xref: /openbmc/linux/fs/jbd2/transaction.c (revision 6a551c11)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 
208 		/*
209 		 * Is the number of reserved credits in the current transaction too
210 		 * big to fit this handle? Wait until reserved credits are freed.
211 		 */
212 		if (atomic_read(&journal->j_reserved_credits) + total >
213 		    journal->j_max_transaction_buffers) {
214 			read_unlock(&journal->j_state_lock);
215 			wait_event(journal->j_wait_reserved,
216 				   atomic_read(&journal->j_reserved_credits) + total <=
217 				   journal->j_max_transaction_buffers);
218 			return 1;
219 		}
220 
221 		wait_transaction_locked(journal);
222 		return 1;
223 	}
224 
225 	/*
226 	 * The commit code assumes that it can get enough log space
227 	 * without forcing a checkpoint.  This is *critical* for
228 	 * correctness: a checkpoint of a buffer which is also
229 	 * associated with a committing transaction creates a deadlock,
230 	 * so commit simply cannot force through checkpoints.
231 	 *
232 	 * We must therefore ensure the necessary space in the journal
233 	 * *before* starting to dirty potentially checkpointed buffers
234 	 * in the new transaction.
235 	 */
236 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 		atomic_sub(total, &t->t_outstanding_credits);
238 		read_unlock(&journal->j_state_lock);
239 		write_lock(&journal->j_state_lock);
240 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241 			__jbd2_log_wait_for_space(journal);
242 		write_unlock(&journal->j_state_lock);
243 		return 1;
244 	}
245 
246 	/* No reservation? We are done... */
247 	if (!rsv_blocks)
248 		return 0;
249 
250 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251 	/* We allow at most half of a transaction to be reserved */
252 	if (needed > journal->j_max_transaction_buffers / 2) {
253 		sub_reserved_credits(journal, rsv_blocks);
254 		atomic_sub(total, &t->t_outstanding_credits);
255 		read_unlock(&journal->j_state_lock);
256 		wait_event(journal->j_wait_reserved,
257 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 			 <= journal->j_max_transaction_buffers / 2);
259 		return 1;
260 	}
261 	return 0;
262 }
263 
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270 
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 			     gfp_t gfp_mask)
273 {
274 	transaction_t	*transaction, *new_transaction = NULL;
275 	int		blocks = handle->h_buffer_credits;
276 	int		rsv_blocks = 0;
277 	unsigned long ts = jiffies;
278 
279 	if (handle->h_rsv_handle)
280 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281 
282 	/*
283 	 * Limit the number of reserved credits to 1/2 of maximum transaction
284 	 * size and limit the number of total credits to not exceed maximum
285 	 * transaction size per operation.
286 	 */
287 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 		printk(KERN_ERR "JBD2: %s wants too many credits "
290 		       "credits:%d rsv_credits:%d max:%d\n",
291 		       current->comm, blocks, rsv_blocks,
292 		       journal->j_max_transaction_buffers);
293 		WARN_ON(1);
294 		return -ENOSPC;
295 	}
296 
297 alloc_transaction:
298 	if (!journal->j_running_transaction) {
299 		/*
300 		 * If __GFP_FS is not present, then we may be being called from
301 		 * inside the fs writeback layer, so we MUST NOT fail.
302 		 */
303 		if ((gfp_mask & __GFP_FS) == 0)
304 			gfp_mask |= __GFP_NOFAIL;
305 		new_transaction = kmem_cache_zalloc(transaction_cache,
306 						    gfp_mask);
307 		if (!new_transaction)
308 			return -ENOMEM;
309 	}
310 
311 	jbd_debug(3, "New handle %p going live.\n", handle);
312 
313 	/*
314 	 * We need to hold j_state_lock until t_updates has been incremented,
315 	 * for proper journal barrier handling
316 	 */
317 repeat:
318 	read_lock(&journal->j_state_lock);
319 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 	if (is_journal_aborted(journal) ||
321 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 		read_unlock(&journal->j_state_lock);
323 		jbd2_journal_free_transaction(new_transaction);
324 		return -EROFS;
325 	}
326 
327 	/*
328 	 * Wait on the journal's transaction barrier if necessary. Specifically
329 	 * we allow reserved handles to proceed because otherwise commit could
330 	 * deadlock on page writeback not being able to complete.
331 	 */
332 	if (!handle->h_reserved && journal->j_barrier_count) {
333 		read_unlock(&journal->j_state_lock);
334 		wait_event(journal->j_wait_transaction_locked,
335 				journal->j_barrier_count == 0);
336 		goto repeat;
337 	}
338 
339 	if (!journal->j_running_transaction) {
340 		read_unlock(&journal->j_state_lock);
341 		if (!new_transaction)
342 			goto alloc_transaction;
343 		write_lock(&journal->j_state_lock);
344 		if (!journal->j_running_transaction &&
345 		    (handle->h_reserved || !journal->j_barrier_count)) {
346 			jbd2_get_transaction(journal, new_transaction);
347 			new_transaction = NULL;
348 		}
349 		write_unlock(&journal->j_state_lock);
350 		goto repeat;
351 	}
352 
353 	transaction = journal->j_running_transaction;
354 
355 	if (!handle->h_reserved) {
356 		/* We may have dropped j_state_lock - restart in that case */
357 		if (add_transaction_credits(journal, blocks, rsv_blocks))
358 			goto repeat;
359 	} else {
360 		/*
361 		 * We have handle reserved so we are allowed to join T_LOCKED
362 		 * transaction and we don't have to check for transaction size
363 		 * and journal space.
364 		 */
365 		sub_reserved_credits(journal, blocks);
366 		handle->h_reserved = 0;
367 	}
368 
369 	/* OK, account for the buffers that this operation expects to
370 	 * use and add the handle to the running transaction.
371 	 */
372 	update_t_max_wait(transaction, ts);
373 	handle->h_transaction = transaction;
374 	handle->h_requested_credits = blocks;
375 	handle->h_start_jiffies = jiffies;
376 	atomic_inc(&transaction->t_updates);
377 	atomic_inc(&transaction->t_handle_count);
378 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 		  handle, blocks,
380 		  atomic_read(&transaction->t_outstanding_credits),
381 		  jbd2_log_space_left(journal));
382 	read_unlock(&journal->j_state_lock);
383 	current->journal_info = handle;
384 
385 	lock_map_acquire(&handle->h_lockdep_map);
386 	jbd2_journal_free_transaction(new_transaction);
387 	return 0;
388 }
389 
390 static struct lock_class_key jbd2_handle_key;
391 
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396 	if (!handle)
397 		return NULL;
398 	handle->h_buffer_credits = nblocks;
399 	handle->h_ref = 1;
400 
401 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402 						&jbd2_handle_key, 0);
403 
404 	return handle;
405 }
406 
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427 			      gfp_t gfp_mask, unsigned int type,
428 			      unsigned int line_no)
429 {
430 	handle_t *handle = journal_current_handle();
431 	int err;
432 
433 	if (!journal)
434 		return ERR_PTR(-EROFS);
435 
436 	if (handle) {
437 		J_ASSERT(handle->h_transaction->t_journal == journal);
438 		handle->h_ref++;
439 		return handle;
440 	}
441 
442 	handle = new_handle(nblocks);
443 	if (!handle)
444 		return ERR_PTR(-ENOMEM);
445 	if (rsv_blocks) {
446 		handle_t *rsv_handle;
447 
448 		rsv_handle = new_handle(rsv_blocks);
449 		if (!rsv_handle) {
450 			jbd2_free_handle(handle);
451 			return ERR_PTR(-ENOMEM);
452 		}
453 		rsv_handle->h_reserved = 1;
454 		rsv_handle->h_journal = journal;
455 		handle->h_rsv_handle = rsv_handle;
456 	}
457 
458 	err = start_this_handle(journal, handle, gfp_mask);
459 	if (err < 0) {
460 		if (handle->h_rsv_handle)
461 			jbd2_free_handle(handle->h_rsv_handle);
462 		jbd2_free_handle(handle);
463 		return ERR_PTR(err);
464 	}
465 	handle->h_type = type;
466 	handle->h_line_no = line_no;
467 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468 				handle->h_transaction->t_tid, type,
469 				line_no, nblocks);
470 	return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473 
474 
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480 
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483 	journal_t *journal = handle->h_journal;
484 
485 	WARN_ON(!handle->h_reserved);
486 	sub_reserved_credits(journal, handle->h_buffer_credits);
487 	jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490 
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504 				unsigned int line_no)
505 {
506 	journal_t *journal = handle->h_journal;
507 	int ret = -EIO;
508 
509 	if (WARN_ON(!handle->h_reserved)) {
510 		/* Someone passed in normal handle? Just stop it. */
511 		jbd2_journal_stop(handle);
512 		return ret;
513 	}
514 	/*
515 	 * Usefulness of mixing of reserved and unreserved handles is
516 	 * questionable. So far nobody seems to need it so just error out.
517 	 */
518 	if (WARN_ON(current->journal_info)) {
519 		jbd2_journal_free_reserved(handle);
520 		return ret;
521 	}
522 
523 	handle->h_journal = NULL;
524 	/*
525 	 * GFP_NOFS is here because callers are likely from writeback or
526 	 * similarly constrained call sites
527 	 */
528 	ret = start_this_handle(journal, handle, GFP_NOFS);
529 	if (ret < 0) {
530 		jbd2_journal_free_reserved(handle);
531 		return ret;
532 	}
533 	handle->h_type = type;
534 	handle->h_line_no = line_no;
535 	return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538 
539 /**
540  * int jbd2_journal_extend() - extend buffer credits.
541  * @handle:  handle to 'extend'
542  * @nblocks: nr blocks to try to extend by.
543  *
544  * Some transactions, such as large extends and truncates, can be done
545  * atomically all at once or in several stages.  The operation requests
546  * a credit for a number of buffer modifications in advance, but can
547  * extend its credit if it needs more.
548  *
549  * jbd2_journal_extend tries to give the running handle more buffer credits.
550  * It does not guarantee that allocation - this is a best-effort only.
551  * The calling process MUST be able to deal cleanly with a failure to
552  * extend here.
553  *
554  * Return 0 on success, non-zero on failure.
555  *
556  * return code < 0 implies an error
557  * return code > 0 implies normal transaction-full status.
558  */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561 	transaction_t *transaction = handle->h_transaction;
562 	journal_t *journal;
563 	int result;
564 	int wanted;
565 
566 	if (is_handle_aborted(handle))
567 		return -EROFS;
568 	journal = transaction->t_journal;
569 
570 	result = 1;
571 
572 	read_lock(&journal->j_state_lock);
573 
574 	/* Don't extend a locked-down transaction! */
575 	if (transaction->t_state != T_RUNNING) {
576 		jbd_debug(3, "denied handle %p %d blocks: "
577 			  "transaction not running\n", handle, nblocks);
578 		goto error_out;
579 	}
580 
581 	spin_lock(&transaction->t_handle_lock);
582 	wanted = atomic_add_return(nblocks,
583 				   &transaction->t_outstanding_credits);
584 
585 	if (wanted > journal->j_max_transaction_buffers) {
586 		jbd_debug(3, "denied handle %p %d blocks: "
587 			  "transaction too large\n", handle, nblocks);
588 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
589 		goto unlock;
590 	}
591 
592 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593 	    jbd2_log_space_left(journal)) {
594 		jbd_debug(3, "denied handle %p %d blocks: "
595 			  "insufficient log space\n", handle, nblocks);
596 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
597 		goto unlock;
598 	}
599 
600 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601 				 transaction->t_tid,
602 				 handle->h_type, handle->h_line_no,
603 				 handle->h_buffer_credits,
604 				 nblocks);
605 
606 	handle->h_buffer_credits += nblocks;
607 	handle->h_requested_credits += nblocks;
608 	result = 0;
609 
610 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612 	spin_unlock(&transaction->t_handle_lock);
613 error_out:
614 	read_unlock(&journal->j_state_lock);
615 	return result;
616 }
617 
618 
619 /**
620  * int jbd2_journal_restart() - restart a handle .
621  * @handle:  handle to restart
622  * @nblocks: nr credits requested
623  *
624  * Restart a handle for a multi-transaction filesystem
625  * operation.
626  *
627  * If the jbd2_journal_extend() call above fails to grant new buffer credits
628  * to a running handle, a call to jbd2_journal_restart will commit the
629  * handle's transaction so far and reattach the handle to a new
630  * transaction capable of guaranteeing the requested number of
631  * credits. We preserve reserved handle if there's any attached to the
632  * passed in handle.
633  */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636 	transaction_t *transaction = handle->h_transaction;
637 	journal_t *journal;
638 	tid_t		tid;
639 	int		need_to_start, ret;
640 
641 	/* If we've had an abort of any type, don't even think about
642 	 * actually doing the restart! */
643 	if (is_handle_aborted(handle))
644 		return 0;
645 	journal = transaction->t_journal;
646 
647 	/*
648 	 * First unlink the handle from its current transaction, and start the
649 	 * commit on that.
650 	 */
651 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652 	J_ASSERT(journal_current_handle() == handle);
653 
654 	read_lock(&journal->j_state_lock);
655 	spin_lock(&transaction->t_handle_lock);
656 	atomic_sub(handle->h_buffer_credits,
657 		   &transaction->t_outstanding_credits);
658 	if (handle->h_rsv_handle) {
659 		sub_reserved_credits(journal,
660 				     handle->h_rsv_handle->h_buffer_credits);
661 	}
662 	if (atomic_dec_and_test(&transaction->t_updates))
663 		wake_up(&journal->j_wait_updates);
664 	tid = transaction->t_tid;
665 	spin_unlock(&transaction->t_handle_lock);
666 	handle->h_transaction = NULL;
667 	current->journal_info = NULL;
668 
669 	jbd_debug(2, "restarting handle %p\n", handle);
670 	need_to_start = !tid_geq(journal->j_commit_request, tid);
671 	read_unlock(&journal->j_state_lock);
672 	if (need_to_start)
673 		jbd2_log_start_commit(journal, tid);
674 
675 	lock_map_release(&handle->h_lockdep_map);
676 	handle->h_buffer_credits = nblocks;
677 	ret = start_this_handle(journal, handle, gfp_mask);
678 	return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681 
682 
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688 
689 /**
690  * void jbd2_journal_lock_updates () - establish a transaction barrier.
691  * @journal:  Journal to establish a barrier on.
692  *
693  * This locks out any further updates from being started, and blocks
694  * until all existing updates have completed, returning only once the
695  * journal is in a quiescent state with no updates running.
696  *
697  * The journal lock should not be held on entry.
698  */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701 	DEFINE_WAIT(wait);
702 
703 	write_lock(&journal->j_state_lock);
704 	++journal->j_barrier_count;
705 
706 	/* Wait until there are no reserved handles */
707 	if (atomic_read(&journal->j_reserved_credits)) {
708 		write_unlock(&journal->j_state_lock);
709 		wait_event(journal->j_wait_reserved,
710 			   atomic_read(&journal->j_reserved_credits) == 0);
711 		write_lock(&journal->j_state_lock);
712 	}
713 
714 	/* Wait until there are no running updates */
715 	while (1) {
716 		transaction_t *transaction = journal->j_running_transaction;
717 
718 		if (!transaction)
719 			break;
720 
721 		spin_lock(&transaction->t_handle_lock);
722 		prepare_to_wait(&journal->j_wait_updates, &wait,
723 				TASK_UNINTERRUPTIBLE);
724 		if (!atomic_read(&transaction->t_updates)) {
725 			spin_unlock(&transaction->t_handle_lock);
726 			finish_wait(&journal->j_wait_updates, &wait);
727 			break;
728 		}
729 		spin_unlock(&transaction->t_handle_lock);
730 		write_unlock(&journal->j_state_lock);
731 		schedule();
732 		finish_wait(&journal->j_wait_updates, &wait);
733 		write_lock(&journal->j_state_lock);
734 	}
735 	write_unlock(&journal->j_state_lock);
736 
737 	/*
738 	 * We have now established a barrier against other normal updates, but
739 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
740 	 * to make sure that we serialise special journal-locked operations
741 	 * too.
742 	 */
743 	mutex_lock(&journal->j_barrier);
744 }
745 
746 /**
747  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748  * @journal:  Journal to release the barrier on.
749  *
750  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751  *
752  * Should be called without the journal lock held.
753  */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756 	J_ASSERT(journal->j_barrier_count != 0);
757 
758 	mutex_unlock(&journal->j_barrier);
759 	write_lock(&journal->j_state_lock);
760 	--journal->j_barrier_count;
761 	write_unlock(&journal->j_state_lock);
762 	wake_up(&journal->j_wait_transaction_locked);
763 }
764 
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767 	printk(KERN_WARNING
768 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
769 	       "There's a risk of filesystem corruption in case of system "
770 	       "crash.\n",
771 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
772 }
773 
774 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
775 static void jbd2_freeze_jh_data(struct journal_head *jh)
776 {
777 	struct page *page;
778 	int offset;
779 	char *source;
780 	struct buffer_head *bh = jh2bh(jh);
781 
782 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
783 	page = bh->b_page;
784 	offset = offset_in_page(bh->b_data);
785 	source = kmap_atomic(page);
786 	/* Fire data frozen trigger just before we copy the data */
787 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
788 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
789 	kunmap_atomic(source);
790 
791 	/*
792 	 * Now that the frozen data is saved off, we need to store any matching
793 	 * triggers.
794 	 */
795 	jh->b_frozen_triggers = jh->b_triggers;
796 }
797 
798 /*
799  * If the buffer is already part of the current transaction, then there
800  * is nothing we need to do.  If it is already part of a prior
801  * transaction which we are still committing to disk, then we need to
802  * make sure that we do not overwrite the old copy: we do copy-out to
803  * preserve the copy going to disk.  We also account the buffer against
804  * the handle's metadata buffer credits (unless the buffer is already
805  * part of the transaction, that is).
806  *
807  */
808 static int
809 do_get_write_access(handle_t *handle, struct journal_head *jh,
810 			int force_copy)
811 {
812 	struct buffer_head *bh;
813 	transaction_t *transaction = handle->h_transaction;
814 	journal_t *journal;
815 	int error;
816 	char *frozen_buffer = NULL;
817 	unsigned long start_lock, time_lock;
818 
819 	if (is_handle_aborted(handle))
820 		return -EROFS;
821 	journal = transaction->t_journal;
822 
823 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
824 
825 	JBUFFER_TRACE(jh, "entry");
826 repeat:
827 	bh = jh2bh(jh);
828 
829 	/* @@@ Need to check for errors here at some point. */
830 
831  	start_lock = jiffies;
832 	lock_buffer(bh);
833 	jbd_lock_bh_state(bh);
834 
835 	/* If it takes too long to lock the buffer, trace it */
836 	time_lock = jbd2_time_diff(start_lock, jiffies);
837 	if (time_lock > HZ/10)
838 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
839 			jiffies_to_msecs(time_lock));
840 
841 	/* We now hold the buffer lock so it is safe to query the buffer
842 	 * state.  Is the buffer dirty?
843 	 *
844 	 * If so, there are two possibilities.  The buffer may be
845 	 * non-journaled, and undergoing a quite legitimate writeback.
846 	 * Otherwise, it is journaled, and we don't expect dirty buffers
847 	 * in that state (the buffers should be marked JBD_Dirty
848 	 * instead.)  So either the IO is being done under our own
849 	 * control and this is a bug, or it's a third party IO such as
850 	 * dump(8) (which may leave the buffer scheduled for read ---
851 	 * ie. locked but not dirty) or tune2fs (which may actually have
852 	 * the buffer dirtied, ugh.)  */
853 
854 	if (buffer_dirty(bh)) {
855 		/*
856 		 * First question: is this buffer already part of the current
857 		 * transaction or the existing committing transaction?
858 		 */
859 		if (jh->b_transaction) {
860 			J_ASSERT_JH(jh,
861 				jh->b_transaction == transaction ||
862 				jh->b_transaction ==
863 					journal->j_committing_transaction);
864 			if (jh->b_next_transaction)
865 				J_ASSERT_JH(jh, jh->b_next_transaction ==
866 							transaction);
867 			warn_dirty_buffer(bh);
868 		}
869 		/*
870 		 * In any case we need to clean the dirty flag and we must
871 		 * do it under the buffer lock to be sure we don't race
872 		 * with running write-out.
873 		 */
874 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
875 		clear_buffer_dirty(bh);
876 		set_buffer_jbddirty(bh);
877 	}
878 
879 	unlock_buffer(bh);
880 
881 	error = -EROFS;
882 	if (is_handle_aborted(handle)) {
883 		jbd_unlock_bh_state(bh);
884 		goto out;
885 	}
886 	error = 0;
887 
888 	/*
889 	 * The buffer is already part of this transaction if b_transaction or
890 	 * b_next_transaction points to it
891 	 */
892 	if (jh->b_transaction == transaction ||
893 	    jh->b_next_transaction == transaction)
894 		goto done;
895 
896 	/*
897 	 * this is the first time this transaction is touching this buffer,
898 	 * reset the modified flag
899 	 */
900        jh->b_modified = 0;
901 
902 	/*
903 	 * If the buffer is not journaled right now, we need to make sure it
904 	 * doesn't get written to disk before the caller actually commits the
905 	 * new data
906 	 */
907 	if (!jh->b_transaction) {
908 		JBUFFER_TRACE(jh, "no transaction");
909 		J_ASSERT_JH(jh, !jh->b_next_transaction);
910 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
911 		/*
912 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
913 		 * visible before attaching it to the running transaction.
914 		 * Paired with barrier in jbd2_write_access_granted()
915 		 */
916 		smp_wmb();
917 		spin_lock(&journal->j_list_lock);
918 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
919 		spin_unlock(&journal->j_list_lock);
920 		goto done;
921 	}
922 	/*
923 	 * If there is already a copy-out version of this buffer, then we don't
924 	 * need to make another one
925 	 */
926 	if (jh->b_frozen_data) {
927 		JBUFFER_TRACE(jh, "has frozen data");
928 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
929 		goto attach_next;
930 	}
931 
932 	JBUFFER_TRACE(jh, "owned by older transaction");
933 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
934 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
935 
936 	/*
937 	 * There is one case we have to be very careful about.  If the
938 	 * committing transaction is currently writing this buffer out to disk
939 	 * and has NOT made a copy-out, then we cannot modify the buffer
940 	 * contents at all right now.  The essence of copy-out is that it is
941 	 * the extra copy, not the primary copy, which gets journaled.  If the
942 	 * primary copy is already going to disk then we cannot do copy-out
943 	 * here.
944 	 */
945 	if (buffer_shadow(bh)) {
946 		JBUFFER_TRACE(jh, "on shadow: sleep");
947 		jbd_unlock_bh_state(bh);
948 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
949 		goto repeat;
950 	}
951 
952 	/*
953 	 * Only do the copy if the currently-owning transaction still needs it.
954 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
955 	 * past that stage (here we use the fact that BH_Shadow is set under
956 	 * bh_state lock together with refiling to BJ_Shadow list and at this
957 	 * point we know the buffer doesn't have BH_Shadow set).
958 	 *
959 	 * Subtle point, though: if this is a get_undo_access, then we will be
960 	 * relying on the frozen_data to contain the new value of the
961 	 * committed_data record after the transaction, so we HAVE to force the
962 	 * frozen_data copy in that case.
963 	 */
964 	if (jh->b_jlist == BJ_Metadata || force_copy) {
965 		JBUFFER_TRACE(jh, "generate frozen data");
966 		if (!frozen_buffer) {
967 			JBUFFER_TRACE(jh, "allocate memory for buffer");
968 			jbd_unlock_bh_state(bh);
969 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
970 						   GFP_NOFS | __GFP_NOFAIL);
971 			goto repeat;
972 		}
973 		jh->b_frozen_data = frozen_buffer;
974 		frozen_buffer = NULL;
975 		jbd2_freeze_jh_data(jh);
976 	}
977 attach_next:
978 	/*
979 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
980 	 * before attaching it to the running transaction. Paired with barrier
981 	 * in jbd2_write_access_granted()
982 	 */
983 	smp_wmb();
984 	jh->b_next_transaction = transaction;
985 
986 done:
987 	jbd_unlock_bh_state(bh);
988 
989 	/*
990 	 * If we are about to journal a buffer, then any revoke pending on it is
991 	 * no longer valid
992 	 */
993 	jbd2_journal_cancel_revoke(handle, jh);
994 
995 out:
996 	if (unlikely(frozen_buffer))	/* It's usually NULL */
997 		jbd2_free(frozen_buffer, bh->b_size);
998 
999 	JBUFFER_TRACE(jh, "exit");
1000 	return error;
1001 }
1002 
1003 /* Fast check whether buffer is already attached to the required transaction */
1004 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1005 							bool undo)
1006 {
1007 	struct journal_head *jh;
1008 	bool ret = false;
1009 
1010 	/* Dirty buffers require special handling... */
1011 	if (buffer_dirty(bh))
1012 		return false;
1013 
1014 	/*
1015 	 * RCU protects us from dereferencing freed pages. So the checks we do
1016 	 * are guaranteed not to oops. However the jh slab object can get freed
1017 	 * & reallocated while we work with it. So we have to be careful. When
1018 	 * we see jh attached to the running transaction, we know it must stay
1019 	 * so until the transaction is committed. Thus jh won't be freed and
1020 	 * will be attached to the same bh while we run.  However it can
1021 	 * happen jh gets freed, reallocated, and attached to the transaction
1022 	 * just after we get pointer to it from bh. So we have to be careful
1023 	 * and recheck jh still belongs to our bh before we return success.
1024 	 */
1025 	rcu_read_lock();
1026 	if (!buffer_jbd(bh))
1027 		goto out;
1028 	/* This should be bh2jh() but that doesn't work with inline functions */
1029 	jh = READ_ONCE(bh->b_private);
1030 	if (!jh)
1031 		goto out;
1032 	/* For undo access buffer must have data copied */
1033 	if (undo && !jh->b_committed_data)
1034 		goto out;
1035 	if (jh->b_transaction != handle->h_transaction &&
1036 	    jh->b_next_transaction != handle->h_transaction)
1037 		goto out;
1038 	/*
1039 	 * There are two reasons for the barrier here:
1040 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1041 	 * detect when jh went through free, realloc, attach to transaction
1042 	 * while we were checking. Paired with implicit barrier in that path.
1043 	 * 2) So that access to bh done after jbd2_write_access_granted()
1044 	 * doesn't get reordered and see inconsistent state of concurrent
1045 	 * do_get_write_access().
1046 	 */
1047 	smp_mb();
1048 	if (unlikely(jh->b_bh != bh))
1049 		goto out;
1050 	ret = true;
1051 out:
1052 	rcu_read_unlock();
1053 	return ret;
1054 }
1055 
1056 /**
1057  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1058  * @handle: transaction to add buffer modifications to
1059  * @bh:     bh to be used for metadata writes
1060  *
1061  * Returns an error code or 0 on success.
1062  *
1063  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1064  * because we're write()ing a buffer which is also part of a shared mapping.
1065  */
1066 
1067 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1068 {
1069 	struct journal_head *jh;
1070 	int rc;
1071 
1072 	if (jbd2_write_access_granted(handle, bh, false))
1073 		return 0;
1074 
1075 	jh = jbd2_journal_add_journal_head(bh);
1076 	/* We do not want to get caught playing with fields which the
1077 	 * log thread also manipulates.  Make sure that the buffer
1078 	 * completes any outstanding IO before proceeding. */
1079 	rc = do_get_write_access(handle, jh, 0);
1080 	jbd2_journal_put_journal_head(jh);
1081 	return rc;
1082 }
1083 
1084 
1085 /*
1086  * When the user wants to journal a newly created buffer_head
1087  * (ie. getblk() returned a new buffer and we are going to populate it
1088  * manually rather than reading off disk), then we need to keep the
1089  * buffer_head locked until it has been completely filled with new
1090  * data.  In this case, we should be able to make the assertion that
1091  * the bh is not already part of an existing transaction.
1092  *
1093  * The buffer should already be locked by the caller by this point.
1094  * There is no lock ranking violation: it was a newly created,
1095  * unlocked buffer beforehand. */
1096 
1097 /**
1098  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1099  * @handle: transaction to new buffer to
1100  * @bh: new buffer.
1101  *
1102  * Call this if you create a new bh.
1103  */
1104 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1105 {
1106 	transaction_t *transaction = handle->h_transaction;
1107 	journal_t *journal;
1108 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1109 	int err;
1110 
1111 	jbd_debug(5, "journal_head %p\n", jh);
1112 	err = -EROFS;
1113 	if (is_handle_aborted(handle))
1114 		goto out;
1115 	journal = transaction->t_journal;
1116 	err = 0;
1117 
1118 	JBUFFER_TRACE(jh, "entry");
1119 	/*
1120 	 * The buffer may already belong to this transaction due to pre-zeroing
1121 	 * in the filesystem's new_block code.  It may also be on the previous,
1122 	 * committing transaction's lists, but it HAS to be in Forget state in
1123 	 * that case: the transaction must have deleted the buffer for it to be
1124 	 * reused here.
1125 	 */
1126 	jbd_lock_bh_state(bh);
1127 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1128 		jh->b_transaction == NULL ||
1129 		(jh->b_transaction == journal->j_committing_transaction &&
1130 			  jh->b_jlist == BJ_Forget)));
1131 
1132 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1133 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1134 
1135 	if (jh->b_transaction == NULL) {
1136 		/*
1137 		 * Previous jbd2_journal_forget() could have left the buffer
1138 		 * with jbddirty bit set because it was being committed. When
1139 		 * the commit finished, we've filed the buffer for
1140 		 * checkpointing and marked it dirty. Now we are reallocating
1141 		 * the buffer so the transaction freeing it must have
1142 		 * committed and so it's safe to clear the dirty bit.
1143 		 */
1144 		clear_buffer_dirty(jh2bh(jh));
1145 		/* first access by this transaction */
1146 		jh->b_modified = 0;
1147 
1148 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1149 		spin_lock(&journal->j_list_lock);
1150 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1151 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1152 		/* first access by this transaction */
1153 		jh->b_modified = 0;
1154 
1155 		JBUFFER_TRACE(jh, "set next transaction");
1156 		spin_lock(&journal->j_list_lock);
1157 		jh->b_next_transaction = transaction;
1158 	}
1159 	spin_unlock(&journal->j_list_lock);
1160 	jbd_unlock_bh_state(bh);
1161 
1162 	/*
1163 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1164 	 * blocks which contain freed but then revoked metadata.  We need
1165 	 * to cancel the revoke in case we end up freeing it yet again
1166 	 * and the reallocating as data - this would cause a second revoke,
1167 	 * which hits an assertion error.
1168 	 */
1169 	JBUFFER_TRACE(jh, "cancelling revoke");
1170 	jbd2_journal_cancel_revoke(handle, jh);
1171 out:
1172 	jbd2_journal_put_journal_head(jh);
1173 	return err;
1174 }
1175 
1176 /**
1177  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1178  *     non-rewindable consequences
1179  * @handle: transaction
1180  * @bh: buffer to undo
1181  *
1182  * Sometimes there is a need to distinguish between metadata which has
1183  * been committed to disk and that which has not.  The ext3fs code uses
1184  * this for freeing and allocating space, we have to make sure that we
1185  * do not reuse freed space until the deallocation has been committed,
1186  * since if we overwrote that space we would make the delete
1187  * un-rewindable in case of a crash.
1188  *
1189  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1190  * buffer for parts of non-rewindable operations such as delete
1191  * operations on the bitmaps.  The journaling code must keep a copy of
1192  * the buffer's contents prior to the undo_access call until such time
1193  * as we know that the buffer has definitely been committed to disk.
1194  *
1195  * We never need to know which transaction the committed data is part
1196  * of, buffers touched here are guaranteed to be dirtied later and so
1197  * will be committed to a new transaction in due course, at which point
1198  * we can discard the old committed data pointer.
1199  *
1200  * Returns error number or 0 on success.
1201  */
1202 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1203 {
1204 	int err;
1205 	struct journal_head *jh;
1206 	char *committed_data = NULL;
1207 
1208 	JBUFFER_TRACE(jh, "entry");
1209 	if (jbd2_write_access_granted(handle, bh, true))
1210 		return 0;
1211 
1212 	jh = jbd2_journal_add_journal_head(bh);
1213 	/*
1214 	 * Do this first --- it can drop the journal lock, so we want to
1215 	 * make sure that obtaining the committed_data is done
1216 	 * atomically wrt. completion of any outstanding commits.
1217 	 */
1218 	err = do_get_write_access(handle, jh, 1);
1219 	if (err)
1220 		goto out;
1221 
1222 repeat:
1223 	if (!jh->b_committed_data)
1224 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1225 					    GFP_NOFS|__GFP_NOFAIL);
1226 
1227 	jbd_lock_bh_state(bh);
1228 	if (!jh->b_committed_data) {
1229 		/* Copy out the current buffer contents into the
1230 		 * preserved, committed copy. */
1231 		JBUFFER_TRACE(jh, "generate b_committed data");
1232 		if (!committed_data) {
1233 			jbd_unlock_bh_state(bh);
1234 			goto repeat;
1235 		}
1236 
1237 		jh->b_committed_data = committed_data;
1238 		committed_data = NULL;
1239 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1240 	}
1241 	jbd_unlock_bh_state(bh);
1242 out:
1243 	jbd2_journal_put_journal_head(jh);
1244 	if (unlikely(committed_data))
1245 		jbd2_free(committed_data, bh->b_size);
1246 	return err;
1247 }
1248 
1249 /**
1250  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1251  * @bh: buffer to trigger on
1252  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1253  *
1254  * Set any triggers on this journal_head.  This is always safe, because
1255  * triggers for a committing buffer will be saved off, and triggers for
1256  * a running transaction will match the buffer in that transaction.
1257  *
1258  * Call with NULL to clear the triggers.
1259  */
1260 void jbd2_journal_set_triggers(struct buffer_head *bh,
1261 			       struct jbd2_buffer_trigger_type *type)
1262 {
1263 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1264 
1265 	if (WARN_ON(!jh))
1266 		return;
1267 	jh->b_triggers = type;
1268 	jbd2_journal_put_journal_head(jh);
1269 }
1270 
1271 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1272 				struct jbd2_buffer_trigger_type *triggers)
1273 {
1274 	struct buffer_head *bh = jh2bh(jh);
1275 
1276 	if (!triggers || !triggers->t_frozen)
1277 		return;
1278 
1279 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1280 }
1281 
1282 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1283 			       struct jbd2_buffer_trigger_type *triggers)
1284 {
1285 	if (!triggers || !triggers->t_abort)
1286 		return;
1287 
1288 	triggers->t_abort(triggers, jh2bh(jh));
1289 }
1290 
1291 /**
1292  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1293  * @handle: transaction to add buffer to.
1294  * @bh: buffer to mark
1295  *
1296  * mark dirty metadata which needs to be journaled as part of the current
1297  * transaction.
1298  *
1299  * The buffer must have previously had jbd2_journal_get_write_access()
1300  * called so that it has a valid journal_head attached to the buffer
1301  * head.
1302  *
1303  * The buffer is placed on the transaction's metadata list and is marked
1304  * as belonging to the transaction.
1305  *
1306  * Returns error number or 0 on success.
1307  *
1308  * Special care needs to be taken if the buffer already belongs to the
1309  * current committing transaction (in which case we should have frozen
1310  * data present for that commit).  In that case, we don't relink the
1311  * buffer: that only gets done when the old transaction finally
1312  * completes its commit.
1313  */
1314 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1315 {
1316 	transaction_t *transaction = handle->h_transaction;
1317 	journal_t *journal;
1318 	struct journal_head *jh;
1319 	int ret = 0;
1320 
1321 	if (is_handle_aborted(handle))
1322 		return -EROFS;
1323 	if (!buffer_jbd(bh)) {
1324 		ret = -EUCLEAN;
1325 		goto out;
1326 	}
1327 	/*
1328 	 * We don't grab jh reference here since the buffer must be part
1329 	 * of the running transaction.
1330 	 */
1331 	jh = bh2jh(bh);
1332 	/*
1333 	 * This and the following assertions are unreliable since we may see jh
1334 	 * in inconsistent state unless we grab bh_state lock. But this is
1335 	 * crucial to catch bugs so let's do a reliable check until the
1336 	 * lockless handling is fully proven.
1337 	 */
1338 	if (jh->b_transaction != transaction &&
1339 	    jh->b_next_transaction != transaction) {
1340 		jbd_lock_bh_state(bh);
1341 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1342 				jh->b_next_transaction == transaction);
1343 		jbd_unlock_bh_state(bh);
1344 	}
1345 	if (jh->b_modified == 1) {
1346 		/* If it's in our transaction it must be in BJ_Metadata list. */
1347 		if (jh->b_transaction == transaction &&
1348 		    jh->b_jlist != BJ_Metadata) {
1349 			jbd_lock_bh_state(bh);
1350 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1351 					jh->b_jlist == BJ_Metadata);
1352 			jbd_unlock_bh_state(bh);
1353 		}
1354 		goto out;
1355 	}
1356 
1357 	journal = transaction->t_journal;
1358 	jbd_debug(5, "journal_head %p\n", jh);
1359 	JBUFFER_TRACE(jh, "entry");
1360 
1361 	jbd_lock_bh_state(bh);
1362 
1363 	if (jh->b_modified == 0) {
1364 		/*
1365 		 * This buffer's got modified and becoming part
1366 		 * of the transaction. This needs to be done
1367 		 * once a transaction -bzzz
1368 		 */
1369 		jh->b_modified = 1;
1370 		if (handle->h_buffer_credits <= 0) {
1371 			ret = -ENOSPC;
1372 			goto out_unlock_bh;
1373 		}
1374 		handle->h_buffer_credits--;
1375 	}
1376 
1377 	/*
1378 	 * fastpath, to avoid expensive locking.  If this buffer is already
1379 	 * on the running transaction's metadata list there is nothing to do.
1380 	 * Nobody can take it off again because there is a handle open.
1381 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1382 	 * result in this test being false, so we go in and take the locks.
1383 	 */
1384 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1385 		JBUFFER_TRACE(jh, "fastpath");
1386 		if (unlikely(jh->b_transaction !=
1387 			     journal->j_running_transaction)) {
1388 			printk(KERN_ERR "JBD2: %s: "
1389 			       "jh->b_transaction (%llu, %p, %u) != "
1390 			       "journal->j_running_transaction (%p, %u)\n",
1391 			       journal->j_devname,
1392 			       (unsigned long long) bh->b_blocknr,
1393 			       jh->b_transaction,
1394 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1395 			       journal->j_running_transaction,
1396 			       journal->j_running_transaction ?
1397 			       journal->j_running_transaction->t_tid : 0);
1398 			ret = -EINVAL;
1399 		}
1400 		goto out_unlock_bh;
1401 	}
1402 
1403 	set_buffer_jbddirty(bh);
1404 
1405 	/*
1406 	 * Metadata already on the current transaction list doesn't
1407 	 * need to be filed.  Metadata on another transaction's list must
1408 	 * be committing, and will be refiled once the commit completes:
1409 	 * leave it alone for now.
1410 	 */
1411 	if (jh->b_transaction != transaction) {
1412 		JBUFFER_TRACE(jh, "already on other transaction");
1413 		if (unlikely(((jh->b_transaction !=
1414 			       journal->j_committing_transaction)) ||
1415 			     (jh->b_next_transaction != transaction))) {
1416 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1417 			       "bad jh for block %llu: "
1418 			       "transaction (%p, %u), "
1419 			       "jh->b_transaction (%p, %u), "
1420 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1421 			       journal->j_devname,
1422 			       (unsigned long long) bh->b_blocknr,
1423 			       transaction, transaction->t_tid,
1424 			       jh->b_transaction,
1425 			       jh->b_transaction ?
1426 			       jh->b_transaction->t_tid : 0,
1427 			       jh->b_next_transaction,
1428 			       jh->b_next_transaction ?
1429 			       jh->b_next_transaction->t_tid : 0,
1430 			       jh->b_jlist);
1431 			WARN_ON(1);
1432 			ret = -EINVAL;
1433 		}
1434 		/* And this case is illegal: we can't reuse another
1435 		 * transaction's data buffer, ever. */
1436 		goto out_unlock_bh;
1437 	}
1438 
1439 	/* That test should have eliminated the following case: */
1440 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1441 
1442 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1443 	spin_lock(&journal->j_list_lock);
1444 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1445 	spin_unlock(&journal->j_list_lock);
1446 out_unlock_bh:
1447 	jbd_unlock_bh_state(bh);
1448 out:
1449 	JBUFFER_TRACE(jh, "exit");
1450 	return ret;
1451 }
1452 
1453 /**
1454  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1455  * @handle: transaction handle
1456  * @bh:     bh to 'forget'
1457  *
1458  * We can only do the bforget if there are no commits pending against the
1459  * buffer.  If the buffer is dirty in the current running transaction we
1460  * can safely unlink it.
1461  *
1462  * bh may not be a journalled buffer at all - it may be a non-JBD
1463  * buffer which came off the hashtable.  Check for this.
1464  *
1465  * Decrements bh->b_count by one.
1466  *
1467  * Allow this call even if the handle has aborted --- it may be part of
1468  * the caller's cleanup after an abort.
1469  */
1470 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1471 {
1472 	transaction_t *transaction = handle->h_transaction;
1473 	journal_t *journal;
1474 	struct journal_head *jh;
1475 	int drop_reserve = 0;
1476 	int err = 0;
1477 	int was_modified = 0;
1478 
1479 	if (is_handle_aborted(handle))
1480 		return -EROFS;
1481 	journal = transaction->t_journal;
1482 
1483 	BUFFER_TRACE(bh, "entry");
1484 
1485 	jbd_lock_bh_state(bh);
1486 
1487 	if (!buffer_jbd(bh))
1488 		goto not_jbd;
1489 	jh = bh2jh(bh);
1490 
1491 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1492 	 * Don't do any jbd operations, and return an error. */
1493 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1494 			 "inconsistent data on disk")) {
1495 		err = -EIO;
1496 		goto not_jbd;
1497 	}
1498 
1499 	/* keep track of whether or not this transaction modified us */
1500 	was_modified = jh->b_modified;
1501 
1502 	/*
1503 	 * The buffer's going from the transaction, we must drop
1504 	 * all references -bzzz
1505 	 */
1506 	jh->b_modified = 0;
1507 
1508 	if (jh->b_transaction == transaction) {
1509 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1510 
1511 		/* If we are forgetting a buffer which is already part
1512 		 * of this transaction, then we can just drop it from
1513 		 * the transaction immediately. */
1514 		clear_buffer_dirty(bh);
1515 		clear_buffer_jbddirty(bh);
1516 
1517 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1518 
1519 		/*
1520 		 * we only want to drop a reference if this transaction
1521 		 * modified the buffer
1522 		 */
1523 		if (was_modified)
1524 			drop_reserve = 1;
1525 
1526 		/*
1527 		 * We are no longer going to journal this buffer.
1528 		 * However, the commit of this transaction is still
1529 		 * important to the buffer: the delete that we are now
1530 		 * processing might obsolete an old log entry, so by
1531 		 * committing, we can satisfy the buffer's checkpoint.
1532 		 *
1533 		 * So, if we have a checkpoint on the buffer, we should
1534 		 * now refile the buffer on our BJ_Forget list so that
1535 		 * we know to remove the checkpoint after we commit.
1536 		 */
1537 
1538 		spin_lock(&journal->j_list_lock);
1539 		if (jh->b_cp_transaction) {
1540 			__jbd2_journal_temp_unlink_buffer(jh);
1541 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1542 		} else {
1543 			__jbd2_journal_unfile_buffer(jh);
1544 			if (!buffer_jbd(bh)) {
1545 				spin_unlock(&journal->j_list_lock);
1546 				jbd_unlock_bh_state(bh);
1547 				__bforget(bh);
1548 				goto drop;
1549 			}
1550 		}
1551 		spin_unlock(&journal->j_list_lock);
1552 	} else if (jh->b_transaction) {
1553 		J_ASSERT_JH(jh, (jh->b_transaction ==
1554 				 journal->j_committing_transaction));
1555 		/* However, if the buffer is still owned by a prior
1556 		 * (committing) transaction, we can't drop it yet... */
1557 		JBUFFER_TRACE(jh, "belongs to older transaction");
1558 		/* ... but we CAN drop it from the new transaction if we
1559 		 * have also modified it since the original commit. */
1560 
1561 		if (jh->b_next_transaction) {
1562 			J_ASSERT(jh->b_next_transaction == transaction);
1563 			spin_lock(&journal->j_list_lock);
1564 			jh->b_next_transaction = NULL;
1565 			spin_unlock(&journal->j_list_lock);
1566 
1567 			/*
1568 			 * only drop a reference if this transaction modified
1569 			 * the buffer
1570 			 */
1571 			if (was_modified)
1572 				drop_reserve = 1;
1573 		}
1574 	}
1575 
1576 not_jbd:
1577 	jbd_unlock_bh_state(bh);
1578 	__brelse(bh);
1579 drop:
1580 	if (drop_reserve) {
1581 		/* no need to reserve log space for this block -bzzz */
1582 		handle->h_buffer_credits++;
1583 	}
1584 	return err;
1585 }
1586 
1587 /**
1588  * int jbd2_journal_stop() - complete a transaction
1589  * @handle: transaction to complete.
1590  *
1591  * All done for a particular handle.
1592  *
1593  * There is not much action needed here.  We just return any remaining
1594  * buffer credits to the transaction and remove the handle.  The only
1595  * complication is that we need to start a commit operation if the
1596  * filesystem is marked for synchronous update.
1597  *
1598  * jbd2_journal_stop itself will not usually return an error, but it may
1599  * do so in unusual circumstances.  In particular, expect it to
1600  * return -EIO if a jbd2_journal_abort has been executed since the
1601  * transaction began.
1602  */
1603 int jbd2_journal_stop(handle_t *handle)
1604 {
1605 	transaction_t *transaction = handle->h_transaction;
1606 	journal_t *journal;
1607 	int err = 0, wait_for_commit = 0;
1608 	tid_t tid;
1609 	pid_t pid;
1610 
1611 	if (!transaction) {
1612 		/*
1613 		 * Handle is already detached from the transaction so
1614 		 * there is nothing to do other than decrease a refcount,
1615 		 * or free the handle if refcount drops to zero
1616 		 */
1617 		if (--handle->h_ref > 0) {
1618 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1619 							 handle->h_ref);
1620 			return err;
1621 		} else {
1622 			if (handle->h_rsv_handle)
1623 				jbd2_free_handle(handle->h_rsv_handle);
1624 			goto free_and_exit;
1625 		}
1626 	}
1627 	journal = transaction->t_journal;
1628 
1629 	J_ASSERT(journal_current_handle() == handle);
1630 
1631 	if (is_handle_aborted(handle))
1632 		err = -EIO;
1633 	else
1634 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1635 
1636 	if (--handle->h_ref > 0) {
1637 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1638 			  handle->h_ref);
1639 		return err;
1640 	}
1641 
1642 	jbd_debug(4, "Handle %p going down\n", handle);
1643 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1644 				transaction->t_tid,
1645 				handle->h_type, handle->h_line_no,
1646 				jiffies - handle->h_start_jiffies,
1647 				handle->h_sync, handle->h_requested_credits,
1648 				(handle->h_requested_credits -
1649 				 handle->h_buffer_credits));
1650 
1651 	/*
1652 	 * Implement synchronous transaction batching.  If the handle
1653 	 * was synchronous, don't force a commit immediately.  Let's
1654 	 * yield and let another thread piggyback onto this
1655 	 * transaction.  Keep doing that while new threads continue to
1656 	 * arrive.  It doesn't cost much - we're about to run a commit
1657 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1658 	 * operations by 30x or more...
1659 	 *
1660 	 * We try and optimize the sleep time against what the
1661 	 * underlying disk can do, instead of having a static sleep
1662 	 * time.  This is useful for the case where our storage is so
1663 	 * fast that it is more optimal to go ahead and force a flush
1664 	 * and wait for the transaction to be committed than it is to
1665 	 * wait for an arbitrary amount of time for new writers to
1666 	 * join the transaction.  We achieve this by measuring how
1667 	 * long it takes to commit a transaction, and compare it with
1668 	 * how long this transaction has been running, and if run time
1669 	 * < commit time then we sleep for the delta and commit.  This
1670 	 * greatly helps super fast disks that would see slowdowns as
1671 	 * more threads started doing fsyncs.
1672 	 *
1673 	 * But don't do this if this process was the most recent one
1674 	 * to perform a synchronous write.  We do this to detect the
1675 	 * case where a single process is doing a stream of sync
1676 	 * writes.  No point in waiting for joiners in that case.
1677 	 *
1678 	 * Setting max_batch_time to 0 disables this completely.
1679 	 */
1680 	pid = current->pid;
1681 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1682 	    journal->j_max_batch_time) {
1683 		u64 commit_time, trans_time;
1684 
1685 		journal->j_last_sync_writer = pid;
1686 
1687 		read_lock(&journal->j_state_lock);
1688 		commit_time = journal->j_average_commit_time;
1689 		read_unlock(&journal->j_state_lock);
1690 
1691 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1692 						   transaction->t_start_time));
1693 
1694 		commit_time = max_t(u64, commit_time,
1695 				    1000*journal->j_min_batch_time);
1696 		commit_time = min_t(u64, commit_time,
1697 				    1000*journal->j_max_batch_time);
1698 
1699 		if (trans_time < commit_time) {
1700 			ktime_t expires = ktime_add_ns(ktime_get(),
1701 						       commit_time);
1702 			set_current_state(TASK_UNINTERRUPTIBLE);
1703 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1704 		}
1705 	}
1706 
1707 	if (handle->h_sync)
1708 		transaction->t_synchronous_commit = 1;
1709 	current->journal_info = NULL;
1710 	atomic_sub(handle->h_buffer_credits,
1711 		   &transaction->t_outstanding_credits);
1712 
1713 	/*
1714 	 * If the handle is marked SYNC, we need to set another commit
1715 	 * going!  We also want to force a commit if the current
1716 	 * transaction is occupying too much of the log, or if the
1717 	 * transaction is too old now.
1718 	 */
1719 	if (handle->h_sync ||
1720 	    (atomic_read(&transaction->t_outstanding_credits) >
1721 	     journal->j_max_transaction_buffers) ||
1722 	    time_after_eq(jiffies, transaction->t_expires)) {
1723 		/* Do this even for aborted journals: an abort still
1724 		 * completes the commit thread, it just doesn't write
1725 		 * anything to disk. */
1726 
1727 		jbd_debug(2, "transaction too old, requesting commit for "
1728 					"handle %p\n", handle);
1729 		/* This is non-blocking */
1730 		jbd2_log_start_commit(journal, transaction->t_tid);
1731 
1732 		/*
1733 		 * Special case: JBD2_SYNC synchronous updates require us
1734 		 * to wait for the commit to complete.
1735 		 */
1736 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1737 			wait_for_commit = 1;
1738 	}
1739 
1740 	/*
1741 	 * Once we drop t_updates, if it goes to zero the transaction
1742 	 * could start committing on us and eventually disappear.  So
1743 	 * once we do this, we must not dereference transaction
1744 	 * pointer again.
1745 	 */
1746 	tid = transaction->t_tid;
1747 	if (atomic_dec_and_test(&transaction->t_updates)) {
1748 		wake_up(&journal->j_wait_updates);
1749 		if (journal->j_barrier_count)
1750 			wake_up(&journal->j_wait_transaction_locked);
1751 	}
1752 
1753 	if (wait_for_commit)
1754 		err = jbd2_log_wait_commit(journal, tid);
1755 
1756 	lock_map_release(&handle->h_lockdep_map);
1757 
1758 	if (handle->h_rsv_handle)
1759 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1760 free_and_exit:
1761 	jbd2_free_handle(handle);
1762 	return err;
1763 }
1764 
1765 /*
1766  *
1767  * List management code snippets: various functions for manipulating the
1768  * transaction buffer lists.
1769  *
1770  */
1771 
1772 /*
1773  * Append a buffer to a transaction list, given the transaction's list head
1774  * pointer.
1775  *
1776  * j_list_lock is held.
1777  *
1778  * jbd_lock_bh_state(jh2bh(jh)) is held.
1779  */
1780 
1781 static inline void
1782 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1783 {
1784 	if (!*list) {
1785 		jh->b_tnext = jh->b_tprev = jh;
1786 		*list = jh;
1787 	} else {
1788 		/* Insert at the tail of the list to preserve order */
1789 		struct journal_head *first = *list, *last = first->b_tprev;
1790 		jh->b_tprev = last;
1791 		jh->b_tnext = first;
1792 		last->b_tnext = first->b_tprev = jh;
1793 	}
1794 }
1795 
1796 /*
1797  * Remove a buffer from a transaction list, given the transaction's list
1798  * head pointer.
1799  *
1800  * Called with j_list_lock held, and the journal may not be locked.
1801  *
1802  * jbd_lock_bh_state(jh2bh(jh)) is held.
1803  */
1804 
1805 static inline void
1806 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1807 {
1808 	if (*list == jh) {
1809 		*list = jh->b_tnext;
1810 		if (*list == jh)
1811 			*list = NULL;
1812 	}
1813 	jh->b_tprev->b_tnext = jh->b_tnext;
1814 	jh->b_tnext->b_tprev = jh->b_tprev;
1815 }
1816 
1817 /*
1818  * Remove a buffer from the appropriate transaction list.
1819  *
1820  * Note that this function can *change* the value of
1821  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1822  * t_reserved_list.  If the caller is holding onto a copy of one of these
1823  * pointers, it could go bad.  Generally the caller needs to re-read the
1824  * pointer from the transaction_t.
1825  *
1826  * Called under j_list_lock.
1827  */
1828 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1829 {
1830 	struct journal_head **list = NULL;
1831 	transaction_t *transaction;
1832 	struct buffer_head *bh = jh2bh(jh);
1833 
1834 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1835 	transaction = jh->b_transaction;
1836 	if (transaction)
1837 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1838 
1839 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1840 	if (jh->b_jlist != BJ_None)
1841 		J_ASSERT_JH(jh, transaction != NULL);
1842 
1843 	switch (jh->b_jlist) {
1844 	case BJ_None:
1845 		return;
1846 	case BJ_Metadata:
1847 		transaction->t_nr_buffers--;
1848 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1849 		list = &transaction->t_buffers;
1850 		break;
1851 	case BJ_Forget:
1852 		list = &transaction->t_forget;
1853 		break;
1854 	case BJ_Shadow:
1855 		list = &transaction->t_shadow_list;
1856 		break;
1857 	case BJ_Reserved:
1858 		list = &transaction->t_reserved_list;
1859 		break;
1860 	}
1861 
1862 	__blist_del_buffer(list, jh);
1863 	jh->b_jlist = BJ_None;
1864 	if (test_clear_buffer_jbddirty(bh))
1865 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1866 }
1867 
1868 /*
1869  * Remove buffer from all transactions.
1870  *
1871  * Called with bh_state lock and j_list_lock
1872  *
1873  * jh and bh may be already freed when this function returns.
1874  */
1875 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1876 {
1877 	__jbd2_journal_temp_unlink_buffer(jh);
1878 	jh->b_transaction = NULL;
1879 	jbd2_journal_put_journal_head(jh);
1880 }
1881 
1882 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1883 {
1884 	struct buffer_head *bh = jh2bh(jh);
1885 
1886 	/* Get reference so that buffer cannot be freed before we unlock it */
1887 	get_bh(bh);
1888 	jbd_lock_bh_state(bh);
1889 	spin_lock(&journal->j_list_lock);
1890 	__jbd2_journal_unfile_buffer(jh);
1891 	spin_unlock(&journal->j_list_lock);
1892 	jbd_unlock_bh_state(bh);
1893 	__brelse(bh);
1894 }
1895 
1896 /*
1897  * Called from jbd2_journal_try_to_free_buffers().
1898  *
1899  * Called under jbd_lock_bh_state(bh)
1900  */
1901 static void
1902 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1903 {
1904 	struct journal_head *jh;
1905 
1906 	jh = bh2jh(bh);
1907 
1908 	if (buffer_locked(bh) || buffer_dirty(bh))
1909 		goto out;
1910 
1911 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1912 		goto out;
1913 
1914 	spin_lock(&journal->j_list_lock);
1915 	if (jh->b_cp_transaction != NULL) {
1916 		/* written-back checkpointed metadata buffer */
1917 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1918 		__jbd2_journal_remove_checkpoint(jh);
1919 	}
1920 	spin_unlock(&journal->j_list_lock);
1921 out:
1922 	return;
1923 }
1924 
1925 /**
1926  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1927  * @journal: journal for operation
1928  * @page: to try and free
1929  * @gfp_mask: we use the mask to detect how hard should we try to release
1930  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1931  * code to release the buffers.
1932  *
1933  *
1934  * For all the buffers on this page,
1935  * if they are fully written out ordered data, move them onto BUF_CLEAN
1936  * so try_to_free_buffers() can reap them.
1937  *
1938  * This function returns non-zero if we wish try_to_free_buffers()
1939  * to be called. We do this if the page is releasable by try_to_free_buffers().
1940  * We also do it if the page has locked or dirty buffers and the caller wants
1941  * us to perform sync or async writeout.
1942  *
1943  * This complicates JBD locking somewhat.  We aren't protected by the
1944  * BKL here.  We wish to remove the buffer from its committing or
1945  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1946  *
1947  * This may *change* the value of transaction_t->t_datalist, so anyone
1948  * who looks at t_datalist needs to lock against this function.
1949  *
1950  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1951  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1952  * will come out of the lock with the buffer dirty, which makes it
1953  * ineligible for release here.
1954  *
1955  * Who else is affected by this?  hmm...  Really the only contender
1956  * is do_get_write_access() - it could be looking at the buffer while
1957  * journal_try_to_free_buffer() is changing its state.  But that
1958  * cannot happen because we never reallocate freed data as metadata
1959  * while the data is part of a transaction.  Yes?
1960  *
1961  * Return 0 on failure, 1 on success
1962  */
1963 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1964 				struct page *page, gfp_t gfp_mask)
1965 {
1966 	struct buffer_head *head;
1967 	struct buffer_head *bh;
1968 	int ret = 0;
1969 
1970 	J_ASSERT(PageLocked(page));
1971 
1972 	head = page_buffers(page);
1973 	bh = head;
1974 	do {
1975 		struct journal_head *jh;
1976 
1977 		/*
1978 		 * We take our own ref against the journal_head here to avoid
1979 		 * having to add tons of locking around each instance of
1980 		 * jbd2_journal_put_journal_head().
1981 		 */
1982 		jh = jbd2_journal_grab_journal_head(bh);
1983 		if (!jh)
1984 			continue;
1985 
1986 		jbd_lock_bh_state(bh);
1987 		__journal_try_to_free_buffer(journal, bh);
1988 		jbd2_journal_put_journal_head(jh);
1989 		jbd_unlock_bh_state(bh);
1990 		if (buffer_jbd(bh))
1991 			goto busy;
1992 	} while ((bh = bh->b_this_page) != head);
1993 
1994 	ret = try_to_free_buffers(page);
1995 
1996 busy:
1997 	return ret;
1998 }
1999 
2000 /*
2001  * This buffer is no longer needed.  If it is on an older transaction's
2002  * checkpoint list we need to record it on this transaction's forget list
2003  * to pin this buffer (and hence its checkpointing transaction) down until
2004  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2005  * release it.
2006  * Returns non-zero if JBD no longer has an interest in the buffer.
2007  *
2008  * Called under j_list_lock.
2009  *
2010  * Called under jbd_lock_bh_state(bh).
2011  */
2012 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2013 {
2014 	int may_free = 1;
2015 	struct buffer_head *bh = jh2bh(jh);
2016 
2017 	if (jh->b_cp_transaction) {
2018 		JBUFFER_TRACE(jh, "on running+cp transaction");
2019 		__jbd2_journal_temp_unlink_buffer(jh);
2020 		/*
2021 		 * We don't want to write the buffer anymore, clear the
2022 		 * bit so that we don't confuse checks in
2023 		 * __journal_file_buffer
2024 		 */
2025 		clear_buffer_dirty(bh);
2026 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2027 		may_free = 0;
2028 	} else {
2029 		JBUFFER_TRACE(jh, "on running transaction");
2030 		__jbd2_journal_unfile_buffer(jh);
2031 	}
2032 	return may_free;
2033 }
2034 
2035 /*
2036  * jbd2_journal_invalidatepage
2037  *
2038  * This code is tricky.  It has a number of cases to deal with.
2039  *
2040  * There are two invariants which this code relies on:
2041  *
2042  * i_size must be updated on disk before we start calling invalidatepage on the
2043  * data.
2044  *
2045  *  This is done in ext3 by defining an ext3_setattr method which
2046  *  updates i_size before truncate gets going.  By maintaining this
2047  *  invariant, we can be sure that it is safe to throw away any buffers
2048  *  attached to the current transaction: once the transaction commits,
2049  *  we know that the data will not be needed.
2050  *
2051  *  Note however that we can *not* throw away data belonging to the
2052  *  previous, committing transaction!
2053  *
2054  * Any disk blocks which *are* part of the previous, committing
2055  * transaction (and which therefore cannot be discarded immediately) are
2056  * not going to be reused in the new running transaction
2057  *
2058  *  The bitmap committed_data images guarantee this: any block which is
2059  *  allocated in one transaction and removed in the next will be marked
2060  *  as in-use in the committed_data bitmap, so cannot be reused until
2061  *  the next transaction to delete the block commits.  This means that
2062  *  leaving committing buffers dirty is quite safe: the disk blocks
2063  *  cannot be reallocated to a different file and so buffer aliasing is
2064  *  not possible.
2065  *
2066  *
2067  * The above applies mainly to ordered data mode.  In writeback mode we
2068  * don't make guarantees about the order in which data hits disk --- in
2069  * particular we don't guarantee that new dirty data is flushed before
2070  * transaction commit --- so it is always safe just to discard data
2071  * immediately in that mode.  --sct
2072  */
2073 
2074 /*
2075  * The journal_unmap_buffer helper function returns zero if the buffer
2076  * concerned remains pinned as an anonymous buffer belonging to an older
2077  * transaction.
2078  *
2079  * We're outside-transaction here.  Either or both of j_running_transaction
2080  * and j_committing_transaction may be NULL.
2081  */
2082 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2083 				int partial_page)
2084 {
2085 	transaction_t *transaction;
2086 	struct journal_head *jh;
2087 	int may_free = 1;
2088 
2089 	BUFFER_TRACE(bh, "entry");
2090 
2091 	/*
2092 	 * It is safe to proceed here without the j_list_lock because the
2093 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2094 	 * holding the page lock. --sct
2095 	 */
2096 
2097 	if (!buffer_jbd(bh))
2098 		goto zap_buffer_unlocked;
2099 
2100 	/* OK, we have data buffer in journaled mode */
2101 	write_lock(&journal->j_state_lock);
2102 	jbd_lock_bh_state(bh);
2103 	spin_lock(&journal->j_list_lock);
2104 
2105 	jh = jbd2_journal_grab_journal_head(bh);
2106 	if (!jh)
2107 		goto zap_buffer_no_jh;
2108 
2109 	/*
2110 	 * We cannot remove the buffer from checkpoint lists until the
2111 	 * transaction adding inode to orphan list (let's call it T)
2112 	 * is committed.  Otherwise if the transaction changing the
2113 	 * buffer would be cleaned from the journal before T is
2114 	 * committed, a crash will cause that the correct contents of
2115 	 * the buffer will be lost.  On the other hand we have to
2116 	 * clear the buffer dirty bit at latest at the moment when the
2117 	 * transaction marking the buffer as freed in the filesystem
2118 	 * structures is committed because from that moment on the
2119 	 * block can be reallocated and used by a different page.
2120 	 * Since the block hasn't been freed yet but the inode has
2121 	 * already been added to orphan list, it is safe for us to add
2122 	 * the buffer to BJ_Forget list of the newest transaction.
2123 	 *
2124 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2125 	 * because the buffer_head may be attached to the page straddling
2126 	 * i_size (can happen only when blocksize < pagesize) and thus the
2127 	 * buffer_head can be reused when the file is extended again. So we end
2128 	 * up keeping around invalidated buffers attached to transactions'
2129 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2130 	 * the transaction this buffer was modified in.
2131 	 */
2132 	transaction = jh->b_transaction;
2133 	if (transaction == NULL) {
2134 		/* First case: not on any transaction.  If it
2135 		 * has no checkpoint link, then we can zap it:
2136 		 * it's a writeback-mode buffer so we don't care
2137 		 * if it hits disk safely. */
2138 		if (!jh->b_cp_transaction) {
2139 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2140 			goto zap_buffer;
2141 		}
2142 
2143 		if (!buffer_dirty(bh)) {
2144 			/* bdflush has written it.  We can drop it now */
2145 			__jbd2_journal_remove_checkpoint(jh);
2146 			goto zap_buffer;
2147 		}
2148 
2149 		/* OK, it must be in the journal but still not
2150 		 * written fully to disk: it's metadata or
2151 		 * journaled data... */
2152 
2153 		if (journal->j_running_transaction) {
2154 			/* ... and once the current transaction has
2155 			 * committed, the buffer won't be needed any
2156 			 * longer. */
2157 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2158 			may_free = __dispose_buffer(jh,
2159 					journal->j_running_transaction);
2160 			goto zap_buffer;
2161 		} else {
2162 			/* There is no currently-running transaction. So the
2163 			 * orphan record which we wrote for this file must have
2164 			 * passed into commit.  We must attach this buffer to
2165 			 * the committing transaction, if it exists. */
2166 			if (journal->j_committing_transaction) {
2167 				JBUFFER_TRACE(jh, "give to committing trans");
2168 				may_free = __dispose_buffer(jh,
2169 					journal->j_committing_transaction);
2170 				goto zap_buffer;
2171 			} else {
2172 				/* The orphan record's transaction has
2173 				 * committed.  We can cleanse this buffer */
2174 				clear_buffer_jbddirty(bh);
2175 				__jbd2_journal_remove_checkpoint(jh);
2176 				goto zap_buffer;
2177 			}
2178 		}
2179 	} else if (transaction == journal->j_committing_transaction) {
2180 		JBUFFER_TRACE(jh, "on committing transaction");
2181 		/*
2182 		 * The buffer is committing, we simply cannot touch
2183 		 * it. If the page is straddling i_size we have to wait
2184 		 * for commit and try again.
2185 		 */
2186 		if (partial_page) {
2187 			jbd2_journal_put_journal_head(jh);
2188 			spin_unlock(&journal->j_list_lock);
2189 			jbd_unlock_bh_state(bh);
2190 			write_unlock(&journal->j_state_lock);
2191 			return -EBUSY;
2192 		}
2193 		/*
2194 		 * OK, buffer won't be reachable after truncate. We just set
2195 		 * j_next_transaction to the running transaction (if there is
2196 		 * one) and mark buffer as freed so that commit code knows it
2197 		 * should clear dirty bits when it is done with the buffer.
2198 		 */
2199 		set_buffer_freed(bh);
2200 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2201 			jh->b_next_transaction = journal->j_running_transaction;
2202 		jbd2_journal_put_journal_head(jh);
2203 		spin_unlock(&journal->j_list_lock);
2204 		jbd_unlock_bh_state(bh);
2205 		write_unlock(&journal->j_state_lock);
2206 		return 0;
2207 	} else {
2208 		/* Good, the buffer belongs to the running transaction.
2209 		 * We are writing our own transaction's data, not any
2210 		 * previous one's, so it is safe to throw it away
2211 		 * (remember that we expect the filesystem to have set
2212 		 * i_size already for this truncate so recovery will not
2213 		 * expose the disk blocks we are discarding here.) */
2214 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2215 		JBUFFER_TRACE(jh, "on running transaction");
2216 		may_free = __dispose_buffer(jh, transaction);
2217 	}
2218 
2219 zap_buffer:
2220 	/*
2221 	 * This is tricky. Although the buffer is truncated, it may be reused
2222 	 * if blocksize < pagesize and it is attached to the page straddling
2223 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2224 	 * running transaction, journal_get_write_access() won't clear
2225 	 * b_modified and credit accounting gets confused. So clear b_modified
2226 	 * here.
2227 	 */
2228 	jh->b_modified = 0;
2229 	jbd2_journal_put_journal_head(jh);
2230 zap_buffer_no_jh:
2231 	spin_unlock(&journal->j_list_lock);
2232 	jbd_unlock_bh_state(bh);
2233 	write_unlock(&journal->j_state_lock);
2234 zap_buffer_unlocked:
2235 	clear_buffer_dirty(bh);
2236 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2237 	clear_buffer_mapped(bh);
2238 	clear_buffer_req(bh);
2239 	clear_buffer_new(bh);
2240 	clear_buffer_delay(bh);
2241 	clear_buffer_unwritten(bh);
2242 	bh->b_bdev = NULL;
2243 	return may_free;
2244 }
2245 
2246 /**
2247  * void jbd2_journal_invalidatepage()
2248  * @journal: journal to use for flush...
2249  * @page:    page to flush
2250  * @offset:  start of the range to invalidate
2251  * @length:  length of the range to invalidate
2252  *
2253  * Reap page buffers containing data after in the specified range in page.
2254  * Can return -EBUSY if buffers are part of the committing transaction and
2255  * the page is straddling i_size. Caller then has to wait for current commit
2256  * and try again.
2257  */
2258 int jbd2_journal_invalidatepage(journal_t *journal,
2259 				struct page *page,
2260 				unsigned int offset,
2261 				unsigned int length)
2262 {
2263 	struct buffer_head *head, *bh, *next;
2264 	unsigned int stop = offset + length;
2265 	unsigned int curr_off = 0;
2266 	int partial_page = (offset || length < PAGE_SIZE);
2267 	int may_free = 1;
2268 	int ret = 0;
2269 
2270 	if (!PageLocked(page))
2271 		BUG();
2272 	if (!page_has_buffers(page))
2273 		return 0;
2274 
2275 	BUG_ON(stop > PAGE_SIZE || stop < length);
2276 
2277 	/* We will potentially be playing with lists other than just the
2278 	 * data lists (especially for journaled data mode), so be
2279 	 * cautious in our locking. */
2280 
2281 	head = bh = page_buffers(page);
2282 	do {
2283 		unsigned int next_off = curr_off + bh->b_size;
2284 		next = bh->b_this_page;
2285 
2286 		if (next_off > stop)
2287 			return 0;
2288 
2289 		if (offset <= curr_off) {
2290 			/* This block is wholly outside the truncation point */
2291 			lock_buffer(bh);
2292 			ret = journal_unmap_buffer(journal, bh, partial_page);
2293 			unlock_buffer(bh);
2294 			if (ret < 0)
2295 				return ret;
2296 			may_free &= ret;
2297 		}
2298 		curr_off = next_off;
2299 		bh = next;
2300 
2301 	} while (bh != head);
2302 
2303 	if (!partial_page) {
2304 		if (may_free && try_to_free_buffers(page))
2305 			J_ASSERT(!page_has_buffers(page));
2306 	}
2307 	return 0;
2308 }
2309 
2310 /*
2311  * File a buffer on the given transaction list.
2312  */
2313 void __jbd2_journal_file_buffer(struct journal_head *jh,
2314 			transaction_t *transaction, int jlist)
2315 {
2316 	struct journal_head **list = NULL;
2317 	int was_dirty = 0;
2318 	struct buffer_head *bh = jh2bh(jh);
2319 
2320 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2321 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2322 
2323 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2324 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2325 				jh->b_transaction == NULL);
2326 
2327 	if (jh->b_transaction && jh->b_jlist == jlist)
2328 		return;
2329 
2330 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2331 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2332 		/*
2333 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2334 		 * instead of buffer_dirty. We should not see a dirty bit set
2335 		 * here because we clear it in do_get_write_access but e.g.
2336 		 * tune2fs can modify the sb and set the dirty bit at any time
2337 		 * so we try to gracefully handle that.
2338 		 */
2339 		if (buffer_dirty(bh))
2340 			warn_dirty_buffer(bh);
2341 		if (test_clear_buffer_dirty(bh) ||
2342 		    test_clear_buffer_jbddirty(bh))
2343 			was_dirty = 1;
2344 	}
2345 
2346 	if (jh->b_transaction)
2347 		__jbd2_journal_temp_unlink_buffer(jh);
2348 	else
2349 		jbd2_journal_grab_journal_head(bh);
2350 	jh->b_transaction = transaction;
2351 
2352 	switch (jlist) {
2353 	case BJ_None:
2354 		J_ASSERT_JH(jh, !jh->b_committed_data);
2355 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2356 		return;
2357 	case BJ_Metadata:
2358 		transaction->t_nr_buffers++;
2359 		list = &transaction->t_buffers;
2360 		break;
2361 	case BJ_Forget:
2362 		list = &transaction->t_forget;
2363 		break;
2364 	case BJ_Shadow:
2365 		list = &transaction->t_shadow_list;
2366 		break;
2367 	case BJ_Reserved:
2368 		list = &transaction->t_reserved_list;
2369 		break;
2370 	}
2371 
2372 	__blist_add_buffer(list, jh);
2373 	jh->b_jlist = jlist;
2374 
2375 	if (was_dirty)
2376 		set_buffer_jbddirty(bh);
2377 }
2378 
2379 void jbd2_journal_file_buffer(struct journal_head *jh,
2380 				transaction_t *transaction, int jlist)
2381 {
2382 	jbd_lock_bh_state(jh2bh(jh));
2383 	spin_lock(&transaction->t_journal->j_list_lock);
2384 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2385 	spin_unlock(&transaction->t_journal->j_list_lock);
2386 	jbd_unlock_bh_state(jh2bh(jh));
2387 }
2388 
2389 /*
2390  * Remove a buffer from its current buffer list in preparation for
2391  * dropping it from its current transaction entirely.  If the buffer has
2392  * already started to be used by a subsequent transaction, refile the
2393  * buffer on that transaction's metadata list.
2394  *
2395  * Called under j_list_lock
2396  * Called under jbd_lock_bh_state(jh2bh(jh))
2397  *
2398  * jh and bh may be already free when this function returns
2399  */
2400 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2401 {
2402 	int was_dirty, jlist;
2403 	struct buffer_head *bh = jh2bh(jh);
2404 
2405 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2406 	if (jh->b_transaction)
2407 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2408 
2409 	/* If the buffer is now unused, just drop it. */
2410 	if (jh->b_next_transaction == NULL) {
2411 		__jbd2_journal_unfile_buffer(jh);
2412 		return;
2413 	}
2414 
2415 	/*
2416 	 * It has been modified by a later transaction: add it to the new
2417 	 * transaction's metadata list.
2418 	 */
2419 
2420 	was_dirty = test_clear_buffer_jbddirty(bh);
2421 	__jbd2_journal_temp_unlink_buffer(jh);
2422 	/*
2423 	 * We set b_transaction here because b_next_transaction will inherit
2424 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2425 	 * take a new one.
2426 	 */
2427 	jh->b_transaction = jh->b_next_transaction;
2428 	jh->b_next_transaction = NULL;
2429 	if (buffer_freed(bh))
2430 		jlist = BJ_Forget;
2431 	else if (jh->b_modified)
2432 		jlist = BJ_Metadata;
2433 	else
2434 		jlist = BJ_Reserved;
2435 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2436 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2437 
2438 	if (was_dirty)
2439 		set_buffer_jbddirty(bh);
2440 }
2441 
2442 /*
2443  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2444  * bh reference so that we can safely unlock bh.
2445  *
2446  * The jh and bh may be freed by this call.
2447  */
2448 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2449 {
2450 	struct buffer_head *bh = jh2bh(jh);
2451 
2452 	/* Get reference so that buffer cannot be freed before we unlock it */
2453 	get_bh(bh);
2454 	jbd_lock_bh_state(bh);
2455 	spin_lock(&journal->j_list_lock);
2456 	__jbd2_journal_refile_buffer(jh);
2457 	jbd_unlock_bh_state(bh);
2458 	spin_unlock(&journal->j_list_lock);
2459 	__brelse(bh);
2460 }
2461 
2462 /*
2463  * File inode in the inode list of the handle's transaction
2464  */
2465 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2466 				   unsigned long flags)
2467 {
2468 	transaction_t *transaction = handle->h_transaction;
2469 	journal_t *journal;
2470 
2471 	if (is_handle_aborted(handle))
2472 		return -EROFS;
2473 	journal = transaction->t_journal;
2474 
2475 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2476 			transaction->t_tid);
2477 
2478 	/*
2479 	 * First check whether inode isn't already on the transaction's
2480 	 * lists without taking the lock. Note that this check is safe
2481 	 * without the lock as we cannot race with somebody removing inode
2482 	 * from the transaction. The reason is that we remove inode from the
2483 	 * transaction only in journal_release_jbd_inode() and when we commit
2484 	 * the transaction. We are guarded from the first case by holding
2485 	 * a reference to the inode. We are safe against the second case
2486 	 * because if jinode->i_transaction == transaction, commit code
2487 	 * cannot touch the transaction because we hold reference to it,
2488 	 * and if jinode->i_next_transaction == transaction, commit code
2489 	 * will only file the inode where we want it.
2490 	 */
2491 	if ((jinode->i_transaction == transaction ||
2492 	    jinode->i_next_transaction == transaction) &&
2493 	    (jinode->i_flags & flags) == flags)
2494 		return 0;
2495 
2496 	spin_lock(&journal->j_list_lock);
2497 	jinode->i_flags |= flags;
2498 	/* Is inode already attached where we need it? */
2499 	if (jinode->i_transaction == transaction ||
2500 	    jinode->i_next_transaction == transaction)
2501 		goto done;
2502 
2503 	/*
2504 	 * We only ever set this variable to 1 so the test is safe. Since
2505 	 * t_need_data_flush is likely to be set, we do the test to save some
2506 	 * cacheline bouncing
2507 	 */
2508 	if (!transaction->t_need_data_flush)
2509 		transaction->t_need_data_flush = 1;
2510 	/* On some different transaction's list - should be
2511 	 * the committing one */
2512 	if (jinode->i_transaction) {
2513 		J_ASSERT(jinode->i_next_transaction == NULL);
2514 		J_ASSERT(jinode->i_transaction ==
2515 					journal->j_committing_transaction);
2516 		jinode->i_next_transaction = transaction;
2517 		goto done;
2518 	}
2519 	/* Not on any transaction list... */
2520 	J_ASSERT(!jinode->i_next_transaction);
2521 	jinode->i_transaction = transaction;
2522 	list_add(&jinode->i_list, &transaction->t_inode_list);
2523 done:
2524 	spin_unlock(&journal->j_list_lock);
2525 
2526 	return 0;
2527 }
2528 
2529 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2530 {
2531 	return jbd2_journal_file_inode(handle, jinode,
2532 				       JI_WRITE_DATA | JI_WAIT_DATA);
2533 }
2534 
2535 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2536 {
2537 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2538 }
2539 
2540 /*
2541  * File truncate and transaction commit interact with each other in a
2542  * non-trivial way.  If a transaction writing data block A is
2543  * committing, we cannot discard the data by truncate until we have
2544  * written them.  Otherwise if we crashed after the transaction with
2545  * write has committed but before the transaction with truncate has
2546  * committed, we could see stale data in block A.  This function is a
2547  * helper to solve this problem.  It starts writeout of the truncated
2548  * part in case it is in the committing transaction.
2549  *
2550  * Filesystem code must call this function when inode is journaled in
2551  * ordered mode before truncation happens and after the inode has been
2552  * placed on orphan list with the new inode size. The second condition
2553  * avoids the race that someone writes new data and we start
2554  * committing the transaction after this function has been called but
2555  * before a transaction for truncate is started (and furthermore it
2556  * allows us to optimize the case where the addition to orphan list
2557  * happens in the same transaction as write --- we don't have to write
2558  * any data in such case).
2559  */
2560 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2561 					struct jbd2_inode *jinode,
2562 					loff_t new_size)
2563 {
2564 	transaction_t *inode_trans, *commit_trans;
2565 	int ret = 0;
2566 
2567 	/* This is a quick check to avoid locking if not necessary */
2568 	if (!jinode->i_transaction)
2569 		goto out;
2570 	/* Locks are here just to force reading of recent values, it is
2571 	 * enough that the transaction was not committing before we started
2572 	 * a transaction adding the inode to orphan list */
2573 	read_lock(&journal->j_state_lock);
2574 	commit_trans = journal->j_committing_transaction;
2575 	read_unlock(&journal->j_state_lock);
2576 	spin_lock(&journal->j_list_lock);
2577 	inode_trans = jinode->i_transaction;
2578 	spin_unlock(&journal->j_list_lock);
2579 	if (inode_trans == commit_trans) {
2580 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2581 			new_size, LLONG_MAX);
2582 		if (ret)
2583 			jbd2_journal_abort(journal, ret);
2584 	}
2585 out:
2586 	return ret;
2587 }
2588