xref: /openbmc/linux/fs/jbd2/transaction.c (revision 565485b8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (transaction_cache)
46 		return 0;
47 	return -ENOMEM;
48 }
49 
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 	kmem_cache_destroy(transaction_cache);
53 	transaction_cache = NULL;
54 }
55 
56 void jbd2_journal_free_transaction(transaction_t *transaction)
57 {
58 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
59 		return;
60 	kmem_cache_free(transaction_cache, transaction);
61 }
62 
63 /*
64  * jbd2_get_transaction: obtain a new transaction_t object.
65  *
66  * Simply allocate and initialise a new transaction.  Create it in
67  * RUNNING state and add it to the current journal (which should not
68  * have an existing running transaction: we only make a new transaction
69  * once we have started to commit the old one).
70  *
71  * Preconditions:
72  *	The journal MUST be locked.  We don't perform atomic mallocs on the
73  *	new transaction	and we can't block without protecting against other
74  *	processes trying to touch the journal while it is in transition.
75  *
76  */
77 
78 static transaction_t *
79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
80 {
81 	transaction->t_journal = journal;
82 	transaction->t_state = T_RUNNING;
83 	transaction->t_start_time = ktime_get();
84 	transaction->t_tid = journal->j_transaction_sequence++;
85 	transaction->t_expires = jiffies + journal->j_commit_interval;
86 	spin_lock_init(&transaction->t_handle_lock);
87 	atomic_set(&transaction->t_updates, 0);
88 	atomic_set(&transaction->t_outstanding_credits,
89 		   atomic_read(&journal->j_reserved_credits));
90 	atomic_set(&transaction->t_handle_count, 0);
91 	INIT_LIST_HEAD(&transaction->t_inode_list);
92 	INIT_LIST_HEAD(&transaction->t_private_list);
93 
94 	/* Set up the commit timer for the new transaction. */
95 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
96 	add_timer(&journal->j_commit_timer);
97 
98 	J_ASSERT(journal->j_running_transaction == NULL);
99 	journal->j_running_transaction = transaction;
100 	transaction->t_max_wait = 0;
101 	transaction->t_start = jiffies;
102 	transaction->t_requested = 0;
103 
104 	return transaction;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * Wait until running transaction passes to T_FLUSH state and new transaction
142  * can thus be started. Also starts the commit if needed. The function expects
143  * running transaction to exist and releases j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146 	__releases(journal->j_state_lock)
147 {
148 	DEFINE_WAIT(wait);
149 	int need_to_start;
150 	tid_t tid = journal->j_running_transaction->t_tid;
151 
152 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153 			TASK_UNINTERRUPTIBLE);
154 	need_to_start = !tid_geq(journal->j_commit_request, tid);
155 	read_unlock(&journal->j_state_lock);
156 	if (need_to_start)
157 		jbd2_log_start_commit(journal, tid);
158 	jbd2_might_wait_for_commit(journal);
159 	schedule();
160 	finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162 
163 /*
164  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
165  * state and new transaction can thus be started. The function releases
166  * j_state_lock.
167  */
168 static void wait_transaction_switching(journal_t *journal)
169 	__releases(journal->j_state_lock)
170 {
171 	DEFINE_WAIT(wait);
172 
173 	if (WARN_ON(!journal->j_running_transaction ||
174 		    journal->j_running_transaction->t_state != T_SWITCH))
175 		return;
176 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	read_unlock(&journal->j_state_lock);
179 	/*
180 	 * We don't call jbd2_might_wait_for_commit() here as there's no
181 	 * waiting for outstanding handles happening anymore in T_SWITCH state
182 	 * and handling of reserved handles actually relies on that for
183 	 * correctness.
184 	 */
185 	schedule();
186 	finish_wait(&journal->j_wait_transaction_locked, &wait);
187 }
188 
189 static void sub_reserved_credits(journal_t *journal, int blocks)
190 {
191 	atomic_sub(blocks, &journal->j_reserved_credits);
192 	wake_up(&journal->j_wait_reserved);
193 }
194 
195 /*
196  * Wait until we can add credits for handle to the running transaction.  Called
197  * with j_state_lock held for reading. Returns 0 if handle joined the running
198  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
199  * caller must retry.
200  */
201 static int add_transaction_credits(journal_t *journal, int blocks,
202 				   int rsv_blocks)
203 {
204 	transaction_t *t = journal->j_running_transaction;
205 	int needed;
206 	int total = blocks + rsv_blocks;
207 
208 	/*
209 	 * If the current transaction is locked down for commit, wait
210 	 * for the lock to be released.
211 	 */
212 	if (t->t_state != T_RUNNING) {
213 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
214 		wait_transaction_locked(journal);
215 		return 1;
216 	}
217 
218 	/*
219 	 * If there is not enough space left in the log to write all
220 	 * potential buffers requested by this operation, we need to
221 	 * stall pending a log checkpoint to free some more log space.
222 	 */
223 	needed = atomic_add_return(total, &t->t_outstanding_credits);
224 	if (needed > journal->j_max_transaction_buffers) {
225 		/*
226 		 * If the current transaction is already too large,
227 		 * then start to commit it: we can then go back and
228 		 * attach this handle to a new transaction.
229 		 */
230 		atomic_sub(total, &t->t_outstanding_credits);
231 
232 		/*
233 		 * Is the number of reserved credits in the current transaction too
234 		 * big to fit this handle? Wait until reserved credits are freed.
235 		 */
236 		if (atomic_read(&journal->j_reserved_credits) + total >
237 		    journal->j_max_transaction_buffers) {
238 			read_unlock(&journal->j_state_lock);
239 			jbd2_might_wait_for_commit(journal);
240 			wait_event(journal->j_wait_reserved,
241 				   atomic_read(&journal->j_reserved_credits) + total <=
242 				   journal->j_max_transaction_buffers);
243 			return 1;
244 		}
245 
246 		wait_transaction_locked(journal);
247 		return 1;
248 	}
249 
250 	/*
251 	 * The commit code assumes that it can get enough log space
252 	 * without forcing a checkpoint.  This is *critical* for
253 	 * correctness: a checkpoint of a buffer which is also
254 	 * associated with a committing transaction creates a deadlock,
255 	 * so commit simply cannot force through checkpoints.
256 	 *
257 	 * We must therefore ensure the necessary space in the journal
258 	 * *before* starting to dirty potentially checkpointed buffers
259 	 * in the new transaction.
260 	 */
261 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
262 		atomic_sub(total, &t->t_outstanding_credits);
263 		read_unlock(&journal->j_state_lock);
264 		jbd2_might_wait_for_commit(journal);
265 		write_lock(&journal->j_state_lock);
266 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
267 			__jbd2_log_wait_for_space(journal);
268 		write_unlock(&journal->j_state_lock);
269 		return 1;
270 	}
271 
272 	/* No reservation? We are done... */
273 	if (!rsv_blocks)
274 		return 0;
275 
276 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
277 	/* We allow at most half of a transaction to be reserved */
278 	if (needed > journal->j_max_transaction_buffers / 2) {
279 		sub_reserved_credits(journal, rsv_blocks);
280 		atomic_sub(total, &t->t_outstanding_credits);
281 		read_unlock(&journal->j_state_lock);
282 		jbd2_might_wait_for_commit(journal);
283 		wait_event(journal->j_wait_reserved,
284 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
285 			 <= journal->j_max_transaction_buffers / 2);
286 		return 1;
287 	}
288 	return 0;
289 }
290 
291 /*
292  * start_this_handle: Given a handle, deal with any locking or stalling
293  * needed to make sure that there is enough journal space for the handle
294  * to begin.  Attach the handle to a transaction and set up the
295  * transaction's buffer credits.
296  */
297 
298 static int start_this_handle(journal_t *journal, handle_t *handle,
299 			     gfp_t gfp_mask)
300 {
301 	transaction_t	*transaction, *new_transaction = NULL;
302 	int		blocks = handle->h_buffer_credits;
303 	int		rsv_blocks = 0;
304 	unsigned long ts = jiffies;
305 
306 	if (handle->h_rsv_handle)
307 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
308 
309 	/*
310 	 * Limit the number of reserved credits to 1/2 of maximum transaction
311 	 * size and limit the number of total credits to not exceed maximum
312 	 * transaction size per operation.
313 	 */
314 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
315 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
316 		printk(KERN_ERR "JBD2: %s wants too many credits "
317 		       "credits:%d rsv_credits:%d max:%d\n",
318 		       current->comm, blocks, rsv_blocks,
319 		       journal->j_max_transaction_buffers);
320 		WARN_ON(1);
321 		return -ENOSPC;
322 	}
323 
324 alloc_transaction:
325 	if (!journal->j_running_transaction) {
326 		/*
327 		 * If __GFP_FS is not present, then we may be being called from
328 		 * inside the fs writeback layer, so we MUST NOT fail.
329 		 */
330 		if ((gfp_mask & __GFP_FS) == 0)
331 			gfp_mask |= __GFP_NOFAIL;
332 		new_transaction = kmem_cache_zalloc(transaction_cache,
333 						    gfp_mask);
334 		if (!new_transaction)
335 			return -ENOMEM;
336 	}
337 
338 	jbd_debug(3, "New handle %p going live.\n", handle);
339 
340 	/*
341 	 * We need to hold j_state_lock until t_updates has been incremented,
342 	 * for proper journal barrier handling
343 	 */
344 repeat:
345 	read_lock(&journal->j_state_lock);
346 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
347 	if (is_journal_aborted(journal) ||
348 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
349 		read_unlock(&journal->j_state_lock);
350 		jbd2_journal_free_transaction(new_transaction);
351 		return -EROFS;
352 	}
353 
354 	/*
355 	 * Wait on the journal's transaction barrier if necessary. Specifically
356 	 * we allow reserved handles to proceed because otherwise commit could
357 	 * deadlock on page writeback not being able to complete.
358 	 */
359 	if (!handle->h_reserved && journal->j_barrier_count) {
360 		read_unlock(&journal->j_state_lock);
361 		wait_event(journal->j_wait_transaction_locked,
362 				journal->j_barrier_count == 0);
363 		goto repeat;
364 	}
365 
366 	if (!journal->j_running_transaction) {
367 		read_unlock(&journal->j_state_lock);
368 		if (!new_transaction)
369 			goto alloc_transaction;
370 		write_lock(&journal->j_state_lock);
371 		if (!journal->j_running_transaction &&
372 		    (handle->h_reserved || !journal->j_barrier_count)) {
373 			jbd2_get_transaction(journal, new_transaction);
374 			new_transaction = NULL;
375 		}
376 		write_unlock(&journal->j_state_lock);
377 		goto repeat;
378 	}
379 
380 	transaction = journal->j_running_transaction;
381 
382 	if (!handle->h_reserved) {
383 		/* We may have dropped j_state_lock - restart in that case */
384 		if (add_transaction_credits(journal, blocks, rsv_blocks))
385 			goto repeat;
386 	} else {
387 		/*
388 		 * We have handle reserved so we are allowed to join T_LOCKED
389 		 * transaction and we don't have to check for transaction size
390 		 * and journal space. But we still have to wait while running
391 		 * transaction is being switched to a committing one as it
392 		 * won't wait for any handles anymore.
393 		 */
394 		if (transaction->t_state == T_SWITCH) {
395 			wait_transaction_switching(journal);
396 			goto repeat;
397 		}
398 		sub_reserved_credits(journal, blocks);
399 		handle->h_reserved = 0;
400 	}
401 
402 	/* OK, account for the buffers that this operation expects to
403 	 * use and add the handle to the running transaction.
404 	 */
405 	update_t_max_wait(transaction, ts);
406 	handle->h_transaction = transaction;
407 	handle->h_requested_credits = blocks;
408 	handle->h_start_jiffies = jiffies;
409 	atomic_inc(&transaction->t_updates);
410 	atomic_inc(&transaction->t_handle_count);
411 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
412 		  handle, blocks,
413 		  atomic_read(&transaction->t_outstanding_credits),
414 		  jbd2_log_space_left(journal));
415 	read_unlock(&journal->j_state_lock);
416 	current->journal_info = handle;
417 
418 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
419 	jbd2_journal_free_transaction(new_transaction);
420 	/*
421 	 * Ensure that no allocations done while the transaction is open are
422 	 * going to recurse back to the fs layer.
423 	 */
424 	handle->saved_alloc_context = memalloc_nofs_save();
425 	return 0;
426 }
427 
428 /* Allocate a new handle.  This should probably be in a slab... */
429 static handle_t *new_handle(int nblocks)
430 {
431 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
432 	if (!handle)
433 		return NULL;
434 	handle->h_buffer_credits = nblocks;
435 	handle->h_ref = 1;
436 
437 	return handle;
438 }
439 
440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
441 			      gfp_t gfp_mask, unsigned int type,
442 			      unsigned int line_no)
443 {
444 	handle_t *handle = journal_current_handle();
445 	int err;
446 
447 	if (!journal)
448 		return ERR_PTR(-EROFS);
449 
450 	if (handle) {
451 		J_ASSERT(handle->h_transaction->t_journal == journal);
452 		handle->h_ref++;
453 		return handle;
454 	}
455 
456 	handle = new_handle(nblocks);
457 	if (!handle)
458 		return ERR_PTR(-ENOMEM);
459 	if (rsv_blocks) {
460 		handle_t *rsv_handle;
461 
462 		rsv_handle = new_handle(rsv_blocks);
463 		if (!rsv_handle) {
464 			jbd2_free_handle(handle);
465 			return ERR_PTR(-ENOMEM);
466 		}
467 		rsv_handle->h_reserved = 1;
468 		rsv_handle->h_journal = journal;
469 		handle->h_rsv_handle = rsv_handle;
470 	}
471 
472 	err = start_this_handle(journal, handle, gfp_mask);
473 	if (err < 0) {
474 		if (handle->h_rsv_handle)
475 			jbd2_free_handle(handle->h_rsv_handle);
476 		jbd2_free_handle(handle);
477 		return ERR_PTR(err);
478 	}
479 	handle->h_type = type;
480 	handle->h_line_no = line_no;
481 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
482 				handle->h_transaction->t_tid, type,
483 				line_no, nblocks);
484 
485 	return handle;
486 }
487 EXPORT_SYMBOL(jbd2__journal_start);
488 
489 
490 /**
491  * handle_t *jbd2_journal_start() - Obtain a new handle.
492  * @journal: Journal to start transaction on.
493  * @nblocks: number of block buffer we might modify
494  *
495  * We make sure that the transaction can guarantee at least nblocks of
496  * modified buffers in the log.  We block until the log can guarantee
497  * that much space. Additionally, if rsv_blocks > 0, we also create another
498  * handle with rsv_blocks reserved blocks in the journal. This handle is
499  * is stored in h_rsv_handle. It is not attached to any particular transaction
500  * and thus doesn't block transaction commit. If the caller uses this reserved
501  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
502  * on the parent handle will dispose the reserved one. Reserved handle has to
503  * be converted to a normal handle using jbd2_journal_start_reserved() before
504  * it can be used.
505  *
506  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
507  * on failure.
508  */
509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
510 {
511 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
512 }
513 EXPORT_SYMBOL(jbd2_journal_start);
514 
515 void jbd2_journal_free_reserved(handle_t *handle)
516 {
517 	journal_t *journal = handle->h_journal;
518 
519 	WARN_ON(!handle->h_reserved);
520 	sub_reserved_credits(journal, handle->h_buffer_credits);
521 	jbd2_free_handle(handle);
522 }
523 EXPORT_SYMBOL(jbd2_journal_free_reserved);
524 
525 /**
526  * int jbd2_journal_start_reserved() - start reserved handle
527  * @handle: handle to start
528  * @type: for handle statistics
529  * @line_no: for handle statistics
530  *
531  * Start handle that has been previously reserved with jbd2_journal_reserve().
532  * This attaches @handle to the running transaction (or creates one if there's
533  * not transaction running). Unlike jbd2_journal_start() this function cannot
534  * block on journal commit, checkpointing, or similar stuff. It can block on
535  * memory allocation or frozen journal though.
536  *
537  * Return 0 on success, non-zero on error - handle is freed in that case.
538  */
539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
540 				unsigned int line_no)
541 {
542 	journal_t *journal = handle->h_journal;
543 	int ret = -EIO;
544 
545 	if (WARN_ON(!handle->h_reserved)) {
546 		/* Someone passed in normal handle? Just stop it. */
547 		jbd2_journal_stop(handle);
548 		return ret;
549 	}
550 	/*
551 	 * Usefulness of mixing of reserved and unreserved handles is
552 	 * questionable. So far nobody seems to need it so just error out.
553 	 */
554 	if (WARN_ON(current->journal_info)) {
555 		jbd2_journal_free_reserved(handle);
556 		return ret;
557 	}
558 
559 	handle->h_journal = NULL;
560 	/*
561 	 * GFP_NOFS is here because callers are likely from writeback or
562 	 * similarly constrained call sites
563 	 */
564 	ret = start_this_handle(journal, handle, GFP_NOFS);
565 	if (ret < 0) {
566 		handle->h_journal = journal;
567 		jbd2_journal_free_reserved(handle);
568 		return ret;
569 	}
570 	handle->h_type = type;
571 	handle->h_line_no = line_no;
572 	return 0;
573 }
574 EXPORT_SYMBOL(jbd2_journal_start_reserved);
575 
576 /**
577  * int jbd2_journal_extend() - extend buffer credits.
578  * @handle:  handle to 'extend'
579  * @nblocks: nr blocks to try to extend by.
580  *
581  * Some transactions, such as large extends and truncates, can be done
582  * atomically all at once or in several stages.  The operation requests
583  * a credit for a number of buffer modifications in advance, but can
584  * extend its credit if it needs more.
585  *
586  * jbd2_journal_extend tries to give the running handle more buffer credits.
587  * It does not guarantee that allocation - this is a best-effort only.
588  * The calling process MUST be able to deal cleanly with a failure to
589  * extend here.
590  *
591  * Return 0 on success, non-zero on failure.
592  *
593  * return code < 0 implies an error
594  * return code > 0 implies normal transaction-full status.
595  */
596 int jbd2_journal_extend(handle_t *handle, int nblocks)
597 {
598 	transaction_t *transaction = handle->h_transaction;
599 	journal_t *journal;
600 	int result;
601 	int wanted;
602 
603 	if (is_handle_aborted(handle))
604 		return -EROFS;
605 	journal = transaction->t_journal;
606 
607 	result = 1;
608 
609 	read_lock(&journal->j_state_lock);
610 
611 	/* Don't extend a locked-down transaction! */
612 	if (transaction->t_state != T_RUNNING) {
613 		jbd_debug(3, "denied handle %p %d blocks: "
614 			  "transaction not running\n", handle, nblocks);
615 		goto error_out;
616 	}
617 
618 	spin_lock(&transaction->t_handle_lock);
619 	wanted = atomic_add_return(nblocks,
620 				   &transaction->t_outstanding_credits);
621 
622 	if (wanted > journal->j_max_transaction_buffers) {
623 		jbd_debug(3, "denied handle %p %d blocks: "
624 			  "transaction too large\n", handle, nblocks);
625 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
626 		goto unlock;
627 	}
628 
629 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
630 	    jbd2_log_space_left(journal)) {
631 		jbd_debug(3, "denied handle %p %d blocks: "
632 			  "insufficient log space\n", handle, nblocks);
633 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
634 		goto unlock;
635 	}
636 
637 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
638 				 transaction->t_tid,
639 				 handle->h_type, handle->h_line_no,
640 				 handle->h_buffer_credits,
641 				 nblocks);
642 
643 	handle->h_buffer_credits += nblocks;
644 	handle->h_requested_credits += nblocks;
645 	result = 0;
646 
647 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
648 unlock:
649 	spin_unlock(&transaction->t_handle_lock);
650 error_out:
651 	read_unlock(&journal->j_state_lock);
652 	return result;
653 }
654 
655 
656 /**
657  * int jbd2_journal_restart() - restart a handle .
658  * @handle:  handle to restart
659  * @nblocks: nr credits requested
660  * @gfp_mask: memory allocation flags (for start_this_handle)
661  *
662  * Restart a handle for a multi-transaction filesystem
663  * operation.
664  *
665  * If the jbd2_journal_extend() call above fails to grant new buffer credits
666  * to a running handle, a call to jbd2_journal_restart will commit the
667  * handle's transaction so far and reattach the handle to a new
668  * transaction capable of guaranteeing the requested number of
669  * credits. We preserve reserved handle if there's any attached to the
670  * passed in handle.
671  */
672 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
673 {
674 	transaction_t *transaction = handle->h_transaction;
675 	journal_t *journal;
676 	tid_t		tid;
677 	int		need_to_start, ret;
678 
679 	/* If we've had an abort of any type, don't even think about
680 	 * actually doing the restart! */
681 	if (is_handle_aborted(handle))
682 		return 0;
683 	journal = transaction->t_journal;
684 
685 	/*
686 	 * First unlink the handle from its current transaction, and start the
687 	 * commit on that.
688 	 */
689 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
690 	J_ASSERT(journal_current_handle() == handle);
691 
692 	read_lock(&journal->j_state_lock);
693 	spin_lock(&transaction->t_handle_lock);
694 	atomic_sub(handle->h_buffer_credits,
695 		   &transaction->t_outstanding_credits);
696 	if (handle->h_rsv_handle) {
697 		sub_reserved_credits(journal,
698 				     handle->h_rsv_handle->h_buffer_credits);
699 	}
700 	if (atomic_dec_and_test(&transaction->t_updates))
701 		wake_up(&journal->j_wait_updates);
702 	tid = transaction->t_tid;
703 	spin_unlock(&transaction->t_handle_lock);
704 	handle->h_transaction = NULL;
705 	current->journal_info = NULL;
706 
707 	jbd_debug(2, "restarting handle %p\n", handle);
708 	need_to_start = !tid_geq(journal->j_commit_request, tid);
709 	read_unlock(&journal->j_state_lock);
710 	if (need_to_start)
711 		jbd2_log_start_commit(journal, tid);
712 
713 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
714 	handle->h_buffer_credits = nblocks;
715 	/*
716 	 * Restore the original nofs context because the journal restart
717 	 * is basically the same thing as journal stop and start.
718 	 * start_this_handle will start a new nofs context.
719 	 */
720 	memalloc_nofs_restore(handle->saved_alloc_context);
721 	ret = start_this_handle(journal, handle, gfp_mask);
722 	return ret;
723 }
724 EXPORT_SYMBOL(jbd2__journal_restart);
725 
726 
727 int jbd2_journal_restart(handle_t *handle, int nblocks)
728 {
729 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
730 }
731 EXPORT_SYMBOL(jbd2_journal_restart);
732 
733 /**
734  * void jbd2_journal_lock_updates () - establish a transaction barrier.
735  * @journal:  Journal to establish a barrier on.
736  *
737  * This locks out any further updates from being started, and blocks
738  * until all existing updates have completed, returning only once the
739  * journal is in a quiescent state with no updates running.
740  *
741  * The journal lock should not be held on entry.
742  */
743 void jbd2_journal_lock_updates(journal_t *journal)
744 {
745 	DEFINE_WAIT(wait);
746 
747 	jbd2_might_wait_for_commit(journal);
748 
749 	write_lock(&journal->j_state_lock);
750 	++journal->j_barrier_count;
751 
752 	/* Wait until there are no reserved handles */
753 	if (atomic_read(&journal->j_reserved_credits)) {
754 		write_unlock(&journal->j_state_lock);
755 		wait_event(journal->j_wait_reserved,
756 			   atomic_read(&journal->j_reserved_credits) == 0);
757 		write_lock(&journal->j_state_lock);
758 	}
759 
760 	/* Wait until there are no running updates */
761 	while (1) {
762 		transaction_t *transaction = journal->j_running_transaction;
763 
764 		if (!transaction)
765 			break;
766 
767 		spin_lock(&transaction->t_handle_lock);
768 		prepare_to_wait(&journal->j_wait_updates, &wait,
769 				TASK_UNINTERRUPTIBLE);
770 		if (!atomic_read(&transaction->t_updates)) {
771 			spin_unlock(&transaction->t_handle_lock);
772 			finish_wait(&journal->j_wait_updates, &wait);
773 			break;
774 		}
775 		spin_unlock(&transaction->t_handle_lock);
776 		write_unlock(&journal->j_state_lock);
777 		schedule();
778 		finish_wait(&journal->j_wait_updates, &wait);
779 		write_lock(&journal->j_state_lock);
780 	}
781 	write_unlock(&journal->j_state_lock);
782 
783 	/*
784 	 * We have now established a barrier against other normal updates, but
785 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
786 	 * to make sure that we serialise special journal-locked operations
787 	 * too.
788 	 */
789 	mutex_lock(&journal->j_barrier);
790 }
791 
792 /**
793  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
794  * @journal:  Journal to release the barrier on.
795  *
796  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
797  *
798  * Should be called without the journal lock held.
799  */
800 void jbd2_journal_unlock_updates (journal_t *journal)
801 {
802 	J_ASSERT(journal->j_barrier_count != 0);
803 
804 	mutex_unlock(&journal->j_barrier);
805 	write_lock(&journal->j_state_lock);
806 	--journal->j_barrier_count;
807 	write_unlock(&journal->j_state_lock);
808 	wake_up(&journal->j_wait_transaction_locked);
809 }
810 
811 static void warn_dirty_buffer(struct buffer_head *bh)
812 {
813 	printk(KERN_WARNING
814 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
815 	       "There's a risk of filesystem corruption in case of system "
816 	       "crash.\n",
817 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
818 }
819 
820 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
821 static void jbd2_freeze_jh_data(struct journal_head *jh)
822 {
823 	struct page *page;
824 	int offset;
825 	char *source;
826 	struct buffer_head *bh = jh2bh(jh);
827 
828 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
829 	page = bh->b_page;
830 	offset = offset_in_page(bh->b_data);
831 	source = kmap_atomic(page);
832 	/* Fire data frozen trigger just before we copy the data */
833 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
834 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
835 	kunmap_atomic(source);
836 
837 	/*
838 	 * Now that the frozen data is saved off, we need to store any matching
839 	 * triggers.
840 	 */
841 	jh->b_frozen_triggers = jh->b_triggers;
842 }
843 
844 /*
845  * If the buffer is already part of the current transaction, then there
846  * is nothing we need to do.  If it is already part of a prior
847  * transaction which we are still committing to disk, then we need to
848  * make sure that we do not overwrite the old copy: we do copy-out to
849  * preserve the copy going to disk.  We also account the buffer against
850  * the handle's metadata buffer credits (unless the buffer is already
851  * part of the transaction, that is).
852  *
853  */
854 static int
855 do_get_write_access(handle_t *handle, struct journal_head *jh,
856 			int force_copy)
857 {
858 	struct buffer_head *bh;
859 	transaction_t *transaction = handle->h_transaction;
860 	journal_t *journal;
861 	int error;
862 	char *frozen_buffer = NULL;
863 	unsigned long start_lock, time_lock;
864 
865 	if (is_handle_aborted(handle))
866 		return -EROFS;
867 	journal = transaction->t_journal;
868 
869 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
870 
871 	JBUFFER_TRACE(jh, "entry");
872 repeat:
873 	bh = jh2bh(jh);
874 
875 	/* @@@ Need to check for errors here at some point. */
876 
877  	start_lock = jiffies;
878 	lock_buffer(bh);
879 	jbd_lock_bh_state(bh);
880 
881 	/* If it takes too long to lock the buffer, trace it */
882 	time_lock = jbd2_time_diff(start_lock, jiffies);
883 	if (time_lock > HZ/10)
884 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
885 			jiffies_to_msecs(time_lock));
886 
887 	/* We now hold the buffer lock so it is safe to query the buffer
888 	 * state.  Is the buffer dirty?
889 	 *
890 	 * If so, there are two possibilities.  The buffer may be
891 	 * non-journaled, and undergoing a quite legitimate writeback.
892 	 * Otherwise, it is journaled, and we don't expect dirty buffers
893 	 * in that state (the buffers should be marked JBD_Dirty
894 	 * instead.)  So either the IO is being done under our own
895 	 * control and this is a bug, or it's a third party IO such as
896 	 * dump(8) (which may leave the buffer scheduled for read ---
897 	 * ie. locked but not dirty) or tune2fs (which may actually have
898 	 * the buffer dirtied, ugh.)  */
899 
900 	if (buffer_dirty(bh)) {
901 		/*
902 		 * First question: is this buffer already part of the current
903 		 * transaction or the existing committing transaction?
904 		 */
905 		if (jh->b_transaction) {
906 			J_ASSERT_JH(jh,
907 				jh->b_transaction == transaction ||
908 				jh->b_transaction ==
909 					journal->j_committing_transaction);
910 			if (jh->b_next_transaction)
911 				J_ASSERT_JH(jh, jh->b_next_transaction ==
912 							transaction);
913 			warn_dirty_buffer(bh);
914 		}
915 		/*
916 		 * In any case we need to clean the dirty flag and we must
917 		 * do it under the buffer lock to be sure we don't race
918 		 * with running write-out.
919 		 */
920 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
921 		clear_buffer_dirty(bh);
922 		set_buffer_jbddirty(bh);
923 	}
924 
925 	unlock_buffer(bh);
926 
927 	error = -EROFS;
928 	if (is_handle_aborted(handle)) {
929 		jbd_unlock_bh_state(bh);
930 		goto out;
931 	}
932 	error = 0;
933 
934 	/*
935 	 * The buffer is already part of this transaction if b_transaction or
936 	 * b_next_transaction points to it
937 	 */
938 	if (jh->b_transaction == transaction ||
939 	    jh->b_next_transaction == transaction)
940 		goto done;
941 
942 	/*
943 	 * this is the first time this transaction is touching this buffer,
944 	 * reset the modified flag
945 	 */
946 	jh->b_modified = 0;
947 
948 	/*
949 	 * If the buffer is not journaled right now, we need to make sure it
950 	 * doesn't get written to disk before the caller actually commits the
951 	 * new data
952 	 */
953 	if (!jh->b_transaction) {
954 		JBUFFER_TRACE(jh, "no transaction");
955 		J_ASSERT_JH(jh, !jh->b_next_transaction);
956 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
957 		/*
958 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
959 		 * visible before attaching it to the running transaction.
960 		 * Paired with barrier in jbd2_write_access_granted()
961 		 */
962 		smp_wmb();
963 		spin_lock(&journal->j_list_lock);
964 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
965 		spin_unlock(&journal->j_list_lock);
966 		goto done;
967 	}
968 	/*
969 	 * If there is already a copy-out version of this buffer, then we don't
970 	 * need to make another one
971 	 */
972 	if (jh->b_frozen_data) {
973 		JBUFFER_TRACE(jh, "has frozen data");
974 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
975 		goto attach_next;
976 	}
977 
978 	JBUFFER_TRACE(jh, "owned by older transaction");
979 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
980 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
981 
982 	/*
983 	 * There is one case we have to be very careful about.  If the
984 	 * committing transaction is currently writing this buffer out to disk
985 	 * and has NOT made a copy-out, then we cannot modify the buffer
986 	 * contents at all right now.  The essence of copy-out is that it is
987 	 * the extra copy, not the primary copy, which gets journaled.  If the
988 	 * primary copy is already going to disk then we cannot do copy-out
989 	 * here.
990 	 */
991 	if (buffer_shadow(bh)) {
992 		JBUFFER_TRACE(jh, "on shadow: sleep");
993 		jbd_unlock_bh_state(bh);
994 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
995 		goto repeat;
996 	}
997 
998 	/*
999 	 * Only do the copy if the currently-owning transaction still needs it.
1000 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1001 	 * past that stage (here we use the fact that BH_Shadow is set under
1002 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1003 	 * point we know the buffer doesn't have BH_Shadow set).
1004 	 *
1005 	 * Subtle point, though: if this is a get_undo_access, then we will be
1006 	 * relying on the frozen_data to contain the new value of the
1007 	 * committed_data record after the transaction, so we HAVE to force the
1008 	 * frozen_data copy in that case.
1009 	 */
1010 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1011 		JBUFFER_TRACE(jh, "generate frozen data");
1012 		if (!frozen_buffer) {
1013 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1014 			jbd_unlock_bh_state(bh);
1015 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1016 						   GFP_NOFS | __GFP_NOFAIL);
1017 			goto repeat;
1018 		}
1019 		jh->b_frozen_data = frozen_buffer;
1020 		frozen_buffer = NULL;
1021 		jbd2_freeze_jh_data(jh);
1022 	}
1023 attach_next:
1024 	/*
1025 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1026 	 * before attaching it to the running transaction. Paired with barrier
1027 	 * in jbd2_write_access_granted()
1028 	 */
1029 	smp_wmb();
1030 	jh->b_next_transaction = transaction;
1031 
1032 done:
1033 	jbd_unlock_bh_state(bh);
1034 
1035 	/*
1036 	 * If we are about to journal a buffer, then any revoke pending on it is
1037 	 * no longer valid
1038 	 */
1039 	jbd2_journal_cancel_revoke(handle, jh);
1040 
1041 out:
1042 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1043 		jbd2_free(frozen_buffer, bh->b_size);
1044 
1045 	JBUFFER_TRACE(jh, "exit");
1046 	return error;
1047 }
1048 
1049 /* Fast check whether buffer is already attached to the required transaction */
1050 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1051 							bool undo)
1052 {
1053 	struct journal_head *jh;
1054 	bool ret = false;
1055 
1056 	/* Dirty buffers require special handling... */
1057 	if (buffer_dirty(bh))
1058 		return false;
1059 
1060 	/*
1061 	 * RCU protects us from dereferencing freed pages. So the checks we do
1062 	 * are guaranteed not to oops. However the jh slab object can get freed
1063 	 * & reallocated while we work with it. So we have to be careful. When
1064 	 * we see jh attached to the running transaction, we know it must stay
1065 	 * so until the transaction is committed. Thus jh won't be freed and
1066 	 * will be attached to the same bh while we run.  However it can
1067 	 * happen jh gets freed, reallocated, and attached to the transaction
1068 	 * just after we get pointer to it from bh. So we have to be careful
1069 	 * and recheck jh still belongs to our bh before we return success.
1070 	 */
1071 	rcu_read_lock();
1072 	if (!buffer_jbd(bh))
1073 		goto out;
1074 	/* This should be bh2jh() but that doesn't work with inline functions */
1075 	jh = READ_ONCE(bh->b_private);
1076 	if (!jh)
1077 		goto out;
1078 	/* For undo access buffer must have data copied */
1079 	if (undo && !jh->b_committed_data)
1080 		goto out;
1081 	if (jh->b_transaction != handle->h_transaction &&
1082 	    jh->b_next_transaction != handle->h_transaction)
1083 		goto out;
1084 	/*
1085 	 * There are two reasons for the barrier here:
1086 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1087 	 * detect when jh went through free, realloc, attach to transaction
1088 	 * while we were checking. Paired with implicit barrier in that path.
1089 	 * 2) So that access to bh done after jbd2_write_access_granted()
1090 	 * doesn't get reordered and see inconsistent state of concurrent
1091 	 * do_get_write_access().
1092 	 */
1093 	smp_mb();
1094 	if (unlikely(jh->b_bh != bh))
1095 		goto out;
1096 	ret = true;
1097 out:
1098 	rcu_read_unlock();
1099 	return ret;
1100 }
1101 
1102 /**
1103  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1104  * @handle: transaction to add buffer modifications to
1105  * @bh:     bh to be used for metadata writes
1106  *
1107  * Returns: error code or 0 on success.
1108  *
1109  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1110  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1111  */
1112 
1113 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1114 {
1115 	struct journal_head *jh;
1116 	int rc;
1117 
1118 	if (jbd2_write_access_granted(handle, bh, false))
1119 		return 0;
1120 
1121 	jh = jbd2_journal_add_journal_head(bh);
1122 	/* We do not want to get caught playing with fields which the
1123 	 * log thread also manipulates.  Make sure that the buffer
1124 	 * completes any outstanding IO before proceeding. */
1125 	rc = do_get_write_access(handle, jh, 0);
1126 	jbd2_journal_put_journal_head(jh);
1127 	return rc;
1128 }
1129 
1130 
1131 /*
1132  * When the user wants to journal a newly created buffer_head
1133  * (ie. getblk() returned a new buffer and we are going to populate it
1134  * manually rather than reading off disk), then we need to keep the
1135  * buffer_head locked until it has been completely filled with new
1136  * data.  In this case, we should be able to make the assertion that
1137  * the bh is not already part of an existing transaction.
1138  *
1139  * The buffer should already be locked by the caller by this point.
1140  * There is no lock ranking violation: it was a newly created,
1141  * unlocked buffer beforehand. */
1142 
1143 /**
1144  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1145  * @handle: transaction to new buffer to
1146  * @bh: new buffer.
1147  *
1148  * Call this if you create a new bh.
1149  */
1150 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1151 {
1152 	transaction_t *transaction = handle->h_transaction;
1153 	journal_t *journal;
1154 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155 	int err;
1156 
1157 	jbd_debug(5, "journal_head %p\n", jh);
1158 	err = -EROFS;
1159 	if (is_handle_aborted(handle))
1160 		goto out;
1161 	journal = transaction->t_journal;
1162 	err = 0;
1163 
1164 	JBUFFER_TRACE(jh, "entry");
1165 	/*
1166 	 * The buffer may already belong to this transaction due to pre-zeroing
1167 	 * in the filesystem's new_block code.  It may also be on the previous,
1168 	 * committing transaction's lists, but it HAS to be in Forget state in
1169 	 * that case: the transaction must have deleted the buffer for it to be
1170 	 * reused here.
1171 	 */
1172 	jbd_lock_bh_state(bh);
1173 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1174 		jh->b_transaction == NULL ||
1175 		(jh->b_transaction == journal->j_committing_transaction &&
1176 			  jh->b_jlist == BJ_Forget)));
1177 
1178 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1179 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1180 
1181 	if (jh->b_transaction == NULL) {
1182 		/*
1183 		 * Previous jbd2_journal_forget() could have left the buffer
1184 		 * with jbddirty bit set because it was being committed. When
1185 		 * the commit finished, we've filed the buffer for
1186 		 * checkpointing and marked it dirty. Now we are reallocating
1187 		 * the buffer so the transaction freeing it must have
1188 		 * committed and so it's safe to clear the dirty bit.
1189 		 */
1190 		clear_buffer_dirty(jh2bh(jh));
1191 		/* first access by this transaction */
1192 		jh->b_modified = 0;
1193 
1194 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1195 		spin_lock(&journal->j_list_lock);
1196 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1197 		spin_unlock(&journal->j_list_lock);
1198 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1199 		/* first access by this transaction */
1200 		jh->b_modified = 0;
1201 
1202 		JBUFFER_TRACE(jh, "set next transaction");
1203 		spin_lock(&journal->j_list_lock);
1204 		jh->b_next_transaction = transaction;
1205 		spin_unlock(&journal->j_list_lock);
1206 	}
1207 	jbd_unlock_bh_state(bh);
1208 
1209 	/*
1210 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1211 	 * blocks which contain freed but then revoked metadata.  We need
1212 	 * to cancel the revoke in case we end up freeing it yet again
1213 	 * and the reallocating as data - this would cause a second revoke,
1214 	 * which hits an assertion error.
1215 	 */
1216 	JBUFFER_TRACE(jh, "cancelling revoke");
1217 	jbd2_journal_cancel_revoke(handle, jh);
1218 out:
1219 	jbd2_journal_put_journal_head(jh);
1220 	return err;
1221 }
1222 
1223 /**
1224  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1225  *     non-rewindable consequences
1226  * @handle: transaction
1227  * @bh: buffer to undo
1228  *
1229  * Sometimes there is a need to distinguish between metadata which has
1230  * been committed to disk and that which has not.  The ext3fs code uses
1231  * this for freeing and allocating space, we have to make sure that we
1232  * do not reuse freed space until the deallocation has been committed,
1233  * since if we overwrote that space we would make the delete
1234  * un-rewindable in case of a crash.
1235  *
1236  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1237  * buffer for parts of non-rewindable operations such as delete
1238  * operations on the bitmaps.  The journaling code must keep a copy of
1239  * the buffer's contents prior to the undo_access call until such time
1240  * as we know that the buffer has definitely been committed to disk.
1241  *
1242  * We never need to know which transaction the committed data is part
1243  * of, buffers touched here are guaranteed to be dirtied later and so
1244  * will be committed to a new transaction in due course, at which point
1245  * we can discard the old committed data pointer.
1246  *
1247  * Returns error number or 0 on success.
1248  */
1249 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1250 {
1251 	int err;
1252 	struct journal_head *jh;
1253 	char *committed_data = NULL;
1254 
1255 	JBUFFER_TRACE(jh, "entry");
1256 	if (jbd2_write_access_granted(handle, bh, true))
1257 		return 0;
1258 
1259 	jh = jbd2_journal_add_journal_head(bh);
1260 	/*
1261 	 * Do this first --- it can drop the journal lock, so we want to
1262 	 * make sure that obtaining the committed_data is done
1263 	 * atomically wrt. completion of any outstanding commits.
1264 	 */
1265 	err = do_get_write_access(handle, jh, 1);
1266 	if (err)
1267 		goto out;
1268 
1269 repeat:
1270 	if (!jh->b_committed_data)
1271 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1272 					    GFP_NOFS|__GFP_NOFAIL);
1273 
1274 	jbd_lock_bh_state(bh);
1275 	if (!jh->b_committed_data) {
1276 		/* Copy out the current buffer contents into the
1277 		 * preserved, committed copy. */
1278 		JBUFFER_TRACE(jh, "generate b_committed data");
1279 		if (!committed_data) {
1280 			jbd_unlock_bh_state(bh);
1281 			goto repeat;
1282 		}
1283 
1284 		jh->b_committed_data = committed_data;
1285 		committed_data = NULL;
1286 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1287 	}
1288 	jbd_unlock_bh_state(bh);
1289 out:
1290 	jbd2_journal_put_journal_head(jh);
1291 	if (unlikely(committed_data))
1292 		jbd2_free(committed_data, bh->b_size);
1293 	return err;
1294 }
1295 
1296 /**
1297  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1298  * @bh: buffer to trigger on
1299  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1300  *
1301  * Set any triggers on this journal_head.  This is always safe, because
1302  * triggers for a committing buffer will be saved off, and triggers for
1303  * a running transaction will match the buffer in that transaction.
1304  *
1305  * Call with NULL to clear the triggers.
1306  */
1307 void jbd2_journal_set_triggers(struct buffer_head *bh,
1308 			       struct jbd2_buffer_trigger_type *type)
1309 {
1310 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1311 
1312 	if (WARN_ON(!jh))
1313 		return;
1314 	jh->b_triggers = type;
1315 	jbd2_journal_put_journal_head(jh);
1316 }
1317 
1318 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1319 				struct jbd2_buffer_trigger_type *triggers)
1320 {
1321 	struct buffer_head *bh = jh2bh(jh);
1322 
1323 	if (!triggers || !triggers->t_frozen)
1324 		return;
1325 
1326 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1327 }
1328 
1329 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1330 			       struct jbd2_buffer_trigger_type *triggers)
1331 {
1332 	if (!triggers || !triggers->t_abort)
1333 		return;
1334 
1335 	triggers->t_abort(triggers, jh2bh(jh));
1336 }
1337 
1338 /**
1339  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1340  * @handle: transaction to add buffer to.
1341  * @bh: buffer to mark
1342  *
1343  * mark dirty metadata which needs to be journaled as part of the current
1344  * transaction.
1345  *
1346  * The buffer must have previously had jbd2_journal_get_write_access()
1347  * called so that it has a valid journal_head attached to the buffer
1348  * head.
1349  *
1350  * The buffer is placed on the transaction's metadata list and is marked
1351  * as belonging to the transaction.
1352  *
1353  * Returns error number or 0 on success.
1354  *
1355  * Special care needs to be taken if the buffer already belongs to the
1356  * current committing transaction (in which case we should have frozen
1357  * data present for that commit).  In that case, we don't relink the
1358  * buffer: that only gets done when the old transaction finally
1359  * completes its commit.
1360  */
1361 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1362 {
1363 	transaction_t *transaction = handle->h_transaction;
1364 	journal_t *journal;
1365 	struct journal_head *jh;
1366 	int ret = 0;
1367 
1368 	if (is_handle_aborted(handle))
1369 		return -EROFS;
1370 	if (!buffer_jbd(bh)) {
1371 		ret = -EUCLEAN;
1372 		goto out;
1373 	}
1374 	/*
1375 	 * We don't grab jh reference here since the buffer must be part
1376 	 * of the running transaction.
1377 	 */
1378 	jh = bh2jh(bh);
1379 	/*
1380 	 * This and the following assertions are unreliable since we may see jh
1381 	 * in inconsistent state unless we grab bh_state lock. But this is
1382 	 * crucial to catch bugs so let's do a reliable check until the
1383 	 * lockless handling is fully proven.
1384 	 */
1385 	if (jh->b_transaction != transaction &&
1386 	    jh->b_next_transaction != transaction) {
1387 		jbd_lock_bh_state(bh);
1388 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1389 				jh->b_next_transaction == transaction);
1390 		jbd_unlock_bh_state(bh);
1391 	}
1392 	if (jh->b_modified == 1) {
1393 		/* If it's in our transaction it must be in BJ_Metadata list. */
1394 		if (jh->b_transaction == transaction &&
1395 		    jh->b_jlist != BJ_Metadata) {
1396 			jbd_lock_bh_state(bh);
1397 			if (jh->b_transaction == transaction &&
1398 			    jh->b_jlist != BJ_Metadata)
1399 				pr_err("JBD2: assertion failure: h_type=%u "
1400 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1401 				       handle->h_type, handle->h_line_no,
1402 				       (unsigned long long) bh->b_blocknr,
1403 				       jh->b_jlist);
1404 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1405 					jh->b_jlist == BJ_Metadata);
1406 			jbd_unlock_bh_state(bh);
1407 		}
1408 		goto out;
1409 	}
1410 
1411 	journal = transaction->t_journal;
1412 	jbd_debug(5, "journal_head %p\n", jh);
1413 	JBUFFER_TRACE(jh, "entry");
1414 
1415 	jbd_lock_bh_state(bh);
1416 
1417 	if (jh->b_modified == 0) {
1418 		/*
1419 		 * This buffer's got modified and becoming part
1420 		 * of the transaction. This needs to be done
1421 		 * once a transaction -bzzz
1422 		 */
1423 		if (handle->h_buffer_credits <= 0) {
1424 			ret = -ENOSPC;
1425 			goto out_unlock_bh;
1426 		}
1427 		jh->b_modified = 1;
1428 		handle->h_buffer_credits--;
1429 	}
1430 
1431 	/*
1432 	 * fastpath, to avoid expensive locking.  If this buffer is already
1433 	 * on the running transaction's metadata list there is nothing to do.
1434 	 * Nobody can take it off again because there is a handle open.
1435 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1436 	 * result in this test being false, so we go in and take the locks.
1437 	 */
1438 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1439 		JBUFFER_TRACE(jh, "fastpath");
1440 		if (unlikely(jh->b_transaction !=
1441 			     journal->j_running_transaction)) {
1442 			printk(KERN_ERR "JBD2: %s: "
1443 			       "jh->b_transaction (%llu, %p, %u) != "
1444 			       "journal->j_running_transaction (%p, %u)\n",
1445 			       journal->j_devname,
1446 			       (unsigned long long) bh->b_blocknr,
1447 			       jh->b_transaction,
1448 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1449 			       journal->j_running_transaction,
1450 			       journal->j_running_transaction ?
1451 			       journal->j_running_transaction->t_tid : 0);
1452 			ret = -EINVAL;
1453 		}
1454 		goto out_unlock_bh;
1455 	}
1456 
1457 	set_buffer_jbddirty(bh);
1458 
1459 	/*
1460 	 * Metadata already on the current transaction list doesn't
1461 	 * need to be filed.  Metadata on another transaction's list must
1462 	 * be committing, and will be refiled once the commit completes:
1463 	 * leave it alone for now.
1464 	 */
1465 	if (jh->b_transaction != transaction) {
1466 		JBUFFER_TRACE(jh, "already on other transaction");
1467 		if (unlikely(((jh->b_transaction !=
1468 			       journal->j_committing_transaction)) ||
1469 			     (jh->b_next_transaction != transaction))) {
1470 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1471 			       "bad jh for block %llu: "
1472 			       "transaction (%p, %u), "
1473 			       "jh->b_transaction (%p, %u), "
1474 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1475 			       journal->j_devname,
1476 			       (unsigned long long) bh->b_blocknr,
1477 			       transaction, transaction->t_tid,
1478 			       jh->b_transaction,
1479 			       jh->b_transaction ?
1480 			       jh->b_transaction->t_tid : 0,
1481 			       jh->b_next_transaction,
1482 			       jh->b_next_transaction ?
1483 			       jh->b_next_transaction->t_tid : 0,
1484 			       jh->b_jlist);
1485 			WARN_ON(1);
1486 			ret = -EINVAL;
1487 		}
1488 		/* And this case is illegal: we can't reuse another
1489 		 * transaction's data buffer, ever. */
1490 		goto out_unlock_bh;
1491 	}
1492 
1493 	/* That test should have eliminated the following case: */
1494 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1495 
1496 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1497 	spin_lock(&journal->j_list_lock);
1498 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1499 	spin_unlock(&journal->j_list_lock);
1500 out_unlock_bh:
1501 	jbd_unlock_bh_state(bh);
1502 out:
1503 	JBUFFER_TRACE(jh, "exit");
1504 	return ret;
1505 }
1506 
1507 /**
1508  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1509  * @handle: transaction handle
1510  * @bh:     bh to 'forget'
1511  *
1512  * We can only do the bforget if there are no commits pending against the
1513  * buffer.  If the buffer is dirty in the current running transaction we
1514  * can safely unlink it.
1515  *
1516  * bh may not be a journalled buffer at all - it may be a non-JBD
1517  * buffer which came off the hashtable.  Check for this.
1518  *
1519  * Decrements bh->b_count by one.
1520  *
1521  * Allow this call even if the handle has aborted --- it may be part of
1522  * the caller's cleanup after an abort.
1523  */
1524 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1525 {
1526 	transaction_t *transaction = handle->h_transaction;
1527 	journal_t *journal;
1528 	struct journal_head *jh;
1529 	int drop_reserve = 0;
1530 	int err = 0;
1531 	int was_modified = 0;
1532 
1533 	if (is_handle_aborted(handle))
1534 		return -EROFS;
1535 	journal = transaction->t_journal;
1536 
1537 	BUFFER_TRACE(bh, "entry");
1538 
1539 	jbd_lock_bh_state(bh);
1540 
1541 	if (!buffer_jbd(bh))
1542 		goto not_jbd;
1543 	jh = bh2jh(bh);
1544 
1545 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1546 	 * Don't do any jbd operations, and return an error. */
1547 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1548 			 "inconsistent data on disk")) {
1549 		err = -EIO;
1550 		goto not_jbd;
1551 	}
1552 
1553 	/* keep track of whether or not this transaction modified us */
1554 	was_modified = jh->b_modified;
1555 
1556 	/*
1557 	 * The buffer's going from the transaction, we must drop
1558 	 * all references -bzzz
1559 	 */
1560 	jh->b_modified = 0;
1561 
1562 	if (jh->b_transaction == transaction) {
1563 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1564 
1565 		/* If we are forgetting a buffer which is already part
1566 		 * of this transaction, then we can just drop it from
1567 		 * the transaction immediately. */
1568 		clear_buffer_dirty(bh);
1569 		clear_buffer_jbddirty(bh);
1570 
1571 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1572 
1573 		/*
1574 		 * we only want to drop a reference if this transaction
1575 		 * modified the buffer
1576 		 */
1577 		if (was_modified)
1578 			drop_reserve = 1;
1579 
1580 		/*
1581 		 * We are no longer going to journal this buffer.
1582 		 * However, the commit of this transaction is still
1583 		 * important to the buffer: the delete that we are now
1584 		 * processing might obsolete an old log entry, so by
1585 		 * committing, we can satisfy the buffer's checkpoint.
1586 		 *
1587 		 * So, if we have a checkpoint on the buffer, we should
1588 		 * now refile the buffer on our BJ_Forget list so that
1589 		 * we know to remove the checkpoint after we commit.
1590 		 */
1591 
1592 		spin_lock(&journal->j_list_lock);
1593 		if (jh->b_cp_transaction) {
1594 			__jbd2_journal_temp_unlink_buffer(jh);
1595 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1596 		} else {
1597 			__jbd2_journal_unfile_buffer(jh);
1598 			if (!buffer_jbd(bh)) {
1599 				spin_unlock(&journal->j_list_lock);
1600 				jbd_unlock_bh_state(bh);
1601 				__bforget(bh);
1602 				goto drop;
1603 			}
1604 		}
1605 		spin_unlock(&journal->j_list_lock);
1606 	} else if (jh->b_transaction) {
1607 		J_ASSERT_JH(jh, (jh->b_transaction ==
1608 				 journal->j_committing_transaction));
1609 		/* However, if the buffer is still owned by a prior
1610 		 * (committing) transaction, we can't drop it yet... */
1611 		JBUFFER_TRACE(jh, "belongs to older transaction");
1612 		/* ... but we CAN drop it from the new transaction if we
1613 		 * have also modified it since the original commit. */
1614 
1615 		if (jh->b_next_transaction) {
1616 			J_ASSERT(jh->b_next_transaction == transaction);
1617 			spin_lock(&journal->j_list_lock);
1618 			jh->b_next_transaction = NULL;
1619 			spin_unlock(&journal->j_list_lock);
1620 
1621 			/*
1622 			 * only drop a reference if this transaction modified
1623 			 * the buffer
1624 			 */
1625 			if (was_modified)
1626 				drop_reserve = 1;
1627 		}
1628 	}
1629 
1630 not_jbd:
1631 	jbd_unlock_bh_state(bh);
1632 	__brelse(bh);
1633 drop:
1634 	if (drop_reserve) {
1635 		/* no need to reserve log space for this block -bzzz */
1636 		handle->h_buffer_credits++;
1637 	}
1638 	return err;
1639 }
1640 
1641 /**
1642  * int jbd2_journal_stop() - complete a transaction
1643  * @handle: transaction to complete.
1644  *
1645  * All done for a particular handle.
1646  *
1647  * There is not much action needed here.  We just return any remaining
1648  * buffer credits to the transaction and remove the handle.  The only
1649  * complication is that we need to start a commit operation if the
1650  * filesystem is marked for synchronous update.
1651  *
1652  * jbd2_journal_stop itself will not usually return an error, but it may
1653  * do so in unusual circumstances.  In particular, expect it to
1654  * return -EIO if a jbd2_journal_abort has been executed since the
1655  * transaction began.
1656  */
1657 int jbd2_journal_stop(handle_t *handle)
1658 {
1659 	transaction_t *transaction = handle->h_transaction;
1660 	journal_t *journal;
1661 	int err = 0, wait_for_commit = 0;
1662 	tid_t tid;
1663 	pid_t pid;
1664 
1665 	if (!transaction) {
1666 		/*
1667 		 * Handle is already detached from the transaction so
1668 		 * there is nothing to do other than decrease a refcount,
1669 		 * or free the handle if refcount drops to zero
1670 		 */
1671 		if (--handle->h_ref > 0) {
1672 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1673 							 handle->h_ref);
1674 			return err;
1675 		} else {
1676 			if (handle->h_rsv_handle)
1677 				jbd2_free_handle(handle->h_rsv_handle);
1678 			goto free_and_exit;
1679 		}
1680 	}
1681 	journal = transaction->t_journal;
1682 
1683 	J_ASSERT(journal_current_handle() == handle);
1684 
1685 	if (is_handle_aborted(handle))
1686 		err = -EIO;
1687 	else
1688 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1689 
1690 	if (--handle->h_ref > 0) {
1691 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1692 			  handle->h_ref);
1693 		return err;
1694 	}
1695 
1696 	jbd_debug(4, "Handle %p going down\n", handle);
1697 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1698 				transaction->t_tid,
1699 				handle->h_type, handle->h_line_no,
1700 				jiffies - handle->h_start_jiffies,
1701 				handle->h_sync, handle->h_requested_credits,
1702 				(handle->h_requested_credits -
1703 				 handle->h_buffer_credits));
1704 
1705 	/*
1706 	 * Implement synchronous transaction batching.  If the handle
1707 	 * was synchronous, don't force a commit immediately.  Let's
1708 	 * yield and let another thread piggyback onto this
1709 	 * transaction.  Keep doing that while new threads continue to
1710 	 * arrive.  It doesn't cost much - we're about to run a commit
1711 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1712 	 * operations by 30x or more...
1713 	 *
1714 	 * We try and optimize the sleep time against what the
1715 	 * underlying disk can do, instead of having a static sleep
1716 	 * time.  This is useful for the case where our storage is so
1717 	 * fast that it is more optimal to go ahead and force a flush
1718 	 * and wait for the transaction to be committed than it is to
1719 	 * wait for an arbitrary amount of time for new writers to
1720 	 * join the transaction.  We achieve this by measuring how
1721 	 * long it takes to commit a transaction, and compare it with
1722 	 * how long this transaction has been running, and if run time
1723 	 * < commit time then we sleep for the delta and commit.  This
1724 	 * greatly helps super fast disks that would see slowdowns as
1725 	 * more threads started doing fsyncs.
1726 	 *
1727 	 * But don't do this if this process was the most recent one
1728 	 * to perform a synchronous write.  We do this to detect the
1729 	 * case where a single process is doing a stream of sync
1730 	 * writes.  No point in waiting for joiners in that case.
1731 	 *
1732 	 * Setting max_batch_time to 0 disables this completely.
1733 	 */
1734 	pid = current->pid;
1735 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1736 	    journal->j_max_batch_time) {
1737 		u64 commit_time, trans_time;
1738 
1739 		journal->j_last_sync_writer = pid;
1740 
1741 		read_lock(&journal->j_state_lock);
1742 		commit_time = journal->j_average_commit_time;
1743 		read_unlock(&journal->j_state_lock);
1744 
1745 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1746 						   transaction->t_start_time));
1747 
1748 		commit_time = max_t(u64, commit_time,
1749 				    1000*journal->j_min_batch_time);
1750 		commit_time = min_t(u64, commit_time,
1751 				    1000*journal->j_max_batch_time);
1752 
1753 		if (trans_time < commit_time) {
1754 			ktime_t expires = ktime_add_ns(ktime_get(),
1755 						       commit_time);
1756 			set_current_state(TASK_UNINTERRUPTIBLE);
1757 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1758 		}
1759 	}
1760 
1761 	if (handle->h_sync)
1762 		transaction->t_synchronous_commit = 1;
1763 	current->journal_info = NULL;
1764 	atomic_sub(handle->h_buffer_credits,
1765 		   &transaction->t_outstanding_credits);
1766 
1767 	/*
1768 	 * If the handle is marked SYNC, we need to set another commit
1769 	 * going!  We also want to force a commit if the current
1770 	 * transaction is occupying too much of the log, or if the
1771 	 * transaction is too old now.
1772 	 */
1773 	if (handle->h_sync ||
1774 	    (atomic_read(&transaction->t_outstanding_credits) >
1775 	     journal->j_max_transaction_buffers) ||
1776 	    time_after_eq(jiffies, transaction->t_expires)) {
1777 		/* Do this even for aborted journals: an abort still
1778 		 * completes the commit thread, it just doesn't write
1779 		 * anything to disk. */
1780 
1781 		jbd_debug(2, "transaction too old, requesting commit for "
1782 					"handle %p\n", handle);
1783 		/* This is non-blocking */
1784 		jbd2_log_start_commit(journal, transaction->t_tid);
1785 
1786 		/*
1787 		 * Special case: JBD2_SYNC synchronous updates require us
1788 		 * to wait for the commit to complete.
1789 		 */
1790 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1791 			wait_for_commit = 1;
1792 	}
1793 
1794 	/*
1795 	 * Once we drop t_updates, if it goes to zero the transaction
1796 	 * could start committing on us and eventually disappear.  So
1797 	 * once we do this, we must not dereference transaction
1798 	 * pointer again.
1799 	 */
1800 	tid = transaction->t_tid;
1801 	if (atomic_dec_and_test(&transaction->t_updates)) {
1802 		wake_up(&journal->j_wait_updates);
1803 		if (journal->j_barrier_count)
1804 			wake_up(&journal->j_wait_transaction_locked);
1805 	}
1806 
1807 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1808 
1809 	if (wait_for_commit)
1810 		err = jbd2_log_wait_commit(journal, tid);
1811 
1812 	if (handle->h_rsv_handle)
1813 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1814 free_and_exit:
1815 	/*
1816 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1817 	 * original alloc context.
1818 	 */
1819 	memalloc_nofs_restore(handle->saved_alloc_context);
1820 	jbd2_free_handle(handle);
1821 	return err;
1822 }
1823 
1824 /*
1825  *
1826  * List management code snippets: various functions for manipulating the
1827  * transaction buffer lists.
1828  *
1829  */
1830 
1831 /*
1832  * Append a buffer to a transaction list, given the transaction's list head
1833  * pointer.
1834  *
1835  * j_list_lock is held.
1836  *
1837  * jbd_lock_bh_state(jh2bh(jh)) is held.
1838  */
1839 
1840 static inline void
1841 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1842 {
1843 	if (!*list) {
1844 		jh->b_tnext = jh->b_tprev = jh;
1845 		*list = jh;
1846 	} else {
1847 		/* Insert at the tail of the list to preserve order */
1848 		struct journal_head *first = *list, *last = first->b_tprev;
1849 		jh->b_tprev = last;
1850 		jh->b_tnext = first;
1851 		last->b_tnext = first->b_tprev = jh;
1852 	}
1853 }
1854 
1855 /*
1856  * Remove a buffer from a transaction list, given the transaction's list
1857  * head pointer.
1858  *
1859  * Called with j_list_lock held, and the journal may not be locked.
1860  *
1861  * jbd_lock_bh_state(jh2bh(jh)) is held.
1862  */
1863 
1864 static inline void
1865 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1866 {
1867 	if (*list == jh) {
1868 		*list = jh->b_tnext;
1869 		if (*list == jh)
1870 			*list = NULL;
1871 	}
1872 	jh->b_tprev->b_tnext = jh->b_tnext;
1873 	jh->b_tnext->b_tprev = jh->b_tprev;
1874 }
1875 
1876 /*
1877  * Remove a buffer from the appropriate transaction list.
1878  *
1879  * Note that this function can *change* the value of
1880  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1881  * t_reserved_list.  If the caller is holding onto a copy of one of these
1882  * pointers, it could go bad.  Generally the caller needs to re-read the
1883  * pointer from the transaction_t.
1884  *
1885  * Called under j_list_lock.
1886  */
1887 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1888 {
1889 	struct journal_head **list = NULL;
1890 	transaction_t *transaction;
1891 	struct buffer_head *bh = jh2bh(jh);
1892 
1893 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1894 	transaction = jh->b_transaction;
1895 	if (transaction)
1896 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1897 
1898 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1899 	if (jh->b_jlist != BJ_None)
1900 		J_ASSERT_JH(jh, transaction != NULL);
1901 
1902 	switch (jh->b_jlist) {
1903 	case BJ_None:
1904 		return;
1905 	case BJ_Metadata:
1906 		transaction->t_nr_buffers--;
1907 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1908 		list = &transaction->t_buffers;
1909 		break;
1910 	case BJ_Forget:
1911 		list = &transaction->t_forget;
1912 		break;
1913 	case BJ_Shadow:
1914 		list = &transaction->t_shadow_list;
1915 		break;
1916 	case BJ_Reserved:
1917 		list = &transaction->t_reserved_list;
1918 		break;
1919 	}
1920 
1921 	__blist_del_buffer(list, jh);
1922 	jh->b_jlist = BJ_None;
1923 	if (transaction && is_journal_aborted(transaction->t_journal))
1924 		clear_buffer_jbddirty(bh);
1925 	else if (test_clear_buffer_jbddirty(bh))
1926 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1927 }
1928 
1929 /*
1930  * Remove buffer from all transactions.
1931  *
1932  * Called with bh_state lock and j_list_lock
1933  *
1934  * jh and bh may be already freed when this function returns.
1935  */
1936 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1937 {
1938 	__jbd2_journal_temp_unlink_buffer(jh);
1939 	jh->b_transaction = NULL;
1940 	jbd2_journal_put_journal_head(jh);
1941 }
1942 
1943 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1944 {
1945 	struct buffer_head *bh = jh2bh(jh);
1946 
1947 	/* Get reference so that buffer cannot be freed before we unlock it */
1948 	get_bh(bh);
1949 	jbd_lock_bh_state(bh);
1950 	spin_lock(&journal->j_list_lock);
1951 	__jbd2_journal_unfile_buffer(jh);
1952 	spin_unlock(&journal->j_list_lock);
1953 	jbd_unlock_bh_state(bh);
1954 	__brelse(bh);
1955 }
1956 
1957 /*
1958  * Called from jbd2_journal_try_to_free_buffers().
1959  *
1960  * Called under jbd_lock_bh_state(bh)
1961  */
1962 static void
1963 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1964 {
1965 	struct journal_head *jh;
1966 
1967 	jh = bh2jh(bh);
1968 
1969 	if (buffer_locked(bh) || buffer_dirty(bh))
1970 		goto out;
1971 
1972 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1973 		goto out;
1974 
1975 	spin_lock(&journal->j_list_lock);
1976 	if (jh->b_cp_transaction != NULL) {
1977 		/* written-back checkpointed metadata buffer */
1978 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1979 		__jbd2_journal_remove_checkpoint(jh);
1980 	}
1981 	spin_unlock(&journal->j_list_lock);
1982 out:
1983 	return;
1984 }
1985 
1986 /**
1987  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1988  * @journal: journal for operation
1989  * @page: to try and free
1990  * @gfp_mask: we use the mask to detect how hard should we try to release
1991  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1992  * code to release the buffers.
1993  *
1994  *
1995  * For all the buffers on this page,
1996  * if they are fully written out ordered data, move them onto BUF_CLEAN
1997  * so try_to_free_buffers() can reap them.
1998  *
1999  * This function returns non-zero if we wish try_to_free_buffers()
2000  * to be called. We do this if the page is releasable by try_to_free_buffers().
2001  * We also do it if the page has locked or dirty buffers and the caller wants
2002  * us to perform sync or async writeout.
2003  *
2004  * This complicates JBD locking somewhat.  We aren't protected by the
2005  * BKL here.  We wish to remove the buffer from its committing or
2006  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2007  *
2008  * This may *change* the value of transaction_t->t_datalist, so anyone
2009  * who looks at t_datalist needs to lock against this function.
2010  *
2011  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2012  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2013  * will come out of the lock with the buffer dirty, which makes it
2014  * ineligible for release here.
2015  *
2016  * Who else is affected by this?  hmm...  Really the only contender
2017  * is do_get_write_access() - it could be looking at the buffer while
2018  * journal_try_to_free_buffer() is changing its state.  But that
2019  * cannot happen because we never reallocate freed data as metadata
2020  * while the data is part of a transaction.  Yes?
2021  *
2022  * Return 0 on failure, 1 on success
2023  */
2024 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2025 				struct page *page, gfp_t gfp_mask)
2026 {
2027 	struct buffer_head *head;
2028 	struct buffer_head *bh;
2029 	int ret = 0;
2030 
2031 	J_ASSERT(PageLocked(page));
2032 
2033 	head = page_buffers(page);
2034 	bh = head;
2035 	do {
2036 		struct journal_head *jh;
2037 
2038 		/*
2039 		 * We take our own ref against the journal_head here to avoid
2040 		 * having to add tons of locking around each instance of
2041 		 * jbd2_journal_put_journal_head().
2042 		 */
2043 		jh = jbd2_journal_grab_journal_head(bh);
2044 		if (!jh)
2045 			continue;
2046 
2047 		jbd_lock_bh_state(bh);
2048 		__journal_try_to_free_buffer(journal, bh);
2049 		jbd2_journal_put_journal_head(jh);
2050 		jbd_unlock_bh_state(bh);
2051 		if (buffer_jbd(bh))
2052 			goto busy;
2053 	} while ((bh = bh->b_this_page) != head);
2054 
2055 	ret = try_to_free_buffers(page);
2056 
2057 busy:
2058 	return ret;
2059 }
2060 
2061 /*
2062  * This buffer is no longer needed.  If it is on an older transaction's
2063  * checkpoint list we need to record it on this transaction's forget list
2064  * to pin this buffer (and hence its checkpointing transaction) down until
2065  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2066  * release it.
2067  * Returns non-zero if JBD no longer has an interest in the buffer.
2068  *
2069  * Called under j_list_lock.
2070  *
2071  * Called under jbd_lock_bh_state(bh).
2072  */
2073 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2074 {
2075 	int may_free = 1;
2076 	struct buffer_head *bh = jh2bh(jh);
2077 
2078 	if (jh->b_cp_transaction) {
2079 		JBUFFER_TRACE(jh, "on running+cp transaction");
2080 		__jbd2_journal_temp_unlink_buffer(jh);
2081 		/*
2082 		 * We don't want to write the buffer anymore, clear the
2083 		 * bit so that we don't confuse checks in
2084 		 * __journal_file_buffer
2085 		 */
2086 		clear_buffer_dirty(bh);
2087 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2088 		may_free = 0;
2089 	} else {
2090 		JBUFFER_TRACE(jh, "on running transaction");
2091 		__jbd2_journal_unfile_buffer(jh);
2092 	}
2093 	return may_free;
2094 }
2095 
2096 /*
2097  * jbd2_journal_invalidatepage
2098  *
2099  * This code is tricky.  It has a number of cases to deal with.
2100  *
2101  * There are two invariants which this code relies on:
2102  *
2103  * i_size must be updated on disk before we start calling invalidatepage on the
2104  * data.
2105  *
2106  *  This is done in ext3 by defining an ext3_setattr method which
2107  *  updates i_size before truncate gets going.  By maintaining this
2108  *  invariant, we can be sure that it is safe to throw away any buffers
2109  *  attached to the current transaction: once the transaction commits,
2110  *  we know that the data will not be needed.
2111  *
2112  *  Note however that we can *not* throw away data belonging to the
2113  *  previous, committing transaction!
2114  *
2115  * Any disk blocks which *are* part of the previous, committing
2116  * transaction (and which therefore cannot be discarded immediately) are
2117  * not going to be reused in the new running transaction
2118  *
2119  *  The bitmap committed_data images guarantee this: any block which is
2120  *  allocated in one transaction and removed in the next will be marked
2121  *  as in-use in the committed_data bitmap, so cannot be reused until
2122  *  the next transaction to delete the block commits.  This means that
2123  *  leaving committing buffers dirty is quite safe: the disk blocks
2124  *  cannot be reallocated to a different file and so buffer aliasing is
2125  *  not possible.
2126  *
2127  *
2128  * The above applies mainly to ordered data mode.  In writeback mode we
2129  * don't make guarantees about the order in which data hits disk --- in
2130  * particular we don't guarantee that new dirty data is flushed before
2131  * transaction commit --- so it is always safe just to discard data
2132  * immediately in that mode.  --sct
2133  */
2134 
2135 /*
2136  * The journal_unmap_buffer helper function returns zero if the buffer
2137  * concerned remains pinned as an anonymous buffer belonging to an older
2138  * transaction.
2139  *
2140  * We're outside-transaction here.  Either or both of j_running_transaction
2141  * and j_committing_transaction may be NULL.
2142  */
2143 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2144 				int partial_page)
2145 {
2146 	transaction_t *transaction;
2147 	struct journal_head *jh;
2148 	int may_free = 1;
2149 
2150 	BUFFER_TRACE(bh, "entry");
2151 
2152 	/*
2153 	 * It is safe to proceed here without the j_list_lock because the
2154 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2155 	 * holding the page lock. --sct
2156 	 */
2157 
2158 	if (!buffer_jbd(bh))
2159 		goto zap_buffer_unlocked;
2160 
2161 	/* OK, we have data buffer in journaled mode */
2162 	write_lock(&journal->j_state_lock);
2163 	jbd_lock_bh_state(bh);
2164 	spin_lock(&journal->j_list_lock);
2165 
2166 	jh = jbd2_journal_grab_journal_head(bh);
2167 	if (!jh)
2168 		goto zap_buffer_no_jh;
2169 
2170 	/*
2171 	 * We cannot remove the buffer from checkpoint lists until the
2172 	 * transaction adding inode to orphan list (let's call it T)
2173 	 * is committed.  Otherwise if the transaction changing the
2174 	 * buffer would be cleaned from the journal before T is
2175 	 * committed, a crash will cause that the correct contents of
2176 	 * the buffer will be lost.  On the other hand we have to
2177 	 * clear the buffer dirty bit at latest at the moment when the
2178 	 * transaction marking the buffer as freed in the filesystem
2179 	 * structures is committed because from that moment on the
2180 	 * block can be reallocated and used by a different page.
2181 	 * Since the block hasn't been freed yet but the inode has
2182 	 * already been added to orphan list, it is safe for us to add
2183 	 * the buffer to BJ_Forget list of the newest transaction.
2184 	 *
2185 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2186 	 * because the buffer_head may be attached to the page straddling
2187 	 * i_size (can happen only when blocksize < pagesize) and thus the
2188 	 * buffer_head can be reused when the file is extended again. So we end
2189 	 * up keeping around invalidated buffers attached to transactions'
2190 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2191 	 * the transaction this buffer was modified in.
2192 	 */
2193 	transaction = jh->b_transaction;
2194 	if (transaction == NULL) {
2195 		/* First case: not on any transaction.  If it
2196 		 * has no checkpoint link, then we can zap it:
2197 		 * it's a writeback-mode buffer so we don't care
2198 		 * if it hits disk safely. */
2199 		if (!jh->b_cp_transaction) {
2200 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2201 			goto zap_buffer;
2202 		}
2203 
2204 		if (!buffer_dirty(bh)) {
2205 			/* bdflush has written it.  We can drop it now */
2206 			__jbd2_journal_remove_checkpoint(jh);
2207 			goto zap_buffer;
2208 		}
2209 
2210 		/* OK, it must be in the journal but still not
2211 		 * written fully to disk: it's metadata or
2212 		 * journaled data... */
2213 
2214 		if (journal->j_running_transaction) {
2215 			/* ... and once the current transaction has
2216 			 * committed, the buffer won't be needed any
2217 			 * longer. */
2218 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2219 			may_free = __dispose_buffer(jh,
2220 					journal->j_running_transaction);
2221 			goto zap_buffer;
2222 		} else {
2223 			/* There is no currently-running transaction. So the
2224 			 * orphan record which we wrote for this file must have
2225 			 * passed into commit.  We must attach this buffer to
2226 			 * the committing transaction, if it exists. */
2227 			if (journal->j_committing_transaction) {
2228 				JBUFFER_TRACE(jh, "give to committing trans");
2229 				may_free = __dispose_buffer(jh,
2230 					journal->j_committing_transaction);
2231 				goto zap_buffer;
2232 			} else {
2233 				/* The orphan record's transaction has
2234 				 * committed.  We can cleanse this buffer */
2235 				clear_buffer_jbddirty(bh);
2236 				__jbd2_journal_remove_checkpoint(jh);
2237 				goto zap_buffer;
2238 			}
2239 		}
2240 	} else if (transaction == journal->j_committing_transaction) {
2241 		JBUFFER_TRACE(jh, "on committing transaction");
2242 		/*
2243 		 * The buffer is committing, we simply cannot touch
2244 		 * it. If the page is straddling i_size we have to wait
2245 		 * for commit and try again.
2246 		 */
2247 		if (partial_page) {
2248 			jbd2_journal_put_journal_head(jh);
2249 			spin_unlock(&journal->j_list_lock);
2250 			jbd_unlock_bh_state(bh);
2251 			write_unlock(&journal->j_state_lock);
2252 			return -EBUSY;
2253 		}
2254 		/*
2255 		 * OK, buffer won't be reachable after truncate. We just set
2256 		 * j_next_transaction to the running transaction (if there is
2257 		 * one) and mark buffer as freed so that commit code knows it
2258 		 * should clear dirty bits when it is done with the buffer.
2259 		 */
2260 		set_buffer_freed(bh);
2261 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2262 			jh->b_next_transaction = journal->j_running_transaction;
2263 		jbd2_journal_put_journal_head(jh);
2264 		spin_unlock(&journal->j_list_lock);
2265 		jbd_unlock_bh_state(bh);
2266 		write_unlock(&journal->j_state_lock);
2267 		return 0;
2268 	} else {
2269 		/* Good, the buffer belongs to the running transaction.
2270 		 * We are writing our own transaction's data, not any
2271 		 * previous one's, so it is safe to throw it away
2272 		 * (remember that we expect the filesystem to have set
2273 		 * i_size already for this truncate so recovery will not
2274 		 * expose the disk blocks we are discarding here.) */
2275 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2276 		JBUFFER_TRACE(jh, "on running transaction");
2277 		may_free = __dispose_buffer(jh, transaction);
2278 	}
2279 
2280 zap_buffer:
2281 	/*
2282 	 * This is tricky. Although the buffer is truncated, it may be reused
2283 	 * if blocksize < pagesize and it is attached to the page straddling
2284 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2285 	 * running transaction, journal_get_write_access() won't clear
2286 	 * b_modified and credit accounting gets confused. So clear b_modified
2287 	 * here.
2288 	 */
2289 	jh->b_modified = 0;
2290 	jbd2_journal_put_journal_head(jh);
2291 zap_buffer_no_jh:
2292 	spin_unlock(&journal->j_list_lock);
2293 	jbd_unlock_bh_state(bh);
2294 	write_unlock(&journal->j_state_lock);
2295 zap_buffer_unlocked:
2296 	clear_buffer_dirty(bh);
2297 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2298 	clear_buffer_mapped(bh);
2299 	clear_buffer_req(bh);
2300 	clear_buffer_new(bh);
2301 	clear_buffer_delay(bh);
2302 	clear_buffer_unwritten(bh);
2303 	bh->b_bdev = NULL;
2304 	return may_free;
2305 }
2306 
2307 /**
2308  * void jbd2_journal_invalidatepage()
2309  * @journal: journal to use for flush...
2310  * @page:    page to flush
2311  * @offset:  start of the range to invalidate
2312  * @length:  length of the range to invalidate
2313  *
2314  * Reap page buffers containing data after in the specified range in page.
2315  * Can return -EBUSY if buffers are part of the committing transaction and
2316  * the page is straddling i_size. Caller then has to wait for current commit
2317  * and try again.
2318  */
2319 int jbd2_journal_invalidatepage(journal_t *journal,
2320 				struct page *page,
2321 				unsigned int offset,
2322 				unsigned int length)
2323 {
2324 	struct buffer_head *head, *bh, *next;
2325 	unsigned int stop = offset + length;
2326 	unsigned int curr_off = 0;
2327 	int partial_page = (offset || length < PAGE_SIZE);
2328 	int may_free = 1;
2329 	int ret = 0;
2330 
2331 	if (!PageLocked(page))
2332 		BUG();
2333 	if (!page_has_buffers(page))
2334 		return 0;
2335 
2336 	BUG_ON(stop > PAGE_SIZE || stop < length);
2337 
2338 	/* We will potentially be playing with lists other than just the
2339 	 * data lists (especially for journaled data mode), so be
2340 	 * cautious in our locking. */
2341 
2342 	head = bh = page_buffers(page);
2343 	do {
2344 		unsigned int next_off = curr_off + bh->b_size;
2345 		next = bh->b_this_page;
2346 
2347 		if (next_off > stop)
2348 			return 0;
2349 
2350 		if (offset <= curr_off) {
2351 			/* This block is wholly outside the truncation point */
2352 			lock_buffer(bh);
2353 			ret = journal_unmap_buffer(journal, bh, partial_page);
2354 			unlock_buffer(bh);
2355 			if (ret < 0)
2356 				return ret;
2357 			may_free &= ret;
2358 		}
2359 		curr_off = next_off;
2360 		bh = next;
2361 
2362 	} while (bh != head);
2363 
2364 	if (!partial_page) {
2365 		if (may_free && try_to_free_buffers(page))
2366 			J_ASSERT(!page_has_buffers(page));
2367 	}
2368 	return 0;
2369 }
2370 
2371 /*
2372  * File a buffer on the given transaction list.
2373  */
2374 void __jbd2_journal_file_buffer(struct journal_head *jh,
2375 			transaction_t *transaction, int jlist)
2376 {
2377 	struct journal_head **list = NULL;
2378 	int was_dirty = 0;
2379 	struct buffer_head *bh = jh2bh(jh);
2380 
2381 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2382 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2383 
2384 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2385 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2386 				jh->b_transaction == NULL);
2387 
2388 	if (jh->b_transaction && jh->b_jlist == jlist)
2389 		return;
2390 
2391 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2392 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2393 		/*
2394 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2395 		 * instead of buffer_dirty. We should not see a dirty bit set
2396 		 * here because we clear it in do_get_write_access but e.g.
2397 		 * tune2fs can modify the sb and set the dirty bit at any time
2398 		 * so we try to gracefully handle that.
2399 		 */
2400 		if (buffer_dirty(bh))
2401 			warn_dirty_buffer(bh);
2402 		if (test_clear_buffer_dirty(bh) ||
2403 		    test_clear_buffer_jbddirty(bh))
2404 			was_dirty = 1;
2405 	}
2406 
2407 	if (jh->b_transaction)
2408 		__jbd2_journal_temp_unlink_buffer(jh);
2409 	else
2410 		jbd2_journal_grab_journal_head(bh);
2411 	jh->b_transaction = transaction;
2412 
2413 	switch (jlist) {
2414 	case BJ_None:
2415 		J_ASSERT_JH(jh, !jh->b_committed_data);
2416 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2417 		return;
2418 	case BJ_Metadata:
2419 		transaction->t_nr_buffers++;
2420 		list = &transaction->t_buffers;
2421 		break;
2422 	case BJ_Forget:
2423 		list = &transaction->t_forget;
2424 		break;
2425 	case BJ_Shadow:
2426 		list = &transaction->t_shadow_list;
2427 		break;
2428 	case BJ_Reserved:
2429 		list = &transaction->t_reserved_list;
2430 		break;
2431 	}
2432 
2433 	__blist_add_buffer(list, jh);
2434 	jh->b_jlist = jlist;
2435 
2436 	if (was_dirty)
2437 		set_buffer_jbddirty(bh);
2438 }
2439 
2440 void jbd2_journal_file_buffer(struct journal_head *jh,
2441 				transaction_t *transaction, int jlist)
2442 {
2443 	jbd_lock_bh_state(jh2bh(jh));
2444 	spin_lock(&transaction->t_journal->j_list_lock);
2445 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2446 	spin_unlock(&transaction->t_journal->j_list_lock);
2447 	jbd_unlock_bh_state(jh2bh(jh));
2448 }
2449 
2450 /*
2451  * Remove a buffer from its current buffer list in preparation for
2452  * dropping it from its current transaction entirely.  If the buffer has
2453  * already started to be used by a subsequent transaction, refile the
2454  * buffer on that transaction's metadata list.
2455  *
2456  * Called under j_list_lock
2457  * Called under jbd_lock_bh_state(jh2bh(jh))
2458  *
2459  * jh and bh may be already free when this function returns
2460  */
2461 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2462 {
2463 	int was_dirty, jlist;
2464 	struct buffer_head *bh = jh2bh(jh);
2465 
2466 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2467 	if (jh->b_transaction)
2468 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2469 
2470 	/* If the buffer is now unused, just drop it. */
2471 	if (jh->b_next_transaction == NULL) {
2472 		__jbd2_journal_unfile_buffer(jh);
2473 		return;
2474 	}
2475 
2476 	/*
2477 	 * It has been modified by a later transaction: add it to the new
2478 	 * transaction's metadata list.
2479 	 */
2480 
2481 	was_dirty = test_clear_buffer_jbddirty(bh);
2482 	__jbd2_journal_temp_unlink_buffer(jh);
2483 	/*
2484 	 * We set b_transaction here because b_next_transaction will inherit
2485 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2486 	 * take a new one.
2487 	 */
2488 	jh->b_transaction = jh->b_next_transaction;
2489 	jh->b_next_transaction = NULL;
2490 	if (buffer_freed(bh))
2491 		jlist = BJ_Forget;
2492 	else if (jh->b_modified)
2493 		jlist = BJ_Metadata;
2494 	else
2495 		jlist = BJ_Reserved;
2496 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2497 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2498 
2499 	if (was_dirty)
2500 		set_buffer_jbddirty(bh);
2501 }
2502 
2503 /*
2504  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2505  * bh reference so that we can safely unlock bh.
2506  *
2507  * The jh and bh may be freed by this call.
2508  */
2509 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2510 {
2511 	struct buffer_head *bh = jh2bh(jh);
2512 
2513 	/* Get reference so that buffer cannot be freed before we unlock it */
2514 	get_bh(bh);
2515 	jbd_lock_bh_state(bh);
2516 	spin_lock(&journal->j_list_lock);
2517 	__jbd2_journal_refile_buffer(jh);
2518 	jbd_unlock_bh_state(bh);
2519 	spin_unlock(&journal->j_list_lock);
2520 	__brelse(bh);
2521 }
2522 
2523 /*
2524  * File inode in the inode list of the handle's transaction
2525  */
2526 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2527 				   unsigned long flags)
2528 {
2529 	transaction_t *transaction = handle->h_transaction;
2530 	journal_t *journal;
2531 
2532 	if (is_handle_aborted(handle))
2533 		return -EROFS;
2534 	journal = transaction->t_journal;
2535 
2536 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2537 			transaction->t_tid);
2538 
2539 	/*
2540 	 * First check whether inode isn't already on the transaction's
2541 	 * lists without taking the lock. Note that this check is safe
2542 	 * without the lock as we cannot race with somebody removing inode
2543 	 * from the transaction. The reason is that we remove inode from the
2544 	 * transaction only in journal_release_jbd_inode() and when we commit
2545 	 * the transaction. We are guarded from the first case by holding
2546 	 * a reference to the inode. We are safe against the second case
2547 	 * because if jinode->i_transaction == transaction, commit code
2548 	 * cannot touch the transaction because we hold reference to it,
2549 	 * and if jinode->i_next_transaction == transaction, commit code
2550 	 * will only file the inode where we want it.
2551 	 */
2552 	if ((jinode->i_transaction == transaction ||
2553 	    jinode->i_next_transaction == transaction) &&
2554 	    (jinode->i_flags & flags) == flags)
2555 		return 0;
2556 
2557 	spin_lock(&journal->j_list_lock);
2558 	jinode->i_flags |= flags;
2559 	/* Is inode already attached where we need it? */
2560 	if (jinode->i_transaction == transaction ||
2561 	    jinode->i_next_transaction == transaction)
2562 		goto done;
2563 
2564 	/*
2565 	 * We only ever set this variable to 1 so the test is safe. Since
2566 	 * t_need_data_flush is likely to be set, we do the test to save some
2567 	 * cacheline bouncing
2568 	 */
2569 	if (!transaction->t_need_data_flush)
2570 		transaction->t_need_data_flush = 1;
2571 	/* On some different transaction's list - should be
2572 	 * the committing one */
2573 	if (jinode->i_transaction) {
2574 		J_ASSERT(jinode->i_next_transaction == NULL);
2575 		J_ASSERT(jinode->i_transaction ==
2576 					journal->j_committing_transaction);
2577 		jinode->i_next_transaction = transaction;
2578 		goto done;
2579 	}
2580 	/* Not on any transaction list... */
2581 	J_ASSERT(!jinode->i_next_transaction);
2582 	jinode->i_transaction = transaction;
2583 	list_add(&jinode->i_list, &transaction->t_inode_list);
2584 done:
2585 	spin_unlock(&journal->j_list_lock);
2586 
2587 	return 0;
2588 }
2589 
2590 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2591 {
2592 	return jbd2_journal_file_inode(handle, jinode,
2593 				       JI_WRITE_DATA | JI_WAIT_DATA);
2594 }
2595 
2596 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2597 {
2598 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2599 }
2600 
2601 /*
2602  * File truncate and transaction commit interact with each other in a
2603  * non-trivial way.  If a transaction writing data block A is
2604  * committing, we cannot discard the data by truncate until we have
2605  * written them.  Otherwise if we crashed after the transaction with
2606  * write has committed but before the transaction with truncate has
2607  * committed, we could see stale data in block A.  This function is a
2608  * helper to solve this problem.  It starts writeout of the truncated
2609  * part in case it is in the committing transaction.
2610  *
2611  * Filesystem code must call this function when inode is journaled in
2612  * ordered mode before truncation happens and after the inode has been
2613  * placed on orphan list with the new inode size. The second condition
2614  * avoids the race that someone writes new data and we start
2615  * committing the transaction after this function has been called but
2616  * before a transaction for truncate is started (and furthermore it
2617  * allows us to optimize the case where the addition to orphan list
2618  * happens in the same transaction as write --- we don't have to write
2619  * any data in such case).
2620  */
2621 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2622 					struct jbd2_inode *jinode,
2623 					loff_t new_size)
2624 {
2625 	transaction_t *inode_trans, *commit_trans;
2626 	int ret = 0;
2627 
2628 	/* This is a quick check to avoid locking if not necessary */
2629 	if (!jinode->i_transaction)
2630 		goto out;
2631 	/* Locks are here just to force reading of recent values, it is
2632 	 * enough that the transaction was not committing before we started
2633 	 * a transaction adding the inode to orphan list */
2634 	read_lock(&journal->j_state_lock);
2635 	commit_trans = journal->j_committing_transaction;
2636 	read_unlock(&journal->j_state_lock);
2637 	spin_lock(&journal->j_list_lock);
2638 	inode_trans = jinode->i_transaction;
2639 	spin_unlock(&journal->j_list_lock);
2640 	if (inode_trans == commit_trans) {
2641 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2642 			new_size, LLONG_MAX);
2643 		if (ret)
2644 			jbd2_journal_abort(journal, ret);
2645 	}
2646 out:
2647 	return ret;
2648 }
2649