1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (transaction_cache) 46 return 0; 47 return -ENOMEM; 48 } 49 50 void jbd2_journal_destroy_transaction_cache(void) 51 { 52 kmem_cache_destroy(transaction_cache); 53 transaction_cache = NULL; 54 } 55 56 void jbd2_journal_free_transaction(transaction_t *transaction) 57 { 58 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 59 return; 60 kmem_cache_free(transaction_cache, transaction); 61 } 62 63 /* 64 * jbd2_get_transaction: obtain a new transaction_t object. 65 * 66 * Simply allocate and initialise a new transaction. Create it in 67 * RUNNING state and add it to the current journal (which should not 68 * have an existing running transaction: we only make a new transaction 69 * once we have started to commit the old one). 70 * 71 * Preconditions: 72 * The journal MUST be locked. We don't perform atomic mallocs on the 73 * new transaction and we can't block without protecting against other 74 * processes trying to touch the journal while it is in transition. 75 * 76 */ 77 78 static transaction_t * 79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 80 { 81 transaction->t_journal = journal; 82 transaction->t_state = T_RUNNING; 83 transaction->t_start_time = ktime_get(); 84 transaction->t_tid = journal->j_transaction_sequence++; 85 transaction->t_expires = jiffies + journal->j_commit_interval; 86 spin_lock_init(&transaction->t_handle_lock); 87 atomic_set(&transaction->t_updates, 0); 88 atomic_set(&transaction->t_outstanding_credits, 89 atomic_read(&journal->j_reserved_credits)); 90 atomic_set(&transaction->t_handle_count, 0); 91 INIT_LIST_HEAD(&transaction->t_inode_list); 92 INIT_LIST_HEAD(&transaction->t_private_list); 93 94 /* Set up the commit timer for the new transaction. */ 95 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 96 add_timer(&journal->j_commit_timer); 97 98 J_ASSERT(journal->j_running_transaction == NULL); 99 journal->j_running_transaction = transaction; 100 transaction->t_max_wait = 0; 101 transaction->t_start = jiffies; 102 transaction->t_requested = 0; 103 104 return transaction; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * Update transaction's maximum wait time, if debugging is enabled. 117 * 118 * In order for t_max_wait to be reliable, it must be protected by a 119 * lock. But doing so will mean that start_this_handle() can not be 120 * run in parallel on SMP systems, which limits our scalability. So 121 * unless debugging is enabled, we no longer update t_max_wait, which 122 * means that maximum wait time reported by the jbd2_run_stats 123 * tracepoint will always be zero. 124 */ 125 static inline void update_t_max_wait(transaction_t *transaction, 126 unsigned long ts) 127 { 128 #ifdef CONFIG_JBD2_DEBUG 129 if (jbd2_journal_enable_debug && 130 time_after(transaction->t_start, ts)) { 131 ts = jbd2_time_diff(ts, transaction->t_start); 132 spin_lock(&transaction->t_handle_lock); 133 if (ts > transaction->t_max_wait) 134 transaction->t_max_wait = ts; 135 spin_unlock(&transaction->t_handle_lock); 136 } 137 #endif 138 } 139 140 /* 141 * Wait until running transaction passes to T_FLUSH state and new transaction 142 * can thus be started. Also starts the commit if needed. The function expects 143 * running transaction to exist and releases j_state_lock. 144 */ 145 static void wait_transaction_locked(journal_t *journal) 146 __releases(journal->j_state_lock) 147 { 148 DEFINE_WAIT(wait); 149 int need_to_start; 150 tid_t tid = journal->j_running_transaction->t_tid; 151 152 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 153 TASK_UNINTERRUPTIBLE); 154 need_to_start = !tid_geq(journal->j_commit_request, tid); 155 read_unlock(&journal->j_state_lock); 156 if (need_to_start) 157 jbd2_log_start_commit(journal, tid); 158 jbd2_might_wait_for_commit(journal); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 } 162 163 /* 164 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 165 * state and new transaction can thus be started. The function releases 166 * j_state_lock. 167 */ 168 static void wait_transaction_switching(journal_t *journal) 169 __releases(journal->j_state_lock) 170 { 171 DEFINE_WAIT(wait); 172 173 if (WARN_ON(!journal->j_running_transaction || 174 journal->j_running_transaction->t_state != T_SWITCH)) 175 return; 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 read_unlock(&journal->j_state_lock); 179 /* 180 * We don't call jbd2_might_wait_for_commit() here as there's no 181 * waiting for outstanding handles happening anymore in T_SWITCH state 182 * and handling of reserved handles actually relies on that for 183 * correctness. 184 */ 185 schedule(); 186 finish_wait(&journal->j_wait_transaction_locked, &wait); 187 } 188 189 static void sub_reserved_credits(journal_t *journal, int blocks) 190 { 191 atomic_sub(blocks, &journal->j_reserved_credits); 192 wake_up(&journal->j_wait_reserved); 193 } 194 195 /* 196 * Wait until we can add credits for handle to the running transaction. Called 197 * with j_state_lock held for reading. Returns 0 if handle joined the running 198 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 199 * caller must retry. 200 */ 201 static int add_transaction_credits(journal_t *journal, int blocks, 202 int rsv_blocks) 203 { 204 transaction_t *t = journal->j_running_transaction; 205 int needed; 206 int total = blocks + rsv_blocks; 207 208 /* 209 * If the current transaction is locked down for commit, wait 210 * for the lock to be released. 211 */ 212 if (t->t_state != T_RUNNING) { 213 WARN_ON_ONCE(t->t_state >= T_FLUSH); 214 wait_transaction_locked(journal); 215 return 1; 216 } 217 218 /* 219 * If there is not enough space left in the log to write all 220 * potential buffers requested by this operation, we need to 221 * stall pending a log checkpoint to free some more log space. 222 */ 223 needed = atomic_add_return(total, &t->t_outstanding_credits); 224 if (needed > journal->j_max_transaction_buffers) { 225 /* 226 * If the current transaction is already too large, 227 * then start to commit it: we can then go back and 228 * attach this handle to a new transaction. 229 */ 230 atomic_sub(total, &t->t_outstanding_credits); 231 232 /* 233 * Is the number of reserved credits in the current transaction too 234 * big to fit this handle? Wait until reserved credits are freed. 235 */ 236 if (atomic_read(&journal->j_reserved_credits) + total > 237 journal->j_max_transaction_buffers) { 238 read_unlock(&journal->j_state_lock); 239 jbd2_might_wait_for_commit(journal); 240 wait_event(journal->j_wait_reserved, 241 atomic_read(&journal->j_reserved_credits) + total <= 242 journal->j_max_transaction_buffers); 243 return 1; 244 } 245 246 wait_transaction_locked(journal); 247 return 1; 248 } 249 250 /* 251 * The commit code assumes that it can get enough log space 252 * without forcing a checkpoint. This is *critical* for 253 * correctness: a checkpoint of a buffer which is also 254 * associated with a committing transaction creates a deadlock, 255 * so commit simply cannot force through checkpoints. 256 * 257 * We must therefore ensure the necessary space in the journal 258 * *before* starting to dirty potentially checkpointed buffers 259 * in the new transaction. 260 */ 261 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 262 atomic_sub(total, &t->t_outstanding_credits); 263 read_unlock(&journal->j_state_lock); 264 jbd2_might_wait_for_commit(journal); 265 write_lock(&journal->j_state_lock); 266 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 267 __jbd2_log_wait_for_space(journal); 268 write_unlock(&journal->j_state_lock); 269 return 1; 270 } 271 272 /* No reservation? We are done... */ 273 if (!rsv_blocks) 274 return 0; 275 276 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 277 /* We allow at most half of a transaction to be reserved */ 278 if (needed > journal->j_max_transaction_buffers / 2) { 279 sub_reserved_credits(journal, rsv_blocks); 280 atomic_sub(total, &t->t_outstanding_credits); 281 read_unlock(&journal->j_state_lock); 282 jbd2_might_wait_for_commit(journal); 283 wait_event(journal->j_wait_reserved, 284 atomic_read(&journal->j_reserved_credits) + rsv_blocks 285 <= journal->j_max_transaction_buffers / 2); 286 return 1; 287 } 288 return 0; 289 } 290 291 /* 292 * start_this_handle: Given a handle, deal with any locking or stalling 293 * needed to make sure that there is enough journal space for the handle 294 * to begin. Attach the handle to a transaction and set up the 295 * transaction's buffer credits. 296 */ 297 298 static int start_this_handle(journal_t *journal, handle_t *handle, 299 gfp_t gfp_mask) 300 { 301 transaction_t *transaction, *new_transaction = NULL; 302 int blocks = handle->h_buffer_credits; 303 int rsv_blocks = 0; 304 unsigned long ts = jiffies; 305 306 if (handle->h_rsv_handle) 307 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 308 309 /* 310 * Limit the number of reserved credits to 1/2 of maximum transaction 311 * size and limit the number of total credits to not exceed maximum 312 * transaction size per operation. 313 */ 314 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 315 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 316 printk(KERN_ERR "JBD2: %s wants too many credits " 317 "credits:%d rsv_credits:%d max:%d\n", 318 current->comm, blocks, rsv_blocks, 319 journal->j_max_transaction_buffers); 320 WARN_ON(1); 321 return -ENOSPC; 322 } 323 324 alloc_transaction: 325 if (!journal->j_running_transaction) { 326 /* 327 * If __GFP_FS is not present, then we may be being called from 328 * inside the fs writeback layer, so we MUST NOT fail. 329 */ 330 if ((gfp_mask & __GFP_FS) == 0) 331 gfp_mask |= __GFP_NOFAIL; 332 new_transaction = kmem_cache_zalloc(transaction_cache, 333 gfp_mask); 334 if (!new_transaction) 335 return -ENOMEM; 336 } 337 338 jbd_debug(3, "New handle %p going live.\n", handle); 339 340 /* 341 * We need to hold j_state_lock until t_updates has been incremented, 342 * for proper journal barrier handling 343 */ 344 repeat: 345 read_lock(&journal->j_state_lock); 346 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 347 if (is_journal_aborted(journal) || 348 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 349 read_unlock(&journal->j_state_lock); 350 jbd2_journal_free_transaction(new_transaction); 351 return -EROFS; 352 } 353 354 /* 355 * Wait on the journal's transaction barrier if necessary. Specifically 356 * we allow reserved handles to proceed because otherwise commit could 357 * deadlock on page writeback not being able to complete. 358 */ 359 if (!handle->h_reserved && journal->j_barrier_count) { 360 read_unlock(&journal->j_state_lock); 361 wait_event(journal->j_wait_transaction_locked, 362 journal->j_barrier_count == 0); 363 goto repeat; 364 } 365 366 if (!journal->j_running_transaction) { 367 read_unlock(&journal->j_state_lock); 368 if (!new_transaction) 369 goto alloc_transaction; 370 write_lock(&journal->j_state_lock); 371 if (!journal->j_running_transaction && 372 (handle->h_reserved || !journal->j_barrier_count)) { 373 jbd2_get_transaction(journal, new_transaction); 374 new_transaction = NULL; 375 } 376 write_unlock(&journal->j_state_lock); 377 goto repeat; 378 } 379 380 transaction = journal->j_running_transaction; 381 382 if (!handle->h_reserved) { 383 /* We may have dropped j_state_lock - restart in that case */ 384 if (add_transaction_credits(journal, blocks, rsv_blocks)) 385 goto repeat; 386 } else { 387 /* 388 * We have handle reserved so we are allowed to join T_LOCKED 389 * transaction and we don't have to check for transaction size 390 * and journal space. But we still have to wait while running 391 * transaction is being switched to a committing one as it 392 * won't wait for any handles anymore. 393 */ 394 if (transaction->t_state == T_SWITCH) { 395 wait_transaction_switching(journal); 396 goto repeat; 397 } 398 sub_reserved_credits(journal, blocks); 399 handle->h_reserved = 0; 400 } 401 402 /* OK, account for the buffers that this operation expects to 403 * use and add the handle to the running transaction. 404 */ 405 update_t_max_wait(transaction, ts); 406 handle->h_transaction = transaction; 407 handle->h_requested_credits = blocks; 408 handle->h_start_jiffies = jiffies; 409 atomic_inc(&transaction->t_updates); 410 atomic_inc(&transaction->t_handle_count); 411 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 412 handle, blocks, 413 atomic_read(&transaction->t_outstanding_credits), 414 jbd2_log_space_left(journal)); 415 read_unlock(&journal->j_state_lock); 416 current->journal_info = handle; 417 418 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 419 jbd2_journal_free_transaction(new_transaction); 420 /* 421 * Ensure that no allocations done while the transaction is open are 422 * going to recurse back to the fs layer. 423 */ 424 handle->saved_alloc_context = memalloc_nofs_save(); 425 return 0; 426 } 427 428 /* Allocate a new handle. This should probably be in a slab... */ 429 static handle_t *new_handle(int nblocks) 430 { 431 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 432 if (!handle) 433 return NULL; 434 handle->h_buffer_credits = nblocks; 435 handle->h_ref = 1; 436 437 return handle; 438 } 439 440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 441 gfp_t gfp_mask, unsigned int type, 442 unsigned int line_no) 443 { 444 handle_t *handle = journal_current_handle(); 445 int err; 446 447 if (!journal) 448 return ERR_PTR(-EROFS); 449 450 if (handle) { 451 J_ASSERT(handle->h_transaction->t_journal == journal); 452 handle->h_ref++; 453 return handle; 454 } 455 456 handle = new_handle(nblocks); 457 if (!handle) 458 return ERR_PTR(-ENOMEM); 459 if (rsv_blocks) { 460 handle_t *rsv_handle; 461 462 rsv_handle = new_handle(rsv_blocks); 463 if (!rsv_handle) { 464 jbd2_free_handle(handle); 465 return ERR_PTR(-ENOMEM); 466 } 467 rsv_handle->h_reserved = 1; 468 rsv_handle->h_journal = journal; 469 handle->h_rsv_handle = rsv_handle; 470 } 471 472 err = start_this_handle(journal, handle, gfp_mask); 473 if (err < 0) { 474 if (handle->h_rsv_handle) 475 jbd2_free_handle(handle->h_rsv_handle); 476 jbd2_free_handle(handle); 477 return ERR_PTR(err); 478 } 479 handle->h_type = type; 480 handle->h_line_no = line_no; 481 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 482 handle->h_transaction->t_tid, type, 483 line_no, nblocks); 484 485 return handle; 486 } 487 EXPORT_SYMBOL(jbd2__journal_start); 488 489 490 /** 491 * handle_t *jbd2_journal_start() - Obtain a new handle. 492 * @journal: Journal to start transaction on. 493 * @nblocks: number of block buffer we might modify 494 * 495 * We make sure that the transaction can guarantee at least nblocks of 496 * modified buffers in the log. We block until the log can guarantee 497 * that much space. Additionally, if rsv_blocks > 0, we also create another 498 * handle with rsv_blocks reserved blocks in the journal. This handle is 499 * is stored in h_rsv_handle. It is not attached to any particular transaction 500 * and thus doesn't block transaction commit. If the caller uses this reserved 501 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 502 * on the parent handle will dispose the reserved one. Reserved handle has to 503 * be converted to a normal handle using jbd2_journal_start_reserved() before 504 * it can be used. 505 * 506 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 507 * on failure. 508 */ 509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 510 { 511 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 512 } 513 EXPORT_SYMBOL(jbd2_journal_start); 514 515 void jbd2_journal_free_reserved(handle_t *handle) 516 { 517 journal_t *journal = handle->h_journal; 518 519 WARN_ON(!handle->h_reserved); 520 sub_reserved_credits(journal, handle->h_buffer_credits); 521 jbd2_free_handle(handle); 522 } 523 EXPORT_SYMBOL(jbd2_journal_free_reserved); 524 525 /** 526 * int jbd2_journal_start_reserved() - start reserved handle 527 * @handle: handle to start 528 * @type: for handle statistics 529 * @line_no: for handle statistics 530 * 531 * Start handle that has been previously reserved with jbd2_journal_reserve(). 532 * This attaches @handle to the running transaction (or creates one if there's 533 * not transaction running). Unlike jbd2_journal_start() this function cannot 534 * block on journal commit, checkpointing, or similar stuff. It can block on 535 * memory allocation or frozen journal though. 536 * 537 * Return 0 on success, non-zero on error - handle is freed in that case. 538 */ 539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 540 unsigned int line_no) 541 { 542 journal_t *journal = handle->h_journal; 543 int ret = -EIO; 544 545 if (WARN_ON(!handle->h_reserved)) { 546 /* Someone passed in normal handle? Just stop it. */ 547 jbd2_journal_stop(handle); 548 return ret; 549 } 550 /* 551 * Usefulness of mixing of reserved and unreserved handles is 552 * questionable. So far nobody seems to need it so just error out. 553 */ 554 if (WARN_ON(current->journal_info)) { 555 jbd2_journal_free_reserved(handle); 556 return ret; 557 } 558 559 handle->h_journal = NULL; 560 /* 561 * GFP_NOFS is here because callers are likely from writeback or 562 * similarly constrained call sites 563 */ 564 ret = start_this_handle(journal, handle, GFP_NOFS); 565 if (ret < 0) { 566 handle->h_journal = journal; 567 jbd2_journal_free_reserved(handle); 568 return ret; 569 } 570 handle->h_type = type; 571 handle->h_line_no = line_no; 572 return 0; 573 } 574 EXPORT_SYMBOL(jbd2_journal_start_reserved); 575 576 /** 577 * int jbd2_journal_extend() - extend buffer credits. 578 * @handle: handle to 'extend' 579 * @nblocks: nr blocks to try to extend by. 580 * 581 * Some transactions, such as large extends and truncates, can be done 582 * atomically all at once or in several stages. The operation requests 583 * a credit for a number of buffer modifications in advance, but can 584 * extend its credit if it needs more. 585 * 586 * jbd2_journal_extend tries to give the running handle more buffer credits. 587 * It does not guarantee that allocation - this is a best-effort only. 588 * The calling process MUST be able to deal cleanly with a failure to 589 * extend here. 590 * 591 * Return 0 on success, non-zero on failure. 592 * 593 * return code < 0 implies an error 594 * return code > 0 implies normal transaction-full status. 595 */ 596 int jbd2_journal_extend(handle_t *handle, int nblocks) 597 { 598 transaction_t *transaction = handle->h_transaction; 599 journal_t *journal; 600 int result; 601 int wanted; 602 603 if (is_handle_aborted(handle)) 604 return -EROFS; 605 journal = transaction->t_journal; 606 607 result = 1; 608 609 read_lock(&journal->j_state_lock); 610 611 /* Don't extend a locked-down transaction! */ 612 if (transaction->t_state != T_RUNNING) { 613 jbd_debug(3, "denied handle %p %d blocks: " 614 "transaction not running\n", handle, nblocks); 615 goto error_out; 616 } 617 618 spin_lock(&transaction->t_handle_lock); 619 wanted = atomic_add_return(nblocks, 620 &transaction->t_outstanding_credits); 621 622 if (wanted > journal->j_max_transaction_buffers) { 623 jbd_debug(3, "denied handle %p %d blocks: " 624 "transaction too large\n", handle, nblocks); 625 atomic_sub(nblocks, &transaction->t_outstanding_credits); 626 goto unlock; 627 } 628 629 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 630 jbd2_log_space_left(journal)) { 631 jbd_debug(3, "denied handle %p %d blocks: " 632 "insufficient log space\n", handle, nblocks); 633 atomic_sub(nblocks, &transaction->t_outstanding_credits); 634 goto unlock; 635 } 636 637 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 638 transaction->t_tid, 639 handle->h_type, handle->h_line_no, 640 handle->h_buffer_credits, 641 nblocks); 642 643 handle->h_buffer_credits += nblocks; 644 handle->h_requested_credits += nblocks; 645 result = 0; 646 647 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 648 unlock: 649 spin_unlock(&transaction->t_handle_lock); 650 error_out: 651 read_unlock(&journal->j_state_lock); 652 return result; 653 } 654 655 656 /** 657 * int jbd2_journal_restart() - restart a handle . 658 * @handle: handle to restart 659 * @nblocks: nr credits requested 660 * @gfp_mask: memory allocation flags (for start_this_handle) 661 * 662 * Restart a handle for a multi-transaction filesystem 663 * operation. 664 * 665 * If the jbd2_journal_extend() call above fails to grant new buffer credits 666 * to a running handle, a call to jbd2_journal_restart will commit the 667 * handle's transaction so far and reattach the handle to a new 668 * transaction capable of guaranteeing the requested number of 669 * credits. We preserve reserved handle if there's any attached to the 670 * passed in handle. 671 */ 672 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 673 { 674 transaction_t *transaction = handle->h_transaction; 675 journal_t *journal; 676 tid_t tid; 677 int need_to_start, ret; 678 679 /* If we've had an abort of any type, don't even think about 680 * actually doing the restart! */ 681 if (is_handle_aborted(handle)) 682 return 0; 683 journal = transaction->t_journal; 684 685 /* 686 * First unlink the handle from its current transaction, and start the 687 * commit on that. 688 */ 689 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 690 J_ASSERT(journal_current_handle() == handle); 691 692 read_lock(&journal->j_state_lock); 693 spin_lock(&transaction->t_handle_lock); 694 atomic_sub(handle->h_buffer_credits, 695 &transaction->t_outstanding_credits); 696 if (handle->h_rsv_handle) { 697 sub_reserved_credits(journal, 698 handle->h_rsv_handle->h_buffer_credits); 699 } 700 if (atomic_dec_and_test(&transaction->t_updates)) 701 wake_up(&journal->j_wait_updates); 702 tid = transaction->t_tid; 703 spin_unlock(&transaction->t_handle_lock); 704 handle->h_transaction = NULL; 705 current->journal_info = NULL; 706 707 jbd_debug(2, "restarting handle %p\n", handle); 708 need_to_start = !tid_geq(journal->j_commit_request, tid); 709 read_unlock(&journal->j_state_lock); 710 if (need_to_start) 711 jbd2_log_start_commit(journal, tid); 712 713 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 714 handle->h_buffer_credits = nblocks; 715 /* 716 * Restore the original nofs context because the journal restart 717 * is basically the same thing as journal stop and start. 718 * start_this_handle will start a new nofs context. 719 */ 720 memalloc_nofs_restore(handle->saved_alloc_context); 721 ret = start_this_handle(journal, handle, gfp_mask); 722 return ret; 723 } 724 EXPORT_SYMBOL(jbd2__journal_restart); 725 726 727 int jbd2_journal_restart(handle_t *handle, int nblocks) 728 { 729 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 730 } 731 EXPORT_SYMBOL(jbd2_journal_restart); 732 733 /** 734 * void jbd2_journal_lock_updates () - establish a transaction barrier. 735 * @journal: Journal to establish a barrier on. 736 * 737 * This locks out any further updates from being started, and blocks 738 * until all existing updates have completed, returning only once the 739 * journal is in a quiescent state with no updates running. 740 * 741 * The journal lock should not be held on entry. 742 */ 743 void jbd2_journal_lock_updates(journal_t *journal) 744 { 745 DEFINE_WAIT(wait); 746 747 jbd2_might_wait_for_commit(journal); 748 749 write_lock(&journal->j_state_lock); 750 ++journal->j_barrier_count; 751 752 /* Wait until there are no reserved handles */ 753 if (atomic_read(&journal->j_reserved_credits)) { 754 write_unlock(&journal->j_state_lock); 755 wait_event(journal->j_wait_reserved, 756 atomic_read(&journal->j_reserved_credits) == 0); 757 write_lock(&journal->j_state_lock); 758 } 759 760 /* Wait until there are no running updates */ 761 while (1) { 762 transaction_t *transaction = journal->j_running_transaction; 763 764 if (!transaction) 765 break; 766 767 spin_lock(&transaction->t_handle_lock); 768 prepare_to_wait(&journal->j_wait_updates, &wait, 769 TASK_UNINTERRUPTIBLE); 770 if (!atomic_read(&transaction->t_updates)) { 771 spin_unlock(&transaction->t_handle_lock); 772 finish_wait(&journal->j_wait_updates, &wait); 773 break; 774 } 775 spin_unlock(&transaction->t_handle_lock); 776 write_unlock(&journal->j_state_lock); 777 schedule(); 778 finish_wait(&journal->j_wait_updates, &wait); 779 write_lock(&journal->j_state_lock); 780 } 781 write_unlock(&journal->j_state_lock); 782 783 /* 784 * We have now established a barrier against other normal updates, but 785 * we also need to barrier against other jbd2_journal_lock_updates() calls 786 * to make sure that we serialise special journal-locked operations 787 * too. 788 */ 789 mutex_lock(&journal->j_barrier); 790 } 791 792 /** 793 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 794 * @journal: Journal to release the barrier on. 795 * 796 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 797 * 798 * Should be called without the journal lock held. 799 */ 800 void jbd2_journal_unlock_updates (journal_t *journal) 801 { 802 J_ASSERT(journal->j_barrier_count != 0); 803 804 mutex_unlock(&journal->j_barrier); 805 write_lock(&journal->j_state_lock); 806 --journal->j_barrier_count; 807 write_unlock(&journal->j_state_lock); 808 wake_up(&journal->j_wait_transaction_locked); 809 } 810 811 static void warn_dirty_buffer(struct buffer_head *bh) 812 { 813 printk(KERN_WARNING 814 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 815 "There's a risk of filesystem corruption in case of system " 816 "crash.\n", 817 bh->b_bdev, (unsigned long long)bh->b_blocknr); 818 } 819 820 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 821 static void jbd2_freeze_jh_data(struct journal_head *jh) 822 { 823 struct page *page; 824 int offset; 825 char *source; 826 struct buffer_head *bh = jh2bh(jh); 827 828 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 829 page = bh->b_page; 830 offset = offset_in_page(bh->b_data); 831 source = kmap_atomic(page); 832 /* Fire data frozen trigger just before we copy the data */ 833 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 834 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 835 kunmap_atomic(source); 836 837 /* 838 * Now that the frozen data is saved off, we need to store any matching 839 * triggers. 840 */ 841 jh->b_frozen_triggers = jh->b_triggers; 842 } 843 844 /* 845 * If the buffer is already part of the current transaction, then there 846 * is nothing we need to do. If it is already part of a prior 847 * transaction which we are still committing to disk, then we need to 848 * make sure that we do not overwrite the old copy: we do copy-out to 849 * preserve the copy going to disk. We also account the buffer against 850 * the handle's metadata buffer credits (unless the buffer is already 851 * part of the transaction, that is). 852 * 853 */ 854 static int 855 do_get_write_access(handle_t *handle, struct journal_head *jh, 856 int force_copy) 857 { 858 struct buffer_head *bh; 859 transaction_t *transaction = handle->h_transaction; 860 journal_t *journal; 861 int error; 862 char *frozen_buffer = NULL; 863 unsigned long start_lock, time_lock; 864 865 if (is_handle_aborted(handle)) 866 return -EROFS; 867 journal = transaction->t_journal; 868 869 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 870 871 JBUFFER_TRACE(jh, "entry"); 872 repeat: 873 bh = jh2bh(jh); 874 875 /* @@@ Need to check for errors here at some point. */ 876 877 start_lock = jiffies; 878 lock_buffer(bh); 879 jbd_lock_bh_state(bh); 880 881 /* If it takes too long to lock the buffer, trace it */ 882 time_lock = jbd2_time_diff(start_lock, jiffies); 883 if (time_lock > HZ/10) 884 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 885 jiffies_to_msecs(time_lock)); 886 887 /* We now hold the buffer lock so it is safe to query the buffer 888 * state. Is the buffer dirty? 889 * 890 * If so, there are two possibilities. The buffer may be 891 * non-journaled, and undergoing a quite legitimate writeback. 892 * Otherwise, it is journaled, and we don't expect dirty buffers 893 * in that state (the buffers should be marked JBD_Dirty 894 * instead.) So either the IO is being done under our own 895 * control and this is a bug, or it's a third party IO such as 896 * dump(8) (which may leave the buffer scheduled for read --- 897 * ie. locked but not dirty) or tune2fs (which may actually have 898 * the buffer dirtied, ugh.) */ 899 900 if (buffer_dirty(bh)) { 901 /* 902 * First question: is this buffer already part of the current 903 * transaction or the existing committing transaction? 904 */ 905 if (jh->b_transaction) { 906 J_ASSERT_JH(jh, 907 jh->b_transaction == transaction || 908 jh->b_transaction == 909 journal->j_committing_transaction); 910 if (jh->b_next_transaction) 911 J_ASSERT_JH(jh, jh->b_next_transaction == 912 transaction); 913 warn_dirty_buffer(bh); 914 } 915 /* 916 * In any case we need to clean the dirty flag and we must 917 * do it under the buffer lock to be sure we don't race 918 * with running write-out. 919 */ 920 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 921 clear_buffer_dirty(bh); 922 set_buffer_jbddirty(bh); 923 } 924 925 unlock_buffer(bh); 926 927 error = -EROFS; 928 if (is_handle_aborted(handle)) { 929 jbd_unlock_bh_state(bh); 930 goto out; 931 } 932 error = 0; 933 934 /* 935 * The buffer is already part of this transaction if b_transaction or 936 * b_next_transaction points to it 937 */ 938 if (jh->b_transaction == transaction || 939 jh->b_next_transaction == transaction) 940 goto done; 941 942 /* 943 * this is the first time this transaction is touching this buffer, 944 * reset the modified flag 945 */ 946 jh->b_modified = 0; 947 948 /* 949 * If the buffer is not journaled right now, we need to make sure it 950 * doesn't get written to disk before the caller actually commits the 951 * new data 952 */ 953 if (!jh->b_transaction) { 954 JBUFFER_TRACE(jh, "no transaction"); 955 J_ASSERT_JH(jh, !jh->b_next_transaction); 956 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 957 /* 958 * Make sure all stores to jh (b_modified, b_frozen_data) are 959 * visible before attaching it to the running transaction. 960 * Paired with barrier in jbd2_write_access_granted() 961 */ 962 smp_wmb(); 963 spin_lock(&journal->j_list_lock); 964 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 965 spin_unlock(&journal->j_list_lock); 966 goto done; 967 } 968 /* 969 * If there is already a copy-out version of this buffer, then we don't 970 * need to make another one 971 */ 972 if (jh->b_frozen_data) { 973 JBUFFER_TRACE(jh, "has frozen data"); 974 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 975 goto attach_next; 976 } 977 978 JBUFFER_TRACE(jh, "owned by older transaction"); 979 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 980 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 981 982 /* 983 * There is one case we have to be very careful about. If the 984 * committing transaction is currently writing this buffer out to disk 985 * and has NOT made a copy-out, then we cannot modify the buffer 986 * contents at all right now. The essence of copy-out is that it is 987 * the extra copy, not the primary copy, which gets journaled. If the 988 * primary copy is already going to disk then we cannot do copy-out 989 * here. 990 */ 991 if (buffer_shadow(bh)) { 992 JBUFFER_TRACE(jh, "on shadow: sleep"); 993 jbd_unlock_bh_state(bh); 994 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 995 goto repeat; 996 } 997 998 /* 999 * Only do the copy if the currently-owning transaction still needs it. 1000 * If buffer isn't on BJ_Metadata list, the committing transaction is 1001 * past that stage (here we use the fact that BH_Shadow is set under 1002 * bh_state lock together with refiling to BJ_Shadow list and at this 1003 * point we know the buffer doesn't have BH_Shadow set). 1004 * 1005 * Subtle point, though: if this is a get_undo_access, then we will be 1006 * relying on the frozen_data to contain the new value of the 1007 * committed_data record after the transaction, so we HAVE to force the 1008 * frozen_data copy in that case. 1009 */ 1010 if (jh->b_jlist == BJ_Metadata || force_copy) { 1011 JBUFFER_TRACE(jh, "generate frozen data"); 1012 if (!frozen_buffer) { 1013 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1014 jbd_unlock_bh_state(bh); 1015 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1016 GFP_NOFS | __GFP_NOFAIL); 1017 goto repeat; 1018 } 1019 jh->b_frozen_data = frozen_buffer; 1020 frozen_buffer = NULL; 1021 jbd2_freeze_jh_data(jh); 1022 } 1023 attach_next: 1024 /* 1025 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1026 * before attaching it to the running transaction. Paired with barrier 1027 * in jbd2_write_access_granted() 1028 */ 1029 smp_wmb(); 1030 jh->b_next_transaction = transaction; 1031 1032 done: 1033 jbd_unlock_bh_state(bh); 1034 1035 /* 1036 * If we are about to journal a buffer, then any revoke pending on it is 1037 * no longer valid 1038 */ 1039 jbd2_journal_cancel_revoke(handle, jh); 1040 1041 out: 1042 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1043 jbd2_free(frozen_buffer, bh->b_size); 1044 1045 JBUFFER_TRACE(jh, "exit"); 1046 return error; 1047 } 1048 1049 /* Fast check whether buffer is already attached to the required transaction */ 1050 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1051 bool undo) 1052 { 1053 struct journal_head *jh; 1054 bool ret = false; 1055 1056 /* Dirty buffers require special handling... */ 1057 if (buffer_dirty(bh)) 1058 return false; 1059 1060 /* 1061 * RCU protects us from dereferencing freed pages. So the checks we do 1062 * are guaranteed not to oops. However the jh slab object can get freed 1063 * & reallocated while we work with it. So we have to be careful. When 1064 * we see jh attached to the running transaction, we know it must stay 1065 * so until the transaction is committed. Thus jh won't be freed and 1066 * will be attached to the same bh while we run. However it can 1067 * happen jh gets freed, reallocated, and attached to the transaction 1068 * just after we get pointer to it from bh. So we have to be careful 1069 * and recheck jh still belongs to our bh before we return success. 1070 */ 1071 rcu_read_lock(); 1072 if (!buffer_jbd(bh)) 1073 goto out; 1074 /* This should be bh2jh() but that doesn't work with inline functions */ 1075 jh = READ_ONCE(bh->b_private); 1076 if (!jh) 1077 goto out; 1078 /* For undo access buffer must have data copied */ 1079 if (undo && !jh->b_committed_data) 1080 goto out; 1081 if (jh->b_transaction != handle->h_transaction && 1082 jh->b_next_transaction != handle->h_transaction) 1083 goto out; 1084 /* 1085 * There are two reasons for the barrier here: 1086 * 1) Make sure to fetch b_bh after we did previous checks so that we 1087 * detect when jh went through free, realloc, attach to transaction 1088 * while we were checking. Paired with implicit barrier in that path. 1089 * 2) So that access to bh done after jbd2_write_access_granted() 1090 * doesn't get reordered and see inconsistent state of concurrent 1091 * do_get_write_access(). 1092 */ 1093 smp_mb(); 1094 if (unlikely(jh->b_bh != bh)) 1095 goto out; 1096 ret = true; 1097 out: 1098 rcu_read_unlock(); 1099 return ret; 1100 } 1101 1102 /** 1103 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1104 * @handle: transaction to add buffer modifications to 1105 * @bh: bh to be used for metadata writes 1106 * 1107 * Returns: error code or 0 on success. 1108 * 1109 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1110 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1111 */ 1112 1113 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1114 { 1115 struct journal_head *jh; 1116 int rc; 1117 1118 if (jbd2_write_access_granted(handle, bh, false)) 1119 return 0; 1120 1121 jh = jbd2_journal_add_journal_head(bh); 1122 /* We do not want to get caught playing with fields which the 1123 * log thread also manipulates. Make sure that the buffer 1124 * completes any outstanding IO before proceeding. */ 1125 rc = do_get_write_access(handle, jh, 0); 1126 jbd2_journal_put_journal_head(jh); 1127 return rc; 1128 } 1129 1130 1131 /* 1132 * When the user wants to journal a newly created buffer_head 1133 * (ie. getblk() returned a new buffer and we are going to populate it 1134 * manually rather than reading off disk), then we need to keep the 1135 * buffer_head locked until it has been completely filled with new 1136 * data. In this case, we should be able to make the assertion that 1137 * the bh is not already part of an existing transaction. 1138 * 1139 * The buffer should already be locked by the caller by this point. 1140 * There is no lock ranking violation: it was a newly created, 1141 * unlocked buffer beforehand. */ 1142 1143 /** 1144 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1145 * @handle: transaction to new buffer to 1146 * @bh: new buffer. 1147 * 1148 * Call this if you create a new bh. 1149 */ 1150 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1151 { 1152 transaction_t *transaction = handle->h_transaction; 1153 journal_t *journal; 1154 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1155 int err; 1156 1157 jbd_debug(5, "journal_head %p\n", jh); 1158 err = -EROFS; 1159 if (is_handle_aborted(handle)) 1160 goto out; 1161 journal = transaction->t_journal; 1162 err = 0; 1163 1164 JBUFFER_TRACE(jh, "entry"); 1165 /* 1166 * The buffer may already belong to this transaction due to pre-zeroing 1167 * in the filesystem's new_block code. It may also be on the previous, 1168 * committing transaction's lists, but it HAS to be in Forget state in 1169 * that case: the transaction must have deleted the buffer for it to be 1170 * reused here. 1171 */ 1172 jbd_lock_bh_state(bh); 1173 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1174 jh->b_transaction == NULL || 1175 (jh->b_transaction == journal->j_committing_transaction && 1176 jh->b_jlist == BJ_Forget))); 1177 1178 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1179 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1180 1181 if (jh->b_transaction == NULL) { 1182 /* 1183 * Previous jbd2_journal_forget() could have left the buffer 1184 * with jbddirty bit set because it was being committed. When 1185 * the commit finished, we've filed the buffer for 1186 * checkpointing and marked it dirty. Now we are reallocating 1187 * the buffer so the transaction freeing it must have 1188 * committed and so it's safe to clear the dirty bit. 1189 */ 1190 clear_buffer_dirty(jh2bh(jh)); 1191 /* first access by this transaction */ 1192 jh->b_modified = 0; 1193 1194 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1195 spin_lock(&journal->j_list_lock); 1196 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1197 spin_unlock(&journal->j_list_lock); 1198 } else if (jh->b_transaction == journal->j_committing_transaction) { 1199 /* first access by this transaction */ 1200 jh->b_modified = 0; 1201 1202 JBUFFER_TRACE(jh, "set next transaction"); 1203 spin_lock(&journal->j_list_lock); 1204 jh->b_next_transaction = transaction; 1205 spin_unlock(&journal->j_list_lock); 1206 } 1207 jbd_unlock_bh_state(bh); 1208 1209 /* 1210 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1211 * blocks which contain freed but then revoked metadata. We need 1212 * to cancel the revoke in case we end up freeing it yet again 1213 * and the reallocating as data - this would cause a second revoke, 1214 * which hits an assertion error. 1215 */ 1216 JBUFFER_TRACE(jh, "cancelling revoke"); 1217 jbd2_journal_cancel_revoke(handle, jh); 1218 out: 1219 jbd2_journal_put_journal_head(jh); 1220 return err; 1221 } 1222 1223 /** 1224 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1225 * non-rewindable consequences 1226 * @handle: transaction 1227 * @bh: buffer to undo 1228 * 1229 * Sometimes there is a need to distinguish between metadata which has 1230 * been committed to disk and that which has not. The ext3fs code uses 1231 * this for freeing and allocating space, we have to make sure that we 1232 * do not reuse freed space until the deallocation has been committed, 1233 * since if we overwrote that space we would make the delete 1234 * un-rewindable in case of a crash. 1235 * 1236 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1237 * buffer for parts of non-rewindable operations such as delete 1238 * operations on the bitmaps. The journaling code must keep a copy of 1239 * the buffer's contents prior to the undo_access call until such time 1240 * as we know that the buffer has definitely been committed to disk. 1241 * 1242 * We never need to know which transaction the committed data is part 1243 * of, buffers touched here are guaranteed to be dirtied later and so 1244 * will be committed to a new transaction in due course, at which point 1245 * we can discard the old committed data pointer. 1246 * 1247 * Returns error number or 0 on success. 1248 */ 1249 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1250 { 1251 int err; 1252 struct journal_head *jh; 1253 char *committed_data = NULL; 1254 1255 JBUFFER_TRACE(jh, "entry"); 1256 if (jbd2_write_access_granted(handle, bh, true)) 1257 return 0; 1258 1259 jh = jbd2_journal_add_journal_head(bh); 1260 /* 1261 * Do this first --- it can drop the journal lock, so we want to 1262 * make sure that obtaining the committed_data is done 1263 * atomically wrt. completion of any outstanding commits. 1264 */ 1265 err = do_get_write_access(handle, jh, 1); 1266 if (err) 1267 goto out; 1268 1269 repeat: 1270 if (!jh->b_committed_data) 1271 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1272 GFP_NOFS|__GFP_NOFAIL); 1273 1274 jbd_lock_bh_state(bh); 1275 if (!jh->b_committed_data) { 1276 /* Copy out the current buffer contents into the 1277 * preserved, committed copy. */ 1278 JBUFFER_TRACE(jh, "generate b_committed data"); 1279 if (!committed_data) { 1280 jbd_unlock_bh_state(bh); 1281 goto repeat; 1282 } 1283 1284 jh->b_committed_data = committed_data; 1285 committed_data = NULL; 1286 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1287 } 1288 jbd_unlock_bh_state(bh); 1289 out: 1290 jbd2_journal_put_journal_head(jh); 1291 if (unlikely(committed_data)) 1292 jbd2_free(committed_data, bh->b_size); 1293 return err; 1294 } 1295 1296 /** 1297 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1298 * @bh: buffer to trigger on 1299 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1300 * 1301 * Set any triggers on this journal_head. This is always safe, because 1302 * triggers for a committing buffer will be saved off, and triggers for 1303 * a running transaction will match the buffer in that transaction. 1304 * 1305 * Call with NULL to clear the triggers. 1306 */ 1307 void jbd2_journal_set_triggers(struct buffer_head *bh, 1308 struct jbd2_buffer_trigger_type *type) 1309 { 1310 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1311 1312 if (WARN_ON(!jh)) 1313 return; 1314 jh->b_triggers = type; 1315 jbd2_journal_put_journal_head(jh); 1316 } 1317 1318 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1319 struct jbd2_buffer_trigger_type *triggers) 1320 { 1321 struct buffer_head *bh = jh2bh(jh); 1322 1323 if (!triggers || !triggers->t_frozen) 1324 return; 1325 1326 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1327 } 1328 1329 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1330 struct jbd2_buffer_trigger_type *triggers) 1331 { 1332 if (!triggers || !triggers->t_abort) 1333 return; 1334 1335 triggers->t_abort(triggers, jh2bh(jh)); 1336 } 1337 1338 /** 1339 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1340 * @handle: transaction to add buffer to. 1341 * @bh: buffer to mark 1342 * 1343 * mark dirty metadata which needs to be journaled as part of the current 1344 * transaction. 1345 * 1346 * The buffer must have previously had jbd2_journal_get_write_access() 1347 * called so that it has a valid journal_head attached to the buffer 1348 * head. 1349 * 1350 * The buffer is placed on the transaction's metadata list and is marked 1351 * as belonging to the transaction. 1352 * 1353 * Returns error number or 0 on success. 1354 * 1355 * Special care needs to be taken if the buffer already belongs to the 1356 * current committing transaction (in which case we should have frozen 1357 * data present for that commit). In that case, we don't relink the 1358 * buffer: that only gets done when the old transaction finally 1359 * completes its commit. 1360 */ 1361 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1362 { 1363 transaction_t *transaction = handle->h_transaction; 1364 journal_t *journal; 1365 struct journal_head *jh; 1366 int ret = 0; 1367 1368 if (is_handle_aborted(handle)) 1369 return -EROFS; 1370 if (!buffer_jbd(bh)) { 1371 ret = -EUCLEAN; 1372 goto out; 1373 } 1374 /* 1375 * We don't grab jh reference here since the buffer must be part 1376 * of the running transaction. 1377 */ 1378 jh = bh2jh(bh); 1379 /* 1380 * This and the following assertions are unreliable since we may see jh 1381 * in inconsistent state unless we grab bh_state lock. But this is 1382 * crucial to catch bugs so let's do a reliable check until the 1383 * lockless handling is fully proven. 1384 */ 1385 if (jh->b_transaction != transaction && 1386 jh->b_next_transaction != transaction) { 1387 jbd_lock_bh_state(bh); 1388 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1389 jh->b_next_transaction == transaction); 1390 jbd_unlock_bh_state(bh); 1391 } 1392 if (jh->b_modified == 1) { 1393 /* If it's in our transaction it must be in BJ_Metadata list. */ 1394 if (jh->b_transaction == transaction && 1395 jh->b_jlist != BJ_Metadata) { 1396 jbd_lock_bh_state(bh); 1397 if (jh->b_transaction == transaction && 1398 jh->b_jlist != BJ_Metadata) 1399 pr_err("JBD2: assertion failure: h_type=%u " 1400 "h_line_no=%u block_no=%llu jlist=%u\n", 1401 handle->h_type, handle->h_line_no, 1402 (unsigned long long) bh->b_blocknr, 1403 jh->b_jlist); 1404 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1405 jh->b_jlist == BJ_Metadata); 1406 jbd_unlock_bh_state(bh); 1407 } 1408 goto out; 1409 } 1410 1411 journal = transaction->t_journal; 1412 jbd_debug(5, "journal_head %p\n", jh); 1413 JBUFFER_TRACE(jh, "entry"); 1414 1415 jbd_lock_bh_state(bh); 1416 1417 if (jh->b_modified == 0) { 1418 /* 1419 * This buffer's got modified and becoming part 1420 * of the transaction. This needs to be done 1421 * once a transaction -bzzz 1422 */ 1423 if (handle->h_buffer_credits <= 0) { 1424 ret = -ENOSPC; 1425 goto out_unlock_bh; 1426 } 1427 jh->b_modified = 1; 1428 handle->h_buffer_credits--; 1429 } 1430 1431 /* 1432 * fastpath, to avoid expensive locking. If this buffer is already 1433 * on the running transaction's metadata list there is nothing to do. 1434 * Nobody can take it off again because there is a handle open. 1435 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1436 * result in this test being false, so we go in and take the locks. 1437 */ 1438 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1439 JBUFFER_TRACE(jh, "fastpath"); 1440 if (unlikely(jh->b_transaction != 1441 journal->j_running_transaction)) { 1442 printk(KERN_ERR "JBD2: %s: " 1443 "jh->b_transaction (%llu, %p, %u) != " 1444 "journal->j_running_transaction (%p, %u)\n", 1445 journal->j_devname, 1446 (unsigned long long) bh->b_blocknr, 1447 jh->b_transaction, 1448 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1449 journal->j_running_transaction, 1450 journal->j_running_transaction ? 1451 journal->j_running_transaction->t_tid : 0); 1452 ret = -EINVAL; 1453 } 1454 goto out_unlock_bh; 1455 } 1456 1457 set_buffer_jbddirty(bh); 1458 1459 /* 1460 * Metadata already on the current transaction list doesn't 1461 * need to be filed. Metadata on another transaction's list must 1462 * be committing, and will be refiled once the commit completes: 1463 * leave it alone for now. 1464 */ 1465 if (jh->b_transaction != transaction) { 1466 JBUFFER_TRACE(jh, "already on other transaction"); 1467 if (unlikely(((jh->b_transaction != 1468 journal->j_committing_transaction)) || 1469 (jh->b_next_transaction != transaction))) { 1470 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1471 "bad jh for block %llu: " 1472 "transaction (%p, %u), " 1473 "jh->b_transaction (%p, %u), " 1474 "jh->b_next_transaction (%p, %u), jlist %u\n", 1475 journal->j_devname, 1476 (unsigned long long) bh->b_blocknr, 1477 transaction, transaction->t_tid, 1478 jh->b_transaction, 1479 jh->b_transaction ? 1480 jh->b_transaction->t_tid : 0, 1481 jh->b_next_transaction, 1482 jh->b_next_transaction ? 1483 jh->b_next_transaction->t_tid : 0, 1484 jh->b_jlist); 1485 WARN_ON(1); 1486 ret = -EINVAL; 1487 } 1488 /* And this case is illegal: we can't reuse another 1489 * transaction's data buffer, ever. */ 1490 goto out_unlock_bh; 1491 } 1492 1493 /* That test should have eliminated the following case: */ 1494 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1495 1496 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1497 spin_lock(&journal->j_list_lock); 1498 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1499 spin_unlock(&journal->j_list_lock); 1500 out_unlock_bh: 1501 jbd_unlock_bh_state(bh); 1502 out: 1503 JBUFFER_TRACE(jh, "exit"); 1504 return ret; 1505 } 1506 1507 /** 1508 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1509 * @handle: transaction handle 1510 * @bh: bh to 'forget' 1511 * 1512 * We can only do the bforget if there are no commits pending against the 1513 * buffer. If the buffer is dirty in the current running transaction we 1514 * can safely unlink it. 1515 * 1516 * bh may not be a journalled buffer at all - it may be a non-JBD 1517 * buffer which came off the hashtable. Check for this. 1518 * 1519 * Decrements bh->b_count by one. 1520 * 1521 * Allow this call even if the handle has aborted --- it may be part of 1522 * the caller's cleanup after an abort. 1523 */ 1524 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1525 { 1526 transaction_t *transaction = handle->h_transaction; 1527 journal_t *journal; 1528 struct journal_head *jh; 1529 int drop_reserve = 0; 1530 int err = 0; 1531 int was_modified = 0; 1532 1533 if (is_handle_aborted(handle)) 1534 return -EROFS; 1535 journal = transaction->t_journal; 1536 1537 BUFFER_TRACE(bh, "entry"); 1538 1539 jbd_lock_bh_state(bh); 1540 1541 if (!buffer_jbd(bh)) 1542 goto not_jbd; 1543 jh = bh2jh(bh); 1544 1545 /* Critical error: attempting to delete a bitmap buffer, maybe? 1546 * Don't do any jbd operations, and return an error. */ 1547 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1548 "inconsistent data on disk")) { 1549 err = -EIO; 1550 goto not_jbd; 1551 } 1552 1553 /* keep track of whether or not this transaction modified us */ 1554 was_modified = jh->b_modified; 1555 1556 /* 1557 * The buffer's going from the transaction, we must drop 1558 * all references -bzzz 1559 */ 1560 jh->b_modified = 0; 1561 1562 if (jh->b_transaction == transaction) { 1563 J_ASSERT_JH(jh, !jh->b_frozen_data); 1564 1565 /* If we are forgetting a buffer which is already part 1566 * of this transaction, then we can just drop it from 1567 * the transaction immediately. */ 1568 clear_buffer_dirty(bh); 1569 clear_buffer_jbddirty(bh); 1570 1571 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1572 1573 /* 1574 * we only want to drop a reference if this transaction 1575 * modified the buffer 1576 */ 1577 if (was_modified) 1578 drop_reserve = 1; 1579 1580 /* 1581 * We are no longer going to journal this buffer. 1582 * However, the commit of this transaction is still 1583 * important to the buffer: the delete that we are now 1584 * processing might obsolete an old log entry, so by 1585 * committing, we can satisfy the buffer's checkpoint. 1586 * 1587 * So, if we have a checkpoint on the buffer, we should 1588 * now refile the buffer on our BJ_Forget list so that 1589 * we know to remove the checkpoint after we commit. 1590 */ 1591 1592 spin_lock(&journal->j_list_lock); 1593 if (jh->b_cp_transaction) { 1594 __jbd2_journal_temp_unlink_buffer(jh); 1595 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1596 } else { 1597 __jbd2_journal_unfile_buffer(jh); 1598 if (!buffer_jbd(bh)) { 1599 spin_unlock(&journal->j_list_lock); 1600 jbd_unlock_bh_state(bh); 1601 __bforget(bh); 1602 goto drop; 1603 } 1604 } 1605 spin_unlock(&journal->j_list_lock); 1606 } else if (jh->b_transaction) { 1607 J_ASSERT_JH(jh, (jh->b_transaction == 1608 journal->j_committing_transaction)); 1609 /* However, if the buffer is still owned by a prior 1610 * (committing) transaction, we can't drop it yet... */ 1611 JBUFFER_TRACE(jh, "belongs to older transaction"); 1612 /* ... but we CAN drop it from the new transaction if we 1613 * have also modified it since the original commit. */ 1614 1615 if (jh->b_next_transaction) { 1616 J_ASSERT(jh->b_next_transaction == transaction); 1617 spin_lock(&journal->j_list_lock); 1618 jh->b_next_transaction = NULL; 1619 spin_unlock(&journal->j_list_lock); 1620 1621 /* 1622 * only drop a reference if this transaction modified 1623 * the buffer 1624 */ 1625 if (was_modified) 1626 drop_reserve = 1; 1627 } 1628 } 1629 1630 not_jbd: 1631 jbd_unlock_bh_state(bh); 1632 __brelse(bh); 1633 drop: 1634 if (drop_reserve) { 1635 /* no need to reserve log space for this block -bzzz */ 1636 handle->h_buffer_credits++; 1637 } 1638 return err; 1639 } 1640 1641 /** 1642 * int jbd2_journal_stop() - complete a transaction 1643 * @handle: transaction to complete. 1644 * 1645 * All done for a particular handle. 1646 * 1647 * There is not much action needed here. We just return any remaining 1648 * buffer credits to the transaction and remove the handle. The only 1649 * complication is that we need to start a commit operation if the 1650 * filesystem is marked for synchronous update. 1651 * 1652 * jbd2_journal_stop itself will not usually return an error, but it may 1653 * do so in unusual circumstances. In particular, expect it to 1654 * return -EIO if a jbd2_journal_abort has been executed since the 1655 * transaction began. 1656 */ 1657 int jbd2_journal_stop(handle_t *handle) 1658 { 1659 transaction_t *transaction = handle->h_transaction; 1660 journal_t *journal; 1661 int err = 0, wait_for_commit = 0; 1662 tid_t tid; 1663 pid_t pid; 1664 1665 if (!transaction) { 1666 /* 1667 * Handle is already detached from the transaction so 1668 * there is nothing to do other than decrease a refcount, 1669 * or free the handle if refcount drops to zero 1670 */ 1671 if (--handle->h_ref > 0) { 1672 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1673 handle->h_ref); 1674 return err; 1675 } else { 1676 if (handle->h_rsv_handle) 1677 jbd2_free_handle(handle->h_rsv_handle); 1678 goto free_and_exit; 1679 } 1680 } 1681 journal = transaction->t_journal; 1682 1683 J_ASSERT(journal_current_handle() == handle); 1684 1685 if (is_handle_aborted(handle)) 1686 err = -EIO; 1687 else 1688 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1689 1690 if (--handle->h_ref > 0) { 1691 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1692 handle->h_ref); 1693 return err; 1694 } 1695 1696 jbd_debug(4, "Handle %p going down\n", handle); 1697 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1698 transaction->t_tid, 1699 handle->h_type, handle->h_line_no, 1700 jiffies - handle->h_start_jiffies, 1701 handle->h_sync, handle->h_requested_credits, 1702 (handle->h_requested_credits - 1703 handle->h_buffer_credits)); 1704 1705 /* 1706 * Implement synchronous transaction batching. If the handle 1707 * was synchronous, don't force a commit immediately. Let's 1708 * yield and let another thread piggyback onto this 1709 * transaction. Keep doing that while new threads continue to 1710 * arrive. It doesn't cost much - we're about to run a commit 1711 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1712 * operations by 30x or more... 1713 * 1714 * We try and optimize the sleep time against what the 1715 * underlying disk can do, instead of having a static sleep 1716 * time. This is useful for the case where our storage is so 1717 * fast that it is more optimal to go ahead and force a flush 1718 * and wait for the transaction to be committed than it is to 1719 * wait for an arbitrary amount of time for new writers to 1720 * join the transaction. We achieve this by measuring how 1721 * long it takes to commit a transaction, and compare it with 1722 * how long this transaction has been running, and if run time 1723 * < commit time then we sleep for the delta and commit. This 1724 * greatly helps super fast disks that would see slowdowns as 1725 * more threads started doing fsyncs. 1726 * 1727 * But don't do this if this process was the most recent one 1728 * to perform a synchronous write. We do this to detect the 1729 * case where a single process is doing a stream of sync 1730 * writes. No point in waiting for joiners in that case. 1731 * 1732 * Setting max_batch_time to 0 disables this completely. 1733 */ 1734 pid = current->pid; 1735 if (handle->h_sync && journal->j_last_sync_writer != pid && 1736 journal->j_max_batch_time) { 1737 u64 commit_time, trans_time; 1738 1739 journal->j_last_sync_writer = pid; 1740 1741 read_lock(&journal->j_state_lock); 1742 commit_time = journal->j_average_commit_time; 1743 read_unlock(&journal->j_state_lock); 1744 1745 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1746 transaction->t_start_time)); 1747 1748 commit_time = max_t(u64, commit_time, 1749 1000*journal->j_min_batch_time); 1750 commit_time = min_t(u64, commit_time, 1751 1000*journal->j_max_batch_time); 1752 1753 if (trans_time < commit_time) { 1754 ktime_t expires = ktime_add_ns(ktime_get(), 1755 commit_time); 1756 set_current_state(TASK_UNINTERRUPTIBLE); 1757 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1758 } 1759 } 1760 1761 if (handle->h_sync) 1762 transaction->t_synchronous_commit = 1; 1763 current->journal_info = NULL; 1764 atomic_sub(handle->h_buffer_credits, 1765 &transaction->t_outstanding_credits); 1766 1767 /* 1768 * If the handle is marked SYNC, we need to set another commit 1769 * going! We also want to force a commit if the current 1770 * transaction is occupying too much of the log, or if the 1771 * transaction is too old now. 1772 */ 1773 if (handle->h_sync || 1774 (atomic_read(&transaction->t_outstanding_credits) > 1775 journal->j_max_transaction_buffers) || 1776 time_after_eq(jiffies, transaction->t_expires)) { 1777 /* Do this even for aborted journals: an abort still 1778 * completes the commit thread, it just doesn't write 1779 * anything to disk. */ 1780 1781 jbd_debug(2, "transaction too old, requesting commit for " 1782 "handle %p\n", handle); 1783 /* This is non-blocking */ 1784 jbd2_log_start_commit(journal, transaction->t_tid); 1785 1786 /* 1787 * Special case: JBD2_SYNC synchronous updates require us 1788 * to wait for the commit to complete. 1789 */ 1790 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1791 wait_for_commit = 1; 1792 } 1793 1794 /* 1795 * Once we drop t_updates, if it goes to zero the transaction 1796 * could start committing on us and eventually disappear. So 1797 * once we do this, we must not dereference transaction 1798 * pointer again. 1799 */ 1800 tid = transaction->t_tid; 1801 if (atomic_dec_and_test(&transaction->t_updates)) { 1802 wake_up(&journal->j_wait_updates); 1803 if (journal->j_barrier_count) 1804 wake_up(&journal->j_wait_transaction_locked); 1805 } 1806 1807 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1808 1809 if (wait_for_commit) 1810 err = jbd2_log_wait_commit(journal, tid); 1811 1812 if (handle->h_rsv_handle) 1813 jbd2_journal_free_reserved(handle->h_rsv_handle); 1814 free_and_exit: 1815 /* 1816 * Scope of the GFP_NOFS context is over here and so we can restore the 1817 * original alloc context. 1818 */ 1819 memalloc_nofs_restore(handle->saved_alloc_context); 1820 jbd2_free_handle(handle); 1821 return err; 1822 } 1823 1824 /* 1825 * 1826 * List management code snippets: various functions for manipulating the 1827 * transaction buffer lists. 1828 * 1829 */ 1830 1831 /* 1832 * Append a buffer to a transaction list, given the transaction's list head 1833 * pointer. 1834 * 1835 * j_list_lock is held. 1836 * 1837 * jbd_lock_bh_state(jh2bh(jh)) is held. 1838 */ 1839 1840 static inline void 1841 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1842 { 1843 if (!*list) { 1844 jh->b_tnext = jh->b_tprev = jh; 1845 *list = jh; 1846 } else { 1847 /* Insert at the tail of the list to preserve order */ 1848 struct journal_head *first = *list, *last = first->b_tprev; 1849 jh->b_tprev = last; 1850 jh->b_tnext = first; 1851 last->b_tnext = first->b_tprev = jh; 1852 } 1853 } 1854 1855 /* 1856 * Remove a buffer from a transaction list, given the transaction's list 1857 * head pointer. 1858 * 1859 * Called with j_list_lock held, and the journal may not be locked. 1860 * 1861 * jbd_lock_bh_state(jh2bh(jh)) is held. 1862 */ 1863 1864 static inline void 1865 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1866 { 1867 if (*list == jh) { 1868 *list = jh->b_tnext; 1869 if (*list == jh) 1870 *list = NULL; 1871 } 1872 jh->b_tprev->b_tnext = jh->b_tnext; 1873 jh->b_tnext->b_tprev = jh->b_tprev; 1874 } 1875 1876 /* 1877 * Remove a buffer from the appropriate transaction list. 1878 * 1879 * Note that this function can *change* the value of 1880 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1881 * t_reserved_list. If the caller is holding onto a copy of one of these 1882 * pointers, it could go bad. Generally the caller needs to re-read the 1883 * pointer from the transaction_t. 1884 * 1885 * Called under j_list_lock. 1886 */ 1887 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1888 { 1889 struct journal_head **list = NULL; 1890 transaction_t *transaction; 1891 struct buffer_head *bh = jh2bh(jh); 1892 1893 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1894 transaction = jh->b_transaction; 1895 if (transaction) 1896 assert_spin_locked(&transaction->t_journal->j_list_lock); 1897 1898 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1899 if (jh->b_jlist != BJ_None) 1900 J_ASSERT_JH(jh, transaction != NULL); 1901 1902 switch (jh->b_jlist) { 1903 case BJ_None: 1904 return; 1905 case BJ_Metadata: 1906 transaction->t_nr_buffers--; 1907 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1908 list = &transaction->t_buffers; 1909 break; 1910 case BJ_Forget: 1911 list = &transaction->t_forget; 1912 break; 1913 case BJ_Shadow: 1914 list = &transaction->t_shadow_list; 1915 break; 1916 case BJ_Reserved: 1917 list = &transaction->t_reserved_list; 1918 break; 1919 } 1920 1921 __blist_del_buffer(list, jh); 1922 jh->b_jlist = BJ_None; 1923 if (transaction && is_journal_aborted(transaction->t_journal)) 1924 clear_buffer_jbddirty(bh); 1925 else if (test_clear_buffer_jbddirty(bh)) 1926 mark_buffer_dirty(bh); /* Expose it to the VM */ 1927 } 1928 1929 /* 1930 * Remove buffer from all transactions. 1931 * 1932 * Called with bh_state lock and j_list_lock 1933 * 1934 * jh and bh may be already freed when this function returns. 1935 */ 1936 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1937 { 1938 __jbd2_journal_temp_unlink_buffer(jh); 1939 jh->b_transaction = NULL; 1940 jbd2_journal_put_journal_head(jh); 1941 } 1942 1943 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1944 { 1945 struct buffer_head *bh = jh2bh(jh); 1946 1947 /* Get reference so that buffer cannot be freed before we unlock it */ 1948 get_bh(bh); 1949 jbd_lock_bh_state(bh); 1950 spin_lock(&journal->j_list_lock); 1951 __jbd2_journal_unfile_buffer(jh); 1952 spin_unlock(&journal->j_list_lock); 1953 jbd_unlock_bh_state(bh); 1954 __brelse(bh); 1955 } 1956 1957 /* 1958 * Called from jbd2_journal_try_to_free_buffers(). 1959 * 1960 * Called under jbd_lock_bh_state(bh) 1961 */ 1962 static void 1963 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1964 { 1965 struct journal_head *jh; 1966 1967 jh = bh2jh(bh); 1968 1969 if (buffer_locked(bh) || buffer_dirty(bh)) 1970 goto out; 1971 1972 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1973 goto out; 1974 1975 spin_lock(&journal->j_list_lock); 1976 if (jh->b_cp_transaction != NULL) { 1977 /* written-back checkpointed metadata buffer */ 1978 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1979 __jbd2_journal_remove_checkpoint(jh); 1980 } 1981 spin_unlock(&journal->j_list_lock); 1982 out: 1983 return; 1984 } 1985 1986 /** 1987 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1988 * @journal: journal for operation 1989 * @page: to try and free 1990 * @gfp_mask: we use the mask to detect how hard should we try to release 1991 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1992 * code to release the buffers. 1993 * 1994 * 1995 * For all the buffers on this page, 1996 * if they are fully written out ordered data, move them onto BUF_CLEAN 1997 * so try_to_free_buffers() can reap them. 1998 * 1999 * This function returns non-zero if we wish try_to_free_buffers() 2000 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2001 * We also do it if the page has locked or dirty buffers and the caller wants 2002 * us to perform sync or async writeout. 2003 * 2004 * This complicates JBD locking somewhat. We aren't protected by the 2005 * BKL here. We wish to remove the buffer from its committing or 2006 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2007 * 2008 * This may *change* the value of transaction_t->t_datalist, so anyone 2009 * who looks at t_datalist needs to lock against this function. 2010 * 2011 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2012 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2013 * will come out of the lock with the buffer dirty, which makes it 2014 * ineligible for release here. 2015 * 2016 * Who else is affected by this? hmm... Really the only contender 2017 * is do_get_write_access() - it could be looking at the buffer while 2018 * journal_try_to_free_buffer() is changing its state. But that 2019 * cannot happen because we never reallocate freed data as metadata 2020 * while the data is part of a transaction. Yes? 2021 * 2022 * Return 0 on failure, 1 on success 2023 */ 2024 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2025 struct page *page, gfp_t gfp_mask) 2026 { 2027 struct buffer_head *head; 2028 struct buffer_head *bh; 2029 int ret = 0; 2030 2031 J_ASSERT(PageLocked(page)); 2032 2033 head = page_buffers(page); 2034 bh = head; 2035 do { 2036 struct journal_head *jh; 2037 2038 /* 2039 * We take our own ref against the journal_head here to avoid 2040 * having to add tons of locking around each instance of 2041 * jbd2_journal_put_journal_head(). 2042 */ 2043 jh = jbd2_journal_grab_journal_head(bh); 2044 if (!jh) 2045 continue; 2046 2047 jbd_lock_bh_state(bh); 2048 __journal_try_to_free_buffer(journal, bh); 2049 jbd2_journal_put_journal_head(jh); 2050 jbd_unlock_bh_state(bh); 2051 if (buffer_jbd(bh)) 2052 goto busy; 2053 } while ((bh = bh->b_this_page) != head); 2054 2055 ret = try_to_free_buffers(page); 2056 2057 busy: 2058 return ret; 2059 } 2060 2061 /* 2062 * This buffer is no longer needed. If it is on an older transaction's 2063 * checkpoint list we need to record it on this transaction's forget list 2064 * to pin this buffer (and hence its checkpointing transaction) down until 2065 * this transaction commits. If the buffer isn't on a checkpoint list, we 2066 * release it. 2067 * Returns non-zero if JBD no longer has an interest in the buffer. 2068 * 2069 * Called under j_list_lock. 2070 * 2071 * Called under jbd_lock_bh_state(bh). 2072 */ 2073 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2074 { 2075 int may_free = 1; 2076 struct buffer_head *bh = jh2bh(jh); 2077 2078 if (jh->b_cp_transaction) { 2079 JBUFFER_TRACE(jh, "on running+cp transaction"); 2080 __jbd2_journal_temp_unlink_buffer(jh); 2081 /* 2082 * We don't want to write the buffer anymore, clear the 2083 * bit so that we don't confuse checks in 2084 * __journal_file_buffer 2085 */ 2086 clear_buffer_dirty(bh); 2087 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2088 may_free = 0; 2089 } else { 2090 JBUFFER_TRACE(jh, "on running transaction"); 2091 __jbd2_journal_unfile_buffer(jh); 2092 } 2093 return may_free; 2094 } 2095 2096 /* 2097 * jbd2_journal_invalidatepage 2098 * 2099 * This code is tricky. It has a number of cases to deal with. 2100 * 2101 * There are two invariants which this code relies on: 2102 * 2103 * i_size must be updated on disk before we start calling invalidatepage on the 2104 * data. 2105 * 2106 * This is done in ext3 by defining an ext3_setattr method which 2107 * updates i_size before truncate gets going. By maintaining this 2108 * invariant, we can be sure that it is safe to throw away any buffers 2109 * attached to the current transaction: once the transaction commits, 2110 * we know that the data will not be needed. 2111 * 2112 * Note however that we can *not* throw away data belonging to the 2113 * previous, committing transaction! 2114 * 2115 * Any disk blocks which *are* part of the previous, committing 2116 * transaction (and which therefore cannot be discarded immediately) are 2117 * not going to be reused in the new running transaction 2118 * 2119 * The bitmap committed_data images guarantee this: any block which is 2120 * allocated in one transaction and removed in the next will be marked 2121 * as in-use in the committed_data bitmap, so cannot be reused until 2122 * the next transaction to delete the block commits. This means that 2123 * leaving committing buffers dirty is quite safe: the disk blocks 2124 * cannot be reallocated to a different file and so buffer aliasing is 2125 * not possible. 2126 * 2127 * 2128 * The above applies mainly to ordered data mode. In writeback mode we 2129 * don't make guarantees about the order in which data hits disk --- in 2130 * particular we don't guarantee that new dirty data is flushed before 2131 * transaction commit --- so it is always safe just to discard data 2132 * immediately in that mode. --sct 2133 */ 2134 2135 /* 2136 * The journal_unmap_buffer helper function returns zero if the buffer 2137 * concerned remains pinned as an anonymous buffer belonging to an older 2138 * transaction. 2139 * 2140 * We're outside-transaction here. Either or both of j_running_transaction 2141 * and j_committing_transaction may be NULL. 2142 */ 2143 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2144 int partial_page) 2145 { 2146 transaction_t *transaction; 2147 struct journal_head *jh; 2148 int may_free = 1; 2149 2150 BUFFER_TRACE(bh, "entry"); 2151 2152 /* 2153 * It is safe to proceed here without the j_list_lock because the 2154 * buffers cannot be stolen by try_to_free_buffers as long as we are 2155 * holding the page lock. --sct 2156 */ 2157 2158 if (!buffer_jbd(bh)) 2159 goto zap_buffer_unlocked; 2160 2161 /* OK, we have data buffer in journaled mode */ 2162 write_lock(&journal->j_state_lock); 2163 jbd_lock_bh_state(bh); 2164 spin_lock(&journal->j_list_lock); 2165 2166 jh = jbd2_journal_grab_journal_head(bh); 2167 if (!jh) 2168 goto zap_buffer_no_jh; 2169 2170 /* 2171 * We cannot remove the buffer from checkpoint lists until the 2172 * transaction adding inode to orphan list (let's call it T) 2173 * is committed. Otherwise if the transaction changing the 2174 * buffer would be cleaned from the journal before T is 2175 * committed, a crash will cause that the correct contents of 2176 * the buffer will be lost. On the other hand we have to 2177 * clear the buffer dirty bit at latest at the moment when the 2178 * transaction marking the buffer as freed in the filesystem 2179 * structures is committed because from that moment on the 2180 * block can be reallocated and used by a different page. 2181 * Since the block hasn't been freed yet but the inode has 2182 * already been added to orphan list, it is safe for us to add 2183 * the buffer to BJ_Forget list of the newest transaction. 2184 * 2185 * Also we have to clear buffer_mapped flag of a truncated buffer 2186 * because the buffer_head may be attached to the page straddling 2187 * i_size (can happen only when blocksize < pagesize) and thus the 2188 * buffer_head can be reused when the file is extended again. So we end 2189 * up keeping around invalidated buffers attached to transactions' 2190 * BJ_Forget list just to stop checkpointing code from cleaning up 2191 * the transaction this buffer was modified in. 2192 */ 2193 transaction = jh->b_transaction; 2194 if (transaction == NULL) { 2195 /* First case: not on any transaction. If it 2196 * has no checkpoint link, then we can zap it: 2197 * it's a writeback-mode buffer so we don't care 2198 * if it hits disk safely. */ 2199 if (!jh->b_cp_transaction) { 2200 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2201 goto zap_buffer; 2202 } 2203 2204 if (!buffer_dirty(bh)) { 2205 /* bdflush has written it. We can drop it now */ 2206 __jbd2_journal_remove_checkpoint(jh); 2207 goto zap_buffer; 2208 } 2209 2210 /* OK, it must be in the journal but still not 2211 * written fully to disk: it's metadata or 2212 * journaled data... */ 2213 2214 if (journal->j_running_transaction) { 2215 /* ... and once the current transaction has 2216 * committed, the buffer won't be needed any 2217 * longer. */ 2218 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2219 may_free = __dispose_buffer(jh, 2220 journal->j_running_transaction); 2221 goto zap_buffer; 2222 } else { 2223 /* There is no currently-running transaction. So the 2224 * orphan record which we wrote for this file must have 2225 * passed into commit. We must attach this buffer to 2226 * the committing transaction, if it exists. */ 2227 if (journal->j_committing_transaction) { 2228 JBUFFER_TRACE(jh, "give to committing trans"); 2229 may_free = __dispose_buffer(jh, 2230 journal->j_committing_transaction); 2231 goto zap_buffer; 2232 } else { 2233 /* The orphan record's transaction has 2234 * committed. We can cleanse this buffer */ 2235 clear_buffer_jbddirty(bh); 2236 __jbd2_journal_remove_checkpoint(jh); 2237 goto zap_buffer; 2238 } 2239 } 2240 } else if (transaction == journal->j_committing_transaction) { 2241 JBUFFER_TRACE(jh, "on committing transaction"); 2242 /* 2243 * The buffer is committing, we simply cannot touch 2244 * it. If the page is straddling i_size we have to wait 2245 * for commit and try again. 2246 */ 2247 if (partial_page) { 2248 jbd2_journal_put_journal_head(jh); 2249 spin_unlock(&journal->j_list_lock); 2250 jbd_unlock_bh_state(bh); 2251 write_unlock(&journal->j_state_lock); 2252 return -EBUSY; 2253 } 2254 /* 2255 * OK, buffer won't be reachable after truncate. We just set 2256 * j_next_transaction to the running transaction (if there is 2257 * one) and mark buffer as freed so that commit code knows it 2258 * should clear dirty bits when it is done with the buffer. 2259 */ 2260 set_buffer_freed(bh); 2261 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2262 jh->b_next_transaction = journal->j_running_transaction; 2263 jbd2_journal_put_journal_head(jh); 2264 spin_unlock(&journal->j_list_lock); 2265 jbd_unlock_bh_state(bh); 2266 write_unlock(&journal->j_state_lock); 2267 return 0; 2268 } else { 2269 /* Good, the buffer belongs to the running transaction. 2270 * We are writing our own transaction's data, not any 2271 * previous one's, so it is safe to throw it away 2272 * (remember that we expect the filesystem to have set 2273 * i_size already for this truncate so recovery will not 2274 * expose the disk blocks we are discarding here.) */ 2275 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2276 JBUFFER_TRACE(jh, "on running transaction"); 2277 may_free = __dispose_buffer(jh, transaction); 2278 } 2279 2280 zap_buffer: 2281 /* 2282 * This is tricky. Although the buffer is truncated, it may be reused 2283 * if blocksize < pagesize and it is attached to the page straddling 2284 * EOF. Since the buffer might have been added to BJ_Forget list of the 2285 * running transaction, journal_get_write_access() won't clear 2286 * b_modified and credit accounting gets confused. So clear b_modified 2287 * here. 2288 */ 2289 jh->b_modified = 0; 2290 jbd2_journal_put_journal_head(jh); 2291 zap_buffer_no_jh: 2292 spin_unlock(&journal->j_list_lock); 2293 jbd_unlock_bh_state(bh); 2294 write_unlock(&journal->j_state_lock); 2295 zap_buffer_unlocked: 2296 clear_buffer_dirty(bh); 2297 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2298 clear_buffer_mapped(bh); 2299 clear_buffer_req(bh); 2300 clear_buffer_new(bh); 2301 clear_buffer_delay(bh); 2302 clear_buffer_unwritten(bh); 2303 bh->b_bdev = NULL; 2304 return may_free; 2305 } 2306 2307 /** 2308 * void jbd2_journal_invalidatepage() 2309 * @journal: journal to use for flush... 2310 * @page: page to flush 2311 * @offset: start of the range to invalidate 2312 * @length: length of the range to invalidate 2313 * 2314 * Reap page buffers containing data after in the specified range in page. 2315 * Can return -EBUSY if buffers are part of the committing transaction and 2316 * the page is straddling i_size. Caller then has to wait for current commit 2317 * and try again. 2318 */ 2319 int jbd2_journal_invalidatepage(journal_t *journal, 2320 struct page *page, 2321 unsigned int offset, 2322 unsigned int length) 2323 { 2324 struct buffer_head *head, *bh, *next; 2325 unsigned int stop = offset + length; 2326 unsigned int curr_off = 0; 2327 int partial_page = (offset || length < PAGE_SIZE); 2328 int may_free = 1; 2329 int ret = 0; 2330 2331 if (!PageLocked(page)) 2332 BUG(); 2333 if (!page_has_buffers(page)) 2334 return 0; 2335 2336 BUG_ON(stop > PAGE_SIZE || stop < length); 2337 2338 /* We will potentially be playing with lists other than just the 2339 * data lists (especially for journaled data mode), so be 2340 * cautious in our locking. */ 2341 2342 head = bh = page_buffers(page); 2343 do { 2344 unsigned int next_off = curr_off + bh->b_size; 2345 next = bh->b_this_page; 2346 2347 if (next_off > stop) 2348 return 0; 2349 2350 if (offset <= curr_off) { 2351 /* This block is wholly outside the truncation point */ 2352 lock_buffer(bh); 2353 ret = journal_unmap_buffer(journal, bh, partial_page); 2354 unlock_buffer(bh); 2355 if (ret < 0) 2356 return ret; 2357 may_free &= ret; 2358 } 2359 curr_off = next_off; 2360 bh = next; 2361 2362 } while (bh != head); 2363 2364 if (!partial_page) { 2365 if (may_free && try_to_free_buffers(page)) 2366 J_ASSERT(!page_has_buffers(page)); 2367 } 2368 return 0; 2369 } 2370 2371 /* 2372 * File a buffer on the given transaction list. 2373 */ 2374 void __jbd2_journal_file_buffer(struct journal_head *jh, 2375 transaction_t *transaction, int jlist) 2376 { 2377 struct journal_head **list = NULL; 2378 int was_dirty = 0; 2379 struct buffer_head *bh = jh2bh(jh); 2380 2381 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2382 assert_spin_locked(&transaction->t_journal->j_list_lock); 2383 2384 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2385 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2386 jh->b_transaction == NULL); 2387 2388 if (jh->b_transaction && jh->b_jlist == jlist) 2389 return; 2390 2391 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2392 jlist == BJ_Shadow || jlist == BJ_Forget) { 2393 /* 2394 * For metadata buffers, we track dirty bit in buffer_jbddirty 2395 * instead of buffer_dirty. We should not see a dirty bit set 2396 * here because we clear it in do_get_write_access but e.g. 2397 * tune2fs can modify the sb and set the dirty bit at any time 2398 * so we try to gracefully handle that. 2399 */ 2400 if (buffer_dirty(bh)) 2401 warn_dirty_buffer(bh); 2402 if (test_clear_buffer_dirty(bh) || 2403 test_clear_buffer_jbddirty(bh)) 2404 was_dirty = 1; 2405 } 2406 2407 if (jh->b_transaction) 2408 __jbd2_journal_temp_unlink_buffer(jh); 2409 else 2410 jbd2_journal_grab_journal_head(bh); 2411 jh->b_transaction = transaction; 2412 2413 switch (jlist) { 2414 case BJ_None: 2415 J_ASSERT_JH(jh, !jh->b_committed_data); 2416 J_ASSERT_JH(jh, !jh->b_frozen_data); 2417 return; 2418 case BJ_Metadata: 2419 transaction->t_nr_buffers++; 2420 list = &transaction->t_buffers; 2421 break; 2422 case BJ_Forget: 2423 list = &transaction->t_forget; 2424 break; 2425 case BJ_Shadow: 2426 list = &transaction->t_shadow_list; 2427 break; 2428 case BJ_Reserved: 2429 list = &transaction->t_reserved_list; 2430 break; 2431 } 2432 2433 __blist_add_buffer(list, jh); 2434 jh->b_jlist = jlist; 2435 2436 if (was_dirty) 2437 set_buffer_jbddirty(bh); 2438 } 2439 2440 void jbd2_journal_file_buffer(struct journal_head *jh, 2441 transaction_t *transaction, int jlist) 2442 { 2443 jbd_lock_bh_state(jh2bh(jh)); 2444 spin_lock(&transaction->t_journal->j_list_lock); 2445 __jbd2_journal_file_buffer(jh, transaction, jlist); 2446 spin_unlock(&transaction->t_journal->j_list_lock); 2447 jbd_unlock_bh_state(jh2bh(jh)); 2448 } 2449 2450 /* 2451 * Remove a buffer from its current buffer list in preparation for 2452 * dropping it from its current transaction entirely. If the buffer has 2453 * already started to be used by a subsequent transaction, refile the 2454 * buffer on that transaction's metadata list. 2455 * 2456 * Called under j_list_lock 2457 * Called under jbd_lock_bh_state(jh2bh(jh)) 2458 * 2459 * jh and bh may be already free when this function returns 2460 */ 2461 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2462 { 2463 int was_dirty, jlist; 2464 struct buffer_head *bh = jh2bh(jh); 2465 2466 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2467 if (jh->b_transaction) 2468 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2469 2470 /* If the buffer is now unused, just drop it. */ 2471 if (jh->b_next_transaction == NULL) { 2472 __jbd2_journal_unfile_buffer(jh); 2473 return; 2474 } 2475 2476 /* 2477 * It has been modified by a later transaction: add it to the new 2478 * transaction's metadata list. 2479 */ 2480 2481 was_dirty = test_clear_buffer_jbddirty(bh); 2482 __jbd2_journal_temp_unlink_buffer(jh); 2483 /* 2484 * We set b_transaction here because b_next_transaction will inherit 2485 * our jh reference and thus __jbd2_journal_file_buffer() must not 2486 * take a new one. 2487 */ 2488 jh->b_transaction = jh->b_next_transaction; 2489 jh->b_next_transaction = NULL; 2490 if (buffer_freed(bh)) 2491 jlist = BJ_Forget; 2492 else if (jh->b_modified) 2493 jlist = BJ_Metadata; 2494 else 2495 jlist = BJ_Reserved; 2496 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2497 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2498 2499 if (was_dirty) 2500 set_buffer_jbddirty(bh); 2501 } 2502 2503 /* 2504 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2505 * bh reference so that we can safely unlock bh. 2506 * 2507 * The jh and bh may be freed by this call. 2508 */ 2509 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2510 { 2511 struct buffer_head *bh = jh2bh(jh); 2512 2513 /* Get reference so that buffer cannot be freed before we unlock it */ 2514 get_bh(bh); 2515 jbd_lock_bh_state(bh); 2516 spin_lock(&journal->j_list_lock); 2517 __jbd2_journal_refile_buffer(jh); 2518 jbd_unlock_bh_state(bh); 2519 spin_unlock(&journal->j_list_lock); 2520 __brelse(bh); 2521 } 2522 2523 /* 2524 * File inode in the inode list of the handle's transaction 2525 */ 2526 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2527 unsigned long flags) 2528 { 2529 transaction_t *transaction = handle->h_transaction; 2530 journal_t *journal; 2531 2532 if (is_handle_aborted(handle)) 2533 return -EROFS; 2534 journal = transaction->t_journal; 2535 2536 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2537 transaction->t_tid); 2538 2539 /* 2540 * First check whether inode isn't already on the transaction's 2541 * lists without taking the lock. Note that this check is safe 2542 * without the lock as we cannot race with somebody removing inode 2543 * from the transaction. The reason is that we remove inode from the 2544 * transaction only in journal_release_jbd_inode() and when we commit 2545 * the transaction. We are guarded from the first case by holding 2546 * a reference to the inode. We are safe against the second case 2547 * because if jinode->i_transaction == transaction, commit code 2548 * cannot touch the transaction because we hold reference to it, 2549 * and if jinode->i_next_transaction == transaction, commit code 2550 * will only file the inode where we want it. 2551 */ 2552 if ((jinode->i_transaction == transaction || 2553 jinode->i_next_transaction == transaction) && 2554 (jinode->i_flags & flags) == flags) 2555 return 0; 2556 2557 spin_lock(&journal->j_list_lock); 2558 jinode->i_flags |= flags; 2559 /* Is inode already attached where we need it? */ 2560 if (jinode->i_transaction == transaction || 2561 jinode->i_next_transaction == transaction) 2562 goto done; 2563 2564 /* 2565 * We only ever set this variable to 1 so the test is safe. Since 2566 * t_need_data_flush is likely to be set, we do the test to save some 2567 * cacheline bouncing 2568 */ 2569 if (!transaction->t_need_data_flush) 2570 transaction->t_need_data_flush = 1; 2571 /* On some different transaction's list - should be 2572 * the committing one */ 2573 if (jinode->i_transaction) { 2574 J_ASSERT(jinode->i_next_transaction == NULL); 2575 J_ASSERT(jinode->i_transaction == 2576 journal->j_committing_transaction); 2577 jinode->i_next_transaction = transaction; 2578 goto done; 2579 } 2580 /* Not on any transaction list... */ 2581 J_ASSERT(!jinode->i_next_transaction); 2582 jinode->i_transaction = transaction; 2583 list_add(&jinode->i_list, &transaction->t_inode_list); 2584 done: 2585 spin_unlock(&journal->j_list_lock); 2586 2587 return 0; 2588 } 2589 2590 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2591 { 2592 return jbd2_journal_file_inode(handle, jinode, 2593 JI_WRITE_DATA | JI_WAIT_DATA); 2594 } 2595 2596 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2597 { 2598 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2599 } 2600 2601 /* 2602 * File truncate and transaction commit interact with each other in a 2603 * non-trivial way. If a transaction writing data block A is 2604 * committing, we cannot discard the data by truncate until we have 2605 * written them. Otherwise if we crashed after the transaction with 2606 * write has committed but before the transaction with truncate has 2607 * committed, we could see stale data in block A. This function is a 2608 * helper to solve this problem. It starts writeout of the truncated 2609 * part in case it is in the committing transaction. 2610 * 2611 * Filesystem code must call this function when inode is journaled in 2612 * ordered mode before truncation happens and after the inode has been 2613 * placed on orphan list with the new inode size. The second condition 2614 * avoids the race that someone writes new data and we start 2615 * committing the transaction after this function has been called but 2616 * before a transaction for truncate is started (and furthermore it 2617 * allows us to optimize the case where the addition to orphan list 2618 * happens in the same transaction as write --- we don't have to write 2619 * any data in such case). 2620 */ 2621 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2622 struct jbd2_inode *jinode, 2623 loff_t new_size) 2624 { 2625 transaction_t *inode_trans, *commit_trans; 2626 int ret = 0; 2627 2628 /* This is a quick check to avoid locking if not necessary */ 2629 if (!jinode->i_transaction) 2630 goto out; 2631 /* Locks are here just to force reading of recent values, it is 2632 * enough that the transaction was not committing before we started 2633 * a transaction adding the inode to orphan list */ 2634 read_lock(&journal->j_state_lock); 2635 commit_trans = journal->j_committing_transaction; 2636 read_unlock(&journal->j_state_lock); 2637 spin_lock(&journal->j_list_lock); 2638 inode_trans = jinode->i_transaction; 2639 spin_unlock(&journal->j_list_lock); 2640 if (inode_trans == commit_trans) { 2641 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2642 new_size, LLONG_MAX); 2643 if (ret) 2644 jbd2_journal_abort(journal, ret); 2645 } 2646 out: 2647 return ret; 2648 } 2649