we should
1222 		 * now refile the buffer on our BJ_Forget list so that
1223 		 * we know to remove the checkpoint after we commit.
1224 		 */
1225 
1226 		if (jh->b_cp_transaction) {
1227 			__jbd2_journal_temp_unlink_buffer(jh);
1228 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1229 		} else {
1230 			__jbd2_journal_unfile_buffer(jh);
1231 			if (!buffer_jbd(bh)) {
1232 				spin_unlock(&journal->j_list_lock);
1233 				jbd_unlock_bh_state(bh);
1234 				__bforget(bh);
1235 				goto drop;
1236 			}
1237 		}
1238 	} else if (jh->b_transaction) {
1239 		J_ASSERT_JH(jh, (jh->b_transaction ==
1240 				 journal->j_committing_transaction));
1241 		/* However, if the buffer is still owned by a prior
1242 		 * (committing) transaction, we can't drop it yet... */
1243 		JBUFFER_TRACE(jh, "belongs to older transaction");
1244 		/* ... but we CAN drop it from the new transaction if we
1245 		 * have also modified it since the original commit. */
1246 
1247 		if (jh->b_next_transaction) {
1248 			J_ASSERT(jh->b_next_transaction == transaction);
1249 			jh->b_next_transaction = NULL;
1250 
1251 			/*
1252 			 * only drop a reference if this transaction modified
1253 			 * the buffer
1254 			 */
1255 			if (was_modified)
1256 				drop_reserve = 1;
1257 		}
1258 	}
1259 
1260 not_jbd:
1261 	spin_unlock(&journal->j_list_lock);
1262 	jbd_unlock_bh_state(bh);
1263 	__brelse(bh);
1264 drop:
1265 	if (drop_reserve) {
1266 		/* no need to reserve log space for this block -bzzz */
1267 		handle->h_buffer_credits++;
1268 	}
1269 	return err;
1270 }
1271 
1272 /**
1273  * int jbd2_journal_stop() - complete a transaction
1274  * @handle: tranaction to complete.
1275  *
1276  * All done for a particular handle.
1277  *
1278  * There is not much action needed here.  We just return any remaining
1279  * buffer credits to the transaction and remove the handle.  The only
1280  * complication is that we need to start a commit operation if the
1281  * filesystem is marked for synchronous update.
1282  *
1283  * jbd2_journal_stop itself will not usually return an error, but it may
1284  * do so in unusual circumstances.  In particular, expect it to
1285  * return -EIO if a jbd2_journal_abort has been executed since the
1286  * transaction began.
1287  */
1288 int jbd2_journal_stop(handle_t *handle)
1289 {
1290 	transaction_t *transaction = handle->h_transaction;
1291 	journal_t *journal = transaction->t_journal;
1292 	int err, wait_for_commit = 0;
1293 	tid_t tid;
1294 	pid_t pid;
1295 
1296 	J_ASSERT(journal_current_handle() == handle);
1297 
1298 	if (is_handle_aborted(handle))
1299 		err = -EIO;
1300 	else {
1301 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1302 		err = 0;
1303 	}
1304 
1305 	if (--handle->h_ref > 0) {
1306 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1307 			  handle->h_ref);
1308 		return err;
1309 	}
1310 
1311 	jbd_debug(4, "Handle %p going down\n", handle);
1312 
1313 	/*
1314 	 * Implement synchronous transaction batching.  If the handle
1315 	 * was synchronous, don't force a commit immediately.  Let's
1316 	 * yield and let another thread piggyback onto this
1317 	 * transaction.  Keep doing that while new threads continue to
1318 	 * arrive.  It doesn't cost much - we're about to run a commit
1319 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1320 	 * operations by 30x or more...
1321 	 *
1322 	 * We try and optimize the sleep time against what the
1323 	 * underlying disk can do, instead of having a static sleep
1324 	 * time.  This is useful for the case where our storage is so
1325 	 * fast that it is more optimal to go ahead and force a flush
1326 	 * and wait for the transaction to be committed than it is to
1327 	 * wait for an arbitrary amount of time for new writers to
1328 	 * join the transaction.  We achieve this by measuring how
1329 	 * long it takes to commit a transaction, and compare it with
1330 	 * how long this transaction has been running, and if run time
1331 	 * < commit time then we sleep for the delta and commit.  This
1332 	 * greatly helps super fast disks that would see slowdowns as
1333 	 * more threads started doing fsyncs.
1334 	 *
1335 	 * But don't do this if this process was the most recent one
1336 	 * to perform a synchronous write.  We do this to detect the
1337 	 * case where a single process is doing a stream of sync
1338 	 * writes.  No point in waiting for joiners in that case.
1339 	 */
1340 	pid = current->pid;
1341 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1342 		u64 commit_time, trans_time;
1343 
1344 		journal->j_last_sync_writer = pid;
1345 
1346 		read_lock(&journal->j_state_lock);
1347 		commit_time = journal->j_average_commit_time;
1348 		read_unlock(&journal->j_state_lock);
1349 
1350 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1351 						   transaction->t_start_time));
1352 
1353 		commit_time = max_t(u64, commit_time,
1354 				    1000*journal->j_min_batch_time);
1355 		commit_time = min_t(u64, commit_time,
1356 				    1000*journal->j_max_batch_time);
1357 
1358 		if (trans_time < commit_time) {
1359 			ktime_t expires = ktime_add_ns(ktime_get(),
1360 						       commit_time);
1361 			set_current_state(TASK_UNINTERRUPTIBLE);
1362 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1363 		}
1364 	}
1365 
1366 	if (handle->h_sync)
1367 		transaction->t_synchronous_commit = 1;
1368 	current->journal_info = NULL;
1369 	atomic_sub(handle->h_buffer_credits,
1370 		   &transaction->t_outstanding_credits);
1371 
1372 	/*
1373 	 * If the handle is marked SYNC, we need to set another commit
1374 	 * going!  We also want to force a commit if the current
1375 	 * transaction is occupying too much of the log, or if the
1376 	 * transaction is too old now.
1377 	 */
1378 	if (handle->h_sync ||
1379 	    (atomic_read(&transaction->t_outstanding_credits) >
1380 	     journal->j_max_transaction_buffers) ||
1381 	    time_after_eq(jiffies, transaction->t_expires)) {
1382 		/* Do this even for aborted journals: an abort still
1383 		 * completes the commit thread, it just doesn't write
1384 		 * anything to disk. */
1385 
1386 		jbd_debug(2, "transaction too old, requesting commit for "
1387 					"handle %p\n", handle);
1388 		/* This is non-blocking */
1389 		jbd2_log_start_commit(journal, transaction->t_tid);
1390 
1391 		/*
1392 		 * Special case: JBD2_SYNC synchronous updates require us
1393 		 * to wait for the commit to complete.
1394 		 */
1395 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1396 			wait_for_commit = 1;
1397 	}
1398 
1399 	/*
1400 	 * Once we drop t_updates, if it goes to zero the transaction
1401 	 * could start committing on us and eventually disappear.  So
1402 	 * once we do this, we must not dereference transaction
1403 	 * pointer again.
1404 	 */
1405 	tid = transaction->t_tid;
1406 	if (atomic_dec_and_test(&transaction->t_updates)) {
1407 		wake_up(&journal->j_wait_updates);
1408 		if (journal->j_barrier_count)
1409 			wake_up(&journal->j_wait_transaction_locked);
1410 	}
1411 
1412 	if (wait_for_commit)
1413 		err = jbd2_log_wait_commit(journal, tid);
1414 
1415 	lock_map_release(&handle->h_lockdep_map);
1416 
1417 	jbd2_free_handle(handle);
1418 	return err;
1419 }
1420 
1421 /**
1422  * int jbd2_journal_force_commit() - force any uncommitted transactions
1423  * @journal: journal to force
1424  *
1425  * For synchronous operations: force any uncommitted transactions
1426  * to disk.  May seem kludgy, but it reuses all the handle batching
1427  * code in a very simple manner.
1428  */
1429 int jbd2_journal_force_commit(journal_t *journal)
1430 {
1431 	handle_t *handle;
1432 	int ret;
1433 
1434 	handle = jbd2_journal_start(journal, 1);
1435 	if (IS_ERR(handle)) {
1436 		ret = PTR_ERR(handle);
1437 	} else {
1438 		handle->h_sync = 1;
1439 		ret = jbd2_journal_stop(handle);
1440 	}
1441 	return ret;
1442 }
1443 
1444 /*
1445  *
1446  * List management code snippets: various functions for manipulating the
1447  * transaction buffer lists.
1448  *
1449  */
1450 
1451 /*
1452  * Append a buffer to a transaction list, given the transaction's list head
1453  * pointer.
1454  *
1455  * j_list_lock is held.
1456  *
1457  * jbd_lock_bh_state(jh2bh(jh)) is held.
1458  */
1459 
1460 static inline void
1461 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1462 {
1463 	if (!*list) {
1464 		jh->b_tnext = jh->b_tprev = jh;
1465 		*list = jh;
1466 	} else {
1467 		/* Insert at the tail of the list to preserve order */
1468 		struct journal_head *first = *list, *last = first->b_tprev;
1469 		jh->b_tprev = last;
1470 		jh->b_tnext = first;
1471 		last->b_tnext = first->b_tprev = jh;
1472 	}
1473 }
1474 
1475 /*
1476  * Remove a buffer from a transaction list, given the transaction's list
1477  * head pointer.
1478  *
1479  * Called with j_list_lock held, and the journal may not be locked.
1480  *
1481  * jbd_lock_bh_state(jh2bh(jh)) is held.
1482  */
1483 
1484 static inline void
1485 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1486 {
1487 	if (*list == jh) {
1488 		*list = jh->b_tnext;
1489 		if (*list == jh)
1490 			*list = NULL;
1491 	}
1492 	jh->b_tprev->b_tnext = jh->b_tnext;
1493 	jh->b_tnext->b_tprev = jh->b_tprev;
1494 }
1495 
1496 /*
1497  * Remove a buffer from the appropriate transaction list.
1498  *
1499  * Note that this function can *change* the value of
1500  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1501  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1502  * of these pointers, it could go bad.  Generally the caller needs to re-read
1503  * the pointer from the transaction_t.
1504  *
1505  * Called under j_list_lock.  The journal may not be locked.
1506  */
1507 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1508 {
1509 	struct journal_head **list = NULL;
1510 	transaction_t *transaction;
1511 	struct buffer_head *bh = jh2bh(jh);
1512 
1513 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1514 	transaction = jh->b_transaction;
1515 	if (transaction)
1516 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1517 
1518 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1519 	if (jh->b_jlist != BJ_None)
1520 		J_ASSERT_JH(jh, transaction != NULL);
1521 
1522 	switch (jh->b_jlist) {
1523 	case BJ_None:
1524 		return;
1525 	case BJ_Metadata:
1526 		transaction->t_nr_buffers--;
1527 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1528 		list = &transaction->t_buffers;
1529 		break;
1530 	case BJ_Forget:
1531 		list = &transaction->t_forget;
1532 		break;
1533 	case BJ_IO:
1534 		list = &transaction->t_iobuf_list;
1535 		break;
1536 	case BJ_Shadow:
1537 		list = &transaction->t_shadow_list;
1538 		break;
1539 	case BJ_LogCtl:
1540 		list = &transaction->t_log_list;
1541 		break;
1542 	case BJ_Reserved:
1543 		list = &transaction->t_reserved_list;
1544 		break;
1545 	}
1546 
1547 	__blist_del_buffer(list, jh);
1548 	jh->b_jlist = BJ_None;
1549 	if (test_clear_buffer_jbddirty(bh))
1550 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1551 }
1552 
1553 /*
1554  * Remove buffer from all transactions.
1555  *
1556  * Called with bh_state lock and j_list_lock
1557  *
1558  * jh and bh may be already freed when this function returns.
1559  */
1560 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1561 {
1562 	__jbd2_journal_temp_unlink_buffer(jh);
1563 	jh->b_transaction = NULL;
1564 	jbd2_journal_put_journal_head(jh);
1565 }
1566 
1567 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1568 {
1569 	struct buffer_head *bh = jh2bh(jh);
1570 
1571 	/* Get reference so that buffer cannot be freed before we unlock it */
1572 	get_bh(bh);
1573 	jbd_lock_bh_state(bh);
1574 	spin_lock(&journal->j_list_lock);
1575 	__jbd2_journal_unfile_buffer(jh);
1576 	spin_unlock(&journal->j_list_lock);
1577 	jbd_unlock_bh_state(bh);
1578 	__brelse(bh);
1579 }
1580 
1581 /*
1582  * Called from jbd2_journal_try_to_free_buffers().
1583  *
1584  * Called under jbd_lock_bh_state(bh)
1585  */
1586 static void
1587 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1588 {
1589 	struct journal_head *jh;
1590 
1591 	jh = bh2jh(bh);
1592 
1593 	if (buffer_locked(bh) || buffer_dirty(bh))
1594 		goto out;
1595 
1596 	if (jh->b_next_transaction != NULL)
1597 		goto out;
1598 
1599 	spin_lock(&journal->j_list_lock);
1600 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1601 		/* written-back checkpointed metadata buffer */
1602 		if (jh->b_jlist == BJ_None) {
1603 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1604 			__jbd2_journal_remove_checkpoint(jh);
1605 		}
1606 	}
1607 	spin_unlock(&journal->j_list_lock);
1608 out:
1609 	return;
1610 }
1611 
1612 /**
1613  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1614  * @journal: journal for operation
1615  * @page: to try and free
1616  * @gfp_mask: we use the mask to detect how hard should we try to release
1617  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1618  * release the buffers.
1619  *
1620  *
1621  * For all the buffers on this page,
1622  * if they are fully written out ordered data, move them onto BUF_CLEAN
1623  * so try_to_free_buffers() can reap them.
1624  *
1625  * This function returns non-zero if we wish try_to_free_buffers()
1626  * to be called. We do this if the page is releasable by try_to_free_buffers().
1627  * We also do it if the page has locked or dirty buffers and the caller wants
1628  * us to perform sync or async writeout.
1629  *
1630  * This complicates JBD locking somewhat.  We aren't protected by the
1631  * BKL here.  We wish to remove the buffer from its committing or
1632  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1633  *
1634  * This may *change* the value of transaction_t->t_datalist, so anyone
1635  * who looks at t_datalist needs to lock against this function.
1636  *
1637  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1638  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1639  * will come out of the lock with the buffer dirty, which makes it
1640  * ineligible for release here.
1641  *
1642  * Who else is affected by this?  hmm...  Really the only contender
1643  * is do_get_write_access() - it could be looking at the buffer while
1644  * journal_try_to_free_buffer() is changing its state.  But that
1645  * cannot happen because we never reallocate freed data as metadata
1646  * while the data is part of a transaction.  Yes?
1647  *
1648  * Return 0 on failure, 1 on success
1649  */
1650 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1651 				struct page *page, gfp_t gfp_mask)
1652 {
1653 	struct buffer_head *head;
1654 	struct buffer_head *bh;
1655 	int ret = 0;
1656 
1657 	J_ASSERT(PageLocked(page));
1658 
1659 	head = page_buffers(page);
1660 	bh = head;
1661 	do {
1662 		struct journal_head *jh;
1663 
1664 		/*
1665 		 * We take our own ref against the journal_head here to avoid
1666 		 * having to add tons of locking around each instance of
1667 		 * jbd2_journal_put_journal_head().
1668 		 */
1669 		jh = jbd2_journal_grab_journal_head(bh);
1670 		if (!jh)
1671 			continue;
1672 
1673 		jbd_lock_bh_state(bh);
1674 		__journal_try_to_free_buffer(journal, bh);
1675 		jbd2_journal_put_journal_head(jh);
1676 		jbd_unlock_bh_state(bh);
1677 		if (buffer_jbd(bh))
1678 			goto busy;
1679 	} while ((bh = bh->b_this_page) != head);
1680 
1681 	ret = try_to_free_buffers(page);
1682 
1683 busy:
1684 	return ret;
1685 }
1686 
1687 /*
1688  * This buffer is no longer needed.  If it is on an older transaction's
1689  * checkpoint list we need to record it on this transaction's forget list
1690  * to pin this buffer (and hence its checkpointing transaction) down until
1691  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1692  * release it.
1693  * Returns non-zero if JBD no longer has an interest in the buffer.
1694  *
1695  * Called under j_list_lock.
1696  *
1697  * Called under jbd_lock_bh_state(bh).
1698  */
1699 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1700 {
1701 	int may_free = 1;
1702 	struct buffer_head *bh = jh2bh(jh);
1703 
1704 	if (jh->b_cp_transaction) {
1705 		JBUFFER_TRACE(jh, "on running+cp transaction");
1706 		__jbd2_journal_temp_unlink_buffer(jh);
1707 		/*
1708 		 * We don't want to write the buffer anymore, clear the
1709 		 * bit so that we don't confuse checks in
1710 		 * __journal_file_buffer
1711 		 */
1712 		clear_buffer_dirty(bh);
1713 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1714 		may_free = 0;
1715 	} else {
1716 		JBUFFER_TRACE(jh, "on running transaction");
1717 		__jbd2_journal_unfile_buffer(jh);
1718 	}
1719 	return may_free;
1720 }
1721 
1722 /*
1723  * jbd2_journal_invalidatepage
1724  *
1725  * This code is tricky.  It has a number of cases to deal with.
1726  *
1727  * There are two invariants which this code relies on:
1728  *
1729  * i_size must be updated on disk before we start calling invalidatepage on the
1730  * data.
1731  *
1732  *  This is done in ext3 by defining an ext3_setattr method which
1733  *  updates i_size before truncate gets going.  By maintaining this
1734  *  invariant, we can be sure that it is safe to throw away any buffers
1735  *  attached to the current transaction: once the transaction commits,
1736  *  we know that the data will not be needed.
1737  *
1738  *  Note however that we can *not* throw away data belonging to the
1739  *  previous, committing transaction!
1740  *
1741  * Any disk blocks which *are* part of the previous, committing
1742  * transaction (and which therefore cannot be discarded immediately) are
1743  * not going to be reused in the new running transaction
1744  *
1745  *  The bitmap committed_data images guarantee this: any block which is
1746  *  allocated in one transaction and removed in the next will be marked
1747  *  as in-use in the committed_data bitmap, so cannot be reused until
1748  *  the next transaction to delete the block commits.  This means that
1749  *  leaving committing buffers dirty is quite safe: the disk blocks
1750  *  cannot be reallocated to a different file and so buffer aliasing is
1751  *  not possible.
1752  *
1753  *
1754  * The above applies mainly to ordered data mode.  In writeback mode we
1755  * don't make guarantees about the order in which data hits disk --- in
1756  * particular we don't guarantee that new dirty data is flushed before
1757  * transaction commit --- so it is always safe just to discard data
1758  * immediately in that mode.  --sct
1759  */
1760 
1761 /*
1762  * The journal_unmap_buffer helper function returns zero if the buffer
1763  * concerned remains pinned as an anonymous buffer belonging to an older
1764  * transaction.
1765  *
1766  * We're outside-transaction here.  Either or both of j_running_transaction
1767  * and j_committing_transaction may be NULL.
1768  */
1769 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1770 {
1771 	transaction_t *transaction;
1772 	struct journal_head *jh;
1773 	int may_free = 1;
1774 	int ret;
1775 
1776 	BUFFER_TRACE(bh, "entry");
1777 
1778 	/*
1779 	 * It is safe to proceed here without the j_list_lock because the
1780 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1781 	 * holding the page lock. --sct
1782 	 */
1783 
1784 	if (!buffer_jbd(bh))
1785 		goto zap_buffer_unlocked;
1786 
1787 	/* OK, we have data buffer in journaled mode */
1788 	write_lock(&journal->j_state_lock);
1789 	jbd_lock_bh_state(bh);
1790 	spin_lock(&journal->j_list_lock);
1791 
1792 	jh = jbd2_journal_grab_journal_head(bh);
1793 	if (!jh)
1794 		goto zap_buffer_no_jh;
1795 
1796 	/*
1797 	 * We cannot remove the buffer from checkpoint lists until the
1798 	 * transaction adding inode to orphan list (let's call it T)
1799 	 * is committed.  Otherwise if the transaction changing the
1800 	 * buffer would be cleaned from the journal before T is
1801 	 * committed, a crash will cause that the correct contents of
1802 	 * the buffer will be lost.  On the other hand we have to
1803 	 * clear the buffer dirty bit at latest at the moment when the
1804 	 * transaction marking the buffer as freed in the filesystem
1805 	 * structures is committed because from that moment on the
1806 	 * buffer can be reallocated and used by a different page.
1807 	 * Since the block hasn't been freed yet but the inode has
1808 	 * already been added to orphan list, it is safe for us to add
1809 	 * the buffer to BJ_Forget list of the newest transaction.
1810 	 */
1811 	transaction = jh->b_transaction;
1812 	if (transaction == NULL) {
1813 		/* First case: not on any transaction.  If it
1814 		 * has no checkpoint link, then we can zap it:
1815 		 * it's a writeback-mode buffer so we don't care
1816 		 * if it hits disk safely. */
1817 		if (!jh->b_cp_transaction) {
1818 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1819 			goto zap_buffer;
1820 		}
1821 
1822 		if (!buffer_dirty(bh)) {
1823 			/* bdflush has written it.  We can drop it now */
1824 			goto zap_buffer;
1825 		}
1826 
1827 		/* OK, it must be in the journal but still not
1828 		 * written fully to disk: it's metadata or
1829 		 * journaled data... */
1830 
1831 		if (journal->j_running_transaction) {
1832 			/* ... and once the current transaction has
1833 			 * committed, the buffer won't be needed any
1834 			 * longer. */
1835 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1836 			ret = __dispose_buffer(jh,
1837 					journal->j_running_transaction);
1838 			jbd2_journal_put_journal_head(jh);
1839 			spin_unlock(&journal->j_list_lock);
1840 			jbd_unlock_bh_state(bh);
1841 			write_unlock(&journal->j_state_lock);
1842 			return ret;
1843 		} else {
1844 			/* There is no currently-running transaction. So the
1845 			 * orphan record which we wrote for this file must have
1846 			 * passed into commit.  We must attach this buffer to
1847 			 * the committing transaction, if it exists. */
1848 			if (journal->j_committing_transaction) {
1849 				JBUFFER_TRACE(jh, "give to committing trans");
1850 				ret = __dispose_buffer(jh,
1851 					journal->j_committing_transaction);
1852 				jbd2_journal_put_journal_head(jh);
1853 				spin_unlock(&journal->j_list_lock);
1854 				jbd_unlock_bh_state(bh);
1855 				write_unlock(&journal->j_state_lock);
1856 				return ret;
1857 			} else {
1858 				/* The orphan record's transaction has
1859 				 * committed.  We can cleanse this buffer */
1860 				clear_buffer_jbddirty(bh);
1861 				goto zap_buffer;
1862 			}
1863 		}
1864 	} else if (transaction == journal->j_committing_transaction) {
1865 		JBUFFER_TRACE(jh, "on committing transaction");
1866 		/*
1867 		 * The buffer is committing, we simply cannot touch
1868 		 * it. So we just set j_next_transaction to the
1869 		 * running transaction (if there is one) and mark
1870 		 * buffer as freed so that commit code knows it should
1871 		 * clear dirty bits when it is done with the buffer.
1872 		 */
1873 		set_buffer_freed(bh);
1874 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1875 			jh->b_next_transaction = journal->j_running_transaction;
1876 		jbd2_journal_put_journal_head(jh);
1877 		spin_unlock(&journal->j_list_lock);
1878 		jbd_unlock_bh_state(bh);
1879 		write_unlock(&journal->j_state_lock);
1880 		return 0;
1881 	} else {
1882 		/* Good, the buffer belongs to the running transaction.
1883 		 * We are writing our own transaction's data, not any
1884 		 * previous one's, so it is safe to throw it away
1885 		 * (remember that we expect the filesystem to have set
1886 		 * i_size already for this truncate so recovery will not
1887 		 * expose the disk blocks we are discarding here.) */
1888 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1889 		JBUFFER_TRACE(jh, "on running transaction");
1890 		may_free = __dispose_buffer(jh, transaction);
1891 	}
1892 
1893 zap_buffer:
1894 	jbd2_journal_put_journal_head(jh);
1895 zap_buffer_no_jh:
1896 	spin_unlock(&journal->j_list_lock);
1897 	jbd_unlock_bh_state(bh);
1898 	write_unlock(&journal->j_state_lock);
1899 zap_buffer_unlocked:
1900 	clear_buffer_dirty(bh);
1901 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1902 	clear_buffer_mapped(bh);
1903 	clear_buffer_req(bh);
1904 	clear_buffer_new(bh);
1905 	bh->b_bdev = NULL;
1906 	return may_free;
1907 }
1908 
1909 /**
1910  * void jbd2_journal_invalidatepage()
1911  * @journal: journal to use for flush...
1912  * @page:    page to flush
1913  * @offset:  length of page to invalidate.
1914  *
1915  * Reap page buffers containing data after offset in page.
1916  *
1917  */
1918 void jbd2_journal_invalidatepage(journal_t *journal,
1919 		      struct page *page,
1920 		      unsigned long offset)
1921 {
1922 	struct buffer_head *head, *bh, *next;
1923 	unsigned int curr_off = 0;
1924 	int may_free = 1;
1925 
1926 	if (!PageLocked(page))
1927 		BUG();
1928 	if (!page_has_buffers(page))
1929 		return;
1930 
1931 	/* We will potentially be playing with lists other than just the
1932 	 * data lists (especially for journaled data mode), so be
1933 	 * cautious in our locking. */
1934 
1935 	head = bh = page_buffers(page);
1936 	do {
1937 		unsigned int next_off = curr_off + bh->b_size;
1938 		next = bh->b_this_page;
1939 
1940 		if (offset <= curr_off) {
1941 			/* This block is wholly outside the truncation point */
1942 			lock_buffer(bh);
1943 			may_free &= journal_unmap_buffer(journal, bh);
1944 			unlock_buffer(bh);
1945 		}
1946 		curr_off = next_off;
1947 		bh = next;
1948 
1949 	} while (bh != head);
1950 
1951 	if (!offset) {
1952 		if (may_free && try_to_free_buffers(page))
1953 			J_ASSERT(!page_has_buffers(page));
1954 	}
1955 }
1956 
1957 /*
1958  * File a buffer on the given transaction list.
1959  */
1960 void __jbd2_journal_file_buffer(struct journal_head *jh,
1961 			transaction_t *transaction, int jlist)
1962 {
1963 	struct journal_head **list = NULL;
1964 	int was_dirty = 0;
1965 	struct buffer_head *bh = jh2bh(jh);
1966 
1967 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1968 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1969 
1970 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1971 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1972 				jh->b_transaction == NULL);
1973 
1974 	if (jh->b_transaction && jh->b_jlist == jlist)
1975 		return;
1976 
1977 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1978 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1979 		/*
1980 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1981 		 * instead of buffer_dirty. We should not see a dirty bit set
1982 		 * here because we clear it in do_get_write_access but e.g.
1983 		 * tune2fs can modify the sb and set the dirty bit at any time
1984 		 * so we try to gracefully handle that.
1985 		 */
1986 		if (buffer_dirty(bh))
1987 			warn_dirty_buffer(bh);
1988 		if (test_clear_buffer_dirty(bh) ||
1989 		    test_clear_buffer_jbddirty(bh))
1990 			was_dirty = 1;
1991 	}
1992 
1993 	if (jh->b_transaction)
1994 		__jbd2_journal_temp_unlink_buffer(jh);
1995 	else
1996 		jbd2_journal_grab_journal_head(bh);
1997 	jh->b_transaction = transaction;
1998 
1999 	switch (jlist) {
2000 	case BJ_None:
2001 		J_ASSERT_JH(jh, !jh->b_committed_data);
2002 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2003 		return;
2004 	case BJ_Metadata:
2005 		transaction->t_nr_buffers++;
2006 		list = &transaction->t_buffers;
2007 		break;
2008 	case BJ_Forget:
2009 		list = &transaction->t_forget;
2010 		break;
2011 	case BJ_IO:
2012 		list = &transaction->t_iobuf_list;
2013 		break;
2014 	case BJ_Shadow:
2015 		list = &transaction->t_shadow_list;
2016 		break;
2017 	case BJ_LogCtl:
2018 		list = &transaction->t_log_list;
2019 		break;
2020 	case BJ_Reserved:
2021 		list = &transaction->t_reserved_list;
2022 		break;
2023 	}
2024 
2025 	__blist_add_buffer(list, jh);
2026 	jh->b_jlist = jlist;
2027 
2028 	if (was_dirty)
2029 		set_buffer_jbddirty(bh);
2030 }
2031 
2032 void jbd2_journal_file_buffer(struct journal_head *jh,
2033 				transaction_t *transaction, int jlist)
2034 {
2035 	jbd_lock_bh_state(jh2bh(jh));
2036 	spin_lock(&transaction->t_journal->j_list_lock);
2037 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2038 	spin_unlock(&transaction->t_journal->j_list_lock);
2039 	jbd_unlock_bh_state(jh2bh(jh));
2040 }
2041 
2042 /*
2043  * Remove a buffer from its current buffer list in preparation for
2044  * dropping it from its current transaction entirely.  If the buffer has
2045  * already started to be used by a subsequent transaction, refile the
2046  * buffer on that transaction's metadata list.
2047  *
2048  * Called under j_list_lock
2049  * Called under jbd_lock_bh_state(jh2bh(jh))
2050  *
2051  * jh and bh may be already free when this function returns
2052  */
2053 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2054 {
2055 	int was_dirty, jlist;
2056 	struct buffer_head *bh = jh2bh(jh);
2057 
2058 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2059 	if (jh->b_transaction)
2060 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2061 
2062 	/* If the buffer is now unused, just drop it. */
2063 	if (jh->b_next_transaction == NULL) {
2064 		__jbd2_journal_unfile_buffer(jh);
2065 		return;
2066 	}
2067 
2068 	/*
2069 	 * It has been modified by a later transaction: add it to the new
2070 	 * transaction's metadata list.
2071 	 */
2072 
2073 	was_dirty = test_clear_buffer_jbddirty(bh);
2074 	__jbd2_journal_temp_unlink_buffer(jh);
2075 	/*
2076 	 * We set b_transaction here because b_next_transaction will inherit
2077 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2078 	 * take a new one.
2079 	 */
2080 	jh->b_transaction = jh->b_next_transaction;
2081 	jh->b_next_transaction = NULL;
2082 	if (buffer_freed(bh))
2083 		jlist = BJ_Forget;
2084 	else if (jh->b_modified)
2085 		jlist = BJ_Metadata;
2086 	else
2087 		jlist = BJ_Reserved;
2088 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2089 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2090 
2091 	if (was_dirty)
2092 		set_buffer_jbddirty(bh);
2093 }
2094 
2095 /*
2096  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2097  * bh reference so that we can safely unlock bh.
2098  *
2099  * The jh and bh may be freed by this call.
2100  */
2101 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2102 {
2103 	struct buffer_head *bh = jh2bh(jh);
2104 
2105 	/* Get reference so that buffer cannot be freed before we unlock it */
2106 	get_bh(bh);
2107 	jbd_lock_bh_state(bh);
2108 	spin_lock(&journal->j_list_lock);
2109 	__jbd2_journal_refile_buffer(jh);
2110 	jbd_unlock_bh_state(bh);
2111 	spin_unlock(&journal->j_list_lock);
2112 	__brelse(bh);
2113 }
2114 
2115 /*
2116  * File inode in the inode list of the handle's transaction
2117  */
2118 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2119 {
2120 	transaction_t *transaction = handle->h_transaction;
2121 	journal_t *journal = transaction->t_journal;
2122 
2123 	if (is_handle_aborted(handle))
2124 		return -EIO;
2125 
2126 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2127 			transaction->t_tid);
2128 
2129 	/*
2130 	 * First check whether inode isn't already on the transaction's
2131 	 * lists without taking the lock. Note that this check is safe
2132 	 * without the lock as we cannot race with somebody removing inode
2133 	 * from the transaction. The reason is that we remove inode from the
2134 	 * transaction only in journal_release_jbd_inode() and when we commit
2135 	 * the transaction. We are guarded from the first case by holding
2136 	 * a reference to the inode. We are safe against the second case
2137 	 * because if jinode->i_transaction == transaction, commit code
2138 	 * cannot touch the transaction because we hold reference to it,
2139 	 * and if jinode->i_next_transaction == transaction, commit code
2140 	 * will only file the inode where we want it.
2141 	 */
2142 	if (jinode->i_transaction == transaction ||
2143 	    jinode->i_next_transaction == transaction)
2144 		return 0;
2145 
2146 	spin_lock(&journal->j_list_lock);
2147 
2148 	if (jinode->i_transaction == transaction ||
2149 	    jinode->i_next_transaction == transaction)
2150 		goto done;
2151 
2152 	/*
2153 	 * We only ever set this variable to 1 so the test is safe. Since
2154 	 * t_need_data_flush is likely to be set, we do the test to save some
2155 	 * cacheline bouncing
2156 	 */
2157 	if (!transaction->t_need_data_flush)
2158 		transaction->t_need_data_flush = 1;
2159 	/* On some different transaction's list - should be
2160 	 * the committing one */
2161 	if (jinode->i_transaction) {
2162 		J_ASSERT(jinode->i_next_transaction == NULL);
2163 		J_ASSERT(jinode->i_transaction ==
2164 					journal->j_committing_transaction);
2165 		jinode->i_next_transaction = transaction;
2166 		goto done;
2167 	}
2168 	/* Not on any transaction list... */
2169 	J_ASSERT(!jinode->i_next_transaction);
2170 	jinode->i_transaction = transaction;
2171 	list_add(&jinode->i_list, &transaction->t_inode_list);
2172 done:
2173 	spin_unlock(&journal->j_list_lock);
2174 
2175 	return 0;
2176 }
2177 
2178 /*
2179  * File truncate and transaction commit interact with each other in a
2180  * non-trivial way.  If a transaction writing data block A is
2181  * committing, we cannot discard the data by truncate until we have
2182  * written them.  Otherwise if we crashed after the transaction with
2183  * write has committed but before the transaction with truncate has
2184  * committed, we could see stale data in block A.  This function is a
2185  * helper to solve this problem.  It starts writeout of the truncated
2186  * part in case it is in the committing transaction.
2187  *
2188  * Filesystem code must call this function when inode is journaled in
2189  * ordered mode before truncation happens and after the inode has been
2190  * placed on orphan list with the new inode size. The second condition
2191  * avoids the race that someone writes new data and we start
2192  * committing the transaction after this function has been called but
2193  * before a transaction for truncate is started (and furthermore it
2194  * allows us to optimize the case where the addition to orphan list
2195  * happens in the same transaction as write --- we don't have to write
2196  * any data in such case).
2197  */
2198 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2199 					struct jbd2_inode *jinode,
2200 					loff_t new_size)
2201 {
2202 	transaction_t *inode_trans, *commit_trans;
2203 	int ret = 0;
2204 
2205 	/* This is a quick check to avoid locking if not necessary */
2206 	if (!jinode->i_transaction)
2207 		goto out;
2208 	/* Locks are here just to force reading of recent values, it is
2209 	 * enough that the transaction was not committing before we started
2210 	 * a transaction adding the inode to orphan list */
2211 	read_lock(&journal->j_state_lock);
2212 	commit_trans = journal->j_committing_transaction;
2213 	read_unlock(&journal->j_state_lock);
2214 	spin_lock(&journal->j_list_lock);
2215 	inode_trans = jinode->i_transaction;
2216 	spin_unlock(&journal->j_list_lock);
2217 	if (inode_trans == commit_trans) {
2218 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2219 			new_size, LLONG_MAX);
2220 		if (ret)
2221 			jbd2_journal_abort(journal, ret);
2222 	}
2223 out:
2224 	return ret;
2225 }
2226