xref: /openbmc/linux/fs/jbd2/transaction.c (revision 545e4006)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 
29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
30 
31 /*
32  * jbd2_get_transaction: obtain a new transaction_t object.
33  *
34  * Simply allocate and initialise a new transaction.  Create it in
35  * RUNNING state and add it to the current journal (which should not
36  * have an existing running transaction: we only make a new transaction
37  * once we have started to commit the old one).
38  *
39  * Preconditions:
40  *	The journal MUST be locked.  We don't perform atomic mallocs on the
41  *	new transaction	and we can't block without protecting against other
42  *	processes trying to touch the journal while it is in transition.
43  *
44  */
45 
46 static transaction_t *
47 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
48 {
49 	transaction->t_journal = journal;
50 	transaction->t_state = T_RUNNING;
51 	transaction->t_tid = journal->j_transaction_sequence++;
52 	transaction->t_expires = jiffies + journal->j_commit_interval;
53 	spin_lock_init(&transaction->t_handle_lock);
54 	INIT_LIST_HEAD(&transaction->t_inode_list);
55 
56 	/* Set up the commit timer for the new transaction. */
57 	journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
58 	add_timer(&journal->j_commit_timer);
59 
60 	J_ASSERT(journal->j_running_transaction == NULL);
61 	journal->j_running_transaction = transaction;
62 	transaction->t_max_wait = 0;
63 	transaction->t_start = jiffies;
64 
65 	return transaction;
66 }
67 
68 /*
69  * Handle management.
70  *
71  * A handle_t is an object which represents a single atomic update to a
72  * filesystem, and which tracks all of the modifications which form part
73  * of that one update.
74  */
75 
76 /*
77  * start_this_handle: Given a handle, deal with any locking or stalling
78  * needed to make sure that there is enough journal space for the handle
79  * to begin.  Attach the handle to a transaction and set up the
80  * transaction's buffer credits.
81  */
82 
83 static int start_this_handle(journal_t *journal, handle_t *handle)
84 {
85 	transaction_t *transaction;
86 	int needed;
87 	int nblocks = handle->h_buffer_credits;
88 	transaction_t *new_transaction = NULL;
89 	int ret = 0;
90 	unsigned long ts = jiffies;
91 
92 	if (nblocks > journal->j_max_transaction_buffers) {
93 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
94 		       current->comm, nblocks,
95 		       journal->j_max_transaction_buffers);
96 		ret = -ENOSPC;
97 		goto out;
98 	}
99 
100 alloc_transaction:
101 	if (!journal->j_running_transaction) {
102 		new_transaction = kzalloc(sizeof(*new_transaction),
103 						GFP_NOFS|__GFP_NOFAIL);
104 		if (!new_transaction) {
105 			ret = -ENOMEM;
106 			goto out;
107 		}
108 	}
109 
110 	jbd_debug(3, "New handle %p going live.\n", handle);
111 
112 repeat:
113 
114 	/*
115 	 * We need to hold j_state_lock until t_updates has been incremented,
116 	 * for proper journal barrier handling
117 	 */
118 	spin_lock(&journal->j_state_lock);
119 repeat_locked:
120 	if (is_journal_aborted(journal) ||
121 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
122 		spin_unlock(&journal->j_state_lock);
123 		ret = -EROFS;
124 		goto out;
125 	}
126 
127 	/* Wait on the journal's transaction barrier if necessary */
128 	if (journal->j_barrier_count) {
129 		spin_unlock(&journal->j_state_lock);
130 		wait_event(journal->j_wait_transaction_locked,
131 				journal->j_barrier_count == 0);
132 		goto repeat;
133 	}
134 
135 	if (!journal->j_running_transaction) {
136 		if (!new_transaction) {
137 			spin_unlock(&journal->j_state_lock);
138 			goto alloc_transaction;
139 		}
140 		jbd2_get_transaction(journal, new_transaction);
141 		new_transaction = NULL;
142 	}
143 
144 	transaction = journal->j_running_transaction;
145 
146 	/*
147 	 * If the current transaction is locked down for commit, wait for the
148 	 * lock to be released.
149 	 */
150 	if (transaction->t_state == T_LOCKED) {
151 		DEFINE_WAIT(wait);
152 
153 		prepare_to_wait(&journal->j_wait_transaction_locked,
154 					&wait, TASK_UNINTERRUPTIBLE);
155 		spin_unlock(&journal->j_state_lock);
156 		schedule();
157 		finish_wait(&journal->j_wait_transaction_locked, &wait);
158 		goto repeat;
159 	}
160 
161 	/*
162 	 * If there is not enough space left in the log to write all potential
163 	 * buffers requested by this operation, we need to stall pending a log
164 	 * checkpoint to free some more log space.
165 	 */
166 	spin_lock(&transaction->t_handle_lock);
167 	needed = transaction->t_outstanding_credits + nblocks;
168 
169 	if (needed > journal->j_max_transaction_buffers) {
170 		/*
171 		 * If the current transaction is already too large, then start
172 		 * to commit it: we can then go back and attach this handle to
173 		 * a new transaction.
174 		 */
175 		DEFINE_WAIT(wait);
176 
177 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
178 		spin_unlock(&transaction->t_handle_lock);
179 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180 				TASK_UNINTERRUPTIBLE);
181 		__jbd2_log_start_commit(journal, transaction->t_tid);
182 		spin_unlock(&journal->j_state_lock);
183 		schedule();
184 		finish_wait(&journal->j_wait_transaction_locked, &wait);
185 		goto repeat;
186 	}
187 
188 	/*
189 	 * The commit code assumes that it can get enough log space
190 	 * without forcing a checkpoint.  This is *critical* for
191 	 * correctness: a checkpoint of a buffer which is also
192 	 * associated with a committing transaction creates a deadlock,
193 	 * so commit simply cannot force through checkpoints.
194 	 *
195 	 * We must therefore ensure the necessary space in the journal
196 	 * *before* starting to dirty potentially checkpointed buffers
197 	 * in the new transaction.
198 	 *
199 	 * The worst part is, any transaction currently committing can
200 	 * reduce the free space arbitrarily.  Be careful to account for
201 	 * those buffers when checkpointing.
202 	 */
203 
204 	/*
205 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
207 	 * the committing transaction.  Really, we only need to give it
208 	 * committing_transaction->t_outstanding_credits plus "enough" for
209 	 * the log control blocks.
210 	 * Also, this test is inconsitent with the matching one in
211 	 * jbd2_journal_extend().
212 	 */
213 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
214 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215 		spin_unlock(&transaction->t_handle_lock);
216 		__jbd2_log_wait_for_space(journal);
217 		goto repeat_locked;
218 	}
219 
220 	/* OK, account for the buffers that this operation expects to
221 	 * use and add the handle to the running transaction. */
222 
223 	if (time_after(transaction->t_start, ts)) {
224 		ts = jbd2_time_diff(ts, transaction->t_start);
225 		if (ts > transaction->t_max_wait)
226 			transaction->t_max_wait = ts;
227 	}
228 
229 	handle->h_transaction = transaction;
230 	transaction->t_outstanding_credits += nblocks;
231 	transaction->t_updates++;
232 	transaction->t_handle_count++;
233 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
234 		  handle, nblocks, transaction->t_outstanding_credits,
235 		  __jbd2_log_space_left(journal));
236 	spin_unlock(&transaction->t_handle_lock);
237 	spin_unlock(&journal->j_state_lock);
238 out:
239 	if (unlikely(new_transaction))		/* It's usually NULL */
240 		kfree(new_transaction);
241 	return ret;
242 }
243 
244 static struct lock_class_key jbd2_handle_key;
245 
246 /* Allocate a new handle.  This should probably be in a slab... */
247 static handle_t *new_handle(int nblocks)
248 {
249 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
250 	if (!handle)
251 		return NULL;
252 	memset(handle, 0, sizeof(*handle));
253 	handle->h_buffer_credits = nblocks;
254 	handle->h_ref = 1;
255 
256 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
257 						&jbd2_handle_key, 0);
258 
259 	return handle;
260 }
261 
262 /**
263  * handle_t *jbd2_journal_start() - Obtain a new handle.
264  * @journal: Journal to start transaction on.
265  * @nblocks: number of block buffer we might modify
266  *
267  * We make sure that the transaction can guarantee at least nblocks of
268  * modified buffers in the log.  We block until the log can guarantee
269  * that much space.
270  *
271  * This function is visible to journal users (like ext3fs), so is not
272  * called with the journal already locked.
273  *
274  * Return a pointer to a newly allocated handle, or NULL on failure
275  */
276 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
277 {
278 	handle_t *handle = journal_current_handle();
279 	int err;
280 
281 	if (!journal)
282 		return ERR_PTR(-EROFS);
283 
284 	if (handle) {
285 		J_ASSERT(handle->h_transaction->t_journal == journal);
286 		handle->h_ref++;
287 		return handle;
288 	}
289 
290 	handle = new_handle(nblocks);
291 	if (!handle)
292 		return ERR_PTR(-ENOMEM);
293 
294 	current->journal_info = handle;
295 
296 	err = start_this_handle(journal, handle);
297 	if (err < 0) {
298 		jbd2_free_handle(handle);
299 		current->journal_info = NULL;
300 		handle = ERR_PTR(err);
301 		goto out;
302 	}
303 
304 	lock_acquire(&handle->h_lockdep_map, 0, 0, 0, 2, _THIS_IP_);
305 out:
306 	return handle;
307 }
308 
309 /**
310  * int jbd2_journal_extend() - extend buffer credits.
311  * @handle:  handle to 'extend'
312  * @nblocks: nr blocks to try to extend by.
313  *
314  * Some transactions, such as large extends and truncates, can be done
315  * atomically all at once or in several stages.  The operation requests
316  * a credit for a number of buffer modications in advance, but can
317  * extend its credit if it needs more.
318  *
319  * jbd2_journal_extend tries to give the running handle more buffer credits.
320  * It does not guarantee that allocation - this is a best-effort only.
321  * The calling process MUST be able to deal cleanly with a failure to
322  * extend here.
323  *
324  * Return 0 on success, non-zero on failure.
325  *
326  * return code < 0 implies an error
327  * return code > 0 implies normal transaction-full status.
328  */
329 int jbd2_journal_extend(handle_t *handle, int nblocks)
330 {
331 	transaction_t *transaction = handle->h_transaction;
332 	journal_t *journal = transaction->t_journal;
333 	int result;
334 	int wanted;
335 
336 	result = -EIO;
337 	if (is_handle_aborted(handle))
338 		goto out;
339 
340 	result = 1;
341 
342 	spin_lock(&journal->j_state_lock);
343 
344 	/* Don't extend a locked-down transaction! */
345 	if (handle->h_transaction->t_state != T_RUNNING) {
346 		jbd_debug(3, "denied handle %p %d blocks: "
347 			  "transaction not running\n", handle, nblocks);
348 		goto error_out;
349 	}
350 
351 	spin_lock(&transaction->t_handle_lock);
352 	wanted = transaction->t_outstanding_credits + nblocks;
353 
354 	if (wanted > journal->j_max_transaction_buffers) {
355 		jbd_debug(3, "denied handle %p %d blocks: "
356 			  "transaction too large\n", handle, nblocks);
357 		goto unlock;
358 	}
359 
360 	if (wanted > __jbd2_log_space_left(journal)) {
361 		jbd_debug(3, "denied handle %p %d blocks: "
362 			  "insufficient log space\n", handle, nblocks);
363 		goto unlock;
364 	}
365 
366 	handle->h_buffer_credits += nblocks;
367 	transaction->t_outstanding_credits += nblocks;
368 	result = 0;
369 
370 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
371 unlock:
372 	spin_unlock(&transaction->t_handle_lock);
373 error_out:
374 	spin_unlock(&journal->j_state_lock);
375 out:
376 	return result;
377 }
378 
379 
380 /**
381  * int jbd2_journal_restart() - restart a handle .
382  * @handle:  handle to restart
383  * @nblocks: nr credits requested
384  *
385  * Restart a handle for a multi-transaction filesystem
386  * operation.
387  *
388  * If the jbd2_journal_extend() call above fails to grant new buffer credits
389  * to a running handle, a call to jbd2_journal_restart will commit the
390  * handle's transaction so far and reattach the handle to a new
391  * transaction capabable of guaranteeing the requested number of
392  * credits.
393  */
394 
395 int jbd2_journal_restart(handle_t *handle, int nblocks)
396 {
397 	transaction_t *transaction = handle->h_transaction;
398 	journal_t *journal = transaction->t_journal;
399 	int ret;
400 
401 	/* If we've had an abort of any type, don't even think about
402 	 * actually doing the restart! */
403 	if (is_handle_aborted(handle))
404 		return 0;
405 
406 	/*
407 	 * First unlink the handle from its current transaction, and start the
408 	 * commit on that.
409 	 */
410 	J_ASSERT(transaction->t_updates > 0);
411 	J_ASSERT(journal_current_handle() == handle);
412 
413 	spin_lock(&journal->j_state_lock);
414 	spin_lock(&transaction->t_handle_lock);
415 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
416 	transaction->t_updates--;
417 
418 	if (!transaction->t_updates)
419 		wake_up(&journal->j_wait_updates);
420 	spin_unlock(&transaction->t_handle_lock);
421 
422 	jbd_debug(2, "restarting handle %p\n", handle);
423 	__jbd2_log_start_commit(journal, transaction->t_tid);
424 	spin_unlock(&journal->j_state_lock);
425 
426 	handle->h_buffer_credits = nblocks;
427 	ret = start_this_handle(journal, handle);
428 	return ret;
429 }
430 
431 
432 /**
433  * void jbd2_journal_lock_updates () - establish a transaction barrier.
434  * @journal:  Journal to establish a barrier on.
435  *
436  * This locks out any further updates from being started, and blocks
437  * until all existing updates have completed, returning only once the
438  * journal is in a quiescent state with no updates running.
439  *
440  * The journal lock should not be held on entry.
441  */
442 void jbd2_journal_lock_updates(journal_t *journal)
443 {
444 	DEFINE_WAIT(wait);
445 
446 	spin_lock(&journal->j_state_lock);
447 	++journal->j_barrier_count;
448 
449 	/* Wait until there are no running updates */
450 	while (1) {
451 		transaction_t *transaction = journal->j_running_transaction;
452 
453 		if (!transaction)
454 			break;
455 
456 		spin_lock(&transaction->t_handle_lock);
457 		if (!transaction->t_updates) {
458 			spin_unlock(&transaction->t_handle_lock);
459 			break;
460 		}
461 		prepare_to_wait(&journal->j_wait_updates, &wait,
462 				TASK_UNINTERRUPTIBLE);
463 		spin_unlock(&transaction->t_handle_lock);
464 		spin_unlock(&journal->j_state_lock);
465 		schedule();
466 		finish_wait(&journal->j_wait_updates, &wait);
467 		spin_lock(&journal->j_state_lock);
468 	}
469 	spin_unlock(&journal->j_state_lock);
470 
471 	/*
472 	 * We have now established a barrier against other normal updates, but
473 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
474 	 * to make sure that we serialise special journal-locked operations
475 	 * too.
476 	 */
477 	mutex_lock(&journal->j_barrier);
478 }
479 
480 /**
481  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
482  * @journal:  Journal to release the barrier on.
483  *
484  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
485  *
486  * Should be called without the journal lock held.
487  */
488 void jbd2_journal_unlock_updates (journal_t *journal)
489 {
490 	J_ASSERT(journal->j_barrier_count != 0);
491 
492 	mutex_unlock(&journal->j_barrier);
493 	spin_lock(&journal->j_state_lock);
494 	--journal->j_barrier_count;
495 	spin_unlock(&journal->j_state_lock);
496 	wake_up(&journal->j_wait_transaction_locked);
497 }
498 
499 /*
500  * Report any unexpected dirty buffers which turn up.  Normally those
501  * indicate an error, but they can occur if the user is running (say)
502  * tune2fs to modify the live filesystem, so we need the option of
503  * continuing as gracefully as possible.  #
504  *
505  * The caller should already hold the journal lock and
506  * j_list_lock spinlock: most callers will need those anyway
507  * in order to probe the buffer's journaling state safely.
508  */
509 static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
510 {
511 	int jlist;
512 
513 	/* If this buffer is one which might reasonably be dirty
514 	 * --- ie. data, or not part of this journal --- then
515 	 * we're OK to leave it alone, but otherwise we need to
516 	 * move the dirty bit to the journal's own internal
517 	 * JBDDirty bit. */
518 	jlist = jh->b_jlist;
519 
520 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
521 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
522 		struct buffer_head *bh = jh2bh(jh);
523 
524 		if (test_clear_buffer_dirty(bh))
525 			set_buffer_jbddirty(bh);
526 	}
527 }
528 
529 /*
530  * If the buffer is already part of the current transaction, then there
531  * is nothing we need to do.  If it is already part of a prior
532  * transaction which we are still committing to disk, then we need to
533  * make sure that we do not overwrite the old copy: we do copy-out to
534  * preserve the copy going to disk.  We also account the buffer against
535  * the handle's metadata buffer credits (unless the buffer is already
536  * part of the transaction, that is).
537  *
538  */
539 static int
540 do_get_write_access(handle_t *handle, struct journal_head *jh,
541 			int force_copy)
542 {
543 	struct buffer_head *bh;
544 	transaction_t *transaction;
545 	journal_t *journal;
546 	int error;
547 	char *frozen_buffer = NULL;
548 	int need_copy = 0;
549 
550 	if (is_handle_aborted(handle))
551 		return -EROFS;
552 
553 	transaction = handle->h_transaction;
554 	journal = transaction->t_journal;
555 
556 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
557 
558 	JBUFFER_TRACE(jh, "entry");
559 repeat:
560 	bh = jh2bh(jh);
561 
562 	/* @@@ Need to check for errors here at some point. */
563 
564 	lock_buffer(bh);
565 	jbd_lock_bh_state(bh);
566 
567 	/* We now hold the buffer lock so it is safe to query the buffer
568 	 * state.  Is the buffer dirty?
569 	 *
570 	 * If so, there are two possibilities.  The buffer may be
571 	 * non-journaled, and undergoing a quite legitimate writeback.
572 	 * Otherwise, it is journaled, and we don't expect dirty buffers
573 	 * in that state (the buffers should be marked JBD_Dirty
574 	 * instead.)  So either the IO is being done under our own
575 	 * control and this is a bug, or it's a third party IO such as
576 	 * dump(8) (which may leave the buffer scheduled for read ---
577 	 * ie. locked but not dirty) or tune2fs (which may actually have
578 	 * the buffer dirtied, ugh.)  */
579 
580 	if (buffer_dirty(bh)) {
581 		/*
582 		 * First question: is this buffer already part of the current
583 		 * transaction or the existing committing transaction?
584 		 */
585 		if (jh->b_transaction) {
586 			J_ASSERT_JH(jh,
587 				jh->b_transaction == transaction ||
588 				jh->b_transaction ==
589 					journal->j_committing_transaction);
590 			if (jh->b_next_transaction)
591 				J_ASSERT_JH(jh, jh->b_next_transaction ==
592 							transaction);
593 		}
594 		/*
595 		 * In any case we need to clean the dirty flag and we must
596 		 * do it under the buffer lock to be sure we don't race
597 		 * with running write-out.
598 		 */
599 		JBUFFER_TRACE(jh, "Unexpected dirty buffer");
600 		jbd_unexpected_dirty_buffer(jh);
601 	}
602 
603 	unlock_buffer(bh);
604 
605 	error = -EROFS;
606 	if (is_handle_aborted(handle)) {
607 		jbd_unlock_bh_state(bh);
608 		goto out;
609 	}
610 	error = 0;
611 
612 	/*
613 	 * The buffer is already part of this transaction if b_transaction or
614 	 * b_next_transaction points to it
615 	 */
616 	if (jh->b_transaction == transaction ||
617 	    jh->b_next_transaction == transaction)
618 		goto done;
619 
620 	/*
621 	 * this is the first time this transaction is touching this buffer,
622 	 * reset the modified flag
623 	 */
624        jh->b_modified = 0;
625 
626 	/*
627 	 * If there is already a copy-out version of this buffer, then we don't
628 	 * need to make another one
629 	 */
630 	if (jh->b_frozen_data) {
631 		JBUFFER_TRACE(jh, "has frozen data");
632 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
633 		jh->b_next_transaction = transaction;
634 		goto done;
635 	}
636 
637 	/* Is there data here we need to preserve? */
638 
639 	if (jh->b_transaction && jh->b_transaction != transaction) {
640 		JBUFFER_TRACE(jh, "owned by older transaction");
641 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
642 		J_ASSERT_JH(jh, jh->b_transaction ==
643 					journal->j_committing_transaction);
644 
645 		/* There is one case we have to be very careful about.
646 		 * If the committing transaction is currently writing
647 		 * this buffer out to disk and has NOT made a copy-out,
648 		 * then we cannot modify the buffer contents at all
649 		 * right now.  The essence of copy-out is that it is the
650 		 * extra copy, not the primary copy, which gets
651 		 * journaled.  If the primary copy is already going to
652 		 * disk then we cannot do copy-out here. */
653 
654 		if (jh->b_jlist == BJ_Shadow) {
655 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
656 			wait_queue_head_t *wqh;
657 
658 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
659 
660 			JBUFFER_TRACE(jh, "on shadow: sleep");
661 			jbd_unlock_bh_state(bh);
662 			/* commit wakes up all shadow buffers after IO */
663 			for ( ; ; ) {
664 				prepare_to_wait(wqh, &wait.wait,
665 						TASK_UNINTERRUPTIBLE);
666 				if (jh->b_jlist != BJ_Shadow)
667 					break;
668 				schedule();
669 			}
670 			finish_wait(wqh, &wait.wait);
671 			goto repeat;
672 		}
673 
674 		/* Only do the copy if the currently-owning transaction
675 		 * still needs it.  If it is on the Forget list, the
676 		 * committing transaction is past that stage.  The
677 		 * buffer had better remain locked during the kmalloc,
678 		 * but that should be true --- we hold the journal lock
679 		 * still and the buffer is already on the BUF_JOURNAL
680 		 * list so won't be flushed.
681 		 *
682 		 * Subtle point, though: if this is a get_undo_access,
683 		 * then we will be relying on the frozen_data to contain
684 		 * the new value of the committed_data record after the
685 		 * transaction, so we HAVE to force the frozen_data copy
686 		 * in that case. */
687 
688 		if (jh->b_jlist != BJ_Forget || force_copy) {
689 			JBUFFER_TRACE(jh, "generate frozen data");
690 			if (!frozen_buffer) {
691 				JBUFFER_TRACE(jh, "allocate memory for buffer");
692 				jbd_unlock_bh_state(bh);
693 				frozen_buffer =
694 					jbd2_alloc(jh2bh(jh)->b_size,
695 							 GFP_NOFS);
696 				if (!frozen_buffer) {
697 					printk(KERN_EMERG
698 					       "%s: OOM for frozen_buffer\n",
699 					       __func__);
700 					JBUFFER_TRACE(jh, "oom!");
701 					error = -ENOMEM;
702 					jbd_lock_bh_state(bh);
703 					goto done;
704 				}
705 				goto repeat;
706 			}
707 			jh->b_frozen_data = frozen_buffer;
708 			frozen_buffer = NULL;
709 			need_copy = 1;
710 		}
711 		jh->b_next_transaction = transaction;
712 	}
713 
714 
715 	/*
716 	 * Finally, if the buffer is not journaled right now, we need to make
717 	 * sure it doesn't get written to disk before the caller actually
718 	 * commits the new data
719 	 */
720 	if (!jh->b_transaction) {
721 		JBUFFER_TRACE(jh, "no transaction");
722 		J_ASSERT_JH(jh, !jh->b_next_transaction);
723 		jh->b_transaction = transaction;
724 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
725 		spin_lock(&journal->j_list_lock);
726 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
727 		spin_unlock(&journal->j_list_lock);
728 	}
729 
730 done:
731 	if (need_copy) {
732 		struct page *page;
733 		int offset;
734 		char *source;
735 
736 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
737 			    "Possible IO failure.\n");
738 		page = jh2bh(jh)->b_page;
739 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
740 		source = kmap_atomic(page, KM_USER0);
741 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
742 		kunmap_atomic(source, KM_USER0);
743 	}
744 	jbd_unlock_bh_state(bh);
745 
746 	/*
747 	 * If we are about to journal a buffer, then any revoke pending on it is
748 	 * no longer valid
749 	 */
750 	jbd2_journal_cancel_revoke(handle, jh);
751 
752 out:
753 	if (unlikely(frozen_buffer))	/* It's usually NULL */
754 		jbd2_free(frozen_buffer, bh->b_size);
755 
756 	JBUFFER_TRACE(jh, "exit");
757 	return error;
758 }
759 
760 /**
761  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
762  * @handle: transaction to add buffer modifications to
763  * @bh:     bh to be used for metadata writes
764  * @credits: variable that will receive credits for the buffer
765  *
766  * Returns an error code or 0 on success.
767  *
768  * In full data journalling mode the buffer may be of type BJ_AsyncData,
769  * because we're write()ing a buffer which is also part of a shared mapping.
770  */
771 
772 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
773 {
774 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
775 	int rc;
776 
777 	/* We do not want to get caught playing with fields which the
778 	 * log thread also manipulates.  Make sure that the buffer
779 	 * completes any outstanding IO before proceeding. */
780 	rc = do_get_write_access(handle, jh, 0);
781 	jbd2_journal_put_journal_head(jh);
782 	return rc;
783 }
784 
785 
786 /*
787  * When the user wants to journal a newly created buffer_head
788  * (ie. getblk() returned a new buffer and we are going to populate it
789  * manually rather than reading off disk), then we need to keep the
790  * buffer_head locked until it has been completely filled with new
791  * data.  In this case, we should be able to make the assertion that
792  * the bh is not already part of an existing transaction.
793  *
794  * The buffer should already be locked by the caller by this point.
795  * There is no lock ranking violation: it was a newly created,
796  * unlocked buffer beforehand. */
797 
798 /**
799  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
800  * @handle: transaction to new buffer to
801  * @bh: new buffer.
802  *
803  * Call this if you create a new bh.
804  */
805 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
806 {
807 	transaction_t *transaction = handle->h_transaction;
808 	journal_t *journal = transaction->t_journal;
809 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
810 	int err;
811 
812 	jbd_debug(5, "journal_head %p\n", jh);
813 	err = -EROFS;
814 	if (is_handle_aborted(handle))
815 		goto out;
816 	err = 0;
817 
818 	JBUFFER_TRACE(jh, "entry");
819 	/*
820 	 * The buffer may already belong to this transaction due to pre-zeroing
821 	 * in the filesystem's new_block code.  It may also be on the previous,
822 	 * committing transaction's lists, but it HAS to be in Forget state in
823 	 * that case: the transaction must have deleted the buffer for it to be
824 	 * reused here.
825 	 */
826 	jbd_lock_bh_state(bh);
827 	spin_lock(&journal->j_list_lock);
828 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
829 		jh->b_transaction == NULL ||
830 		(jh->b_transaction == journal->j_committing_transaction &&
831 			  jh->b_jlist == BJ_Forget)));
832 
833 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
834 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
835 
836 	if (jh->b_transaction == NULL) {
837 		jh->b_transaction = transaction;
838 
839 		/* first access by this transaction */
840 		jh->b_modified = 0;
841 
842 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
843 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
844 	} else if (jh->b_transaction == journal->j_committing_transaction) {
845 		/* first access by this transaction */
846 		jh->b_modified = 0;
847 
848 		JBUFFER_TRACE(jh, "set next transaction");
849 		jh->b_next_transaction = transaction;
850 	}
851 	spin_unlock(&journal->j_list_lock);
852 	jbd_unlock_bh_state(bh);
853 
854 	/*
855 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
856 	 * blocks which contain freed but then revoked metadata.  We need
857 	 * to cancel the revoke in case we end up freeing it yet again
858 	 * and the reallocating as data - this would cause a second revoke,
859 	 * which hits an assertion error.
860 	 */
861 	JBUFFER_TRACE(jh, "cancelling revoke");
862 	jbd2_journal_cancel_revoke(handle, jh);
863 	jbd2_journal_put_journal_head(jh);
864 out:
865 	return err;
866 }
867 
868 /**
869  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
870  *     non-rewindable consequences
871  * @handle: transaction
872  * @bh: buffer to undo
873  * @credits: store the number of taken credits here (if not NULL)
874  *
875  * Sometimes there is a need to distinguish between metadata which has
876  * been committed to disk and that which has not.  The ext3fs code uses
877  * this for freeing and allocating space, we have to make sure that we
878  * do not reuse freed space until the deallocation has been committed,
879  * since if we overwrote that space we would make the delete
880  * un-rewindable in case of a crash.
881  *
882  * To deal with that, jbd2_journal_get_undo_access requests write access to a
883  * buffer for parts of non-rewindable operations such as delete
884  * operations on the bitmaps.  The journaling code must keep a copy of
885  * the buffer's contents prior to the undo_access call until such time
886  * as we know that the buffer has definitely been committed to disk.
887  *
888  * We never need to know which transaction the committed data is part
889  * of, buffers touched here are guaranteed to be dirtied later and so
890  * will be committed to a new transaction in due course, at which point
891  * we can discard the old committed data pointer.
892  *
893  * Returns error number or 0 on success.
894  */
895 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
896 {
897 	int err;
898 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
899 	char *committed_data = NULL;
900 
901 	JBUFFER_TRACE(jh, "entry");
902 
903 	/*
904 	 * Do this first --- it can drop the journal lock, so we want to
905 	 * make sure that obtaining the committed_data is done
906 	 * atomically wrt. completion of any outstanding commits.
907 	 */
908 	err = do_get_write_access(handle, jh, 1);
909 	if (err)
910 		goto out;
911 
912 repeat:
913 	if (!jh->b_committed_data) {
914 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
915 		if (!committed_data) {
916 			printk(KERN_EMERG "%s: No memory for committed data\n",
917 				__func__);
918 			err = -ENOMEM;
919 			goto out;
920 		}
921 	}
922 
923 	jbd_lock_bh_state(bh);
924 	if (!jh->b_committed_data) {
925 		/* Copy out the current buffer contents into the
926 		 * preserved, committed copy. */
927 		JBUFFER_TRACE(jh, "generate b_committed data");
928 		if (!committed_data) {
929 			jbd_unlock_bh_state(bh);
930 			goto repeat;
931 		}
932 
933 		jh->b_committed_data = committed_data;
934 		committed_data = NULL;
935 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
936 	}
937 	jbd_unlock_bh_state(bh);
938 out:
939 	jbd2_journal_put_journal_head(jh);
940 	if (unlikely(committed_data))
941 		jbd2_free(committed_data, bh->b_size);
942 	return err;
943 }
944 
945 /**
946  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
947  * @handle: transaction to add buffer to.
948  * @bh: buffer to mark
949  *
950  * mark dirty metadata which needs to be journaled as part of the current
951  * transaction.
952  *
953  * The buffer is placed on the transaction's metadata list and is marked
954  * as belonging to the transaction.
955  *
956  * Returns error number or 0 on success.
957  *
958  * Special care needs to be taken if the buffer already belongs to the
959  * current committing transaction (in which case we should have frozen
960  * data present for that commit).  In that case, we don't relink the
961  * buffer: that only gets done when the old transaction finally
962  * completes its commit.
963  */
964 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
965 {
966 	transaction_t *transaction = handle->h_transaction;
967 	journal_t *journal = transaction->t_journal;
968 	struct journal_head *jh = bh2jh(bh);
969 
970 	jbd_debug(5, "journal_head %p\n", jh);
971 	JBUFFER_TRACE(jh, "entry");
972 	if (is_handle_aborted(handle))
973 		goto out;
974 
975 	jbd_lock_bh_state(bh);
976 
977 	if (jh->b_modified == 0) {
978 		/*
979 		 * This buffer's got modified and becoming part
980 		 * of the transaction. This needs to be done
981 		 * once a transaction -bzzz
982 		 */
983 		jh->b_modified = 1;
984 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
985 		handle->h_buffer_credits--;
986 	}
987 
988 	/*
989 	 * fastpath, to avoid expensive locking.  If this buffer is already
990 	 * on the running transaction's metadata list there is nothing to do.
991 	 * Nobody can take it off again because there is a handle open.
992 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
993 	 * result in this test being false, so we go in and take the locks.
994 	 */
995 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
996 		JBUFFER_TRACE(jh, "fastpath");
997 		J_ASSERT_JH(jh, jh->b_transaction ==
998 					journal->j_running_transaction);
999 		goto out_unlock_bh;
1000 	}
1001 
1002 	set_buffer_jbddirty(bh);
1003 
1004 	/*
1005 	 * Metadata already on the current transaction list doesn't
1006 	 * need to be filed.  Metadata on another transaction's list must
1007 	 * be committing, and will be refiled once the commit completes:
1008 	 * leave it alone for now.
1009 	 */
1010 	if (jh->b_transaction != transaction) {
1011 		JBUFFER_TRACE(jh, "already on other transaction");
1012 		J_ASSERT_JH(jh, jh->b_transaction ==
1013 					journal->j_committing_transaction);
1014 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1015 		/* And this case is illegal: we can't reuse another
1016 		 * transaction's data buffer, ever. */
1017 		goto out_unlock_bh;
1018 	}
1019 
1020 	/* That test should have eliminated the following case: */
1021 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1022 
1023 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1024 	spin_lock(&journal->j_list_lock);
1025 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1026 	spin_unlock(&journal->j_list_lock);
1027 out_unlock_bh:
1028 	jbd_unlock_bh_state(bh);
1029 out:
1030 	JBUFFER_TRACE(jh, "exit");
1031 	return 0;
1032 }
1033 
1034 /*
1035  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1036  * updates, if the update decided in the end that it didn't need access.
1037  *
1038  */
1039 void
1040 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1041 {
1042 	BUFFER_TRACE(bh, "entry");
1043 }
1044 
1045 /**
1046  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1047  * @handle: transaction handle
1048  * @bh:     bh to 'forget'
1049  *
1050  * We can only do the bforget if there are no commits pending against the
1051  * buffer.  If the buffer is dirty in the current running transaction we
1052  * can safely unlink it.
1053  *
1054  * bh may not be a journalled buffer at all - it may be a non-JBD
1055  * buffer which came off the hashtable.  Check for this.
1056  *
1057  * Decrements bh->b_count by one.
1058  *
1059  * Allow this call even if the handle has aborted --- it may be part of
1060  * the caller's cleanup after an abort.
1061  */
1062 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1063 {
1064 	transaction_t *transaction = handle->h_transaction;
1065 	journal_t *journal = transaction->t_journal;
1066 	struct journal_head *jh;
1067 	int drop_reserve = 0;
1068 	int err = 0;
1069 	int was_modified = 0;
1070 
1071 	BUFFER_TRACE(bh, "entry");
1072 
1073 	jbd_lock_bh_state(bh);
1074 	spin_lock(&journal->j_list_lock);
1075 
1076 	if (!buffer_jbd(bh))
1077 		goto not_jbd;
1078 	jh = bh2jh(bh);
1079 
1080 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1081 	 * Don't do any jbd operations, and return an error. */
1082 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1083 			 "inconsistent data on disk")) {
1084 		err = -EIO;
1085 		goto not_jbd;
1086 	}
1087 
1088 	/* keep track of wether or not this transaction modified us */
1089 	was_modified = jh->b_modified;
1090 
1091 	/*
1092 	 * The buffer's going from the transaction, we must drop
1093 	 * all references -bzzz
1094 	 */
1095 	jh->b_modified = 0;
1096 
1097 	if (jh->b_transaction == handle->h_transaction) {
1098 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1099 
1100 		/* If we are forgetting a buffer which is already part
1101 		 * of this transaction, then we can just drop it from
1102 		 * the transaction immediately. */
1103 		clear_buffer_dirty(bh);
1104 		clear_buffer_jbddirty(bh);
1105 
1106 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1107 
1108 		/*
1109 		 * we only want to drop a reference if this transaction
1110 		 * modified the buffer
1111 		 */
1112 		if (was_modified)
1113 			drop_reserve = 1;
1114 
1115 		/*
1116 		 * We are no longer going to journal this buffer.
1117 		 * However, the commit of this transaction is still
1118 		 * important to the buffer: the delete that we are now
1119 		 * processing might obsolete an old log entry, so by
1120 		 * committing, we can satisfy the buffer's checkpoint.
1121 		 *
1122 		 * So, if we have a checkpoint on the buffer, we should
1123 		 * now refile the buffer on our BJ_Forget list so that
1124 		 * we know to remove the checkpoint after we commit.
1125 		 */
1126 
1127 		if (jh->b_cp_transaction) {
1128 			__jbd2_journal_temp_unlink_buffer(jh);
1129 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1130 		} else {
1131 			__jbd2_journal_unfile_buffer(jh);
1132 			jbd2_journal_remove_journal_head(bh);
1133 			__brelse(bh);
1134 			if (!buffer_jbd(bh)) {
1135 				spin_unlock(&journal->j_list_lock);
1136 				jbd_unlock_bh_state(bh);
1137 				__bforget(bh);
1138 				goto drop;
1139 			}
1140 		}
1141 	} else if (jh->b_transaction) {
1142 		J_ASSERT_JH(jh, (jh->b_transaction ==
1143 				 journal->j_committing_transaction));
1144 		/* However, if the buffer is still owned by a prior
1145 		 * (committing) transaction, we can't drop it yet... */
1146 		JBUFFER_TRACE(jh, "belongs to older transaction");
1147 		/* ... but we CAN drop it from the new transaction if we
1148 		 * have also modified it since the original commit. */
1149 
1150 		if (jh->b_next_transaction) {
1151 			J_ASSERT(jh->b_next_transaction == transaction);
1152 			jh->b_next_transaction = NULL;
1153 
1154 			/*
1155 			 * only drop a reference if this transaction modified
1156 			 * the buffer
1157 			 */
1158 			if (was_modified)
1159 				drop_reserve = 1;
1160 		}
1161 	}
1162 
1163 not_jbd:
1164 	spin_unlock(&journal->j_list_lock);
1165 	jbd_unlock_bh_state(bh);
1166 	__brelse(bh);
1167 drop:
1168 	if (drop_reserve) {
1169 		/* no need to reserve log space for this block -bzzz */
1170 		handle->h_buffer_credits++;
1171 	}
1172 	return err;
1173 }
1174 
1175 /**
1176  * int jbd2_journal_stop() - complete a transaction
1177  * @handle: tranaction to complete.
1178  *
1179  * All done for a particular handle.
1180  *
1181  * There is not much action needed here.  We just return any remaining
1182  * buffer credits to the transaction and remove the handle.  The only
1183  * complication is that we need to start a commit operation if the
1184  * filesystem is marked for synchronous update.
1185  *
1186  * jbd2_journal_stop itself will not usually return an error, but it may
1187  * do so in unusual circumstances.  In particular, expect it to
1188  * return -EIO if a jbd2_journal_abort has been executed since the
1189  * transaction began.
1190  */
1191 int jbd2_journal_stop(handle_t *handle)
1192 {
1193 	transaction_t *transaction = handle->h_transaction;
1194 	journal_t *journal = transaction->t_journal;
1195 	int old_handle_count, err;
1196 	pid_t pid;
1197 
1198 	J_ASSERT(journal_current_handle() == handle);
1199 
1200 	if (is_handle_aborted(handle))
1201 		err = -EIO;
1202 	else {
1203 		J_ASSERT(transaction->t_updates > 0);
1204 		err = 0;
1205 	}
1206 
1207 	if (--handle->h_ref > 0) {
1208 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1209 			  handle->h_ref);
1210 		return err;
1211 	}
1212 
1213 	jbd_debug(4, "Handle %p going down\n", handle);
1214 
1215 	/*
1216 	 * Implement synchronous transaction batching.  If the handle
1217 	 * was synchronous, don't force a commit immediately.  Let's
1218 	 * yield and let another thread piggyback onto this transaction.
1219 	 * Keep doing that while new threads continue to arrive.
1220 	 * It doesn't cost much - we're about to run a commit and sleep
1221 	 * on IO anyway.  Speeds up many-threaded, many-dir operations
1222 	 * by 30x or more...
1223 	 *
1224 	 * But don't do this if this process was the most recent one to
1225 	 * perform a synchronous write.  We do this to detect the case where a
1226 	 * single process is doing a stream of sync writes.  No point in waiting
1227 	 * for joiners in that case.
1228 	 */
1229 	pid = current->pid;
1230 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1231 		journal->j_last_sync_writer = pid;
1232 		do {
1233 			old_handle_count = transaction->t_handle_count;
1234 			schedule_timeout_uninterruptible(1);
1235 		} while (old_handle_count != transaction->t_handle_count);
1236 	}
1237 
1238 	current->journal_info = NULL;
1239 	spin_lock(&journal->j_state_lock);
1240 	spin_lock(&transaction->t_handle_lock);
1241 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1242 	transaction->t_updates--;
1243 	if (!transaction->t_updates) {
1244 		wake_up(&journal->j_wait_updates);
1245 		if (journal->j_barrier_count)
1246 			wake_up(&journal->j_wait_transaction_locked);
1247 	}
1248 
1249 	/*
1250 	 * If the handle is marked SYNC, we need to set another commit
1251 	 * going!  We also want to force a commit if the current
1252 	 * transaction is occupying too much of the log, or if the
1253 	 * transaction is too old now.
1254 	 */
1255 	if (handle->h_sync ||
1256 			transaction->t_outstanding_credits >
1257 				journal->j_max_transaction_buffers ||
1258 			time_after_eq(jiffies, transaction->t_expires)) {
1259 		/* Do this even for aborted journals: an abort still
1260 		 * completes the commit thread, it just doesn't write
1261 		 * anything to disk. */
1262 		tid_t tid = transaction->t_tid;
1263 
1264 		spin_unlock(&transaction->t_handle_lock);
1265 		jbd_debug(2, "transaction too old, requesting commit for "
1266 					"handle %p\n", handle);
1267 		/* This is non-blocking */
1268 		__jbd2_log_start_commit(journal, transaction->t_tid);
1269 		spin_unlock(&journal->j_state_lock);
1270 
1271 		/*
1272 		 * Special case: JBD2_SYNC synchronous updates require us
1273 		 * to wait for the commit to complete.
1274 		 */
1275 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1276 			err = jbd2_log_wait_commit(journal, tid);
1277 	} else {
1278 		spin_unlock(&transaction->t_handle_lock);
1279 		spin_unlock(&journal->j_state_lock);
1280 	}
1281 
1282 	lock_release(&handle->h_lockdep_map, 1, _THIS_IP_);
1283 
1284 	jbd2_free_handle(handle);
1285 	return err;
1286 }
1287 
1288 /**
1289  * int jbd2_journal_force_commit() - force any uncommitted transactions
1290  * @journal: journal to force
1291  *
1292  * For synchronous operations: force any uncommitted transactions
1293  * to disk.  May seem kludgy, but it reuses all the handle batching
1294  * code in a very simple manner.
1295  */
1296 int jbd2_journal_force_commit(journal_t *journal)
1297 {
1298 	handle_t *handle;
1299 	int ret;
1300 
1301 	handle = jbd2_journal_start(journal, 1);
1302 	if (IS_ERR(handle)) {
1303 		ret = PTR_ERR(handle);
1304 	} else {
1305 		handle->h_sync = 1;
1306 		ret = jbd2_journal_stop(handle);
1307 	}
1308 	return ret;
1309 }
1310 
1311 /*
1312  *
1313  * List management code snippets: various functions for manipulating the
1314  * transaction buffer lists.
1315  *
1316  */
1317 
1318 /*
1319  * Append a buffer to a transaction list, given the transaction's list head
1320  * pointer.
1321  *
1322  * j_list_lock is held.
1323  *
1324  * jbd_lock_bh_state(jh2bh(jh)) is held.
1325  */
1326 
1327 static inline void
1328 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1329 {
1330 	if (!*list) {
1331 		jh->b_tnext = jh->b_tprev = jh;
1332 		*list = jh;
1333 	} else {
1334 		/* Insert at the tail of the list to preserve order */
1335 		struct journal_head *first = *list, *last = first->b_tprev;
1336 		jh->b_tprev = last;
1337 		jh->b_tnext = first;
1338 		last->b_tnext = first->b_tprev = jh;
1339 	}
1340 }
1341 
1342 /*
1343  * Remove a buffer from a transaction list, given the transaction's list
1344  * head pointer.
1345  *
1346  * Called with j_list_lock held, and the journal may not be locked.
1347  *
1348  * jbd_lock_bh_state(jh2bh(jh)) is held.
1349  */
1350 
1351 static inline void
1352 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1353 {
1354 	if (*list == jh) {
1355 		*list = jh->b_tnext;
1356 		if (*list == jh)
1357 			*list = NULL;
1358 	}
1359 	jh->b_tprev->b_tnext = jh->b_tnext;
1360 	jh->b_tnext->b_tprev = jh->b_tprev;
1361 }
1362 
1363 /*
1364  * Remove a buffer from the appropriate transaction list.
1365  *
1366  * Note that this function can *change* the value of
1367  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1368  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1369  * of these pointers, it could go bad.  Generally the caller needs to re-read
1370  * the pointer from the transaction_t.
1371  *
1372  * Called under j_list_lock.  The journal may not be locked.
1373  */
1374 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1375 {
1376 	struct journal_head **list = NULL;
1377 	transaction_t *transaction;
1378 	struct buffer_head *bh = jh2bh(jh);
1379 
1380 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1381 	transaction = jh->b_transaction;
1382 	if (transaction)
1383 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1384 
1385 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1386 	if (jh->b_jlist != BJ_None)
1387 		J_ASSERT_JH(jh, transaction != NULL);
1388 
1389 	switch (jh->b_jlist) {
1390 	case BJ_None:
1391 		return;
1392 	case BJ_Metadata:
1393 		transaction->t_nr_buffers--;
1394 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1395 		list = &transaction->t_buffers;
1396 		break;
1397 	case BJ_Forget:
1398 		list = &transaction->t_forget;
1399 		break;
1400 	case BJ_IO:
1401 		list = &transaction->t_iobuf_list;
1402 		break;
1403 	case BJ_Shadow:
1404 		list = &transaction->t_shadow_list;
1405 		break;
1406 	case BJ_LogCtl:
1407 		list = &transaction->t_log_list;
1408 		break;
1409 	case BJ_Reserved:
1410 		list = &transaction->t_reserved_list;
1411 		break;
1412 	}
1413 
1414 	__blist_del_buffer(list, jh);
1415 	jh->b_jlist = BJ_None;
1416 	if (test_clear_buffer_jbddirty(bh))
1417 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1418 }
1419 
1420 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1421 {
1422 	__jbd2_journal_temp_unlink_buffer(jh);
1423 	jh->b_transaction = NULL;
1424 }
1425 
1426 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1427 {
1428 	jbd_lock_bh_state(jh2bh(jh));
1429 	spin_lock(&journal->j_list_lock);
1430 	__jbd2_journal_unfile_buffer(jh);
1431 	spin_unlock(&journal->j_list_lock);
1432 	jbd_unlock_bh_state(jh2bh(jh));
1433 }
1434 
1435 /*
1436  * Called from jbd2_journal_try_to_free_buffers().
1437  *
1438  * Called under jbd_lock_bh_state(bh)
1439  */
1440 static void
1441 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1442 {
1443 	struct journal_head *jh;
1444 
1445 	jh = bh2jh(bh);
1446 
1447 	if (buffer_locked(bh) || buffer_dirty(bh))
1448 		goto out;
1449 
1450 	if (jh->b_next_transaction != NULL)
1451 		goto out;
1452 
1453 	spin_lock(&journal->j_list_lock);
1454 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1455 		/* written-back checkpointed metadata buffer */
1456 		if (jh->b_jlist == BJ_None) {
1457 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1458 			__jbd2_journal_remove_checkpoint(jh);
1459 			jbd2_journal_remove_journal_head(bh);
1460 			__brelse(bh);
1461 		}
1462 	}
1463 	spin_unlock(&journal->j_list_lock);
1464 out:
1465 	return;
1466 }
1467 
1468 /*
1469  * jbd2_journal_try_to_free_buffers() could race with
1470  * jbd2_journal_commit_transaction(). The later might still hold the
1471  * reference count to the buffers when inspecting them on
1472  * t_syncdata_list or t_locked_list.
1473  *
1474  * jbd2_journal_try_to_free_buffers() will call this function to
1475  * wait for the current transaction to finish syncing data buffers, before
1476  * try to free that buffer.
1477  *
1478  * Called with journal->j_state_lock hold.
1479  */
1480 static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal)
1481 {
1482 	transaction_t *transaction;
1483 	tid_t tid;
1484 
1485 	spin_lock(&journal->j_state_lock);
1486 	transaction = journal->j_committing_transaction;
1487 
1488 	if (!transaction) {
1489 		spin_unlock(&journal->j_state_lock);
1490 		return;
1491 	}
1492 
1493 	tid = transaction->t_tid;
1494 	spin_unlock(&journal->j_state_lock);
1495 	jbd2_log_wait_commit(journal, tid);
1496 }
1497 
1498 /**
1499  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1500  * @journal: journal for operation
1501  * @page: to try and free
1502  * @gfp_mask: we use the mask to detect how hard should we try to release
1503  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1504  * release the buffers.
1505  *
1506  *
1507  * For all the buffers on this page,
1508  * if they are fully written out ordered data, move them onto BUF_CLEAN
1509  * so try_to_free_buffers() can reap them.
1510  *
1511  * This function returns non-zero if we wish try_to_free_buffers()
1512  * to be called. We do this if the page is releasable by try_to_free_buffers().
1513  * We also do it if the page has locked or dirty buffers and the caller wants
1514  * us to perform sync or async writeout.
1515  *
1516  * This complicates JBD locking somewhat.  We aren't protected by the
1517  * BKL here.  We wish to remove the buffer from its committing or
1518  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1519  *
1520  * This may *change* the value of transaction_t->t_datalist, so anyone
1521  * who looks at t_datalist needs to lock against this function.
1522  *
1523  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1524  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1525  * will come out of the lock with the buffer dirty, which makes it
1526  * ineligible for release here.
1527  *
1528  * Who else is affected by this?  hmm...  Really the only contender
1529  * is do_get_write_access() - it could be looking at the buffer while
1530  * journal_try_to_free_buffer() is changing its state.  But that
1531  * cannot happen because we never reallocate freed data as metadata
1532  * while the data is part of a transaction.  Yes?
1533  *
1534  * Return 0 on failure, 1 on success
1535  */
1536 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1537 				struct page *page, gfp_t gfp_mask)
1538 {
1539 	struct buffer_head *head;
1540 	struct buffer_head *bh;
1541 	int ret = 0;
1542 
1543 	J_ASSERT(PageLocked(page));
1544 
1545 	head = page_buffers(page);
1546 	bh = head;
1547 	do {
1548 		struct journal_head *jh;
1549 
1550 		/*
1551 		 * We take our own ref against the journal_head here to avoid
1552 		 * having to add tons of locking around each instance of
1553 		 * jbd2_journal_remove_journal_head() and
1554 		 * jbd2_journal_put_journal_head().
1555 		 */
1556 		jh = jbd2_journal_grab_journal_head(bh);
1557 		if (!jh)
1558 			continue;
1559 
1560 		jbd_lock_bh_state(bh);
1561 		__journal_try_to_free_buffer(journal, bh);
1562 		jbd2_journal_put_journal_head(jh);
1563 		jbd_unlock_bh_state(bh);
1564 		if (buffer_jbd(bh))
1565 			goto busy;
1566 	} while ((bh = bh->b_this_page) != head);
1567 
1568 	ret = try_to_free_buffers(page);
1569 
1570 	/*
1571 	 * There are a number of places where jbd2_journal_try_to_free_buffers()
1572 	 * could race with jbd2_journal_commit_transaction(), the later still
1573 	 * holds the reference to the buffers to free while processing them.
1574 	 * try_to_free_buffers() failed to free those buffers. Some of the
1575 	 * caller of releasepage() request page buffers to be dropped, otherwise
1576 	 * treat the fail-to-free as errors (such as generic_file_direct_IO())
1577 	 *
1578 	 * So, if the caller of try_to_release_page() wants the synchronous
1579 	 * behaviour(i.e make sure buffers are dropped upon return),
1580 	 * let's wait for the current transaction to finish flush of
1581 	 * dirty data buffers, then try to free those buffers again,
1582 	 * with the journal locked.
1583 	 */
1584 	if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) {
1585 		jbd2_journal_wait_for_transaction_sync_data(journal);
1586 		ret = try_to_free_buffers(page);
1587 	}
1588 
1589 busy:
1590 	return ret;
1591 }
1592 
1593 /*
1594  * This buffer is no longer needed.  If it is on an older transaction's
1595  * checkpoint list we need to record it on this transaction's forget list
1596  * to pin this buffer (and hence its checkpointing transaction) down until
1597  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1598  * release it.
1599  * Returns non-zero if JBD no longer has an interest in the buffer.
1600  *
1601  * Called under j_list_lock.
1602  *
1603  * Called under jbd_lock_bh_state(bh).
1604  */
1605 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1606 {
1607 	int may_free = 1;
1608 	struct buffer_head *bh = jh2bh(jh);
1609 
1610 	__jbd2_journal_unfile_buffer(jh);
1611 
1612 	if (jh->b_cp_transaction) {
1613 		JBUFFER_TRACE(jh, "on running+cp transaction");
1614 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1615 		clear_buffer_jbddirty(bh);
1616 		may_free = 0;
1617 	} else {
1618 		JBUFFER_TRACE(jh, "on running transaction");
1619 		jbd2_journal_remove_journal_head(bh);
1620 		__brelse(bh);
1621 	}
1622 	return may_free;
1623 }
1624 
1625 /*
1626  * jbd2_journal_invalidatepage
1627  *
1628  * This code is tricky.  It has a number of cases to deal with.
1629  *
1630  * There are two invariants which this code relies on:
1631  *
1632  * i_size must be updated on disk before we start calling invalidatepage on the
1633  * data.
1634  *
1635  *  This is done in ext3 by defining an ext3_setattr method which
1636  *  updates i_size before truncate gets going.  By maintaining this
1637  *  invariant, we can be sure that it is safe to throw away any buffers
1638  *  attached to the current transaction: once the transaction commits,
1639  *  we know that the data will not be needed.
1640  *
1641  *  Note however that we can *not* throw away data belonging to the
1642  *  previous, committing transaction!
1643  *
1644  * Any disk blocks which *are* part of the previous, committing
1645  * transaction (and which therefore cannot be discarded immediately) are
1646  * not going to be reused in the new running transaction
1647  *
1648  *  The bitmap committed_data images guarantee this: any block which is
1649  *  allocated in one transaction and removed in the next will be marked
1650  *  as in-use in the committed_data bitmap, so cannot be reused until
1651  *  the next transaction to delete the block commits.  This means that
1652  *  leaving committing buffers dirty is quite safe: the disk blocks
1653  *  cannot be reallocated to a different file and so buffer aliasing is
1654  *  not possible.
1655  *
1656  *
1657  * The above applies mainly to ordered data mode.  In writeback mode we
1658  * don't make guarantees about the order in which data hits disk --- in
1659  * particular we don't guarantee that new dirty data is flushed before
1660  * transaction commit --- so it is always safe just to discard data
1661  * immediately in that mode.  --sct
1662  */
1663 
1664 /*
1665  * The journal_unmap_buffer helper function returns zero if the buffer
1666  * concerned remains pinned as an anonymous buffer belonging to an older
1667  * transaction.
1668  *
1669  * We're outside-transaction here.  Either or both of j_running_transaction
1670  * and j_committing_transaction may be NULL.
1671  */
1672 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1673 {
1674 	transaction_t *transaction;
1675 	struct journal_head *jh;
1676 	int may_free = 1;
1677 	int ret;
1678 
1679 	BUFFER_TRACE(bh, "entry");
1680 
1681 	/*
1682 	 * It is safe to proceed here without the j_list_lock because the
1683 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1684 	 * holding the page lock. --sct
1685 	 */
1686 
1687 	if (!buffer_jbd(bh))
1688 		goto zap_buffer_unlocked;
1689 
1690 	/* OK, we have data buffer in journaled mode */
1691 	spin_lock(&journal->j_state_lock);
1692 	jbd_lock_bh_state(bh);
1693 	spin_lock(&journal->j_list_lock);
1694 
1695 	jh = jbd2_journal_grab_journal_head(bh);
1696 	if (!jh)
1697 		goto zap_buffer_no_jh;
1698 
1699 	transaction = jh->b_transaction;
1700 	if (transaction == NULL) {
1701 		/* First case: not on any transaction.  If it
1702 		 * has no checkpoint link, then we can zap it:
1703 		 * it's a writeback-mode buffer so we don't care
1704 		 * if it hits disk safely. */
1705 		if (!jh->b_cp_transaction) {
1706 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1707 			goto zap_buffer;
1708 		}
1709 
1710 		if (!buffer_dirty(bh)) {
1711 			/* bdflush has written it.  We can drop it now */
1712 			goto zap_buffer;
1713 		}
1714 
1715 		/* OK, it must be in the journal but still not
1716 		 * written fully to disk: it's metadata or
1717 		 * journaled data... */
1718 
1719 		if (journal->j_running_transaction) {
1720 			/* ... and once the current transaction has
1721 			 * committed, the buffer won't be needed any
1722 			 * longer. */
1723 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1724 			ret = __dispose_buffer(jh,
1725 					journal->j_running_transaction);
1726 			jbd2_journal_put_journal_head(jh);
1727 			spin_unlock(&journal->j_list_lock);
1728 			jbd_unlock_bh_state(bh);
1729 			spin_unlock(&journal->j_state_lock);
1730 			return ret;
1731 		} else {
1732 			/* There is no currently-running transaction. So the
1733 			 * orphan record which we wrote for this file must have
1734 			 * passed into commit.  We must attach this buffer to
1735 			 * the committing transaction, if it exists. */
1736 			if (journal->j_committing_transaction) {
1737 				JBUFFER_TRACE(jh, "give to committing trans");
1738 				ret = __dispose_buffer(jh,
1739 					journal->j_committing_transaction);
1740 				jbd2_journal_put_journal_head(jh);
1741 				spin_unlock(&journal->j_list_lock);
1742 				jbd_unlock_bh_state(bh);
1743 				spin_unlock(&journal->j_state_lock);
1744 				return ret;
1745 			} else {
1746 				/* The orphan record's transaction has
1747 				 * committed.  We can cleanse this buffer */
1748 				clear_buffer_jbddirty(bh);
1749 				goto zap_buffer;
1750 			}
1751 		}
1752 	} else if (transaction == journal->j_committing_transaction) {
1753 		JBUFFER_TRACE(jh, "on committing transaction");
1754 		/*
1755 		 * If it is committing, we simply cannot touch it.  We
1756 		 * can remove it's next_transaction pointer from the
1757 		 * running transaction if that is set, but nothing
1758 		 * else. */
1759 		set_buffer_freed(bh);
1760 		if (jh->b_next_transaction) {
1761 			J_ASSERT(jh->b_next_transaction ==
1762 					journal->j_running_transaction);
1763 			jh->b_next_transaction = NULL;
1764 		}
1765 		jbd2_journal_put_journal_head(jh);
1766 		spin_unlock(&journal->j_list_lock);
1767 		jbd_unlock_bh_state(bh);
1768 		spin_unlock(&journal->j_state_lock);
1769 		return 0;
1770 	} else {
1771 		/* Good, the buffer belongs to the running transaction.
1772 		 * We are writing our own transaction's data, not any
1773 		 * previous one's, so it is safe to throw it away
1774 		 * (remember that we expect the filesystem to have set
1775 		 * i_size already for this truncate so recovery will not
1776 		 * expose the disk blocks we are discarding here.) */
1777 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1778 		JBUFFER_TRACE(jh, "on running transaction");
1779 		may_free = __dispose_buffer(jh, transaction);
1780 	}
1781 
1782 zap_buffer:
1783 	jbd2_journal_put_journal_head(jh);
1784 zap_buffer_no_jh:
1785 	spin_unlock(&journal->j_list_lock);
1786 	jbd_unlock_bh_state(bh);
1787 	spin_unlock(&journal->j_state_lock);
1788 zap_buffer_unlocked:
1789 	clear_buffer_dirty(bh);
1790 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1791 	clear_buffer_mapped(bh);
1792 	clear_buffer_req(bh);
1793 	clear_buffer_new(bh);
1794 	bh->b_bdev = NULL;
1795 	return may_free;
1796 }
1797 
1798 /**
1799  * void jbd2_journal_invalidatepage()
1800  * @journal: journal to use for flush...
1801  * @page:    page to flush
1802  * @offset:  length of page to invalidate.
1803  *
1804  * Reap page buffers containing data after offset in page.
1805  *
1806  */
1807 void jbd2_journal_invalidatepage(journal_t *journal,
1808 		      struct page *page,
1809 		      unsigned long offset)
1810 {
1811 	struct buffer_head *head, *bh, *next;
1812 	unsigned int curr_off = 0;
1813 	int may_free = 1;
1814 
1815 	if (!PageLocked(page))
1816 		BUG();
1817 	if (!page_has_buffers(page))
1818 		return;
1819 
1820 	/* We will potentially be playing with lists other than just the
1821 	 * data lists (especially for journaled data mode), so be
1822 	 * cautious in our locking. */
1823 
1824 	head = bh = page_buffers(page);
1825 	do {
1826 		unsigned int next_off = curr_off + bh->b_size;
1827 		next = bh->b_this_page;
1828 
1829 		if (offset <= curr_off) {
1830 			/* This block is wholly outside the truncation point */
1831 			lock_buffer(bh);
1832 			may_free &= journal_unmap_buffer(journal, bh);
1833 			unlock_buffer(bh);
1834 		}
1835 		curr_off = next_off;
1836 		bh = next;
1837 
1838 	} while (bh != head);
1839 
1840 	if (!offset) {
1841 		if (may_free && try_to_free_buffers(page))
1842 			J_ASSERT(!page_has_buffers(page));
1843 	}
1844 }
1845 
1846 /*
1847  * File a buffer on the given transaction list.
1848  */
1849 void __jbd2_journal_file_buffer(struct journal_head *jh,
1850 			transaction_t *transaction, int jlist)
1851 {
1852 	struct journal_head **list = NULL;
1853 	int was_dirty = 0;
1854 	struct buffer_head *bh = jh2bh(jh);
1855 
1856 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1857 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1858 
1859 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1860 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1861 				jh->b_transaction == NULL);
1862 
1863 	if (jh->b_transaction && jh->b_jlist == jlist)
1864 		return;
1865 
1866 	/* The following list of buffer states needs to be consistent
1867 	 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1868 	 * state. */
1869 
1870 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1871 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1872 		if (test_clear_buffer_dirty(bh) ||
1873 		    test_clear_buffer_jbddirty(bh))
1874 			was_dirty = 1;
1875 	}
1876 
1877 	if (jh->b_transaction)
1878 		__jbd2_journal_temp_unlink_buffer(jh);
1879 	jh->b_transaction = transaction;
1880 
1881 	switch (jlist) {
1882 	case BJ_None:
1883 		J_ASSERT_JH(jh, !jh->b_committed_data);
1884 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1885 		return;
1886 	case BJ_Metadata:
1887 		transaction->t_nr_buffers++;
1888 		list = &transaction->t_buffers;
1889 		break;
1890 	case BJ_Forget:
1891 		list = &transaction->t_forget;
1892 		break;
1893 	case BJ_IO:
1894 		list = &transaction->t_iobuf_list;
1895 		break;
1896 	case BJ_Shadow:
1897 		list = &transaction->t_shadow_list;
1898 		break;
1899 	case BJ_LogCtl:
1900 		list = &transaction->t_log_list;
1901 		break;
1902 	case BJ_Reserved:
1903 		list = &transaction->t_reserved_list;
1904 		break;
1905 	}
1906 
1907 	__blist_add_buffer(list, jh);
1908 	jh->b_jlist = jlist;
1909 
1910 	if (was_dirty)
1911 		set_buffer_jbddirty(bh);
1912 }
1913 
1914 void jbd2_journal_file_buffer(struct journal_head *jh,
1915 				transaction_t *transaction, int jlist)
1916 {
1917 	jbd_lock_bh_state(jh2bh(jh));
1918 	spin_lock(&transaction->t_journal->j_list_lock);
1919 	__jbd2_journal_file_buffer(jh, transaction, jlist);
1920 	spin_unlock(&transaction->t_journal->j_list_lock);
1921 	jbd_unlock_bh_state(jh2bh(jh));
1922 }
1923 
1924 /*
1925  * Remove a buffer from its current buffer list in preparation for
1926  * dropping it from its current transaction entirely.  If the buffer has
1927  * already started to be used by a subsequent transaction, refile the
1928  * buffer on that transaction's metadata list.
1929  *
1930  * Called under journal->j_list_lock
1931  *
1932  * Called under jbd_lock_bh_state(jh2bh(jh))
1933  */
1934 void __jbd2_journal_refile_buffer(struct journal_head *jh)
1935 {
1936 	int was_dirty;
1937 	struct buffer_head *bh = jh2bh(jh);
1938 
1939 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1940 	if (jh->b_transaction)
1941 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
1942 
1943 	/* If the buffer is now unused, just drop it. */
1944 	if (jh->b_next_transaction == NULL) {
1945 		__jbd2_journal_unfile_buffer(jh);
1946 		return;
1947 	}
1948 
1949 	/*
1950 	 * It has been modified by a later transaction: add it to the new
1951 	 * transaction's metadata list.
1952 	 */
1953 
1954 	was_dirty = test_clear_buffer_jbddirty(bh);
1955 	__jbd2_journal_temp_unlink_buffer(jh);
1956 	jh->b_transaction = jh->b_next_transaction;
1957 	jh->b_next_transaction = NULL;
1958 	__jbd2_journal_file_buffer(jh, jh->b_transaction,
1959 				jh->b_modified ? BJ_Metadata : BJ_Reserved);
1960 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
1961 
1962 	if (was_dirty)
1963 		set_buffer_jbddirty(bh);
1964 }
1965 
1966 /*
1967  * For the unlocked version of this call, also make sure that any
1968  * hanging journal_head is cleaned up if necessary.
1969  *
1970  * __jbd2_journal_refile_buffer is usually called as part of a single locked
1971  * operation on a buffer_head, in which the caller is probably going to
1972  * be hooking the journal_head onto other lists.  In that case it is up
1973  * to the caller to remove the journal_head if necessary.  For the
1974  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
1975  * doing anything else to the buffer so we need to do the cleanup
1976  * ourselves to avoid a jh leak.
1977  *
1978  * *** The journal_head may be freed by this call! ***
1979  */
1980 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
1981 {
1982 	struct buffer_head *bh = jh2bh(jh);
1983 
1984 	jbd_lock_bh_state(bh);
1985 	spin_lock(&journal->j_list_lock);
1986 
1987 	__jbd2_journal_refile_buffer(jh);
1988 	jbd_unlock_bh_state(bh);
1989 	jbd2_journal_remove_journal_head(bh);
1990 
1991 	spin_unlock(&journal->j_list_lock);
1992 	__brelse(bh);
1993 }
1994 
1995 /*
1996  * File inode in the inode list of the handle's transaction
1997  */
1998 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
1999 {
2000 	transaction_t *transaction = handle->h_transaction;
2001 	journal_t *journal = transaction->t_journal;
2002 
2003 	if (is_handle_aborted(handle))
2004 		return -EIO;
2005 
2006 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2007 			transaction->t_tid);
2008 
2009 	/*
2010 	 * First check whether inode isn't already on the transaction's
2011 	 * lists without taking the lock. Note that this check is safe
2012 	 * without the lock as we cannot race with somebody removing inode
2013 	 * from the transaction. The reason is that we remove inode from the
2014 	 * transaction only in journal_release_jbd_inode() and when we commit
2015 	 * the transaction. We are guarded from the first case by holding
2016 	 * a reference to the inode. We are safe against the second case
2017 	 * because if jinode->i_transaction == transaction, commit code
2018 	 * cannot touch the transaction because we hold reference to it,
2019 	 * and if jinode->i_next_transaction == transaction, commit code
2020 	 * will only file the inode where we want it.
2021 	 */
2022 	if (jinode->i_transaction == transaction ||
2023 	    jinode->i_next_transaction == transaction)
2024 		return 0;
2025 
2026 	spin_lock(&journal->j_list_lock);
2027 
2028 	if (jinode->i_transaction == transaction ||
2029 	    jinode->i_next_transaction == transaction)
2030 		goto done;
2031 
2032 	/* On some different transaction's list - should be
2033 	 * the committing one */
2034 	if (jinode->i_transaction) {
2035 		J_ASSERT(jinode->i_next_transaction == NULL);
2036 		J_ASSERT(jinode->i_transaction ==
2037 					journal->j_committing_transaction);
2038 		jinode->i_next_transaction = transaction;
2039 		goto done;
2040 	}
2041 	/* Not on any transaction list... */
2042 	J_ASSERT(!jinode->i_next_transaction);
2043 	jinode->i_transaction = transaction;
2044 	list_add(&jinode->i_list, &transaction->t_inode_list);
2045 done:
2046 	spin_unlock(&journal->j_list_lock);
2047 
2048 	return 0;
2049 }
2050 
2051 /*
2052  * This function must be called when inode is journaled in ordered mode
2053  * before truncation happens. It starts writeout of truncated part in
2054  * case it is in the committing transaction so that we stand to ordered
2055  * mode consistency guarantees.
2056  */
2057 int jbd2_journal_begin_ordered_truncate(struct jbd2_inode *inode,
2058 					loff_t new_size)
2059 {
2060 	journal_t *journal;
2061 	transaction_t *commit_trans;
2062 	int ret = 0;
2063 
2064 	if (!inode->i_transaction && !inode->i_next_transaction)
2065 		goto out;
2066 	journal = inode->i_transaction->t_journal;
2067 	spin_lock(&journal->j_state_lock);
2068 	commit_trans = journal->j_committing_transaction;
2069 	spin_unlock(&journal->j_state_lock);
2070 	if (inode->i_transaction == commit_trans) {
2071 		ret = filemap_fdatawrite_range(inode->i_vfs_inode->i_mapping,
2072 			new_size, LLONG_MAX);
2073 		if (ret)
2074 			jbd2_journal_abort(journal, ret);
2075 	}
2076 out:
2077 	return ret;
2078 }
2079