xref: /openbmc/linux/fs/jbd2/transaction.c (revision 6a108a14)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *	The journal MUST be locked.  We don't perform atomic mallocs on the
44  *	new transaction	and we can't block without protecting against other
45  *	processes trying to touch the journal while it is in transition.
46  *
47  */
48 
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 	atomic_set(&transaction->t_updates, 0);
59 	atomic_set(&transaction->t_outstanding_credits, 0);
60 	atomic_set(&transaction->t_handle_count, 0);
61 	INIT_LIST_HEAD(&transaction->t_inode_list);
62 	INIT_LIST_HEAD(&transaction->t_private_list);
63 
64 	/* Set up the commit timer for the new transaction. */
65 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 	add_timer(&journal->j_commit_timer);
67 
68 	J_ASSERT(journal->j_running_transaction == NULL);
69 	journal->j_running_transaction = transaction;
70 	transaction->t_max_wait = 0;
71 	transaction->t_start = jiffies;
72 
73 	return transaction;
74 }
75 
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83 
84 /*
85  * Update transiaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction)
95 {
96 #ifdef CONFIG_JBD2_DEBUG
97 	unsigned long ts = jiffies;
98 
99 	if (jbd2_journal_enable_debug &&
100 	    time_after(transaction->t_start, ts)) {
101 		ts = jbd2_time_diff(ts, transaction->t_start);
102 		spin_lock(&transaction->t_handle_lock);
103 		if (ts > transaction->t_max_wait)
104 			transaction->t_max_wait = ts;
105 		spin_unlock(&transaction->t_handle_lock);
106 	}
107 #endif
108 }
109 
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116 
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118 			     int gfp_mask)
119 {
120 	transaction_t *transaction;
121 	int needed;
122 	int nblocks = handle->h_buffer_credits;
123 	transaction_t *new_transaction = NULL;
124 
125 	if (nblocks > journal->j_max_transaction_buffers) {
126 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127 		       current->comm, nblocks,
128 		       journal->j_max_transaction_buffers);
129 		return -ENOSPC;
130 	}
131 
132 alloc_transaction:
133 	if (!journal->j_running_transaction) {
134 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135 		if (!new_transaction) {
136 			/*
137 			 * If __GFP_FS is not present, then we may be
138 			 * being called from inside the fs writeback
139 			 * layer, so we MUST NOT fail.  Since
140 			 * __GFP_NOFAIL is going away, we will arrange
141 			 * to retry the allocation ourselves.
142 			 */
143 			if ((gfp_mask & __GFP_FS) == 0) {
144 				congestion_wait(BLK_RW_ASYNC, HZ/50);
145 				goto alloc_transaction;
146 			}
147 			return -ENOMEM;
148 		}
149 	}
150 
151 	jbd_debug(3, "New handle %p going live.\n", handle);
152 
153 	/*
154 	 * We need to hold j_state_lock until t_updates has been incremented,
155 	 * for proper journal barrier handling
156 	 */
157 repeat:
158 	read_lock(&journal->j_state_lock);
159 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160 	if (is_journal_aborted(journal) ||
161 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162 		read_unlock(&journal->j_state_lock);
163 		kfree(new_transaction);
164 		return -EROFS;
165 	}
166 
167 	/* Wait on the journal's transaction barrier if necessary */
168 	if (journal->j_barrier_count) {
169 		read_unlock(&journal->j_state_lock);
170 		wait_event(journal->j_wait_transaction_locked,
171 				journal->j_barrier_count == 0);
172 		goto repeat;
173 	}
174 
175 	if (!journal->j_running_transaction) {
176 		read_unlock(&journal->j_state_lock);
177 		if (!new_transaction)
178 			goto alloc_transaction;
179 		write_lock(&journal->j_state_lock);
180 		if (!journal->j_running_transaction) {
181 			jbd2_get_transaction(journal, new_transaction);
182 			new_transaction = NULL;
183 		}
184 		write_unlock(&journal->j_state_lock);
185 		goto repeat;
186 	}
187 
188 	transaction = journal->j_running_transaction;
189 
190 	/*
191 	 * If the current transaction is locked down for commit, wait for the
192 	 * lock to be released.
193 	 */
194 	if (transaction->t_state == T_LOCKED) {
195 		DEFINE_WAIT(wait);
196 
197 		prepare_to_wait(&journal->j_wait_transaction_locked,
198 					&wait, TASK_UNINTERRUPTIBLE);
199 		read_unlock(&journal->j_state_lock);
200 		schedule();
201 		finish_wait(&journal->j_wait_transaction_locked, &wait);
202 		goto repeat;
203 	}
204 
205 	/*
206 	 * If there is not enough space left in the log to write all potential
207 	 * buffers requested by this operation, we need to stall pending a log
208 	 * checkpoint to free some more log space.
209 	 */
210 	needed = atomic_add_return(nblocks,
211 				   &transaction->t_outstanding_credits);
212 
213 	if (needed > journal->j_max_transaction_buffers) {
214 		/*
215 		 * If the current transaction is already too large, then start
216 		 * to commit it: we can then go back and attach this handle to
217 		 * a new transaction.
218 		 */
219 		DEFINE_WAIT(wait);
220 
221 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
222 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
223 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
224 				TASK_UNINTERRUPTIBLE);
225 		__jbd2_log_start_commit(journal, transaction->t_tid);
226 		read_unlock(&journal->j_state_lock);
227 		schedule();
228 		finish_wait(&journal->j_wait_transaction_locked, &wait);
229 		goto repeat;
230 	}
231 
232 	/*
233 	 * The commit code assumes that it can get enough log space
234 	 * without forcing a checkpoint.  This is *critical* for
235 	 * correctness: a checkpoint of a buffer which is also
236 	 * associated with a committing transaction creates a deadlock,
237 	 * so commit simply cannot force through checkpoints.
238 	 *
239 	 * We must therefore ensure the necessary space in the journal
240 	 * *before* starting to dirty potentially checkpointed buffers
241 	 * in the new transaction.
242 	 *
243 	 * The worst part is, any transaction currently committing can
244 	 * reduce the free space arbitrarily.  Be careful to account for
245 	 * those buffers when checkpointing.
246 	 */
247 
248 	/*
249 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
250 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
251 	 * the committing transaction.  Really, we only need to give it
252 	 * committing_transaction->t_outstanding_credits plus "enough" for
253 	 * the log control blocks.
254 	 * Also, this test is inconsistent with the matching one in
255 	 * jbd2_journal_extend().
256 	 */
257 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
258 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
259 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
260 		read_unlock(&journal->j_state_lock);
261 		write_lock(&journal->j_state_lock);
262 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
263 			__jbd2_log_wait_for_space(journal);
264 		write_unlock(&journal->j_state_lock);
265 		goto repeat;
266 	}
267 
268 	/* OK, account for the buffers that this operation expects to
269 	 * use and add the handle to the running transaction.
270 	 */
271 	update_t_max_wait(transaction);
272 	handle->h_transaction = transaction;
273 	atomic_inc(&transaction->t_updates);
274 	atomic_inc(&transaction->t_handle_count);
275 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
276 		  handle, nblocks,
277 		  atomic_read(&transaction->t_outstanding_credits),
278 		  __jbd2_log_space_left(journal));
279 	read_unlock(&journal->j_state_lock);
280 
281 	lock_map_acquire(&handle->h_lockdep_map);
282 	kfree(new_transaction);
283 	return 0;
284 }
285 
286 static struct lock_class_key jbd2_handle_key;
287 
288 /* Allocate a new handle.  This should probably be in a slab... */
289 static handle_t *new_handle(int nblocks)
290 {
291 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
292 	if (!handle)
293 		return NULL;
294 	memset(handle, 0, sizeof(*handle));
295 	handle->h_buffer_credits = nblocks;
296 	handle->h_ref = 1;
297 
298 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
299 						&jbd2_handle_key, 0);
300 
301 	return handle;
302 }
303 
304 /**
305  * handle_t *jbd2_journal_start() - Obtain a new handle.
306  * @journal: Journal to start transaction on.
307  * @nblocks: number of block buffer we might modify
308  *
309  * We make sure that the transaction can guarantee at least nblocks of
310  * modified buffers in the log.  We block until the log can guarantee
311  * that much space.
312  *
313  * This function is visible to journal users (like ext3fs), so is not
314  * called with the journal already locked.
315  *
316  * Return a pointer to a newly allocated handle, or NULL on failure
317  */
318 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
319 {
320 	handle_t *handle = journal_current_handle();
321 	int err;
322 
323 	if (!journal)
324 		return ERR_PTR(-EROFS);
325 
326 	if (handle) {
327 		J_ASSERT(handle->h_transaction->t_journal == journal);
328 		handle->h_ref++;
329 		return handle;
330 	}
331 
332 	handle = new_handle(nblocks);
333 	if (!handle)
334 		return ERR_PTR(-ENOMEM);
335 
336 	current->journal_info = handle;
337 
338 	err = start_this_handle(journal, handle, gfp_mask);
339 	if (err < 0) {
340 		jbd2_free_handle(handle);
341 		current->journal_info = NULL;
342 		handle = ERR_PTR(err);
343 	}
344 	return handle;
345 }
346 EXPORT_SYMBOL(jbd2__journal_start);
347 
348 
349 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
350 {
351 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
352 }
353 EXPORT_SYMBOL(jbd2_journal_start);
354 
355 
356 /**
357  * int jbd2_journal_extend() - extend buffer credits.
358  * @handle:  handle to 'extend'
359  * @nblocks: nr blocks to try to extend by.
360  *
361  * Some transactions, such as large extends and truncates, can be done
362  * atomically all at once or in several stages.  The operation requests
363  * a credit for a number of buffer modications in advance, but can
364  * extend its credit if it needs more.
365  *
366  * jbd2_journal_extend tries to give the running handle more buffer credits.
367  * It does not guarantee that allocation - this is a best-effort only.
368  * The calling process MUST be able to deal cleanly with a failure to
369  * extend here.
370  *
371  * Return 0 on success, non-zero on failure.
372  *
373  * return code < 0 implies an error
374  * return code > 0 implies normal transaction-full status.
375  */
376 int jbd2_journal_extend(handle_t *handle, int nblocks)
377 {
378 	transaction_t *transaction = handle->h_transaction;
379 	journal_t *journal = transaction->t_journal;
380 	int result;
381 	int wanted;
382 
383 	result = -EIO;
384 	if (is_handle_aborted(handle))
385 		goto out;
386 
387 	result = 1;
388 
389 	read_lock(&journal->j_state_lock);
390 
391 	/* Don't extend a locked-down transaction! */
392 	if (handle->h_transaction->t_state != T_RUNNING) {
393 		jbd_debug(3, "denied handle %p %d blocks: "
394 			  "transaction not running\n", handle, nblocks);
395 		goto error_out;
396 	}
397 
398 	spin_lock(&transaction->t_handle_lock);
399 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
400 
401 	if (wanted > journal->j_max_transaction_buffers) {
402 		jbd_debug(3, "denied handle %p %d blocks: "
403 			  "transaction too large\n", handle, nblocks);
404 		goto unlock;
405 	}
406 
407 	if (wanted > __jbd2_log_space_left(journal)) {
408 		jbd_debug(3, "denied handle %p %d blocks: "
409 			  "insufficient log space\n", handle, nblocks);
410 		goto unlock;
411 	}
412 
413 	handle->h_buffer_credits += nblocks;
414 	atomic_add(nblocks, &transaction->t_outstanding_credits);
415 	result = 0;
416 
417 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
418 unlock:
419 	spin_unlock(&transaction->t_handle_lock);
420 error_out:
421 	read_unlock(&journal->j_state_lock);
422 out:
423 	return result;
424 }
425 
426 
427 /**
428  * int jbd2_journal_restart() - restart a handle .
429  * @handle:  handle to restart
430  * @nblocks: nr credits requested
431  *
432  * Restart a handle for a multi-transaction filesystem
433  * operation.
434  *
435  * If the jbd2_journal_extend() call above fails to grant new buffer credits
436  * to a running handle, a call to jbd2_journal_restart will commit the
437  * handle's transaction so far and reattach the handle to a new
438  * transaction capabable of guaranteeing the requested number of
439  * credits.
440  */
441 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
442 {
443 	transaction_t *transaction = handle->h_transaction;
444 	journal_t *journal = transaction->t_journal;
445 	int ret;
446 
447 	/* If we've had an abort of any type, don't even think about
448 	 * actually doing the restart! */
449 	if (is_handle_aborted(handle))
450 		return 0;
451 
452 	/*
453 	 * First unlink the handle from its current transaction, and start the
454 	 * commit on that.
455 	 */
456 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
457 	J_ASSERT(journal_current_handle() == handle);
458 
459 	read_lock(&journal->j_state_lock);
460 	spin_lock(&transaction->t_handle_lock);
461 	atomic_sub(handle->h_buffer_credits,
462 		   &transaction->t_outstanding_credits);
463 	if (atomic_dec_and_test(&transaction->t_updates))
464 		wake_up(&journal->j_wait_updates);
465 	spin_unlock(&transaction->t_handle_lock);
466 
467 	jbd_debug(2, "restarting handle %p\n", handle);
468 	__jbd2_log_start_commit(journal, transaction->t_tid);
469 	read_unlock(&journal->j_state_lock);
470 
471 	lock_map_release(&handle->h_lockdep_map);
472 	handle->h_buffer_credits = nblocks;
473 	ret = start_this_handle(journal, handle, gfp_mask);
474 	return ret;
475 }
476 EXPORT_SYMBOL(jbd2__journal_restart);
477 
478 
479 int jbd2_journal_restart(handle_t *handle, int nblocks)
480 {
481 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
482 }
483 EXPORT_SYMBOL(jbd2_journal_restart);
484 
485 /**
486  * void jbd2_journal_lock_updates () - establish a transaction barrier.
487  * @journal:  Journal to establish a barrier on.
488  *
489  * This locks out any further updates from being started, and blocks
490  * until all existing updates have completed, returning only once the
491  * journal is in a quiescent state with no updates running.
492  *
493  * The journal lock should not be held on entry.
494  */
495 void jbd2_journal_lock_updates(journal_t *journal)
496 {
497 	DEFINE_WAIT(wait);
498 
499 	write_lock(&journal->j_state_lock);
500 	++journal->j_barrier_count;
501 
502 	/* Wait until there are no running updates */
503 	while (1) {
504 		transaction_t *transaction = journal->j_running_transaction;
505 
506 		if (!transaction)
507 			break;
508 
509 		spin_lock(&transaction->t_handle_lock);
510 		if (!atomic_read(&transaction->t_updates)) {
511 			spin_unlock(&transaction->t_handle_lock);
512 			break;
513 		}
514 		prepare_to_wait(&journal->j_wait_updates, &wait,
515 				TASK_UNINTERRUPTIBLE);
516 		spin_unlock(&transaction->t_handle_lock);
517 		write_unlock(&journal->j_state_lock);
518 		schedule();
519 		finish_wait(&journal->j_wait_updates, &wait);
520 		write_lock(&journal->j_state_lock);
521 	}
522 	write_unlock(&journal->j_state_lock);
523 
524 	/*
525 	 * We have now established a barrier against other normal updates, but
526 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
527 	 * to make sure that we serialise special journal-locked operations
528 	 * too.
529 	 */
530 	mutex_lock(&journal->j_barrier);
531 }
532 
533 /**
534  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
535  * @journal:  Journal to release the barrier on.
536  *
537  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
538  *
539  * Should be called without the journal lock held.
540  */
541 void jbd2_journal_unlock_updates (journal_t *journal)
542 {
543 	J_ASSERT(journal->j_barrier_count != 0);
544 
545 	mutex_unlock(&journal->j_barrier);
546 	write_lock(&journal->j_state_lock);
547 	--journal->j_barrier_count;
548 	write_unlock(&journal->j_state_lock);
549 	wake_up(&journal->j_wait_transaction_locked);
550 }
551 
552 static void warn_dirty_buffer(struct buffer_head *bh)
553 {
554 	char b[BDEVNAME_SIZE];
555 
556 	printk(KERN_WARNING
557 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
558 	       "There's a risk of filesystem corruption in case of system "
559 	       "crash.\n",
560 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
561 }
562 
563 /*
564  * If the buffer is already part of the current transaction, then there
565  * is nothing we need to do.  If it is already part of a prior
566  * transaction which we are still committing to disk, then we need to
567  * make sure that we do not overwrite the old copy: we do copy-out to
568  * preserve the copy going to disk.  We also account the buffer against
569  * the handle's metadata buffer credits (unless the buffer is already
570  * part of the transaction, that is).
571  *
572  */
573 static int
574 do_get_write_access(handle_t *handle, struct journal_head *jh,
575 			int force_copy)
576 {
577 	struct buffer_head *bh;
578 	transaction_t *transaction;
579 	journal_t *journal;
580 	int error;
581 	char *frozen_buffer = NULL;
582 	int need_copy = 0;
583 
584 	if (is_handle_aborted(handle))
585 		return -EROFS;
586 
587 	transaction = handle->h_transaction;
588 	journal = transaction->t_journal;
589 
590 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
591 
592 	JBUFFER_TRACE(jh, "entry");
593 repeat:
594 	bh = jh2bh(jh);
595 
596 	/* @@@ Need to check for errors here at some point. */
597 
598 	lock_buffer(bh);
599 	jbd_lock_bh_state(bh);
600 
601 	/* We now hold the buffer lock so it is safe to query the buffer
602 	 * state.  Is the buffer dirty?
603 	 *
604 	 * If so, there are two possibilities.  The buffer may be
605 	 * non-journaled, and undergoing a quite legitimate writeback.
606 	 * Otherwise, it is journaled, and we don't expect dirty buffers
607 	 * in that state (the buffers should be marked JBD_Dirty
608 	 * instead.)  So either the IO is being done under our own
609 	 * control and this is a bug, or it's a third party IO such as
610 	 * dump(8) (which may leave the buffer scheduled for read ---
611 	 * ie. locked but not dirty) or tune2fs (which may actually have
612 	 * the buffer dirtied, ugh.)  */
613 
614 	if (buffer_dirty(bh)) {
615 		/*
616 		 * First question: is this buffer already part of the current
617 		 * transaction or the existing committing transaction?
618 		 */
619 		if (jh->b_transaction) {
620 			J_ASSERT_JH(jh,
621 				jh->b_transaction == transaction ||
622 				jh->b_transaction ==
623 					journal->j_committing_transaction);
624 			if (jh->b_next_transaction)
625 				J_ASSERT_JH(jh, jh->b_next_transaction ==
626 							transaction);
627 			warn_dirty_buffer(bh);
628 		}
629 		/*
630 		 * In any case we need to clean the dirty flag and we must
631 		 * do it under the buffer lock to be sure we don't race
632 		 * with running write-out.
633 		 */
634 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
635 		clear_buffer_dirty(bh);
636 		set_buffer_jbddirty(bh);
637 	}
638 
639 	unlock_buffer(bh);
640 
641 	error = -EROFS;
642 	if (is_handle_aborted(handle)) {
643 		jbd_unlock_bh_state(bh);
644 		goto out;
645 	}
646 	error = 0;
647 
648 	/*
649 	 * The buffer is already part of this transaction if b_transaction or
650 	 * b_next_transaction points to it
651 	 */
652 	if (jh->b_transaction == transaction ||
653 	    jh->b_next_transaction == transaction)
654 		goto done;
655 
656 	/*
657 	 * this is the first time this transaction is touching this buffer,
658 	 * reset the modified flag
659 	 */
660        jh->b_modified = 0;
661 
662 	/*
663 	 * If there is already a copy-out version of this buffer, then we don't
664 	 * need to make another one
665 	 */
666 	if (jh->b_frozen_data) {
667 		JBUFFER_TRACE(jh, "has frozen data");
668 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
669 		jh->b_next_transaction = transaction;
670 		goto done;
671 	}
672 
673 	/* Is there data here we need to preserve? */
674 
675 	if (jh->b_transaction && jh->b_transaction != transaction) {
676 		JBUFFER_TRACE(jh, "owned by older transaction");
677 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
678 		J_ASSERT_JH(jh, jh->b_transaction ==
679 					journal->j_committing_transaction);
680 
681 		/* There is one case we have to be very careful about.
682 		 * If the committing transaction is currently writing
683 		 * this buffer out to disk and has NOT made a copy-out,
684 		 * then we cannot modify the buffer contents at all
685 		 * right now.  The essence of copy-out is that it is the
686 		 * extra copy, not the primary copy, which gets
687 		 * journaled.  If the primary copy is already going to
688 		 * disk then we cannot do copy-out here. */
689 
690 		if (jh->b_jlist == BJ_Shadow) {
691 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
692 			wait_queue_head_t *wqh;
693 
694 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
695 
696 			JBUFFER_TRACE(jh, "on shadow: sleep");
697 			jbd_unlock_bh_state(bh);
698 			/* commit wakes up all shadow buffers after IO */
699 			for ( ; ; ) {
700 				prepare_to_wait(wqh, &wait.wait,
701 						TASK_UNINTERRUPTIBLE);
702 				if (jh->b_jlist != BJ_Shadow)
703 					break;
704 				schedule();
705 			}
706 			finish_wait(wqh, &wait.wait);
707 			goto repeat;
708 		}
709 
710 		/* Only do the copy if the currently-owning transaction
711 		 * still needs it.  If it is on the Forget list, the
712 		 * committing transaction is past that stage.  The
713 		 * buffer had better remain locked during the kmalloc,
714 		 * but that should be true --- we hold the journal lock
715 		 * still and the buffer is already on the BUF_JOURNAL
716 		 * list so won't be flushed.
717 		 *
718 		 * Subtle point, though: if this is a get_undo_access,
719 		 * then we will be relying on the frozen_data to contain
720 		 * the new value of the committed_data record after the
721 		 * transaction, so we HAVE to force the frozen_data copy
722 		 * in that case. */
723 
724 		if (jh->b_jlist != BJ_Forget || force_copy) {
725 			JBUFFER_TRACE(jh, "generate frozen data");
726 			if (!frozen_buffer) {
727 				JBUFFER_TRACE(jh, "allocate memory for buffer");
728 				jbd_unlock_bh_state(bh);
729 				frozen_buffer =
730 					jbd2_alloc(jh2bh(jh)->b_size,
731 							 GFP_NOFS);
732 				if (!frozen_buffer) {
733 					printk(KERN_EMERG
734 					       "%s: OOM for frozen_buffer\n",
735 					       __func__);
736 					JBUFFER_TRACE(jh, "oom!");
737 					error = -ENOMEM;
738 					jbd_lock_bh_state(bh);
739 					goto done;
740 				}
741 				goto repeat;
742 			}
743 			jh->b_frozen_data = frozen_buffer;
744 			frozen_buffer = NULL;
745 			need_copy = 1;
746 		}
747 		jh->b_next_transaction = transaction;
748 	}
749 
750 
751 	/*
752 	 * Finally, if the buffer is not journaled right now, we need to make
753 	 * sure it doesn't get written to disk before the caller actually
754 	 * commits the new data
755 	 */
756 	if (!jh->b_transaction) {
757 		JBUFFER_TRACE(jh, "no transaction");
758 		J_ASSERT_JH(jh, !jh->b_next_transaction);
759 		jh->b_transaction = transaction;
760 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
761 		spin_lock(&journal->j_list_lock);
762 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
763 		spin_unlock(&journal->j_list_lock);
764 	}
765 
766 done:
767 	if (need_copy) {
768 		struct page *page;
769 		int offset;
770 		char *source;
771 
772 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
773 			    "Possible IO failure.\n");
774 		page = jh2bh(jh)->b_page;
775 		offset = offset_in_page(jh2bh(jh)->b_data);
776 		source = kmap_atomic(page, KM_USER0);
777 		/* Fire data frozen trigger just before we copy the data */
778 		jbd2_buffer_frozen_trigger(jh, source + offset,
779 					   jh->b_triggers);
780 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
781 		kunmap_atomic(source, KM_USER0);
782 
783 		/*
784 		 * Now that the frozen data is saved off, we need to store
785 		 * any matching triggers.
786 		 */
787 		jh->b_frozen_triggers = jh->b_triggers;
788 	}
789 	jbd_unlock_bh_state(bh);
790 
791 	/*
792 	 * If we are about to journal a buffer, then any revoke pending on it is
793 	 * no longer valid
794 	 */
795 	jbd2_journal_cancel_revoke(handle, jh);
796 
797 out:
798 	if (unlikely(frozen_buffer))	/* It's usually NULL */
799 		jbd2_free(frozen_buffer, bh->b_size);
800 
801 	JBUFFER_TRACE(jh, "exit");
802 	return error;
803 }
804 
805 /**
806  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
807  * @handle: transaction to add buffer modifications to
808  * @bh:     bh to be used for metadata writes
809  * @credits: variable that will receive credits for the buffer
810  *
811  * Returns an error code or 0 on success.
812  *
813  * In full data journalling mode the buffer may be of type BJ_AsyncData,
814  * because we're write()ing a buffer which is also part of a shared mapping.
815  */
816 
817 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
818 {
819 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
820 	int rc;
821 
822 	/* We do not want to get caught playing with fields which the
823 	 * log thread also manipulates.  Make sure that the buffer
824 	 * completes any outstanding IO before proceeding. */
825 	rc = do_get_write_access(handle, jh, 0);
826 	jbd2_journal_put_journal_head(jh);
827 	return rc;
828 }
829 
830 
831 /*
832  * When the user wants to journal a newly created buffer_head
833  * (ie. getblk() returned a new buffer and we are going to populate it
834  * manually rather than reading off disk), then we need to keep the
835  * buffer_head locked until it has been completely filled with new
836  * data.  In this case, we should be able to make the assertion that
837  * the bh is not already part of an existing transaction.
838  *
839  * The buffer should already be locked by the caller by this point.
840  * There is no lock ranking violation: it was a newly created,
841  * unlocked buffer beforehand. */
842 
843 /**
844  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
845  * @handle: transaction to new buffer to
846  * @bh: new buffer.
847  *
848  * Call this if you create a new bh.
849  */
850 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
851 {
852 	transaction_t *transaction = handle->h_transaction;
853 	journal_t *journal = transaction->t_journal;
854 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
855 	int err;
856 
857 	jbd_debug(5, "journal_head %p\n", jh);
858 	err = -EROFS;
859 	if (is_handle_aborted(handle))
860 		goto out;
861 	err = 0;
862 
863 	JBUFFER_TRACE(jh, "entry");
864 	/*
865 	 * The buffer may already belong to this transaction due to pre-zeroing
866 	 * in the filesystem's new_block code.  It may also be on the previous,
867 	 * committing transaction's lists, but it HAS to be in Forget state in
868 	 * that case: the transaction must have deleted the buffer for it to be
869 	 * reused here.
870 	 */
871 	jbd_lock_bh_state(bh);
872 	spin_lock(&journal->j_list_lock);
873 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
874 		jh->b_transaction == NULL ||
875 		(jh->b_transaction == journal->j_committing_transaction &&
876 			  jh->b_jlist == BJ_Forget)));
877 
878 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
879 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
880 
881 	if (jh->b_transaction == NULL) {
882 		/*
883 		 * Previous jbd2_journal_forget() could have left the buffer
884 		 * with jbddirty bit set because it was being committed. When
885 		 * the commit finished, we've filed the buffer for
886 		 * checkpointing and marked it dirty. Now we are reallocating
887 		 * the buffer so the transaction freeing it must have
888 		 * committed and so it's safe to clear the dirty bit.
889 		 */
890 		clear_buffer_dirty(jh2bh(jh));
891 		jh->b_transaction = transaction;
892 
893 		/* first access by this transaction */
894 		jh->b_modified = 0;
895 
896 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
897 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
898 	} else if (jh->b_transaction == journal->j_committing_transaction) {
899 		/* first access by this transaction */
900 		jh->b_modified = 0;
901 
902 		JBUFFER_TRACE(jh, "set next transaction");
903 		jh->b_next_transaction = transaction;
904 	}
905 	spin_unlock(&journal->j_list_lock);
906 	jbd_unlock_bh_state(bh);
907 
908 	/*
909 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
910 	 * blocks which contain freed but then revoked metadata.  We need
911 	 * to cancel the revoke in case we end up freeing it yet again
912 	 * and the reallocating as data - this would cause a second revoke,
913 	 * which hits an assertion error.
914 	 */
915 	JBUFFER_TRACE(jh, "cancelling revoke");
916 	jbd2_journal_cancel_revoke(handle, jh);
917 	jbd2_journal_put_journal_head(jh);
918 out:
919 	return err;
920 }
921 
922 /**
923  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
924  *     non-rewindable consequences
925  * @handle: transaction
926  * @bh: buffer to undo
927  * @credits: store the number of taken credits here (if not NULL)
928  *
929  * Sometimes there is a need to distinguish between metadata which has
930  * been committed to disk and that which has not.  The ext3fs code uses
931  * this for freeing and allocating space, we have to make sure that we
932  * do not reuse freed space until the deallocation has been committed,
933  * since if we overwrote that space we would make the delete
934  * un-rewindable in case of a crash.
935  *
936  * To deal with that, jbd2_journal_get_undo_access requests write access to a
937  * buffer for parts of non-rewindable operations such as delete
938  * operations on the bitmaps.  The journaling code must keep a copy of
939  * the buffer's contents prior to the undo_access call until such time
940  * as we know that the buffer has definitely been committed to disk.
941  *
942  * We never need to know which transaction the committed data is part
943  * of, buffers touched here are guaranteed to be dirtied later and so
944  * will be committed to a new transaction in due course, at which point
945  * we can discard the old committed data pointer.
946  *
947  * Returns error number or 0 on success.
948  */
949 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
950 {
951 	int err;
952 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
953 	char *committed_data = NULL;
954 
955 	JBUFFER_TRACE(jh, "entry");
956 
957 	/*
958 	 * Do this first --- it can drop the journal lock, so we want to
959 	 * make sure that obtaining the committed_data is done
960 	 * atomically wrt. completion of any outstanding commits.
961 	 */
962 	err = do_get_write_access(handle, jh, 1);
963 	if (err)
964 		goto out;
965 
966 repeat:
967 	if (!jh->b_committed_data) {
968 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
969 		if (!committed_data) {
970 			printk(KERN_EMERG "%s: No memory for committed data\n",
971 				__func__);
972 			err = -ENOMEM;
973 			goto out;
974 		}
975 	}
976 
977 	jbd_lock_bh_state(bh);
978 	if (!jh->b_committed_data) {
979 		/* Copy out the current buffer contents into the
980 		 * preserved, committed copy. */
981 		JBUFFER_TRACE(jh, "generate b_committed data");
982 		if (!committed_data) {
983 			jbd_unlock_bh_state(bh);
984 			goto repeat;
985 		}
986 
987 		jh->b_committed_data = committed_data;
988 		committed_data = NULL;
989 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
990 	}
991 	jbd_unlock_bh_state(bh);
992 out:
993 	jbd2_journal_put_journal_head(jh);
994 	if (unlikely(committed_data))
995 		jbd2_free(committed_data, bh->b_size);
996 	return err;
997 }
998 
999 /**
1000  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1001  * @bh: buffer to trigger on
1002  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1003  *
1004  * Set any triggers on this journal_head.  This is always safe, because
1005  * triggers for a committing buffer will be saved off, and triggers for
1006  * a running transaction will match the buffer in that transaction.
1007  *
1008  * Call with NULL to clear the triggers.
1009  */
1010 void jbd2_journal_set_triggers(struct buffer_head *bh,
1011 			       struct jbd2_buffer_trigger_type *type)
1012 {
1013 	struct journal_head *jh = bh2jh(bh);
1014 
1015 	jh->b_triggers = type;
1016 }
1017 
1018 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1019 				struct jbd2_buffer_trigger_type *triggers)
1020 {
1021 	struct buffer_head *bh = jh2bh(jh);
1022 
1023 	if (!triggers || !triggers->t_frozen)
1024 		return;
1025 
1026 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1027 }
1028 
1029 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1030 			       struct jbd2_buffer_trigger_type *triggers)
1031 {
1032 	if (!triggers || !triggers->t_abort)
1033 		return;
1034 
1035 	triggers->t_abort(triggers, jh2bh(jh));
1036 }
1037 
1038 
1039 
1040 /**
1041  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1042  * @handle: transaction to add buffer to.
1043  * @bh: buffer to mark
1044  *
1045  * mark dirty metadata which needs to be journaled as part of the current
1046  * transaction.
1047  *
1048  * The buffer is placed on the transaction's metadata list and is marked
1049  * as belonging to the transaction.
1050  *
1051  * Returns error number or 0 on success.
1052  *
1053  * Special care needs to be taken if the buffer already belongs to the
1054  * current committing transaction (in which case we should have frozen
1055  * data present for that commit).  In that case, we don't relink the
1056  * buffer: that only gets done when the old transaction finally
1057  * completes its commit.
1058  */
1059 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1060 {
1061 	transaction_t *transaction = handle->h_transaction;
1062 	journal_t *journal = transaction->t_journal;
1063 	struct journal_head *jh = bh2jh(bh);
1064 
1065 	jbd_debug(5, "journal_head %p\n", jh);
1066 	JBUFFER_TRACE(jh, "entry");
1067 	if (is_handle_aborted(handle))
1068 		goto out;
1069 
1070 	jbd_lock_bh_state(bh);
1071 
1072 	if (jh->b_modified == 0) {
1073 		/*
1074 		 * This buffer's got modified and becoming part
1075 		 * of the transaction. This needs to be done
1076 		 * once a transaction -bzzz
1077 		 */
1078 		jh->b_modified = 1;
1079 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1080 		handle->h_buffer_credits--;
1081 	}
1082 
1083 	/*
1084 	 * fastpath, to avoid expensive locking.  If this buffer is already
1085 	 * on the running transaction's metadata list there is nothing to do.
1086 	 * Nobody can take it off again because there is a handle open.
1087 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1088 	 * result in this test being false, so we go in and take the locks.
1089 	 */
1090 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1091 		JBUFFER_TRACE(jh, "fastpath");
1092 		J_ASSERT_JH(jh, jh->b_transaction ==
1093 					journal->j_running_transaction);
1094 		goto out_unlock_bh;
1095 	}
1096 
1097 	set_buffer_jbddirty(bh);
1098 
1099 	/*
1100 	 * Metadata already on the current transaction list doesn't
1101 	 * need to be filed.  Metadata on another transaction's list must
1102 	 * be committing, and will be refiled once the commit completes:
1103 	 * leave it alone for now.
1104 	 */
1105 	if (jh->b_transaction != transaction) {
1106 		JBUFFER_TRACE(jh, "already on other transaction");
1107 		J_ASSERT_JH(jh, jh->b_transaction ==
1108 					journal->j_committing_transaction);
1109 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1110 		/* And this case is illegal: we can't reuse another
1111 		 * transaction's data buffer, ever. */
1112 		goto out_unlock_bh;
1113 	}
1114 
1115 	/* That test should have eliminated the following case: */
1116 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1117 
1118 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1119 	spin_lock(&journal->j_list_lock);
1120 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1121 	spin_unlock(&journal->j_list_lock);
1122 out_unlock_bh:
1123 	jbd_unlock_bh_state(bh);
1124 out:
1125 	JBUFFER_TRACE(jh, "exit");
1126 	return 0;
1127 }
1128 
1129 /*
1130  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1131  * updates, if the update decided in the end that it didn't need access.
1132  *
1133  */
1134 void
1135 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1136 {
1137 	BUFFER_TRACE(bh, "entry");
1138 }
1139 
1140 /**
1141  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1142  * @handle: transaction handle
1143  * @bh:     bh to 'forget'
1144  *
1145  * We can only do the bforget if there are no commits pending against the
1146  * buffer.  If the buffer is dirty in the current running transaction we
1147  * can safely unlink it.
1148  *
1149  * bh may not be a journalled buffer at all - it may be a non-JBD
1150  * buffer which came off the hashtable.  Check for this.
1151  *
1152  * Decrements bh->b_count by one.
1153  *
1154  * Allow this call even if the handle has aborted --- it may be part of
1155  * the caller's cleanup after an abort.
1156  */
1157 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1158 {
1159 	transaction_t *transaction = handle->h_transaction;
1160 	journal_t *journal = transaction->t_journal;
1161 	struct journal_head *jh;
1162 	int drop_reserve = 0;
1163 	int err = 0;
1164 	int was_modified = 0;
1165 
1166 	BUFFER_TRACE(bh, "entry");
1167 
1168 	jbd_lock_bh_state(bh);
1169 	spin_lock(&journal->j_list_lock);
1170 
1171 	if (!buffer_jbd(bh))
1172 		goto not_jbd;
1173 	jh = bh2jh(bh);
1174 
1175 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1176 	 * Don't do any jbd operations, and return an error. */
1177 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1178 			 "inconsistent data on disk")) {
1179 		err = -EIO;
1180 		goto not_jbd;
1181 	}
1182 
1183 	/* keep track of wether or not this transaction modified us */
1184 	was_modified = jh->b_modified;
1185 
1186 	/*
1187 	 * The buffer's going from the transaction, we must drop
1188 	 * all references -bzzz
1189 	 */
1190 	jh->b_modified = 0;
1191 
1192 	if (jh->b_transaction == handle->h_transaction) {
1193 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1194 
1195 		/* If we are forgetting a buffer which is already part
1196 		 * of this transaction, then we can just drop it from
1197 		 * the transaction immediately. */
1198 		clear_buffer_dirty(bh);
1199 		clear_buffer_jbddirty(bh);
1200 
1201 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1202 
1203 		/*
1204 		 * we only want to drop a reference if this transaction
1205 		 * modified the buffer
1206 		 */
1207 		if (was_modified)
1208 			drop_reserve = 1;
1209 
1210 		/*
1211 		 * We are no longer going to journal this buffer.
1212 		 * However, the commit of this transaction is still
1213 		 * important to the buffer: the delete that we are now
1214 		 * processing might obsolete an old log entry, so by
1215 		 * committing, we can satisfy the buffer's checkpoint.
1216 		 *
1217 		 * So, if we have a checkpoint on the buffer, we should
1218 		 * now refile the buffer on our BJ_Forget list so that
1219 		 * we know to remove the checkpoint after we commit.
1220 		 */
1221 
1222 		if (jh->b_cp_transaction) {
1223 			__jbd2_journal_temp_unlink_buffer(jh);
1224 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1225 		} else {
1226 			__jbd2_journal_unfile_buffer(jh);
1227 			jbd2_journal_remove_journal_head(bh);
1228 			__brelse(bh);
1229 			if (!buffer_jbd(bh)) {
1230 				spin_unlock(&journal->j_list_lock);
1231 				jbd_unlock_bh_state(bh);
1232 				__bforget(bh);
1233 				goto drop;
1234 			}
1235 		}
1236 	} else if (jh->b_transaction) {
1237 		J_ASSERT_JH(jh, (jh->b_transaction ==
1238 				 journal->j_committing_transaction));
1239 		/* However, if the buffer is still owned by a prior
1240 		 * (committing) transaction, we can't drop it yet... */
1241 		JBUFFER_TRACE(jh, "belongs to older transaction");
1242 		/* ... but we CAN drop it from the new transaction if we
1243 		 * have also modified it since the original commit. */
1244 
1245 		if (jh->b_next_transaction) {
1246 			J_ASSERT(jh->b_next_transaction == transaction);
1247 			jh->b_next_transaction = NULL;
1248 
1249 			/*
1250 			 * only drop a reference if this transaction modified
1251 			 * the buffer
1252 			 */
1253 			if (was_modified)
1254 				drop_reserve = 1;
1255 		}
1256 	}
1257 
1258 not_jbd:
1259 	spin_unlock(&journal->j_list_lock);
1260 	jbd_unlock_bh_state(bh);
1261 	__brelse(bh);
1262 drop:
1263 	if (drop_reserve) {
1264 		/* no need to reserve log space for this block -bzzz */
1265 		handle->h_buffer_credits++;
1266 	}
1267 	return err;
1268 }
1269 
1270 /**
1271  * int jbd2_journal_stop() - complete a transaction
1272  * @handle: tranaction to complete.
1273  *
1274  * All done for a particular handle.
1275  *
1276  * There is not much action needed here.  We just return any remaining
1277  * buffer credits to the transaction and remove the handle.  The only
1278  * complication is that we need to start a commit operation if the
1279  * filesystem is marked for synchronous update.
1280  *
1281  * jbd2_journal_stop itself will not usually return an error, but it may
1282  * do so in unusual circumstances.  In particular, expect it to
1283  * return -EIO if a jbd2_journal_abort has been executed since the
1284  * transaction began.
1285  */
1286 int jbd2_journal_stop(handle_t *handle)
1287 {
1288 	transaction_t *transaction = handle->h_transaction;
1289 	journal_t *journal = transaction->t_journal;
1290 	int err, wait_for_commit = 0;
1291 	tid_t tid;
1292 	pid_t pid;
1293 
1294 	J_ASSERT(journal_current_handle() == handle);
1295 
1296 	if (is_handle_aborted(handle))
1297 		err = -EIO;
1298 	else {
1299 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1300 		err = 0;
1301 	}
1302 
1303 	if (--handle->h_ref > 0) {
1304 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1305 			  handle->h_ref);
1306 		return err;
1307 	}
1308 
1309 	jbd_debug(4, "Handle %p going down\n", handle);
1310 
1311 	/*
1312 	 * Implement synchronous transaction batching.  If the handle
1313 	 * was synchronous, don't force a commit immediately.  Let's
1314 	 * yield and let another thread piggyback onto this
1315 	 * transaction.  Keep doing that while new threads continue to
1316 	 * arrive.  It doesn't cost much - we're about to run a commit
1317 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1318 	 * operations by 30x or more...
1319 	 *
1320 	 * We try and optimize the sleep time against what the
1321 	 * underlying disk can do, instead of having a static sleep
1322 	 * time.  This is useful for the case where our storage is so
1323 	 * fast that it is more optimal to go ahead and force a flush
1324 	 * and wait for the transaction to be committed than it is to
1325 	 * wait for an arbitrary amount of time for new writers to
1326 	 * join the transaction.  We achieve this by measuring how
1327 	 * long it takes to commit a transaction, and compare it with
1328 	 * how long this transaction has been running, and if run time
1329 	 * < commit time then we sleep for the delta and commit.  This
1330 	 * greatly helps super fast disks that would see slowdowns as
1331 	 * more threads started doing fsyncs.
1332 	 *
1333 	 * But don't do this if this process was the most recent one
1334 	 * to perform a synchronous write.  We do this to detect the
1335 	 * case where a single process is doing a stream of sync
1336 	 * writes.  No point in waiting for joiners in that case.
1337 	 */
1338 	pid = current->pid;
1339 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1340 		u64 commit_time, trans_time;
1341 
1342 		journal->j_last_sync_writer = pid;
1343 
1344 		read_lock(&journal->j_state_lock);
1345 		commit_time = journal->j_average_commit_time;
1346 		read_unlock(&journal->j_state_lock);
1347 
1348 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1349 						   transaction->t_start_time));
1350 
1351 		commit_time = max_t(u64, commit_time,
1352 				    1000*journal->j_min_batch_time);
1353 		commit_time = min_t(u64, commit_time,
1354 				    1000*journal->j_max_batch_time);
1355 
1356 		if (trans_time < commit_time) {
1357 			ktime_t expires = ktime_add_ns(ktime_get(),
1358 						       commit_time);
1359 			set_current_state(TASK_UNINTERRUPTIBLE);
1360 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1361 		}
1362 	}
1363 
1364 	if (handle->h_sync)
1365 		transaction->t_synchronous_commit = 1;
1366 	current->journal_info = NULL;
1367 	atomic_sub(handle->h_buffer_credits,
1368 		   &transaction->t_outstanding_credits);
1369 
1370 	/*
1371 	 * If the handle is marked SYNC, we need to set another commit
1372 	 * going!  We also want to force a commit if the current
1373 	 * transaction is occupying too much of the log, or if the
1374 	 * transaction is too old now.
1375 	 */
1376 	if (handle->h_sync ||
1377 	    (atomic_read(&transaction->t_outstanding_credits) >
1378 	     journal->j_max_transaction_buffers) ||
1379 	    time_after_eq(jiffies, transaction->t_expires)) {
1380 		/* Do this even for aborted journals: an abort still
1381 		 * completes the commit thread, it just doesn't write
1382 		 * anything to disk. */
1383 
1384 		jbd_debug(2, "transaction too old, requesting commit for "
1385 					"handle %p\n", handle);
1386 		/* This is non-blocking */
1387 		jbd2_log_start_commit(journal, transaction->t_tid);
1388 
1389 		/*
1390 		 * Special case: JBD2_SYNC synchronous updates require us
1391 		 * to wait for the commit to complete.
1392 		 */
1393 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1394 			wait_for_commit = 1;
1395 	}
1396 
1397 	/*
1398 	 * Once we drop t_updates, if it goes to zero the transaction
1399 	 * could start commiting on us and eventually disappear.  So
1400 	 * once we do this, we must not dereference transaction
1401 	 * pointer again.
1402 	 */
1403 	tid = transaction->t_tid;
1404 	if (atomic_dec_and_test(&transaction->t_updates)) {
1405 		wake_up(&journal->j_wait_updates);
1406 		if (journal->j_barrier_count)
1407 			wake_up(&journal->j_wait_transaction_locked);
1408 	}
1409 
1410 	if (wait_for_commit)
1411 		err = jbd2_log_wait_commit(journal, tid);
1412 
1413 	lock_map_release(&handle->h_lockdep_map);
1414 
1415 	jbd2_free_handle(handle);
1416 	return err;
1417 }
1418 
1419 /**
1420  * int jbd2_journal_force_commit() - force any uncommitted transactions
1421  * @journal: journal to force
1422  *
1423  * For synchronous operations: force any uncommitted transactions
1424  * to disk.  May seem kludgy, but it reuses all the handle batching
1425  * code in a very simple manner.
1426  */
1427 int jbd2_journal_force_commit(journal_t *journal)
1428 {
1429 	handle_t *handle;
1430 	int ret;
1431 
1432 	handle = jbd2_journal_start(journal, 1);
1433 	if (IS_ERR(handle)) {
1434 		ret = PTR_ERR(handle);
1435 	} else {
1436 		handle->h_sync = 1;
1437 		ret = jbd2_journal_stop(handle);
1438 	}
1439 	return ret;
1440 }
1441 
1442 /*
1443  *
1444  * List management code snippets: various functions for manipulating the
1445  * transaction buffer lists.
1446  *
1447  */
1448 
1449 /*
1450  * Append a buffer to a transaction list, given the transaction's list head
1451  * pointer.
1452  *
1453  * j_list_lock is held.
1454  *
1455  * jbd_lock_bh_state(jh2bh(jh)) is held.
1456  */
1457 
1458 static inline void
1459 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1460 {
1461 	if (!*list) {
1462 		jh->b_tnext = jh->b_tprev = jh;
1463 		*list = jh;
1464 	} else {
1465 		/* Insert at the tail of the list to preserve order */
1466 		struct journal_head *first = *list, *last = first->b_tprev;
1467 		jh->b_tprev = last;
1468 		jh->b_tnext = first;
1469 		last->b_tnext = first->b_tprev = jh;
1470 	}
1471 }
1472 
1473 /*
1474  * Remove a buffer from a transaction list, given the transaction's list
1475  * head pointer.
1476  *
1477  * Called with j_list_lock held, and the journal may not be locked.
1478  *
1479  * jbd_lock_bh_state(jh2bh(jh)) is held.
1480  */
1481 
1482 static inline void
1483 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1484 {
1485 	if (*list == jh) {
1486 		*list = jh->b_tnext;
1487 		if (*list == jh)
1488 			*list = NULL;
1489 	}
1490 	jh->b_tprev->b_tnext = jh->b_tnext;
1491 	jh->b_tnext->b_tprev = jh->b_tprev;
1492 }
1493 
1494 /*
1495  * Remove a buffer from the appropriate transaction list.
1496  *
1497  * Note that this function can *change* the value of
1498  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1499  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1500  * of these pointers, it could go bad.  Generally the caller needs to re-read
1501  * the pointer from the transaction_t.
1502  *
1503  * Called under j_list_lock.  The journal may not be locked.
1504  */
1505 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1506 {
1507 	struct journal_head **list = NULL;
1508 	transaction_t *transaction;
1509 	struct buffer_head *bh = jh2bh(jh);
1510 
1511 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1512 	transaction = jh->b_transaction;
1513 	if (transaction)
1514 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1515 
1516 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1517 	if (jh->b_jlist != BJ_None)
1518 		J_ASSERT_JH(jh, transaction != NULL);
1519 
1520 	switch (jh->b_jlist) {
1521 	case BJ_None:
1522 		return;
1523 	case BJ_Metadata:
1524 		transaction->t_nr_buffers--;
1525 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1526 		list = &transaction->t_buffers;
1527 		break;
1528 	case BJ_Forget:
1529 		list = &transaction->t_forget;
1530 		break;
1531 	case BJ_IO:
1532 		list = &transaction->t_iobuf_list;
1533 		break;
1534 	case BJ_Shadow:
1535 		list = &transaction->t_shadow_list;
1536 		break;
1537 	case BJ_LogCtl:
1538 		list = &transaction->t_log_list;
1539 		break;
1540 	case BJ_Reserved:
1541 		list = &transaction->t_reserved_list;
1542 		break;
1543 	}
1544 
1545 	__blist_del_buffer(list, jh);
1546 	jh->b_jlist = BJ_None;
1547 	if (test_clear_buffer_jbddirty(bh))
1548 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1549 }
1550 
1551 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1552 {
1553 	__jbd2_journal_temp_unlink_buffer(jh);
1554 	jh->b_transaction = NULL;
1555 }
1556 
1557 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1558 {
1559 	jbd_lock_bh_state(jh2bh(jh));
1560 	spin_lock(&journal->j_list_lock);
1561 	__jbd2_journal_unfile_buffer(jh);
1562 	spin_unlock(&journal->j_list_lock);
1563 	jbd_unlock_bh_state(jh2bh(jh));
1564 }
1565 
1566 /*
1567  * Called from jbd2_journal_try_to_free_buffers().
1568  *
1569  * Called under jbd_lock_bh_state(bh)
1570  */
1571 static void
1572 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1573 {
1574 	struct journal_head *jh;
1575 
1576 	jh = bh2jh(bh);
1577 
1578 	if (buffer_locked(bh) || buffer_dirty(bh))
1579 		goto out;
1580 
1581 	if (jh->b_next_transaction != NULL)
1582 		goto out;
1583 
1584 	spin_lock(&journal->j_list_lock);
1585 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1586 		/* written-back checkpointed metadata buffer */
1587 		if (jh->b_jlist == BJ_None) {
1588 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1589 			__jbd2_journal_remove_checkpoint(jh);
1590 			jbd2_journal_remove_journal_head(bh);
1591 			__brelse(bh);
1592 		}
1593 	}
1594 	spin_unlock(&journal->j_list_lock);
1595 out:
1596 	return;
1597 }
1598 
1599 /**
1600  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1601  * @journal: journal for operation
1602  * @page: to try and free
1603  * @gfp_mask: we use the mask to detect how hard should we try to release
1604  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1605  * release the buffers.
1606  *
1607  *
1608  * For all the buffers on this page,
1609  * if they are fully written out ordered data, move them onto BUF_CLEAN
1610  * so try_to_free_buffers() can reap them.
1611  *
1612  * This function returns non-zero if we wish try_to_free_buffers()
1613  * to be called. We do this if the page is releasable by try_to_free_buffers().
1614  * We also do it if the page has locked or dirty buffers and the caller wants
1615  * us to perform sync or async writeout.
1616  *
1617  * This complicates JBD locking somewhat.  We aren't protected by the
1618  * BKL here.  We wish to remove the buffer from its committing or
1619  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1620  *
1621  * This may *change* the value of transaction_t->t_datalist, so anyone
1622  * who looks at t_datalist needs to lock against this function.
1623  *
1624  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1625  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1626  * will come out of the lock with the buffer dirty, which makes it
1627  * ineligible for release here.
1628  *
1629  * Who else is affected by this?  hmm...  Really the only contender
1630  * is do_get_write_access() - it could be looking at the buffer while
1631  * journal_try_to_free_buffer() is changing its state.  But that
1632  * cannot happen because we never reallocate freed data as metadata
1633  * while the data is part of a transaction.  Yes?
1634  *
1635  * Return 0 on failure, 1 on success
1636  */
1637 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1638 				struct page *page, gfp_t gfp_mask)
1639 {
1640 	struct buffer_head *head;
1641 	struct buffer_head *bh;
1642 	int ret = 0;
1643 
1644 	J_ASSERT(PageLocked(page));
1645 
1646 	head = page_buffers(page);
1647 	bh = head;
1648 	do {
1649 		struct journal_head *jh;
1650 
1651 		/*
1652 		 * We take our own ref against the journal_head here to avoid
1653 		 * having to add tons of locking around each instance of
1654 		 * jbd2_journal_remove_journal_head() and
1655 		 * jbd2_journal_put_journal_head().
1656 		 */
1657 		jh = jbd2_journal_grab_journal_head(bh);
1658 		if (!jh)
1659 			continue;
1660 
1661 		jbd_lock_bh_state(bh);
1662 		__journal_try_to_free_buffer(journal, bh);
1663 		jbd2_journal_put_journal_head(jh);
1664 		jbd_unlock_bh_state(bh);
1665 		if (buffer_jbd(bh))
1666 			goto busy;
1667 	} while ((bh = bh->b_this_page) != head);
1668 
1669 	ret = try_to_free_buffers(page);
1670 
1671 busy:
1672 	return ret;
1673 }
1674 
1675 /*
1676  * This buffer is no longer needed.  If it is on an older transaction's
1677  * checkpoint list we need to record it on this transaction's forget list
1678  * to pin this buffer (and hence its checkpointing transaction) down until
1679  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1680  * release it.
1681  * Returns non-zero if JBD no longer has an interest in the buffer.
1682  *
1683  * Called under j_list_lock.
1684  *
1685  * Called under jbd_lock_bh_state(bh).
1686  */
1687 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1688 {
1689 	int may_free = 1;
1690 	struct buffer_head *bh = jh2bh(jh);
1691 
1692 	__jbd2_journal_unfile_buffer(jh);
1693 
1694 	if (jh->b_cp_transaction) {
1695 		JBUFFER_TRACE(jh, "on running+cp transaction");
1696 		/*
1697 		 * We don't want to write the buffer anymore, clear the
1698 		 * bit so that we don't confuse checks in
1699 		 * __journal_file_buffer
1700 		 */
1701 		clear_buffer_dirty(bh);
1702 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1703 		may_free = 0;
1704 	} else {
1705 		JBUFFER_TRACE(jh, "on running transaction");
1706 		jbd2_journal_remove_journal_head(bh);
1707 		__brelse(bh);
1708 	}
1709 	return may_free;
1710 }
1711 
1712 /*
1713  * jbd2_journal_invalidatepage
1714  *
1715  * This code is tricky.  It has a number of cases to deal with.
1716  *
1717  * There are two invariants which this code relies on:
1718  *
1719  * i_size must be updated on disk before we start calling invalidatepage on the
1720  * data.
1721  *
1722  *  This is done in ext3 by defining an ext3_setattr method which
1723  *  updates i_size before truncate gets going.  By maintaining this
1724  *  invariant, we can be sure that it is safe to throw away any buffers
1725  *  attached to the current transaction: once the transaction commits,
1726  *  we know that the data will not be needed.
1727  *
1728  *  Note however that we can *not* throw away data belonging to the
1729  *  previous, committing transaction!
1730  *
1731  * Any disk blocks which *are* part of the previous, committing
1732  * transaction (and which therefore cannot be discarded immediately) are
1733  * not going to be reused in the new running transaction
1734  *
1735  *  The bitmap committed_data images guarantee this: any block which is
1736  *  allocated in one transaction and removed in the next will be marked
1737  *  as in-use in the committed_data bitmap, so cannot be reused until
1738  *  the next transaction to delete the block commits.  This means that
1739  *  leaving committing buffers dirty is quite safe: the disk blocks
1740  *  cannot be reallocated to a different file and so buffer aliasing is
1741  *  not possible.
1742  *
1743  *
1744  * The above applies mainly to ordered data mode.  In writeback mode we
1745  * don't make guarantees about the order in which data hits disk --- in
1746  * particular we don't guarantee that new dirty data is flushed before
1747  * transaction commit --- so it is always safe just to discard data
1748  * immediately in that mode.  --sct
1749  */
1750 
1751 /*
1752  * The journal_unmap_buffer helper function returns zero if the buffer
1753  * concerned remains pinned as an anonymous buffer belonging to an older
1754  * transaction.
1755  *
1756  * We're outside-transaction here.  Either or both of j_running_transaction
1757  * and j_committing_transaction may be NULL.
1758  */
1759 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1760 {
1761 	transaction_t *transaction;
1762 	struct journal_head *jh;
1763 	int may_free = 1;
1764 	int ret;
1765 
1766 	BUFFER_TRACE(bh, "entry");
1767 
1768 	/*
1769 	 * It is safe to proceed here without the j_list_lock because the
1770 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1771 	 * holding the page lock. --sct
1772 	 */
1773 
1774 	if (!buffer_jbd(bh))
1775 		goto zap_buffer_unlocked;
1776 
1777 	/* OK, we have data buffer in journaled mode */
1778 	write_lock(&journal->j_state_lock);
1779 	jbd_lock_bh_state(bh);
1780 	spin_lock(&journal->j_list_lock);
1781 
1782 	jh = jbd2_journal_grab_journal_head(bh);
1783 	if (!jh)
1784 		goto zap_buffer_no_jh;
1785 
1786 	/*
1787 	 * We cannot remove the buffer from checkpoint lists until the
1788 	 * transaction adding inode to orphan list (let's call it T)
1789 	 * is committed.  Otherwise if the transaction changing the
1790 	 * buffer would be cleaned from the journal before T is
1791 	 * committed, a crash will cause that the correct contents of
1792 	 * the buffer will be lost.  On the other hand we have to
1793 	 * clear the buffer dirty bit at latest at the moment when the
1794 	 * transaction marking the buffer as freed in the filesystem
1795 	 * structures is committed because from that moment on the
1796 	 * buffer can be reallocated and used by a different page.
1797 	 * Since the block hasn't been freed yet but the inode has
1798 	 * already been added to orphan list, it is safe for us to add
1799 	 * the buffer to BJ_Forget list of the newest transaction.
1800 	 */
1801 	transaction = jh->b_transaction;
1802 	if (transaction == NULL) {
1803 		/* First case: not on any transaction.  If it
1804 		 * has no checkpoint link, then we can zap it:
1805 		 * it's a writeback-mode buffer so we don't care
1806 		 * if it hits disk safely. */
1807 		if (!jh->b_cp_transaction) {
1808 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1809 			goto zap_buffer;
1810 		}
1811 
1812 		if (!buffer_dirty(bh)) {
1813 			/* bdflush has written it.  We can drop it now */
1814 			goto zap_buffer;
1815 		}
1816 
1817 		/* OK, it must be in the journal but still not
1818 		 * written fully to disk: it's metadata or
1819 		 * journaled data... */
1820 
1821 		if (journal->j_running_transaction) {
1822 			/* ... and once the current transaction has
1823 			 * committed, the buffer won't be needed any
1824 			 * longer. */
1825 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1826 			ret = __dispose_buffer(jh,
1827 					journal->j_running_transaction);
1828 			jbd2_journal_put_journal_head(jh);
1829 			spin_unlock(&journal->j_list_lock);
1830 			jbd_unlock_bh_state(bh);
1831 			write_unlock(&journal->j_state_lock);
1832 			return ret;
1833 		} else {
1834 			/* There is no currently-running transaction. So the
1835 			 * orphan record which we wrote for this file must have
1836 			 * passed into commit.  We must attach this buffer to
1837 			 * the committing transaction, if it exists. */
1838 			if (journal->j_committing_transaction) {
1839 				JBUFFER_TRACE(jh, "give to committing trans");
1840 				ret = __dispose_buffer(jh,
1841 					journal->j_committing_transaction);
1842 				jbd2_journal_put_journal_head(jh);
1843 				spin_unlock(&journal->j_list_lock);
1844 				jbd_unlock_bh_state(bh);
1845 				write_unlock(&journal->j_state_lock);
1846 				return ret;
1847 			} else {
1848 				/* The orphan record's transaction has
1849 				 * committed.  We can cleanse this buffer */
1850 				clear_buffer_jbddirty(bh);
1851 				goto zap_buffer;
1852 			}
1853 		}
1854 	} else if (transaction == journal->j_committing_transaction) {
1855 		JBUFFER_TRACE(jh, "on committing transaction");
1856 		/*
1857 		 * The buffer is committing, we simply cannot touch
1858 		 * it. So we just set j_next_transaction to the
1859 		 * running transaction (if there is one) and mark
1860 		 * buffer as freed so that commit code knows it should
1861 		 * clear dirty bits when it is done with the buffer.
1862 		 */
1863 		set_buffer_freed(bh);
1864 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1865 			jh->b_next_transaction = journal->j_running_transaction;
1866 		jbd2_journal_put_journal_head(jh);
1867 		spin_unlock(&journal->j_list_lock);
1868 		jbd_unlock_bh_state(bh);
1869 		write_unlock(&journal->j_state_lock);
1870 		return 0;
1871 	} else {
1872 		/* Good, the buffer belongs to the running transaction.
1873 		 * We are writing our own transaction's data, not any
1874 		 * previous one's, so it is safe to throw it away
1875 		 * (remember that we expect the filesystem to have set
1876 		 * i_size already for this truncate so recovery will not
1877 		 * expose the disk blocks we are discarding here.) */
1878 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1879 		JBUFFER_TRACE(jh, "on running transaction");
1880 		may_free = __dispose_buffer(jh, transaction);
1881 	}
1882 
1883 zap_buffer:
1884 	jbd2_journal_put_journal_head(jh);
1885 zap_buffer_no_jh:
1886 	spin_unlock(&journal->j_list_lock);
1887 	jbd_unlock_bh_state(bh);
1888 	write_unlock(&journal->j_state_lock);
1889 zap_buffer_unlocked:
1890 	clear_buffer_dirty(bh);
1891 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1892 	clear_buffer_mapped(bh);
1893 	clear_buffer_req(bh);
1894 	clear_buffer_new(bh);
1895 	bh->b_bdev = NULL;
1896 	return may_free;
1897 }
1898 
1899 /**
1900  * void jbd2_journal_invalidatepage()
1901  * @journal: journal to use for flush...
1902  * @page:    page to flush
1903  * @offset:  length of page to invalidate.
1904  *
1905  * Reap page buffers containing data after offset in page.
1906  *
1907  */
1908 void jbd2_journal_invalidatepage(journal_t *journal,
1909 		      struct page *page,
1910 		      unsigned long offset)
1911 {
1912 	struct buffer_head *head, *bh, *next;
1913 	unsigned int curr_off = 0;
1914 	int may_free = 1;
1915 
1916 	if (!PageLocked(page))
1917 		BUG();
1918 	if (!page_has_buffers(page))
1919 		return;
1920 
1921 	/* We will potentially be playing with lists other than just the
1922 	 * data lists (especially for journaled data mode), so be
1923 	 * cautious in our locking. */
1924 
1925 	head = bh = page_buffers(page);
1926 	do {
1927 		unsigned int next_off = curr_off + bh->b_size;
1928 		next = bh->b_this_page;
1929 
1930 		if (offset <= curr_off) {
1931 			/* This block is wholly outside the truncation point */
1932 			lock_buffer(bh);
1933 			may_free &= journal_unmap_buffer(journal, bh);
1934 			unlock_buffer(bh);
1935 		}
1936 		curr_off = next_off;
1937 		bh = next;
1938 
1939 	} while (bh != head);
1940 
1941 	if (!offset) {
1942 		if (may_free && try_to_free_buffers(page))
1943 			J_ASSERT(!page_has_buffers(page));
1944 	}
1945 }
1946 
1947 /*
1948  * File a buffer on the given transaction list.
1949  */
1950 void __jbd2_journal_file_buffer(struct journal_head *jh,
1951 			transaction_t *transaction, int jlist)
1952 {
1953 	struct journal_head **list = NULL;
1954 	int was_dirty = 0;
1955 	struct buffer_head *bh = jh2bh(jh);
1956 
1957 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1958 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1959 
1960 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1961 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1962 				jh->b_transaction == NULL);
1963 
1964 	if (jh->b_transaction && jh->b_jlist == jlist)
1965 		return;
1966 
1967 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1968 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1969 		/*
1970 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1971 		 * instead of buffer_dirty. We should not see a dirty bit set
1972 		 * here because we clear it in do_get_write_access but e.g.
1973 		 * tune2fs can modify the sb and set the dirty bit at any time
1974 		 * so we try to gracefully handle that.
1975 		 */
1976 		if (buffer_dirty(bh))
1977 			warn_dirty_buffer(bh);
1978 		if (test_clear_buffer_dirty(bh) ||
1979 		    test_clear_buffer_jbddirty(bh))
1980 			was_dirty = 1;
1981 	}
1982 
1983 	if (jh->b_transaction)
1984 		__jbd2_journal_temp_unlink_buffer(jh);
1985 	jh->b_transaction = transaction;
1986 
1987 	switch (jlist) {
1988 	case BJ_None:
1989 		J_ASSERT_JH(jh, !jh->b_committed_data);
1990 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1991 		return;
1992 	case BJ_Metadata:
1993 		transaction->t_nr_buffers++;
1994 		list = &transaction->t_buffers;
1995 		break;
1996 	case BJ_Forget:
1997 		list = &transaction->t_forget;
1998 		break;
1999 	case BJ_IO:
2000 		list = &transaction->t_iobuf_list;
2001 		break;
2002 	case BJ_Shadow:
2003 		list = &transaction->t_shadow_list;
2004 		break;
2005 	case BJ_LogCtl:
2006 		list = &transaction->t_log_list;
2007 		break;
2008 	case BJ_Reserved:
2009 		list = &transaction->t_reserved_list;
2010 		break;
2011 	}
2012 
2013 	__blist_add_buffer(list, jh);
2014 	jh->b_jlist = jlist;
2015 
2016 	if (was_dirty)
2017 		set_buffer_jbddirty(bh);
2018 }
2019 
2020 void jbd2_journal_file_buffer(struct journal_head *jh,
2021 				transaction_t *transaction, int jlist)
2022 {
2023 	jbd_lock_bh_state(jh2bh(jh));
2024 	spin_lock(&transaction->t_journal->j_list_lock);
2025 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2026 	spin_unlock(&transaction->t_journal->j_list_lock);
2027 	jbd_unlock_bh_state(jh2bh(jh));
2028 }
2029 
2030 /*
2031  * Remove a buffer from its current buffer list in preparation for
2032  * dropping it from its current transaction entirely.  If the buffer has
2033  * already started to be used by a subsequent transaction, refile the
2034  * buffer on that transaction's metadata list.
2035  *
2036  * Called under journal->j_list_lock
2037  *
2038  * Called under jbd_lock_bh_state(jh2bh(jh))
2039  */
2040 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2041 {
2042 	int was_dirty, jlist;
2043 	struct buffer_head *bh = jh2bh(jh);
2044 
2045 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2046 	if (jh->b_transaction)
2047 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2048 
2049 	/* If the buffer is now unused, just drop it. */
2050 	if (jh->b_next_transaction == NULL) {
2051 		__jbd2_journal_unfile_buffer(jh);
2052 		return;
2053 	}
2054 
2055 	/*
2056 	 * It has been modified by a later transaction: add it to the new
2057 	 * transaction's metadata list.
2058 	 */
2059 
2060 	was_dirty = test_clear_buffer_jbddirty(bh);
2061 	__jbd2_journal_temp_unlink_buffer(jh);
2062 	jh->b_transaction = jh->b_next_transaction;
2063 	jh->b_next_transaction = NULL;
2064 	if (buffer_freed(bh))
2065 		jlist = BJ_Forget;
2066 	else if (jh->b_modified)
2067 		jlist = BJ_Metadata;
2068 	else
2069 		jlist = BJ_Reserved;
2070 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2071 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2072 
2073 	if (was_dirty)
2074 		set_buffer_jbddirty(bh);
2075 }
2076 
2077 /*
2078  * For the unlocked version of this call, also make sure that any
2079  * hanging journal_head is cleaned up if necessary.
2080  *
2081  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2082  * operation on a buffer_head, in which the caller is probably going to
2083  * be hooking the journal_head onto other lists.  In that case it is up
2084  * to the caller to remove the journal_head if necessary.  For the
2085  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2086  * doing anything else to the buffer so we need to do the cleanup
2087  * ourselves to avoid a jh leak.
2088  *
2089  * *** The journal_head may be freed by this call! ***
2090  */
2091 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2092 {
2093 	struct buffer_head *bh = jh2bh(jh);
2094 
2095 	jbd_lock_bh_state(bh);
2096 	spin_lock(&journal->j_list_lock);
2097 
2098 	__jbd2_journal_refile_buffer(jh);
2099 	jbd_unlock_bh_state(bh);
2100 	jbd2_journal_remove_journal_head(bh);
2101 
2102 	spin_unlock(&journal->j_list_lock);
2103 	__brelse(bh);
2104 }
2105 
2106 /*
2107  * File inode in the inode list of the handle's transaction
2108  */
2109 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2110 {
2111 	transaction_t *transaction = handle->h_transaction;
2112 	journal_t *journal = transaction->t_journal;
2113 
2114 	if (is_handle_aborted(handle))
2115 		return -EIO;
2116 
2117 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2118 			transaction->t_tid);
2119 
2120 	/*
2121 	 * First check whether inode isn't already on the transaction's
2122 	 * lists without taking the lock. Note that this check is safe
2123 	 * without the lock as we cannot race with somebody removing inode
2124 	 * from the transaction. The reason is that we remove inode from the
2125 	 * transaction only in journal_release_jbd_inode() and when we commit
2126 	 * the transaction. We are guarded from the first case by holding
2127 	 * a reference to the inode. We are safe against the second case
2128 	 * because if jinode->i_transaction == transaction, commit code
2129 	 * cannot touch the transaction because we hold reference to it,
2130 	 * and if jinode->i_next_transaction == transaction, commit code
2131 	 * will only file the inode where we want it.
2132 	 */
2133 	if (jinode->i_transaction == transaction ||
2134 	    jinode->i_next_transaction == transaction)
2135 		return 0;
2136 
2137 	spin_lock(&journal->j_list_lock);
2138 
2139 	if (jinode->i_transaction == transaction ||
2140 	    jinode->i_next_transaction == transaction)
2141 		goto done;
2142 
2143 	/* On some different transaction's list - should be
2144 	 * the committing one */
2145 	if (jinode->i_transaction) {
2146 		J_ASSERT(jinode->i_next_transaction == NULL);
2147 		J_ASSERT(jinode->i_transaction ==
2148 					journal->j_committing_transaction);
2149 		jinode->i_next_transaction = transaction;
2150 		goto done;
2151 	}
2152 	/* Not on any transaction list... */
2153 	J_ASSERT(!jinode->i_next_transaction);
2154 	jinode->i_transaction = transaction;
2155 	list_add(&jinode->i_list, &transaction->t_inode_list);
2156 done:
2157 	spin_unlock(&journal->j_list_lock);
2158 
2159 	return 0;
2160 }
2161 
2162 /*
2163  * File truncate and transaction commit interact with each other in a
2164  * non-trivial way.  If a transaction writing data block A is
2165  * committing, we cannot discard the data by truncate until we have
2166  * written them.  Otherwise if we crashed after the transaction with
2167  * write has committed but before the transaction with truncate has
2168  * committed, we could see stale data in block A.  This function is a
2169  * helper to solve this problem.  It starts writeout of the truncated
2170  * part in case it is in the committing transaction.
2171  *
2172  * Filesystem code must call this function when inode is journaled in
2173  * ordered mode before truncation happens and after the inode has been
2174  * placed on orphan list with the new inode size. The second condition
2175  * avoids the race that someone writes new data and we start
2176  * committing the transaction after this function has been called but
2177  * before a transaction for truncate is started (and furthermore it
2178  * allows us to optimize the case where the addition to orphan list
2179  * happens in the same transaction as write --- we don't have to write
2180  * any data in such case).
2181  */
2182 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2183 					struct jbd2_inode *jinode,
2184 					loff_t new_size)
2185 {
2186 	transaction_t *inode_trans, *commit_trans;
2187 	int ret = 0;
2188 
2189 	/* This is a quick check to avoid locking if not necessary */
2190 	if (!jinode->i_transaction)
2191 		goto out;
2192 	/* Locks are here just to force reading of recent values, it is
2193 	 * enough that the transaction was not committing before we started
2194 	 * a transaction adding the inode to orphan list */
2195 	read_lock(&journal->j_state_lock);
2196 	commit_trans = journal->j_committing_transaction;
2197 	read_unlock(&journal->j_state_lock);
2198 	spin_lock(&journal->j_list_lock);
2199 	inode_trans = jinode->i_transaction;
2200 	spin_unlock(&journal->j_list_lock);
2201 	if (inode_trans == commit_trans) {
2202 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2203 			new_size, LLONG_MAX);
2204 		if (ret)
2205 			jbd2_journal_abort(journal, ret);
2206 	}
2207 out:
2208 	return ret;
2209 }
2210