1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 30 31 /* 32 * jbd2_get_transaction: obtain a new transaction_t object. 33 * 34 * Simply allocate and initialise a new transaction. Create it in 35 * RUNNING state and add it to the current journal (which should not 36 * have an existing running transaction: we only make a new transaction 37 * once we have started to commit the old one). 38 * 39 * Preconditions: 40 * The journal MUST be locked. We don't perform atomic mallocs on the 41 * new transaction and we can't block without protecting against other 42 * processes trying to touch the journal while it is in transition. 43 * 44 * Called under j_state_lock 45 */ 46 47 static transaction_t * 48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 49 { 50 transaction->t_journal = journal; 51 transaction->t_state = T_RUNNING; 52 transaction->t_tid = journal->j_transaction_sequence++; 53 transaction->t_expires = jiffies + journal->j_commit_interval; 54 spin_lock_init(&transaction->t_handle_lock); 55 56 /* Set up the commit timer for the new transaction. */ 57 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires); 58 add_timer(&journal->j_commit_timer); 59 60 J_ASSERT(journal->j_running_transaction == NULL); 61 journal->j_running_transaction = transaction; 62 transaction->t_max_wait = 0; 63 transaction->t_start = jiffies; 64 65 return transaction; 66 } 67 68 /* 69 * Handle management. 70 * 71 * A handle_t is an object which represents a single atomic update to a 72 * filesystem, and which tracks all of the modifications which form part 73 * of that one update. 74 */ 75 76 /* 77 * start_this_handle: Given a handle, deal with any locking or stalling 78 * needed to make sure that there is enough journal space for the handle 79 * to begin. Attach the handle to a transaction and set up the 80 * transaction's buffer credits. 81 */ 82 83 static int start_this_handle(journal_t *journal, handle_t *handle) 84 { 85 transaction_t *transaction; 86 int needed; 87 int nblocks = handle->h_buffer_credits; 88 transaction_t *new_transaction = NULL; 89 int ret = 0; 90 unsigned long ts = jiffies; 91 92 if (nblocks > journal->j_max_transaction_buffers) { 93 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 94 current->comm, nblocks, 95 journal->j_max_transaction_buffers); 96 ret = -ENOSPC; 97 goto out; 98 } 99 100 alloc_transaction: 101 if (!journal->j_running_transaction) { 102 new_transaction = kzalloc(sizeof(*new_transaction), 103 GFP_NOFS|__GFP_NOFAIL); 104 if (!new_transaction) { 105 ret = -ENOMEM; 106 goto out; 107 } 108 } 109 110 jbd_debug(3, "New handle %p going live.\n", handle); 111 112 repeat: 113 114 /* 115 * We need to hold j_state_lock until t_updates has been incremented, 116 * for proper journal barrier handling 117 */ 118 spin_lock(&journal->j_state_lock); 119 repeat_locked: 120 if (is_journal_aborted(journal) || 121 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 122 spin_unlock(&journal->j_state_lock); 123 ret = -EROFS; 124 goto out; 125 } 126 127 /* Wait on the journal's transaction barrier if necessary */ 128 if (journal->j_barrier_count) { 129 spin_unlock(&journal->j_state_lock); 130 wait_event(journal->j_wait_transaction_locked, 131 journal->j_barrier_count == 0); 132 goto repeat; 133 } 134 135 if (!journal->j_running_transaction) { 136 if (!new_transaction) { 137 spin_unlock(&journal->j_state_lock); 138 goto alloc_transaction; 139 } 140 jbd2_get_transaction(journal, new_transaction); 141 new_transaction = NULL; 142 } 143 144 transaction = journal->j_running_transaction; 145 146 /* 147 * If the current transaction is locked down for commit, wait for the 148 * lock to be released. 149 */ 150 if (transaction->t_state == T_LOCKED) { 151 DEFINE_WAIT(wait); 152 153 prepare_to_wait(&journal->j_wait_transaction_locked, 154 &wait, TASK_UNINTERRUPTIBLE); 155 spin_unlock(&journal->j_state_lock); 156 schedule(); 157 finish_wait(&journal->j_wait_transaction_locked, &wait); 158 goto repeat; 159 } 160 161 /* 162 * If there is not enough space left in the log to write all potential 163 * buffers requested by this operation, we need to stall pending a log 164 * checkpoint to free some more log space. 165 */ 166 spin_lock(&transaction->t_handle_lock); 167 needed = transaction->t_outstanding_credits + nblocks; 168 169 if (needed > journal->j_max_transaction_buffers) { 170 /* 171 * If the current transaction is already too large, then start 172 * to commit it: we can then go back and attach this handle to 173 * a new transaction. 174 */ 175 DEFINE_WAIT(wait); 176 177 jbd_debug(2, "Handle %p starting new commit...\n", handle); 178 spin_unlock(&transaction->t_handle_lock); 179 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 180 TASK_UNINTERRUPTIBLE); 181 __jbd2_log_start_commit(journal, transaction->t_tid); 182 spin_unlock(&journal->j_state_lock); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 goto repeat; 186 } 187 188 /* 189 * The commit code assumes that it can get enough log space 190 * without forcing a checkpoint. This is *critical* for 191 * correctness: a checkpoint of a buffer which is also 192 * associated with a committing transaction creates a deadlock, 193 * so commit simply cannot force through checkpoints. 194 * 195 * We must therefore ensure the necessary space in the journal 196 * *before* starting to dirty potentially checkpointed buffers 197 * in the new transaction. 198 * 199 * The worst part is, any transaction currently committing can 200 * reduce the free space arbitrarily. Be careful to account for 201 * those buffers when checkpointing. 202 */ 203 204 /* 205 * @@@ AKPM: This seems rather over-defensive. We're giving commit 206 * a _lot_ of headroom: 1/4 of the journal plus the size of 207 * the committing transaction. Really, we only need to give it 208 * committing_transaction->t_outstanding_credits plus "enough" for 209 * the log control blocks. 210 * Also, this test is inconsitent with the matching one in 211 * jbd2_journal_extend(). 212 */ 213 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 214 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 215 spin_unlock(&transaction->t_handle_lock); 216 __jbd2_log_wait_for_space(journal); 217 goto repeat_locked; 218 } 219 220 /* OK, account for the buffers that this operation expects to 221 * use and add the handle to the running transaction. */ 222 223 if (time_after(transaction->t_start, ts)) { 224 ts = jbd2_time_diff(ts, transaction->t_start); 225 if (ts > transaction->t_max_wait) 226 transaction->t_max_wait = ts; 227 } 228 229 handle->h_transaction = transaction; 230 transaction->t_outstanding_credits += nblocks; 231 transaction->t_updates++; 232 transaction->t_handle_count++; 233 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 234 handle, nblocks, transaction->t_outstanding_credits, 235 __jbd2_log_space_left(journal)); 236 spin_unlock(&transaction->t_handle_lock); 237 spin_unlock(&journal->j_state_lock); 238 out: 239 if (unlikely(new_transaction)) /* It's usually NULL */ 240 kfree(new_transaction); 241 return ret; 242 } 243 244 static struct lock_class_key jbd2_handle_key; 245 246 /* Allocate a new handle. This should probably be in a slab... */ 247 static handle_t *new_handle(int nblocks) 248 { 249 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 250 if (!handle) 251 return NULL; 252 memset(handle, 0, sizeof(*handle)); 253 handle->h_buffer_credits = nblocks; 254 handle->h_ref = 1; 255 256 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 257 &jbd2_handle_key, 0); 258 259 return handle; 260 } 261 262 /** 263 * handle_t *jbd2_journal_start() - Obtain a new handle. 264 * @journal: Journal to start transaction on. 265 * @nblocks: number of block buffer we might modify 266 * 267 * We make sure that the transaction can guarantee at least nblocks of 268 * modified buffers in the log. We block until the log can guarantee 269 * that much space. 270 * 271 * This function is visible to journal users (like ext3fs), so is not 272 * called with the journal already locked. 273 * 274 * Return a pointer to a newly allocated handle, or NULL on failure 275 */ 276 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 277 { 278 handle_t *handle = journal_current_handle(); 279 int err; 280 281 if (!journal) 282 return ERR_PTR(-EROFS); 283 284 if (handle) { 285 J_ASSERT(handle->h_transaction->t_journal == journal); 286 handle->h_ref++; 287 return handle; 288 } 289 290 handle = new_handle(nblocks); 291 if (!handle) 292 return ERR_PTR(-ENOMEM); 293 294 current->journal_info = handle; 295 296 err = start_this_handle(journal, handle); 297 if (err < 0) { 298 jbd2_free_handle(handle); 299 current->journal_info = NULL; 300 handle = ERR_PTR(err); 301 goto out; 302 } 303 304 lock_acquire(&handle->h_lockdep_map, 0, 0, 0, 2, _THIS_IP_); 305 out: 306 return handle; 307 } 308 309 /** 310 * int jbd2_journal_extend() - extend buffer credits. 311 * @handle: handle to 'extend' 312 * @nblocks: nr blocks to try to extend by. 313 * 314 * Some transactions, such as large extends and truncates, can be done 315 * atomically all at once or in several stages. The operation requests 316 * a credit for a number of buffer modications in advance, but can 317 * extend its credit if it needs more. 318 * 319 * jbd2_journal_extend tries to give the running handle more buffer credits. 320 * It does not guarantee that allocation - this is a best-effort only. 321 * The calling process MUST be able to deal cleanly with a failure to 322 * extend here. 323 * 324 * Return 0 on success, non-zero on failure. 325 * 326 * return code < 0 implies an error 327 * return code > 0 implies normal transaction-full status. 328 */ 329 int jbd2_journal_extend(handle_t *handle, int nblocks) 330 { 331 transaction_t *transaction = handle->h_transaction; 332 journal_t *journal = transaction->t_journal; 333 int result; 334 int wanted; 335 336 result = -EIO; 337 if (is_handle_aborted(handle)) 338 goto out; 339 340 result = 1; 341 342 spin_lock(&journal->j_state_lock); 343 344 /* Don't extend a locked-down transaction! */ 345 if (handle->h_transaction->t_state != T_RUNNING) { 346 jbd_debug(3, "denied handle %p %d blocks: " 347 "transaction not running\n", handle, nblocks); 348 goto error_out; 349 } 350 351 spin_lock(&transaction->t_handle_lock); 352 wanted = transaction->t_outstanding_credits + nblocks; 353 354 if (wanted > journal->j_max_transaction_buffers) { 355 jbd_debug(3, "denied handle %p %d blocks: " 356 "transaction too large\n", handle, nblocks); 357 goto unlock; 358 } 359 360 if (wanted > __jbd2_log_space_left(journal)) { 361 jbd_debug(3, "denied handle %p %d blocks: " 362 "insufficient log space\n", handle, nblocks); 363 goto unlock; 364 } 365 366 handle->h_buffer_credits += nblocks; 367 transaction->t_outstanding_credits += nblocks; 368 result = 0; 369 370 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 371 unlock: 372 spin_unlock(&transaction->t_handle_lock); 373 error_out: 374 spin_unlock(&journal->j_state_lock); 375 out: 376 return result; 377 } 378 379 380 /** 381 * int jbd2_journal_restart() - restart a handle . 382 * @handle: handle to restart 383 * @nblocks: nr credits requested 384 * 385 * Restart a handle for a multi-transaction filesystem 386 * operation. 387 * 388 * If the jbd2_journal_extend() call above fails to grant new buffer credits 389 * to a running handle, a call to jbd2_journal_restart will commit the 390 * handle's transaction so far and reattach the handle to a new 391 * transaction capabable of guaranteeing the requested number of 392 * credits. 393 */ 394 395 int jbd2_journal_restart(handle_t *handle, int nblocks) 396 { 397 transaction_t *transaction = handle->h_transaction; 398 journal_t *journal = transaction->t_journal; 399 int ret; 400 401 /* If we've had an abort of any type, don't even think about 402 * actually doing the restart! */ 403 if (is_handle_aborted(handle)) 404 return 0; 405 406 /* 407 * First unlink the handle from its current transaction, and start the 408 * commit on that. 409 */ 410 J_ASSERT(transaction->t_updates > 0); 411 J_ASSERT(journal_current_handle() == handle); 412 413 spin_lock(&journal->j_state_lock); 414 spin_lock(&transaction->t_handle_lock); 415 transaction->t_outstanding_credits -= handle->h_buffer_credits; 416 transaction->t_updates--; 417 418 if (!transaction->t_updates) 419 wake_up(&journal->j_wait_updates); 420 spin_unlock(&transaction->t_handle_lock); 421 422 jbd_debug(2, "restarting handle %p\n", handle); 423 __jbd2_log_start_commit(journal, transaction->t_tid); 424 spin_unlock(&journal->j_state_lock); 425 426 handle->h_buffer_credits = nblocks; 427 ret = start_this_handle(journal, handle); 428 return ret; 429 } 430 431 432 /** 433 * void jbd2_journal_lock_updates () - establish a transaction barrier. 434 * @journal: Journal to establish a barrier on. 435 * 436 * This locks out any further updates from being started, and blocks 437 * until all existing updates have completed, returning only once the 438 * journal is in a quiescent state with no updates running. 439 * 440 * The journal lock should not be held on entry. 441 */ 442 void jbd2_journal_lock_updates(journal_t *journal) 443 { 444 DEFINE_WAIT(wait); 445 446 spin_lock(&journal->j_state_lock); 447 ++journal->j_barrier_count; 448 449 /* Wait until there are no running updates */ 450 while (1) { 451 transaction_t *transaction = journal->j_running_transaction; 452 453 if (!transaction) 454 break; 455 456 spin_lock(&transaction->t_handle_lock); 457 if (!transaction->t_updates) { 458 spin_unlock(&transaction->t_handle_lock); 459 break; 460 } 461 prepare_to_wait(&journal->j_wait_updates, &wait, 462 TASK_UNINTERRUPTIBLE); 463 spin_unlock(&transaction->t_handle_lock); 464 spin_unlock(&journal->j_state_lock); 465 schedule(); 466 finish_wait(&journal->j_wait_updates, &wait); 467 spin_lock(&journal->j_state_lock); 468 } 469 spin_unlock(&journal->j_state_lock); 470 471 /* 472 * We have now established a barrier against other normal updates, but 473 * we also need to barrier against other jbd2_journal_lock_updates() calls 474 * to make sure that we serialise special journal-locked operations 475 * too. 476 */ 477 mutex_lock(&journal->j_barrier); 478 } 479 480 /** 481 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 482 * @journal: Journal to release the barrier on. 483 * 484 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 485 * 486 * Should be called without the journal lock held. 487 */ 488 void jbd2_journal_unlock_updates (journal_t *journal) 489 { 490 J_ASSERT(journal->j_barrier_count != 0); 491 492 mutex_unlock(&journal->j_barrier); 493 spin_lock(&journal->j_state_lock); 494 --journal->j_barrier_count; 495 spin_unlock(&journal->j_state_lock); 496 wake_up(&journal->j_wait_transaction_locked); 497 } 498 499 /* 500 * Report any unexpected dirty buffers which turn up. Normally those 501 * indicate an error, but they can occur if the user is running (say) 502 * tune2fs to modify the live filesystem, so we need the option of 503 * continuing as gracefully as possible. # 504 * 505 * The caller should already hold the journal lock and 506 * j_list_lock spinlock: most callers will need those anyway 507 * in order to probe the buffer's journaling state safely. 508 */ 509 static void jbd_unexpected_dirty_buffer(struct journal_head *jh) 510 { 511 int jlist; 512 513 /* If this buffer is one which might reasonably be dirty 514 * --- ie. data, or not part of this journal --- then 515 * we're OK to leave it alone, but otherwise we need to 516 * move the dirty bit to the journal's own internal 517 * JBDDirty bit. */ 518 jlist = jh->b_jlist; 519 520 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 521 jlist == BJ_Shadow || jlist == BJ_Forget) { 522 struct buffer_head *bh = jh2bh(jh); 523 524 if (test_clear_buffer_dirty(bh)) 525 set_buffer_jbddirty(bh); 526 } 527 } 528 529 /* 530 * If the buffer is already part of the current transaction, then there 531 * is nothing we need to do. If it is already part of a prior 532 * transaction which we are still committing to disk, then we need to 533 * make sure that we do not overwrite the old copy: we do copy-out to 534 * preserve the copy going to disk. We also account the buffer against 535 * the handle's metadata buffer credits (unless the buffer is already 536 * part of the transaction, that is). 537 * 538 */ 539 static int 540 do_get_write_access(handle_t *handle, struct journal_head *jh, 541 int force_copy) 542 { 543 struct buffer_head *bh; 544 transaction_t *transaction; 545 journal_t *journal; 546 int error; 547 char *frozen_buffer = NULL; 548 int need_copy = 0; 549 550 if (is_handle_aborted(handle)) 551 return -EROFS; 552 553 transaction = handle->h_transaction; 554 journal = transaction->t_journal; 555 556 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 557 558 JBUFFER_TRACE(jh, "entry"); 559 repeat: 560 bh = jh2bh(jh); 561 562 /* @@@ Need to check for errors here at some point. */ 563 564 lock_buffer(bh); 565 jbd_lock_bh_state(bh); 566 567 /* We now hold the buffer lock so it is safe to query the buffer 568 * state. Is the buffer dirty? 569 * 570 * If so, there are two possibilities. The buffer may be 571 * non-journaled, and undergoing a quite legitimate writeback. 572 * Otherwise, it is journaled, and we don't expect dirty buffers 573 * in that state (the buffers should be marked JBD_Dirty 574 * instead.) So either the IO is being done under our own 575 * control and this is a bug, or it's a third party IO such as 576 * dump(8) (which may leave the buffer scheduled for read --- 577 * ie. locked but not dirty) or tune2fs (which may actually have 578 * the buffer dirtied, ugh.) */ 579 580 if (buffer_dirty(bh)) { 581 /* 582 * First question: is this buffer already part of the current 583 * transaction or the existing committing transaction? 584 */ 585 if (jh->b_transaction) { 586 J_ASSERT_JH(jh, 587 jh->b_transaction == transaction || 588 jh->b_transaction == 589 journal->j_committing_transaction); 590 if (jh->b_next_transaction) 591 J_ASSERT_JH(jh, jh->b_next_transaction == 592 transaction); 593 } 594 /* 595 * In any case we need to clean the dirty flag and we must 596 * do it under the buffer lock to be sure we don't race 597 * with running write-out. 598 */ 599 JBUFFER_TRACE(jh, "Unexpected dirty buffer"); 600 jbd_unexpected_dirty_buffer(jh); 601 } 602 603 unlock_buffer(bh); 604 605 error = -EROFS; 606 if (is_handle_aborted(handle)) { 607 jbd_unlock_bh_state(bh); 608 goto out; 609 } 610 error = 0; 611 612 /* 613 * The buffer is already part of this transaction if b_transaction or 614 * b_next_transaction points to it 615 */ 616 if (jh->b_transaction == transaction || 617 jh->b_next_transaction == transaction) 618 goto done; 619 620 /* 621 * If there is already a copy-out version of this buffer, then we don't 622 * need to make another one 623 */ 624 if (jh->b_frozen_data) { 625 JBUFFER_TRACE(jh, "has frozen data"); 626 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 627 jh->b_next_transaction = transaction; 628 goto done; 629 } 630 631 /* Is there data here we need to preserve? */ 632 633 if (jh->b_transaction && jh->b_transaction != transaction) { 634 JBUFFER_TRACE(jh, "owned by older transaction"); 635 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 636 J_ASSERT_JH(jh, jh->b_transaction == 637 journal->j_committing_transaction); 638 639 /* There is one case we have to be very careful about. 640 * If the committing transaction is currently writing 641 * this buffer out to disk and has NOT made a copy-out, 642 * then we cannot modify the buffer contents at all 643 * right now. The essence of copy-out is that it is the 644 * extra copy, not the primary copy, which gets 645 * journaled. If the primary copy is already going to 646 * disk then we cannot do copy-out here. */ 647 648 if (jh->b_jlist == BJ_Shadow) { 649 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 650 wait_queue_head_t *wqh; 651 652 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 653 654 JBUFFER_TRACE(jh, "on shadow: sleep"); 655 jbd_unlock_bh_state(bh); 656 /* commit wakes up all shadow buffers after IO */ 657 for ( ; ; ) { 658 prepare_to_wait(wqh, &wait.wait, 659 TASK_UNINTERRUPTIBLE); 660 if (jh->b_jlist != BJ_Shadow) 661 break; 662 schedule(); 663 } 664 finish_wait(wqh, &wait.wait); 665 goto repeat; 666 } 667 668 /* Only do the copy if the currently-owning transaction 669 * still needs it. If it is on the Forget list, the 670 * committing transaction is past that stage. The 671 * buffer had better remain locked during the kmalloc, 672 * but that should be true --- we hold the journal lock 673 * still and the buffer is already on the BUF_JOURNAL 674 * list so won't be flushed. 675 * 676 * Subtle point, though: if this is a get_undo_access, 677 * then we will be relying on the frozen_data to contain 678 * the new value of the committed_data record after the 679 * transaction, so we HAVE to force the frozen_data copy 680 * in that case. */ 681 682 if (jh->b_jlist != BJ_Forget || force_copy) { 683 JBUFFER_TRACE(jh, "generate frozen data"); 684 if (!frozen_buffer) { 685 JBUFFER_TRACE(jh, "allocate memory for buffer"); 686 jbd_unlock_bh_state(bh); 687 frozen_buffer = 688 jbd2_alloc(jh2bh(jh)->b_size, 689 GFP_NOFS); 690 if (!frozen_buffer) { 691 printk(KERN_EMERG 692 "%s: OOM for frozen_buffer\n", 693 __FUNCTION__); 694 JBUFFER_TRACE(jh, "oom!"); 695 error = -ENOMEM; 696 jbd_lock_bh_state(bh); 697 goto done; 698 } 699 goto repeat; 700 } 701 jh->b_frozen_data = frozen_buffer; 702 frozen_buffer = NULL; 703 need_copy = 1; 704 } 705 jh->b_next_transaction = transaction; 706 } 707 708 709 /* 710 * Finally, if the buffer is not journaled right now, we need to make 711 * sure it doesn't get written to disk before the caller actually 712 * commits the new data 713 */ 714 if (!jh->b_transaction) { 715 JBUFFER_TRACE(jh, "no transaction"); 716 J_ASSERT_JH(jh, !jh->b_next_transaction); 717 jh->b_transaction = transaction; 718 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 719 spin_lock(&journal->j_list_lock); 720 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 721 spin_unlock(&journal->j_list_lock); 722 } 723 724 done: 725 if (need_copy) { 726 struct page *page; 727 int offset; 728 char *source; 729 730 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 731 "Possible IO failure.\n"); 732 page = jh2bh(jh)->b_page; 733 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 734 source = kmap_atomic(page, KM_USER0); 735 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 736 kunmap_atomic(source, KM_USER0); 737 } 738 jbd_unlock_bh_state(bh); 739 740 /* 741 * If we are about to journal a buffer, then any revoke pending on it is 742 * no longer valid 743 */ 744 jbd2_journal_cancel_revoke(handle, jh); 745 746 out: 747 if (unlikely(frozen_buffer)) /* It's usually NULL */ 748 jbd2_free(frozen_buffer, bh->b_size); 749 750 JBUFFER_TRACE(jh, "exit"); 751 return error; 752 } 753 754 /** 755 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 756 * @handle: transaction to add buffer modifications to 757 * @bh: bh to be used for metadata writes 758 * @credits: variable that will receive credits for the buffer 759 * 760 * Returns an error code or 0 on success. 761 * 762 * In full data journalling mode the buffer may be of type BJ_AsyncData, 763 * because we're write()ing a buffer which is also part of a shared mapping. 764 */ 765 766 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 767 { 768 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 769 int rc; 770 771 /* We do not want to get caught playing with fields which the 772 * log thread also manipulates. Make sure that the buffer 773 * completes any outstanding IO before proceeding. */ 774 rc = do_get_write_access(handle, jh, 0); 775 jbd2_journal_put_journal_head(jh); 776 return rc; 777 } 778 779 780 /* 781 * When the user wants to journal a newly created buffer_head 782 * (ie. getblk() returned a new buffer and we are going to populate it 783 * manually rather than reading off disk), then we need to keep the 784 * buffer_head locked until it has been completely filled with new 785 * data. In this case, we should be able to make the assertion that 786 * the bh is not already part of an existing transaction. 787 * 788 * The buffer should already be locked by the caller by this point. 789 * There is no lock ranking violation: it was a newly created, 790 * unlocked buffer beforehand. */ 791 792 /** 793 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 794 * @handle: transaction to new buffer to 795 * @bh: new buffer. 796 * 797 * Call this if you create a new bh. 798 */ 799 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 800 { 801 transaction_t *transaction = handle->h_transaction; 802 journal_t *journal = transaction->t_journal; 803 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 804 int err; 805 806 jbd_debug(5, "journal_head %p\n", jh); 807 err = -EROFS; 808 if (is_handle_aborted(handle)) 809 goto out; 810 err = 0; 811 812 JBUFFER_TRACE(jh, "entry"); 813 /* 814 * The buffer may already belong to this transaction due to pre-zeroing 815 * in the filesystem's new_block code. It may also be on the previous, 816 * committing transaction's lists, but it HAS to be in Forget state in 817 * that case: the transaction must have deleted the buffer for it to be 818 * reused here. 819 */ 820 jbd_lock_bh_state(bh); 821 spin_lock(&journal->j_list_lock); 822 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 823 jh->b_transaction == NULL || 824 (jh->b_transaction == journal->j_committing_transaction && 825 jh->b_jlist == BJ_Forget))); 826 827 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 828 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 829 830 if (jh->b_transaction == NULL) { 831 jh->b_transaction = transaction; 832 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 833 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 834 } else if (jh->b_transaction == journal->j_committing_transaction) { 835 JBUFFER_TRACE(jh, "set next transaction"); 836 jh->b_next_transaction = transaction; 837 } 838 spin_unlock(&journal->j_list_lock); 839 jbd_unlock_bh_state(bh); 840 841 /* 842 * akpm: I added this. ext3_alloc_branch can pick up new indirect 843 * blocks which contain freed but then revoked metadata. We need 844 * to cancel the revoke in case we end up freeing it yet again 845 * and the reallocating as data - this would cause a second revoke, 846 * which hits an assertion error. 847 */ 848 JBUFFER_TRACE(jh, "cancelling revoke"); 849 jbd2_journal_cancel_revoke(handle, jh); 850 jbd2_journal_put_journal_head(jh); 851 out: 852 return err; 853 } 854 855 /** 856 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 857 * non-rewindable consequences 858 * @handle: transaction 859 * @bh: buffer to undo 860 * @credits: store the number of taken credits here (if not NULL) 861 * 862 * Sometimes there is a need to distinguish between metadata which has 863 * been committed to disk and that which has not. The ext3fs code uses 864 * this for freeing and allocating space, we have to make sure that we 865 * do not reuse freed space until the deallocation has been committed, 866 * since if we overwrote that space we would make the delete 867 * un-rewindable in case of a crash. 868 * 869 * To deal with that, jbd2_journal_get_undo_access requests write access to a 870 * buffer for parts of non-rewindable operations such as delete 871 * operations on the bitmaps. The journaling code must keep a copy of 872 * the buffer's contents prior to the undo_access call until such time 873 * as we know that the buffer has definitely been committed to disk. 874 * 875 * We never need to know which transaction the committed data is part 876 * of, buffers touched here are guaranteed to be dirtied later and so 877 * will be committed to a new transaction in due course, at which point 878 * we can discard the old committed data pointer. 879 * 880 * Returns error number or 0 on success. 881 */ 882 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 883 { 884 int err; 885 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 886 char *committed_data = NULL; 887 888 JBUFFER_TRACE(jh, "entry"); 889 890 /* 891 * Do this first --- it can drop the journal lock, so we want to 892 * make sure that obtaining the committed_data is done 893 * atomically wrt. completion of any outstanding commits. 894 */ 895 err = do_get_write_access(handle, jh, 1); 896 if (err) 897 goto out; 898 899 repeat: 900 if (!jh->b_committed_data) { 901 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 902 if (!committed_data) { 903 printk(KERN_EMERG "%s: No memory for committed data\n", 904 __FUNCTION__); 905 err = -ENOMEM; 906 goto out; 907 } 908 } 909 910 jbd_lock_bh_state(bh); 911 if (!jh->b_committed_data) { 912 /* Copy out the current buffer contents into the 913 * preserved, committed copy. */ 914 JBUFFER_TRACE(jh, "generate b_committed data"); 915 if (!committed_data) { 916 jbd_unlock_bh_state(bh); 917 goto repeat; 918 } 919 920 jh->b_committed_data = committed_data; 921 committed_data = NULL; 922 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 923 } 924 jbd_unlock_bh_state(bh); 925 out: 926 jbd2_journal_put_journal_head(jh); 927 if (unlikely(committed_data)) 928 jbd2_free(committed_data, bh->b_size); 929 return err; 930 } 931 932 /** 933 * int jbd2_journal_dirty_data() - mark a buffer as containing dirty data which 934 * needs to be flushed before we can commit the 935 * current transaction. 936 * @handle: transaction 937 * @bh: bufferhead to mark 938 * 939 * The buffer is placed on the transaction's data list and is marked as 940 * belonging to the transaction. 941 * 942 * Returns error number or 0 on success. 943 * 944 * jbd2_journal_dirty_data() can be called via page_launder->ext3_writepage 945 * by kswapd. 946 */ 947 int jbd2_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 948 { 949 journal_t *journal = handle->h_transaction->t_journal; 950 int need_brelse = 0; 951 struct journal_head *jh; 952 953 if (is_handle_aborted(handle)) 954 return 0; 955 956 jh = jbd2_journal_add_journal_head(bh); 957 JBUFFER_TRACE(jh, "entry"); 958 959 /* 960 * The buffer could *already* be dirty. Writeout can start 961 * at any time. 962 */ 963 jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid); 964 965 /* 966 * What if the buffer is already part of a running transaction? 967 * 968 * There are two cases: 969 * 1) It is part of the current running transaction. Refile it, 970 * just in case we have allocated it as metadata, deallocated 971 * it, then reallocated it as data. 972 * 2) It is part of the previous, still-committing transaction. 973 * If all we want to do is to guarantee that the buffer will be 974 * written to disk before this new transaction commits, then 975 * being sure that the *previous* transaction has this same 976 * property is sufficient for us! Just leave it on its old 977 * transaction. 978 * 979 * In case (2), the buffer must not already exist as metadata 980 * --- that would violate write ordering (a transaction is free 981 * to write its data at any point, even before the previous 982 * committing transaction has committed). The caller must 983 * never, ever allow this to happen: there's nothing we can do 984 * about it in this layer. 985 */ 986 jbd_lock_bh_state(bh); 987 spin_lock(&journal->j_list_lock); 988 989 /* Now that we have bh_state locked, are we really still mapped? */ 990 if (!buffer_mapped(bh)) { 991 JBUFFER_TRACE(jh, "unmapped buffer, bailing out"); 992 goto no_journal; 993 } 994 995 if (jh->b_transaction) { 996 JBUFFER_TRACE(jh, "has transaction"); 997 if (jh->b_transaction != handle->h_transaction) { 998 JBUFFER_TRACE(jh, "belongs to older transaction"); 999 J_ASSERT_JH(jh, jh->b_transaction == 1000 journal->j_committing_transaction); 1001 1002 /* @@@ IS THIS TRUE ? */ 1003 /* 1004 * Not any more. Scenario: someone does a write() 1005 * in data=journal mode. The buffer's transaction has 1006 * moved into commit. Then someone does another 1007 * write() to the file. We do the frozen data copyout 1008 * and set b_next_transaction to point to j_running_t. 1009 * And while we're in that state, someone does a 1010 * writepage() in an attempt to pageout the same area 1011 * of the file via a shared mapping. At present that 1012 * calls jbd2_journal_dirty_data(), and we get right here. 1013 * It may be too late to journal the data. Simply 1014 * falling through to the next test will suffice: the 1015 * data will be dirty and wil be checkpointed. The 1016 * ordering comments in the next comment block still 1017 * apply. 1018 */ 1019 //J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1020 1021 /* 1022 * If we're journalling data, and this buffer was 1023 * subject to a write(), it could be metadata, forget 1024 * or shadow against the committing transaction. Now, 1025 * someone has dirtied the same darn page via a mapping 1026 * and it is being writepage()'d. 1027 * We *could* just steal the page from commit, with some 1028 * fancy locking there. Instead, we just skip it - 1029 * don't tie the page's buffers to the new transaction 1030 * at all. 1031 * Implication: if we crash before the writepage() data 1032 * is written into the filesystem, recovery will replay 1033 * the write() data. 1034 */ 1035 if (jh->b_jlist != BJ_None && 1036 jh->b_jlist != BJ_SyncData && 1037 jh->b_jlist != BJ_Locked) { 1038 JBUFFER_TRACE(jh, "Not stealing"); 1039 goto no_journal; 1040 } 1041 1042 /* 1043 * This buffer may be undergoing writeout in commit. We 1044 * can't return from here and let the caller dirty it 1045 * again because that can cause the write-out loop in 1046 * commit to never terminate. 1047 */ 1048 if (buffer_dirty(bh)) { 1049 get_bh(bh); 1050 spin_unlock(&journal->j_list_lock); 1051 jbd_unlock_bh_state(bh); 1052 need_brelse = 1; 1053 sync_dirty_buffer(bh); 1054 jbd_lock_bh_state(bh); 1055 spin_lock(&journal->j_list_lock); 1056 /* Since we dropped the lock... */ 1057 if (!buffer_mapped(bh)) { 1058 JBUFFER_TRACE(jh, "buffer got unmapped"); 1059 goto no_journal; 1060 } 1061 /* The buffer may become locked again at any 1062 time if it is redirtied */ 1063 } 1064 1065 /* journal_clean_data_list() may have got there first */ 1066 if (jh->b_transaction != NULL) { 1067 JBUFFER_TRACE(jh, "unfile from commit"); 1068 __jbd2_journal_temp_unlink_buffer(jh); 1069 /* It still points to the committing 1070 * transaction; move it to this one so 1071 * that the refile assert checks are 1072 * happy. */ 1073 jh->b_transaction = handle->h_transaction; 1074 } 1075 /* The buffer will be refiled below */ 1076 1077 } 1078 /* 1079 * Special case --- the buffer might actually have been 1080 * allocated and then immediately deallocated in the previous, 1081 * committing transaction, so might still be left on that 1082 * transaction's metadata lists. 1083 */ 1084 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) { 1085 JBUFFER_TRACE(jh, "not on correct data list: unfile"); 1086 J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow); 1087 __jbd2_journal_temp_unlink_buffer(jh); 1088 jh->b_transaction = handle->h_transaction; 1089 JBUFFER_TRACE(jh, "file as data"); 1090 __jbd2_journal_file_buffer(jh, handle->h_transaction, 1091 BJ_SyncData); 1092 } 1093 } else { 1094 JBUFFER_TRACE(jh, "not on a transaction"); 1095 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_SyncData); 1096 } 1097 no_journal: 1098 spin_unlock(&journal->j_list_lock); 1099 jbd_unlock_bh_state(bh); 1100 if (need_brelse) { 1101 BUFFER_TRACE(bh, "brelse"); 1102 __brelse(bh); 1103 } 1104 JBUFFER_TRACE(jh, "exit"); 1105 jbd2_journal_put_journal_head(jh); 1106 return 0; 1107 } 1108 1109 /** 1110 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1111 * @handle: transaction to add buffer to. 1112 * @bh: buffer to mark 1113 * 1114 * mark dirty metadata which needs to be journaled as part of the current 1115 * transaction. 1116 * 1117 * The buffer is placed on the transaction's metadata list and is marked 1118 * as belonging to the transaction. 1119 * 1120 * Returns error number or 0 on success. 1121 * 1122 * Special care needs to be taken if the buffer already belongs to the 1123 * current committing transaction (in which case we should have frozen 1124 * data present for that commit). In that case, we don't relink the 1125 * buffer: that only gets done when the old transaction finally 1126 * completes its commit. 1127 */ 1128 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1129 { 1130 transaction_t *transaction = handle->h_transaction; 1131 journal_t *journal = transaction->t_journal; 1132 struct journal_head *jh = bh2jh(bh); 1133 1134 jbd_debug(5, "journal_head %p\n", jh); 1135 JBUFFER_TRACE(jh, "entry"); 1136 if (is_handle_aborted(handle)) 1137 goto out; 1138 1139 jbd_lock_bh_state(bh); 1140 1141 if (jh->b_modified == 0) { 1142 /* 1143 * This buffer's got modified and becoming part 1144 * of the transaction. This needs to be done 1145 * once a transaction -bzzz 1146 */ 1147 jh->b_modified = 1; 1148 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1149 handle->h_buffer_credits--; 1150 } 1151 1152 /* 1153 * fastpath, to avoid expensive locking. If this buffer is already 1154 * on the running transaction's metadata list there is nothing to do. 1155 * Nobody can take it off again because there is a handle open. 1156 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1157 * result in this test being false, so we go in and take the locks. 1158 */ 1159 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1160 JBUFFER_TRACE(jh, "fastpath"); 1161 J_ASSERT_JH(jh, jh->b_transaction == 1162 journal->j_running_transaction); 1163 goto out_unlock_bh; 1164 } 1165 1166 set_buffer_jbddirty(bh); 1167 1168 /* 1169 * Metadata already on the current transaction list doesn't 1170 * need to be filed. Metadata on another transaction's list must 1171 * be committing, and will be refiled once the commit completes: 1172 * leave it alone for now. 1173 */ 1174 if (jh->b_transaction != transaction) { 1175 JBUFFER_TRACE(jh, "already on other transaction"); 1176 J_ASSERT_JH(jh, jh->b_transaction == 1177 journal->j_committing_transaction); 1178 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1179 /* And this case is illegal: we can't reuse another 1180 * transaction's data buffer, ever. */ 1181 goto out_unlock_bh; 1182 } 1183 1184 /* That test should have eliminated the following case: */ 1185 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1186 1187 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1188 spin_lock(&journal->j_list_lock); 1189 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1190 spin_unlock(&journal->j_list_lock); 1191 out_unlock_bh: 1192 jbd_unlock_bh_state(bh); 1193 out: 1194 JBUFFER_TRACE(jh, "exit"); 1195 return 0; 1196 } 1197 1198 /* 1199 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1200 * updates, if the update decided in the end that it didn't need access. 1201 * 1202 */ 1203 void 1204 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1205 { 1206 BUFFER_TRACE(bh, "entry"); 1207 } 1208 1209 /** 1210 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1211 * @handle: transaction handle 1212 * @bh: bh to 'forget' 1213 * 1214 * We can only do the bforget if there are no commits pending against the 1215 * buffer. If the buffer is dirty in the current running transaction we 1216 * can safely unlink it. 1217 * 1218 * bh may not be a journalled buffer at all - it may be a non-JBD 1219 * buffer which came off the hashtable. Check for this. 1220 * 1221 * Decrements bh->b_count by one. 1222 * 1223 * Allow this call even if the handle has aborted --- it may be part of 1224 * the caller's cleanup after an abort. 1225 */ 1226 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1227 { 1228 transaction_t *transaction = handle->h_transaction; 1229 journal_t *journal = transaction->t_journal; 1230 struct journal_head *jh; 1231 int drop_reserve = 0; 1232 int err = 0; 1233 1234 BUFFER_TRACE(bh, "entry"); 1235 1236 jbd_lock_bh_state(bh); 1237 spin_lock(&journal->j_list_lock); 1238 1239 if (!buffer_jbd(bh)) 1240 goto not_jbd; 1241 jh = bh2jh(bh); 1242 1243 /* Critical error: attempting to delete a bitmap buffer, maybe? 1244 * Don't do any jbd operations, and return an error. */ 1245 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1246 "inconsistent data on disk")) { 1247 err = -EIO; 1248 goto not_jbd; 1249 } 1250 1251 /* 1252 * The buffer's going from the transaction, we must drop 1253 * all references -bzzz 1254 */ 1255 jh->b_modified = 0; 1256 1257 if (jh->b_transaction == handle->h_transaction) { 1258 J_ASSERT_JH(jh, !jh->b_frozen_data); 1259 1260 /* If we are forgetting a buffer which is already part 1261 * of this transaction, then we can just drop it from 1262 * the transaction immediately. */ 1263 clear_buffer_dirty(bh); 1264 clear_buffer_jbddirty(bh); 1265 1266 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1267 1268 drop_reserve = 1; 1269 1270 /* 1271 * We are no longer going to journal this buffer. 1272 * However, the commit of this transaction is still 1273 * important to the buffer: the delete that we are now 1274 * processing might obsolete an old log entry, so by 1275 * committing, we can satisfy the buffer's checkpoint. 1276 * 1277 * So, if we have a checkpoint on the buffer, we should 1278 * now refile the buffer on our BJ_Forget list so that 1279 * we know to remove the checkpoint after we commit. 1280 */ 1281 1282 if (jh->b_cp_transaction) { 1283 __jbd2_journal_temp_unlink_buffer(jh); 1284 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1285 } else { 1286 __jbd2_journal_unfile_buffer(jh); 1287 jbd2_journal_remove_journal_head(bh); 1288 __brelse(bh); 1289 if (!buffer_jbd(bh)) { 1290 spin_unlock(&journal->j_list_lock); 1291 jbd_unlock_bh_state(bh); 1292 __bforget(bh); 1293 goto drop; 1294 } 1295 } 1296 } else if (jh->b_transaction) { 1297 J_ASSERT_JH(jh, (jh->b_transaction == 1298 journal->j_committing_transaction)); 1299 /* However, if the buffer is still owned by a prior 1300 * (committing) transaction, we can't drop it yet... */ 1301 JBUFFER_TRACE(jh, "belongs to older transaction"); 1302 /* ... but we CAN drop it from the new transaction if we 1303 * have also modified it since the original commit. */ 1304 1305 if (jh->b_next_transaction) { 1306 J_ASSERT(jh->b_next_transaction == transaction); 1307 jh->b_next_transaction = NULL; 1308 drop_reserve = 1; 1309 } 1310 } 1311 1312 not_jbd: 1313 spin_unlock(&journal->j_list_lock); 1314 jbd_unlock_bh_state(bh); 1315 __brelse(bh); 1316 drop: 1317 if (drop_reserve) { 1318 /* no need to reserve log space for this block -bzzz */ 1319 handle->h_buffer_credits++; 1320 } 1321 return err; 1322 } 1323 1324 /** 1325 * int jbd2_journal_stop() - complete a transaction 1326 * @handle: tranaction to complete. 1327 * 1328 * All done for a particular handle. 1329 * 1330 * There is not much action needed here. We just return any remaining 1331 * buffer credits to the transaction and remove the handle. The only 1332 * complication is that we need to start a commit operation if the 1333 * filesystem is marked for synchronous update. 1334 * 1335 * jbd2_journal_stop itself will not usually return an error, but it may 1336 * do so in unusual circumstances. In particular, expect it to 1337 * return -EIO if a jbd2_journal_abort has been executed since the 1338 * transaction began. 1339 */ 1340 int jbd2_journal_stop(handle_t *handle) 1341 { 1342 transaction_t *transaction = handle->h_transaction; 1343 journal_t *journal = transaction->t_journal; 1344 int old_handle_count, err; 1345 pid_t pid; 1346 1347 J_ASSERT(journal_current_handle() == handle); 1348 1349 if (is_handle_aborted(handle)) 1350 err = -EIO; 1351 else { 1352 J_ASSERT(transaction->t_updates > 0); 1353 err = 0; 1354 } 1355 1356 if (--handle->h_ref > 0) { 1357 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1358 handle->h_ref); 1359 return err; 1360 } 1361 1362 jbd_debug(4, "Handle %p going down\n", handle); 1363 1364 /* 1365 * Implement synchronous transaction batching. If the handle 1366 * was synchronous, don't force a commit immediately. Let's 1367 * yield and let another thread piggyback onto this transaction. 1368 * Keep doing that while new threads continue to arrive. 1369 * It doesn't cost much - we're about to run a commit and sleep 1370 * on IO anyway. Speeds up many-threaded, many-dir operations 1371 * by 30x or more... 1372 * 1373 * But don't do this if this process was the most recent one to 1374 * perform a synchronous write. We do this to detect the case where a 1375 * single process is doing a stream of sync writes. No point in waiting 1376 * for joiners in that case. 1377 */ 1378 pid = current->pid; 1379 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1380 journal->j_last_sync_writer = pid; 1381 do { 1382 old_handle_count = transaction->t_handle_count; 1383 schedule_timeout_uninterruptible(1); 1384 } while (old_handle_count != transaction->t_handle_count); 1385 } 1386 1387 current->journal_info = NULL; 1388 spin_lock(&journal->j_state_lock); 1389 spin_lock(&transaction->t_handle_lock); 1390 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1391 transaction->t_updates--; 1392 if (!transaction->t_updates) { 1393 wake_up(&journal->j_wait_updates); 1394 if (journal->j_barrier_count) 1395 wake_up(&journal->j_wait_transaction_locked); 1396 } 1397 1398 /* 1399 * If the handle is marked SYNC, we need to set another commit 1400 * going! We also want to force a commit if the current 1401 * transaction is occupying too much of the log, or if the 1402 * transaction is too old now. 1403 */ 1404 if (handle->h_sync || 1405 transaction->t_outstanding_credits > 1406 journal->j_max_transaction_buffers || 1407 time_after_eq(jiffies, transaction->t_expires)) { 1408 /* Do this even for aborted journals: an abort still 1409 * completes the commit thread, it just doesn't write 1410 * anything to disk. */ 1411 tid_t tid = transaction->t_tid; 1412 1413 spin_unlock(&transaction->t_handle_lock); 1414 jbd_debug(2, "transaction too old, requesting commit for " 1415 "handle %p\n", handle); 1416 /* This is non-blocking */ 1417 __jbd2_log_start_commit(journal, transaction->t_tid); 1418 spin_unlock(&journal->j_state_lock); 1419 1420 /* 1421 * Special case: JBD2_SYNC synchronous updates require us 1422 * to wait for the commit to complete. 1423 */ 1424 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1425 err = jbd2_log_wait_commit(journal, tid); 1426 } else { 1427 spin_unlock(&transaction->t_handle_lock); 1428 spin_unlock(&journal->j_state_lock); 1429 } 1430 1431 lock_release(&handle->h_lockdep_map, 1, _THIS_IP_); 1432 1433 jbd2_free_handle(handle); 1434 return err; 1435 } 1436 1437 /**int jbd2_journal_force_commit() - force any uncommitted transactions 1438 * @journal: journal to force 1439 * 1440 * For synchronous operations: force any uncommitted transactions 1441 * to disk. May seem kludgy, but it reuses all the handle batching 1442 * code in a very simple manner. 1443 */ 1444 int jbd2_journal_force_commit(journal_t *journal) 1445 { 1446 handle_t *handle; 1447 int ret; 1448 1449 handle = jbd2_journal_start(journal, 1); 1450 if (IS_ERR(handle)) { 1451 ret = PTR_ERR(handle); 1452 } else { 1453 handle->h_sync = 1; 1454 ret = jbd2_journal_stop(handle); 1455 } 1456 return ret; 1457 } 1458 1459 /* 1460 * 1461 * List management code snippets: various functions for manipulating the 1462 * transaction buffer lists. 1463 * 1464 */ 1465 1466 /* 1467 * Append a buffer to a transaction list, given the transaction's list head 1468 * pointer. 1469 * 1470 * j_list_lock is held. 1471 * 1472 * jbd_lock_bh_state(jh2bh(jh)) is held. 1473 */ 1474 1475 static inline void 1476 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1477 { 1478 if (!*list) { 1479 jh->b_tnext = jh->b_tprev = jh; 1480 *list = jh; 1481 } else { 1482 /* Insert at the tail of the list to preserve order */ 1483 struct journal_head *first = *list, *last = first->b_tprev; 1484 jh->b_tprev = last; 1485 jh->b_tnext = first; 1486 last->b_tnext = first->b_tprev = jh; 1487 } 1488 } 1489 1490 /* 1491 * Remove a buffer from a transaction list, given the transaction's list 1492 * head pointer. 1493 * 1494 * Called with j_list_lock held, and the journal may not be locked. 1495 * 1496 * jbd_lock_bh_state(jh2bh(jh)) is held. 1497 */ 1498 1499 static inline void 1500 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1501 { 1502 if (*list == jh) { 1503 *list = jh->b_tnext; 1504 if (*list == jh) 1505 *list = NULL; 1506 } 1507 jh->b_tprev->b_tnext = jh->b_tnext; 1508 jh->b_tnext->b_tprev = jh->b_tprev; 1509 } 1510 1511 /* 1512 * Remove a buffer from the appropriate transaction list. 1513 * 1514 * Note that this function can *change* the value of 1515 * bh->b_transaction->t_sync_datalist, t_buffers, t_forget, 1516 * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list. If the caller 1517 * is holding onto a copy of one of thee pointers, it could go bad. 1518 * Generally the caller needs to re-read the pointer from the transaction_t. 1519 * 1520 * Called under j_list_lock. The journal may not be locked. 1521 */ 1522 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1523 { 1524 struct journal_head **list = NULL; 1525 transaction_t *transaction; 1526 struct buffer_head *bh = jh2bh(jh); 1527 1528 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1529 transaction = jh->b_transaction; 1530 if (transaction) 1531 assert_spin_locked(&transaction->t_journal->j_list_lock); 1532 1533 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1534 if (jh->b_jlist != BJ_None) 1535 J_ASSERT_JH(jh, transaction != NULL); 1536 1537 switch (jh->b_jlist) { 1538 case BJ_None: 1539 return; 1540 case BJ_SyncData: 1541 list = &transaction->t_sync_datalist; 1542 break; 1543 case BJ_Metadata: 1544 transaction->t_nr_buffers--; 1545 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1546 list = &transaction->t_buffers; 1547 break; 1548 case BJ_Forget: 1549 list = &transaction->t_forget; 1550 break; 1551 case BJ_IO: 1552 list = &transaction->t_iobuf_list; 1553 break; 1554 case BJ_Shadow: 1555 list = &transaction->t_shadow_list; 1556 break; 1557 case BJ_LogCtl: 1558 list = &transaction->t_log_list; 1559 break; 1560 case BJ_Reserved: 1561 list = &transaction->t_reserved_list; 1562 break; 1563 case BJ_Locked: 1564 list = &transaction->t_locked_list; 1565 break; 1566 } 1567 1568 __blist_del_buffer(list, jh); 1569 jh->b_jlist = BJ_None; 1570 if (test_clear_buffer_jbddirty(bh)) 1571 mark_buffer_dirty(bh); /* Expose it to the VM */ 1572 } 1573 1574 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1575 { 1576 __jbd2_journal_temp_unlink_buffer(jh); 1577 jh->b_transaction = NULL; 1578 } 1579 1580 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1581 { 1582 jbd_lock_bh_state(jh2bh(jh)); 1583 spin_lock(&journal->j_list_lock); 1584 __jbd2_journal_unfile_buffer(jh); 1585 spin_unlock(&journal->j_list_lock); 1586 jbd_unlock_bh_state(jh2bh(jh)); 1587 } 1588 1589 /* 1590 * Called from jbd2_journal_try_to_free_buffers(). 1591 * 1592 * Called under jbd_lock_bh_state(bh) 1593 */ 1594 static void 1595 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1596 { 1597 struct journal_head *jh; 1598 1599 jh = bh2jh(bh); 1600 1601 if (buffer_locked(bh) || buffer_dirty(bh)) 1602 goto out; 1603 1604 if (jh->b_next_transaction != NULL) 1605 goto out; 1606 1607 spin_lock(&journal->j_list_lock); 1608 if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) { 1609 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) { 1610 /* A written-back ordered data buffer */ 1611 JBUFFER_TRACE(jh, "release data"); 1612 __jbd2_journal_unfile_buffer(jh); 1613 jbd2_journal_remove_journal_head(bh); 1614 __brelse(bh); 1615 } 1616 } else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1617 /* written-back checkpointed metadata buffer */ 1618 if (jh->b_jlist == BJ_None) { 1619 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1620 __jbd2_journal_remove_checkpoint(jh); 1621 jbd2_journal_remove_journal_head(bh); 1622 __brelse(bh); 1623 } 1624 } 1625 spin_unlock(&journal->j_list_lock); 1626 out: 1627 return; 1628 } 1629 1630 1631 /** 1632 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1633 * @journal: journal for operation 1634 * @page: to try and free 1635 * @unused_gfp_mask: unused 1636 * 1637 * 1638 * For all the buffers on this page, 1639 * if they are fully written out ordered data, move them onto BUF_CLEAN 1640 * so try_to_free_buffers() can reap them. 1641 * 1642 * This function returns non-zero if we wish try_to_free_buffers() 1643 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1644 * We also do it if the page has locked or dirty buffers and the caller wants 1645 * us to perform sync or async writeout. 1646 * 1647 * This complicates JBD locking somewhat. We aren't protected by the 1648 * BKL here. We wish to remove the buffer from its committing or 1649 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1650 * 1651 * This may *change* the value of transaction_t->t_datalist, so anyone 1652 * who looks at t_datalist needs to lock against this function. 1653 * 1654 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1655 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1656 * will come out of the lock with the buffer dirty, which makes it 1657 * ineligible for release here. 1658 * 1659 * Who else is affected by this? hmm... Really the only contender 1660 * is do_get_write_access() - it could be looking at the buffer while 1661 * journal_try_to_free_buffer() is changing its state. But that 1662 * cannot happen because we never reallocate freed data as metadata 1663 * while the data is part of a transaction. Yes? 1664 */ 1665 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1666 struct page *page, gfp_t unused_gfp_mask) 1667 { 1668 struct buffer_head *head; 1669 struct buffer_head *bh; 1670 int ret = 0; 1671 1672 J_ASSERT(PageLocked(page)); 1673 1674 head = page_buffers(page); 1675 bh = head; 1676 do { 1677 struct journal_head *jh; 1678 1679 /* 1680 * We take our own ref against the journal_head here to avoid 1681 * having to add tons of locking around each instance of 1682 * jbd2_journal_remove_journal_head() and jbd2_journal_put_journal_head(). 1683 */ 1684 jh = jbd2_journal_grab_journal_head(bh); 1685 if (!jh) 1686 continue; 1687 1688 jbd_lock_bh_state(bh); 1689 __journal_try_to_free_buffer(journal, bh); 1690 jbd2_journal_put_journal_head(jh); 1691 jbd_unlock_bh_state(bh); 1692 if (buffer_jbd(bh)) 1693 goto busy; 1694 } while ((bh = bh->b_this_page) != head); 1695 ret = try_to_free_buffers(page); 1696 busy: 1697 return ret; 1698 } 1699 1700 /* 1701 * This buffer is no longer needed. If it is on an older transaction's 1702 * checkpoint list we need to record it on this transaction's forget list 1703 * to pin this buffer (and hence its checkpointing transaction) down until 1704 * this transaction commits. If the buffer isn't on a checkpoint list, we 1705 * release it. 1706 * Returns non-zero if JBD no longer has an interest in the buffer. 1707 * 1708 * Called under j_list_lock. 1709 * 1710 * Called under jbd_lock_bh_state(bh). 1711 */ 1712 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1713 { 1714 int may_free = 1; 1715 struct buffer_head *bh = jh2bh(jh); 1716 1717 __jbd2_journal_unfile_buffer(jh); 1718 1719 if (jh->b_cp_transaction) { 1720 JBUFFER_TRACE(jh, "on running+cp transaction"); 1721 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1722 clear_buffer_jbddirty(bh); 1723 may_free = 0; 1724 } else { 1725 JBUFFER_TRACE(jh, "on running transaction"); 1726 jbd2_journal_remove_journal_head(bh); 1727 __brelse(bh); 1728 } 1729 return may_free; 1730 } 1731 1732 /* 1733 * jbd2_journal_invalidatepage 1734 * 1735 * This code is tricky. It has a number of cases to deal with. 1736 * 1737 * There are two invariants which this code relies on: 1738 * 1739 * i_size must be updated on disk before we start calling invalidatepage on the 1740 * data. 1741 * 1742 * This is done in ext3 by defining an ext3_setattr method which 1743 * updates i_size before truncate gets going. By maintaining this 1744 * invariant, we can be sure that it is safe to throw away any buffers 1745 * attached to the current transaction: once the transaction commits, 1746 * we know that the data will not be needed. 1747 * 1748 * Note however that we can *not* throw away data belonging to the 1749 * previous, committing transaction! 1750 * 1751 * Any disk blocks which *are* part of the previous, committing 1752 * transaction (and which therefore cannot be discarded immediately) are 1753 * not going to be reused in the new running transaction 1754 * 1755 * The bitmap committed_data images guarantee this: any block which is 1756 * allocated in one transaction and removed in the next will be marked 1757 * as in-use in the committed_data bitmap, so cannot be reused until 1758 * the next transaction to delete the block commits. This means that 1759 * leaving committing buffers dirty is quite safe: the disk blocks 1760 * cannot be reallocated to a different file and so buffer aliasing is 1761 * not possible. 1762 * 1763 * 1764 * The above applies mainly to ordered data mode. In writeback mode we 1765 * don't make guarantees about the order in which data hits disk --- in 1766 * particular we don't guarantee that new dirty data is flushed before 1767 * transaction commit --- so it is always safe just to discard data 1768 * immediately in that mode. --sct 1769 */ 1770 1771 /* 1772 * The journal_unmap_buffer helper function returns zero if the buffer 1773 * concerned remains pinned as an anonymous buffer belonging to an older 1774 * transaction. 1775 * 1776 * We're outside-transaction here. Either or both of j_running_transaction 1777 * and j_committing_transaction may be NULL. 1778 */ 1779 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1780 { 1781 transaction_t *transaction; 1782 struct journal_head *jh; 1783 int may_free = 1; 1784 int ret; 1785 1786 BUFFER_TRACE(bh, "entry"); 1787 1788 /* 1789 * It is safe to proceed here without the j_list_lock because the 1790 * buffers cannot be stolen by try_to_free_buffers as long as we are 1791 * holding the page lock. --sct 1792 */ 1793 1794 if (!buffer_jbd(bh)) 1795 goto zap_buffer_unlocked; 1796 1797 spin_lock(&journal->j_state_lock); 1798 jbd_lock_bh_state(bh); 1799 spin_lock(&journal->j_list_lock); 1800 1801 jh = jbd2_journal_grab_journal_head(bh); 1802 if (!jh) 1803 goto zap_buffer_no_jh; 1804 1805 transaction = jh->b_transaction; 1806 if (transaction == NULL) { 1807 /* First case: not on any transaction. If it 1808 * has no checkpoint link, then we can zap it: 1809 * it's a writeback-mode buffer so we don't care 1810 * if it hits disk safely. */ 1811 if (!jh->b_cp_transaction) { 1812 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1813 goto zap_buffer; 1814 } 1815 1816 if (!buffer_dirty(bh)) { 1817 /* bdflush has written it. We can drop it now */ 1818 goto zap_buffer; 1819 } 1820 1821 /* OK, it must be in the journal but still not 1822 * written fully to disk: it's metadata or 1823 * journaled data... */ 1824 1825 if (journal->j_running_transaction) { 1826 /* ... and once the current transaction has 1827 * committed, the buffer won't be needed any 1828 * longer. */ 1829 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1830 ret = __dispose_buffer(jh, 1831 journal->j_running_transaction); 1832 jbd2_journal_put_journal_head(jh); 1833 spin_unlock(&journal->j_list_lock); 1834 jbd_unlock_bh_state(bh); 1835 spin_unlock(&journal->j_state_lock); 1836 return ret; 1837 } else { 1838 /* There is no currently-running transaction. So the 1839 * orphan record which we wrote for this file must have 1840 * passed into commit. We must attach this buffer to 1841 * the committing transaction, if it exists. */ 1842 if (journal->j_committing_transaction) { 1843 JBUFFER_TRACE(jh, "give to committing trans"); 1844 ret = __dispose_buffer(jh, 1845 journal->j_committing_transaction); 1846 jbd2_journal_put_journal_head(jh); 1847 spin_unlock(&journal->j_list_lock); 1848 jbd_unlock_bh_state(bh); 1849 spin_unlock(&journal->j_state_lock); 1850 return ret; 1851 } else { 1852 /* The orphan record's transaction has 1853 * committed. We can cleanse this buffer */ 1854 clear_buffer_jbddirty(bh); 1855 goto zap_buffer; 1856 } 1857 } 1858 } else if (transaction == journal->j_committing_transaction) { 1859 JBUFFER_TRACE(jh, "on committing transaction"); 1860 if (jh->b_jlist == BJ_Locked) { 1861 /* 1862 * The buffer is on the committing transaction's locked 1863 * list. We have the buffer locked, so I/O has 1864 * completed. So we can nail the buffer now. 1865 */ 1866 may_free = __dispose_buffer(jh, transaction); 1867 goto zap_buffer; 1868 } 1869 /* 1870 * If it is committing, we simply cannot touch it. We 1871 * can remove it's next_transaction pointer from the 1872 * running transaction if that is set, but nothing 1873 * else. */ 1874 set_buffer_freed(bh); 1875 if (jh->b_next_transaction) { 1876 J_ASSERT(jh->b_next_transaction == 1877 journal->j_running_transaction); 1878 jh->b_next_transaction = NULL; 1879 } 1880 jbd2_journal_put_journal_head(jh); 1881 spin_unlock(&journal->j_list_lock); 1882 jbd_unlock_bh_state(bh); 1883 spin_unlock(&journal->j_state_lock); 1884 return 0; 1885 } else { 1886 /* Good, the buffer belongs to the running transaction. 1887 * We are writing our own transaction's data, not any 1888 * previous one's, so it is safe to throw it away 1889 * (remember that we expect the filesystem to have set 1890 * i_size already for this truncate so recovery will not 1891 * expose the disk blocks we are discarding here.) */ 1892 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1893 JBUFFER_TRACE(jh, "on running transaction"); 1894 may_free = __dispose_buffer(jh, transaction); 1895 } 1896 1897 zap_buffer: 1898 jbd2_journal_put_journal_head(jh); 1899 zap_buffer_no_jh: 1900 spin_unlock(&journal->j_list_lock); 1901 jbd_unlock_bh_state(bh); 1902 spin_unlock(&journal->j_state_lock); 1903 zap_buffer_unlocked: 1904 clear_buffer_dirty(bh); 1905 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1906 clear_buffer_mapped(bh); 1907 clear_buffer_req(bh); 1908 clear_buffer_new(bh); 1909 bh->b_bdev = NULL; 1910 return may_free; 1911 } 1912 1913 /** 1914 * void jbd2_journal_invalidatepage() 1915 * @journal: journal to use for flush... 1916 * @page: page to flush 1917 * @offset: length of page to invalidate. 1918 * 1919 * Reap page buffers containing data after offset in page. 1920 * 1921 */ 1922 void jbd2_journal_invalidatepage(journal_t *journal, 1923 struct page *page, 1924 unsigned long offset) 1925 { 1926 struct buffer_head *head, *bh, *next; 1927 unsigned int curr_off = 0; 1928 int may_free = 1; 1929 1930 if (!PageLocked(page)) 1931 BUG(); 1932 if (!page_has_buffers(page)) 1933 return; 1934 1935 /* We will potentially be playing with lists other than just the 1936 * data lists (especially for journaled data mode), so be 1937 * cautious in our locking. */ 1938 1939 head = bh = page_buffers(page); 1940 do { 1941 unsigned int next_off = curr_off + bh->b_size; 1942 next = bh->b_this_page; 1943 1944 if (offset <= curr_off) { 1945 /* This block is wholly outside the truncation point */ 1946 lock_buffer(bh); 1947 may_free &= journal_unmap_buffer(journal, bh); 1948 unlock_buffer(bh); 1949 } 1950 curr_off = next_off; 1951 bh = next; 1952 1953 } while (bh != head); 1954 1955 if (!offset) { 1956 if (may_free && try_to_free_buffers(page)) 1957 J_ASSERT(!page_has_buffers(page)); 1958 } 1959 } 1960 1961 /* 1962 * File a buffer on the given transaction list. 1963 */ 1964 void __jbd2_journal_file_buffer(struct journal_head *jh, 1965 transaction_t *transaction, int jlist) 1966 { 1967 struct journal_head **list = NULL; 1968 int was_dirty = 0; 1969 struct buffer_head *bh = jh2bh(jh); 1970 1971 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1972 assert_spin_locked(&transaction->t_journal->j_list_lock); 1973 1974 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1975 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1976 jh->b_transaction == NULL); 1977 1978 if (jh->b_transaction && jh->b_jlist == jlist) 1979 return; 1980 1981 /* The following list of buffer states needs to be consistent 1982 * with __jbd_unexpected_dirty_buffer()'s handling of dirty 1983 * state. */ 1984 1985 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1986 jlist == BJ_Shadow || jlist == BJ_Forget) { 1987 if (test_clear_buffer_dirty(bh) || 1988 test_clear_buffer_jbddirty(bh)) 1989 was_dirty = 1; 1990 } 1991 1992 if (jh->b_transaction) 1993 __jbd2_journal_temp_unlink_buffer(jh); 1994 jh->b_transaction = transaction; 1995 1996 switch (jlist) { 1997 case BJ_None: 1998 J_ASSERT_JH(jh, !jh->b_committed_data); 1999 J_ASSERT_JH(jh, !jh->b_frozen_data); 2000 return; 2001 case BJ_SyncData: 2002 list = &transaction->t_sync_datalist; 2003 break; 2004 case BJ_Metadata: 2005 transaction->t_nr_buffers++; 2006 list = &transaction->t_buffers; 2007 break; 2008 case BJ_Forget: 2009 list = &transaction->t_forget; 2010 break; 2011 case BJ_IO: 2012 list = &transaction->t_iobuf_list; 2013 break; 2014 case BJ_Shadow: 2015 list = &transaction->t_shadow_list; 2016 break; 2017 case BJ_LogCtl: 2018 list = &transaction->t_log_list; 2019 break; 2020 case BJ_Reserved: 2021 list = &transaction->t_reserved_list; 2022 break; 2023 case BJ_Locked: 2024 list = &transaction->t_locked_list; 2025 break; 2026 } 2027 2028 __blist_add_buffer(list, jh); 2029 jh->b_jlist = jlist; 2030 2031 if (was_dirty) 2032 set_buffer_jbddirty(bh); 2033 } 2034 2035 void jbd2_journal_file_buffer(struct journal_head *jh, 2036 transaction_t *transaction, int jlist) 2037 { 2038 jbd_lock_bh_state(jh2bh(jh)); 2039 spin_lock(&transaction->t_journal->j_list_lock); 2040 __jbd2_journal_file_buffer(jh, transaction, jlist); 2041 spin_unlock(&transaction->t_journal->j_list_lock); 2042 jbd_unlock_bh_state(jh2bh(jh)); 2043 } 2044 2045 /* 2046 * Remove a buffer from its current buffer list in preparation for 2047 * dropping it from its current transaction entirely. If the buffer has 2048 * already started to be used by a subsequent transaction, refile the 2049 * buffer on that transaction's metadata list. 2050 * 2051 * Called under journal->j_list_lock 2052 * 2053 * Called under jbd_lock_bh_state(jh2bh(jh)) 2054 */ 2055 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2056 { 2057 int was_dirty; 2058 struct buffer_head *bh = jh2bh(jh); 2059 2060 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2061 if (jh->b_transaction) 2062 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2063 2064 /* If the buffer is now unused, just drop it. */ 2065 if (jh->b_next_transaction == NULL) { 2066 __jbd2_journal_unfile_buffer(jh); 2067 return; 2068 } 2069 2070 /* 2071 * It has been modified by a later transaction: add it to the new 2072 * transaction's metadata list. 2073 */ 2074 2075 was_dirty = test_clear_buffer_jbddirty(bh); 2076 __jbd2_journal_temp_unlink_buffer(jh); 2077 jh->b_transaction = jh->b_next_transaction; 2078 jh->b_next_transaction = NULL; 2079 __jbd2_journal_file_buffer(jh, jh->b_transaction, 2080 was_dirty ? BJ_Metadata : BJ_Reserved); 2081 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2082 2083 if (was_dirty) 2084 set_buffer_jbddirty(bh); 2085 } 2086 2087 /* 2088 * For the unlocked version of this call, also make sure that any 2089 * hanging journal_head is cleaned up if necessary. 2090 * 2091 * __jbd2_journal_refile_buffer is usually called as part of a single locked 2092 * operation on a buffer_head, in which the caller is probably going to 2093 * be hooking the journal_head onto other lists. In that case it is up 2094 * to the caller to remove the journal_head if necessary. For the 2095 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 2096 * doing anything else to the buffer so we need to do the cleanup 2097 * ourselves to avoid a jh leak. 2098 * 2099 * *** The journal_head may be freed by this call! *** 2100 */ 2101 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2102 { 2103 struct buffer_head *bh = jh2bh(jh); 2104 2105 jbd_lock_bh_state(bh); 2106 spin_lock(&journal->j_list_lock); 2107 2108 __jbd2_journal_refile_buffer(jh); 2109 jbd_unlock_bh_state(bh); 2110 jbd2_journal_remove_journal_head(bh); 2111 2112 spin_unlock(&journal->j_list_lock); 2113 __brelse(bh); 2114 } 2115