1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 30 31 /* 32 * jbd2_get_transaction: obtain a new transaction_t object. 33 * 34 * Simply allocate and initialise a new transaction. Create it in 35 * RUNNING state and add it to the current journal (which should not 36 * have an existing running transaction: we only make a new transaction 37 * once we have started to commit the old one). 38 * 39 * Preconditions: 40 * The journal MUST be locked. We don't perform atomic mallocs on the 41 * new transaction and we can't block without protecting against other 42 * processes trying to touch the journal while it is in transition. 43 * 44 */ 45 46 static transaction_t * 47 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 48 { 49 transaction->t_journal = journal; 50 transaction->t_state = T_RUNNING; 51 transaction->t_tid = journal->j_transaction_sequence++; 52 transaction->t_expires = jiffies + journal->j_commit_interval; 53 spin_lock_init(&transaction->t_handle_lock); 54 INIT_LIST_HEAD(&transaction->t_inode_list); 55 56 /* Set up the commit timer for the new transaction. */ 57 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires); 58 add_timer(&journal->j_commit_timer); 59 60 J_ASSERT(journal->j_running_transaction == NULL); 61 journal->j_running_transaction = transaction; 62 transaction->t_max_wait = 0; 63 transaction->t_start = jiffies; 64 65 return transaction; 66 } 67 68 /* 69 * Handle management. 70 * 71 * A handle_t is an object which represents a single atomic update to a 72 * filesystem, and which tracks all of the modifications which form part 73 * of that one update. 74 */ 75 76 /* 77 * start_this_handle: Given a handle, deal with any locking or stalling 78 * needed to make sure that there is enough journal space for the handle 79 * to begin. Attach the handle to a transaction and set up the 80 * transaction's buffer credits. 81 */ 82 83 static int start_this_handle(journal_t *journal, handle_t *handle) 84 { 85 transaction_t *transaction; 86 int needed; 87 int nblocks = handle->h_buffer_credits; 88 transaction_t *new_transaction = NULL; 89 int ret = 0; 90 unsigned long ts = jiffies; 91 92 if (nblocks > journal->j_max_transaction_buffers) { 93 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 94 current->comm, nblocks, 95 journal->j_max_transaction_buffers); 96 ret = -ENOSPC; 97 goto out; 98 } 99 100 alloc_transaction: 101 if (!journal->j_running_transaction) { 102 new_transaction = kzalloc(sizeof(*new_transaction), 103 GFP_NOFS|__GFP_NOFAIL); 104 if (!new_transaction) { 105 ret = -ENOMEM; 106 goto out; 107 } 108 } 109 110 jbd_debug(3, "New handle %p going live.\n", handle); 111 112 repeat: 113 114 /* 115 * We need to hold j_state_lock until t_updates has been incremented, 116 * for proper journal barrier handling 117 */ 118 spin_lock(&journal->j_state_lock); 119 repeat_locked: 120 if (is_journal_aborted(journal) || 121 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 122 spin_unlock(&journal->j_state_lock); 123 ret = -EROFS; 124 goto out; 125 } 126 127 /* Wait on the journal's transaction barrier if necessary */ 128 if (journal->j_barrier_count) { 129 spin_unlock(&journal->j_state_lock); 130 wait_event(journal->j_wait_transaction_locked, 131 journal->j_barrier_count == 0); 132 goto repeat; 133 } 134 135 if (!journal->j_running_transaction) { 136 if (!new_transaction) { 137 spin_unlock(&journal->j_state_lock); 138 goto alloc_transaction; 139 } 140 jbd2_get_transaction(journal, new_transaction); 141 new_transaction = NULL; 142 } 143 144 transaction = journal->j_running_transaction; 145 146 /* 147 * If the current transaction is locked down for commit, wait for the 148 * lock to be released. 149 */ 150 if (transaction->t_state == T_LOCKED) { 151 DEFINE_WAIT(wait); 152 153 prepare_to_wait(&journal->j_wait_transaction_locked, 154 &wait, TASK_UNINTERRUPTIBLE); 155 spin_unlock(&journal->j_state_lock); 156 schedule(); 157 finish_wait(&journal->j_wait_transaction_locked, &wait); 158 goto repeat; 159 } 160 161 /* 162 * If there is not enough space left in the log to write all potential 163 * buffers requested by this operation, we need to stall pending a log 164 * checkpoint to free some more log space. 165 */ 166 spin_lock(&transaction->t_handle_lock); 167 needed = transaction->t_outstanding_credits + nblocks; 168 169 if (needed > journal->j_max_transaction_buffers) { 170 /* 171 * If the current transaction is already too large, then start 172 * to commit it: we can then go back and attach this handle to 173 * a new transaction. 174 */ 175 DEFINE_WAIT(wait); 176 177 jbd_debug(2, "Handle %p starting new commit...\n", handle); 178 spin_unlock(&transaction->t_handle_lock); 179 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 180 TASK_UNINTERRUPTIBLE); 181 __jbd2_log_start_commit(journal, transaction->t_tid); 182 spin_unlock(&journal->j_state_lock); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 goto repeat; 186 } 187 188 /* 189 * The commit code assumes that it can get enough log space 190 * without forcing a checkpoint. This is *critical* for 191 * correctness: a checkpoint of a buffer which is also 192 * associated with a committing transaction creates a deadlock, 193 * so commit simply cannot force through checkpoints. 194 * 195 * We must therefore ensure the necessary space in the journal 196 * *before* starting to dirty potentially checkpointed buffers 197 * in the new transaction. 198 * 199 * The worst part is, any transaction currently committing can 200 * reduce the free space arbitrarily. Be careful to account for 201 * those buffers when checkpointing. 202 */ 203 204 /* 205 * @@@ AKPM: This seems rather over-defensive. We're giving commit 206 * a _lot_ of headroom: 1/4 of the journal plus the size of 207 * the committing transaction. Really, we only need to give it 208 * committing_transaction->t_outstanding_credits plus "enough" for 209 * the log control blocks. 210 * Also, this test is inconsitent with the matching one in 211 * jbd2_journal_extend(). 212 */ 213 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 214 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 215 spin_unlock(&transaction->t_handle_lock); 216 __jbd2_log_wait_for_space(journal); 217 goto repeat_locked; 218 } 219 220 /* OK, account for the buffers that this operation expects to 221 * use and add the handle to the running transaction. */ 222 223 if (time_after(transaction->t_start, ts)) { 224 ts = jbd2_time_diff(ts, transaction->t_start); 225 if (ts > transaction->t_max_wait) 226 transaction->t_max_wait = ts; 227 } 228 229 handle->h_transaction = transaction; 230 transaction->t_outstanding_credits += nblocks; 231 transaction->t_updates++; 232 transaction->t_handle_count++; 233 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 234 handle, nblocks, transaction->t_outstanding_credits, 235 __jbd2_log_space_left(journal)); 236 spin_unlock(&transaction->t_handle_lock); 237 spin_unlock(&journal->j_state_lock); 238 out: 239 if (unlikely(new_transaction)) /* It's usually NULL */ 240 kfree(new_transaction); 241 return ret; 242 } 243 244 static struct lock_class_key jbd2_handle_key; 245 246 /* Allocate a new handle. This should probably be in a slab... */ 247 static handle_t *new_handle(int nblocks) 248 { 249 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 250 if (!handle) 251 return NULL; 252 memset(handle, 0, sizeof(*handle)); 253 handle->h_buffer_credits = nblocks; 254 handle->h_ref = 1; 255 256 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 257 &jbd2_handle_key, 0); 258 259 return handle; 260 } 261 262 /** 263 * handle_t *jbd2_journal_start() - Obtain a new handle. 264 * @journal: Journal to start transaction on. 265 * @nblocks: number of block buffer we might modify 266 * 267 * We make sure that the transaction can guarantee at least nblocks of 268 * modified buffers in the log. We block until the log can guarantee 269 * that much space. 270 * 271 * This function is visible to journal users (like ext3fs), so is not 272 * called with the journal already locked. 273 * 274 * Return a pointer to a newly allocated handle, or NULL on failure 275 */ 276 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 277 { 278 handle_t *handle = journal_current_handle(); 279 int err; 280 281 if (!journal) 282 return ERR_PTR(-EROFS); 283 284 if (handle) { 285 J_ASSERT(handle->h_transaction->t_journal == journal); 286 handle->h_ref++; 287 return handle; 288 } 289 290 handle = new_handle(nblocks); 291 if (!handle) 292 return ERR_PTR(-ENOMEM); 293 294 current->journal_info = handle; 295 296 err = start_this_handle(journal, handle); 297 if (err < 0) { 298 jbd2_free_handle(handle); 299 current->journal_info = NULL; 300 handle = ERR_PTR(err); 301 goto out; 302 } 303 304 lock_acquire(&handle->h_lockdep_map, 0, 0, 0, 2, _THIS_IP_); 305 out: 306 return handle; 307 } 308 309 /** 310 * int jbd2_journal_extend() - extend buffer credits. 311 * @handle: handle to 'extend' 312 * @nblocks: nr blocks to try to extend by. 313 * 314 * Some transactions, such as large extends and truncates, can be done 315 * atomically all at once or in several stages. The operation requests 316 * a credit for a number of buffer modications in advance, but can 317 * extend its credit if it needs more. 318 * 319 * jbd2_journal_extend tries to give the running handle more buffer credits. 320 * It does not guarantee that allocation - this is a best-effort only. 321 * The calling process MUST be able to deal cleanly with a failure to 322 * extend here. 323 * 324 * Return 0 on success, non-zero on failure. 325 * 326 * return code < 0 implies an error 327 * return code > 0 implies normal transaction-full status. 328 */ 329 int jbd2_journal_extend(handle_t *handle, int nblocks) 330 { 331 transaction_t *transaction = handle->h_transaction; 332 journal_t *journal = transaction->t_journal; 333 int result; 334 int wanted; 335 336 result = -EIO; 337 if (is_handle_aborted(handle)) 338 goto out; 339 340 result = 1; 341 342 spin_lock(&journal->j_state_lock); 343 344 /* Don't extend a locked-down transaction! */ 345 if (handle->h_transaction->t_state != T_RUNNING) { 346 jbd_debug(3, "denied handle %p %d blocks: " 347 "transaction not running\n", handle, nblocks); 348 goto error_out; 349 } 350 351 spin_lock(&transaction->t_handle_lock); 352 wanted = transaction->t_outstanding_credits + nblocks; 353 354 if (wanted > journal->j_max_transaction_buffers) { 355 jbd_debug(3, "denied handle %p %d blocks: " 356 "transaction too large\n", handle, nblocks); 357 goto unlock; 358 } 359 360 if (wanted > __jbd2_log_space_left(journal)) { 361 jbd_debug(3, "denied handle %p %d blocks: " 362 "insufficient log space\n", handle, nblocks); 363 goto unlock; 364 } 365 366 handle->h_buffer_credits += nblocks; 367 transaction->t_outstanding_credits += nblocks; 368 result = 0; 369 370 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 371 unlock: 372 spin_unlock(&transaction->t_handle_lock); 373 error_out: 374 spin_unlock(&journal->j_state_lock); 375 out: 376 return result; 377 } 378 379 380 /** 381 * int jbd2_journal_restart() - restart a handle . 382 * @handle: handle to restart 383 * @nblocks: nr credits requested 384 * 385 * Restart a handle for a multi-transaction filesystem 386 * operation. 387 * 388 * If the jbd2_journal_extend() call above fails to grant new buffer credits 389 * to a running handle, a call to jbd2_journal_restart will commit the 390 * handle's transaction so far and reattach the handle to a new 391 * transaction capabable of guaranteeing the requested number of 392 * credits. 393 */ 394 395 int jbd2_journal_restart(handle_t *handle, int nblocks) 396 { 397 transaction_t *transaction = handle->h_transaction; 398 journal_t *journal = transaction->t_journal; 399 int ret; 400 401 /* If we've had an abort of any type, don't even think about 402 * actually doing the restart! */ 403 if (is_handle_aborted(handle)) 404 return 0; 405 406 /* 407 * First unlink the handle from its current transaction, and start the 408 * commit on that. 409 */ 410 J_ASSERT(transaction->t_updates > 0); 411 J_ASSERT(journal_current_handle() == handle); 412 413 spin_lock(&journal->j_state_lock); 414 spin_lock(&transaction->t_handle_lock); 415 transaction->t_outstanding_credits -= handle->h_buffer_credits; 416 transaction->t_updates--; 417 418 if (!transaction->t_updates) 419 wake_up(&journal->j_wait_updates); 420 spin_unlock(&transaction->t_handle_lock); 421 422 jbd_debug(2, "restarting handle %p\n", handle); 423 __jbd2_log_start_commit(journal, transaction->t_tid); 424 spin_unlock(&journal->j_state_lock); 425 426 handle->h_buffer_credits = nblocks; 427 ret = start_this_handle(journal, handle); 428 return ret; 429 } 430 431 432 /** 433 * void jbd2_journal_lock_updates () - establish a transaction barrier. 434 * @journal: Journal to establish a barrier on. 435 * 436 * This locks out any further updates from being started, and blocks 437 * until all existing updates have completed, returning only once the 438 * journal is in a quiescent state with no updates running. 439 * 440 * The journal lock should not be held on entry. 441 */ 442 void jbd2_journal_lock_updates(journal_t *journal) 443 { 444 DEFINE_WAIT(wait); 445 446 spin_lock(&journal->j_state_lock); 447 ++journal->j_barrier_count; 448 449 /* Wait until there are no running updates */ 450 while (1) { 451 transaction_t *transaction = journal->j_running_transaction; 452 453 if (!transaction) 454 break; 455 456 spin_lock(&transaction->t_handle_lock); 457 if (!transaction->t_updates) { 458 spin_unlock(&transaction->t_handle_lock); 459 break; 460 } 461 prepare_to_wait(&journal->j_wait_updates, &wait, 462 TASK_UNINTERRUPTIBLE); 463 spin_unlock(&transaction->t_handle_lock); 464 spin_unlock(&journal->j_state_lock); 465 schedule(); 466 finish_wait(&journal->j_wait_updates, &wait); 467 spin_lock(&journal->j_state_lock); 468 } 469 spin_unlock(&journal->j_state_lock); 470 471 /* 472 * We have now established a barrier against other normal updates, but 473 * we also need to barrier against other jbd2_journal_lock_updates() calls 474 * to make sure that we serialise special journal-locked operations 475 * too. 476 */ 477 mutex_lock(&journal->j_barrier); 478 } 479 480 /** 481 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 482 * @journal: Journal to release the barrier on. 483 * 484 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 485 * 486 * Should be called without the journal lock held. 487 */ 488 void jbd2_journal_unlock_updates (journal_t *journal) 489 { 490 J_ASSERT(journal->j_barrier_count != 0); 491 492 mutex_unlock(&journal->j_barrier); 493 spin_lock(&journal->j_state_lock); 494 --journal->j_barrier_count; 495 spin_unlock(&journal->j_state_lock); 496 wake_up(&journal->j_wait_transaction_locked); 497 } 498 499 /* 500 * Report any unexpected dirty buffers which turn up. Normally those 501 * indicate an error, but they can occur if the user is running (say) 502 * tune2fs to modify the live filesystem, so we need the option of 503 * continuing as gracefully as possible. # 504 * 505 * The caller should already hold the journal lock and 506 * j_list_lock spinlock: most callers will need those anyway 507 * in order to probe the buffer's journaling state safely. 508 */ 509 static void jbd_unexpected_dirty_buffer(struct journal_head *jh) 510 { 511 int jlist; 512 513 /* If this buffer is one which might reasonably be dirty 514 * --- ie. data, or not part of this journal --- then 515 * we're OK to leave it alone, but otherwise we need to 516 * move the dirty bit to the journal's own internal 517 * JBDDirty bit. */ 518 jlist = jh->b_jlist; 519 520 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 521 jlist == BJ_Shadow || jlist == BJ_Forget) { 522 struct buffer_head *bh = jh2bh(jh); 523 524 if (test_clear_buffer_dirty(bh)) 525 set_buffer_jbddirty(bh); 526 } 527 } 528 529 /* 530 * If the buffer is already part of the current transaction, then there 531 * is nothing we need to do. If it is already part of a prior 532 * transaction which we are still committing to disk, then we need to 533 * make sure that we do not overwrite the old copy: we do copy-out to 534 * preserve the copy going to disk. We also account the buffer against 535 * the handle's metadata buffer credits (unless the buffer is already 536 * part of the transaction, that is). 537 * 538 */ 539 static int 540 do_get_write_access(handle_t *handle, struct journal_head *jh, 541 int force_copy) 542 { 543 struct buffer_head *bh; 544 transaction_t *transaction; 545 journal_t *journal; 546 int error; 547 char *frozen_buffer = NULL; 548 int need_copy = 0; 549 550 if (is_handle_aborted(handle)) 551 return -EROFS; 552 553 transaction = handle->h_transaction; 554 journal = transaction->t_journal; 555 556 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 557 558 JBUFFER_TRACE(jh, "entry"); 559 repeat: 560 bh = jh2bh(jh); 561 562 /* @@@ Need to check for errors here at some point. */ 563 564 lock_buffer(bh); 565 jbd_lock_bh_state(bh); 566 567 /* We now hold the buffer lock so it is safe to query the buffer 568 * state. Is the buffer dirty? 569 * 570 * If so, there are two possibilities. The buffer may be 571 * non-journaled, and undergoing a quite legitimate writeback. 572 * Otherwise, it is journaled, and we don't expect dirty buffers 573 * in that state (the buffers should be marked JBD_Dirty 574 * instead.) So either the IO is being done under our own 575 * control and this is a bug, or it's a third party IO such as 576 * dump(8) (which may leave the buffer scheduled for read --- 577 * ie. locked but not dirty) or tune2fs (which may actually have 578 * the buffer dirtied, ugh.) */ 579 580 if (buffer_dirty(bh)) { 581 /* 582 * First question: is this buffer already part of the current 583 * transaction or the existing committing transaction? 584 */ 585 if (jh->b_transaction) { 586 J_ASSERT_JH(jh, 587 jh->b_transaction == transaction || 588 jh->b_transaction == 589 journal->j_committing_transaction); 590 if (jh->b_next_transaction) 591 J_ASSERT_JH(jh, jh->b_next_transaction == 592 transaction); 593 } 594 /* 595 * In any case we need to clean the dirty flag and we must 596 * do it under the buffer lock to be sure we don't race 597 * with running write-out. 598 */ 599 JBUFFER_TRACE(jh, "Unexpected dirty buffer"); 600 jbd_unexpected_dirty_buffer(jh); 601 } 602 603 unlock_buffer(bh); 604 605 error = -EROFS; 606 if (is_handle_aborted(handle)) { 607 jbd_unlock_bh_state(bh); 608 goto out; 609 } 610 error = 0; 611 612 /* 613 * The buffer is already part of this transaction if b_transaction or 614 * b_next_transaction points to it 615 */ 616 if (jh->b_transaction == transaction || 617 jh->b_next_transaction == transaction) 618 goto done; 619 620 /* 621 * this is the first time this transaction is touching this buffer, 622 * reset the modified flag 623 */ 624 jh->b_modified = 0; 625 626 /* 627 * If there is already a copy-out version of this buffer, then we don't 628 * need to make another one 629 */ 630 if (jh->b_frozen_data) { 631 JBUFFER_TRACE(jh, "has frozen data"); 632 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 633 jh->b_next_transaction = transaction; 634 goto done; 635 } 636 637 /* Is there data here we need to preserve? */ 638 639 if (jh->b_transaction && jh->b_transaction != transaction) { 640 JBUFFER_TRACE(jh, "owned by older transaction"); 641 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 642 J_ASSERT_JH(jh, jh->b_transaction == 643 journal->j_committing_transaction); 644 645 /* There is one case we have to be very careful about. 646 * If the committing transaction is currently writing 647 * this buffer out to disk and has NOT made a copy-out, 648 * then we cannot modify the buffer contents at all 649 * right now. The essence of copy-out is that it is the 650 * extra copy, not the primary copy, which gets 651 * journaled. If the primary copy is already going to 652 * disk then we cannot do copy-out here. */ 653 654 if (jh->b_jlist == BJ_Shadow) { 655 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 656 wait_queue_head_t *wqh; 657 658 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 659 660 JBUFFER_TRACE(jh, "on shadow: sleep"); 661 jbd_unlock_bh_state(bh); 662 /* commit wakes up all shadow buffers after IO */ 663 for ( ; ; ) { 664 prepare_to_wait(wqh, &wait.wait, 665 TASK_UNINTERRUPTIBLE); 666 if (jh->b_jlist != BJ_Shadow) 667 break; 668 schedule(); 669 } 670 finish_wait(wqh, &wait.wait); 671 goto repeat; 672 } 673 674 /* Only do the copy if the currently-owning transaction 675 * still needs it. If it is on the Forget list, the 676 * committing transaction is past that stage. The 677 * buffer had better remain locked during the kmalloc, 678 * but that should be true --- we hold the journal lock 679 * still and the buffer is already on the BUF_JOURNAL 680 * list so won't be flushed. 681 * 682 * Subtle point, though: if this is a get_undo_access, 683 * then we will be relying on the frozen_data to contain 684 * the new value of the committed_data record after the 685 * transaction, so we HAVE to force the frozen_data copy 686 * in that case. */ 687 688 if (jh->b_jlist != BJ_Forget || force_copy) { 689 JBUFFER_TRACE(jh, "generate frozen data"); 690 if (!frozen_buffer) { 691 JBUFFER_TRACE(jh, "allocate memory for buffer"); 692 jbd_unlock_bh_state(bh); 693 frozen_buffer = 694 jbd2_alloc(jh2bh(jh)->b_size, 695 GFP_NOFS); 696 if (!frozen_buffer) { 697 printk(KERN_EMERG 698 "%s: OOM for frozen_buffer\n", 699 __func__); 700 JBUFFER_TRACE(jh, "oom!"); 701 error = -ENOMEM; 702 jbd_lock_bh_state(bh); 703 goto done; 704 } 705 goto repeat; 706 } 707 jh->b_frozen_data = frozen_buffer; 708 frozen_buffer = NULL; 709 need_copy = 1; 710 } 711 jh->b_next_transaction = transaction; 712 } 713 714 715 /* 716 * Finally, if the buffer is not journaled right now, we need to make 717 * sure it doesn't get written to disk before the caller actually 718 * commits the new data 719 */ 720 if (!jh->b_transaction) { 721 JBUFFER_TRACE(jh, "no transaction"); 722 J_ASSERT_JH(jh, !jh->b_next_transaction); 723 jh->b_transaction = transaction; 724 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 725 spin_lock(&journal->j_list_lock); 726 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 727 spin_unlock(&journal->j_list_lock); 728 } 729 730 done: 731 if (need_copy) { 732 struct page *page; 733 int offset; 734 char *source; 735 736 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 737 "Possible IO failure.\n"); 738 page = jh2bh(jh)->b_page; 739 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 740 source = kmap_atomic(page, KM_USER0); 741 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 742 kunmap_atomic(source, KM_USER0); 743 } 744 jbd_unlock_bh_state(bh); 745 746 /* 747 * If we are about to journal a buffer, then any revoke pending on it is 748 * no longer valid 749 */ 750 jbd2_journal_cancel_revoke(handle, jh); 751 752 out: 753 if (unlikely(frozen_buffer)) /* It's usually NULL */ 754 jbd2_free(frozen_buffer, bh->b_size); 755 756 JBUFFER_TRACE(jh, "exit"); 757 return error; 758 } 759 760 /** 761 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 762 * @handle: transaction to add buffer modifications to 763 * @bh: bh to be used for metadata writes 764 * @credits: variable that will receive credits for the buffer 765 * 766 * Returns an error code or 0 on success. 767 * 768 * In full data journalling mode the buffer may be of type BJ_AsyncData, 769 * because we're write()ing a buffer which is also part of a shared mapping. 770 */ 771 772 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 773 { 774 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 775 int rc; 776 777 /* We do not want to get caught playing with fields which the 778 * log thread also manipulates. Make sure that the buffer 779 * completes any outstanding IO before proceeding. */ 780 rc = do_get_write_access(handle, jh, 0); 781 jbd2_journal_put_journal_head(jh); 782 return rc; 783 } 784 785 786 /* 787 * When the user wants to journal a newly created buffer_head 788 * (ie. getblk() returned a new buffer and we are going to populate it 789 * manually rather than reading off disk), then we need to keep the 790 * buffer_head locked until it has been completely filled with new 791 * data. In this case, we should be able to make the assertion that 792 * the bh is not already part of an existing transaction. 793 * 794 * The buffer should already be locked by the caller by this point. 795 * There is no lock ranking violation: it was a newly created, 796 * unlocked buffer beforehand. */ 797 798 /** 799 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 800 * @handle: transaction to new buffer to 801 * @bh: new buffer. 802 * 803 * Call this if you create a new bh. 804 */ 805 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 806 { 807 transaction_t *transaction = handle->h_transaction; 808 journal_t *journal = transaction->t_journal; 809 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 810 int err; 811 812 jbd_debug(5, "journal_head %p\n", jh); 813 err = -EROFS; 814 if (is_handle_aborted(handle)) 815 goto out; 816 err = 0; 817 818 JBUFFER_TRACE(jh, "entry"); 819 /* 820 * The buffer may already belong to this transaction due to pre-zeroing 821 * in the filesystem's new_block code. It may also be on the previous, 822 * committing transaction's lists, but it HAS to be in Forget state in 823 * that case: the transaction must have deleted the buffer for it to be 824 * reused here. 825 */ 826 jbd_lock_bh_state(bh); 827 spin_lock(&journal->j_list_lock); 828 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 829 jh->b_transaction == NULL || 830 (jh->b_transaction == journal->j_committing_transaction && 831 jh->b_jlist == BJ_Forget))); 832 833 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 834 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 835 836 if (jh->b_transaction == NULL) { 837 jh->b_transaction = transaction; 838 839 /* first access by this transaction */ 840 jh->b_modified = 0; 841 842 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 843 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 844 } else if (jh->b_transaction == journal->j_committing_transaction) { 845 /* first access by this transaction */ 846 jh->b_modified = 0; 847 848 JBUFFER_TRACE(jh, "set next transaction"); 849 jh->b_next_transaction = transaction; 850 } 851 spin_unlock(&journal->j_list_lock); 852 jbd_unlock_bh_state(bh); 853 854 /* 855 * akpm: I added this. ext3_alloc_branch can pick up new indirect 856 * blocks which contain freed but then revoked metadata. We need 857 * to cancel the revoke in case we end up freeing it yet again 858 * and the reallocating as data - this would cause a second revoke, 859 * which hits an assertion error. 860 */ 861 JBUFFER_TRACE(jh, "cancelling revoke"); 862 jbd2_journal_cancel_revoke(handle, jh); 863 jbd2_journal_put_journal_head(jh); 864 out: 865 return err; 866 } 867 868 /** 869 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 870 * non-rewindable consequences 871 * @handle: transaction 872 * @bh: buffer to undo 873 * @credits: store the number of taken credits here (if not NULL) 874 * 875 * Sometimes there is a need to distinguish between metadata which has 876 * been committed to disk and that which has not. The ext3fs code uses 877 * this for freeing and allocating space, we have to make sure that we 878 * do not reuse freed space until the deallocation has been committed, 879 * since if we overwrote that space we would make the delete 880 * un-rewindable in case of a crash. 881 * 882 * To deal with that, jbd2_journal_get_undo_access requests write access to a 883 * buffer for parts of non-rewindable operations such as delete 884 * operations on the bitmaps. The journaling code must keep a copy of 885 * the buffer's contents prior to the undo_access call until such time 886 * as we know that the buffer has definitely been committed to disk. 887 * 888 * We never need to know which transaction the committed data is part 889 * of, buffers touched here are guaranteed to be dirtied later and so 890 * will be committed to a new transaction in due course, at which point 891 * we can discard the old committed data pointer. 892 * 893 * Returns error number or 0 on success. 894 */ 895 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 896 { 897 int err; 898 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 899 char *committed_data = NULL; 900 901 JBUFFER_TRACE(jh, "entry"); 902 903 /* 904 * Do this first --- it can drop the journal lock, so we want to 905 * make sure that obtaining the committed_data is done 906 * atomically wrt. completion of any outstanding commits. 907 */ 908 err = do_get_write_access(handle, jh, 1); 909 if (err) 910 goto out; 911 912 repeat: 913 if (!jh->b_committed_data) { 914 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 915 if (!committed_data) { 916 printk(KERN_EMERG "%s: No memory for committed data\n", 917 __func__); 918 err = -ENOMEM; 919 goto out; 920 } 921 } 922 923 jbd_lock_bh_state(bh); 924 if (!jh->b_committed_data) { 925 /* Copy out the current buffer contents into the 926 * preserved, committed copy. */ 927 JBUFFER_TRACE(jh, "generate b_committed data"); 928 if (!committed_data) { 929 jbd_unlock_bh_state(bh); 930 goto repeat; 931 } 932 933 jh->b_committed_data = committed_data; 934 committed_data = NULL; 935 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 936 } 937 jbd_unlock_bh_state(bh); 938 out: 939 jbd2_journal_put_journal_head(jh); 940 if (unlikely(committed_data)) 941 jbd2_free(committed_data, bh->b_size); 942 return err; 943 } 944 945 /** 946 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 947 * @handle: transaction to add buffer to. 948 * @bh: buffer to mark 949 * 950 * mark dirty metadata which needs to be journaled as part of the current 951 * transaction. 952 * 953 * The buffer is placed on the transaction's metadata list and is marked 954 * as belonging to the transaction. 955 * 956 * Returns error number or 0 on success. 957 * 958 * Special care needs to be taken if the buffer already belongs to the 959 * current committing transaction (in which case we should have frozen 960 * data present for that commit). In that case, we don't relink the 961 * buffer: that only gets done when the old transaction finally 962 * completes its commit. 963 */ 964 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 965 { 966 transaction_t *transaction = handle->h_transaction; 967 journal_t *journal = transaction->t_journal; 968 struct journal_head *jh = bh2jh(bh); 969 970 jbd_debug(5, "journal_head %p\n", jh); 971 JBUFFER_TRACE(jh, "entry"); 972 if (is_handle_aborted(handle)) 973 goto out; 974 975 jbd_lock_bh_state(bh); 976 977 if (jh->b_modified == 0) { 978 /* 979 * This buffer's got modified and becoming part 980 * of the transaction. This needs to be done 981 * once a transaction -bzzz 982 */ 983 jh->b_modified = 1; 984 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 985 handle->h_buffer_credits--; 986 } 987 988 /* 989 * fastpath, to avoid expensive locking. If this buffer is already 990 * on the running transaction's metadata list there is nothing to do. 991 * Nobody can take it off again because there is a handle open. 992 * I _think_ we're OK here with SMP barriers - a mistaken decision will 993 * result in this test being false, so we go in and take the locks. 994 */ 995 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 996 JBUFFER_TRACE(jh, "fastpath"); 997 J_ASSERT_JH(jh, jh->b_transaction == 998 journal->j_running_transaction); 999 goto out_unlock_bh; 1000 } 1001 1002 set_buffer_jbddirty(bh); 1003 1004 /* 1005 * Metadata already on the current transaction list doesn't 1006 * need to be filed. Metadata on another transaction's list must 1007 * be committing, and will be refiled once the commit completes: 1008 * leave it alone for now. 1009 */ 1010 if (jh->b_transaction != transaction) { 1011 JBUFFER_TRACE(jh, "already on other transaction"); 1012 J_ASSERT_JH(jh, jh->b_transaction == 1013 journal->j_committing_transaction); 1014 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1015 /* And this case is illegal: we can't reuse another 1016 * transaction's data buffer, ever. */ 1017 goto out_unlock_bh; 1018 } 1019 1020 /* That test should have eliminated the following case: */ 1021 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1022 1023 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1024 spin_lock(&journal->j_list_lock); 1025 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1026 spin_unlock(&journal->j_list_lock); 1027 out_unlock_bh: 1028 jbd_unlock_bh_state(bh); 1029 out: 1030 JBUFFER_TRACE(jh, "exit"); 1031 return 0; 1032 } 1033 1034 /* 1035 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1036 * updates, if the update decided in the end that it didn't need access. 1037 * 1038 */ 1039 void 1040 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1041 { 1042 BUFFER_TRACE(bh, "entry"); 1043 } 1044 1045 /** 1046 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1047 * @handle: transaction handle 1048 * @bh: bh to 'forget' 1049 * 1050 * We can only do the bforget if there are no commits pending against the 1051 * buffer. If the buffer is dirty in the current running transaction we 1052 * can safely unlink it. 1053 * 1054 * bh may not be a journalled buffer at all - it may be a non-JBD 1055 * buffer which came off the hashtable. Check for this. 1056 * 1057 * Decrements bh->b_count by one. 1058 * 1059 * Allow this call even if the handle has aborted --- it may be part of 1060 * the caller's cleanup after an abort. 1061 */ 1062 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1063 { 1064 transaction_t *transaction = handle->h_transaction; 1065 journal_t *journal = transaction->t_journal; 1066 struct journal_head *jh; 1067 int drop_reserve = 0; 1068 int err = 0; 1069 int was_modified = 0; 1070 1071 BUFFER_TRACE(bh, "entry"); 1072 1073 jbd_lock_bh_state(bh); 1074 spin_lock(&journal->j_list_lock); 1075 1076 if (!buffer_jbd(bh)) 1077 goto not_jbd; 1078 jh = bh2jh(bh); 1079 1080 /* Critical error: attempting to delete a bitmap buffer, maybe? 1081 * Don't do any jbd operations, and return an error. */ 1082 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1083 "inconsistent data on disk")) { 1084 err = -EIO; 1085 goto not_jbd; 1086 } 1087 1088 /* keep track of wether or not this transaction modified us */ 1089 was_modified = jh->b_modified; 1090 1091 /* 1092 * The buffer's going from the transaction, we must drop 1093 * all references -bzzz 1094 */ 1095 jh->b_modified = 0; 1096 1097 if (jh->b_transaction == handle->h_transaction) { 1098 J_ASSERT_JH(jh, !jh->b_frozen_data); 1099 1100 /* If we are forgetting a buffer which is already part 1101 * of this transaction, then we can just drop it from 1102 * the transaction immediately. */ 1103 clear_buffer_dirty(bh); 1104 clear_buffer_jbddirty(bh); 1105 1106 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1107 1108 /* 1109 * we only want to drop a reference if this transaction 1110 * modified the buffer 1111 */ 1112 if (was_modified) 1113 drop_reserve = 1; 1114 1115 /* 1116 * We are no longer going to journal this buffer. 1117 * However, the commit of this transaction is still 1118 * important to the buffer: the delete that we are now 1119 * processing might obsolete an old log entry, so by 1120 * committing, we can satisfy the buffer's checkpoint. 1121 * 1122 * So, if we have a checkpoint on the buffer, we should 1123 * now refile the buffer on our BJ_Forget list so that 1124 * we know to remove the checkpoint after we commit. 1125 */ 1126 1127 if (jh->b_cp_transaction) { 1128 __jbd2_journal_temp_unlink_buffer(jh); 1129 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1130 } else { 1131 __jbd2_journal_unfile_buffer(jh); 1132 jbd2_journal_remove_journal_head(bh); 1133 __brelse(bh); 1134 if (!buffer_jbd(bh)) { 1135 spin_unlock(&journal->j_list_lock); 1136 jbd_unlock_bh_state(bh); 1137 __bforget(bh); 1138 goto drop; 1139 } 1140 } 1141 } else if (jh->b_transaction) { 1142 J_ASSERT_JH(jh, (jh->b_transaction == 1143 journal->j_committing_transaction)); 1144 /* However, if the buffer is still owned by a prior 1145 * (committing) transaction, we can't drop it yet... */ 1146 JBUFFER_TRACE(jh, "belongs to older transaction"); 1147 /* ... but we CAN drop it from the new transaction if we 1148 * have also modified it since the original commit. */ 1149 1150 if (jh->b_next_transaction) { 1151 J_ASSERT(jh->b_next_transaction == transaction); 1152 jh->b_next_transaction = NULL; 1153 1154 /* 1155 * only drop a reference if this transaction modified 1156 * the buffer 1157 */ 1158 if (was_modified) 1159 drop_reserve = 1; 1160 } 1161 } 1162 1163 not_jbd: 1164 spin_unlock(&journal->j_list_lock); 1165 jbd_unlock_bh_state(bh); 1166 __brelse(bh); 1167 drop: 1168 if (drop_reserve) { 1169 /* no need to reserve log space for this block -bzzz */ 1170 handle->h_buffer_credits++; 1171 } 1172 return err; 1173 } 1174 1175 /** 1176 * int jbd2_journal_stop() - complete a transaction 1177 * @handle: tranaction to complete. 1178 * 1179 * All done for a particular handle. 1180 * 1181 * There is not much action needed here. We just return any remaining 1182 * buffer credits to the transaction and remove the handle. The only 1183 * complication is that we need to start a commit operation if the 1184 * filesystem is marked for synchronous update. 1185 * 1186 * jbd2_journal_stop itself will not usually return an error, but it may 1187 * do so in unusual circumstances. In particular, expect it to 1188 * return -EIO if a jbd2_journal_abort has been executed since the 1189 * transaction began. 1190 */ 1191 int jbd2_journal_stop(handle_t *handle) 1192 { 1193 transaction_t *transaction = handle->h_transaction; 1194 journal_t *journal = transaction->t_journal; 1195 int old_handle_count, err; 1196 pid_t pid; 1197 1198 J_ASSERT(journal_current_handle() == handle); 1199 1200 if (is_handle_aborted(handle)) 1201 err = -EIO; 1202 else { 1203 J_ASSERT(transaction->t_updates > 0); 1204 err = 0; 1205 } 1206 1207 if (--handle->h_ref > 0) { 1208 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1209 handle->h_ref); 1210 return err; 1211 } 1212 1213 jbd_debug(4, "Handle %p going down\n", handle); 1214 1215 /* 1216 * Implement synchronous transaction batching. If the handle 1217 * was synchronous, don't force a commit immediately. Let's 1218 * yield and let another thread piggyback onto this transaction. 1219 * Keep doing that while new threads continue to arrive. 1220 * It doesn't cost much - we're about to run a commit and sleep 1221 * on IO anyway. Speeds up many-threaded, many-dir operations 1222 * by 30x or more... 1223 * 1224 * But don't do this if this process was the most recent one to 1225 * perform a synchronous write. We do this to detect the case where a 1226 * single process is doing a stream of sync writes. No point in waiting 1227 * for joiners in that case. 1228 */ 1229 pid = current->pid; 1230 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1231 journal->j_last_sync_writer = pid; 1232 do { 1233 old_handle_count = transaction->t_handle_count; 1234 schedule_timeout_uninterruptible(1); 1235 } while (old_handle_count != transaction->t_handle_count); 1236 } 1237 1238 current->journal_info = NULL; 1239 spin_lock(&journal->j_state_lock); 1240 spin_lock(&transaction->t_handle_lock); 1241 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1242 transaction->t_updates--; 1243 if (!transaction->t_updates) { 1244 wake_up(&journal->j_wait_updates); 1245 if (journal->j_barrier_count) 1246 wake_up(&journal->j_wait_transaction_locked); 1247 } 1248 1249 /* 1250 * If the handle is marked SYNC, we need to set another commit 1251 * going! We also want to force a commit if the current 1252 * transaction is occupying too much of the log, or if the 1253 * transaction is too old now. 1254 */ 1255 if (handle->h_sync || 1256 transaction->t_outstanding_credits > 1257 journal->j_max_transaction_buffers || 1258 time_after_eq(jiffies, transaction->t_expires)) { 1259 /* Do this even for aborted journals: an abort still 1260 * completes the commit thread, it just doesn't write 1261 * anything to disk. */ 1262 tid_t tid = transaction->t_tid; 1263 1264 spin_unlock(&transaction->t_handle_lock); 1265 jbd_debug(2, "transaction too old, requesting commit for " 1266 "handle %p\n", handle); 1267 /* This is non-blocking */ 1268 __jbd2_log_start_commit(journal, transaction->t_tid); 1269 spin_unlock(&journal->j_state_lock); 1270 1271 /* 1272 * Special case: JBD2_SYNC synchronous updates require us 1273 * to wait for the commit to complete. 1274 */ 1275 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1276 err = jbd2_log_wait_commit(journal, tid); 1277 } else { 1278 spin_unlock(&transaction->t_handle_lock); 1279 spin_unlock(&journal->j_state_lock); 1280 } 1281 1282 lock_release(&handle->h_lockdep_map, 1, _THIS_IP_); 1283 1284 jbd2_free_handle(handle); 1285 return err; 1286 } 1287 1288 /** 1289 * int jbd2_journal_force_commit() - force any uncommitted transactions 1290 * @journal: journal to force 1291 * 1292 * For synchronous operations: force any uncommitted transactions 1293 * to disk. May seem kludgy, but it reuses all the handle batching 1294 * code in a very simple manner. 1295 */ 1296 int jbd2_journal_force_commit(journal_t *journal) 1297 { 1298 handle_t *handle; 1299 int ret; 1300 1301 handle = jbd2_journal_start(journal, 1); 1302 if (IS_ERR(handle)) { 1303 ret = PTR_ERR(handle); 1304 } else { 1305 handle->h_sync = 1; 1306 ret = jbd2_journal_stop(handle); 1307 } 1308 return ret; 1309 } 1310 1311 /* 1312 * 1313 * List management code snippets: various functions for manipulating the 1314 * transaction buffer lists. 1315 * 1316 */ 1317 1318 /* 1319 * Append a buffer to a transaction list, given the transaction's list head 1320 * pointer. 1321 * 1322 * j_list_lock is held. 1323 * 1324 * jbd_lock_bh_state(jh2bh(jh)) is held. 1325 */ 1326 1327 static inline void 1328 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1329 { 1330 if (!*list) { 1331 jh->b_tnext = jh->b_tprev = jh; 1332 *list = jh; 1333 } else { 1334 /* Insert at the tail of the list to preserve order */ 1335 struct journal_head *first = *list, *last = first->b_tprev; 1336 jh->b_tprev = last; 1337 jh->b_tnext = first; 1338 last->b_tnext = first->b_tprev = jh; 1339 } 1340 } 1341 1342 /* 1343 * Remove a buffer from a transaction list, given the transaction's list 1344 * head pointer. 1345 * 1346 * Called with j_list_lock held, and the journal may not be locked. 1347 * 1348 * jbd_lock_bh_state(jh2bh(jh)) is held. 1349 */ 1350 1351 static inline void 1352 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1353 { 1354 if (*list == jh) { 1355 *list = jh->b_tnext; 1356 if (*list == jh) 1357 *list = NULL; 1358 } 1359 jh->b_tprev->b_tnext = jh->b_tnext; 1360 jh->b_tnext->b_tprev = jh->b_tprev; 1361 } 1362 1363 /* 1364 * Remove a buffer from the appropriate transaction list. 1365 * 1366 * Note that this function can *change* the value of 1367 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1368 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1369 * of these pointers, it could go bad. Generally the caller needs to re-read 1370 * the pointer from the transaction_t. 1371 * 1372 * Called under j_list_lock. The journal may not be locked. 1373 */ 1374 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1375 { 1376 struct journal_head **list = NULL; 1377 transaction_t *transaction; 1378 struct buffer_head *bh = jh2bh(jh); 1379 1380 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1381 transaction = jh->b_transaction; 1382 if (transaction) 1383 assert_spin_locked(&transaction->t_journal->j_list_lock); 1384 1385 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1386 if (jh->b_jlist != BJ_None) 1387 J_ASSERT_JH(jh, transaction != NULL); 1388 1389 switch (jh->b_jlist) { 1390 case BJ_None: 1391 return; 1392 case BJ_Metadata: 1393 transaction->t_nr_buffers--; 1394 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1395 list = &transaction->t_buffers; 1396 break; 1397 case BJ_Forget: 1398 list = &transaction->t_forget; 1399 break; 1400 case BJ_IO: 1401 list = &transaction->t_iobuf_list; 1402 break; 1403 case BJ_Shadow: 1404 list = &transaction->t_shadow_list; 1405 break; 1406 case BJ_LogCtl: 1407 list = &transaction->t_log_list; 1408 break; 1409 case BJ_Reserved: 1410 list = &transaction->t_reserved_list; 1411 break; 1412 } 1413 1414 __blist_del_buffer(list, jh); 1415 jh->b_jlist = BJ_None; 1416 if (test_clear_buffer_jbddirty(bh)) 1417 mark_buffer_dirty(bh); /* Expose it to the VM */ 1418 } 1419 1420 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1421 { 1422 __jbd2_journal_temp_unlink_buffer(jh); 1423 jh->b_transaction = NULL; 1424 } 1425 1426 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1427 { 1428 jbd_lock_bh_state(jh2bh(jh)); 1429 spin_lock(&journal->j_list_lock); 1430 __jbd2_journal_unfile_buffer(jh); 1431 spin_unlock(&journal->j_list_lock); 1432 jbd_unlock_bh_state(jh2bh(jh)); 1433 } 1434 1435 /* 1436 * Called from jbd2_journal_try_to_free_buffers(). 1437 * 1438 * Called under jbd_lock_bh_state(bh) 1439 */ 1440 static void 1441 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1442 { 1443 struct journal_head *jh; 1444 1445 jh = bh2jh(bh); 1446 1447 if (buffer_locked(bh) || buffer_dirty(bh)) 1448 goto out; 1449 1450 if (jh->b_next_transaction != NULL) 1451 goto out; 1452 1453 spin_lock(&journal->j_list_lock); 1454 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1455 /* written-back checkpointed metadata buffer */ 1456 if (jh->b_jlist == BJ_None) { 1457 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1458 __jbd2_journal_remove_checkpoint(jh); 1459 jbd2_journal_remove_journal_head(bh); 1460 __brelse(bh); 1461 } 1462 } 1463 spin_unlock(&journal->j_list_lock); 1464 out: 1465 return; 1466 } 1467 1468 /* 1469 * jbd2_journal_try_to_free_buffers() could race with 1470 * jbd2_journal_commit_transaction(). The later might still hold the 1471 * reference count to the buffers when inspecting them on 1472 * t_syncdata_list or t_locked_list. 1473 * 1474 * jbd2_journal_try_to_free_buffers() will call this function to 1475 * wait for the current transaction to finish syncing data buffers, before 1476 * try to free that buffer. 1477 * 1478 * Called with journal->j_state_lock hold. 1479 */ 1480 static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal) 1481 { 1482 transaction_t *transaction; 1483 tid_t tid; 1484 1485 spin_lock(&journal->j_state_lock); 1486 transaction = journal->j_committing_transaction; 1487 1488 if (!transaction) { 1489 spin_unlock(&journal->j_state_lock); 1490 return; 1491 } 1492 1493 tid = transaction->t_tid; 1494 spin_unlock(&journal->j_state_lock); 1495 jbd2_log_wait_commit(journal, tid); 1496 } 1497 1498 /** 1499 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1500 * @journal: journal for operation 1501 * @page: to try and free 1502 * @gfp_mask: we use the mask to detect how hard should we try to release 1503 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1504 * release the buffers. 1505 * 1506 * 1507 * For all the buffers on this page, 1508 * if they are fully written out ordered data, move them onto BUF_CLEAN 1509 * so try_to_free_buffers() can reap them. 1510 * 1511 * This function returns non-zero if we wish try_to_free_buffers() 1512 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1513 * We also do it if the page has locked or dirty buffers and the caller wants 1514 * us to perform sync or async writeout. 1515 * 1516 * This complicates JBD locking somewhat. We aren't protected by the 1517 * BKL here. We wish to remove the buffer from its committing or 1518 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1519 * 1520 * This may *change* the value of transaction_t->t_datalist, so anyone 1521 * who looks at t_datalist needs to lock against this function. 1522 * 1523 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1524 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1525 * will come out of the lock with the buffer dirty, which makes it 1526 * ineligible for release here. 1527 * 1528 * Who else is affected by this? hmm... Really the only contender 1529 * is do_get_write_access() - it could be looking at the buffer while 1530 * journal_try_to_free_buffer() is changing its state. But that 1531 * cannot happen because we never reallocate freed data as metadata 1532 * while the data is part of a transaction. Yes? 1533 * 1534 * Return 0 on failure, 1 on success 1535 */ 1536 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1537 struct page *page, gfp_t gfp_mask) 1538 { 1539 struct buffer_head *head; 1540 struct buffer_head *bh; 1541 int ret = 0; 1542 1543 J_ASSERT(PageLocked(page)); 1544 1545 head = page_buffers(page); 1546 bh = head; 1547 do { 1548 struct journal_head *jh; 1549 1550 /* 1551 * We take our own ref against the journal_head here to avoid 1552 * having to add tons of locking around each instance of 1553 * jbd2_journal_remove_journal_head() and 1554 * jbd2_journal_put_journal_head(). 1555 */ 1556 jh = jbd2_journal_grab_journal_head(bh); 1557 if (!jh) 1558 continue; 1559 1560 jbd_lock_bh_state(bh); 1561 __journal_try_to_free_buffer(journal, bh); 1562 jbd2_journal_put_journal_head(jh); 1563 jbd_unlock_bh_state(bh); 1564 if (buffer_jbd(bh)) 1565 goto busy; 1566 } while ((bh = bh->b_this_page) != head); 1567 1568 ret = try_to_free_buffers(page); 1569 1570 /* 1571 * There are a number of places where jbd2_journal_try_to_free_buffers() 1572 * could race with jbd2_journal_commit_transaction(), the later still 1573 * holds the reference to the buffers to free while processing them. 1574 * try_to_free_buffers() failed to free those buffers. Some of the 1575 * caller of releasepage() request page buffers to be dropped, otherwise 1576 * treat the fail-to-free as errors (such as generic_file_direct_IO()) 1577 * 1578 * So, if the caller of try_to_release_page() wants the synchronous 1579 * behaviour(i.e make sure buffers are dropped upon return), 1580 * let's wait for the current transaction to finish flush of 1581 * dirty data buffers, then try to free those buffers again, 1582 * with the journal locked. 1583 */ 1584 if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) { 1585 jbd2_journal_wait_for_transaction_sync_data(journal); 1586 ret = try_to_free_buffers(page); 1587 } 1588 1589 busy: 1590 return ret; 1591 } 1592 1593 /* 1594 * This buffer is no longer needed. If it is on an older transaction's 1595 * checkpoint list we need to record it on this transaction's forget list 1596 * to pin this buffer (and hence its checkpointing transaction) down until 1597 * this transaction commits. If the buffer isn't on a checkpoint list, we 1598 * release it. 1599 * Returns non-zero if JBD no longer has an interest in the buffer. 1600 * 1601 * Called under j_list_lock. 1602 * 1603 * Called under jbd_lock_bh_state(bh). 1604 */ 1605 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1606 { 1607 int may_free = 1; 1608 struct buffer_head *bh = jh2bh(jh); 1609 1610 __jbd2_journal_unfile_buffer(jh); 1611 1612 if (jh->b_cp_transaction) { 1613 JBUFFER_TRACE(jh, "on running+cp transaction"); 1614 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1615 clear_buffer_jbddirty(bh); 1616 may_free = 0; 1617 } else { 1618 JBUFFER_TRACE(jh, "on running transaction"); 1619 jbd2_journal_remove_journal_head(bh); 1620 __brelse(bh); 1621 } 1622 return may_free; 1623 } 1624 1625 /* 1626 * jbd2_journal_invalidatepage 1627 * 1628 * This code is tricky. It has a number of cases to deal with. 1629 * 1630 * There are two invariants which this code relies on: 1631 * 1632 * i_size must be updated on disk before we start calling invalidatepage on the 1633 * data. 1634 * 1635 * This is done in ext3 by defining an ext3_setattr method which 1636 * updates i_size before truncate gets going. By maintaining this 1637 * invariant, we can be sure that it is safe to throw away any buffers 1638 * attached to the current transaction: once the transaction commits, 1639 * we know that the data will not be needed. 1640 * 1641 * Note however that we can *not* throw away data belonging to the 1642 * previous, committing transaction! 1643 * 1644 * Any disk blocks which *are* part of the previous, committing 1645 * transaction (and which therefore cannot be discarded immediately) are 1646 * not going to be reused in the new running transaction 1647 * 1648 * The bitmap committed_data images guarantee this: any block which is 1649 * allocated in one transaction and removed in the next will be marked 1650 * as in-use in the committed_data bitmap, so cannot be reused until 1651 * the next transaction to delete the block commits. This means that 1652 * leaving committing buffers dirty is quite safe: the disk blocks 1653 * cannot be reallocated to a different file and so buffer aliasing is 1654 * not possible. 1655 * 1656 * 1657 * The above applies mainly to ordered data mode. In writeback mode we 1658 * don't make guarantees about the order in which data hits disk --- in 1659 * particular we don't guarantee that new dirty data is flushed before 1660 * transaction commit --- so it is always safe just to discard data 1661 * immediately in that mode. --sct 1662 */ 1663 1664 /* 1665 * The journal_unmap_buffer helper function returns zero if the buffer 1666 * concerned remains pinned as an anonymous buffer belonging to an older 1667 * transaction. 1668 * 1669 * We're outside-transaction here. Either or both of j_running_transaction 1670 * and j_committing_transaction may be NULL. 1671 */ 1672 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1673 { 1674 transaction_t *transaction; 1675 struct journal_head *jh; 1676 int may_free = 1; 1677 int ret; 1678 1679 BUFFER_TRACE(bh, "entry"); 1680 1681 /* 1682 * It is safe to proceed here without the j_list_lock because the 1683 * buffers cannot be stolen by try_to_free_buffers as long as we are 1684 * holding the page lock. --sct 1685 */ 1686 1687 if (!buffer_jbd(bh)) 1688 goto zap_buffer_unlocked; 1689 1690 /* OK, we have data buffer in journaled mode */ 1691 spin_lock(&journal->j_state_lock); 1692 jbd_lock_bh_state(bh); 1693 spin_lock(&journal->j_list_lock); 1694 1695 jh = jbd2_journal_grab_journal_head(bh); 1696 if (!jh) 1697 goto zap_buffer_no_jh; 1698 1699 transaction = jh->b_transaction; 1700 if (transaction == NULL) { 1701 /* First case: not on any transaction. If it 1702 * has no checkpoint link, then we can zap it: 1703 * it's a writeback-mode buffer so we don't care 1704 * if it hits disk safely. */ 1705 if (!jh->b_cp_transaction) { 1706 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1707 goto zap_buffer; 1708 } 1709 1710 if (!buffer_dirty(bh)) { 1711 /* bdflush has written it. We can drop it now */ 1712 goto zap_buffer; 1713 } 1714 1715 /* OK, it must be in the journal but still not 1716 * written fully to disk: it's metadata or 1717 * journaled data... */ 1718 1719 if (journal->j_running_transaction) { 1720 /* ... and once the current transaction has 1721 * committed, the buffer won't be needed any 1722 * longer. */ 1723 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1724 ret = __dispose_buffer(jh, 1725 journal->j_running_transaction); 1726 jbd2_journal_put_journal_head(jh); 1727 spin_unlock(&journal->j_list_lock); 1728 jbd_unlock_bh_state(bh); 1729 spin_unlock(&journal->j_state_lock); 1730 return ret; 1731 } else { 1732 /* There is no currently-running transaction. So the 1733 * orphan record which we wrote for this file must have 1734 * passed into commit. We must attach this buffer to 1735 * the committing transaction, if it exists. */ 1736 if (journal->j_committing_transaction) { 1737 JBUFFER_TRACE(jh, "give to committing trans"); 1738 ret = __dispose_buffer(jh, 1739 journal->j_committing_transaction); 1740 jbd2_journal_put_journal_head(jh); 1741 spin_unlock(&journal->j_list_lock); 1742 jbd_unlock_bh_state(bh); 1743 spin_unlock(&journal->j_state_lock); 1744 return ret; 1745 } else { 1746 /* The orphan record's transaction has 1747 * committed. We can cleanse this buffer */ 1748 clear_buffer_jbddirty(bh); 1749 goto zap_buffer; 1750 } 1751 } 1752 } else if (transaction == journal->j_committing_transaction) { 1753 JBUFFER_TRACE(jh, "on committing transaction"); 1754 /* 1755 * If it is committing, we simply cannot touch it. We 1756 * can remove it's next_transaction pointer from the 1757 * running transaction if that is set, but nothing 1758 * else. */ 1759 set_buffer_freed(bh); 1760 if (jh->b_next_transaction) { 1761 J_ASSERT(jh->b_next_transaction == 1762 journal->j_running_transaction); 1763 jh->b_next_transaction = NULL; 1764 } 1765 jbd2_journal_put_journal_head(jh); 1766 spin_unlock(&journal->j_list_lock); 1767 jbd_unlock_bh_state(bh); 1768 spin_unlock(&journal->j_state_lock); 1769 return 0; 1770 } else { 1771 /* Good, the buffer belongs to the running transaction. 1772 * We are writing our own transaction's data, not any 1773 * previous one's, so it is safe to throw it away 1774 * (remember that we expect the filesystem to have set 1775 * i_size already for this truncate so recovery will not 1776 * expose the disk blocks we are discarding here.) */ 1777 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1778 JBUFFER_TRACE(jh, "on running transaction"); 1779 may_free = __dispose_buffer(jh, transaction); 1780 } 1781 1782 zap_buffer: 1783 jbd2_journal_put_journal_head(jh); 1784 zap_buffer_no_jh: 1785 spin_unlock(&journal->j_list_lock); 1786 jbd_unlock_bh_state(bh); 1787 spin_unlock(&journal->j_state_lock); 1788 zap_buffer_unlocked: 1789 clear_buffer_dirty(bh); 1790 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1791 clear_buffer_mapped(bh); 1792 clear_buffer_req(bh); 1793 clear_buffer_new(bh); 1794 bh->b_bdev = NULL; 1795 return may_free; 1796 } 1797 1798 /** 1799 * void jbd2_journal_invalidatepage() 1800 * @journal: journal to use for flush... 1801 * @page: page to flush 1802 * @offset: length of page to invalidate. 1803 * 1804 * Reap page buffers containing data after offset in page. 1805 * 1806 */ 1807 void jbd2_journal_invalidatepage(journal_t *journal, 1808 struct page *page, 1809 unsigned long offset) 1810 { 1811 struct buffer_head *head, *bh, *next; 1812 unsigned int curr_off = 0; 1813 int may_free = 1; 1814 1815 if (!PageLocked(page)) 1816 BUG(); 1817 if (!page_has_buffers(page)) 1818 return; 1819 1820 /* We will potentially be playing with lists other than just the 1821 * data lists (especially for journaled data mode), so be 1822 * cautious in our locking. */ 1823 1824 head = bh = page_buffers(page); 1825 do { 1826 unsigned int next_off = curr_off + bh->b_size; 1827 next = bh->b_this_page; 1828 1829 if (offset <= curr_off) { 1830 /* This block is wholly outside the truncation point */ 1831 lock_buffer(bh); 1832 may_free &= journal_unmap_buffer(journal, bh); 1833 unlock_buffer(bh); 1834 } 1835 curr_off = next_off; 1836 bh = next; 1837 1838 } while (bh != head); 1839 1840 if (!offset) { 1841 if (may_free && try_to_free_buffers(page)) 1842 J_ASSERT(!page_has_buffers(page)); 1843 } 1844 } 1845 1846 /* 1847 * File a buffer on the given transaction list. 1848 */ 1849 void __jbd2_journal_file_buffer(struct journal_head *jh, 1850 transaction_t *transaction, int jlist) 1851 { 1852 struct journal_head **list = NULL; 1853 int was_dirty = 0; 1854 struct buffer_head *bh = jh2bh(jh); 1855 1856 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1857 assert_spin_locked(&transaction->t_journal->j_list_lock); 1858 1859 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1860 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1861 jh->b_transaction == NULL); 1862 1863 if (jh->b_transaction && jh->b_jlist == jlist) 1864 return; 1865 1866 /* The following list of buffer states needs to be consistent 1867 * with __jbd_unexpected_dirty_buffer()'s handling of dirty 1868 * state. */ 1869 1870 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1871 jlist == BJ_Shadow || jlist == BJ_Forget) { 1872 if (test_clear_buffer_dirty(bh) || 1873 test_clear_buffer_jbddirty(bh)) 1874 was_dirty = 1; 1875 } 1876 1877 if (jh->b_transaction) 1878 __jbd2_journal_temp_unlink_buffer(jh); 1879 jh->b_transaction = transaction; 1880 1881 switch (jlist) { 1882 case BJ_None: 1883 J_ASSERT_JH(jh, !jh->b_committed_data); 1884 J_ASSERT_JH(jh, !jh->b_frozen_data); 1885 return; 1886 case BJ_Metadata: 1887 transaction->t_nr_buffers++; 1888 list = &transaction->t_buffers; 1889 break; 1890 case BJ_Forget: 1891 list = &transaction->t_forget; 1892 break; 1893 case BJ_IO: 1894 list = &transaction->t_iobuf_list; 1895 break; 1896 case BJ_Shadow: 1897 list = &transaction->t_shadow_list; 1898 break; 1899 case BJ_LogCtl: 1900 list = &transaction->t_log_list; 1901 break; 1902 case BJ_Reserved: 1903 list = &transaction->t_reserved_list; 1904 break; 1905 } 1906 1907 __blist_add_buffer(list, jh); 1908 jh->b_jlist = jlist; 1909 1910 if (was_dirty) 1911 set_buffer_jbddirty(bh); 1912 } 1913 1914 void jbd2_journal_file_buffer(struct journal_head *jh, 1915 transaction_t *transaction, int jlist) 1916 { 1917 jbd_lock_bh_state(jh2bh(jh)); 1918 spin_lock(&transaction->t_journal->j_list_lock); 1919 __jbd2_journal_file_buffer(jh, transaction, jlist); 1920 spin_unlock(&transaction->t_journal->j_list_lock); 1921 jbd_unlock_bh_state(jh2bh(jh)); 1922 } 1923 1924 /* 1925 * Remove a buffer from its current buffer list in preparation for 1926 * dropping it from its current transaction entirely. If the buffer has 1927 * already started to be used by a subsequent transaction, refile the 1928 * buffer on that transaction's metadata list. 1929 * 1930 * Called under journal->j_list_lock 1931 * 1932 * Called under jbd_lock_bh_state(jh2bh(jh)) 1933 */ 1934 void __jbd2_journal_refile_buffer(struct journal_head *jh) 1935 { 1936 int was_dirty; 1937 struct buffer_head *bh = jh2bh(jh); 1938 1939 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1940 if (jh->b_transaction) 1941 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 1942 1943 /* If the buffer is now unused, just drop it. */ 1944 if (jh->b_next_transaction == NULL) { 1945 __jbd2_journal_unfile_buffer(jh); 1946 return; 1947 } 1948 1949 /* 1950 * It has been modified by a later transaction: add it to the new 1951 * transaction's metadata list. 1952 */ 1953 1954 was_dirty = test_clear_buffer_jbddirty(bh); 1955 __jbd2_journal_temp_unlink_buffer(jh); 1956 jh->b_transaction = jh->b_next_transaction; 1957 jh->b_next_transaction = NULL; 1958 __jbd2_journal_file_buffer(jh, jh->b_transaction, 1959 jh->b_modified ? BJ_Metadata : BJ_Reserved); 1960 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 1961 1962 if (was_dirty) 1963 set_buffer_jbddirty(bh); 1964 } 1965 1966 /* 1967 * For the unlocked version of this call, also make sure that any 1968 * hanging journal_head is cleaned up if necessary. 1969 * 1970 * __jbd2_journal_refile_buffer is usually called as part of a single locked 1971 * operation on a buffer_head, in which the caller is probably going to 1972 * be hooking the journal_head onto other lists. In that case it is up 1973 * to the caller to remove the journal_head if necessary. For the 1974 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 1975 * doing anything else to the buffer so we need to do the cleanup 1976 * ourselves to avoid a jh leak. 1977 * 1978 * *** The journal_head may be freed by this call! *** 1979 */ 1980 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 1981 { 1982 struct buffer_head *bh = jh2bh(jh); 1983 1984 jbd_lock_bh_state(bh); 1985 spin_lock(&journal->j_list_lock); 1986 1987 __jbd2_journal_refile_buffer(jh); 1988 jbd_unlock_bh_state(bh); 1989 jbd2_journal_remove_journal_head(bh); 1990 1991 spin_unlock(&journal->j_list_lock); 1992 __brelse(bh); 1993 } 1994 1995 /* 1996 * File inode in the inode list of the handle's transaction 1997 */ 1998 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 1999 { 2000 transaction_t *transaction = handle->h_transaction; 2001 journal_t *journal = transaction->t_journal; 2002 2003 if (is_handle_aborted(handle)) 2004 return -EIO; 2005 2006 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2007 transaction->t_tid); 2008 2009 /* 2010 * First check whether inode isn't already on the transaction's 2011 * lists without taking the lock. Note that this check is safe 2012 * without the lock as we cannot race with somebody removing inode 2013 * from the transaction. The reason is that we remove inode from the 2014 * transaction only in journal_release_jbd_inode() and when we commit 2015 * the transaction. We are guarded from the first case by holding 2016 * a reference to the inode. We are safe against the second case 2017 * because if jinode->i_transaction == transaction, commit code 2018 * cannot touch the transaction because we hold reference to it, 2019 * and if jinode->i_next_transaction == transaction, commit code 2020 * will only file the inode where we want it. 2021 */ 2022 if (jinode->i_transaction == transaction || 2023 jinode->i_next_transaction == transaction) 2024 return 0; 2025 2026 spin_lock(&journal->j_list_lock); 2027 2028 if (jinode->i_transaction == transaction || 2029 jinode->i_next_transaction == transaction) 2030 goto done; 2031 2032 /* On some different transaction's list - should be 2033 * the committing one */ 2034 if (jinode->i_transaction) { 2035 J_ASSERT(jinode->i_next_transaction == NULL); 2036 J_ASSERT(jinode->i_transaction == 2037 journal->j_committing_transaction); 2038 jinode->i_next_transaction = transaction; 2039 goto done; 2040 } 2041 /* Not on any transaction list... */ 2042 J_ASSERT(!jinode->i_next_transaction); 2043 jinode->i_transaction = transaction; 2044 list_add(&jinode->i_list, &transaction->t_inode_list); 2045 done: 2046 spin_unlock(&journal->j_list_lock); 2047 2048 return 0; 2049 } 2050 2051 /* 2052 * This function must be called when inode is journaled in ordered mode 2053 * before truncation happens. It starts writeout of truncated part in 2054 * case it is in the committing transaction so that we stand to ordered 2055 * mode consistency guarantees. 2056 */ 2057 int jbd2_journal_begin_ordered_truncate(struct jbd2_inode *inode, 2058 loff_t new_size) 2059 { 2060 journal_t *journal; 2061 transaction_t *commit_trans; 2062 int ret = 0; 2063 2064 if (!inode->i_transaction && !inode->i_next_transaction) 2065 goto out; 2066 journal = inode->i_transaction->t_journal; 2067 spin_lock(&journal->j_state_lock); 2068 commit_trans = journal->j_committing_transaction; 2069 spin_unlock(&journal->j_state_lock); 2070 if (inode->i_transaction == commit_trans) { 2071 ret = filemap_fdatawrite_range(inode->i_vfs_inode->i_mapping, 2072 new_size, LLONG_MAX); 2073 if (ret) 2074 jbd2_journal_abort(journal, ret); 2075 } 2076 out: 2077 return ret; 2078 } 2079