xref: /openbmc/linux/fs/jbd2/transaction.c (revision 6e5c8381)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	jbd2_might_wait_for_commit(journal);
163 	schedule();
164 	finish_wait(&journal->j_wait_transaction_locked, &wait);
165 }
166 
167 static void sub_reserved_credits(journal_t *journal, int blocks)
168 {
169 	atomic_sub(blocks, &journal->j_reserved_credits);
170 	wake_up(&journal->j_wait_reserved);
171 }
172 
173 /*
174  * Wait until we can add credits for handle to the running transaction.  Called
175  * with j_state_lock held for reading. Returns 0 if handle joined the running
176  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
177  * caller must retry.
178  */
179 static int add_transaction_credits(journal_t *journal, int blocks,
180 				   int rsv_blocks)
181 {
182 	transaction_t *t = journal->j_running_transaction;
183 	int needed;
184 	int total = blocks + rsv_blocks;
185 
186 	/*
187 	 * If the current transaction is locked down for commit, wait
188 	 * for the lock to be released.
189 	 */
190 	if (t->t_state == T_LOCKED) {
191 		wait_transaction_locked(journal);
192 		return 1;
193 	}
194 
195 	/*
196 	 * If there is not enough space left in the log to write all
197 	 * potential buffers requested by this operation, we need to
198 	 * stall pending a log checkpoint to free some more log space.
199 	 */
200 	needed = atomic_add_return(total, &t->t_outstanding_credits);
201 	if (needed > journal->j_max_transaction_buffers) {
202 		/*
203 		 * If the current transaction is already too large,
204 		 * then start to commit it: we can then go back and
205 		 * attach this handle to a new transaction.
206 		 */
207 		atomic_sub(total, &t->t_outstanding_credits);
208 
209 		/*
210 		 * Is the number of reserved credits in the current transaction too
211 		 * big to fit this handle? Wait until reserved credits are freed.
212 		 */
213 		if (atomic_read(&journal->j_reserved_credits) + total >
214 		    journal->j_max_transaction_buffers) {
215 			read_unlock(&journal->j_state_lock);
216 			jbd2_might_wait_for_commit(journal);
217 			wait_event(journal->j_wait_reserved,
218 				   atomic_read(&journal->j_reserved_credits) + total <=
219 				   journal->j_max_transaction_buffers);
220 			return 1;
221 		}
222 
223 		wait_transaction_locked(journal);
224 		return 1;
225 	}
226 
227 	/*
228 	 * The commit code assumes that it can get enough log space
229 	 * without forcing a checkpoint.  This is *critical* for
230 	 * correctness: a checkpoint of a buffer which is also
231 	 * associated with a committing transaction creates a deadlock,
232 	 * so commit simply cannot force through checkpoints.
233 	 *
234 	 * We must therefore ensure the necessary space in the journal
235 	 * *before* starting to dirty potentially checkpointed buffers
236 	 * in the new transaction.
237 	 */
238 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239 		atomic_sub(total, &t->t_outstanding_credits);
240 		read_unlock(&journal->j_state_lock);
241 		jbd2_might_wait_for_commit(journal);
242 		write_lock(&journal->j_state_lock);
243 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
244 			__jbd2_log_wait_for_space(journal);
245 		write_unlock(&journal->j_state_lock);
246 		return 1;
247 	}
248 
249 	/* No reservation? We are done... */
250 	if (!rsv_blocks)
251 		return 0;
252 
253 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
254 	/* We allow at most half of a transaction to be reserved */
255 	if (needed > journal->j_max_transaction_buffers / 2) {
256 		sub_reserved_credits(journal, rsv_blocks);
257 		atomic_sub(total, &t->t_outstanding_credits);
258 		read_unlock(&journal->j_state_lock);
259 		jbd2_might_wait_for_commit(journal);
260 		wait_event(journal->j_wait_reserved,
261 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
262 			 <= journal->j_max_transaction_buffers / 2);
263 		return 1;
264 	}
265 	return 0;
266 }
267 
268 /*
269  * start_this_handle: Given a handle, deal with any locking or stalling
270  * needed to make sure that there is enough journal space for the handle
271  * to begin.  Attach the handle to a transaction and set up the
272  * transaction's buffer credits.
273  */
274 
275 static int start_this_handle(journal_t *journal, handle_t *handle,
276 			     gfp_t gfp_mask)
277 {
278 	transaction_t	*transaction, *new_transaction = NULL;
279 	int		blocks = handle->h_buffer_credits;
280 	int		rsv_blocks = 0;
281 	unsigned long ts = jiffies;
282 
283 	if (handle->h_rsv_handle)
284 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
285 
286 	/*
287 	 * Limit the number of reserved credits to 1/2 of maximum transaction
288 	 * size and limit the number of total credits to not exceed maximum
289 	 * transaction size per operation.
290 	 */
291 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
292 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
293 		printk(KERN_ERR "JBD2: %s wants too many credits "
294 		       "credits:%d rsv_credits:%d max:%d\n",
295 		       current->comm, blocks, rsv_blocks,
296 		       journal->j_max_transaction_buffers);
297 		WARN_ON(1);
298 		return -ENOSPC;
299 	}
300 
301 alloc_transaction:
302 	if (!journal->j_running_transaction) {
303 		/*
304 		 * If __GFP_FS is not present, then we may be being called from
305 		 * inside the fs writeback layer, so we MUST NOT fail.
306 		 */
307 		if ((gfp_mask & __GFP_FS) == 0)
308 			gfp_mask |= __GFP_NOFAIL;
309 		new_transaction = kmem_cache_zalloc(transaction_cache,
310 						    gfp_mask);
311 		if (!new_transaction)
312 			return -ENOMEM;
313 	}
314 
315 	jbd_debug(3, "New handle %p going live.\n", handle);
316 
317 	/*
318 	 * We need to hold j_state_lock until t_updates has been incremented,
319 	 * for proper journal barrier handling
320 	 */
321 repeat:
322 	read_lock(&journal->j_state_lock);
323 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
324 	if (is_journal_aborted(journal) ||
325 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
326 		read_unlock(&journal->j_state_lock);
327 		jbd2_journal_free_transaction(new_transaction);
328 		return -EROFS;
329 	}
330 
331 	/*
332 	 * Wait on the journal's transaction barrier if necessary. Specifically
333 	 * we allow reserved handles to proceed because otherwise commit could
334 	 * deadlock on page writeback not being able to complete.
335 	 */
336 	if (!handle->h_reserved && journal->j_barrier_count) {
337 		read_unlock(&journal->j_state_lock);
338 		wait_event(journal->j_wait_transaction_locked,
339 				journal->j_barrier_count == 0);
340 		goto repeat;
341 	}
342 
343 	if (!journal->j_running_transaction) {
344 		read_unlock(&journal->j_state_lock);
345 		if (!new_transaction)
346 			goto alloc_transaction;
347 		write_lock(&journal->j_state_lock);
348 		if (!journal->j_running_transaction &&
349 		    (handle->h_reserved || !journal->j_barrier_count)) {
350 			jbd2_get_transaction(journal, new_transaction);
351 			new_transaction = NULL;
352 		}
353 		write_unlock(&journal->j_state_lock);
354 		goto repeat;
355 	}
356 
357 	transaction = journal->j_running_transaction;
358 
359 	if (!handle->h_reserved) {
360 		/* We may have dropped j_state_lock - restart in that case */
361 		if (add_transaction_credits(journal, blocks, rsv_blocks))
362 			goto repeat;
363 	} else {
364 		/*
365 		 * We have handle reserved so we are allowed to join T_LOCKED
366 		 * transaction and we don't have to check for transaction size
367 		 * and journal space.
368 		 */
369 		sub_reserved_credits(journal, blocks);
370 		handle->h_reserved = 0;
371 	}
372 
373 	/* OK, account for the buffers that this operation expects to
374 	 * use and add the handle to the running transaction.
375 	 */
376 	update_t_max_wait(transaction, ts);
377 	handle->h_transaction = transaction;
378 	handle->h_requested_credits = blocks;
379 	handle->h_start_jiffies = jiffies;
380 	atomic_inc(&transaction->t_updates);
381 	atomic_inc(&transaction->t_handle_count);
382 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
383 		  handle, blocks,
384 		  atomic_read(&transaction->t_outstanding_credits),
385 		  jbd2_log_space_left(journal));
386 	read_unlock(&journal->j_state_lock);
387 	current->journal_info = handle;
388 
389 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
390 	jbd2_journal_free_transaction(new_transaction);
391 	return 0;
392 }
393 
394 /* Allocate a new handle.  This should probably be in a slab... */
395 static handle_t *new_handle(int nblocks)
396 {
397 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
398 	if (!handle)
399 		return NULL;
400 	handle->h_buffer_credits = nblocks;
401 	handle->h_ref = 1;
402 
403 	return handle;
404 }
405 
406 /**
407  * handle_t *jbd2_journal_start() - Obtain a new handle.
408  * @journal: Journal to start transaction on.
409  * @nblocks: number of block buffer we might modify
410  *
411  * We make sure that the transaction can guarantee at least nblocks of
412  * modified buffers in the log.  We block until the log can guarantee
413  * that much space. Additionally, if rsv_blocks > 0, we also create another
414  * handle with rsv_blocks reserved blocks in the journal. This handle is
415  * is stored in h_rsv_handle. It is not attached to any particular transaction
416  * and thus doesn't block transaction commit. If the caller uses this reserved
417  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
418  * on the parent handle will dispose the reserved one. Reserved handle has to
419  * be converted to a normal handle using jbd2_journal_start_reserved() before
420  * it can be used.
421  *
422  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
423  * on failure.
424  */
425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
426 			      gfp_t gfp_mask, unsigned int type,
427 			      unsigned int line_no)
428 {
429 	handle_t *handle = journal_current_handle();
430 	int err;
431 
432 	if (!journal)
433 		return ERR_PTR(-EROFS);
434 
435 	if (handle) {
436 		J_ASSERT(handle->h_transaction->t_journal == journal);
437 		handle->h_ref++;
438 		return handle;
439 	}
440 
441 	handle = new_handle(nblocks);
442 	if (!handle)
443 		return ERR_PTR(-ENOMEM);
444 	if (rsv_blocks) {
445 		handle_t *rsv_handle;
446 
447 		rsv_handle = new_handle(rsv_blocks);
448 		if (!rsv_handle) {
449 			jbd2_free_handle(handle);
450 			return ERR_PTR(-ENOMEM);
451 		}
452 		rsv_handle->h_reserved = 1;
453 		rsv_handle->h_journal = journal;
454 		handle->h_rsv_handle = rsv_handle;
455 	}
456 
457 	err = start_this_handle(journal, handle, gfp_mask);
458 	if (err < 0) {
459 		if (handle->h_rsv_handle)
460 			jbd2_free_handle(handle->h_rsv_handle);
461 		jbd2_free_handle(handle);
462 		return ERR_PTR(err);
463 	}
464 	handle->h_type = type;
465 	handle->h_line_no = line_no;
466 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
467 				handle->h_transaction->t_tid, type,
468 				line_no, nblocks);
469 	return handle;
470 }
471 EXPORT_SYMBOL(jbd2__journal_start);
472 
473 
474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
475 {
476 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
477 }
478 EXPORT_SYMBOL(jbd2_journal_start);
479 
480 void jbd2_journal_free_reserved(handle_t *handle)
481 {
482 	journal_t *journal = handle->h_journal;
483 
484 	WARN_ON(!handle->h_reserved);
485 	sub_reserved_credits(journal, handle->h_buffer_credits);
486 	jbd2_free_handle(handle);
487 }
488 EXPORT_SYMBOL(jbd2_journal_free_reserved);
489 
490 /**
491  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
492  * @handle: handle to start
493  *
494  * Start handle that has been previously reserved with jbd2_journal_reserve().
495  * This attaches @handle to the running transaction (or creates one if there's
496  * not transaction running). Unlike jbd2_journal_start() this function cannot
497  * block on journal commit, checkpointing, or similar stuff. It can block on
498  * memory allocation or frozen journal though.
499  *
500  * Return 0 on success, non-zero on error - handle is freed in that case.
501  */
502 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
503 				unsigned int line_no)
504 {
505 	journal_t *journal = handle->h_journal;
506 	int ret = -EIO;
507 
508 	if (WARN_ON(!handle->h_reserved)) {
509 		/* Someone passed in normal handle? Just stop it. */
510 		jbd2_journal_stop(handle);
511 		return ret;
512 	}
513 	/*
514 	 * Usefulness of mixing of reserved and unreserved handles is
515 	 * questionable. So far nobody seems to need it so just error out.
516 	 */
517 	if (WARN_ON(current->journal_info)) {
518 		jbd2_journal_free_reserved(handle);
519 		return ret;
520 	}
521 
522 	handle->h_journal = NULL;
523 	/*
524 	 * GFP_NOFS is here because callers are likely from writeback or
525 	 * similarly constrained call sites
526 	 */
527 	ret = start_this_handle(journal, handle, GFP_NOFS);
528 	if (ret < 0) {
529 		jbd2_journal_free_reserved(handle);
530 		return ret;
531 	}
532 	handle->h_type = type;
533 	handle->h_line_no = line_no;
534 	return 0;
535 }
536 EXPORT_SYMBOL(jbd2_journal_start_reserved);
537 
538 /**
539  * int jbd2_journal_extend() - extend buffer credits.
540  * @handle:  handle to 'extend'
541  * @nblocks: nr blocks to try to extend by.
542  *
543  * Some transactions, such as large extends and truncates, can be done
544  * atomically all at once or in several stages.  The operation requests
545  * a credit for a number of buffer modifications in advance, but can
546  * extend its credit if it needs more.
547  *
548  * jbd2_journal_extend tries to give the running handle more buffer credits.
549  * It does not guarantee that allocation - this is a best-effort only.
550  * The calling process MUST be able to deal cleanly with a failure to
551  * extend here.
552  *
553  * Return 0 on success, non-zero on failure.
554  *
555  * return code < 0 implies an error
556  * return code > 0 implies normal transaction-full status.
557  */
558 int jbd2_journal_extend(handle_t *handle, int nblocks)
559 {
560 	transaction_t *transaction = handle->h_transaction;
561 	journal_t *journal;
562 	int result;
563 	int wanted;
564 
565 	if (is_handle_aborted(handle))
566 		return -EROFS;
567 	journal = transaction->t_journal;
568 
569 	result = 1;
570 
571 	read_lock(&journal->j_state_lock);
572 
573 	/* Don't extend a locked-down transaction! */
574 	if (transaction->t_state != T_RUNNING) {
575 		jbd_debug(3, "denied handle %p %d blocks: "
576 			  "transaction not running\n", handle, nblocks);
577 		goto error_out;
578 	}
579 
580 	spin_lock(&transaction->t_handle_lock);
581 	wanted = atomic_add_return(nblocks,
582 				   &transaction->t_outstanding_credits);
583 
584 	if (wanted > journal->j_max_transaction_buffers) {
585 		jbd_debug(3, "denied handle %p %d blocks: "
586 			  "transaction too large\n", handle, nblocks);
587 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
588 		goto unlock;
589 	}
590 
591 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
592 	    jbd2_log_space_left(journal)) {
593 		jbd_debug(3, "denied handle %p %d blocks: "
594 			  "insufficient log space\n", handle, nblocks);
595 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
596 		goto unlock;
597 	}
598 
599 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
600 				 transaction->t_tid,
601 				 handle->h_type, handle->h_line_no,
602 				 handle->h_buffer_credits,
603 				 nblocks);
604 
605 	handle->h_buffer_credits += nblocks;
606 	handle->h_requested_credits += nblocks;
607 	result = 0;
608 
609 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
610 unlock:
611 	spin_unlock(&transaction->t_handle_lock);
612 error_out:
613 	read_unlock(&journal->j_state_lock);
614 	return result;
615 }
616 
617 
618 /**
619  * int jbd2_journal_restart() - restart a handle .
620  * @handle:  handle to restart
621  * @nblocks: nr credits requested
622  *
623  * Restart a handle for a multi-transaction filesystem
624  * operation.
625  *
626  * If the jbd2_journal_extend() call above fails to grant new buffer credits
627  * to a running handle, a call to jbd2_journal_restart will commit the
628  * handle's transaction so far and reattach the handle to a new
629  * transaction capable of guaranteeing the requested number of
630  * credits. We preserve reserved handle if there's any attached to the
631  * passed in handle.
632  */
633 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
634 {
635 	transaction_t *transaction = handle->h_transaction;
636 	journal_t *journal;
637 	tid_t		tid;
638 	int		need_to_start, ret;
639 
640 	/* If we've had an abort of any type, don't even think about
641 	 * actually doing the restart! */
642 	if (is_handle_aborted(handle))
643 		return 0;
644 	journal = transaction->t_journal;
645 
646 	/*
647 	 * First unlink the handle from its current transaction, and start the
648 	 * commit on that.
649 	 */
650 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
651 	J_ASSERT(journal_current_handle() == handle);
652 
653 	read_lock(&journal->j_state_lock);
654 	spin_lock(&transaction->t_handle_lock);
655 	atomic_sub(handle->h_buffer_credits,
656 		   &transaction->t_outstanding_credits);
657 	if (handle->h_rsv_handle) {
658 		sub_reserved_credits(journal,
659 				     handle->h_rsv_handle->h_buffer_credits);
660 	}
661 	if (atomic_dec_and_test(&transaction->t_updates))
662 		wake_up(&journal->j_wait_updates);
663 	tid = transaction->t_tid;
664 	spin_unlock(&transaction->t_handle_lock);
665 	handle->h_transaction = NULL;
666 	current->journal_info = NULL;
667 
668 	jbd_debug(2, "restarting handle %p\n", handle);
669 	need_to_start = !tid_geq(journal->j_commit_request, tid);
670 	read_unlock(&journal->j_state_lock);
671 	if (need_to_start)
672 		jbd2_log_start_commit(journal, tid);
673 
674 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
675 	handle->h_buffer_credits = nblocks;
676 	ret = start_this_handle(journal, handle, gfp_mask);
677 	return ret;
678 }
679 EXPORT_SYMBOL(jbd2__journal_restart);
680 
681 
682 int jbd2_journal_restart(handle_t *handle, int nblocks)
683 {
684 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
685 }
686 EXPORT_SYMBOL(jbd2_journal_restart);
687 
688 /**
689  * void jbd2_journal_lock_updates () - establish a transaction barrier.
690  * @journal:  Journal to establish a barrier on.
691  *
692  * This locks out any further updates from being started, and blocks
693  * until all existing updates have completed, returning only once the
694  * journal is in a quiescent state with no updates running.
695  *
696  * The journal lock should not be held on entry.
697  */
698 void jbd2_journal_lock_updates(journal_t *journal)
699 {
700 	DEFINE_WAIT(wait);
701 
702 	jbd2_might_wait_for_commit(journal);
703 
704 	write_lock(&journal->j_state_lock);
705 	++journal->j_barrier_count;
706 
707 	/* Wait until there are no reserved handles */
708 	if (atomic_read(&journal->j_reserved_credits)) {
709 		write_unlock(&journal->j_state_lock);
710 		wait_event(journal->j_wait_reserved,
711 			   atomic_read(&journal->j_reserved_credits) == 0);
712 		write_lock(&journal->j_state_lock);
713 	}
714 
715 	/* Wait until there are no running updates */
716 	while (1) {
717 		transaction_t *transaction = journal->j_running_transaction;
718 
719 		if (!transaction)
720 			break;
721 
722 		spin_lock(&transaction->t_handle_lock);
723 		prepare_to_wait(&journal->j_wait_updates, &wait,
724 				TASK_UNINTERRUPTIBLE);
725 		if (!atomic_read(&transaction->t_updates)) {
726 			spin_unlock(&transaction->t_handle_lock);
727 			finish_wait(&journal->j_wait_updates, &wait);
728 			break;
729 		}
730 		spin_unlock(&transaction->t_handle_lock);
731 		write_unlock(&journal->j_state_lock);
732 		schedule();
733 		finish_wait(&journal->j_wait_updates, &wait);
734 		write_lock(&journal->j_state_lock);
735 	}
736 	write_unlock(&journal->j_state_lock);
737 
738 	/*
739 	 * We have now established a barrier against other normal updates, but
740 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
741 	 * to make sure that we serialise special journal-locked operations
742 	 * too.
743 	 */
744 	mutex_lock(&journal->j_barrier);
745 }
746 
747 /**
748  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
749  * @journal:  Journal to release the barrier on.
750  *
751  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
752  *
753  * Should be called without the journal lock held.
754  */
755 void jbd2_journal_unlock_updates (journal_t *journal)
756 {
757 	J_ASSERT(journal->j_barrier_count != 0);
758 
759 	mutex_unlock(&journal->j_barrier);
760 	write_lock(&journal->j_state_lock);
761 	--journal->j_barrier_count;
762 	write_unlock(&journal->j_state_lock);
763 	wake_up(&journal->j_wait_transaction_locked);
764 }
765 
766 static void warn_dirty_buffer(struct buffer_head *bh)
767 {
768 	printk(KERN_WARNING
769 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
770 	       "There's a risk of filesystem corruption in case of system "
771 	       "crash.\n",
772 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
773 }
774 
775 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
776 static void jbd2_freeze_jh_data(struct journal_head *jh)
777 {
778 	struct page *page;
779 	int offset;
780 	char *source;
781 	struct buffer_head *bh = jh2bh(jh);
782 
783 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
784 	page = bh->b_page;
785 	offset = offset_in_page(bh->b_data);
786 	source = kmap_atomic(page);
787 	/* Fire data frozen trigger just before we copy the data */
788 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
789 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
790 	kunmap_atomic(source);
791 
792 	/*
793 	 * Now that the frozen data is saved off, we need to store any matching
794 	 * triggers.
795 	 */
796 	jh->b_frozen_triggers = jh->b_triggers;
797 }
798 
799 /*
800  * If the buffer is already part of the current transaction, then there
801  * is nothing we need to do.  If it is already part of a prior
802  * transaction which we are still committing to disk, then we need to
803  * make sure that we do not overwrite the old copy: we do copy-out to
804  * preserve the copy going to disk.  We also account the buffer against
805  * the handle's metadata buffer credits (unless the buffer is already
806  * part of the transaction, that is).
807  *
808  */
809 static int
810 do_get_write_access(handle_t *handle, struct journal_head *jh,
811 			int force_copy)
812 {
813 	struct buffer_head *bh;
814 	transaction_t *transaction = handle->h_transaction;
815 	journal_t *journal;
816 	int error;
817 	char *frozen_buffer = NULL;
818 	unsigned long start_lock, time_lock;
819 
820 	if (is_handle_aborted(handle))
821 		return -EROFS;
822 	journal = transaction->t_journal;
823 
824 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
825 
826 	JBUFFER_TRACE(jh, "entry");
827 repeat:
828 	bh = jh2bh(jh);
829 
830 	/* @@@ Need to check for errors here at some point. */
831 
832  	start_lock = jiffies;
833 	lock_buffer(bh);
834 	jbd_lock_bh_state(bh);
835 
836 	/* If it takes too long to lock the buffer, trace it */
837 	time_lock = jbd2_time_diff(start_lock, jiffies);
838 	if (time_lock > HZ/10)
839 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
840 			jiffies_to_msecs(time_lock));
841 
842 	/* We now hold the buffer lock so it is safe to query the buffer
843 	 * state.  Is the buffer dirty?
844 	 *
845 	 * If so, there are two possibilities.  The buffer may be
846 	 * non-journaled, and undergoing a quite legitimate writeback.
847 	 * Otherwise, it is journaled, and we don't expect dirty buffers
848 	 * in that state (the buffers should be marked JBD_Dirty
849 	 * instead.)  So either the IO is being done under our own
850 	 * control and this is a bug, or it's a third party IO such as
851 	 * dump(8) (which may leave the buffer scheduled for read ---
852 	 * ie. locked but not dirty) or tune2fs (which may actually have
853 	 * the buffer dirtied, ugh.)  */
854 
855 	if (buffer_dirty(bh)) {
856 		/*
857 		 * First question: is this buffer already part of the current
858 		 * transaction or the existing committing transaction?
859 		 */
860 		if (jh->b_transaction) {
861 			J_ASSERT_JH(jh,
862 				jh->b_transaction == transaction ||
863 				jh->b_transaction ==
864 					journal->j_committing_transaction);
865 			if (jh->b_next_transaction)
866 				J_ASSERT_JH(jh, jh->b_next_transaction ==
867 							transaction);
868 			warn_dirty_buffer(bh);
869 		}
870 		/*
871 		 * In any case we need to clean the dirty flag and we must
872 		 * do it under the buffer lock to be sure we don't race
873 		 * with running write-out.
874 		 */
875 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
876 		clear_buffer_dirty(bh);
877 		set_buffer_jbddirty(bh);
878 	}
879 
880 	unlock_buffer(bh);
881 
882 	error = -EROFS;
883 	if (is_handle_aborted(handle)) {
884 		jbd_unlock_bh_state(bh);
885 		goto out;
886 	}
887 	error = 0;
888 
889 	/*
890 	 * The buffer is already part of this transaction if b_transaction or
891 	 * b_next_transaction points to it
892 	 */
893 	if (jh->b_transaction == transaction ||
894 	    jh->b_next_transaction == transaction)
895 		goto done;
896 
897 	/*
898 	 * this is the first time this transaction is touching this buffer,
899 	 * reset the modified flag
900 	 */
901        jh->b_modified = 0;
902 
903 	/*
904 	 * If the buffer is not journaled right now, we need to make sure it
905 	 * doesn't get written to disk before the caller actually commits the
906 	 * new data
907 	 */
908 	if (!jh->b_transaction) {
909 		JBUFFER_TRACE(jh, "no transaction");
910 		J_ASSERT_JH(jh, !jh->b_next_transaction);
911 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
912 		/*
913 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
914 		 * visible before attaching it to the running transaction.
915 		 * Paired with barrier in jbd2_write_access_granted()
916 		 */
917 		smp_wmb();
918 		spin_lock(&journal->j_list_lock);
919 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
920 		spin_unlock(&journal->j_list_lock);
921 		goto done;
922 	}
923 	/*
924 	 * If there is already a copy-out version of this buffer, then we don't
925 	 * need to make another one
926 	 */
927 	if (jh->b_frozen_data) {
928 		JBUFFER_TRACE(jh, "has frozen data");
929 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
930 		goto attach_next;
931 	}
932 
933 	JBUFFER_TRACE(jh, "owned by older transaction");
934 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
935 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
936 
937 	/*
938 	 * There is one case we have to be very careful about.  If the
939 	 * committing transaction is currently writing this buffer out to disk
940 	 * and has NOT made a copy-out, then we cannot modify the buffer
941 	 * contents at all right now.  The essence of copy-out is that it is
942 	 * the extra copy, not the primary copy, which gets journaled.  If the
943 	 * primary copy is already going to disk then we cannot do copy-out
944 	 * here.
945 	 */
946 	if (buffer_shadow(bh)) {
947 		JBUFFER_TRACE(jh, "on shadow: sleep");
948 		jbd_unlock_bh_state(bh);
949 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
950 		goto repeat;
951 	}
952 
953 	/*
954 	 * Only do the copy if the currently-owning transaction still needs it.
955 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
956 	 * past that stage (here we use the fact that BH_Shadow is set under
957 	 * bh_state lock together with refiling to BJ_Shadow list and at this
958 	 * point we know the buffer doesn't have BH_Shadow set).
959 	 *
960 	 * Subtle point, though: if this is a get_undo_access, then we will be
961 	 * relying on the frozen_data to contain the new value of the
962 	 * committed_data record after the transaction, so we HAVE to force the
963 	 * frozen_data copy in that case.
964 	 */
965 	if (jh->b_jlist == BJ_Metadata || force_copy) {
966 		JBUFFER_TRACE(jh, "generate frozen data");
967 		if (!frozen_buffer) {
968 			JBUFFER_TRACE(jh, "allocate memory for buffer");
969 			jbd_unlock_bh_state(bh);
970 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
971 						   GFP_NOFS | __GFP_NOFAIL);
972 			goto repeat;
973 		}
974 		jh->b_frozen_data = frozen_buffer;
975 		frozen_buffer = NULL;
976 		jbd2_freeze_jh_data(jh);
977 	}
978 attach_next:
979 	/*
980 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
981 	 * before attaching it to the running transaction. Paired with barrier
982 	 * in jbd2_write_access_granted()
983 	 */
984 	smp_wmb();
985 	jh->b_next_transaction = transaction;
986 
987 done:
988 	jbd_unlock_bh_state(bh);
989 
990 	/*
991 	 * If we are about to journal a buffer, then any revoke pending on it is
992 	 * no longer valid
993 	 */
994 	jbd2_journal_cancel_revoke(handle, jh);
995 
996 out:
997 	if (unlikely(frozen_buffer))	/* It's usually NULL */
998 		jbd2_free(frozen_buffer, bh->b_size);
999 
1000 	JBUFFER_TRACE(jh, "exit");
1001 	return error;
1002 }
1003 
1004 /* Fast check whether buffer is already attached to the required transaction */
1005 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1006 							bool undo)
1007 {
1008 	struct journal_head *jh;
1009 	bool ret = false;
1010 
1011 	/* Dirty buffers require special handling... */
1012 	if (buffer_dirty(bh))
1013 		return false;
1014 
1015 	/*
1016 	 * RCU protects us from dereferencing freed pages. So the checks we do
1017 	 * are guaranteed not to oops. However the jh slab object can get freed
1018 	 * & reallocated while we work with it. So we have to be careful. When
1019 	 * we see jh attached to the running transaction, we know it must stay
1020 	 * so until the transaction is committed. Thus jh won't be freed and
1021 	 * will be attached to the same bh while we run.  However it can
1022 	 * happen jh gets freed, reallocated, and attached to the transaction
1023 	 * just after we get pointer to it from bh. So we have to be careful
1024 	 * and recheck jh still belongs to our bh before we return success.
1025 	 */
1026 	rcu_read_lock();
1027 	if (!buffer_jbd(bh))
1028 		goto out;
1029 	/* This should be bh2jh() but that doesn't work with inline functions */
1030 	jh = READ_ONCE(bh->b_private);
1031 	if (!jh)
1032 		goto out;
1033 	/* For undo access buffer must have data copied */
1034 	if (undo && !jh->b_committed_data)
1035 		goto out;
1036 	if (jh->b_transaction != handle->h_transaction &&
1037 	    jh->b_next_transaction != handle->h_transaction)
1038 		goto out;
1039 	/*
1040 	 * There are two reasons for the barrier here:
1041 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1042 	 * detect when jh went through free, realloc, attach to transaction
1043 	 * while we were checking. Paired with implicit barrier in that path.
1044 	 * 2) So that access to bh done after jbd2_write_access_granted()
1045 	 * doesn't get reordered and see inconsistent state of concurrent
1046 	 * do_get_write_access().
1047 	 */
1048 	smp_mb();
1049 	if (unlikely(jh->b_bh != bh))
1050 		goto out;
1051 	ret = true;
1052 out:
1053 	rcu_read_unlock();
1054 	return ret;
1055 }
1056 
1057 /**
1058  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1059  * @handle: transaction to add buffer modifications to
1060  * @bh:     bh to be used for metadata writes
1061  *
1062  * Returns an error code or 0 on success.
1063  *
1064  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1065  * because we're write()ing a buffer which is also part of a shared mapping.
1066  */
1067 
1068 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1069 {
1070 	struct journal_head *jh;
1071 	int rc;
1072 
1073 	if (jbd2_write_access_granted(handle, bh, false))
1074 		return 0;
1075 
1076 	jh = jbd2_journal_add_journal_head(bh);
1077 	/* We do not want to get caught playing with fields which the
1078 	 * log thread also manipulates.  Make sure that the buffer
1079 	 * completes any outstanding IO before proceeding. */
1080 	rc = do_get_write_access(handle, jh, 0);
1081 	jbd2_journal_put_journal_head(jh);
1082 	return rc;
1083 }
1084 
1085 
1086 /*
1087  * When the user wants to journal a newly created buffer_head
1088  * (ie. getblk() returned a new buffer and we are going to populate it
1089  * manually rather than reading off disk), then we need to keep the
1090  * buffer_head locked until it has been completely filled with new
1091  * data.  In this case, we should be able to make the assertion that
1092  * the bh is not already part of an existing transaction.
1093  *
1094  * The buffer should already be locked by the caller by this point.
1095  * There is no lock ranking violation: it was a newly created,
1096  * unlocked buffer beforehand. */
1097 
1098 /**
1099  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1100  * @handle: transaction to new buffer to
1101  * @bh: new buffer.
1102  *
1103  * Call this if you create a new bh.
1104  */
1105 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1106 {
1107 	transaction_t *transaction = handle->h_transaction;
1108 	journal_t *journal;
1109 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1110 	int err;
1111 
1112 	jbd_debug(5, "journal_head %p\n", jh);
1113 	err = -EROFS;
1114 	if (is_handle_aborted(handle))
1115 		goto out;
1116 	journal = transaction->t_journal;
1117 	err = 0;
1118 
1119 	JBUFFER_TRACE(jh, "entry");
1120 	/*
1121 	 * The buffer may already belong to this transaction due to pre-zeroing
1122 	 * in the filesystem's new_block code.  It may also be on the previous,
1123 	 * committing transaction's lists, but it HAS to be in Forget state in
1124 	 * that case: the transaction must have deleted the buffer for it to be
1125 	 * reused here.
1126 	 */
1127 	jbd_lock_bh_state(bh);
1128 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1129 		jh->b_transaction == NULL ||
1130 		(jh->b_transaction == journal->j_committing_transaction &&
1131 			  jh->b_jlist == BJ_Forget)));
1132 
1133 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1134 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1135 
1136 	if (jh->b_transaction == NULL) {
1137 		/*
1138 		 * Previous jbd2_journal_forget() could have left the buffer
1139 		 * with jbddirty bit set because it was being committed. When
1140 		 * the commit finished, we've filed the buffer for
1141 		 * checkpointing and marked it dirty. Now we are reallocating
1142 		 * the buffer so the transaction freeing it must have
1143 		 * committed and so it's safe to clear the dirty bit.
1144 		 */
1145 		clear_buffer_dirty(jh2bh(jh));
1146 		/* first access by this transaction */
1147 		jh->b_modified = 0;
1148 
1149 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1150 		spin_lock(&journal->j_list_lock);
1151 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1152 		spin_unlock(&journal->j_list_lock);
1153 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1154 		/* first access by this transaction */
1155 		jh->b_modified = 0;
1156 
1157 		JBUFFER_TRACE(jh, "set next transaction");
1158 		spin_lock(&journal->j_list_lock);
1159 		jh->b_next_transaction = transaction;
1160 		spin_unlock(&journal->j_list_lock);
1161 	}
1162 	jbd_unlock_bh_state(bh);
1163 
1164 	/*
1165 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1166 	 * blocks which contain freed but then revoked metadata.  We need
1167 	 * to cancel the revoke in case we end up freeing it yet again
1168 	 * and the reallocating as data - this would cause a second revoke,
1169 	 * which hits an assertion error.
1170 	 */
1171 	JBUFFER_TRACE(jh, "cancelling revoke");
1172 	jbd2_journal_cancel_revoke(handle, jh);
1173 out:
1174 	jbd2_journal_put_journal_head(jh);
1175 	return err;
1176 }
1177 
1178 /**
1179  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1180  *     non-rewindable consequences
1181  * @handle: transaction
1182  * @bh: buffer to undo
1183  *
1184  * Sometimes there is a need to distinguish between metadata which has
1185  * been committed to disk and that which has not.  The ext3fs code uses
1186  * this for freeing and allocating space, we have to make sure that we
1187  * do not reuse freed space until the deallocation has been committed,
1188  * since if we overwrote that space we would make the delete
1189  * un-rewindable in case of a crash.
1190  *
1191  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1192  * buffer for parts of non-rewindable operations such as delete
1193  * operations on the bitmaps.  The journaling code must keep a copy of
1194  * the buffer's contents prior to the undo_access call until such time
1195  * as we know that the buffer has definitely been committed to disk.
1196  *
1197  * We never need to know which transaction the committed data is part
1198  * of, buffers touched here are guaranteed to be dirtied later and so
1199  * will be committed to a new transaction in due course, at which point
1200  * we can discard the old committed data pointer.
1201  *
1202  * Returns error number or 0 on success.
1203  */
1204 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1205 {
1206 	int err;
1207 	struct journal_head *jh;
1208 	char *committed_data = NULL;
1209 
1210 	JBUFFER_TRACE(jh, "entry");
1211 	if (jbd2_write_access_granted(handle, bh, true))
1212 		return 0;
1213 
1214 	jh = jbd2_journal_add_journal_head(bh);
1215 	/*
1216 	 * Do this first --- it can drop the journal lock, so we want to
1217 	 * make sure that obtaining the committed_data is done
1218 	 * atomically wrt. completion of any outstanding commits.
1219 	 */
1220 	err = do_get_write_access(handle, jh, 1);
1221 	if (err)
1222 		goto out;
1223 
1224 repeat:
1225 	if (!jh->b_committed_data)
1226 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1227 					    GFP_NOFS|__GFP_NOFAIL);
1228 
1229 	jbd_lock_bh_state(bh);
1230 	if (!jh->b_committed_data) {
1231 		/* Copy out the current buffer contents into the
1232 		 * preserved, committed copy. */
1233 		JBUFFER_TRACE(jh, "generate b_committed data");
1234 		if (!committed_data) {
1235 			jbd_unlock_bh_state(bh);
1236 			goto repeat;
1237 		}
1238 
1239 		jh->b_committed_data = committed_data;
1240 		committed_data = NULL;
1241 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1242 	}
1243 	jbd_unlock_bh_state(bh);
1244 out:
1245 	jbd2_journal_put_journal_head(jh);
1246 	if (unlikely(committed_data))
1247 		jbd2_free(committed_data, bh->b_size);
1248 	return err;
1249 }
1250 
1251 /**
1252  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1253  * @bh: buffer to trigger on
1254  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1255  *
1256  * Set any triggers on this journal_head.  This is always safe, because
1257  * triggers for a committing buffer will be saved off, and triggers for
1258  * a running transaction will match the buffer in that transaction.
1259  *
1260  * Call with NULL to clear the triggers.
1261  */
1262 void jbd2_journal_set_triggers(struct buffer_head *bh,
1263 			       struct jbd2_buffer_trigger_type *type)
1264 {
1265 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1266 
1267 	if (WARN_ON(!jh))
1268 		return;
1269 	jh->b_triggers = type;
1270 	jbd2_journal_put_journal_head(jh);
1271 }
1272 
1273 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1274 				struct jbd2_buffer_trigger_type *triggers)
1275 {
1276 	struct buffer_head *bh = jh2bh(jh);
1277 
1278 	if (!triggers || !triggers->t_frozen)
1279 		return;
1280 
1281 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1282 }
1283 
1284 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1285 			       struct jbd2_buffer_trigger_type *triggers)
1286 {
1287 	if (!triggers || !triggers->t_abort)
1288 		return;
1289 
1290 	triggers->t_abort(triggers, jh2bh(jh));
1291 }
1292 
1293 /**
1294  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1295  * @handle: transaction to add buffer to.
1296  * @bh: buffer to mark
1297  *
1298  * mark dirty metadata which needs to be journaled as part of the current
1299  * transaction.
1300  *
1301  * The buffer must have previously had jbd2_journal_get_write_access()
1302  * called so that it has a valid journal_head attached to the buffer
1303  * head.
1304  *
1305  * The buffer is placed on the transaction's metadata list and is marked
1306  * as belonging to the transaction.
1307  *
1308  * Returns error number or 0 on success.
1309  *
1310  * Special care needs to be taken if the buffer already belongs to the
1311  * current committing transaction (in which case we should have frozen
1312  * data present for that commit).  In that case, we don't relink the
1313  * buffer: that only gets done when the old transaction finally
1314  * completes its commit.
1315  */
1316 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1317 {
1318 	transaction_t *transaction = handle->h_transaction;
1319 	journal_t *journal;
1320 	struct journal_head *jh;
1321 	int ret = 0;
1322 
1323 	if (is_handle_aborted(handle))
1324 		return -EROFS;
1325 	if (!buffer_jbd(bh)) {
1326 		ret = -EUCLEAN;
1327 		goto out;
1328 	}
1329 	/*
1330 	 * We don't grab jh reference here since the buffer must be part
1331 	 * of the running transaction.
1332 	 */
1333 	jh = bh2jh(bh);
1334 	/*
1335 	 * This and the following assertions are unreliable since we may see jh
1336 	 * in inconsistent state unless we grab bh_state lock. But this is
1337 	 * crucial to catch bugs so let's do a reliable check until the
1338 	 * lockless handling is fully proven.
1339 	 */
1340 	if (jh->b_transaction != transaction &&
1341 	    jh->b_next_transaction != transaction) {
1342 		jbd_lock_bh_state(bh);
1343 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1344 				jh->b_next_transaction == transaction);
1345 		jbd_unlock_bh_state(bh);
1346 	}
1347 	if (jh->b_modified == 1) {
1348 		/* If it's in our transaction it must be in BJ_Metadata list. */
1349 		if (jh->b_transaction == transaction &&
1350 		    jh->b_jlist != BJ_Metadata) {
1351 			jbd_lock_bh_state(bh);
1352 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1353 					jh->b_jlist == BJ_Metadata);
1354 			jbd_unlock_bh_state(bh);
1355 		}
1356 		goto out;
1357 	}
1358 
1359 	journal = transaction->t_journal;
1360 	jbd_debug(5, "journal_head %p\n", jh);
1361 	JBUFFER_TRACE(jh, "entry");
1362 
1363 	jbd_lock_bh_state(bh);
1364 
1365 	if (jh->b_modified == 0) {
1366 		/*
1367 		 * This buffer's got modified and becoming part
1368 		 * of the transaction. This needs to be done
1369 		 * once a transaction -bzzz
1370 		 */
1371 		jh->b_modified = 1;
1372 		if (handle->h_buffer_credits <= 0) {
1373 			ret = -ENOSPC;
1374 			goto out_unlock_bh;
1375 		}
1376 		handle->h_buffer_credits--;
1377 	}
1378 
1379 	/*
1380 	 * fastpath, to avoid expensive locking.  If this buffer is already
1381 	 * on the running transaction's metadata list there is nothing to do.
1382 	 * Nobody can take it off again because there is a handle open.
1383 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1384 	 * result in this test being false, so we go in and take the locks.
1385 	 */
1386 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1387 		JBUFFER_TRACE(jh, "fastpath");
1388 		if (unlikely(jh->b_transaction !=
1389 			     journal->j_running_transaction)) {
1390 			printk(KERN_ERR "JBD2: %s: "
1391 			       "jh->b_transaction (%llu, %p, %u) != "
1392 			       "journal->j_running_transaction (%p, %u)\n",
1393 			       journal->j_devname,
1394 			       (unsigned long long) bh->b_blocknr,
1395 			       jh->b_transaction,
1396 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1397 			       journal->j_running_transaction,
1398 			       journal->j_running_transaction ?
1399 			       journal->j_running_transaction->t_tid : 0);
1400 			ret = -EINVAL;
1401 		}
1402 		goto out_unlock_bh;
1403 	}
1404 
1405 	set_buffer_jbddirty(bh);
1406 
1407 	/*
1408 	 * Metadata already on the current transaction list doesn't
1409 	 * need to be filed.  Metadata on another transaction's list must
1410 	 * be committing, and will be refiled once the commit completes:
1411 	 * leave it alone for now.
1412 	 */
1413 	if (jh->b_transaction != transaction) {
1414 		JBUFFER_TRACE(jh, "already on other transaction");
1415 		if (unlikely(((jh->b_transaction !=
1416 			       journal->j_committing_transaction)) ||
1417 			     (jh->b_next_transaction != transaction))) {
1418 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1419 			       "bad jh for block %llu: "
1420 			       "transaction (%p, %u), "
1421 			       "jh->b_transaction (%p, %u), "
1422 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1423 			       journal->j_devname,
1424 			       (unsigned long long) bh->b_blocknr,
1425 			       transaction, transaction->t_tid,
1426 			       jh->b_transaction,
1427 			       jh->b_transaction ?
1428 			       jh->b_transaction->t_tid : 0,
1429 			       jh->b_next_transaction,
1430 			       jh->b_next_transaction ?
1431 			       jh->b_next_transaction->t_tid : 0,
1432 			       jh->b_jlist);
1433 			WARN_ON(1);
1434 			ret = -EINVAL;
1435 		}
1436 		/* And this case is illegal: we can't reuse another
1437 		 * transaction's data buffer, ever. */
1438 		goto out_unlock_bh;
1439 	}
1440 
1441 	/* That test should have eliminated the following case: */
1442 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1443 
1444 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1445 	spin_lock(&journal->j_list_lock);
1446 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1447 	spin_unlock(&journal->j_list_lock);
1448 out_unlock_bh:
1449 	jbd_unlock_bh_state(bh);
1450 out:
1451 	JBUFFER_TRACE(jh, "exit");
1452 	return ret;
1453 }
1454 
1455 /**
1456  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1457  * @handle: transaction handle
1458  * @bh:     bh to 'forget'
1459  *
1460  * We can only do the bforget if there are no commits pending against the
1461  * buffer.  If the buffer is dirty in the current running transaction we
1462  * can safely unlink it.
1463  *
1464  * bh may not be a journalled buffer at all - it may be a non-JBD
1465  * buffer which came off the hashtable.  Check for this.
1466  *
1467  * Decrements bh->b_count by one.
1468  *
1469  * Allow this call even if the handle has aborted --- it may be part of
1470  * the caller's cleanup after an abort.
1471  */
1472 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1473 {
1474 	transaction_t *transaction = handle->h_transaction;
1475 	journal_t *journal;
1476 	struct journal_head *jh;
1477 	int drop_reserve = 0;
1478 	int err = 0;
1479 	int was_modified = 0;
1480 
1481 	if (is_handle_aborted(handle))
1482 		return -EROFS;
1483 	journal = transaction->t_journal;
1484 
1485 	BUFFER_TRACE(bh, "entry");
1486 
1487 	jbd_lock_bh_state(bh);
1488 
1489 	if (!buffer_jbd(bh))
1490 		goto not_jbd;
1491 	jh = bh2jh(bh);
1492 
1493 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1494 	 * Don't do any jbd operations, and return an error. */
1495 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1496 			 "inconsistent data on disk")) {
1497 		err = -EIO;
1498 		goto not_jbd;
1499 	}
1500 
1501 	/* keep track of whether or not this transaction modified us */
1502 	was_modified = jh->b_modified;
1503 
1504 	/*
1505 	 * The buffer's going from the transaction, we must drop
1506 	 * all references -bzzz
1507 	 */
1508 	jh->b_modified = 0;
1509 
1510 	if (jh->b_transaction == transaction) {
1511 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1512 
1513 		/* If we are forgetting a buffer which is already part
1514 		 * of this transaction, then we can just drop it from
1515 		 * the transaction immediately. */
1516 		clear_buffer_dirty(bh);
1517 		clear_buffer_jbddirty(bh);
1518 
1519 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1520 
1521 		/*
1522 		 * we only want to drop a reference if this transaction
1523 		 * modified the buffer
1524 		 */
1525 		if (was_modified)
1526 			drop_reserve = 1;
1527 
1528 		/*
1529 		 * We are no longer going to journal this buffer.
1530 		 * However, the commit of this transaction is still
1531 		 * important to the buffer: the delete that we are now
1532 		 * processing might obsolete an old log entry, so by
1533 		 * committing, we can satisfy the buffer's checkpoint.
1534 		 *
1535 		 * So, if we have a checkpoint on the buffer, we should
1536 		 * now refile the buffer on our BJ_Forget list so that
1537 		 * we know to remove the checkpoint after we commit.
1538 		 */
1539 
1540 		spin_lock(&journal->j_list_lock);
1541 		if (jh->b_cp_transaction) {
1542 			__jbd2_journal_temp_unlink_buffer(jh);
1543 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1544 		} else {
1545 			__jbd2_journal_unfile_buffer(jh);
1546 			if (!buffer_jbd(bh)) {
1547 				spin_unlock(&journal->j_list_lock);
1548 				jbd_unlock_bh_state(bh);
1549 				__bforget(bh);
1550 				goto drop;
1551 			}
1552 		}
1553 		spin_unlock(&journal->j_list_lock);
1554 	} else if (jh->b_transaction) {
1555 		J_ASSERT_JH(jh, (jh->b_transaction ==
1556 				 journal->j_committing_transaction));
1557 		/* However, if the buffer is still owned by a prior
1558 		 * (committing) transaction, we can't drop it yet... */
1559 		JBUFFER_TRACE(jh, "belongs to older transaction");
1560 		/* ... but we CAN drop it from the new transaction if we
1561 		 * have also modified it since the original commit. */
1562 
1563 		if (jh->b_next_transaction) {
1564 			J_ASSERT(jh->b_next_transaction == transaction);
1565 			spin_lock(&journal->j_list_lock);
1566 			jh->b_next_transaction = NULL;
1567 			spin_unlock(&journal->j_list_lock);
1568 
1569 			/*
1570 			 * only drop a reference if this transaction modified
1571 			 * the buffer
1572 			 */
1573 			if (was_modified)
1574 				drop_reserve = 1;
1575 		}
1576 	}
1577 
1578 not_jbd:
1579 	jbd_unlock_bh_state(bh);
1580 	__brelse(bh);
1581 drop:
1582 	if (drop_reserve) {
1583 		/* no need to reserve log space for this block -bzzz */
1584 		handle->h_buffer_credits++;
1585 	}
1586 	return err;
1587 }
1588 
1589 /**
1590  * int jbd2_journal_stop() - complete a transaction
1591  * @handle: transaction to complete.
1592  *
1593  * All done for a particular handle.
1594  *
1595  * There is not much action needed here.  We just return any remaining
1596  * buffer credits to the transaction and remove the handle.  The only
1597  * complication is that we need to start a commit operation if the
1598  * filesystem is marked for synchronous update.
1599  *
1600  * jbd2_journal_stop itself will not usually return an error, but it may
1601  * do so in unusual circumstances.  In particular, expect it to
1602  * return -EIO if a jbd2_journal_abort has been executed since the
1603  * transaction began.
1604  */
1605 int jbd2_journal_stop(handle_t *handle)
1606 {
1607 	transaction_t *transaction = handle->h_transaction;
1608 	journal_t *journal;
1609 	int err = 0, wait_for_commit = 0;
1610 	tid_t tid;
1611 	pid_t pid;
1612 
1613 	if (!transaction) {
1614 		/*
1615 		 * Handle is already detached from the transaction so
1616 		 * there is nothing to do other than decrease a refcount,
1617 		 * or free the handle if refcount drops to zero
1618 		 */
1619 		if (--handle->h_ref > 0) {
1620 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1621 							 handle->h_ref);
1622 			return err;
1623 		} else {
1624 			if (handle->h_rsv_handle)
1625 				jbd2_free_handle(handle->h_rsv_handle);
1626 			goto free_and_exit;
1627 		}
1628 	}
1629 	journal = transaction->t_journal;
1630 
1631 	J_ASSERT(journal_current_handle() == handle);
1632 
1633 	if (is_handle_aborted(handle))
1634 		err = -EIO;
1635 	else
1636 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1637 
1638 	if (--handle->h_ref > 0) {
1639 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1640 			  handle->h_ref);
1641 		return err;
1642 	}
1643 
1644 	jbd_debug(4, "Handle %p going down\n", handle);
1645 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1646 				transaction->t_tid,
1647 				handle->h_type, handle->h_line_no,
1648 				jiffies - handle->h_start_jiffies,
1649 				handle->h_sync, handle->h_requested_credits,
1650 				(handle->h_requested_credits -
1651 				 handle->h_buffer_credits));
1652 
1653 	/*
1654 	 * Implement synchronous transaction batching.  If the handle
1655 	 * was synchronous, don't force a commit immediately.  Let's
1656 	 * yield and let another thread piggyback onto this
1657 	 * transaction.  Keep doing that while new threads continue to
1658 	 * arrive.  It doesn't cost much - we're about to run a commit
1659 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1660 	 * operations by 30x or more...
1661 	 *
1662 	 * We try and optimize the sleep time against what the
1663 	 * underlying disk can do, instead of having a static sleep
1664 	 * time.  This is useful for the case where our storage is so
1665 	 * fast that it is more optimal to go ahead and force a flush
1666 	 * and wait for the transaction to be committed than it is to
1667 	 * wait for an arbitrary amount of time for new writers to
1668 	 * join the transaction.  We achieve this by measuring how
1669 	 * long it takes to commit a transaction, and compare it with
1670 	 * how long this transaction has been running, and if run time
1671 	 * < commit time then we sleep for the delta and commit.  This
1672 	 * greatly helps super fast disks that would see slowdowns as
1673 	 * more threads started doing fsyncs.
1674 	 *
1675 	 * But don't do this if this process was the most recent one
1676 	 * to perform a synchronous write.  We do this to detect the
1677 	 * case where a single process is doing a stream of sync
1678 	 * writes.  No point in waiting for joiners in that case.
1679 	 *
1680 	 * Setting max_batch_time to 0 disables this completely.
1681 	 */
1682 	pid = current->pid;
1683 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1684 	    journal->j_max_batch_time) {
1685 		u64 commit_time, trans_time;
1686 
1687 		journal->j_last_sync_writer = pid;
1688 
1689 		read_lock(&journal->j_state_lock);
1690 		commit_time = journal->j_average_commit_time;
1691 		read_unlock(&journal->j_state_lock);
1692 
1693 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1694 						   transaction->t_start_time));
1695 
1696 		commit_time = max_t(u64, commit_time,
1697 				    1000*journal->j_min_batch_time);
1698 		commit_time = min_t(u64, commit_time,
1699 				    1000*journal->j_max_batch_time);
1700 
1701 		if (trans_time < commit_time) {
1702 			ktime_t expires = ktime_add_ns(ktime_get(),
1703 						       commit_time);
1704 			set_current_state(TASK_UNINTERRUPTIBLE);
1705 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1706 		}
1707 	}
1708 
1709 	if (handle->h_sync)
1710 		transaction->t_synchronous_commit = 1;
1711 	current->journal_info = NULL;
1712 	atomic_sub(handle->h_buffer_credits,
1713 		   &transaction->t_outstanding_credits);
1714 
1715 	/*
1716 	 * If the handle is marked SYNC, we need to set another commit
1717 	 * going!  We also want to force a commit if the current
1718 	 * transaction is occupying too much of the log, or if the
1719 	 * transaction is too old now.
1720 	 */
1721 	if (handle->h_sync ||
1722 	    (atomic_read(&transaction->t_outstanding_credits) >
1723 	     journal->j_max_transaction_buffers) ||
1724 	    time_after_eq(jiffies, transaction->t_expires)) {
1725 		/* Do this even for aborted journals: an abort still
1726 		 * completes the commit thread, it just doesn't write
1727 		 * anything to disk. */
1728 
1729 		jbd_debug(2, "transaction too old, requesting commit for "
1730 					"handle %p\n", handle);
1731 		/* This is non-blocking */
1732 		jbd2_log_start_commit(journal, transaction->t_tid);
1733 
1734 		/*
1735 		 * Special case: JBD2_SYNC synchronous updates require us
1736 		 * to wait for the commit to complete.
1737 		 */
1738 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1739 			wait_for_commit = 1;
1740 	}
1741 
1742 	/*
1743 	 * Once we drop t_updates, if it goes to zero the transaction
1744 	 * could start committing on us and eventually disappear.  So
1745 	 * once we do this, we must not dereference transaction
1746 	 * pointer again.
1747 	 */
1748 	tid = transaction->t_tid;
1749 	if (atomic_dec_and_test(&transaction->t_updates)) {
1750 		wake_up(&journal->j_wait_updates);
1751 		if (journal->j_barrier_count)
1752 			wake_up(&journal->j_wait_transaction_locked);
1753 	}
1754 
1755 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1756 
1757 	if (wait_for_commit)
1758 		err = jbd2_log_wait_commit(journal, tid);
1759 
1760 	if (handle->h_rsv_handle)
1761 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1762 free_and_exit:
1763 	jbd2_free_handle(handle);
1764 	return err;
1765 }
1766 
1767 /*
1768  *
1769  * List management code snippets: various functions for manipulating the
1770  * transaction buffer lists.
1771  *
1772  */
1773 
1774 /*
1775  * Append a buffer to a transaction list, given the transaction's list head
1776  * pointer.
1777  *
1778  * j_list_lock is held.
1779  *
1780  * jbd_lock_bh_state(jh2bh(jh)) is held.
1781  */
1782 
1783 static inline void
1784 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1785 {
1786 	if (!*list) {
1787 		jh->b_tnext = jh->b_tprev = jh;
1788 		*list = jh;
1789 	} else {
1790 		/* Insert at the tail of the list to preserve order */
1791 		struct journal_head *first = *list, *last = first->b_tprev;
1792 		jh->b_tprev = last;
1793 		jh->b_tnext = first;
1794 		last->b_tnext = first->b_tprev = jh;
1795 	}
1796 }
1797 
1798 /*
1799  * Remove a buffer from a transaction list, given the transaction's list
1800  * head pointer.
1801  *
1802  * Called with j_list_lock held, and the journal may not be locked.
1803  *
1804  * jbd_lock_bh_state(jh2bh(jh)) is held.
1805  */
1806 
1807 static inline void
1808 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1809 {
1810 	if (*list == jh) {
1811 		*list = jh->b_tnext;
1812 		if (*list == jh)
1813 			*list = NULL;
1814 	}
1815 	jh->b_tprev->b_tnext = jh->b_tnext;
1816 	jh->b_tnext->b_tprev = jh->b_tprev;
1817 }
1818 
1819 /*
1820  * Remove a buffer from the appropriate transaction list.
1821  *
1822  * Note that this function can *change* the value of
1823  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1824  * t_reserved_list.  If the caller is holding onto a copy of one of these
1825  * pointers, it could go bad.  Generally the caller needs to re-read the
1826  * pointer from the transaction_t.
1827  *
1828  * Called under j_list_lock.
1829  */
1830 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1831 {
1832 	struct journal_head **list = NULL;
1833 	transaction_t *transaction;
1834 	struct buffer_head *bh = jh2bh(jh);
1835 
1836 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1837 	transaction = jh->b_transaction;
1838 	if (transaction)
1839 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1840 
1841 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1842 	if (jh->b_jlist != BJ_None)
1843 		J_ASSERT_JH(jh, transaction != NULL);
1844 
1845 	switch (jh->b_jlist) {
1846 	case BJ_None:
1847 		return;
1848 	case BJ_Metadata:
1849 		transaction->t_nr_buffers--;
1850 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1851 		list = &transaction->t_buffers;
1852 		break;
1853 	case BJ_Forget:
1854 		list = &transaction->t_forget;
1855 		break;
1856 	case BJ_Shadow:
1857 		list = &transaction->t_shadow_list;
1858 		break;
1859 	case BJ_Reserved:
1860 		list = &transaction->t_reserved_list;
1861 		break;
1862 	}
1863 
1864 	__blist_del_buffer(list, jh);
1865 	jh->b_jlist = BJ_None;
1866 	if (transaction && is_journal_aborted(transaction->t_journal))
1867 		clear_buffer_jbddirty(bh);
1868 	else if (test_clear_buffer_jbddirty(bh))
1869 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1870 }
1871 
1872 /*
1873  * Remove buffer from all transactions.
1874  *
1875  * Called with bh_state lock and j_list_lock
1876  *
1877  * jh and bh may be already freed when this function returns.
1878  */
1879 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1880 {
1881 	__jbd2_journal_temp_unlink_buffer(jh);
1882 	jh->b_transaction = NULL;
1883 	jbd2_journal_put_journal_head(jh);
1884 }
1885 
1886 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1887 {
1888 	struct buffer_head *bh = jh2bh(jh);
1889 
1890 	/* Get reference so that buffer cannot be freed before we unlock it */
1891 	get_bh(bh);
1892 	jbd_lock_bh_state(bh);
1893 	spin_lock(&journal->j_list_lock);
1894 	__jbd2_journal_unfile_buffer(jh);
1895 	spin_unlock(&journal->j_list_lock);
1896 	jbd_unlock_bh_state(bh);
1897 	__brelse(bh);
1898 }
1899 
1900 /*
1901  * Called from jbd2_journal_try_to_free_buffers().
1902  *
1903  * Called under jbd_lock_bh_state(bh)
1904  */
1905 static void
1906 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1907 {
1908 	struct journal_head *jh;
1909 
1910 	jh = bh2jh(bh);
1911 
1912 	if (buffer_locked(bh) || buffer_dirty(bh))
1913 		goto out;
1914 
1915 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1916 		goto out;
1917 
1918 	spin_lock(&journal->j_list_lock);
1919 	if (jh->b_cp_transaction != NULL) {
1920 		/* written-back checkpointed metadata buffer */
1921 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1922 		__jbd2_journal_remove_checkpoint(jh);
1923 	}
1924 	spin_unlock(&journal->j_list_lock);
1925 out:
1926 	return;
1927 }
1928 
1929 /**
1930  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1931  * @journal: journal for operation
1932  * @page: to try and free
1933  * @gfp_mask: we use the mask to detect how hard should we try to release
1934  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1935  * code to release the buffers.
1936  *
1937  *
1938  * For all the buffers on this page,
1939  * if they are fully written out ordered data, move them onto BUF_CLEAN
1940  * so try_to_free_buffers() can reap them.
1941  *
1942  * This function returns non-zero if we wish try_to_free_buffers()
1943  * to be called. We do this if the page is releasable by try_to_free_buffers().
1944  * We also do it if the page has locked or dirty buffers and the caller wants
1945  * us to perform sync or async writeout.
1946  *
1947  * This complicates JBD locking somewhat.  We aren't protected by the
1948  * BKL here.  We wish to remove the buffer from its committing or
1949  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1950  *
1951  * This may *change* the value of transaction_t->t_datalist, so anyone
1952  * who looks at t_datalist needs to lock against this function.
1953  *
1954  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1955  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1956  * will come out of the lock with the buffer dirty, which makes it
1957  * ineligible for release here.
1958  *
1959  * Who else is affected by this?  hmm...  Really the only contender
1960  * is do_get_write_access() - it could be looking at the buffer while
1961  * journal_try_to_free_buffer() is changing its state.  But that
1962  * cannot happen because we never reallocate freed data as metadata
1963  * while the data is part of a transaction.  Yes?
1964  *
1965  * Return 0 on failure, 1 on success
1966  */
1967 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1968 				struct page *page, gfp_t gfp_mask)
1969 {
1970 	struct buffer_head *head;
1971 	struct buffer_head *bh;
1972 	int ret = 0;
1973 
1974 	J_ASSERT(PageLocked(page));
1975 
1976 	head = page_buffers(page);
1977 	bh = head;
1978 	do {
1979 		struct journal_head *jh;
1980 
1981 		/*
1982 		 * We take our own ref against the journal_head here to avoid
1983 		 * having to add tons of locking around each instance of
1984 		 * jbd2_journal_put_journal_head().
1985 		 */
1986 		jh = jbd2_journal_grab_journal_head(bh);
1987 		if (!jh)
1988 			continue;
1989 
1990 		jbd_lock_bh_state(bh);
1991 		__journal_try_to_free_buffer(journal, bh);
1992 		jbd2_journal_put_journal_head(jh);
1993 		jbd_unlock_bh_state(bh);
1994 		if (buffer_jbd(bh))
1995 			goto busy;
1996 	} while ((bh = bh->b_this_page) != head);
1997 
1998 	ret = try_to_free_buffers(page);
1999 
2000 busy:
2001 	return ret;
2002 }
2003 
2004 /*
2005  * This buffer is no longer needed.  If it is on an older transaction's
2006  * checkpoint list we need to record it on this transaction's forget list
2007  * to pin this buffer (and hence its checkpointing transaction) down until
2008  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2009  * release it.
2010  * Returns non-zero if JBD no longer has an interest in the buffer.
2011  *
2012  * Called under j_list_lock.
2013  *
2014  * Called under jbd_lock_bh_state(bh).
2015  */
2016 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2017 {
2018 	int may_free = 1;
2019 	struct buffer_head *bh = jh2bh(jh);
2020 
2021 	if (jh->b_cp_transaction) {
2022 		JBUFFER_TRACE(jh, "on running+cp transaction");
2023 		__jbd2_journal_temp_unlink_buffer(jh);
2024 		/*
2025 		 * We don't want to write the buffer anymore, clear the
2026 		 * bit so that we don't confuse checks in
2027 		 * __journal_file_buffer
2028 		 */
2029 		clear_buffer_dirty(bh);
2030 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2031 		may_free = 0;
2032 	} else {
2033 		JBUFFER_TRACE(jh, "on running transaction");
2034 		__jbd2_journal_unfile_buffer(jh);
2035 	}
2036 	return may_free;
2037 }
2038 
2039 /*
2040  * jbd2_journal_invalidatepage
2041  *
2042  * This code is tricky.  It has a number of cases to deal with.
2043  *
2044  * There are two invariants which this code relies on:
2045  *
2046  * i_size must be updated on disk before we start calling invalidatepage on the
2047  * data.
2048  *
2049  *  This is done in ext3 by defining an ext3_setattr method which
2050  *  updates i_size before truncate gets going.  By maintaining this
2051  *  invariant, we can be sure that it is safe to throw away any buffers
2052  *  attached to the current transaction: once the transaction commits,
2053  *  we know that the data will not be needed.
2054  *
2055  *  Note however that we can *not* throw away data belonging to the
2056  *  previous, committing transaction!
2057  *
2058  * Any disk blocks which *are* part of the previous, committing
2059  * transaction (and which therefore cannot be discarded immediately) are
2060  * not going to be reused in the new running transaction
2061  *
2062  *  The bitmap committed_data images guarantee this: any block which is
2063  *  allocated in one transaction and removed in the next will be marked
2064  *  as in-use in the committed_data bitmap, so cannot be reused until
2065  *  the next transaction to delete the block commits.  This means that
2066  *  leaving committing buffers dirty is quite safe: the disk blocks
2067  *  cannot be reallocated to a different file and so buffer aliasing is
2068  *  not possible.
2069  *
2070  *
2071  * The above applies mainly to ordered data mode.  In writeback mode we
2072  * don't make guarantees about the order in which data hits disk --- in
2073  * particular we don't guarantee that new dirty data is flushed before
2074  * transaction commit --- so it is always safe just to discard data
2075  * immediately in that mode.  --sct
2076  */
2077 
2078 /*
2079  * The journal_unmap_buffer helper function returns zero if the buffer
2080  * concerned remains pinned as an anonymous buffer belonging to an older
2081  * transaction.
2082  *
2083  * We're outside-transaction here.  Either or both of j_running_transaction
2084  * and j_committing_transaction may be NULL.
2085  */
2086 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2087 				int partial_page)
2088 {
2089 	transaction_t *transaction;
2090 	struct journal_head *jh;
2091 	int may_free = 1;
2092 
2093 	BUFFER_TRACE(bh, "entry");
2094 
2095 	/*
2096 	 * It is safe to proceed here without the j_list_lock because the
2097 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2098 	 * holding the page lock. --sct
2099 	 */
2100 
2101 	if (!buffer_jbd(bh))
2102 		goto zap_buffer_unlocked;
2103 
2104 	/* OK, we have data buffer in journaled mode */
2105 	write_lock(&journal->j_state_lock);
2106 	jbd_lock_bh_state(bh);
2107 	spin_lock(&journal->j_list_lock);
2108 
2109 	jh = jbd2_journal_grab_journal_head(bh);
2110 	if (!jh)
2111 		goto zap_buffer_no_jh;
2112 
2113 	/*
2114 	 * We cannot remove the buffer from checkpoint lists until the
2115 	 * transaction adding inode to orphan list (let's call it T)
2116 	 * is committed.  Otherwise if the transaction changing the
2117 	 * buffer would be cleaned from the journal before T is
2118 	 * committed, a crash will cause that the correct contents of
2119 	 * the buffer will be lost.  On the other hand we have to
2120 	 * clear the buffer dirty bit at latest at the moment when the
2121 	 * transaction marking the buffer as freed in the filesystem
2122 	 * structures is committed because from that moment on the
2123 	 * block can be reallocated and used by a different page.
2124 	 * Since the block hasn't been freed yet but the inode has
2125 	 * already been added to orphan list, it is safe for us to add
2126 	 * the buffer to BJ_Forget list of the newest transaction.
2127 	 *
2128 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2129 	 * because the buffer_head may be attached to the page straddling
2130 	 * i_size (can happen only when blocksize < pagesize) and thus the
2131 	 * buffer_head can be reused when the file is extended again. So we end
2132 	 * up keeping around invalidated buffers attached to transactions'
2133 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2134 	 * the transaction this buffer was modified in.
2135 	 */
2136 	transaction = jh->b_transaction;
2137 	if (transaction == NULL) {
2138 		/* First case: not on any transaction.  If it
2139 		 * has no checkpoint link, then we can zap it:
2140 		 * it's a writeback-mode buffer so we don't care
2141 		 * if it hits disk safely. */
2142 		if (!jh->b_cp_transaction) {
2143 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2144 			goto zap_buffer;
2145 		}
2146 
2147 		if (!buffer_dirty(bh)) {
2148 			/* bdflush has written it.  We can drop it now */
2149 			__jbd2_journal_remove_checkpoint(jh);
2150 			goto zap_buffer;
2151 		}
2152 
2153 		/* OK, it must be in the journal but still not
2154 		 * written fully to disk: it's metadata or
2155 		 * journaled data... */
2156 
2157 		if (journal->j_running_transaction) {
2158 			/* ... and once the current transaction has
2159 			 * committed, the buffer won't be needed any
2160 			 * longer. */
2161 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2162 			may_free = __dispose_buffer(jh,
2163 					journal->j_running_transaction);
2164 			goto zap_buffer;
2165 		} else {
2166 			/* There is no currently-running transaction. So the
2167 			 * orphan record which we wrote for this file must have
2168 			 * passed into commit.  We must attach this buffer to
2169 			 * the committing transaction, if it exists. */
2170 			if (journal->j_committing_transaction) {
2171 				JBUFFER_TRACE(jh, "give to committing trans");
2172 				may_free = __dispose_buffer(jh,
2173 					journal->j_committing_transaction);
2174 				goto zap_buffer;
2175 			} else {
2176 				/* The orphan record's transaction has
2177 				 * committed.  We can cleanse this buffer */
2178 				clear_buffer_jbddirty(bh);
2179 				__jbd2_journal_remove_checkpoint(jh);
2180 				goto zap_buffer;
2181 			}
2182 		}
2183 	} else if (transaction == journal->j_committing_transaction) {
2184 		JBUFFER_TRACE(jh, "on committing transaction");
2185 		/*
2186 		 * The buffer is committing, we simply cannot touch
2187 		 * it. If the page is straddling i_size we have to wait
2188 		 * for commit and try again.
2189 		 */
2190 		if (partial_page) {
2191 			jbd2_journal_put_journal_head(jh);
2192 			spin_unlock(&journal->j_list_lock);
2193 			jbd_unlock_bh_state(bh);
2194 			write_unlock(&journal->j_state_lock);
2195 			return -EBUSY;
2196 		}
2197 		/*
2198 		 * OK, buffer won't be reachable after truncate. We just set
2199 		 * j_next_transaction to the running transaction (if there is
2200 		 * one) and mark buffer as freed so that commit code knows it
2201 		 * should clear dirty bits when it is done with the buffer.
2202 		 */
2203 		set_buffer_freed(bh);
2204 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2205 			jh->b_next_transaction = journal->j_running_transaction;
2206 		jbd2_journal_put_journal_head(jh);
2207 		spin_unlock(&journal->j_list_lock);
2208 		jbd_unlock_bh_state(bh);
2209 		write_unlock(&journal->j_state_lock);
2210 		return 0;
2211 	} else {
2212 		/* Good, the buffer belongs to the running transaction.
2213 		 * We are writing our own transaction's data, not any
2214 		 * previous one's, so it is safe to throw it away
2215 		 * (remember that we expect the filesystem to have set
2216 		 * i_size already for this truncate so recovery will not
2217 		 * expose the disk blocks we are discarding here.) */
2218 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2219 		JBUFFER_TRACE(jh, "on running transaction");
2220 		may_free = __dispose_buffer(jh, transaction);
2221 	}
2222 
2223 zap_buffer:
2224 	/*
2225 	 * This is tricky. Although the buffer is truncated, it may be reused
2226 	 * if blocksize < pagesize and it is attached to the page straddling
2227 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2228 	 * running transaction, journal_get_write_access() won't clear
2229 	 * b_modified and credit accounting gets confused. So clear b_modified
2230 	 * here.
2231 	 */
2232 	jh->b_modified = 0;
2233 	jbd2_journal_put_journal_head(jh);
2234 zap_buffer_no_jh:
2235 	spin_unlock(&journal->j_list_lock);
2236 	jbd_unlock_bh_state(bh);
2237 	write_unlock(&journal->j_state_lock);
2238 zap_buffer_unlocked:
2239 	clear_buffer_dirty(bh);
2240 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2241 	clear_buffer_mapped(bh);
2242 	clear_buffer_req(bh);
2243 	clear_buffer_new(bh);
2244 	clear_buffer_delay(bh);
2245 	clear_buffer_unwritten(bh);
2246 	bh->b_bdev = NULL;
2247 	return may_free;
2248 }
2249 
2250 /**
2251  * void jbd2_journal_invalidatepage()
2252  * @journal: journal to use for flush...
2253  * @page:    page to flush
2254  * @offset:  start of the range to invalidate
2255  * @length:  length of the range to invalidate
2256  *
2257  * Reap page buffers containing data after in the specified range in page.
2258  * Can return -EBUSY if buffers are part of the committing transaction and
2259  * the page is straddling i_size. Caller then has to wait for current commit
2260  * and try again.
2261  */
2262 int jbd2_journal_invalidatepage(journal_t *journal,
2263 				struct page *page,
2264 				unsigned int offset,
2265 				unsigned int length)
2266 {
2267 	struct buffer_head *head, *bh, *next;
2268 	unsigned int stop = offset + length;
2269 	unsigned int curr_off = 0;
2270 	int partial_page = (offset || length < PAGE_SIZE);
2271 	int may_free = 1;
2272 	int ret = 0;
2273 
2274 	if (!PageLocked(page))
2275 		BUG();
2276 	if (!page_has_buffers(page))
2277 		return 0;
2278 
2279 	BUG_ON(stop > PAGE_SIZE || stop < length);
2280 
2281 	/* We will potentially be playing with lists other than just the
2282 	 * data lists (especially for journaled data mode), so be
2283 	 * cautious in our locking. */
2284 
2285 	head = bh = page_buffers(page);
2286 	do {
2287 		unsigned int next_off = curr_off + bh->b_size;
2288 		next = bh->b_this_page;
2289 
2290 		if (next_off > stop)
2291 			return 0;
2292 
2293 		if (offset <= curr_off) {
2294 			/* This block is wholly outside the truncation point */
2295 			lock_buffer(bh);
2296 			ret = journal_unmap_buffer(journal, bh, partial_page);
2297 			unlock_buffer(bh);
2298 			if (ret < 0)
2299 				return ret;
2300 			may_free &= ret;
2301 		}
2302 		curr_off = next_off;
2303 		bh = next;
2304 
2305 	} while (bh != head);
2306 
2307 	if (!partial_page) {
2308 		if (may_free && try_to_free_buffers(page))
2309 			J_ASSERT(!page_has_buffers(page));
2310 	}
2311 	return 0;
2312 }
2313 
2314 /*
2315  * File a buffer on the given transaction list.
2316  */
2317 void __jbd2_journal_file_buffer(struct journal_head *jh,
2318 			transaction_t *transaction, int jlist)
2319 {
2320 	struct journal_head **list = NULL;
2321 	int was_dirty = 0;
2322 	struct buffer_head *bh = jh2bh(jh);
2323 
2324 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2325 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2326 
2327 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2328 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2329 				jh->b_transaction == NULL);
2330 
2331 	if (jh->b_transaction && jh->b_jlist == jlist)
2332 		return;
2333 
2334 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2335 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2336 		/*
2337 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2338 		 * instead of buffer_dirty. We should not see a dirty bit set
2339 		 * here because we clear it in do_get_write_access but e.g.
2340 		 * tune2fs can modify the sb and set the dirty bit at any time
2341 		 * so we try to gracefully handle that.
2342 		 */
2343 		if (buffer_dirty(bh))
2344 			warn_dirty_buffer(bh);
2345 		if (test_clear_buffer_dirty(bh) ||
2346 		    test_clear_buffer_jbddirty(bh))
2347 			was_dirty = 1;
2348 	}
2349 
2350 	if (jh->b_transaction)
2351 		__jbd2_journal_temp_unlink_buffer(jh);
2352 	else
2353 		jbd2_journal_grab_journal_head(bh);
2354 	jh->b_transaction = transaction;
2355 
2356 	switch (jlist) {
2357 	case BJ_None:
2358 		J_ASSERT_JH(jh, !jh->b_committed_data);
2359 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2360 		return;
2361 	case BJ_Metadata:
2362 		transaction->t_nr_buffers++;
2363 		list = &transaction->t_buffers;
2364 		break;
2365 	case BJ_Forget:
2366 		list = &transaction->t_forget;
2367 		break;
2368 	case BJ_Shadow:
2369 		list = &transaction->t_shadow_list;
2370 		break;
2371 	case BJ_Reserved:
2372 		list = &transaction->t_reserved_list;
2373 		break;
2374 	}
2375 
2376 	__blist_add_buffer(list, jh);
2377 	jh->b_jlist = jlist;
2378 
2379 	if (was_dirty)
2380 		set_buffer_jbddirty(bh);
2381 }
2382 
2383 void jbd2_journal_file_buffer(struct journal_head *jh,
2384 				transaction_t *transaction, int jlist)
2385 {
2386 	jbd_lock_bh_state(jh2bh(jh));
2387 	spin_lock(&transaction->t_journal->j_list_lock);
2388 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2389 	spin_unlock(&transaction->t_journal->j_list_lock);
2390 	jbd_unlock_bh_state(jh2bh(jh));
2391 }
2392 
2393 /*
2394  * Remove a buffer from its current buffer list in preparation for
2395  * dropping it from its current transaction entirely.  If the buffer has
2396  * already started to be used by a subsequent transaction, refile the
2397  * buffer on that transaction's metadata list.
2398  *
2399  * Called under j_list_lock
2400  * Called under jbd_lock_bh_state(jh2bh(jh))
2401  *
2402  * jh and bh may be already free when this function returns
2403  */
2404 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2405 {
2406 	int was_dirty, jlist;
2407 	struct buffer_head *bh = jh2bh(jh);
2408 
2409 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2410 	if (jh->b_transaction)
2411 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2412 
2413 	/* If the buffer is now unused, just drop it. */
2414 	if (jh->b_next_transaction == NULL) {
2415 		__jbd2_journal_unfile_buffer(jh);
2416 		return;
2417 	}
2418 
2419 	/*
2420 	 * It has been modified by a later transaction: add it to the new
2421 	 * transaction's metadata list.
2422 	 */
2423 
2424 	was_dirty = test_clear_buffer_jbddirty(bh);
2425 	__jbd2_journal_temp_unlink_buffer(jh);
2426 	/*
2427 	 * We set b_transaction here because b_next_transaction will inherit
2428 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2429 	 * take a new one.
2430 	 */
2431 	jh->b_transaction = jh->b_next_transaction;
2432 	jh->b_next_transaction = NULL;
2433 	if (buffer_freed(bh))
2434 		jlist = BJ_Forget;
2435 	else if (jh->b_modified)
2436 		jlist = BJ_Metadata;
2437 	else
2438 		jlist = BJ_Reserved;
2439 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2440 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2441 
2442 	if (was_dirty)
2443 		set_buffer_jbddirty(bh);
2444 }
2445 
2446 /*
2447  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2448  * bh reference so that we can safely unlock bh.
2449  *
2450  * The jh and bh may be freed by this call.
2451  */
2452 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2453 {
2454 	struct buffer_head *bh = jh2bh(jh);
2455 
2456 	/* Get reference so that buffer cannot be freed before we unlock it */
2457 	get_bh(bh);
2458 	jbd_lock_bh_state(bh);
2459 	spin_lock(&journal->j_list_lock);
2460 	__jbd2_journal_refile_buffer(jh);
2461 	jbd_unlock_bh_state(bh);
2462 	spin_unlock(&journal->j_list_lock);
2463 	__brelse(bh);
2464 }
2465 
2466 /*
2467  * File inode in the inode list of the handle's transaction
2468  */
2469 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2470 				   unsigned long flags)
2471 {
2472 	transaction_t *transaction = handle->h_transaction;
2473 	journal_t *journal;
2474 
2475 	if (is_handle_aborted(handle))
2476 		return -EROFS;
2477 	journal = transaction->t_journal;
2478 
2479 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2480 			transaction->t_tid);
2481 
2482 	/*
2483 	 * First check whether inode isn't already on the transaction's
2484 	 * lists without taking the lock. Note that this check is safe
2485 	 * without the lock as we cannot race with somebody removing inode
2486 	 * from the transaction. The reason is that we remove inode from the
2487 	 * transaction only in journal_release_jbd_inode() and when we commit
2488 	 * the transaction. We are guarded from the first case by holding
2489 	 * a reference to the inode. We are safe against the second case
2490 	 * because if jinode->i_transaction == transaction, commit code
2491 	 * cannot touch the transaction because we hold reference to it,
2492 	 * and if jinode->i_next_transaction == transaction, commit code
2493 	 * will only file the inode where we want it.
2494 	 */
2495 	if ((jinode->i_transaction == transaction ||
2496 	    jinode->i_next_transaction == transaction) &&
2497 	    (jinode->i_flags & flags) == flags)
2498 		return 0;
2499 
2500 	spin_lock(&journal->j_list_lock);
2501 	jinode->i_flags |= flags;
2502 	/* Is inode already attached where we need it? */
2503 	if (jinode->i_transaction == transaction ||
2504 	    jinode->i_next_transaction == transaction)
2505 		goto done;
2506 
2507 	/*
2508 	 * We only ever set this variable to 1 so the test is safe. Since
2509 	 * t_need_data_flush is likely to be set, we do the test to save some
2510 	 * cacheline bouncing
2511 	 */
2512 	if (!transaction->t_need_data_flush)
2513 		transaction->t_need_data_flush = 1;
2514 	/* On some different transaction's list - should be
2515 	 * the committing one */
2516 	if (jinode->i_transaction) {
2517 		J_ASSERT(jinode->i_next_transaction == NULL);
2518 		J_ASSERT(jinode->i_transaction ==
2519 					journal->j_committing_transaction);
2520 		jinode->i_next_transaction = transaction;
2521 		goto done;
2522 	}
2523 	/* Not on any transaction list... */
2524 	J_ASSERT(!jinode->i_next_transaction);
2525 	jinode->i_transaction = transaction;
2526 	list_add(&jinode->i_list, &transaction->t_inode_list);
2527 done:
2528 	spin_unlock(&journal->j_list_lock);
2529 
2530 	return 0;
2531 }
2532 
2533 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2534 {
2535 	return jbd2_journal_file_inode(handle, jinode,
2536 				       JI_WRITE_DATA | JI_WAIT_DATA);
2537 }
2538 
2539 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2540 {
2541 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2542 }
2543 
2544 /*
2545  * File truncate and transaction commit interact with each other in a
2546  * non-trivial way.  If a transaction writing data block A is
2547  * committing, we cannot discard the data by truncate until we have
2548  * written them.  Otherwise if we crashed after the transaction with
2549  * write has committed but before the transaction with truncate has
2550  * committed, we could see stale data in block A.  This function is a
2551  * helper to solve this problem.  It starts writeout of the truncated
2552  * part in case it is in the committing transaction.
2553  *
2554  * Filesystem code must call this function when inode is journaled in
2555  * ordered mode before truncation happens and after the inode has been
2556  * placed on orphan list with the new inode size. The second condition
2557  * avoids the race that someone writes new data and we start
2558  * committing the transaction after this function has been called but
2559  * before a transaction for truncate is started (and furthermore it
2560  * allows us to optimize the case where the addition to orphan list
2561  * happens in the same transaction as write --- we don't have to write
2562  * any data in such case).
2563  */
2564 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2565 					struct jbd2_inode *jinode,
2566 					loff_t new_size)
2567 {
2568 	transaction_t *inode_trans, *commit_trans;
2569 	int ret = 0;
2570 
2571 	/* This is a quick check to avoid locking if not necessary */
2572 	if (!jinode->i_transaction)
2573 		goto out;
2574 	/* Locks are here just to force reading of recent values, it is
2575 	 * enough that the transaction was not committing before we started
2576 	 * a transaction adding the inode to orphan list */
2577 	read_lock(&journal->j_state_lock);
2578 	commit_trans = journal->j_committing_transaction;
2579 	read_unlock(&journal->j_state_lock);
2580 	spin_lock(&journal->j_list_lock);
2581 	inode_trans = jinode->i_transaction;
2582 	spin_unlock(&journal->j_list_lock);
2583 	if (inode_trans == commit_trans) {
2584 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2585 			new_size, LLONG_MAX);
2586 		if (ret)
2587 			jbd2_journal_abort(journal, ret);
2588 	}
2589 out:
2590 	return ret;
2591 }
2592