1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 wait_transaction_locked(journal); 208 return 1; 209 } 210 211 /* 212 * The commit code assumes that it can get enough log space 213 * without forcing a checkpoint. This is *critical* for 214 * correctness: a checkpoint of a buffer which is also 215 * associated with a committing transaction creates a deadlock, 216 * so commit simply cannot force through checkpoints. 217 * 218 * We must therefore ensure the necessary space in the journal 219 * *before* starting to dirty potentially checkpointed buffers 220 * in the new transaction. 221 */ 222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 223 atomic_sub(total, &t->t_outstanding_credits); 224 read_unlock(&journal->j_state_lock); 225 write_lock(&journal->j_state_lock); 226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 227 __jbd2_log_wait_for_space(journal); 228 write_unlock(&journal->j_state_lock); 229 return 1; 230 } 231 232 /* No reservation? We are done... */ 233 if (!rsv_blocks) 234 return 0; 235 236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 237 /* We allow at most half of a transaction to be reserved */ 238 if (needed > journal->j_max_transaction_buffers / 2) { 239 sub_reserved_credits(journal, rsv_blocks); 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_reserved, 243 atomic_read(&journal->j_reserved_credits) + rsv_blocks 244 <= journal->j_max_transaction_buffers / 2); 245 return 1; 246 } 247 return 0; 248 } 249 250 /* 251 * start_this_handle: Given a handle, deal with any locking or stalling 252 * needed to make sure that there is enough journal space for the handle 253 * to begin. Attach the handle to a transaction and set up the 254 * transaction's buffer credits. 255 */ 256 257 static int start_this_handle(journal_t *journal, handle_t *handle, 258 gfp_t gfp_mask) 259 { 260 transaction_t *transaction, *new_transaction = NULL; 261 int blocks = handle->h_buffer_credits; 262 int rsv_blocks = 0; 263 unsigned long ts = jiffies; 264 265 /* 266 * 1/2 of transaction can be reserved so we can practically handle 267 * only 1/2 of maximum transaction size per operation 268 */ 269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) { 270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 271 current->comm, blocks, 272 journal->j_max_transaction_buffers / 2); 273 return -ENOSPC; 274 } 275 276 if (handle->h_rsv_handle) 277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 278 279 alloc_transaction: 280 if (!journal->j_running_transaction) { 281 new_transaction = kmem_cache_zalloc(transaction_cache, 282 gfp_mask); 283 if (!new_transaction) { 284 /* 285 * If __GFP_FS is not present, then we may be 286 * being called from inside the fs writeback 287 * layer, so we MUST NOT fail. Since 288 * __GFP_NOFAIL is going away, we will arrange 289 * to retry the allocation ourselves. 290 */ 291 if ((gfp_mask & __GFP_FS) == 0) { 292 congestion_wait(BLK_RW_ASYNC, HZ/50); 293 goto alloc_transaction; 294 } 295 return -ENOMEM; 296 } 297 } 298 299 jbd_debug(3, "New handle %p going live.\n", handle); 300 301 /* 302 * We need to hold j_state_lock until t_updates has been incremented, 303 * for proper journal barrier handling 304 */ 305 repeat: 306 read_lock(&journal->j_state_lock); 307 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 308 if (is_journal_aborted(journal) || 309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 310 read_unlock(&journal->j_state_lock); 311 jbd2_journal_free_transaction(new_transaction); 312 return -EROFS; 313 } 314 315 /* 316 * Wait on the journal's transaction barrier if necessary. Specifically 317 * we allow reserved handles to proceed because otherwise commit could 318 * deadlock on page writeback not being able to complete. 319 */ 320 if (!handle->h_reserved && journal->j_barrier_count) { 321 read_unlock(&journal->j_state_lock); 322 wait_event(journal->j_wait_transaction_locked, 323 journal->j_barrier_count == 0); 324 goto repeat; 325 } 326 327 if (!journal->j_running_transaction) { 328 read_unlock(&journal->j_state_lock); 329 if (!new_transaction) 330 goto alloc_transaction; 331 write_lock(&journal->j_state_lock); 332 if (!journal->j_running_transaction && 333 (handle->h_reserved || !journal->j_barrier_count)) { 334 jbd2_get_transaction(journal, new_transaction); 335 new_transaction = NULL; 336 } 337 write_unlock(&journal->j_state_lock); 338 goto repeat; 339 } 340 341 transaction = journal->j_running_transaction; 342 343 if (!handle->h_reserved) { 344 /* We may have dropped j_state_lock - restart in that case */ 345 if (add_transaction_credits(journal, blocks, rsv_blocks)) 346 goto repeat; 347 } else { 348 /* 349 * We have handle reserved so we are allowed to join T_LOCKED 350 * transaction and we don't have to check for transaction size 351 * and journal space. 352 */ 353 sub_reserved_credits(journal, blocks); 354 handle->h_reserved = 0; 355 } 356 357 /* OK, account for the buffers that this operation expects to 358 * use and add the handle to the running transaction. 359 */ 360 update_t_max_wait(transaction, ts); 361 handle->h_transaction = transaction; 362 handle->h_requested_credits = blocks; 363 handle->h_start_jiffies = jiffies; 364 atomic_inc(&transaction->t_updates); 365 atomic_inc(&transaction->t_handle_count); 366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 367 handle, blocks, 368 atomic_read(&transaction->t_outstanding_credits), 369 jbd2_log_space_left(journal)); 370 read_unlock(&journal->j_state_lock); 371 current->journal_info = handle; 372 373 lock_map_acquire(&handle->h_lockdep_map); 374 jbd2_journal_free_transaction(new_transaction); 375 return 0; 376 } 377 378 static struct lock_class_key jbd2_handle_key; 379 380 /* Allocate a new handle. This should probably be in a slab... */ 381 static handle_t *new_handle(int nblocks) 382 { 383 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 384 if (!handle) 385 return NULL; 386 handle->h_buffer_credits = nblocks; 387 handle->h_ref = 1; 388 389 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 390 &jbd2_handle_key, 0); 391 392 return handle; 393 } 394 395 /** 396 * handle_t *jbd2_journal_start() - Obtain a new handle. 397 * @journal: Journal to start transaction on. 398 * @nblocks: number of block buffer we might modify 399 * 400 * We make sure that the transaction can guarantee at least nblocks of 401 * modified buffers in the log. We block until the log can guarantee 402 * that much space. Additionally, if rsv_blocks > 0, we also create another 403 * handle with rsv_blocks reserved blocks in the journal. This handle is 404 * is stored in h_rsv_handle. It is not attached to any particular transaction 405 * and thus doesn't block transaction commit. If the caller uses this reserved 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 407 * on the parent handle will dispose the reserved one. Reserved handle has to 408 * be converted to a normal handle using jbd2_journal_start_reserved() before 409 * it can be used. 410 * 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 412 * on failure. 413 */ 414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 415 gfp_t gfp_mask, unsigned int type, 416 unsigned int line_no) 417 { 418 handle_t *handle = journal_current_handle(); 419 int err; 420 421 if (!journal) 422 return ERR_PTR(-EROFS); 423 424 if (handle) { 425 J_ASSERT(handle->h_transaction->t_journal == journal); 426 handle->h_ref++; 427 return handle; 428 } 429 430 handle = new_handle(nblocks); 431 if (!handle) 432 return ERR_PTR(-ENOMEM); 433 if (rsv_blocks) { 434 handle_t *rsv_handle; 435 436 rsv_handle = new_handle(rsv_blocks); 437 if (!rsv_handle) { 438 jbd2_free_handle(handle); 439 return ERR_PTR(-ENOMEM); 440 } 441 rsv_handle->h_reserved = 1; 442 rsv_handle->h_journal = journal; 443 handle->h_rsv_handle = rsv_handle; 444 } 445 446 err = start_this_handle(journal, handle, gfp_mask); 447 if (err < 0) { 448 if (handle->h_rsv_handle) 449 jbd2_free_handle(handle->h_rsv_handle); 450 jbd2_free_handle(handle); 451 return ERR_PTR(err); 452 } 453 handle->h_type = type; 454 handle->h_line_no = line_no; 455 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 456 handle->h_transaction->t_tid, type, 457 line_no, nblocks); 458 return handle; 459 } 460 EXPORT_SYMBOL(jbd2__journal_start); 461 462 463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 464 { 465 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 466 } 467 EXPORT_SYMBOL(jbd2_journal_start); 468 469 void jbd2_journal_free_reserved(handle_t *handle) 470 { 471 journal_t *journal = handle->h_journal; 472 473 WARN_ON(!handle->h_reserved); 474 sub_reserved_credits(journal, handle->h_buffer_credits); 475 jbd2_free_handle(handle); 476 } 477 EXPORT_SYMBOL(jbd2_journal_free_reserved); 478 479 /** 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 481 * @handle: handle to start 482 * 483 * Start handle that has been previously reserved with jbd2_journal_reserve(). 484 * This attaches @handle to the running transaction (or creates one if there's 485 * not transaction running). Unlike jbd2_journal_start() this function cannot 486 * block on journal commit, checkpointing, or similar stuff. It can block on 487 * memory allocation or frozen journal though. 488 * 489 * Return 0 on success, non-zero on error - handle is freed in that case. 490 */ 491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 492 unsigned int line_no) 493 { 494 journal_t *journal = handle->h_journal; 495 int ret = -EIO; 496 497 if (WARN_ON(!handle->h_reserved)) { 498 /* Someone passed in normal handle? Just stop it. */ 499 jbd2_journal_stop(handle); 500 return ret; 501 } 502 /* 503 * Usefulness of mixing of reserved and unreserved handles is 504 * questionable. So far nobody seems to need it so just error out. 505 */ 506 if (WARN_ON(current->journal_info)) { 507 jbd2_journal_free_reserved(handle); 508 return ret; 509 } 510 511 handle->h_journal = NULL; 512 /* 513 * GFP_NOFS is here because callers are likely from writeback or 514 * similarly constrained call sites 515 */ 516 ret = start_this_handle(journal, handle, GFP_NOFS); 517 if (ret < 0) 518 jbd2_journal_free_reserved(handle); 519 handle->h_type = type; 520 handle->h_line_no = line_no; 521 return ret; 522 } 523 EXPORT_SYMBOL(jbd2_journal_start_reserved); 524 525 /** 526 * int jbd2_journal_extend() - extend buffer credits. 527 * @handle: handle to 'extend' 528 * @nblocks: nr blocks to try to extend by. 529 * 530 * Some transactions, such as large extends and truncates, can be done 531 * atomically all at once or in several stages. The operation requests 532 * a credit for a number of buffer modications in advance, but can 533 * extend its credit if it needs more. 534 * 535 * jbd2_journal_extend tries to give the running handle more buffer credits. 536 * It does not guarantee that allocation - this is a best-effort only. 537 * The calling process MUST be able to deal cleanly with a failure to 538 * extend here. 539 * 540 * Return 0 on success, non-zero on failure. 541 * 542 * return code < 0 implies an error 543 * return code > 0 implies normal transaction-full status. 544 */ 545 int jbd2_journal_extend(handle_t *handle, int nblocks) 546 { 547 transaction_t *transaction = handle->h_transaction; 548 journal_t *journal; 549 int result; 550 int wanted; 551 552 WARN_ON(!transaction); 553 if (is_handle_aborted(handle)) 554 return -EROFS; 555 journal = transaction->t_journal; 556 557 result = 1; 558 559 read_lock(&journal->j_state_lock); 560 561 /* Don't extend a locked-down transaction! */ 562 if (transaction->t_state != T_RUNNING) { 563 jbd_debug(3, "denied handle %p %d blocks: " 564 "transaction not running\n", handle, nblocks); 565 goto error_out; 566 } 567 568 spin_lock(&transaction->t_handle_lock); 569 wanted = atomic_add_return(nblocks, 570 &transaction->t_outstanding_credits); 571 572 if (wanted > journal->j_max_transaction_buffers) { 573 jbd_debug(3, "denied handle %p %d blocks: " 574 "transaction too large\n", handle, nblocks); 575 atomic_sub(nblocks, &transaction->t_outstanding_credits); 576 goto unlock; 577 } 578 579 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 580 jbd2_log_space_left(journal)) { 581 jbd_debug(3, "denied handle %p %d blocks: " 582 "insufficient log space\n", handle, nblocks); 583 atomic_sub(nblocks, &transaction->t_outstanding_credits); 584 goto unlock; 585 } 586 587 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 588 transaction->t_tid, 589 handle->h_type, handle->h_line_no, 590 handle->h_buffer_credits, 591 nblocks); 592 593 handle->h_buffer_credits += nblocks; 594 handle->h_requested_credits += nblocks; 595 result = 0; 596 597 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 598 unlock: 599 spin_unlock(&transaction->t_handle_lock); 600 error_out: 601 read_unlock(&journal->j_state_lock); 602 return result; 603 } 604 605 606 /** 607 * int jbd2_journal_restart() - restart a handle . 608 * @handle: handle to restart 609 * @nblocks: nr credits requested 610 * 611 * Restart a handle for a multi-transaction filesystem 612 * operation. 613 * 614 * If the jbd2_journal_extend() call above fails to grant new buffer credits 615 * to a running handle, a call to jbd2_journal_restart will commit the 616 * handle's transaction so far and reattach the handle to a new 617 * transaction capabable of guaranteeing the requested number of 618 * credits. We preserve reserved handle if there's any attached to the 619 * passed in handle. 620 */ 621 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 622 { 623 transaction_t *transaction = handle->h_transaction; 624 journal_t *journal; 625 tid_t tid; 626 int need_to_start, ret; 627 628 WARN_ON(!transaction); 629 /* If we've had an abort of any type, don't even think about 630 * actually doing the restart! */ 631 if (is_handle_aborted(handle)) 632 return 0; 633 journal = transaction->t_journal; 634 635 /* 636 * First unlink the handle from its current transaction, and start the 637 * commit on that. 638 */ 639 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 640 J_ASSERT(journal_current_handle() == handle); 641 642 read_lock(&journal->j_state_lock); 643 spin_lock(&transaction->t_handle_lock); 644 atomic_sub(handle->h_buffer_credits, 645 &transaction->t_outstanding_credits); 646 if (handle->h_rsv_handle) { 647 sub_reserved_credits(journal, 648 handle->h_rsv_handle->h_buffer_credits); 649 } 650 if (atomic_dec_and_test(&transaction->t_updates)) 651 wake_up(&journal->j_wait_updates); 652 tid = transaction->t_tid; 653 spin_unlock(&transaction->t_handle_lock); 654 handle->h_transaction = NULL; 655 current->journal_info = NULL; 656 657 jbd_debug(2, "restarting handle %p\n", handle); 658 need_to_start = !tid_geq(journal->j_commit_request, tid); 659 read_unlock(&journal->j_state_lock); 660 if (need_to_start) 661 jbd2_log_start_commit(journal, tid); 662 663 lock_map_release(&handle->h_lockdep_map); 664 handle->h_buffer_credits = nblocks; 665 ret = start_this_handle(journal, handle, gfp_mask); 666 return ret; 667 } 668 EXPORT_SYMBOL(jbd2__journal_restart); 669 670 671 int jbd2_journal_restart(handle_t *handle, int nblocks) 672 { 673 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 674 } 675 EXPORT_SYMBOL(jbd2_journal_restart); 676 677 /** 678 * void jbd2_journal_lock_updates () - establish a transaction barrier. 679 * @journal: Journal to establish a barrier on. 680 * 681 * This locks out any further updates from being started, and blocks 682 * until all existing updates have completed, returning only once the 683 * journal is in a quiescent state with no updates running. 684 * 685 * The journal lock should not be held on entry. 686 */ 687 void jbd2_journal_lock_updates(journal_t *journal) 688 { 689 DEFINE_WAIT(wait); 690 691 write_lock(&journal->j_state_lock); 692 ++journal->j_barrier_count; 693 694 /* Wait until there are no reserved handles */ 695 if (atomic_read(&journal->j_reserved_credits)) { 696 write_unlock(&journal->j_state_lock); 697 wait_event(journal->j_wait_reserved, 698 atomic_read(&journal->j_reserved_credits) == 0); 699 write_lock(&journal->j_state_lock); 700 } 701 702 /* Wait until there are no running updates */ 703 while (1) { 704 transaction_t *transaction = journal->j_running_transaction; 705 706 if (!transaction) 707 break; 708 709 spin_lock(&transaction->t_handle_lock); 710 prepare_to_wait(&journal->j_wait_updates, &wait, 711 TASK_UNINTERRUPTIBLE); 712 if (!atomic_read(&transaction->t_updates)) { 713 spin_unlock(&transaction->t_handle_lock); 714 finish_wait(&journal->j_wait_updates, &wait); 715 break; 716 } 717 spin_unlock(&transaction->t_handle_lock); 718 write_unlock(&journal->j_state_lock); 719 schedule(); 720 finish_wait(&journal->j_wait_updates, &wait); 721 write_lock(&journal->j_state_lock); 722 } 723 write_unlock(&journal->j_state_lock); 724 725 /* 726 * We have now established a barrier against other normal updates, but 727 * we also need to barrier against other jbd2_journal_lock_updates() calls 728 * to make sure that we serialise special journal-locked operations 729 * too. 730 */ 731 mutex_lock(&journal->j_barrier); 732 } 733 734 /** 735 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 736 * @journal: Journal to release the barrier on. 737 * 738 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 739 * 740 * Should be called without the journal lock held. 741 */ 742 void jbd2_journal_unlock_updates (journal_t *journal) 743 { 744 J_ASSERT(journal->j_barrier_count != 0); 745 746 mutex_unlock(&journal->j_barrier); 747 write_lock(&journal->j_state_lock); 748 --journal->j_barrier_count; 749 write_unlock(&journal->j_state_lock); 750 wake_up(&journal->j_wait_transaction_locked); 751 } 752 753 static void warn_dirty_buffer(struct buffer_head *bh) 754 { 755 char b[BDEVNAME_SIZE]; 756 757 printk(KERN_WARNING 758 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 759 "There's a risk of filesystem corruption in case of system " 760 "crash.\n", 761 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 762 } 763 764 static int sleep_on_shadow_bh(void *word) 765 { 766 io_schedule(); 767 return 0; 768 } 769 770 /* 771 * If the buffer is already part of the current transaction, then there 772 * is nothing we need to do. If it is already part of a prior 773 * transaction which we are still committing to disk, then we need to 774 * make sure that we do not overwrite the old copy: we do copy-out to 775 * preserve the copy going to disk. We also account the buffer against 776 * the handle's metadata buffer credits (unless the buffer is already 777 * part of the transaction, that is). 778 * 779 */ 780 static int 781 do_get_write_access(handle_t *handle, struct journal_head *jh, 782 int force_copy) 783 { 784 struct buffer_head *bh; 785 transaction_t *transaction = handle->h_transaction; 786 journal_t *journal; 787 int error; 788 char *frozen_buffer = NULL; 789 int need_copy = 0; 790 unsigned long start_lock, time_lock; 791 792 WARN_ON(!transaction); 793 if (is_handle_aborted(handle)) 794 return -EROFS; 795 journal = transaction->t_journal; 796 797 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 798 799 JBUFFER_TRACE(jh, "entry"); 800 repeat: 801 bh = jh2bh(jh); 802 803 /* @@@ Need to check for errors here at some point. */ 804 805 start_lock = jiffies; 806 lock_buffer(bh); 807 jbd_lock_bh_state(bh); 808 809 /* If it takes too long to lock the buffer, trace it */ 810 time_lock = jbd2_time_diff(start_lock, jiffies); 811 if (time_lock > HZ/10) 812 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 813 jiffies_to_msecs(time_lock)); 814 815 /* We now hold the buffer lock so it is safe to query the buffer 816 * state. Is the buffer dirty? 817 * 818 * If so, there are two possibilities. The buffer may be 819 * non-journaled, and undergoing a quite legitimate writeback. 820 * Otherwise, it is journaled, and we don't expect dirty buffers 821 * in that state (the buffers should be marked JBD_Dirty 822 * instead.) So either the IO is being done under our own 823 * control and this is a bug, or it's a third party IO such as 824 * dump(8) (which may leave the buffer scheduled for read --- 825 * ie. locked but not dirty) or tune2fs (which may actually have 826 * the buffer dirtied, ugh.) */ 827 828 if (buffer_dirty(bh)) { 829 /* 830 * First question: is this buffer already part of the current 831 * transaction or the existing committing transaction? 832 */ 833 if (jh->b_transaction) { 834 J_ASSERT_JH(jh, 835 jh->b_transaction == transaction || 836 jh->b_transaction == 837 journal->j_committing_transaction); 838 if (jh->b_next_transaction) 839 J_ASSERT_JH(jh, jh->b_next_transaction == 840 transaction); 841 warn_dirty_buffer(bh); 842 } 843 /* 844 * In any case we need to clean the dirty flag and we must 845 * do it under the buffer lock to be sure we don't race 846 * with running write-out. 847 */ 848 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 849 clear_buffer_dirty(bh); 850 set_buffer_jbddirty(bh); 851 } 852 853 unlock_buffer(bh); 854 855 error = -EROFS; 856 if (is_handle_aborted(handle)) { 857 jbd_unlock_bh_state(bh); 858 goto out; 859 } 860 error = 0; 861 862 /* 863 * The buffer is already part of this transaction if b_transaction or 864 * b_next_transaction points to it 865 */ 866 if (jh->b_transaction == transaction || 867 jh->b_next_transaction == transaction) 868 goto done; 869 870 /* 871 * this is the first time this transaction is touching this buffer, 872 * reset the modified flag 873 */ 874 jh->b_modified = 0; 875 876 /* 877 * If there is already a copy-out version of this buffer, then we don't 878 * need to make another one 879 */ 880 if (jh->b_frozen_data) { 881 JBUFFER_TRACE(jh, "has frozen data"); 882 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 883 jh->b_next_transaction = transaction; 884 goto done; 885 } 886 887 /* Is there data here we need to preserve? */ 888 889 if (jh->b_transaction && jh->b_transaction != transaction) { 890 JBUFFER_TRACE(jh, "owned by older transaction"); 891 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 892 J_ASSERT_JH(jh, jh->b_transaction == 893 journal->j_committing_transaction); 894 895 /* There is one case we have to be very careful about. 896 * If the committing transaction is currently writing 897 * this buffer out to disk and has NOT made a copy-out, 898 * then we cannot modify the buffer contents at all 899 * right now. The essence of copy-out is that it is the 900 * extra copy, not the primary copy, which gets 901 * journaled. If the primary copy is already going to 902 * disk then we cannot do copy-out here. */ 903 904 if (buffer_shadow(bh)) { 905 JBUFFER_TRACE(jh, "on shadow: sleep"); 906 jbd_unlock_bh_state(bh); 907 wait_on_bit(&bh->b_state, BH_Shadow, 908 sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE); 909 goto repeat; 910 } 911 912 /* 913 * Only do the copy if the currently-owning transaction still 914 * needs it. If buffer isn't on BJ_Metadata list, the 915 * committing transaction is past that stage (here we use the 916 * fact that BH_Shadow is set under bh_state lock together with 917 * refiling to BJ_Shadow list and at this point we know the 918 * buffer doesn't have BH_Shadow set). 919 * 920 * Subtle point, though: if this is a get_undo_access, 921 * then we will be relying on the frozen_data to contain 922 * the new value of the committed_data record after the 923 * transaction, so we HAVE to force the frozen_data copy 924 * in that case. 925 */ 926 if (jh->b_jlist == BJ_Metadata || force_copy) { 927 JBUFFER_TRACE(jh, "generate frozen data"); 928 if (!frozen_buffer) { 929 JBUFFER_TRACE(jh, "allocate memory for buffer"); 930 jbd_unlock_bh_state(bh); 931 frozen_buffer = 932 jbd2_alloc(jh2bh(jh)->b_size, 933 GFP_NOFS); 934 if (!frozen_buffer) { 935 printk(KERN_EMERG 936 "%s: OOM for frozen_buffer\n", 937 __func__); 938 JBUFFER_TRACE(jh, "oom!"); 939 error = -ENOMEM; 940 jbd_lock_bh_state(bh); 941 goto done; 942 } 943 goto repeat; 944 } 945 jh->b_frozen_data = frozen_buffer; 946 frozen_buffer = NULL; 947 need_copy = 1; 948 } 949 jh->b_next_transaction = transaction; 950 } 951 952 953 /* 954 * Finally, if the buffer is not journaled right now, we need to make 955 * sure it doesn't get written to disk before the caller actually 956 * commits the new data 957 */ 958 if (!jh->b_transaction) { 959 JBUFFER_TRACE(jh, "no transaction"); 960 J_ASSERT_JH(jh, !jh->b_next_transaction); 961 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 962 spin_lock(&journal->j_list_lock); 963 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 964 spin_unlock(&journal->j_list_lock); 965 } 966 967 done: 968 if (need_copy) { 969 struct page *page; 970 int offset; 971 char *source; 972 973 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 974 "Possible IO failure.\n"); 975 page = jh2bh(jh)->b_page; 976 offset = offset_in_page(jh2bh(jh)->b_data); 977 source = kmap_atomic(page); 978 /* Fire data frozen trigger just before we copy the data */ 979 jbd2_buffer_frozen_trigger(jh, source + offset, 980 jh->b_triggers); 981 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 982 kunmap_atomic(source); 983 984 /* 985 * Now that the frozen data is saved off, we need to store 986 * any matching triggers. 987 */ 988 jh->b_frozen_triggers = jh->b_triggers; 989 } 990 jbd_unlock_bh_state(bh); 991 992 /* 993 * If we are about to journal a buffer, then any revoke pending on it is 994 * no longer valid 995 */ 996 jbd2_journal_cancel_revoke(handle, jh); 997 998 out: 999 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1000 jbd2_free(frozen_buffer, bh->b_size); 1001 1002 JBUFFER_TRACE(jh, "exit"); 1003 return error; 1004 } 1005 1006 /** 1007 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1008 * @handle: transaction to add buffer modifications to 1009 * @bh: bh to be used for metadata writes 1010 * 1011 * Returns an error code or 0 on success. 1012 * 1013 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1014 * because we're write()ing a buffer which is also part of a shared mapping. 1015 */ 1016 1017 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1018 { 1019 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1020 int rc; 1021 1022 /* We do not want to get caught playing with fields which the 1023 * log thread also manipulates. Make sure that the buffer 1024 * completes any outstanding IO before proceeding. */ 1025 rc = do_get_write_access(handle, jh, 0); 1026 jbd2_journal_put_journal_head(jh); 1027 return rc; 1028 } 1029 1030 1031 /* 1032 * When the user wants to journal a newly created buffer_head 1033 * (ie. getblk() returned a new buffer and we are going to populate it 1034 * manually rather than reading off disk), then we need to keep the 1035 * buffer_head locked until it has been completely filled with new 1036 * data. In this case, we should be able to make the assertion that 1037 * the bh is not already part of an existing transaction. 1038 * 1039 * The buffer should already be locked by the caller by this point. 1040 * There is no lock ranking violation: it was a newly created, 1041 * unlocked buffer beforehand. */ 1042 1043 /** 1044 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1045 * @handle: transaction to new buffer to 1046 * @bh: new buffer. 1047 * 1048 * Call this if you create a new bh. 1049 */ 1050 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1051 { 1052 transaction_t *transaction = handle->h_transaction; 1053 journal_t *journal; 1054 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1055 int err; 1056 1057 jbd_debug(5, "journal_head %p\n", jh); 1058 WARN_ON(!transaction); 1059 err = -EROFS; 1060 if (is_handle_aborted(handle)) 1061 goto out; 1062 journal = transaction->t_journal; 1063 err = 0; 1064 1065 JBUFFER_TRACE(jh, "entry"); 1066 /* 1067 * The buffer may already belong to this transaction due to pre-zeroing 1068 * in the filesystem's new_block code. It may also be on the previous, 1069 * committing transaction's lists, but it HAS to be in Forget state in 1070 * that case: the transaction must have deleted the buffer for it to be 1071 * reused here. 1072 */ 1073 jbd_lock_bh_state(bh); 1074 spin_lock(&journal->j_list_lock); 1075 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1076 jh->b_transaction == NULL || 1077 (jh->b_transaction == journal->j_committing_transaction && 1078 jh->b_jlist == BJ_Forget))); 1079 1080 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1081 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1082 1083 if (jh->b_transaction == NULL) { 1084 /* 1085 * Previous jbd2_journal_forget() could have left the buffer 1086 * with jbddirty bit set because it was being committed. When 1087 * the commit finished, we've filed the buffer for 1088 * checkpointing and marked it dirty. Now we are reallocating 1089 * the buffer so the transaction freeing it must have 1090 * committed and so it's safe to clear the dirty bit. 1091 */ 1092 clear_buffer_dirty(jh2bh(jh)); 1093 /* first access by this transaction */ 1094 jh->b_modified = 0; 1095 1096 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1097 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1098 } else if (jh->b_transaction == journal->j_committing_transaction) { 1099 /* first access by this transaction */ 1100 jh->b_modified = 0; 1101 1102 JBUFFER_TRACE(jh, "set next transaction"); 1103 jh->b_next_transaction = transaction; 1104 } 1105 spin_unlock(&journal->j_list_lock); 1106 jbd_unlock_bh_state(bh); 1107 1108 /* 1109 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1110 * blocks which contain freed but then revoked metadata. We need 1111 * to cancel the revoke in case we end up freeing it yet again 1112 * and the reallocating as data - this would cause a second revoke, 1113 * which hits an assertion error. 1114 */ 1115 JBUFFER_TRACE(jh, "cancelling revoke"); 1116 jbd2_journal_cancel_revoke(handle, jh); 1117 out: 1118 jbd2_journal_put_journal_head(jh); 1119 return err; 1120 } 1121 1122 /** 1123 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1124 * non-rewindable consequences 1125 * @handle: transaction 1126 * @bh: buffer to undo 1127 * 1128 * Sometimes there is a need to distinguish between metadata which has 1129 * been committed to disk and that which has not. The ext3fs code uses 1130 * this for freeing and allocating space, we have to make sure that we 1131 * do not reuse freed space until the deallocation has been committed, 1132 * since if we overwrote that space we would make the delete 1133 * un-rewindable in case of a crash. 1134 * 1135 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1136 * buffer for parts of non-rewindable operations such as delete 1137 * operations on the bitmaps. The journaling code must keep a copy of 1138 * the buffer's contents prior to the undo_access call until such time 1139 * as we know that the buffer has definitely been committed to disk. 1140 * 1141 * We never need to know which transaction the committed data is part 1142 * of, buffers touched here are guaranteed to be dirtied later and so 1143 * will be committed to a new transaction in due course, at which point 1144 * we can discard the old committed data pointer. 1145 * 1146 * Returns error number or 0 on success. 1147 */ 1148 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1149 { 1150 int err; 1151 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1152 char *committed_data = NULL; 1153 1154 JBUFFER_TRACE(jh, "entry"); 1155 1156 /* 1157 * Do this first --- it can drop the journal lock, so we want to 1158 * make sure that obtaining the committed_data is done 1159 * atomically wrt. completion of any outstanding commits. 1160 */ 1161 err = do_get_write_access(handle, jh, 1); 1162 if (err) 1163 goto out; 1164 1165 repeat: 1166 if (!jh->b_committed_data) { 1167 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1168 if (!committed_data) { 1169 printk(KERN_EMERG "%s: No memory for committed data\n", 1170 __func__); 1171 err = -ENOMEM; 1172 goto out; 1173 } 1174 } 1175 1176 jbd_lock_bh_state(bh); 1177 if (!jh->b_committed_data) { 1178 /* Copy out the current buffer contents into the 1179 * preserved, committed copy. */ 1180 JBUFFER_TRACE(jh, "generate b_committed data"); 1181 if (!committed_data) { 1182 jbd_unlock_bh_state(bh); 1183 goto repeat; 1184 } 1185 1186 jh->b_committed_data = committed_data; 1187 committed_data = NULL; 1188 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1189 } 1190 jbd_unlock_bh_state(bh); 1191 out: 1192 jbd2_journal_put_journal_head(jh); 1193 if (unlikely(committed_data)) 1194 jbd2_free(committed_data, bh->b_size); 1195 return err; 1196 } 1197 1198 /** 1199 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1200 * @bh: buffer to trigger on 1201 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1202 * 1203 * Set any triggers on this journal_head. This is always safe, because 1204 * triggers for a committing buffer will be saved off, and triggers for 1205 * a running transaction will match the buffer in that transaction. 1206 * 1207 * Call with NULL to clear the triggers. 1208 */ 1209 void jbd2_journal_set_triggers(struct buffer_head *bh, 1210 struct jbd2_buffer_trigger_type *type) 1211 { 1212 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1213 1214 if (WARN_ON(!jh)) 1215 return; 1216 jh->b_triggers = type; 1217 jbd2_journal_put_journal_head(jh); 1218 } 1219 1220 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1221 struct jbd2_buffer_trigger_type *triggers) 1222 { 1223 struct buffer_head *bh = jh2bh(jh); 1224 1225 if (!triggers || !triggers->t_frozen) 1226 return; 1227 1228 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1229 } 1230 1231 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1232 struct jbd2_buffer_trigger_type *triggers) 1233 { 1234 if (!triggers || !triggers->t_abort) 1235 return; 1236 1237 triggers->t_abort(triggers, jh2bh(jh)); 1238 } 1239 1240 1241 1242 /** 1243 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1244 * @handle: transaction to add buffer to. 1245 * @bh: buffer to mark 1246 * 1247 * mark dirty metadata which needs to be journaled as part of the current 1248 * transaction. 1249 * 1250 * The buffer must have previously had jbd2_journal_get_write_access() 1251 * called so that it has a valid journal_head attached to the buffer 1252 * head. 1253 * 1254 * The buffer is placed on the transaction's metadata list and is marked 1255 * as belonging to the transaction. 1256 * 1257 * Returns error number or 0 on success. 1258 * 1259 * Special care needs to be taken if the buffer already belongs to the 1260 * current committing transaction (in which case we should have frozen 1261 * data present for that commit). In that case, we don't relink the 1262 * buffer: that only gets done when the old transaction finally 1263 * completes its commit. 1264 */ 1265 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1266 { 1267 transaction_t *transaction = handle->h_transaction; 1268 journal_t *journal; 1269 struct journal_head *jh; 1270 int ret = 0; 1271 1272 WARN_ON(!transaction); 1273 if (is_handle_aborted(handle)) 1274 return -EROFS; 1275 journal = transaction->t_journal; 1276 jh = jbd2_journal_grab_journal_head(bh); 1277 if (!jh) { 1278 ret = -EUCLEAN; 1279 goto out; 1280 } 1281 jbd_debug(5, "journal_head %p\n", jh); 1282 JBUFFER_TRACE(jh, "entry"); 1283 1284 jbd_lock_bh_state(bh); 1285 1286 if (jh->b_modified == 0) { 1287 /* 1288 * This buffer's got modified and becoming part 1289 * of the transaction. This needs to be done 1290 * once a transaction -bzzz 1291 */ 1292 jh->b_modified = 1; 1293 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1294 handle->h_buffer_credits--; 1295 } 1296 1297 /* 1298 * fastpath, to avoid expensive locking. If this buffer is already 1299 * on the running transaction's metadata list there is nothing to do. 1300 * Nobody can take it off again because there is a handle open. 1301 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1302 * result in this test being false, so we go in and take the locks. 1303 */ 1304 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1305 JBUFFER_TRACE(jh, "fastpath"); 1306 if (unlikely(jh->b_transaction != 1307 journal->j_running_transaction)) { 1308 printk(KERN_EMERG "JBD: %s: " 1309 "jh->b_transaction (%llu, %p, %u) != " 1310 "journal->j_running_transaction (%p, %u)", 1311 journal->j_devname, 1312 (unsigned long long) bh->b_blocknr, 1313 jh->b_transaction, 1314 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1315 journal->j_running_transaction, 1316 journal->j_running_transaction ? 1317 journal->j_running_transaction->t_tid : 0); 1318 ret = -EINVAL; 1319 } 1320 goto out_unlock_bh; 1321 } 1322 1323 set_buffer_jbddirty(bh); 1324 1325 /* 1326 * Metadata already on the current transaction list doesn't 1327 * need to be filed. Metadata on another transaction's list must 1328 * be committing, and will be refiled once the commit completes: 1329 * leave it alone for now. 1330 */ 1331 if (jh->b_transaction != transaction) { 1332 JBUFFER_TRACE(jh, "already on other transaction"); 1333 if (unlikely(jh->b_transaction != 1334 journal->j_committing_transaction)) { 1335 printk(KERN_EMERG "JBD: %s: " 1336 "jh->b_transaction (%llu, %p, %u) != " 1337 "journal->j_committing_transaction (%p, %u)", 1338 journal->j_devname, 1339 (unsigned long long) bh->b_blocknr, 1340 jh->b_transaction, 1341 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1342 journal->j_committing_transaction, 1343 journal->j_committing_transaction ? 1344 journal->j_committing_transaction->t_tid : 0); 1345 ret = -EINVAL; 1346 } 1347 if (unlikely(jh->b_next_transaction != transaction)) { 1348 printk(KERN_EMERG "JBD: %s: " 1349 "jh->b_next_transaction (%llu, %p, %u) != " 1350 "transaction (%p, %u)", 1351 journal->j_devname, 1352 (unsigned long long) bh->b_blocknr, 1353 jh->b_next_transaction, 1354 jh->b_next_transaction ? 1355 jh->b_next_transaction->t_tid : 0, 1356 transaction, transaction->t_tid); 1357 ret = -EINVAL; 1358 } 1359 /* And this case is illegal: we can't reuse another 1360 * transaction's data buffer, ever. */ 1361 goto out_unlock_bh; 1362 } 1363 1364 /* That test should have eliminated the following case: */ 1365 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1366 1367 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1368 spin_lock(&journal->j_list_lock); 1369 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1370 spin_unlock(&journal->j_list_lock); 1371 out_unlock_bh: 1372 jbd_unlock_bh_state(bh); 1373 jbd2_journal_put_journal_head(jh); 1374 out: 1375 JBUFFER_TRACE(jh, "exit"); 1376 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1377 return ret; 1378 } 1379 1380 /** 1381 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1382 * @handle: transaction handle 1383 * @bh: bh to 'forget' 1384 * 1385 * We can only do the bforget if there are no commits pending against the 1386 * buffer. If the buffer is dirty in the current running transaction we 1387 * can safely unlink it. 1388 * 1389 * bh may not be a journalled buffer at all - it may be a non-JBD 1390 * buffer which came off the hashtable. Check for this. 1391 * 1392 * Decrements bh->b_count by one. 1393 * 1394 * Allow this call even if the handle has aborted --- it may be part of 1395 * the caller's cleanup after an abort. 1396 */ 1397 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1398 { 1399 transaction_t *transaction = handle->h_transaction; 1400 journal_t *journal; 1401 struct journal_head *jh; 1402 int drop_reserve = 0; 1403 int err = 0; 1404 int was_modified = 0; 1405 1406 WARN_ON(!transaction); 1407 if (is_handle_aborted(handle)) 1408 return -EROFS; 1409 journal = transaction->t_journal; 1410 1411 BUFFER_TRACE(bh, "entry"); 1412 1413 jbd_lock_bh_state(bh); 1414 spin_lock(&journal->j_list_lock); 1415 1416 if (!buffer_jbd(bh)) 1417 goto not_jbd; 1418 jh = bh2jh(bh); 1419 1420 /* Critical error: attempting to delete a bitmap buffer, maybe? 1421 * Don't do any jbd operations, and return an error. */ 1422 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1423 "inconsistent data on disk")) { 1424 err = -EIO; 1425 goto not_jbd; 1426 } 1427 1428 /* keep track of whether or not this transaction modified us */ 1429 was_modified = jh->b_modified; 1430 1431 /* 1432 * The buffer's going from the transaction, we must drop 1433 * all references -bzzz 1434 */ 1435 jh->b_modified = 0; 1436 1437 if (jh->b_transaction == transaction) { 1438 J_ASSERT_JH(jh, !jh->b_frozen_data); 1439 1440 /* If we are forgetting a buffer which is already part 1441 * of this transaction, then we can just drop it from 1442 * the transaction immediately. */ 1443 clear_buffer_dirty(bh); 1444 clear_buffer_jbddirty(bh); 1445 1446 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1447 1448 /* 1449 * we only want to drop a reference if this transaction 1450 * modified the buffer 1451 */ 1452 if (was_modified) 1453 drop_reserve = 1; 1454 1455 /* 1456 * We are no longer going to journal this buffer. 1457 * However, the commit of this transaction is still 1458 * important to the buffer: the delete that we are now 1459 * processing might obsolete an old log entry, so by 1460 * committing, we can satisfy the buffer's checkpoint. 1461 * 1462 * So, if we have a checkpoint on the buffer, we should 1463 * now refile the buffer on our BJ_Forget list so that 1464 * we know to remove the checkpoint after we commit. 1465 */ 1466 1467 if (jh->b_cp_transaction) { 1468 __jbd2_journal_temp_unlink_buffer(jh); 1469 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1470 } else { 1471 __jbd2_journal_unfile_buffer(jh); 1472 if (!buffer_jbd(bh)) { 1473 spin_unlock(&journal->j_list_lock); 1474 jbd_unlock_bh_state(bh); 1475 __bforget(bh); 1476 goto drop; 1477 } 1478 } 1479 } else if (jh->b_transaction) { 1480 J_ASSERT_JH(jh, (jh->b_transaction == 1481 journal->j_committing_transaction)); 1482 /* However, if the buffer is still owned by a prior 1483 * (committing) transaction, we can't drop it yet... */ 1484 JBUFFER_TRACE(jh, "belongs to older transaction"); 1485 /* ... but we CAN drop it from the new transaction if we 1486 * have also modified it since the original commit. */ 1487 1488 if (jh->b_next_transaction) { 1489 J_ASSERT(jh->b_next_transaction == transaction); 1490 jh->b_next_transaction = NULL; 1491 1492 /* 1493 * only drop a reference if this transaction modified 1494 * the buffer 1495 */ 1496 if (was_modified) 1497 drop_reserve = 1; 1498 } 1499 } 1500 1501 not_jbd: 1502 spin_unlock(&journal->j_list_lock); 1503 jbd_unlock_bh_state(bh); 1504 __brelse(bh); 1505 drop: 1506 if (drop_reserve) { 1507 /* no need to reserve log space for this block -bzzz */ 1508 handle->h_buffer_credits++; 1509 } 1510 return err; 1511 } 1512 1513 /** 1514 * int jbd2_journal_stop() - complete a transaction 1515 * @handle: tranaction to complete. 1516 * 1517 * All done for a particular handle. 1518 * 1519 * There is not much action needed here. We just return any remaining 1520 * buffer credits to the transaction and remove the handle. The only 1521 * complication is that we need to start a commit operation if the 1522 * filesystem is marked for synchronous update. 1523 * 1524 * jbd2_journal_stop itself will not usually return an error, but it may 1525 * do so in unusual circumstances. In particular, expect it to 1526 * return -EIO if a jbd2_journal_abort has been executed since the 1527 * transaction began. 1528 */ 1529 int jbd2_journal_stop(handle_t *handle) 1530 { 1531 transaction_t *transaction = handle->h_transaction; 1532 journal_t *journal; 1533 int err = 0, wait_for_commit = 0; 1534 tid_t tid; 1535 pid_t pid; 1536 1537 if (!transaction) 1538 goto free_and_exit; 1539 journal = transaction->t_journal; 1540 1541 J_ASSERT(journal_current_handle() == handle); 1542 1543 if (is_handle_aborted(handle)) 1544 err = -EIO; 1545 else 1546 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1547 1548 if (--handle->h_ref > 0) { 1549 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1550 handle->h_ref); 1551 return err; 1552 } 1553 1554 jbd_debug(4, "Handle %p going down\n", handle); 1555 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1556 transaction->t_tid, 1557 handle->h_type, handle->h_line_no, 1558 jiffies - handle->h_start_jiffies, 1559 handle->h_sync, handle->h_requested_credits, 1560 (handle->h_requested_credits - 1561 handle->h_buffer_credits)); 1562 1563 /* 1564 * Implement synchronous transaction batching. If the handle 1565 * was synchronous, don't force a commit immediately. Let's 1566 * yield and let another thread piggyback onto this 1567 * transaction. Keep doing that while new threads continue to 1568 * arrive. It doesn't cost much - we're about to run a commit 1569 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1570 * operations by 30x or more... 1571 * 1572 * We try and optimize the sleep time against what the 1573 * underlying disk can do, instead of having a static sleep 1574 * time. This is useful for the case where our storage is so 1575 * fast that it is more optimal to go ahead and force a flush 1576 * and wait for the transaction to be committed than it is to 1577 * wait for an arbitrary amount of time for new writers to 1578 * join the transaction. We achieve this by measuring how 1579 * long it takes to commit a transaction, and compare it with 1580 * how long this transaction has been running, and if run time 1581 * < commit time then we sleep for the delta and commit. This 1582 * greatly helps super fast disks that would see slowdowns as 1583 * more threads started doing fsyncs. 1584 * 1585 * But don't do this if this process was the most recent one 1586 * to perform a synchronous write. We do this to detect the 1587 * case where a single process is doing a stream of sync 1588 * writes. No point in waiting for joiners in that case. 1589 */ 1590 pid = current->pid; 1591 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1592 u64 commit_time, trans_time; 1593 1594 journal->j_last_sync_writer = pid; 1595 1596 read_lock(&journal->j_state_lock); 1597 commit_time = journal->j_average_commit_time; 1598 read_unlock(&journal->j_state_lock); 1599 1600 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1601 transaction->t_start_time)); 1602 1603 commit_time = max_t(u64, commit_time, 1604 1000*journal->j_min_batch_time); 1605 commit_time = min_t(u64, commit_time, 1606 1000*journal->j_max_batch_time); 1607 1608 if (trans_time < commit_time) { 1609 ktime_t expires = ktime_add_ns(ktime_get(), 1610 commit_time); 1611 set_current_state(TASK_UNINTERRUPTIBLE); 1612 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1613 } 1614 } 1615 1616 if (handle->h_sync) 1617 transaction->t_synchronous_commit = 1; 1618 current->journal_info = NULL; 1619 atomic_sub(handle->h_buffer_credits, 1620 &transaction->t_outstanding_credits); 1621 1622 /* 1623 * If the handle is marked SYNC, we need to set another commit 1624 * going! We also want to force a commit if the current 1625 * transaction is occupying too much of the log, or if the 1626 * transaction is too old now. 1627 */ 1628 if (handle->h_sync || 1629 (atomic_read(&transaction->t_outstanding_credits) > 1630 journal->j_max_transaction_buffers) || 1631 time_after_eq(jiffies, transaction->t_expires)) { 1632 /* Do this even for aborted journals: an abort still 1633 * completes the commit thread, it just doesn't write 1634 * anything to disk. */ 1635 1636 jbd_debug(2, "transaction too old, requesting commit for " 1637 "handle %p\n", handle); 1638 /* This is non-blocking */ 1639 jbd2_log_start_commit(journal, transaction->t_tid); 1640 1641 /* 1642 * Special case: JBD2_SYNC synchronous updates require us 1643 * to wait for the commit to complete. 1644 */ 1645 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1646 wait_for_commit = 1; 1647 } 1648 1649 /* 1650 * Once we drop t_updates, if it goes to zero the transaction 1651 * could start committing on us and eventually disappear. So 1652 * once we do this, we must not dereference transaction 1653 * pointer again. 1654 */ 1655 tid = transaction->t_tid; 1656 if (atomic_dec_and_test(&transaction->t_updates)) { 1657 wake_up(&journal->j_wait_updates); 1658 if (journal->j_barrier_count) 1659 wake_up(&journal->j_wait_transaction_locked); 1660 } 1661 1662 if (wait_for_commit) 1663 err = jbd2_log_wait_commit(journal, tid); 1664 1665 lock_map_release(&handle->h_lockdep_map); 1666 1667 if (handle->h_rsv_handle) 1668 jbd2_journal_free_reserved(handle->h_rsv_handle); 1669 free_and_exit: 1670 jbd2_free_handle(handle); 1671 return err; 1672 } 1673 1674 /* 1675 * 1676 * List management code snippets: various functions for manipulating the 1677 * transaction buffer lists. 1678 * 1679 */ 1680 1681 /* 1682 * Append a buffer to a transaction list, given the transaction's list head 1683 * pointer. 1684 * 1685 * j_list_lock is held. 1686 * 1687 * jbd_lock_bh_state(jh2bh(jh)) is held. 1688 */ 1689 1690 static inline void 1691 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1692 { 1693 if (!*list) { 1694 jh->b_tnext = jh->b_tprev = jh; 1695 *list = jh; 1696 } else { 1697 /* Insert at the tail of the list to preserve order */ 1698 struct journal_head *first = *list, *last = first->b_tprev; 1699 jh->b_tprev = last; 1700 jh->b_tnext = first; 1701 last->b_tnext = first->b_tprev = jh; 1702 } 1703 } 1704 1705 /* 1706 * Remove a buffer from a transaction list, given the transaction's list 1707 * head pointer. 1708 * 1709 * Called with j_list_lock held, and the journal may not be locked. 1710 * 1711 * jbd_lock_bh_state(jh2bh(jh)) is held. 1712 */ 1713 1714 static inline void 1715 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1716 { 1717 if (*list == jh) { 1718 *list = jh->b_tnext; 1719 if (*list == jh) 1720 *list = NULL; 1721 } 1722 jh->b_tprev->b_tnext = jh->b_tnext; 1723 jh->b_tnext->b_tprev = jh->b_tprev; 1724 } 1725 1726 /* 1727 * Remove a buffer from the appropriate transaction list. 1728 * 1729 * Note that this function can *change* the value of 1730 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1731 * t_reserved_list. If the caller is holding onto a copy of one of these 1732 * pointers, it could go bad. Generally the caller needs to re-read the 1733 * pointer from the transaction_t. 1734 * 1735 * Called under j_list_lock. 1736 */ 1737 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1738 { 1739 struct journal_head **list = NULL; 1740 transaction_t *transaction; 1741 struct buffer_head *bh = jh2bh(jh); 1742 1743 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1744 transaction = jh->b_transaction; 1745 if (transaction) 1746 assert_spin_locked(&transaction->t_journal->j_list_lock); 1747 1748 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1749 if (jh->b_jlist != BJ_None) 1750 J_ASSERT_JH(jh, transaction != NULL); 1751 1752 switch (jh->b_jlist) { 1753 case BJ_None: 1754 return; 1755 case BJ_Metadata: 1756 transaction->t_nr_buffers--; 1757 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1758 list = &transaction->t_buffers; 1759 break; 1760 case BJ_Forget: 1761 list = &transaction->t_forget; 1762 break; 1763 case BJ_Shadow: 1764 list = &transaction->t_shadow_list; 1765 break; 1766 case BJ_Reserved: 1767 list = &transaction->t_reserved_list; 1768 break; 1769 } 1770 1771 __blist_del_buffer(list, jh); 1772 jh->b_jlist = BJ_None; 1773 if (test_clear_buffer_jbddirty(bh)) 1774 mark_buffer_dirty(bh); /* Expose it to the VM */ 1775 } 1776 1777 /* 1778 * Remove buffer from all transactions. 1779 * 1780 * Called with bh_state lock and j_list_lock 1781 * 1782 * jh and bh may be already freed when this function returns. 1783 */ 1784 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1785 { 1786 __jbd2_journal_temp_unlink_buffer(jh); 1787 jh->b_transaction = NULL; 1788 jbd2_journal_put_journal_head(jh); 1789 } 1790 1791 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1792 { 1793 struct buffer_head *bh = jh2bh(jh); 1794 1795 /* Get reference so that buffer cannot be freed before we unlock it */ 1796 get_bh(bh); 1797 jbd_lock_bh_state(bh); 1798 spin_lock(&journal->j_list_lock); 1799 __jbd2_journal_unfile_buffer(jh); 1800 spin_unlock(&journal->j_list_lock); 1801 jbd_unlock_bh_state(bh); 1802 __brelse(bh); 1803 } 1804 1805 /* 1806 * Called from jbd2_journal_try_to_free_buffers(). 1807 * 1808 * Called under jbd_lock_bh_state(bh) 1809 */ 1810 static void 1811 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1812 { 1813 struct journal_head *jh; 1814 1815 jh = bh2jh(bh); 1816 1817 if (buffer_locked(bh) || buffer_dirty(bh)) 1818 goto out; 1819 1820 if (jh->b_next_transaction != NULL) 1821 goto out; 1822 1823 spin_lock(&journal->j_list_lock); 1824 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1825 /* written-back checkpointed metadata buffer */ 1826 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1827 __jbd2_journal_remove_checkpoint(jh); 1828 } 1829 spin_unlock(&journal->j_list_lock); 1830 out: 1831 return; 1832 } 1833 1834 /** 1835 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1836 * @journal: journal for operation 1837 * @page: to try and free 1838 * @gfp_mask: we use the mask to detect how hard should we try to release 1839 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1840 * release the buffers. 1841 * 1842 * 1843 * For all the buffers on this page, 1844 * if they are fully written out ordered data, move them onto BUF_CLEAN 1845 * so try_to_free_buffers() can reap them. 1846 * 1847 * This function returns non-zero if we wish try_to_free_buffers() 1848 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1849 * We also do it if the page has locked or dirty buffers and the caller wants 1850 * us to perform sync or async writeout. 1851 * 1852 * This complicates JBD locking somewhat. We aren't protected by the 1853 * BKL here. We wish to remove the buffer from its committing or 1854 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1855 * 1856 * This may *change* the value of transaction_t->t_datalist, so anyone 1857 * who looks at t_datalist needs to lock against this function. 1858 * 1859 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1860 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1861 * will come out of the lock with the buffer dirty, which makes it 1862 * ineligible for release here. 1863 * 1864 * Who else is affected by this? hmm... Really the only contender 1865 * is do_get_write_access() - it could be looking at the buffer while 1866 * journal_try_to_free_buffer() is changing its state. But that 1867 * cannot happen because we never reallocate freed data as metadata 1868 * while the data is part of a transaction. Yes? 1869 * 1870 * Return 0 on failure, 1 on success 1871 */ 1872 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1873 struct page *page, gfp_t gfp_mask) 1874 { 1875 struct buffer_head *head; 1876 struct buffer_head *bh; 1877 int ret = 0; 1878 1879 J_ASSERT(PageLocked(page)); 1880 1881 head = page_buffers(page); 1882 bh = head; 1883 do { 1884 struct journal_head *jh; 1885 1886 /* 1887 * We take our own ref against the journal_head here to avoid 1888 * having to add tons of locking around each instance of 1889 * jbd2_journal_put_journal_head(). 1890 */ 1891 jh = jbd2_journal_grab_journal_head(bh); 1892 if (!jh) 1893 continue; 1894 1895 jbd_lock_bh_state(bh); 1896 __journal_try_to_free_buffer(journal, bh); 1897 jbd2_journal_put_journal_head(jh); 1898 jbd_unlock_bh_state(bh); 1899 if (buffer_jbd(bh)) 1900 goto busy; 1901 } while ((bh = bh->b_this_page) != head); 1902 1903 ret = try_to_free_buffers(page); 1904 1905 busy: 1906 return ret; 1907 } 1908 1909 /* 1910 * This buffer is no longer needed. If it is on an older transaction's 1911 * checkpoint list we need to record it on this transaction's forget list 1912 * to pin this buffer (and hence its checkpointing transaction) down until 1913 * this transaction commits. If the buffer isn't on a checkpoint list, we 1914 * release it. 1915 * Returns non-zero if JBD no longer has an interest in the buffer. 1916 * 1917 * Called under j_list_lock. 1918 * 1919 * Called under jbd_lock_bh_state(bh). 1920 */ 1921 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1922 { 1923 int may_free = 1; 1924 struct buffer_head *bh = jh2bh(jh); 1925 1926 if (jh->b_cp_transaction) { 1927 JBUFFER_TRACE(jh, "on running+cp transaction"); 1928 __jbd2_journal_temp_unlink_buffer(jh); 1929 /* 1930 * We don't want to write the buffer anymore, clear the 1931 * bit so that we don't confuse checks in 1932 * __journal_file_buffer 1933 */ 1934 clear_buffer_dirty(bh); 1935 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1936 may_free = 0; 1937 } else { 1938 JBUFFER_TRACE(jh, "on running transaction"); 1939 __jbd2_journal_unfile_buffer(jh); 1940 } 1941 return may_free; 1942 } 1943 1944 /* 1945 * jbd2_journal_invalidatepage 1946 * 1947 * This code is tricky. It has a number of cases to deal with. 1948 * 1949 * There are two invariants which this code relies on: 1950 * 1951 * i_size must be updated on disk before we start calling invalidatepage on the 1952 * data. 1953 * 1954 * This is done in ext3 by defining an ext3_setattr method which 1955 * updates i_size before truncate gets going. By maintaining this 1956 * invariant, we can be sure that it is safe to throw away any buffers 1957 * attached to the current transaction: once the transaction commits, 1958 * we know that the data will not be needed. 1959 * 1960 * Note however that we can *not* throw away data belonging to the 1961 * previous, committing transaction! 1962 * 1963 * Any disk blocks which *are* part of the previous, committing 1964 * transaction (and which therefore cannot be discarded immediately) are 1965 * not going to be reused in the new running transaction 1966 * 1967 * The bitmap committed_data images guarantee this: any block which is 1968 * allocated in one transaction and removed in the next will be marked 1969 * as in-use in the committed_data bitmap, so cannot be reused until 1970 * the next transaction to delete the block commits. This means that 1971 * leaving committing buffers dirty is quite safe: the disk blocks 1972 * cannot be reallocated to a different file and so buffer aliasing is 1973 * not possible. 1974 * 1975 * 1976 * The above applies mainly to ordered data mode. In writeback mode we 1977 * don't make guarantees about the order in which data hits disk --- in 1978 * particular we don't guarantee that new dirty data is flushed before 1979 * transaction commit --- so it is always safe just to discard data 1980 * immediately in that mode. --sct 1981 */ 1982 1983 /* 1984 * The journal_unmap_buffer helper function returns zero if the buffer 1985 * concerned remains pinned as an anonymous buffer belonging to an older 1986 * transaction. 1987 * 1988 * We're outside-transaction here. Either or both of j_running_transaction 1989 * and j_committing_transaction may be NULL. 1990 */ 1991 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1992 int partial_page) 1993 { 1994 transaction_t *transaction; 1995 struct journal_head *jh; 1996 int may_free = 1; 1997 1998 BUFFER_TRACE(bh, "entry"); 1999 2000 /* 2001 * It is safe to proceed here without the j_list_lock because the 2002 * buffers cannot be stolen by try_to_free_buffers as long as we are 2003 * holding the page lock. --sct 2004 */ 2005 2006 if (!buffer_jbd(bh)) 2007 goto zap_buffer_unlocked; 2008 2009 /* OK, we have data buffer in journaled mode */ 2010 write_lock(&journal->j_state_lock); 2011 jbd_lock_bh_state(bh); 2012 spin_lock(&journal->j_list_lock); 2013 2014 jh = jbd2_journal_grab_journal_head(bh); 2015 if (!jh) 2016 goto zap_buffer_no_jh; 2017 2018 /* 2019 * We cannot remove the buffer from checkpoint lists until the 2020 * transaction adding inode to orphan list (let's call it T) 2021 * is committed. Otherwise if the transaction changing the 2022 * buffer would be cleaned from the journal before T is 2023 * committed, a crash will cause that the correct contents of 2024 * the buffer will be lost. On the other hand we have to 2025 * clear the buffer dirty bit at latest at the moment when the 2026 * transaction marking the buffer as freed in the filesystem 2027 * structures is committed because from that moment on the 2028 * block can be reallocated and used by a different page. 2029 * Since the block hasn't been freed yet but the inode has 2030 * already been added to orphan list, it is safe for us to add 2031 * the buffer to BJ_Forget list of the newest transaction. 2032 * 2033 * Also we have to clear buffer_mapped flag of a truncated buffer 2034 * because the buffer_head may be attached to the page straddling 2035 * i_size (can happen only when blocksize < pagesize) and thus the 2036 * buffer_head can be reused when the file is extended again. So we end 2037 * up keeping around invalidated buffers attached to transactions' 2038 * BJ_Forget list just to stop checkpointing code from cleaning up 2039 * the transaction this buffer was modified in. 2040 */ 2041 transaction = jh->b_transaction; 2042 if (transaction == NULL) { 2043 /* First case: not on any transaction. If it 2044 * has no checkpoint link, then we can zap it: 2045 * it's a writeback-mode buffer so we don't care 2046 * if it hits disk safely. */ 2047 if (!jh->b_cp_transaction) { 2048 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2049 goto zap_buffer; 2050 } 2051 2052 if (!buffer_dirty(bh)) { 2053 /* bdflush has written it. We can drop it now */ 2054 goto zap_buffer; 2055 } 2056 2057 /* OK, it must be in the journal but still not 2058 * written fully to disk: it's metadata or 2059 * journaled data... */ 2060 2061 if (journal->j_running_transaction) { 2062 /* ... and once the current transaction has 2063 * committed, the buffer won't be needed any 2064 * longer. */ 2065 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2066 may_free = __dispose_buffer(jh, 2067 journal->j_running_transaction); 2068 goto zap_buffer; 2069 } else { 2070 /* There is no currently-running transaction. So the 2071 * orphan record which we wrote for this file must have 2072 * passed into commit. We must attach this buffer to 2073 * the committing transaction, if it exists. */ 2074 if (journal->j_committing_transaction) { 2075 JBUFFER_TRACE(jh, "give to committing trans"); 2076 may_free = __dispose_buffer(jh, 2077 journal->j_committing_transaction); 2078 goto zap_buffer; 2079 } else { 2080 /* The orphan record's transaction has 2081 * committed. We can cleanse this buffer */ 2082 clear_buffer_jbddirty(bh); 2083 goto zap_buffer; 2084 } 2085 } 2086 } else if (transaction == journal->j_committing_transaction) { 2087 JBUFFER_TRACE(jh, "on committing transaction"); 2088 /* 2089 * The buffer is committing, we simply cannot touch 2090 * it. If the page is straddling i_size we have to wait 2091 * for commit and try again. 2092 */ 2093 if (partial_page) { 2094 jbd2_journal_put_journal_head(jh); 2095 spin_unlock(&journal->j_list_lock); 2096 jbd_unlock_bh_state(bh); 2097 write_unlock(&journal->j_state_lock); 2098 return -EBUSY; 2099 } 2100 /* 2101 * OK, buffer won't be reachable after truncate. We just set 2102 * j_next_transaction to the running transaction (if there is 2103 * one) and mark buffer as freed so that commit code knows it 2104 * should clear dirty bits when it is done with the buffer. 2105 */ 2106 set_buffer_freed(bh); 2107 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2108 jh->b_next_transaction = journal->j_running_transaction; 2109 jbd2_journal_put_journal_head(jh); 2110 spin_unlock(&journal->j_list_lock); 2111 jbd_unlock_bh_state(bh); 2112 write_unlock(&journal->j_state_lock); 2113 return 0; 2114 } else { 2115 /* Good, the buffer belongs to the running transaction. 2116 * We are writing our own transaction's data, not any 2117 * previous one's, so it is safe to throw it away 2118 * (remember that we expect the filesystem to have set 2119 * i_size already for this truncate so recovery will not 2120 * expose the disk blocks we are discarding here.) */ 2121 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2122 JBUFFER_TRACE(jh, "on running transaction"); 2123 may_free = __dispose_buffer(jh, transaction); 2124 } 2125 2126 zap_buffer: 2127 /* 2128 * This is tricky. Although the buffer is truncated, it may be reused 2129 * if blocksize < pagesize and it is attached to the page straddling 2130 * EOF. Since the buffer might have been added to BJ_Forget list of the 2131 * running transaction, journal_get_write_access() won't clear 2132 * b_modified and credit accounting gets confused. So clear b_modified 2133 * here. 2134 */ 2135 jh->b_modified = 0; 2136 jbd2_journal_put_journal_head(jh); 2137 zap_buffer_no_jh: 2138 spin_unlock(&journal->j_list_lock); 2139 jbd_unlock_bh_state(bh); 2140 write_unlock(&journal->j_state_lock); 2141 zap_buffer_unlocked: 2142 clear_buffer_dirty(bh); 2143 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2144 clear_buffer_mapped(bh); 2145 clear_buffer_req(bh); 2146 clear_buffer_new(bh); 2147 clear_buffer_delay(bh); 2148 clear_buffer_unwritten(bh); 2149 bh->b_bdev = NULL; 2150 return may_free; 2151 } 2152 2153 /** 2154 * void jbd2_journal_invalidatepage() 2155 * @journal: journal to use for flush... 2156 * @page: page to flush 2157 * @offset: start of the range to invalidate 2158 * @length: length of the range to invalidate 2159 * 2160 * Reap page buffers containing data after in the specified range in page. 2161 * Can return -EBUSY if buffers are part of the committing transaction and 2162 * the page is straddling i_size. Caller then has to wait for current commit 2163 * and try again. 2164 */ 2165 int jbd2_journal_invalidatepage(journal_t *journal, 2166 struct page *page, 2167 unsigned int offset, 2168 unsigned int length) 2169 { 2170 struct buffer_head *head, *bh, *next; 2171 unsigned int stop = offset + length; 2172 unsigned int curr_off = 0; 2173 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2174 int may_free = 1; 2175 int ret = 0; 2176 2177 if (!PageLocked(page)) 2178 BUG(); 2179 if (!page_has_buffers(page)) 2180 return 0; 2181 2182 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2183 2184 /* We will potentially be playing with lists other than just the 2185 * data lists (especially for journaled data mode), so be 2186 * cautious in our locking. */ 2187 2188 head = bh = page_buffers(page); 2189 do { 2190 unsigned int next_off = curr_off + bh->b_size; 2191 next = bh->b_this_page; 2192 2193 if (next_off > stop) 2194 return 0; 2195 2196 if (offset <= curr_off) { 2197 /* This block is wholly outside the truncation point */ 2198 lock_buffer(bh); 2199 ret = journal_unmap_buffer(journal, bh, partial_page); 2200 unlock_buffer(bh); 2201 if (ret < 0) 2202 return ret; 2203 may_free &= ret; 2204 } 2205 curr_off = next_off; 2206 bh = next; 2207 2208 } while (bh != head); 2209 2210 if (!partial_page) { 2211 if (may_free && try_to_free_buffers(page)) 2212 J_ASSERT(!page_has_buffers(page)); 2213 } 2214 return 0; 2215 } 2216 2217 /* 2218 * File a buffer on the given transaction list. 2219 */ 2220 void __jbd2_journal_file_buffer(struct journal_head *jh, 2221 transaction_t *transaction, int jlist) 2222 { 2223 struct journal_head **list = NULL; 2224 int was_dirty = 0; 2225 struct buffer_head *bh = jh2bh(jh); 2226 2227 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2228 assert_spin_locked(&transaction->t_journal->j_list_lock); 2229 2230 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2231 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2232 jh->b_transaction == NULL); 2233 2234 if (jh->b_transaction && jh->b_jlist == jlist) 2235 return; 2236 2237 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2238 jlist == BJ_Shadow || jlist == BJ_Forget) { 2239 /* 2240 * For metadata buffers, we track dirty bit in buffer_jbddirty 2241 * instead of buffer_dirty. We should not see a dirty bit set 2242 * here because we clear it in do_get_write_access but e.g. 2243 * tune2fs can modify the sb and set the dirty bit at any time 2244 * so we try to gracefully handle that. 2245 */ 2246 if (buffer_dirty(bh)) 2247 warn_dirty_buffer(bh); 2248 if (test_clear_buffer_dirty(bh) || 2249 test_clear_buffer_jbddirty(bh)) 2250 was_dirty = 1; 2251 } 2252 2253 if (jh->b_transaction) 2254 __jbd2_journal_temp_unlink_buffer(jh); 2255 else 2256 jbd2_journal_grab_journal_head(bh); 2257 jh->b_transaction = transaction; 2258 2259 switch (jlist) { 2260 case BJ_None: 2261 J_ASSERT_JH(jh, !jh->b_committed_data); 2262 J_ASSERT_JH(jh, !jh->b_frozen_data); 2263 return; 2264 case BJ_Metadata: 2265 transaction->t_nr_buffers++; 2266 list = &transaction->t_buffers; 2267 break; 2268 case BJ_Forget: 2269 list = &transaction->t_forget; 2270 break; 2271 case BJ_Shadow: 2272 list = &transaction->t_shadow_list; 2273 break; 2274 case BJ_Reserved: 2275 list = &transaction->t_reserved_list; 2276 break; 2277 } 2278 2279 __blist_add_buffer(list, jh); 2280 jh->b_jlist = jlist; 2281 2282 if (was_dirty) 2283 set_buffer_jbddirty(bh); 2284 } 2285 2286 void jbd2_journal_file_buffer(struct journal_head *jh, 2287 transaction_t *transaction, int jlist) 2288 { 2289 jbd_lock_bh_state(jh2bh(jh)); 2290 spin_lock(&transaction->t_journal->j_list_lock); 2291 __jbd2_journal_file_buffer(jh, transaction, jlist); 2292 spin_unlock(&transaction->t_journal->j_list_lock); 2293 jbd_unlock_bh_state(jh2bh(jh)); 2294 } 2295 2296 /* 2297 * Remove a buffer from its current buffer list in preparation for 2298 * dropping it from its current transaction entirely. If the buffer has 2299 * already started to be used by a subsequent transaction, refile the 2300 * buffer on that transaction's metadata list. 2301 * 2302 * Called under j_list_lock 2303 * Called under jbd_lock_bh_state(jh2bh(jh)) 2304 * 2305 * jh and bh may be already free when this function returns 2306 */ 2307 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2308 { 2309 int was_dirty, jlist; 2310 struct buffer_head *bh = jh2bh(jh); 2311 2312 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2313 if (jh->b_transaction) 2314 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2315 2316 /* If the buffer is now unused, just drop it. */ 2317 if (jh->b_next_transaction == NULL) { 2318 __jbd2_journal_unfile_buffer(jh); 2319 return; 2320 } 2321 2322 /* 2323 * It has been modified by a later transaction: add it to the new 2324 * transaction's metadata list. 2325 */ 2326 2327 was_dirty = test_clear_buffer_jbddirty(bh); 2328 __jbd2_journal_temp_unlink_buffer(jh); 2329 /* 2330 * We set b_transaction here because b_next_transaction will inherit 2331 * our jh reference and thus __jbd2_journal_file_buffer() must not 2332 * take a new one. 2333 */ 2334 jh->b_transaction = jh->b_next_transaction; 2335 jh->b_next_transaction = NULL; 2336 if (buffer_freed(bh)) 2337 jlist = BJ_Forget; 2338 else if (jh->b_modified) 2339 jlist = BJ_Metadata; 2340 else 2341 jlist = BJ_Reserved; 2342 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2343 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2344 2345 if (was_dirty) 2346 set_buffer_jbddirty(bh); 2347 } 2348 2349 /* 2350 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2351 * bh reference so that we can safely unlock bh. 2352 * 2353 * The jh and bh may be freed by this call. 2354 */ 2355 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2356 { 2357 struct buffer_head *bh = jh2bh(jh); 2358 2359 /* Get reference so that buffer cannot be freed before we unlock it */ 2360 get_bh(bh); 2361 jbd_lock_bh_state(bh); 2362 spin_lock(&journal->j_list_lock); 2363 __jbd2_journal_refile_buffer(jh); 2364 jbd_unlock_bh_state(bh); 2365 spin_unlock(&journal->j_list_lock); 2366 __brelse(bh); 2367 } 2368 2369 /* 2370 * File inode in the inode list of the handle's transaction 2371 */ 2372 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2373 { 2374 transaction_t *transaction = handle->h_transaction; 2375 journal_t *journal; 2376 2377 WARN_ON(!transaction); 2378 if (is_handle_aborted(handle)) 2379 return -EROFS; 2380 journal = transaction->t_journal; 2381 2382 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2383 transaction->t_tid); 2384 2385 /* 2386 * First check whether inode isn't already on the transaction's 2387 * lists without taking the lock. Note that this check is safe 2388 * without the lock as we cannot race with somebody removing inode 2389 * from the transaction. The reason is that we remove inode from the 2390 * transaction only in journal_release_jbd_inode() and when we commit 2391 * the transaction. We are guarded from the first case by holding 2392 * a reference to the inode. We are safe against the second case 2393 * because if jinode->i_transaction == transaction, commit code 2394 * cannot touch the transaction because we hold reference to it, 2395 * and if jinode->i_next_transaction == transaction, commit code 2396 * will only file the inode where we want it. 2397 */ 2398 if (jinode->i_transaction == transaction || 2399 jinode->i_next_transaction == transaction) 2400 return 0; 2401 2402 spin_lock(&journal->j_list_lock); 2403 2404 if (jinode->i_transaction == transaction || 2405 jinode->i_next_transaction == transaction) 2406 goto done; 2407 2408 /* 2409 * We only ever set this variable to 1 so the test is safe. Since 2410 * t_need_data_flush is likely to be set, we do the test to save some 2411 * cacheline bouncing 2412 */ 2413 if (!transaction->t_need_data_flush) 2414 transaction->t_need_data_flush = 1; 2415 /* On some different transaction's list - should be 2416 * the committing one */ 2417 if (jinode->i_transaction) { 2418 J_ASSERT(jinode->i_next_transaction == NULL); 2419 J_ASSERT(jinode->i_transaction == 2420 journal->j_committing_transaction); 2421 jinode->i_next_transaction = transaction; 2422 goto done; 2423 } 2424 /* Not on any transaction list... */ 2425 J_ASSERT(!jinode->i_next_transaction); 2426 jinode->i_transaction = transaction; 2427 list_add(&jinode->i_list, &transaction->t_inode_list); 2428 done: 2429 spin_unlock(&journal->j_list_lock); 2430 2431 return 0; 2432 } 2433 2434 /* 2435 * File truncate and transaction commit interact with each other in a 2436 * non-trivial way. If a transaction writing data block A is 2437 * committing, we cannot discard the data by truncate until we have 2438 * written them. Otherwise if we crashed after the transaction with 2439 * write has committed but before the transaction with truncate has 2440 * committed, we could see stale data in block A. This function is a 2441 * helper to solve this problem. It starts writeout of the truncated 2442 * part in case it is in the committing transaction. 2443 * 2444 * Filesystem code must call this function when inode is journaled in 2445 * ordered mode before truncation happens and after the inode has been 2446 * placed on orphan list with the new inode size. The second condition 2447 * avoids the race that someone writes new data and we start 2448 * committing the transaction after this function has been called but 2449 * before a transaction for truncate is started (and furthermore it 2450 * allows us to optimize the case where the addition to orphan list 2451 * happens in the same transaction as write --- we don't have to write 2452 * any data in such case). 2453 */ 2454 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2455 struct jbd2_inode *jinode, 2456 loff_t new_size) 2457 { 2458 transaction_t *inode_trans, *commit_trans; 2459 int ret = 0; 2460 2461 /* This is a quick check to avoid locking if not necessary */ 2462 if (!jinode->i_transaction) 2463 goto out; 2464 /* Locks are here just to force reading of recent values, it is 2465 * enough that the transaction was not committing before we started 2466 * a transaction adding the inode to orphan list */ 2467 read_lock(&journal->j_state_lock); 2468 commit_trans = journal->j_committing_transaction; 2469 read_unlock(&journal->j_state_lock); 2470 spin_lock(&journal->j_list_lock); 2471 inode_trans = jinode->i_transaction; 2472 spin_unlock(&journal->j_list_lock); 2473 if (inode_trans == commit_trans) { 2474 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2475 new_size, LLONG_MAX); 2476 if (ret) 2477 jbd2_journal_abort(journal, ret); 2478 } 2479 out: 2480 return ret; 2481 } 2482