xref: /openbmc/linux/fs/jbd2/transaction.c (revision 643d1f7f)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 
29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
30 
31 /*
32  * jbd2_get_transaction: obtain a new transaction_t object.
33  *
34  * Simply allocate and initialise a new transaction.  Create it in
35  * RUNNING state and add it to the current journal (which should not
36  * have an existing running transaction: we only make a new transaction
37  * once we have started to commit the old one).
38  *
39  * Preconditions:
40  *	The journal MUST be locked.  We don't perform atomic mallocs on the
41  *	new transaction	and we can't block without protecting against other
42  *	processes trying to touch the journal while it is in transition.
43  *
44  * Called under j_state_lock
45  */
46 
47 static transaction_t *
48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
49 {
50 	transaction->t_journal = journal;
51 	transaction->t_state = T_RUNNING;
52 	transaction->t_tid = journal->j_transaction_sequence++;
53 	transaction->t_expires = jiffies + journal->j_commit_interval;
54 	spin_lock_init(&transaction->t_handle_lock);
55 
56 	/* Set up the commit timer for the new transaction. */
57 	journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
58 	add_timer(&journal->j_commit_timer);
59 
60 	J_ASSERT(journal->j_running_transaction == NULL);
61 	journal->j_running_transaction = transaction;
62 	transaction->t_max_wait = 0;
63 	transaction->t_start = jiffies;
64 
65 	return transaction;
66 }
67 
68 /*
69  * Handle management.
70  *
71  * A handle_t is an object which represents a single atomic update to a
72  * filesystem, and which tracks all of the modifications which form part
73  * of that one update.
74  */
75 
76 /*
77  * start_this_handle: Given a handle, deal with any locking or stalling
78  * needed to make sure that there is enough journal space for the handle
79  * to begin.  Attach the handle to a transaction and set up the
80  * transaction's buffer credits.
81  */
82 
83 static int start_this_handle(journal_t *journal, handle_t *handle)
84 {
85 	transaction_t *transaction;
86 	int needed;
87 	int nblocks = handle->h_buffer_credits;
88 	transaction_t *new_transaction = NULL;
89 	int ret = 0;
90 	unsigned long ts = jiffies;
91 
92 	if (nblocks > journal->j_max_transaction_buffers) {
93 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
94 		       current->comm, nblocks,
95 		       journal->j_max_transaction_buffers);
96 		ret = -ENOSPC;
97 		goto out;
98 	}
99 
100 alloc_transaction:
101 	if (!journal->j_running_transaction) {
102 		new_transaction = kzalloc(sizeof(*new_transaction),
103 						GFP_NOFS|__GFP_NOFAIL);
104 		if (!new_transaction) {
105 			ret = -ENOMEM;
106 			goto out;
107 		}
108 	}
109 
110 	jbd_debug(3, "New handle %p going live.\n", handle);
111 
112 repeat:
113 
114 	/*
115 	 * We need to hold j_state_lock until t_updates has been incremented,
116 	 * for proper journal barrier handling
117 	 */
118 	spin_lock(&journal->j_state_lock);
119 repeat_locked:
120 	if (is_journal_aborted(journal) ||
121 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
122 		spin_unlock(&journal->j_state_lock);
123 		ret = -EROFS;
124 		goto out;
125 	}
126 
127 	/* Wait on the journal's transaction barrier if necessary */
128 	if (journal->j_barrier_count) {
129 		spin_unlock(&journal->j_state_lock);
130 		wait_event(journal->j_wait_transaction_locked,
131 				journal->j_barrier_count == 0);
132 		goto repeat;
133 	}
134 
135 	if (!journal->j_running_transaction) {
136 		if (!new_transaction) {
137 			spin_unlock(&journal->j_state_lock);
138 			goto alloc_transaction;
139 		}
140 		jbd2_get_transaction(journal, new_transaction);
141 		new_transaction = NULL;
142 	}
143 
144 	transaction = journal->j_running_transaction;
145 
146 	/*
147 	 * If the current transaction is locked down for commit, wait for the
148 	 * lock to be released.
149 	 */
150 	if (transaction->t_state == T_LOCKED) {
151 		DEFINE_WAIT(wait);
152 
153 		prepare_to_wait(&journal->j_wait_transaction_locked,
154 					&wait, TASK_UNINTERRUPTIBLE);
155 		spin_unlock(&journal->j_state_lock);
156 		schedule();
157 		finish_wait(&journal->j_wait_transaction_locked, &wait);
158 		goto repeat;
159 	}
160 
161 	/*
162 	 * If there is not enough space left in the log to write all potential
163 	 * buffers requested by this operation, we need to stall pending a log
164 	 * checkpoint to free some more log space.
165 	 */
166 	spin_lock(&transaction->t_handle_lock);
167 	needed = transaction->t_outstanding_credits + nblocks;
168 
169 	if (needed > journal->j_max_transaction_buffers) {
170 		/*
171 		 * If the current transaction is already too large, then start
172 		 * to commit it: we can then go back and attach this handle to
173 		 * a new transaction.
174 		 */
175 		DEFINE_WAIT(wait);
176 
177 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
178 		spin_unlock(&transaction->t_handle_lock);
179 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180 				TASK_UNINTERRUPTIBLE);
181 		__jbd2_log_start_commit(journal, transaction->t_tid);
182 		spin_unlock(&journal->j_state_lock);
183 		schedule();
184 		finish_wait(&journal->j_wait_transaction_locked, &wait);
185 		goto repeat;
186 	}
187 
188 	/*
189 	 * The commit code assumes that it can get enough log space
190 	 * without forcing a checkpoint.  This is *critical* for
191 	 * correctness: a checkpoint of a buffer which is also
192 	 * associated with a committing transaction creates a deadlock,
193 	 * so commit simply cannot force through checkpoints.
194 	 *
195 	 * We must therefore ensure the necessary space in the journal
196 	 * *before* starting to dirty potentially checkpointed buffers
197 	 * in the new transaction.
198 	 *
199 	 * The worst part is, any transaction currently committing can
200 	 * reduce the free space arbitrarily.  Be careful to account for
201 	 * those buffers when checkpointing.
202 	 */
203 
204 	/*
205 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
207 	 * the committing transaction.  Really, we only need to give it
208 	 * committing_transaction->t_outstanding_credits plus "enough" for
209 	 * the log control blocks.
210 	 * Also, this test is inconsitent with the matching one in
211 	 * jbd2_journal_extend().
212 	 */
213 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
214 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215 		spin_unlock(&transaction->t_handle_lock);
216 		__jbd2_log_wait_for_space(journal);
217 		goto repeat_locked;
218 	}
219 
220 	/* OK, account for the buffers that this operation expects to
221 	 * use and add the handle to the running transaction. */
222 
223 	if (time_after(transaction->t_start, ts)) {
224 		ts = jbd2_time_diff(ts, transaction->t_start);
225 		if (ts > transaction->t_max_wait)
226 			transaction->t_max_wait = ts;
227 	}
228 
229 	handle->h_transaction = transaction;
230 	transaction->t_outstanding_credits += nblocks;
231 	transaction->t_updates++;
232 	transaction->t_handle_count++;
233 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
234 		  handle, nblocks, transaction->t_outstanding_credits,
235 		  __jbd2_log_space_left(journal));
236 	spin_unlock(&transaction->t_handle_lock);
237 	spin_unlock(&journal->j_state_lock);
238 out:
239 	if (unlikely(new_transaction))		/* It's usually NULL */
240 		kfree(new_transaction);
241 	return ret;
242 }
243 
244 static struct lock_class_key jbd2_handle_key;
245 
246 /* Allocate a new handle.  This should probably be in a slab... */
247 static handle_t *new_handle(int nblocks)
248 {
249 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
250 	if (!handle)
251 		return NULL;
252 	memset(handle, 0, sizeof(*handle));
253 	handle->h_buffer_credits = nblocks;
254 	handle->h_ref = 1;
255 
256 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
257 						&jbd2_handle_key, 0);
258 
259 	return handle;
260 }
261 
262 /**
263  * handle_t *jbd2_journal_start() - Obtain a new handle.
264  * @journal: Journal to start transaction on.
265  * @nblocks: number of block buffer we might modify
266  *
267  * We make sure that the transaction can guarantee at least nblocks of
268  * modified buffers in the log.  We block until the log can guarantee
269  * that much space.
270  *
271  * This function is visible to journal users (like ext3fs), so is not
272  * called with the journal already locked.
273  *
274  * Return a pointer to a newly allocated handle, or NULL on failure
275  */
276 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
277 {
278 	handle_t *handle = journal_current_handle();
279 	int err;
280 
281 	if (!journal)
282 		return ERR_PTR(-EROFS);
283 
284 	if (handle) {
285 		J_ASSERT(handle->h_transaction->t_journal == journal);
286 		handle->h_ref++;
287 		return handle;
288 	}
289 
290 	handle = new_handle(nblocks);
291 	if (!handle)
292 		return ERR_PTR(-ENOMEM);
293 
294 	current->journal_info = handle;
295 
296 	err = start_this_handle(journal, handle);
297 	if (err < 0) {
298 		jbd2_free_handle(handle);
299 		current->journal_info = NULL;
300 		handle = ERR_PTR(err);
301 		goto out;
302 	}
303 
304 	lock_acquire(&handle->h_lockdep_map, 0, 0, 0, 2, _THIS_IP_);
305 out:
306 	return handle;
307 }
308 
309 /**
310  * int jbd2_journal_extend() - extend buffer credits.
311  * @handle:  handle to 'extend'
312  * @nblocks: nr blocks to try to extend by.
313  *
314  * Some transactions, such as large extends and truncates, can be done
315  * atomically all at once or in several stages.  The operation requests
316  * a credit for a number of buffer modications in advance, but can
317  * extend its credit if it needs more.
318  *
319  * jbd2_journal_extend tries to give the running handle more buffer credits.
320  * It does not guarantee that allocation - this is a best-effort only.
321  * The calling process MUST be able to deal cleanly with a failure to
322  * extend here.
323  *
324  * Return 0 on success, non-zero on failure.
325  *
326  * return code < 0 implies an error
327  * return code > 0 implies normal transaction-full status.
328  */
329 int jbd2_journal_extend(handle_t *handle, int nblocks)
330 {
331 	transaction_t *transaction = handle->h_transaction;
332 	journal_t *journal = transaction->t_journal;
333 	int result;
334 	int wanted;
335 
336 	result = -EIO;
337 	if (is_handle_aborted(handle))
338 		goto out;
339 
340 	result = 1;
341 
342 	spin_lock(&journal->j_state_lock);
343 
344 	/* Don't extend a locked-down transaction! */
345 	if (handle->h_transaction->t_state != T_RUNNING) {
346 		jbd_debug(3, "denied handle %p %d blocks: "
347 			  "transaction not running\n", handle, nblocks);
348 		goto error_out;
349 	}
350 
351 	spin_lock(&transaction->t_handle_lock);
352 	wanted = transaction->t_outstanding_credits + nblocks;
353 
354 	if (wanted > journal->j_max_transaction_buffers) {
355 		jbd_debug(3, "denied handle %p %d blocks: "
356 			  "transaction too large\n", handle, nblocks);
357 		goto unlock;
358 	}
359 
360 	if (wanted > __jbd2_log_space_left(journal)) {
361 		jbd_debug(3, "denied handle %p %d blocks: "
362 			  "insufficient log space\n", handle, nblocks);
363 		goto unlock;
364 	}
365 
366 	handle->h_buffer_credits += nblocks;
367 	transaction->t_outstanding_credits += nblocks;
368 	result = 0;
369 
370 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
371 unlock:
372 	spin_unlock(&transaction->t_handle_lock);
373 error_out:
374 	spin_unlock(&journal->j_state_lock);
375 out:
376 	return result;
377 }
378 
379 
380 /**
381  * int jbd2_journal_restart() - restart a handle .
382  * @handle:  handle to restart
383  * @nblocks: nr credits requested
384  *
385  * Restart a handle for a multi-transaction filesystem
386  * operation.
387  *
388  * If the jbd2_journal_extend() call above fails to grant new buffer credits
389  * to a running handle, a call to jbd2_journal_restart will commit the
390  * handle's transaction so far and reattach the handle to a new
391  * transaction capabable of guaranteeing the requested number of
392  * credits.
393  */
394 
395 int jbd2_journal_restart(handle_t *handle, int nblocks)
396 {
397 	transaction_t *transaction = handle->h_transaction;
398 	journal_t *journal = transaction->t_journal;
399 	int ret;
400 
401 	/* If we've had an abort of any type, don't even think about
402 	 * actually doing the restart! */
403 	if (is_handle_aborted(handle))
404 		return 0;
405 
406 	/*
407 	 * First unlink the handle from its current transaction, and start the
408 	 * commit on that.
409 	 */
410 	J_ASSERT(transaction->t_updates > 0);
411 	J_ASSERT(journal_current_handle() == handle);
412 
413 	spin_lock(&journal->j_state_lock);
414 	spin_lock(&transaction->t_handle_lock);
415 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
416 	transaction->t_updates--;
417 
418 	if (!transaction->t_updates)
419 		wake_up(&journal->j_wait_updates);
420 	spin_unlock(&transaction->t_handle_lock);
421 
422 	jbd_debug(2, "restarting handle %p\n", handle);
423 	__jbd2_log_start_commit(journal, transaction->t_tid);
424 	spin_unlock(&journal->j_state_lock);
425 
426 	handle->h_buffer_credits = nblocks;
427 	ret = start_this_handle(journal, handle);
428 	return ret;
429 }
430 
431 
432 /**
433  * void jbd2_journal_lock_updates () - establish a transaction barrier.
434  * @journal:  Journal to establish a barrier on.
435  *
436  * This locks out any further updates from being started, and blocks
437  * until all existing updates have completed, returning only once the
438  * journal is in a quiescent state with no updates running.
439  *
440  * The journal lock should not be held on entry.
441  */
442 void jbd2_journal_lock_updates(journal_t *journal)
443 {
444 	DEFINE_WAIT(wait);
445 
446 	spin_lock(&journal->j_state_lock);
447 	++journal->j_barrier_count;
448 
449 	/* Wait until there are no running updates */
450 	while (1) {
451 		transaction_t *transaction = journal->j_running_transaction;
452 
453 		if (!transaction)
454 			break;
455 
456 		spin_lock(&transaction->t_handle_lock);
457 		if (!transaction->t_updates) {
458 			spin_unlock(&transaction->t_handle_lock);
459 			break;
460 		}
461 		prepare_to_wait(&journal->j_wait_updates, &wait,
462 				TASK_UNINTERRUPTIBLE);
463 		spin_unlock(&transaction->t_handle_lock);
464 		spin_unlock(&journal->j_state_lock);
465 		schedule();
466 		finish_wait(&journal->j_wait_updates, &wait);
467 		spin_lock(&journal->j_state_lock);
468 	}
469 	spin_unlock(&journal->j_state_lock);
470 
471 	/*
472 	 * We have now established a barrier against other normal updates, but
473 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
474 	 * to make sure that we serialise special journal-locked operations
475 	 * too.
476 	 */
477 	mutex_lock(&journal->j_barrier);
478 }
479 
480 /**
481  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
482  * @journal:  Journal to release the barrier on.
483  *
484  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
485  *
486  * Should be called without the journal lock held.
487  */
488 void jbd2_journal_unlock_updates (journal_t *journal)
489 {
490 	J_ASSERT(journal->j_barrier_count != 0);
491 
492 	mutex_unlock(&journal->j_barrier);
493 	spin_lock(&journal->j_state_lock);
494 	--journal->j_barrier_count;
495 	spin_unlock(&journal->j_state_lock);
496 	wake_up(&journal->j_wait_transaction_locked);
497 }
498 
499 /*
500  * Report any unexpected dirty buffers which turn up.  Normally those
501  * indicate an error, but they can occur if the user is running (say)
502  * tune2fs to modify the live filesystem, so we need the option of
503  * continuing as gracefully as possible.  #
504  *
505  * The caller should already hold the journal lock and
506  * j_list_lock spinlock: most callers will need those anyway
507  * in order to probe the buffer's journaling state safely.
508  */
509 static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
510 {
511 	int jlist;
512 
513 	/* If this buffer is one which might reasonably be dirty
514 	 * --- ie. data, or not part of this journal --- then
515 	 * we're OK to leave it alone, but otherwise we need to
516 	 * move the dirty bit to the journal's own internal
517 	 * JBDDirty bit. */
518 	jlist = jh->b_jlist;
519 
520 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
521 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
522 		struct buffer_head *bh = jh2bh(jh);
523 
524 		if (test_clear_buffer_dirty(bh))
525 			set_buffer_jbddirty(bh);
526 	}
527 }
528 
529 /*
530  * If the buffer is already part of the current transaction, then there
531  * is nothing we need to do.  If it is already part of a prior
532  * transaction which we are still committing to disk, then we need to
533  * make sure that we do not overwrite the old copy: we do copy-out to
534  * preserve the copy going to disk.  We also account the buffer against
535  * the handle's metadata buffer credits (unless the buffer is already
536  * part of the transaction, that is).
537  *
538  */
539 static int
540 do_get_write_access(handle_t *handle, struct journal_head *jh,
541 			int force_copy)
542 {
543 	struct buffer_head *bh;
544 	transaction_t *transaction;
545 	journal_t *journal;
546 	int error;
547 	char *frozen_buffer = NULL;
548 	int need_copy = 0;
549 
550 	if (is_handle_aborted(handle))
551 		return -EROFS;
552 
553 	transaction = handle->h_transaction;
554 	journal = transaction->t_journal;
555 
556 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
557 
558 	JBUFFER_TRACE(jh, "entry");
559 repeat:
560 	bh = jh2bh(jh);
561 
562 	/* @@@ Need to check for errors here at some point. */
563 
564 	lock_buffer(bh);
565 	jbd_lock_bh_state(bh);
566 
567 	/* We now hold the buffer lock so it is safe to query the buffer
568 	 * state.  Is the buffer dirty?
569 	 *
570 	 * If so, there are two possibilities.  The buffer may be
571 	 * non-journaled, and undergoing a quite legitimate writeback.
572 	 * Otherwise, it is journaled, and we don't expect dirty buffers
573 	 * in that state (the buffers should be marked JBD_Dirty
574 	 * instead.)  So either the IO is being done under our own
575 	 * control and this is a bug, or it's a third party IO such as
576 	 * dump(8) (which may leave the buffer scheduled for read ---
577 	 * ie. locked but not dirty) or tune2fs (which may actually have
578 	 * the buffer dirtied, ugh.)  */
579 
580 	if (buffer_dirty(bh)) {
581 		/*
582 		 * First question: is this buffer already part of the current
583 		 * transaction or the existing committing transaction?
584 		 */
585 		if (jh->b_transaction) {
586 			J_ASSERT_JH(jh,
587 				jh->b_transaction == transaction ||
588 				jh->b_transaction ==
589 					journal->j_committing_transaction);
590 			if (jh->b_next_transaction)
591 				J_ASSERT_JH(jh, jh->b_next_transaction ==
592 							transaction);
593 		}
594 		/*
595 		 * In any case we need to clean the dirty flag and we must
596 		 * do it under the buffer lock to be sure we don't race
597 		 * with running write-out.
598 		 */
599 		JBUFFER_TRACE(jh, "Unexpected dirty buffer");
600 		jbd_unexpected_dirty_buffer(jh);
601 	}
602 
603 	unlock_buffer(bh);
604 
605 	error = -EROFS;
606 	if (is_handle_aborted(handle)) {
607 		jbd_unlock_bh_state(bh);
608 		goto out;
609 	}
610 	error = 0;
611 
612 	/*
613 	 * The buffer is already part of this transaction if b_transaction or
614 	 * b_next_transaction points to it
615 	 */
616 	if (jh->b_transaction == transaction ||
617 	    jh->b_next_transaction == transaction)
618 		goto done;
619 
620 	/*
621 	 * If there is already a copy-out version of this buffer, then we don't
622 	 * need to make another one
623 	 */
624 	if (jh->b_frozen_data) {
625 		JBUFFER_TRACE(jh, "has frozen data");
626 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
627 		jh->b_next_transaction = transaction;
628 		goto done;
629 	}
630 
631 	/* Is there data here we need to preserve? */
632 
633 	if (jh->b_transaction && jh->b_transaction != transaction) {
634 		JBUFFER_TRACE(jh, "owned by older transaction");
635 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
636 		J_ASSERT_JH(jh, jh->b_transaction ==
637 					journal->j_committing_transaction);
638 
639 		/* There is one case we have to be very careful about.
640 		 * If the committing transaction is currently writing
641 		 * this buffer out to disk and has NOT made a copy-out,
642 		 * then we cannot modify the buffer contents at all
643 		 * right now.  The essence of copy-out is that it is the
644 		 * extra copy, not the primary copy, which gets
645 		 * journaled.  If the primary copy is already going to
646 		 * disk then we cannot do copy-out here. */
647 
648 		if (jh->b_jlist == BJ_Shadow) {
649 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
650 			wait_queue_head_t *wqh;
651 
652 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
653 
654 			JBUFFER_TRACE(jh, "on shadow: sleep");
655 			jbd_unlock_bh_state(bh);
656 			/* commit wakes up all shadow buffers after IO */
657 			for ( ; ; ) {
658 				prepare_to_wait(wqh, &wait.wait,
659 						TASK_UNINTERRUPTIBLE);
660 				if (jh->b_jlist != BJ_Shadow)
661 					break;
662 				schedule();
663 			}
664 			finish_wait(wqh, &wait.wait);
665 			goto repeat;
666 		}
667 
668 		/* Only do the copy if the currently-owning transaction
669 		 * still needs it.  If it is on the Forget list, the
670 		 * committing transaction is past that stage.  The
671 		 * buffer had better remain locked during the kmalloc,
672 		 * but that should be true --- we hold the journal lock
673 		 * still and the buffer is already on the BUF_JOURNAL
674 		 * list so won't be flushed.
675 		 *
676 		 * Subtle point, though: if this is a get_undo_access,
677 		 * then we will be relying on the frozen_data to contain
678 		 * the new value of the committed_data record after the
679 		 * transaction, so we HAVE to force the frozen_data copy
680 		 * in that case. */
681 
682 		if (jh->b_jlist != BJ_Forget || force_copy) {
683 			JBUFFER_TRACE(jh, "generate frozen data");
684 			if (!frozen_buffer) {
685 				JBUFFER_TRACE(jh, "allocate memory for buffer");
686 				jbd_unlock_bh_state(bh);
687 				frozen_buffer =
688 					jbd2_alloc(jh2bh(jh)->b_size,
689 							 GFP_NOFS);
690 				if (!frozen_buffer) {
691 					printk(KERN_EMERG
692 					       "%s: OOM for frozen_buffer\n",
693 					       __FUNCTION__);
694 					JBUFFER_TRACE(jh, "oom!");
695 					error = -ENOMEM;
696 					jbd_lock_bh_state(bh);
697 					goto done;
698 				}
699 				goto repeat;
700 			}
701 			jh->b_frozen_data = frozen_buffer;
702 			frozen_buffer = NULL;
703 			need_copy = 1;
704 		}
705 		jh->b_next_transaction = transaction;
706 	}
707 
708 
709 	/*
710 	 * Finally, if the buffer is not journaled right now, we need to make
711 	 * sure it doesn't get written to disk before the caller actually
712 	 * commits the new data
713 	 */
714 	if (!jh->b_transaction) {
715 		JBUFFER_TRACE(jh, "no transaction");
716 		J_ASSERT_JH(jh, !jh->b_next_transaction);
717 		jh->b_transaction = transaction;
718 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
719 		spin_lock(&journal->j_list_lock);
720 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
721 		spin_unlock(&journal->j_list_lock);
722 	}
723 
724 done:
725 	if (need_copy) {
726 		struct page *page;
727 		int offset;
728 		char *source;
729 
730 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
731 			    "Possible IO failure.\n");
732 		page = jh2bh(jh)->b_page;
733 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
734 		source = kmap_atomic(page, KM_USER0);
735 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
736 		kunmap_atomic(source, KM_USER0);
737 	}
738 	jbd_unlock_bh_state(bh);
739 
740 	/*
741 	 * If we are about to journal a buffer, then any revoke pending on it is
742 	 * no longer valid
743 	 */
744 	jbd2_journal_cancel_revoke(handle, jh);
745 
746 out:
747 	if (unlikely(frozen_buffer))	/* It's usually NULL */
748 		jbd2_free(frozen_buffer, bh->b_size);
749 
750 	JBUFFER_TRACE(jh, "exit");
751 	return error;
752 }
753 
754 /**
755  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
756  * @handle: transaction to add buffer modifications to
757  * @bh:     bh to be used for metadata writes
758  * @credits: variable that will receive credits for the buffer
759  *
760  * Returns an error code or 0 on success.
761  *
762  * In full data journalling mode the buffer may be of type BJ_AsyncData,
763  * because we're write()ing a buffer which is also part of a shared mapping.
764  */
765 
766 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
767 {
768 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
769 	int rc;
770 
771 	/* We do not want to get caught playing with fields which the
772 	 * log thread also manipulates.  Make sure that the buffer
773 	 * completes any outstanding IO before proceeding. */
774 	rc = do_get_write_access(handle, jh, 0);
775 	jbd2_journal_put_journal_head(jh);
776 	return rc;
777 }
778 
779 
780 /*
781  * When the user wants to journal a newly created buffer_head
782  * (ie. getblk() returned a new buffer and we are going to populate it
783  * manually rather than reading off disk), then we need to keep the
784  * buffer_head locked until it has been completely filled with new
785  * data.  In this case, we should be able to make the assertion that
786  * the bh is not already part of an existing transaction.
787  *
788  * The buffer should already be locked by the caller by this point.
789  * There is no lock ranking violation: it was a newly created,
790  * unlocked buffer beforehand. */
791 
792 /**
793  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
794  * @handle: transaction to new buffer to
795  * @bh: new buffer.
796  *
797  * Call this if you create a new bh.
798  */
799 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
800 {
801 	transaction_t *transaction = handle->h_transaction;
802 	journal_t *journal = transaction->t_journal;
803 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
804 	int err;
805 
806 	jbd_debug(5, "journal_head %p\n", jh);
807 	err = -EROFS;
808 	if (is_handle_aborted(handle))
809 		goto out;
810 	err = 0;
811 
812 	JBUFFER_TRACE(jh, "entry");
813 	/*
814 	 * The buffer may already belong to this transaction due to pre-zeroing
815 	 * in the filesystem's new_block code.  It may also be on the previous,
816 	 * committing transaction's lists, but it HAS to be in Forget state in
817 	 * that case: the transaction must have deleted the buffer for it to be
818 	 * reused here.
819 	 */
820 	jbd_lock_bh_state(bh);
821 	spin_lock(&journal->j_list_lock);
822 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
823 		jh->b_transaction == NULL ||
824 		(jh->b_transaction == journal->j_committing_transaction &&
825 			  jh->b_jlist == BJ_Forget)));
826 
827 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
828 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
829 
830 	if (jh->b_transaction == NULL) {
831 		jh->b_transaction = transaction;
832 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
833 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
834 	} else if (jh->b_transaction == journal->j_committing_transaction) {
835 		JBUFFER_TRACE(jh, "set next transaction");
836 		jh->b_next_transaction = transaction;
837 	}
838 	spin_unlock(&journal->j_list_lock);
839 	jbd_unlock_bh_state(bh);
840 
841 	/*
842 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
843 	 * blocks which contain freed but then revoked metadata.  We need
844 	 * to cancel the revoke in case we end up freeing it yet again
845 	 * and the reallocating as data - this would cause a second revoke,
846 	 * which hits an assertion error.
847 	 */
848 	JBUFFER_TRACE(jh, "cancelling revoke");
849 	jbd2_journal_cancel_revoke(handle, jh);
850 	jbd2_journal_put_journal_head(jh);
851 out:
852 	return err;
853 }
854 
855 /**
856  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
857  *     non-rewindable consequences
858  * @handle: transaction
859  * @bh: buffer to undo
860  * @credits: store the number of taken credits here (if not NULL)
861  *
862  * Sometimes there is a need to distinguish between metadata which has
863  * been committed to disk and that which has not.  The ext3fs code uses
864  * this for freeing and allocating space, we have to make sure that we
865  * do not reuse freed space until the deallocation has been committed,
866  * since if we overwrote that space we would make the delete
867  * un-rewindable in case of a crash.
868  *
869  * To deal with that, jbd2_journal_get_undo_access requests write access to a
870  * buffer for parts of non-rewindable operations such as delete
871  * operations on the bitmaps.  The journaling code must keep a copy of
872  * the buffer's contents prior to the undo_access call until such time
873  * as we know that the buffer has definitely been committed to disk.
874  *
875  * We never need to know which transaction the committed data is part
876  * of, buffers touched here are guaranteed to be dirtied later and so
877  * will be committed to a new transaction in due course, at which point
878  * we can discard the old committed data pointer.
879  *
880  * Returns error number or 0 on success.
881  */
882 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
883 {
884 	int err;
885 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
886 	char *committed_data = NULL;
887 
888 	JBUFFER_TRACE(jh, "entry");
889 
890 	/*
891 	 * Do this first --- it can drop the journal lock, so we want to
892 	 * make sure that obtaining the committed_data is done
893 	 * atomically wrt. completion of any outstanding commits.
894 	 */
895 	err = do_get_write_access(handle, jh, 1);
896 	if (err)
897 		goto out;
898 
899 repeat:
900 	if (!jh->b_committed_data) {
901 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
902 		if (!committed_data) {
903 			printk(KERN_EMERG "%s: No memory for committed data\n",
904 				__FUNCTION__);
905 			err = -ENOMEM;
906 			goto out;
907 		}
908 	}
909 
910 	jbd_lock_bh_state(bh);
911 	if (!jh->b_committed_data) {
912 		/* Copy out the current buffer contents into the
913 		 * preserved, committed copy. */
914 		JBUFFER_TRACE(jh, "generate b_committed data");
915 		if (!committed_data) {
916 			jbd_unlock_bh_state(bh);
917 			goto repeat;
918 		}
919 
920 		jh->b_committed_data = committed_data;
921 		committed_data = NULL;
922 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
923 	}
924 	jbd_unlock_bh_state(bh);
925 out:
926 	jbd2_journal_put_journal_head(jh);
927 	if (unlikely(committed_data))
928 		jbd2_free(committed_data, bh->b_size);
929 	return err;
930 }
931 
932 /**
933  * int jbd2_journal_dirty_data() -  mark a buffer as containing dirty data which
934  *                             needs to be flushed before we can commit the
935  *                             current transaction.
936  * @handle: transaction
937  * @bh: bufferhead to mark
938  *
939  * The buffer is placed on the transaction's data list and is marked as
940  * belonging to the transaction.
941  *
942  * Returns error number or 0 on success.
943  *
944  * jbd2_journal_dirty_data() can be called via page_launder->ext3_writepage
945  * by kswapd.
946  */
947 int jbd2_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
948 {
949 	journal_t *journal = handle->h_transaction->t_journal;
950 	int need_brelse = 0;
951 	struct journal_head *jh;
952 
953 	if (is_handle_aborted(handle))
954 		return 0;
955 
956 	jh = jbd2_journal_add_journal_head(bh);
957 	JBUFFER_TRACE(jh, "entry");
958 
959 	/*
960 	 * The buffer could *already* be dirty.  Writeout can start
961 	 * at any time.
962 	 */
963 	jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
964 
965 	/*
966 	 * What if the buffer is already part of a running transaction?
967 	 *
968 	 * There are two cases:
969 	 * 1) It is part of the current running transaction.  Refile it,
970 	 *    just in case we have allocated it as metadata, deallocated
971 	 *    it, then reallocated it as data.
972 	 * 2) It is part of the previous, still-committing transaction.
973 	 *    If all we want to do is to guarantee that the buffer will be
974 	 *    written to disk before this new transaction commits, then
975 	 *    being sure that the *previous* transaction has this same
976 	 *    property is sufficient for us!  Just leave it on its old
977 	 *    transaction.
978 	 *
979 	 * In case (2), the buffer must not already exist as metadata
980 	 * --- that would violate write ordering (a transaction is free
981 	 * to write its data at any point, even before the previous
982 	 * committing transaction has committed).  The caller must
983 	 * never, ever allow this to happen: there's nothing we can do
984 	 * about it in this layer.
985 	 */
986 	jbd_lock_bh_state(bh);
987 	spin_lock(&journal->j_list_lock);
988 
989 	/* Now that we have bh_state locked, are we really still mapped? */
990 	if (!buffer_mapped(bh)) {
991 		JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
992 		goto no_journal;
993 	}
994 
995 	if (jh->b_transaction) {
996 		JBUFFER_TRACE(jh, "has transaction");
997 		if (jh->b_transaction != handle->h_transaction) {
998 			JBUFFER_TRACE(jh, "belongs to older transaction");
999 			J_ASSERT_JH(jh, jh->b_transaction ==
1000 					journal->j_committing_transaction);
1001 
1002 			/* @@@ IS THIS TRUE  ? */
1003 			/*
1004 			 * Not any more.  Scenario: someone does a write()
1005 			 * in data=journal mode.  The buffer's transaction has
1006 			 * moved into commit.  Then someone does another
1007 			 * write() to the file.  We do the frozen data copyout
1008 			 * and set b_next_transaction to point to j_running_t.
1009 			 * And while we're in that state, someone does a
1010 			 * writepage() in an attempt to pageout the same area
1011 			 * of the file via a shared mapping.  At present that
1012 			 * calls jbd2_journal_dirty_data(), and we get right here.
1013 			 * It may be too late to journal the data.  Simply
1014 			 * falling through to the next test will suffice: the
1015 			 * data will be dirty and wil be checkpointed.  The
1016 			 * ordering comments in the next comment block still
1017 			 * apply.
1018 			 */
1019 			//J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1020 
1021 			/*
1022 			 * If we're journalling data, and this buffer was
1023 			 * subject to a write(), it could be metadata, forget
1024 			 * or shadow against the committing transaction.  Now,
1025 			 * someone has dirtied the same darn page via a mapping
1026 			 * and it is being writepage()'d.
1027 			 * We *could* just steal the page from commit, with some
1028 			 * fancy locking there.  Instead, we just skip it -
1029 			 * don't tie the page's buffers to the new transaction
1030 			 * at all.
1031 			 * Implication: if we crash before the writepage() data
1032 			 * is written into the filesystem, recovery will replay
1033 			 * the write() data.
1034 			 */
1035 			if (jh->b_jlist != BJ_None &&
1036 					jh->b_jlist != BJ_SyncData &&
1037 					jh->b_jlist != BJ_Locked) {
1038 				JBUFFER_TRACE(jh, "Not stealing");
1039 				goto no_journal;
1040 			}
1041 
1042 			/*
1043 			 * This buffer may be undergoing writeout in commit.  We
1044 			 * can't return from here and let the caller dirty it
1045 			 * again because that can cause the write-out loop in
1046 			 * commit to never terminate.
1047 			 */
1048 			if (buffer_dirty(bh)) {
1049 				get_bh(bh);
1050 				spin_unlock(&journal->j_list_lock);
1051 				jbd_unlock_bh_state(bh);
1052 				need_brelse = 1;
1053 				sync_dirty_buffer(bh);
1054 				jbd_lock_bh_state(bh);
1055 				spin_lock(&journal->j_list_lock);
1056 				/* Since we dropped the lock... */
1057 				if (!buffer_mapped(bh)) {
1058 					JBUFFER_TRACE(jh, "buffer got unmapped");
1059 					goto no_journal;
1060 				}
1061 				/* The buffer may become locked again at any
1062 				   time if it is redirtied */
1063 			}
1064 
1065 			/* journal_clean_data_list() may have got there first */
1066 			if (jh->b_transaction != NULL) {
1067 				JBUFFER_TRACE(jh, "unfile from commit");
1068 				__jbd2_journal_temp_unlink_buffer(jh);
1069 				/* It still points to the committing
1070 				 * transaction; move it to this one so
1071 				 * that the refile assert checks are
1072 				 * happy. */
1073 				jh->b_transaction = handle->h_transaction;
1074 			}
1075 			/* The buffer will be refiled below */
1076 
1077 		}
1078 		/*
1079 		 * Special case --- the buffer might actually have been
1080 		 * allocated and then immediately deallocated in the previous,
1081 		 * committing transaction, so might still be left on that
1082 		 * transaction's metadata lists.
1083 		 */
1084 		if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1085 			JBUFFER_TRACE(jh, "not on correct data list: unfile");
1086 			J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1087 			__jbd2_journal_temp_unlink_buffer(jh);
1088 			jh->b_transaction = handle->h_transaction;
1089 			JBUFFER_TRACE(jh, "file as data");
1090 			__jbd2_journal_file_buffer(jh, handle->h_transaction,
1091 						BJ_SyncData);
1092 		}
1093 	} else {
1094 		JBUFFER_TRACE(jh, "not on a transaction");
1095 		__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1096 	}
1097 no_journal:
1098 	spin_unlock(&journal->j_list_lock);
1099 	jbd_unlock_bh_state(bh);
1100 	if (need_brelse) {
1101 		BUFFER_TRACE(bh, "brelse");
1102 		__brelse(bh);
1103 	}
1104 	JBUFFER_TRACE(jh, "exit");
1105 	jbd2_journal_put_journal_head(jh);
1106 	return 0;
1107 }
1108 
1109 /**
1110  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1111  * @handle: transaction to add buffer to.
1112  * @bh: buffer to mark
1113  *
1114  * mark dirty metadata which needs to be journaled as part of the current
1115  * transaction.
1116  *
1117  * The buffer is placed on the transaction's metadata list and is marked
1118  * as belonging to the transaction.
1119  *
1120  * Returns error number or 0 on success.
1121  *
1122  * Special care needs to be taken if the buffer already belongs to the
1123  * current committing transaction (in which case we should have frozen
1124  * data present for that commit).  In that case, we don't relink the
1125  * buffer: that only gets done when the old transaction finally
1126  * completes its commit.
1127  */
1128 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1129 {
1130 	transaction_t *transaction = handle->h_transaction;
1131 	journal_t *journal = transaction->t_journal;
1132 	struct journal_head *jh = bh2jh(bh);
1133 
1134 	jbd_debug(5, "journal_head %p\n", jh);
1135 	JBUFFER_TRACE(jh, "entry");
1136 	if (is_handle_aborted(handle))
1137 		goto out;
1138 
1139 	jbd_lock_bh_state(bh);
1140 
1141 	if (jh->b_modified == 0) {
1142 		/*
1143 		 * This buffer's got modified and becoming part
1144 		 * of the transaction. This needs to be done
1145 		 * once a transaction -bzzz
1146 		 */
1147 		jh->b_modified = 1;
1148 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1149 		handle->h_buffer_credits--;
1150 	}
1151 
1152 	/*
1153 	 * fastpath, to avoid expensive locking.  If this buffer is already
1154 	 * on the running transaction's metadata list there is nothing to do.
1155 	 * Nobody can take it off again because there is a handle open.
1156 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1157 	 * result in this test being false, so we go in and take the locks.
1158 	 */
1159 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1160 		JBUFFER_TRACE(jh, "fastpath");
1161 		J_ASSERT_JH(jh, jh->b_transaction ==
1162 					journal->j_running_transaction);
1163 		goto out_unlock_bh;
1164 	}
1165 
1166 	set_buffer_jbddirty(bh);
1167 
1168 	/*
1169 	 * Metadata already on the current transaction list doesn't
1170 	 * need to be filed.  Metadata on another transaction's list must
1171 	 * be committing, and will be refiled once the commit completes:
1172 	 * leave it alone for now.
1173 	 */
1174 	if (jh->b_transaction != transaction) {
1175 		JBUFFER_TRACE(jh, "already on other transaction");
1176 		J_ASSERT_JH(jh, jh->b_transaction ==
1177 					journal->j_committing_transaction);
1178 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1179 		/* And this case is illegal: we can't reuse another
1180 		 * transaction's data buffer, ever. */
1181 		goto out_unlock_bh;
1182 	}
1183 
1184 	/* That test should have eliminated the following case: */
1185 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1186 
1187 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1188 	spin_lock(&journal->j_list_lock);
1189 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1190 	spin_unlock(&journal->j_list_lock);
1191 out_unlock_bh:
1192 	jbd_unlock_bh_state(bh);
1193 out:
1194 	JBUFFER_TRACE(jh, "exit");
1195 	return 0;
1196 }
1197 
1198 /*
1199  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1200  * updates, if the update decided in the end that it didn't need access.
1201  *
1202  */
1203 void
1204 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1205 {
1206 	BUFFER_TRACE(bh, "entry");
1207 }
1208 
1209 /**
1210  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1211  * @handle: transaction handle
1212  * @bh:     bh to 'forget'
1213  *
1214  * We can only do the bforget if there are no commits pending against the
1215  * buffer.  If the buffer is dirty in the current running transaction we
1216  * can safely unlink it.
1217  *
1218  * bh may not be a journalled buffer at all - it may be a non-JBD
1219  * buffer which came off the hashtable.  Check for this.
1220  *
1221  * Decrements bh->b_count by one.
1222  *
1223  * Allow this call even if the handle has aborted --- it may be part of
1224  * the caller's cleanup after an abort.
1225  */
1226 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1227 {
1228 	transaction_t *transaction = handle->h_transaction;
1229 	journal_t *journal = transaction->t_journal;
1230 	struct journal_head *jh;
1231 	int drop_reserve = 0;
1232 	int err = 0;
1233 
1234 	BUFFER_TRACE(bh, "entry");
1235 
1236 	jbd_lock_bh_state(bh);
1237 	spin_lock(&journal->j_list_lock);
1238 
1239 	if (!buffer_jbd(bh))
1240 		goto not_jbd;
1241 	jh = bh2jh(bh);
1242 
1243 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1244 	 * Don't do any jbd operations, and return an error. */
1245 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1246 			 "inconsistent data on disk")) {
1247 		err = -EIO;
1248 		goto not_jbd;
1249 	}
1250 
1251 	/*
1252 	 * The buffer's going from the transaction, we must drop
1253 	 * all references -bzzz
1254 	 */
1255 	jh->b_modified = 0;
1256 
1257 	if (jh->b_transaction == handle->h_transaction) {
1258 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1259 
1260 		/* If we are forgetting a buffer which is already part
1261 		 * of this transaction, then we can just drop it from
1262 		 * the transaction immediately. */
1263 		clear_buffer_dirty(bh);
1264 		clear_buffer_jbddirty(bh);
1265 
1266 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1267 
1268 		drop_reserve = 1;
1269 
1270 		/*
1271 		 * We are no longer going to journal this buffer.
1272 		 * However, the commit of this transaction is still
1273 		 * important to the buffer: the delete that we are now
1274 		 * processing might obsolete an old log entry, so by
1275 		 * committing, we can satisfy the buffer's checkpoint.
1276 		 *
1277 		 * So, if we have a checkpoint on the buffer, we should
1278 		 * now refile the buffer on our BJ_Forget list so that
1279 		 * we know to remove the checkpoint after we commit.
1280 		 */
1281 
1282 		if (jh->b_cp_transaction) {
1283 			__jbd2_journal_temp_unlink_buffer(jh);
1284 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1285 		} else {
1286 			__jbd2_journal_unfile_buffer(jh);
1287 			jbd2_journal_remove_journal_head(bh);
1288 			__brelse(bh);
1289 			if (!buffer_jbd(bh)) {
1290 				spin_unlock(&journal->j_list_lock);
1291 				jbd_unlock_bh_state(bh);
1292 				__bforget(bh);
1293 				goto drop;
1294 			}
1295 		}
1296 	} else if (jh->b_transaction) {
1297 		J_ASSERT_JH(jh, (jh->b_transaction ==
1298 				 journal->j_committing_transaction));
1299 		/* However, if the buffer is still owned by a prior
1300 		 * (committing) transaction, we can't drop it yet... */
1301 		JBUFFER_TRACE(jh, "belongs to older transaction");
1302 		/* ... but we CAN drop it from the new transaction if we
1303 		 * have also modified it since the original commit. */
1304 
1305 		if (jh->b_next_transaction) {
1306 			J_ASSERT(jh->b_next_transaction == transaction);
1307 			jh->b_next_transaction = NULL;
1308 			drop_reserve = 1;
1309 		}
1310 	}
1311 
1312 not_jbd:
1313 	spin_unlock(&journal->j_list_lock);
1314 	jbd_unlock_bh_state(bh);
1315 	__brelse(bh);
1316 drop:
1317 	if (drop_reserve) {
1318 		/* no need to reserve log space for this block -bzzz */
1319 		handle->h_buffer_credits++;
1320 	}
1321 	return err;
1322 }
1323 
1324 /**
1325  * int jbd2_journal_stop() - complete a transaction
1326  * @handle: tranaction to complete.
1327  *
1328  * All done for a particular handle.
1329  *
1330  * There is not much action needed here.  We just return any remaining
1331  * buffer credits to the transaction and remove the handle.  The only
1332  * complication is that we need to start a commit operation if the
1333  * filesystem is marked for synchronous update.
1334  *
1335  * jbd2_journal_stop itself will not usually return an error, but it may
1336  * do so in unusual circumstances.  In particular, expect it to
1337  * return -EIO if a jbd2_journal_abort has been executed since the
1338  * transaction began.
1339  */
1340 int jbd2_journal_stop(handle_t *handle)
1341 {
1342 	transaction_t *transaction = handle->h_transaction;
1343 	journal_t *journal = transaction->t_journal;
1344 	int old_handle_count, err;
1345 	pid_t pid;
1346 
1347 	J_ASSERT(journal_current_handle() == handle);
1348 
1349 	if (is_handle_aborted(handle))
1350 		err = -EIO;
1351 	else {
1352 		J_ASSERT(transaction->t_updates > 0);
1353 		err = 0;
1354 	}
1355 
1356 	if (--handle->h_ref > 0) {
1357 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1358 			  handle->h_ref);
1359 		return err;
1360 	}
1361 
1362 	jbd_debug(4, "Handle %p going down\n", handle);
1363 
1364 	/*
1365 	 * Implement synchronous transaction batching.  If the handle
1366 	 * was synchronous, don't force a commit immediately.  Let's
1367 	 * yield and let another thread piggyback onto this transaction.
1368 	 * Keep doing that while new threads continue to arrive.
1369 	 * It doesn't cost much - we're about to run a commit and sleep
1370 	 * on IO anyway.  Speeds up many-threaded, many-dir operations
1371 	 * by 30x or more...
1372 	 *
1373 	 * But don't do this if this process was the most recent one to
1374 	 * perform a synchronous write.  We do this to detect the case where a
1375 	 * single process is doing a stream of sync writes.  No point in waiting
1376 	 * for joiners in that case.
1377 	 */
1378 	pid = current->pid;
1379 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1380 		journal->j_last_sync_writer = pid;
1381 		do {
1382 			old_handle_count = transaction->t_handle_count;
1383 			schedule_timeout_uninterruptible(1);
1384 		} while (old_handle_count != transaction->t_handle_count);
1385 	}
1386 
1387 	current->journal_info = NULL;
1388 	spin_lock(&journal->j_state_lock);
1389 	spin_lock(&transaction->t_handle_lock);
1390 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1391 	transaction->t_updates--;
1392 	if (!transaction->t_updates) {
1393 		wake_up(&journal->j_wait_updates);
1394 		if (journal->j_barrier_count)
1395 			wake_up(&journal->j_wait_transaction_locked);
1396 	}
1397 
1398 	/*
1399 	 * If the handle is marked SYNC, we need to set another commit
1400 	 * going!  We also want to force a commit if the current
1401 	 * transaction is occupying too much of the log, or if the
1402 	 * transaction is too old now.
1403 	 */
1404 	if (handle->h_sync ||
1405 			transaction->t_outstanding_credits >
1406 				journal->j_max_transaction_buffers ||
1407 			time_after_eq(jiffies, transaction->t_expires)) {
1408 		/* Do this even for aborted journals: an abort still
1409 		 * completes the commit thread, it just doesn't write
1410 		 * anything to disk. */
1411 		tid_t tid = transaction->t_tid;
1412 
1413 		spin_unlock(&transaction->t_handle_lock);
1414 		jbd_debug(2, "transaction too old, requesting commit for "
1415 					"handle %p\n", handle);
1416 		/* This is non-blocking */
1417 		__jbd2_log_start_commit(journal, transaction->t_tid);
1418 		spin_unlock(&journal->j_state_lock);
1419 
1420 		/*
1421 		 * Special case: JBD2_SYNC synchronous updates require us
1422 		 * to wait for the commit to complete.
1423 		 */
1424 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1425 			err = jbd2_log_wait_commit(journal, tid);
1426 	} else {
1427 		spin_unlock(&transaction->t_handle_lock);
1428 		spin_unlock(&journal->j_state_lock);
1429 	}
1430 
1431 	lock_release(&handle->h_lockdep_map, 1, _THIS_IP_);
1432 
1433 	jbd2_free_handle(handle);
1434 	return err;
1435 }
1436 
1437 /**int jbd2_journal_force_commit() - force any uncommitted transactions
1438  * @journal: journal to force
1439  *
1440  * For synchronous operations: force any uncommitted transactions
1441  * to disk.  May seem kludgy, but it reuses all the handle batching
1442  * code in a very simple manner.
1443  */
1444 int jbd2_journal_force_commit(journal_t *journal)
1445 {
1446 	handle_t *handle;
1447 	int ret;
1448 
1449 	handle = jbd2_journal_start(journal, 1);
1450 	if (IS_ERR(handle)) {
1451 		ret = PTR_ERR(handle);
1452 	} else {
1453 		handle->h_sync = 1;
1454 		ret = jbd2_journal_stop(handle);
1455 	}
1456 	return ret;
1457 }
1458 
1459 /*
1460  *
1461  * List management code snippets: various functions for manipulating the
1462  * transaction buffer lists.
1463  *
1464  */
1465 
1466 /*
1467  * Append a buffer to a transaction list, given the transaction's list head
1468  * pointer.
1469  *
1470  * j_list_lock is held.
1471  *
1472  * jbd_lock_bh_state(jh2bh(jh)) is held.
1473  */
1474 
1475 static inline void
1476 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1477 {
1478 	if (!*list) {
1479 		jh->b_tnext = jh->b_tprev = jh;
1480 		*list = jh;
1481 	} else {
1482 		/* Insert at the tail of the list to preserve order */
1483 		struct journal_head *first = *list, *last = first->b_tprev;
1484 		jh->b_tprev = last;
1485 		jh->b_tnext = first;
1486 		last->b_tnext = first->b_tprev = jh;
1487 	}
1488 }
1489 
1490 /*
1491  * Remove a buffer from a transaction list, given the transaction's list
1492  * head pointer.
1493  *
1494  * Called with j_list_lock held, and the journal may not be locked.
1495  *
1496  * jbd_lock_bh_state(jh2bh(jh)) is held.
1497  */
1498 
1499 static inline void
1500 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1501 {
1502 	if (*list == jh) {
1503 		*list = jh->b_tnext;
1504 		if (*list == jh)
1505 			*list = NULL;
1506 	}
1507 	jh->b_tprev->b_tnext = jh->b_tnext;
1508 	jh->b_tnext->b_tprev = jh->b_tprev;
1509 }
1510 
1511 /*
1512  * Remove a buffer from the appropriate transaction list.
1513  *
1514  * Note that this function can *change* the value of
1515  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1516  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1517  * is holding onto a copy of one of thee pointers, it could go bad.
1518  * Generally the caller needs to re-read the pointer from the transaction_t.
1519  *
1520  * Called under j_list_lock.  The journal may not be locked.
1521  */
1522 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1523 {
1524 	struct journal_head **list = NULL;
1525 	transaction_t *transaction;
1526 	struct buffer_head *bh = jh2bh(jh);
1527 
1528 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1529 	transaction = jh->b_transaction;
1530 	if (transaction)
1531 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1532 
1533 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1534 	if (jh->b_jlist != BJ_None)
1535 		J_ASSERT_JH(jh, transaction != NULL);
1536 
1537 	switch (jh->b_jlist) {
1538 	case BJ_None:
1539 		return;
1540 	case BJ_SyncData:
1541 		list = &transaction->t_sync_datalist;
1542 		break;
1543 	case BJ_Metadata:
1544 		transaction->t_nr_buffers--;
1545 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1546 		list = &transaction->t_buffers;
1547 		break;
1548 	case BJ_Forget:
1549 		list = &transaction->t_forget;
1550 		break;
1551 	case BJ_IO:
1552 		list = &transaction->t_iobuf_list;
1553 		break;
1554 	case BJ_Shadow:
1555 		list = &transaction->t_shadow_list;
1556 		break;
1557 	case BJ_LogCtl:
1558 		list = &transaction->t_log_list;
1559 		break;
1560 	case BJ_Reserved:
1561 		list = &transaction->t_reserved_list;
1562 		break;
1563 	case BJ_Locked:
1564 		list = &transaction->t_locked_list;
1565 		break;
1566 	}
1567 
1568 	__blist_del_buffer(list, jh);
1569 	jh->b_jlist = BJ_None;
1570 	if (test_clear_buffer_jbddirty(bh))
1571 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1572 }
1573 
1574 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1575 {
1576 	__jbd2_journal_temp_unlink_buffer(jh);
1577 	jh->b_transaction = NULL;
1578 }
1579 
1580 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1581 {
1582 	jbd_lock_bh_state(jh2bh(jh));
1583 	spin_lock(&journal->j_list_lock);
1584 	__jbd2_journal_unfile_buffer(jh);
1585 	spin_unlock(&journal->j_list_lock);
1586 	jbd_unlock_bh_state(jh2bh(jh));
1587 }
1588 
1589 /*
1590  * Called from jbd2_journal_try_to_free_buffers().
1591  *
1592  * Called under jbd_lock_bh_state(bh)
1593  */
1594 static void
1595 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1596 {
1597 	struct journal_head *jh;
1598 
1599 	jh = bh2jh(bh);
1600 
1601 	if (buffer_locked(bh) || buffer_dirty(bh))
1602 		goto out;
1603 
1604 	if (jh->b_next_transaction != NULL)
1605 		goto out;
1606 
1607 	spin_lock(&journal->j_list_lock);
1608 	if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1609 		if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1610 			/* A written-back ordered data buffer */
1611 			JBUFFER_TRACE(jh, "release data");
1612 			__jbd2_journal_unfile_buffer(jh);
1613 			jbd2_journal_remove_journal_head(bh);
1614 			__brelse(bh);
1615 		}
1616 	} else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1617 		/* written-back checkpointed metadata buffer */
1618 		if (jh->b_jlist == BJ_None) {
1619 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1620 			__jbd2_journal_remove_checkpoint(jh);
1621 			jbd2_journal_remove_journal_head(bh);
1622 			__brelse(bh);
1623 		}
1624 	}
1625 	spin_unlock(&journal->j_list_lock);
1626 out:
1627 	return;
1628 }
1629 
1630 
1631 /**
1632  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1633  * @journal: journal for operation
1634  * @page: to try and free
1635  * @unused_gfp_mask: unused
1636  *
1637  *
1638  * For all the buffers on this page,
1639  * if they are fully written out ordered data, move them onto BUF_CLEAN
1640  * so try_to_free_buffers() can reap them.
1641  *
1642  * This function returns non-zero if we wish try_to_free_buffers()
1643  * to be called. We do this if the page is releasable by try_to_free_buffers().
1644  * We also do it if the page has locked or dirty buffers and the caller wants
1645  * us to perform sync or async writeout.
1646  *
1647  * This complicates JBD locking somewhat.  We aren't protected by the
1648  * BKL here.  We wish to remove the buffer from its committing or
1649  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1650  *
1651  * This may *change* the value of transaction_t->t_datalist, so anyone
1652  * who looks at t_datalist needs to lock against this function.
1653  *
1654  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1655  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1656  * will come out of the lock with the buffer dirty, which makes it
1657  * ineligible for release here.
1658  *
1659  * Who else is affected by this?  hmm...  Really the only contender
1660  * is do_get_write_access() - it could be looking at the buffer while
1661  * journal_try_to_free_buffer() is changing its state.  But that
1662  * cannot happen because we never reallocate freed data as metadata
1663  * while the data is part of a transaction.  Yes?
1664  */
1665 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1666 				struct page *page, gfp_t unused_gfp_mask)
1667 {
1668 	struct buffer_head *head;
1669 	struct buffer_head *bh;
1670 	int ret = 0;
1671 
1672 	J_ASSERT(PageLocked(page));
1673 
1674 	head = page_buffers(page);
1675 	bh = head;
1676 	do {
1677 		struct journal_head *jh;
1678 
1679 		/*
1680 		 * We take our own ref against the journal_head here to avoid
1681 		 * having to add tons of locking around each instance of
1682 		 * jbd2_journal_remove_journal_head() and jbd2_journal_put_journal_head().
1683 		 */
1684 		jh = jbd2_journal_grab_journal_head(bh);
1685 		if (!jh)
1686 			continue;
1687 
1688 		jbd_lock_bh_state(bh);
1689 		__journal_try_to_free_buffer(journal, bh);
1690 		jbd2_journal_put_journal_head(jh);
1691 		jbd_unlock_bh_state(bh);
1692 		if (buffer_jbd(bh))
1693 			goto busy;
1694 	} while ((bh = bh->b_this_page) != head);
1695 	ret = try_to_free_buffers(page);
1696 busy:
1697 	return ret;
1698 }
1699 
1700 /*
1701  * This buffer is no longer needed.  If it is on an older transaction's
1702  * checkpoint list we need to record it on this transaction's forget list
1703  * to pin this buffer (and hence its checkpointing transaction) down until
1704  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1705  * release it.
1706  * Returns non-zero if JBD no longer has an interest in the buffer.
1707  *
1708  * Called under j_list_lock.
1709  *
1710  * Called under jbd_lock_bh_state(bh).
1711  */
1712 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1713 {
1714 	int may_free = 1;
1715 	struct buffer_head *bh = jh2bh(jh);
1716 
1717 	__jbd2_journal_unfile_buffer(jh);
1718 
1719 	if (jh->b_cp_transaction) {
1720 		JBUFFER_TRACE(jh, "on running+cp transaction");
1721 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1722 		clear_buffer_jbddirty(bh);
1723 		may_free = 0;
1724 	} else {
1725 		JBUFFER_TRACE(jh, "on running transaction");
1726 		jbd2_journal_remove_journal_head(bh);
1727 		__brelse(bh);
1728 	}
1729 	return may_free;
1730 }
1731 
1732 /*
1733  * jbd2_journal_invalidatepage
1734  *
1735  * This code is tricky.  It has a number of cases to deal with.
1736  *
1737  * There are two invariants which this code relies on:
1738  *
1739  * i_size must be updated on disk before we start calling invalidatepage on the
1740  * data.
1741  *
1742  *  This is done in ext3 by defining an ext3_setattr method which
1743  *  updates i_size before truncate gets going.  By maintaining this
1744  *  invariant, we can be sure that it is safe to throw away any buffers
1745  *  attached to the current transaction: once the transaction commits,
1746  *  we know that the data will not be needed.
1747  *
1748  *  Note however that we can *not* throw away data belonging to the
1749  *  previous, committing transaction!
1750  *
1751  * Any disk blocks which *are* part of the previous, committing
1752  * transaction (and which therefore cannot be discarded immediately) are
1753  * not going to be reused in the new running transaction
1754  *
1755  *  The bitmap committed_data images guarantee this: any block which is
1756  *  allocated in one transaction and removed in the next will be marked
1757  *  as in-use in the committed_data bitmap, so cannot be reused until
1758  *  the next transaction to delete the block commits.  This means that
1759  *  leaving committing buffers dirty is quite safe: the disk blocks
1760  *  cannot be reallocated to a different file and so buffer aliasing is
1761  *  not possible.
1762  *
1763  *
1764  * The above applies mainly to ordered data mode.  In writeback mode we
1765  * don't make guarantees about the order in which data hits disk --- in
1766  * particular we don't guarantee that new dirty data is flushed before
1767  * transaction commit --- so it is always safe just to discard data
1768  * immediately in that mode.  --sct
1769  */
1770 
1771 /*
1772  * The journal_unmap_buffer helper function returns zero if the buffer
1773  * concerned remains pinned as an anonymous buffer belonging to an older
1774  * transaction.
1775  *
1776  * We're outside-transaction here.  Either or both of j_running_transaction
1777  * and j_committing_transaction may be NULL.
1778  */
1779 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1780 {
1781 	transaction_t *transaction;
1782 	struct journal_head *jh;
1783 	int may_free = 1;
1784 	int ret;
1785 
1786 	BUFFER_TRACE(bh, "entry");
1787 
1788 	/*
1789 	 * It is safe to proceed here without the j_list_lock because the
1790 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1791 	 * holding the page lock. --sct
1792 	 */
1793 
1794 	if (!buffer_jbd(bh))
1795 		goto zap_buffer_unlocked;
1796 
1797 	spin_lock(&journal->j_state_lock);
1798 	jbd_lock_bh_state(bh);
1799 	spin_lock(&journal->j_list_lock);
1800 
1801 	jh = jbd2_journal_grab_journal_head(bh);
1802 	if (!jh)
1803 		goto zap_buffer_no_jh;
1804 
1805 	transaction = jh->b_transaction;
1806 	if (transaction == NULL) {
1807 		/* First case: not on any transaction.  If it
1808 		 * has no checkpoint link, then we can zap it:
1809 		 * it's a writeback-mode buffer so we don't care
1810 		 * if it hits disk safely. */
1811 		if (!jh->b_cp_transaction) {
1812 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1813 			goto zap_buffer;
1814 		}
1815 
1816 		if (!buffer_dirty(bh)) {
1817 			/* bdflush has written it.  We can drop it now */
1818 			goto zap_buffer;
1819 		}
1820 
1821 		/* OK, it must be in the journal but still not
1822 		 * written fully to disk: it's metadata or
1823 		 * journaled data... */
1824 
1825 		if (journal->j_running_transaction) {
1826 			/* ... and once the current transaction has
1827 			 * committed, the buffer won't be needed any
1828 			 * longer. */
1829 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1830 			ret = __dispose_buffer(jh,
1831 					journal->j_running_transaction);
1832 			jbd2_journal_put_journal_head(jh);
1833 			spin_unlock(&journal->j_list_lock);
1834 			jbd_unlock_bh_state(bh);
1835 			spin_unlock(&journal->j_state_lock);
1836 			return ret;
1837 		} else {
1838 			/* There is no currently-running transaction. So the
1839 			 * orphan record which we wrote for this file must have
1840 			 * passed into commit.  We must attach this buffer to
1841 			 * the committing transaction, if it exists. */
1842 			if (journal->j_committing_transaction) {
1843 				JBUFFER_TRACE(jh, "give to committing trans");
1844 				ret = __dispose_buffer(jh,
1845 					journal->j_committing_transaction);
1846 				jbd2_journal_put_journal_head(jh);
1847 				spin_unlock(&journal->j_list_lock);
1848 				jbd_unlock_bh_state(bh);
1849 				spin_unlock(&journal->j_state_lock);
1850 				return ret;
1851 			} else {
1852 				/* The orphan record's transaction has
1853 				 * committed.  We can cleanse this buffer */
1854 				clear_buffer_jbddirty(bh);
1855 				goto zap_buffer;
1856 			}
1857 		}
1858 	} else if (transaction == journal->j_committing_transaction) {
1859 		JBUFFER_TRACE(jh, "on committing transaction");
1860 		if (jh->b_jlist == BJ_Locked) {
1861 			/*
1862 			 * The buffer is on the committing transaction's locked
1863 			 * list.  We have the buffer locked, so I/O has
1864 			 * completed.  So we can nail the buffer now.
1865 			 */
1866 			may_free = __dispose_buffer(jh, transaction);
1867 			goto zap_buffer;
1868 		}
1869 		/*
1870 		 * If it is committing, we simply cannot touch it.  We
1871 		 * can remove it's next_transaction pointer from the
1872 		 * running transaction if that is set, but nothing
1873 		 * else. */
1874 		set_buffer_freed(bh);
1875 		if (jh->b_next_transaction) {
1876 			J_ASSERT(jh->b_next_transaction ==
1877 					journal->j_running_transaction);
1878 			jh->b_next_transaction = NULL;
1879 		}
1880 		jbd2_journal_put_journal_head(jh);
1881 		spin_unlock(&journal->j_list_lock);
1882 		jbd_unlock_bh_state(bh);
1883 		spin_unlock(&journal->j_state_lock);
1884 		return 0;
1885 	} else {
1886 		/* Good, the buffer belongs to the running transaction.
1887 		 * We are writing our own transaction's data, not any
1888 		 * previous one's, so it is safe to throw it away
1889 		 * (remember that we expect the filesystem to have set
1890 		 * i_size already for this truncate so recovery will not
1891 		 * expose the disk blocks we are discarding here.) */
1892 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1893 		JBUFFER_TRACE(jh, "on running transaction");
1894 		may_free = __dispose_buffer(jh, transaction);
1895 	}
1896 
1897 zap_buffer:
1898 	jbd2_journal_put_journal_head(jh);
1899 zap_buffer_no_jh:
1900 	spin_unlock(&journal->j_list_lock);
1901 	jbd_unlock_bh_state(bh);
1902 	spin_unlock(&journal->j_state_lock);
1903 zap_buffer_unlocked:
1904 	clear_buffer_dirty(bh);
1905 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1906 	clear_buffer_mapped(bh);
1907 	clear_buffer_req(bh);
1908 	clear_buffer_new(bh);
1909 	bh->b_bdev = NULL;
1910 	return may_free;
1911 }
1912 
1913 /**
1914  * void jbd2_journal_invalidatepage()
1915  * @journal: journal to use for flush...
1916  * @page:    page to flush
1917  * @offset:  length of page to invalidate.
1918  *
1919  * Reap page buffers containing data after offset in page.
1920  *
1921  */
1922 void jbd2_journal_invalidatepage(journal_t *journal,
1923 		      struct page *page,
1924 		      unsigned long offset)
1925 {
1926 	struct buffer_head *head, *bh, *next;
1927 	unsigned int curr_off = 0;
1928 	int may_free = 1;
1929 
1930 	if (!PageLocked(page))
1931 		BUG();
1932 	if (!page_has_buffers(page))
1933 		return;
1934 
1935 	/* We will potentially be playing with lists other than just the
1936 	 * data lists (especially for journaled data mode), so be
1937 	 * cautious in our locking. */
1938 
1939 	head = bh = page_buffers(page);
1940 	do {
1941 		unsigned int next_off = curr_off + bh->b_size;
1942 		next = bh->b_this_page;
1943 
1944 		if (offset <= curr_off) {
1945 			/* This block is wholly outside the truncation point */
1946 			lock_buffer(bh);
1947 			may_free &= journal_unmap_buffer(journal, bh);
1948 			unlock_buffer(bh);
1949 		}
1950 		curr_off = next_off;
1951 		bh = next;
1952 
1953 	} while (bh != head);
1954 
1955 	if (!offset) {
1956 		if (may_free && try_to_free_buffers(page))
1957 			J_ASSERT(!page_has_buffers(page));
1958 	}
1959 }
1960 
1961 /*
1962  * File a buffer on the given transaction list.
1963  */
1964 void __jbd2_journal_file_buffer(struct journal_head *jh,
1965 			transaction_t *transaction, int jlist)
1966 {
1967 	struct journal_head **list = NULL;
1968 	int was_dirty = 0;
1969 	struct buffer_head *bh = jh2bh(jh);
1970 
1971 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1972 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1973 
1974 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1975 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1976 				jh->b_transaction == NULL);
1977 
1978 	if (jh->b_transaction && jh->b_jlist == jlist)
1979 		return;
1980 
1981 	/* The following list of buffer states needs to be consistent
1982 	 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1983 	 * state. */
1984 
1985 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1986 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1987 		if (test_clear_buffer_dirty(bh) ||
1988 		    test_clear_buffer_jbddirty(bh))
1989 			was_dirty = 1;
1990 	}
1991 
1992 	if (jh->b_transaction)
1993 		__jbd2_journal_temp_unlink_buffer(jh);
1994 	jh->b_transaction = transaction;
1995 
1996 	switch (jlist) {
1997 	case BJ_None:
1998 		J_ASSERT_JH(jh, !jh->b_committed_data);
1999 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2000 		return;
2001 	case BJ_SyncData:
2002 		list = &transaction->t_sync_datalist;
2003 		break;
2004 	case BJ_Metadata:
2005 		transaction->t_nr_buffers++;
2006 		list = &transaction->t_buffers;
2007 		break;
2008 	case BJ_Forget:
2009 		list = &transaction->t_forget;
2010 		break;
2011 	case BJ_IO:
2012 		list = &transaction->t_iobuf_list;
2013 		break;
2014 	case BJ_Shadow:
2015 		list = &transaction->t_shadow_list;
2016 		break;
2017 	case BJ_LogCtl:
2018 		list = &transaction->t_log_list;
2019 		break;
2020 	case BJ_Reserved:
2021 		list = &transaction->t_reserved_list;
2022 		break;
2023 	case BJ_Locked:
2024 		list =  &transaction->t_locked_list;
2025 		break;
2026 	}
2027 
2028 	__blist_add_buffer(list, jh);
2029 	jh->b_jlist = jlist;
2030 
2031 	if (was_dirty)
2032 		set_buffer_jbddirty(bh);
2033 }
2034 
2035 void jbd2_journal_file_buffer(struct journal_head *jh,
2036 				transaction_t *transaction, int jlist)
2037 {
2038 	jbd_lock_bh_state(jh2bh(jh));
2039 	spin_lock(&transaction->t_journal->j_list_lock);
2040 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2041 	spin_unlock(&transaction->t_journal->j_list_lock);
2042 	jbd_unlock_bh_state(jh2bh(jh));
2043 }
2044 
2045 /*
2046  * Remove a buffer from its current buffer list in preparation for
2047  * dropping it from its current transaction entirely.  If the buffer has
2048  * already started to be used by a subsequent transaction, refile the
2049  * buffer on that transaction's metadata list.
2050  *
2051  * Called under journal->j_list_lock
2052  *
2053  * Called under jbd_lock_bh_state(jh2bh(jh))
2054  */
2055 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2056 {
2057 	int was_dirty;
2058 	struct buffer_head *bh = jh2bh(jh);
2059 
2060 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2061 	if (jh->b_transaction)
2062 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2063 
2064 	/* If the buffer is now unused, just drop it. */
2065 	if (jh->b_next_transaction == NULL) {
2066 		__jbd2_journal_unfile_buffer(jh);
2067 		return;
2068 	}
2069 
2070 	/*
2071 	 * It has been modified by a later transaction: add it to the new
2072 	 * transaction's metadata list.
2073 	 */
2074 
2075 	was_dirty = test_clear_buffer_jbddirty(bh);
2076 	__jbd2_journal_temp_unlink_buffer(jh);
2077 	jh->b_transaction = jh->b_next_transaction;
2078 	jh->b_next_transaction = NULL;
2079 	__jbd2_journal_file_buffer(jh, jh->b_transaction,
2080 				was_dirty ? BJ_Metadata : BJ_Reserved);
2081 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2082 
2083 	if (was_dirty)
2084 		set_buffer_jbddirty(bh);
2085 }
2086 
2087 /*
2088  * For the unlocked version of this call, also make sure that any
2089  * hanging journal_head is cleaned up if necessary.
2090  *
2091  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2092  * operation on a buffer_head, in which the caller is probably going to
2093  * be hooking the journal_head onto other lists.  In that case it is up
2094  * to the caller to remove the journal_head if necessary.  For the
2095  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2096  * doing anything else to the buffer so we need to do the cleanup
2097  * ourselves to avoid a jh leak.
2098  *
2099  * *** The journal_head may be freed by this call! ***
2100  */
2101 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2102 {
2103 	struct buffer_head *bh = jh2bh(jh);
2104 
2105 	jbd_lock_bh_state(bh);
2106 	spin_lock(&journal->j_list_lock);
2107 
2108 	__jbd2_journal_refile_buffer(jh);
2109 	jbd_unlock_bh_state(bh);
2110 	jbd2_journal_remove_journal_head(bh);
2111 
2112 	spin_unlock(&journal->j_list_lock);
2113 	__brelse(bh);
2114 }
2115