xref: /openbmc/linux/fs/jbd2/transaction.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static void jbd2_get_transaction(journal_t *journal,
81 				transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits,
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_handle_count, 0);
93 	INIT_LIST_HEAD(&transaction->t_inode_list);
94 	INIT_LIST_HEAD(&transaction->t_private_list);
95 
96 	/* Set up the commit timer for the new transaction. */
97 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 	add_timer(&journal->j_commit_timer);
99 
100 	J_ASSERT(journal->j_running_transaction == NULL);
101 	journal->j_running_transaction = transaction;
102 	transaction->t_max_wait = 0;
103 	transaction->t_start = jiffies;
104 	transaction->t_requested = 0;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * Wait until running transaction passes to T_FLUSH state and new transaction
142  * can thus be started. Also starts the commit if needed. The function expects
143  * running transaction to exist and releases j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146 	__releases(journal->j_state_lock)
147 {
148 	DEFINE_WAIT(wait);
149 	int need_to_start;
150 	tid_t tid = journal->j_running_transaction->t_tid;
151 
152 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153 			TASK_UNINTERRUPTIBLE);
154 	need_to_start = !tid_geq(journal->j_commit_request, tid);
155 	read_unlock(&journal->j_state_lock);
156 	if (need_to_start)
157 		jbd2_log_start_commit(journal, tid);
158 	jbd2_might_wait_for_commit(journal);
159 	schedule();
160 	finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162 
163 /*
164  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
165  * state and new transaction can thus be started. The function releases
166  * j_state_lock.
167  */
168 static void wait_transaction_switching(journal_t *journal)
169 	__releases(journal->j_state_lock)
170 {
171 	DEFINE_WAIT(wait);
172 
173 	if (WARN_ON(!journal->j_running_transaction ||
174 		    journal->j_running_transaction->t_state != T_SWITCH))
175 		return;
176 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	read_unlock(&journal->j_state_lock);
179 	/*
180 	 * We don't call jbd2_might_wait_for_commit() here as there's no
181 	 * waiting for outstanding handles happening anymore in T_SWITCH state
182 	 * and handling of reserved handles actually relies on that for
183 	 * correctness.
184 	 */
185 	schedule();
186 	finish_wait(&journal->j_wait_transaction_locked, &wait);
187 }
188 
189 static void sub_reserved_credits(journal_t *journal, int blocks)
190 {
191 	atomic_sub(blocks, &journal->j_reserved_credits);
192 	wake_up(&journal->j_wait_reserved);
193 }
194 
195 /*
196  * Wait until we can add credits for handle to the running transaction.  Called
197  * with j_state_lock held for reading. Returns 0 if handle joined the running
198  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
199  * caller must retry.
200  */
201 static int add_transaction_credits(journal_t *journal, int blocks,
202 				   int rsv_blocks)
203 {
204 	transaction_t *t = journal->j_running_transaction;
205 	int needed;
206 	int total = blocks + rsv_blocks;
207 
208 	/*
209 	 * If the current transaction is locked down for commit, wait
210 	 * for the lock to be released.
211 	 */
212 	if (t->t_state != T_RUNNING) {
213 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
214 		wait_transaction_locked(journal);
215 		return 1;
216 	}
217 
218 	/*
219 	 * If there is not enough space left in the log to write all
220 	 * potential buffers requested by this operation, we need to
221 	 * stall pending a log checkpoint to free some more log space.
222 	 */
223 	needed = atomic_add_return(total, &t->t_outstanding_credits);
224 	if (needed > journal->j_max_transaction_buffers) {
225 		/*
226 		 * If the current transaction is already too large,
227 		 * then start to commit it: we can then go back and
228 		 * attach this handle to a new transaction.
229 		 */
230 		atomic_sub(total, &t->t_outstanding_credits);
231 
232 		/*
233 		 * Is the number of reserved credits in the current transaction too
234 		 * big to fit this handle? Wait until reserved credits are freed.
235 		 */
236 		if (atomic_read(&journal->j_reserved_credits) + total >
237 		    journal->j_max_transaction_buffers) {
238 			read_unlock(&journal->j_state_lock);
239 			jbd2_might_wait_for_commit(journal);
240 			wait_event(journal->j_wait_reserved,
241 				   atomic_read(&journal->j_reserved_credits) + total <=
242 				   journal->j_max_transaction_buffers);
243 			return 1;
244 		}
245 
246 		wait_transaction_locked(journal);
247 		return 1;
248 	}
249 
250 	/*
251 	 * The commit code assumes that it can get enough log space
252 	 * without forcing a checkpoint.  This is *critical* for
253 	 * correctness: a checkpoint of a buffer which is also
254 	 * associated with a committing transaction creates a deadlock,
255 	 * so commit simply cannot force through checkpoints.
256 	 *
257 	 * We must therefore ensure the necessary space in the journal
258 	 * *before* starting to dirty potentially checkpointed buffers
259 	 * in the new transaction.
260 	 */
261 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
262 		atomic_sub(total, &t->t_outstanding_credits);
263 		read_unlock(&journal->j_state_lock);
264 		jbd2_might_wait_for_commit(journal);
265 		write_lock(&journal->j_state_lock);
266 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
267 			__jbd2_log_wait_for_space(journal);
268 		write_unlock(&journal->j_state_lock);
269 		return 1;
270 	}
271 
272 	/* No reservation? We are done... */
273 	if (!rsv_blocks)
274 		return 0;
275 
276 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
277 	/* We allow at most half of a transaction to be reserved */
278 	if (needed > journal->j_max_transaction_buffers / 2) {
279 		sub_reserved_credits(journal, rsv_blocks);
280 		atomic_sub(total, &t->t_outstanding_credits);
281 		read_unlock(&journal->j_state_lock);
282 		jbd2_might_wait_for_commit(journal);
283 		wait_event(journal->j_wait_reserved,
284 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
285 			 <= journal->j_max_transaction_buffers / 2);
286 		return 1;
287 	}
288 	return 0;
289 }
290 
291 /*
292  * start_this_handle: Given a handle, deal with any locking or stalling
293  * needed to make sure that there is enough journal space for the handle
294  * to begin.  Attach the handle to a transaction and set up the
295  * transaction's buffer credits.
296  */
297 
298 static int start_this_handle(journal_t *journal, handle_t *handle,
299 			     gfp_t gfp_mask)
300 {
301 	transaction_t	*transaction, *new_transaction = NULL;
302 	int		blocks = handle->h_buffer_credits;
303 	int		rsv_blocks = 0;
304 	unsigned long ts = jiffies;
305 
306 	if (handle->h_rsv_handle)
307 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
308 
309 	/*
310 	 * Limit the number of reserved credits to 1/2 of maximum transaction
311 	 * size and limit the number of total credits to not exceed maximum
312 	 * transaction size per operation.
313 	 */
314 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
315 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
316 		printk(KERN_ERR "JBD2: %s wants too many credits "
317 		       "credits:%d rsv_credits:%d max:%d\n",
318 		       current->comm, blocks, rsv_blocks,
319 		       journal->j_max_transaction_buffers);
320 		WARN_ON(1);
321 		return -ENOSPC;
322 	}
323 
324 alloc_transaction:
325 	if (!journal->j_running_transaction) {
326 		/*
327 		 * If __GFP_FS is not present, then we may be being called from
328 		 * inside the fs writeback layer, so we MUST NOT fail.
329 		 */
330 		if ((gfp_mask & __GFP_FS) == 0)
331 			gfp_mask |= __GFP_NOFAIL;
332 		new_transaction = kmem_cache_zalloc(transaction_cache,
333 						    gfp_mask);
334 		if (!new_transaction)
335 			return -ENOMEM;
336 	}
337 
338 	jbd_debug(3, "New handle %p going live.\n", handle);
339 
340 	/*
341 	 * We need to hold j_state_lock until t_updates has been incremented,
342 	 * for proper journal barrier handling
343 	 */
344 repeat:
345 	read_lock(&journal->j_state_lock);
346 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
347 	if (is_journal_aborted(journal) ||
348 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
349 		read_unlock(&journal->j_state_lock);
350 		jbd2_journal_free_transaction(new_transaction);
351 		return -EROFS;
352 	}
353 
354 	/*
355 	 * Wait on the journal's transaction barrier if necessary. Specifically
356 	 * we allow reserved handles to proceed because otherwise commit could
357 	 * deadlock on page writeback not being able to complete.
358 	 */
359 	if (!handle->h_reserved && journal->j_barrier_count) {
360 		read_unlock(&journal->j_state_lock);
361 		wait_event(journal->j_wait_transaction_locked,
362 				journal->j_barrier_count == 0);
363 		goto repeat;
364 	}
365 
366 	if (!journal->j_running_transaction) {
367 		read_unlock(&journal->j_state_lock);
368 		if (!new_transaction)
369 			goto alloc_transaction;
370 		write_lock(&journal->j_state_lock);
371 		if (!journal->j_running_transaction &&
372 		    (handle->h_reserved || !journal->j_barrier_count)) {
373 			jbd2_get_transaction(journal, new_transaction);
374 			new_transaction = NULL;
375 		}
376 		write_unlock(&journal->j_state_lock);
377 		goto repeat;
378 	}
379 
380 	transaction = journal->j_running_transaction;
381 
382 	if (!handle->h_reserved) {
383 		/* We may have dropped j_state_lock - restart in that case */
384 		if (add_transaction_credits(journal, blocks, rsv_blocks))
385 			goto repeat;
386 	} else {
387 		/*
388 		 * We have handle reserved so we are allowed to join T_LOCKED
389 		 * transaction and we don't have to check for transaction size
390 		 * and journal space. But we still have to wait while running
391 		 * transaction is being switched to a committing one as it
392 		 * won't wait for any handles anymore.
393 		 */
394 		if (transaction->t_state == T_SWITCH) {
395 			wait_transaction_switching(journal);
396 			goto repeat;
397 		}
398 		sub_reserved_credits(journal, blocks);
399 		handle->h_reserved = 0;
400 	}
401 
402 	/* OK, account for the buffers that this operation expects to
403 	 * use and add the handle to the running transaction.
404 	 */
405 	update_t_max_wait(transaction, ts);
406 	handle->h_transaction = transaction;
407 	handle->h_requested_credits = blocks;
408 	handle->h_start_jiffies = jiffies;
409 	atomic_inc(&transaction->t_updates);
410 	atomic_inc(&transaction->t_handle_count);
411 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
412 		  handle, blocks,
413 		  atomic_read(&transaction->t_outstanding_credits),
414 		  jbd2_log_space_left(journal));
415 	read_unlock(&journal->j_state_lock);
416 	current->journal_info = handle;
417 
418 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
419 	jbd2_journal_free_transaction(new_transaction);
420 	/*
421 	 * Ensure that no allocations done while the transaction is open are
422 	 * going to recurse back to the fs layer.
423 	 */
424 	handle->saved_alloc_context = memalloc_nofs_save();
425 	return 0;
426 }
427 
428 /* Allocate a new handle.  This should probably be in a slab... */
429 static handle_t *new_handle(int nblocks)
430 {
431 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
432 	if (!handle)
433 		return NULL;
434 	handle->h_buffer_credits = nblocks;
435 	handle->h_ref = 1;
436 
437 	return handle;
438 }
439 
440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
441 			      gfp_t gfp_mask, unsigned int type,
442 			      unsigned int line_no)
443 {
444 	handle_t *handle = journal_current_handle();
445 	int err;
446 
447 	if (!journal)
448 		return ERR_PTR(-EROFS);
449 
450 	if (handle) {
451 		J_ASSERT(handle->h_transaction->t_journal == journal);
452 		handle->h_ref++;
453 		return handle;
454 	}
455 
456 	handle = new_handle(nblocks);
457 	if (!handle)
458 		return ERR_PTR(-ENOMEM);
459 	if (rsv_blocks) {
460 		handle_t *rsv_handle;
461 
462 		rsv_handle = new_handle(rsv_blocks);
463 		if (!rsv_handle) {
464 			jbd2_free_handle(handle);
465 			return ERR_PTR(-ENOMEM);
466 		}
467 		rsv_handle->h_reserved = 1;
468 		rsv_handle->h_journal = journal;
469 		handle->h_rsv_handle = rsv_handle;
470 	}
471 
472 	err = start_this_handle(journal, handle, gfp_mask);
473 	if (err < 0) {
474 		if (handle->h_rsv_handle)
475 			jbd2_free_handle(handle->h_rsv_handle);
476 		jbd2_free_handle(handle);
477 		return ERR_PTR(err);
478 	}
479 	handle->h_type = type;
480 	handle->h_line_no = line_no;
481 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
482 				handle->h_transaction->t_tid, type,
483 				line_no, nblocks);
484 
485 	return handle;
486 }
487 EXPORT_SYMBOL(jbd2__journal_start);
488 
489 
490 /**
491  * handle_t *jbd2_journal_start() - Obtain a new handle.
492  * @journal: Journal to start transaction on.
493  * @nblocks: number of block buffer we might modify
494  *
495  * We make sure that the transaction can guarantee at least nblocks of
496  * modified buffers in the log.  We block until the log can guarantee
497  * that much space. Additionally, if rsv_blocks > 0, we also create another
498  * handle with rsv_blocks reserved blocks in the journal. This handle is
499  * is stored in h_rsv_handle. It is not attached to any particular transaction
500  * and thus doesn't block transaction commit. If the caller uses this reserved
501  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
502  * on the parent handle will dispose the reserved one. Reserved handle has to
503  * be converted to a normal handle using jbd2_journal_start_reserved() before
504  * it can be used.
505  *
506  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
507  * on failure.
508  */
509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
510 {
511 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
512 }
513 EXPORT_SYMBOL(jbd2_journal_start);
514 
515 void jbd2_journal_free_reserved(handle_t *handle)
516 {
517 	journal_t *journal = handle->h_journal;
518 
519 	WARN_ON(!handle->h_reserved);
520 	sub_reserved_credits(journal, handle->h_buffer_credits);
521 	jbd2_free_handle(handle);
522 }
523 EXPORT_SYMBOL(jbd2_journal_free_reserved);
524 
525 /**
526  * int jbd2_journal_start_reserved() - start reserved handle
527  * @handle: handle to start
528  * @type: for handle statistics
529  * @line_no: for handle statistics
530  *
531  * Start handle that has been previously reserved with jbd2_journal_reserve().
532  * This attaches @handle to the running transaction (or creates one if there's
533  * not transaction running). Unlike jbd2_journal_start() this function cannot
534  * block on journal commit, checkpointing, or similar stuff. It can block on
535  * memory allocation or frozen journal though.
536  *
537  * Return 0 on success, non-zero on error - handle is freed in that case.
538  */
539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
540 				unsigned int line_no)
541 {
542 	journal_t *journal = handle->h_journal;
543 	int ret = -EIO;
544 
545 	if (WARN_ON(!handle->h_reserved)) {
546 		/* Someone passed in normal handle? Just stop it. */
547 		jbd2_journal_stop(handle);
548 		return ret;
549 	}
550 	/*
551 	 * Usefulness of mixing of reserved and unreserved handles is
552 	 * questionable. So far nobody seems to need it so just error out.
553 	 */
554 	if (WARN_ON(current->journal_info)) {
555 		jbd2_journal_free_reserved(handle);
556 		return ret;
557 	}
558 
559 	handle->h_journal = NULL;
560 	/*
561 	 * GFP_NOFS is here because callers are likely from writeback or
562 	 * similarly constrained call sites
563 	 */
564 	ret = start_this_handle(journal, handle, GFP_NOFS);
565 	if (ret < 0) {
566 		handle->h_journal = journal;
567 		jbd2_journal_free_reserved(handle);
568 		return ret;
569 	}
570 	handle->h_type = type;
571 	handle->h_line_no = line_no;
572 	return 0;
573 }
574 EXPORT_SYMBOL(jbd2_journal_start_reserved);
575 
576 /**
577  * int jbd2_journal_extend() - extend buffer credits.
578  * @handle:  handle to 'extend'
579  * @nblocks: nr blocks to try to extend by.
580  *
581  * Some transactions, such as large extends and truncates, can be done
582  * atomically all at once or in several stages.  The operation requests
583  * a credit for a number of buffer modifications in advance, but can
584  * extend its credit if it needs more.
585  *
586  * jbd2_journal_extend tries to give the running handle more buffer credits.
587  * It does not guarantee that allocation - this is a best-effort only.
588  * The calling process MUST be able to deal cleanly with a failure to
589  * extend here.
590  *
591  * Return 0 on success, non-zero on failure.
592  *
593  * return code < 0 implies an error
594  * return code > 0 implies normal transaction-full status.
595  */
596 int jbd2_journal_extend(handle_t *handle, int nblocks)
597 {
598 	transaction_t *transaction = handle->h_transaction;
599 	journal_t *journal;
600 	int result;
601 	int wanted;
602 
603 	if (is_handle_aborted(handle))
604 		return -EROFS;
605 	journal = transaction->t_journal;
606 
607 	result = 1;
608 
609 	read_lock(&journal->j_state_lock);
610 
611 	/* Don't extend a locked-down transaction! */
612 	if (transaction->t_state != T_RUNNING) {
613 		jbd_debug(3, "denied handle %p %d blocks: "
614 			  "transaction not running\n", handle, nblocks);
615 		goto error_out;
616 	}
617 
618 	spin_lock(&transaction->t_handle_lock);
619 	wanted = atomic_add_return(nblocks,
620 				   &transaction->t_outstanding_credits);
621 
622 	if (wanted > journal->j_max_transaction_buffers) {
623 		jbd_debug(3, "denied handle %p %d blocks: "
624 			  "transaction too large\n", handle, nblocks);
625 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
626 		goto unlock;
627 	}
628 
629 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
630 	    jbd2_log_space_left(journal)) {
631 		jbd_debug(3, "denied handle %p %d blocks: "
632 			  "insufficient log space\n", handle, nblocks);
633 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
634 		goto unlock;
635 	}
636 
637 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
638 				 transaction->t_tid,
639 				 handle->h_type, handle->h_line_no,
640 				 handle->h_buffer_credits,
641 				 nblocks);
642 
643 	handle->h_buffer_credits += nblocks;
644 	handle->h_requested_credits += nblocks;
645 	result = 0;
646 
647 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
648 unlock:
649 	spin_unlock(&transaction->t_handle_lock);
650 error_out:
651 	read_unlock(&journal->j_state_lock);
652 	return result;
653 }
654 
655 
656 /**
657  * int jbd2_journal_restart() - restart a handle .
658  * @handle:  handle to restart
659  * @nblocks: nr credits requested
660  * @gfp_mask: memory allocation flags (for start_this_handle)
661  *
662  * Restart a handle for a multi-transaction filesystem
663  * operation.
664  *
665  * If the jbd2_journal_extend() call above fails to grant new buffer credits
666  * to a running handle, a call to jbd2_journal_restart will commit the
667  * handle's transaction so far and reattach the handle to a new
668  * transaction capable of guaranteeing the requested number of
669  * credits. We preserve reserved handle if there's any attached to the
670  * passed in handle.
671  */
672 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
673 {
674 	transaction_t *transaction = handle->h_transaction;
675 	journal_t *journal;
676 	tid_t		tid;
677 	int		need_to_start, ret;
678 
679 	/* If we've had an abort of any type, don't even think about
680 	 * actually doing the restart! */
681 	if (is_handle_aborted(handle))
682 		return 0;
683 	journal = transaction->t_journal;
684 
685 	/*
686 	 * First unlink the handle from its current transaction, and start the
687 	 * commit on that.
688 	 */
689 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
690 	J_ASSERT(journal_current_handle() == handle);
691 
692 	read_lock(&journal->j_state_lock);
693 	spin_lock(&transaction->t_handle_lock);
694 	atomic_sub(handle->h_buffer_credits,
695 		   &transaction->t_outstanding_credits);
696 	if (handle->h_rsv_handle) {
697 		sub_reserved_credits(journal,
698 				     handle->h_rsv_handle->h_buffer_credits);
699 	}
700 	if (atomic_dec_and_test(&transaction->t_updates))
701 		wake_up(&journal->j_wait_updates);
702 	tid = transaction->t_tid;
703 	spin_unlock(&transaction->t_handle_lock);
704 	handle->h_transaction = NULL;
705 	current->journal_info = NULL;
706 
707 	jbd_debug(2, "restarting handle %p\n", handle);
708 	need_to_start = !tid_geq(journal->j_commit_request, tid);
709 	read_unlock(&journal->j_state_lock);
710 	if (need_to_start)
711 		jbd2_log_start_commit(journal, tid);
712 
713 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
714 	handle->h_buffer_credits = nblocks;
715 	/*
716 	 * Restore the original nofs context because the journal restart
717 	 * is basically the same thing as journal stop and start.
718 	 * start_this_handle will start a new nofs context.
719 	 */
720 	memalloc_nofs_restore(handle->saved_alloc_context);
721 	ret = start_this_handle(journal, handle, gfp_mask);
722 	return ret;
723 }
724 EXPORT_SYMBOL(jbd2__journal_restart);
725 
726 
727 int jbd2_journal_restart(handle_t *handle, int nblocks)
728 {
729 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
730 }
731 EXPORT_SYMBOL(jbd2_journal_restart);
732 
733 /**
734  * void jbd2_journal_lock_updates () - establish a transaction barrier.
735  * @journal:  Journal to establish a barrier on.
736  *
737  * This locks out any further updates from being started, and blocks
738  * until all existing updates have completed, returning only once the
739  * journal is in a quiescent state with no updates running.
740  *
741  * The journal lock should not be held on entry.
742  */
743 void jbd2_journal_lock_updates(journal_t *journal)
744 {
745 	DEFINE_WAIT(wait);
746 
747 	jbd2_might_wait_for_commit(journal);
748 
749 	write_lock(&journal->j_state_lock);
750 	++journal->j_barrier_count;
751 
752 	/* Wait until there are no reserved handles */
753 	if (atomic_read(&journal->j_reserved_credits)) {
754 		write_unlock(&journal->j_state_lock);
755 		wait_event(journal->j_wait_reserved,
756 			   atomic_read(&journal->j_reserved_credits) == 0);
757 		write_lock(&journal->j_state_lock);
758 	}
759 
760 	/* Wait until there are no running updates */
761 	while (1) {
762 		transaction_t *transaction = journal->j_running_transaction;
763 
764 		if (!transaction)
765 			break;
766 
767 		spin_lock(&transaction->t_handle_lock);
768 		prepare_to_wait(&journal->j_wait_updates, &wait,
769 				TASK_UNINTERRUPTIBLE);
770 		if (!atomic_read(&transaction->t_updates)) {
771 			spin_unlock(&transaction->t_handle_lock);
772 			finish_wait(&journal->j_wait_updates, &wait);
773 			break;
774 		}
775 		spin_unlock(&transaction->t_handle_lock);
776 		write_unlock(&journal->j_state_lock);
777 		schedule();
778 		finish_wait(&journal->j_wait_updates, &wait);
779 		write_lock(&journal->j_state_lock);
780 	}
781 	write_unlock(&journal->j_state_lock);
782 
783 	/*
784 	 * We have now established a barrier against other normal updates, but
785 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
786 	 * to make sure that we serialise special journal-locked operations
787 	 * too.
788 	 */
789 	mutex_lock(&journal->j_barrier);
790 }
791 
792 /**
793  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
794  * @journal:  Journal to release the barrier on.
795  *
796  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
797  *
798  * Should be called without the journal lock held.
799  */
800 void jbd2_journal_unlock_updates (journal_t *journal)
801 {
802 	J_ASSERT(journal->j_barrier_count != 0);
803 
804 	mutex_unlock(&journal->j_barrier);
805 	write_lock(&journal->j_state_lock);
806 	--journal->j_barrier_count;
807 	write_unlock(&journal->j_state_lock);
808 	wake_up(&journal->j_wait_transaction_locked);
809 }
810 
811 static void warn_dirty_buffer(struct buffer_head *bh)
812 {
813 	printk(KERN_WARNING
814 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
815 	       "There's a risk of filesystem corruption in case of system "
816 	       "crash.\n",
817 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
818 }
819 
820 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
821 static void jbd2_freeze_jh_data(struct journal_head *jh)
822 {
823 	struct page *page;
824 	int offset;
825 	char *source;
826 	struct buffer_head *bh = jh2bh(jh);
827 
828 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
829 	page = bh->b_page;
830 	offset = offset_in_page(bh->b_data);
831 	source = kmap_atomic(page);
832 	/* Fire data frozen trigger just before we copy the data */
833 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
834 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
835 	kunmap_atomic(source);
836 
837 	/*
838 	 * Now that the frozen data is saved off, we need to store any matching
839 	 * triggers.
840 	 */
841 	jh->b_frozen_triggers = jh->b_triggers;
842 }
843 
844 /*
845  * If the buffer is already part of the current transaction, then there
846  * is nothing we need to do.  If it is already part of a prior
847  * transaction which we are still committing to disk, then we need to
848  * make sure that we do not overwrite the old copy: we do copy-out to
849  * preserve the copy going to disk.  We also account the buffer against
850  * the handle's metadata buffer credits (unless the buffer is already
851  * part of the transaction, that is).
852  *
853  */
854 static int
855 do_get_write_access(handle_t *handle, struct journal_head *jh,
856 			int force_copy)
857 {
858 	struct buffer_head *bh;
859 	transaction_t *transaction = handle->h_transaction;
860 	journal_t *journal;
861 	int error;
862 	char *frozen_buffer = NULL;
863 	unsigned long start_lock, time_lock;
864 
865 	if (is_handle_aborted(handle))
866 		return -EROFS;
867 	journal = transaction->t_journal;
868 
869 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
870 
871 	JBUFFER_TRACE(jh, "entry");
872 repeat:
873 	bh = jh2bh(jh);
874 
875 	/* @@@ Need to check for errors here at some point. */
876 
877  	start_lock = jiffies;
878 	lock_buffer(bh);
879 	jbd_lock_bh_state(bh);
880 
881 	/* If it takes too long to lock the buffer, trace it */
882 	time_lock = jbd2_time_diff(start_lock, jiffies);
883 	if (time_lock > HZ/10)
884 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
885 			jiffies_to_msecs(time_lock));
886 
887 	/* We now hold the buffer lock so it is safe to query the buffer
888 	 * state.  Is the buffer dirty?
889 	 *
890 	 * If so, there are two possibilities.  The buffer may be
891 	 * non-journaled, and undergoing a quite legitimate writeback.
892 	 * Otherwise, it is journaled, and we don't expect dirty buffers
893 	 * in that state (the buffers should be marked JBD_Dirty
894 	 * instead.)  So either the IO is being done under our own
895 	 * control and this is a bug, or it's a third party IO such as
896 	 * dump(8) (which may leave the buffer scheduled for read ---
897 	 * ie. locked but not dirty) or tune2fs (which may actually have
898 	 * the buffer dirtied, ugh.)  */
899 
900 	if (buffer_dirty(bh)) {
901 		/*
902 		 * First question: is this buffer already part of the current
903 		 * transaction or the existing committing transaction?
904 		 */
905 		if (jh->b_transaction) {
906 			J_ASSERT_JH(jh,
907 				jh->b_transaction == transaction ||
908 				jh->b_transaction ==
909 					journal->j_committing_transaction);
910 			if (jh->b_next_transaction)
911 				J_ASSERT_JH(jh, jh->b_next_transaction ==
912 							transaction);
913 			warn_dirty_buffer(bh);
914 		}
915 		/*
916 		 * In any case we need to clean the dirty flag and we must
917 		 * do it under the buffer lock to be sure we don't race
918 		 * with running write-out.
919 		 */
920 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
921 		clear_buffer_dirty(bh);
922 		set_buffer_jbddirty(bh);
923 	}
924 
925 	unlock_buffer(bh);
926 
927 	error = -EROFS;
928 	if (is_handle_aborted(handle)) {
929 		jbd_unlock_bh_state(bh);
930 		goto out;
931 	}
932 	error = 0;
933 
934 	/*
935 	 * The buffer is already part of this transaction if b_transaction or
936 	 * b_next_transaction points to it
937 	 */
938 	if (jh->b_transaction == transaction ||
939 	    jh->b_next_transaction == transaction)
940 		goto done;
941 
942 	/*
943 	 * this is the first time this transaction is touching this buffer,
944 	 * reset the modified flag
945 	 */
946 	jh->b_modified = 0;
947 
948 	/*
949 	 * If the buffer is not journaled right now, we need to make sure it
950 	 * doesn't get written to disk before the caller actually commits the
951 	 * new data
952 	 */
953 	if (!jh->b_transaction) {
954 		JBUFFER_TRACE(jh, "no transaction");
955 		J_ASSERT_JH(jh, !jh->b_next_transaction);
956 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
957 		/*
958 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
959 		 * visible before attaching it to the running transaction.
960 		 * Paired with barrier in jbd2_write_access_granted()
961 		 */
962 		smp_wmb();
963 		spin_lock(&journal->j_list_lock);
964 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
965 		spin_unlock(&journal->j_list_lock);
966 		goto done;
967 	}
968 	/*
969 	 * If there is already a copy-out version of this buffer, then we don't
970 	 * need to make another one
971 	 */
972 	if (jh->b_frozen_data) {
973 		JBUFFER_TRACE(jh, "has frozen data");
974 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
975 		goto attach_next;
976 	}
977 
978 	JBUFFER_TRACE(jh, "owned by older transaction");
979 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
980 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
981 
982 	/*
983 	 * There is one case we have to be very careful about.  If the
984 	 * committing transaction is currently writing this buffer out to disk
985 	 * and has NOT made a copy-out, then we cannot modify the buffer
986 	 * contents at all right now.  The essence of copy-out is that it is
987 	 * the extra copy, not the primary copy, which gets journaled.  If the
988 	 * primary copy is already going to disk then we cannot do copy-out
989 	 * here.
990 	 */
991 	if (buffer_shadow(bh)) {
992 		JBUFFER_TRACE(jh, "on shadow: sleep");
993 		jbd_unlock_bh_state(bh);
994 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
995 		goto repeat;
996 	}
997 
998 	/*
999 	 * Only do the copy if the currently-owning transaction still needs it.
1000 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1001 	 * past that stage (here we use the fact that BH_Shadow is set under
1002 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1003 	 * point we know the buffer doesn't have BH_Shadow set).
1004 	 *
1005 	 * Subtle point, though: if this is a get_undo_access, then we will be
1006 	 * relying on the frozen_data to contain the new value of the
1007 	 * committed_data record after the transaction, so we HAVE to force the
1008 	 * frozen_data copy in that case.
1009 	 */
1010 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1011 		JBUFFER_TRACE(jh, "generate frozen data");
1012 		if (!frozen_buffer) {
1013 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1014 			jbd_unlock_bh_state(bh);
1015 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1016 						   GFP_NOFS | __GFP_NOFAIL);
1017 			goto repeat;
1018 		}
1019 		jh->b_frozen_data = frozen_buffer;
1020 		frozen_buffer = NULL;
1021 		jbd2_freeze_jh_data(jh);
1022 	}
1023 attach_next:
1024 	/*
1025 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1026 	 * before attaching it to the running transaction. Paired with barrier
1027 	 * in jbd2_write_access_granted()
1028 	 */
1029 	smp_wmb();
1030 	jh->b_next_transaction = transaction;
1031 
1032 done:
1033 	jbd_unlock_bh_state(bh);
1034 
1035 	/*
1036 	 * If we are about to journal a buffer, then any revoke pending on it is
1037 	 * no longer valid
1038 	 */
1039 	jbd2_journal_cancel_revoke(handle, jh);
1040 
1041 out:
1042 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1043 		jbd2_free(frozen_buffer, bh->b_size);
1044 
1045 	JBUFFER_TRACE(jh, "exit");
1046 	return error;
1047 }
1048 
1049 /* Fast check whether buffer is already attached to the required transaction */
1050 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1051 							bool undo)
1052 {
1053 	struct journal_head *jh;
1054 	bool ret = false;
1055 
1056 	/* Dirty buffers require special handling... */
1057 	if (buffer_dirty(bh))
1058 		return false;
1059 
1060 	/*
1061 	 * RCU protects us from dereferencing freed pages. So the checks we do
1062 	 * are guaranteed not to oops. However the jh slab object can get freed
1063 	 * & reallocated while we work with it. So we have to be careful. When
1064 	 * we see jh attached to the running transaction, we know it must stay
1065 	 * so until the transaction is committed. Thus jh won't be freed and
1066 	 * will be attached to the same bh while we run.  However it can
1067 	 * happen jh gets freed, reallocated, and attached to the transaction
1068 	 * just after we get pointer to it from bh. So we have to be careful
1069 	 * and recheck jh still belongs to our bh before we return success.
1070 	 */
1071 	rcu_read_lock();
1072 	if (!buffer_jbd(bh))
1073 		goto out;
1074 	/* This should be bh2jh() but that doesn't work with inline functions */
1075 	jh = READ_ONCE(bh->b_private);
1076 	if (!jh)
1077 		goto out;
1078 	/* For undo access buffer must have data copied */
1079 	if (undo && !jh->b_committed_data)
1080 		goto out;
1081 	if (jh->b_transaction != handle->h_transaction &&
1082 	    jh->b_next_transaction != handle->h_transaction)
1083 		goto out;
1084 	/*
1085 	 * There are two reasons for the barrier here:
1086 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1087 	 * detect when jh went through free, realloc, attach to transaction
1088 	 * while we were checking. Paired with implicit barrier in that path.
1089 	 * 2) So that access to bh done after jbd2_write_access_granted()
1090 	 * doesn't get reordered and see inconsistent state of concurrent
1091 	 * do_get_write_access().
1092 	 */
1093 	smp_mb();
1094 	if (unlikely(jh->b_bh != bh))
1095 		goto out;
1096 	ret = true;
1097 out:
1098 	rcu_read_unlock();
1099 	return ret;
1100 }
1101 
1102 /**
1103  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1104  * @handle: transaction to add buffer modifications to
1105  * @bh:     bh to be used for metadata writes
1106  *
1107  * Returns: error code or 0 on success.
1108  *
1109  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1110  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1111  */
1112 
1113 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1114 {
1115 	struct journal_head *jh;
1116 	int rc;
1117 
1118 	if (jbd2_write_access_granted(handle, bh, false))
1119 		return 0;
1120 
1121 	jh = jbd2_journal_add_journal_head(bh);
1122 	/* We do not want to get caught playing with fields which the
1123 	 * log thread also manipulates.  Make sure that the buffer
1124 	 * completes any outstanding IO before proceeding. */
1125 	rc = do_get_write_access(handle, jh, 0);
1126 	jbd2_journal_put_journal_head(jh);
1127 	return rc;
1128 }
1129 
1130 
1131 /*
1132  * When the user wants to journal a newly created buffer_head
1133  * (ie. getblk() returned a new buffer and we are going to populate it
1134  * manually rather than reading off disk), then we need to keep the
1135  * buffer_head locked until it has been completely filled with new
1136  * data.  In this case, we should be able to make the assertion that
1137  * the bh is not already part of an existing transaction.
1138  *
1139  * The buffer should already be locked by the caller by this point.
1140  * There is no lock ranking violation: it was a newly created,
1141  * unlocked buffer beforehand. */
1142 
1143 /**
1144  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1145  * @handle: transaction to new buffer to
1146  * @bh: new buffer.
1147  *
1148  * Call this if you create a new bh.
1149  */
1150 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1151 {
1152 	transaction_t *transaction = handle->h_transaction;
1153 	journal_t *journal;
1154 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155 	int err;
1156 
1157 	jbd_debug(5, "journal_head %p\n", jh);
1158 	err = -EROFS;
1159 	if (is_handle_aborted(handle))
1160 		goto out;
1161 	journal = transaction->t_journal;
1162 	err = 0;
1163 
1164 	JBUFFER_TRACE(jh, "entry");
1165 	/*
1166 	 * The buffer may already belong to this transaction due to pre-zeroing
1167 	 * in the filesystem's new_block code.  It may also be on the previous,
1168 	 * committing transaction's lists, but it HAS to be in Forget state in
1169 	 * that case: the transaction must have deleted the buffer for it to be
1170 	 * reused here.
1171 	 */
1172 	jbd_lock_bh_state(bh);
1173 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1174 		jh->b_transaction == NULL ||
1175 		(jh->b_transaction == journal->j_committing_transaction &&
1176 			  jh->b_jlist == BJ_Forget)));
1177 
1178 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1179 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1180 
1181 	if (jh->b_transaction == NULL) {
1182 		/*
1183 		 * Previous jbd2_journal_forget() could have left the buffer
1184 		 * with jbddirty bit set because it was being committed. When
1185 		 * the commit finished, we've filed the buffer for
1186 		 * checkpointing and marked it dirty. Now we are reallocating
1187 		 * the buffer so the transaction freeing it must have
1188 		 * committed and so it's safe to clear the dirty bit.
1189 		 */
1190 		clear_buffer_dirty(jh2bh(jh));
1191 		/* first access by this transaction */
1192 		jh->b_modified = 0;
1193 
1194 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1195 		spin_lock(&journal->j_list_lock);
1196 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1197 		spin_unlock(&journal->j_list_lock);
1198 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1199 		/* first access by this transaction */
1200 		jh->b_modified = 0;
1201 
1202 		JBUFFER_TRACE(jh, "set next transaction");
1203 		spin_lock(&journal->j_list_lock);
1204 		jh->b_next_transaction = transaction;
1205 		spin_unlock(&journal->j_list_lock);
1206 	}
1207 	jbd_unlock_bh_state(bh);
1208 
1209 	/*
1210 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1211 	 * blocks which contain freed but then revoked metadata.  We need
1212 	 * to cancel the revoke in case we end up freeing it yet again
1213 	 * and the reallocating as data - this would cause a second revoke,
1214 	 * which hits an assertion error.
1215 	 */
1216 	JBUFFER_TRACE(jh, "cancelling revoke");
1217 	jbd2_journal_cancel_revoke(handle, jh);
1218 out:
1219 	jbd2_journal_put_journal_head(jh);
1220 	return err;
1221 }
1222 
1223 /**
1224  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1225  *     non-rewindable consequences
1226  * @handle: transaction
1227  * @bh: buffer to undo
1228  *
1229  * Sometimes there is a need to distinguish between metadata which has
1230  * been committed to disk and that which has not.  The ext3fs code uses
1231  * this for freeing and allocating space, we have to make sure that we
1232  * do not reuse freed space until the deallocation has been committed,
1233  * since if we overwrote that space we would make the delete
1234  * un-rewindable in case of a crash.
1235  *
1236  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1237  * buffer for parts of non-rewindable operations such as delete
1238  * operations on the bitmaps.  The journaling code must keep a copy of
1239  * the buffer's contents prior to the undo_access call until such time
1240  * as we know that the buffer has definitely been committed to disk.
1241  *
1242  * We never need to know which transaction the committed data is part
1243  * of, buffers touched here are guaranteed to be dirtied later and so
1244  * will be committed to a new transaction in due course, at which point
1245  * we can discard the old committed data pointer.
1246  *
1247  * Returns error number or 0 on success.
1248  */
1249 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1250 {
1251 	int err;
1252 	struct journal_head *jh;
1253 	char *committed_data = NULL;
1254 
1255 	if (jbd2_write_access_granted(handle, bh, true))
1256 		return 0;
1257 
1258 	jh = jbd2_journal_add_journal_head(bh);
1259 	JBUFFER_TRACE(jh, "entry");
1260 
1261 	/*
1262 	 * Do this first --- it can drop the journal lock, so we want to
1263 	 * make sure that obtaining the committed_data is done
1264 	 * atomically wrt. completion of any outstanding commits.
1265 	 */
1266 	err = do_get_write_access(handle, jh, 1);
1267 	if (err)
1268 		goto out;
1269 
1270 repeat:
1271 	if (!jh->b_committed_data)
1272 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1273 					    GFP_NOFS|__GFP_NOFAIL);
1274 
1275 	jbd_lock_bh_state(bh);
1276 	if (!jh->b_committed_data) {
1277 		/* Copy out the current buffer contents into the
1278 		 * preserved, committed copy. */
1279 		JBUFFER_TRACE(jh, "generate b_committed data");
1280 		if (!committed_data) {
1281 			jbd_unlock_bh_state(bh);
1282 			goto repeat;
1283 		}
1284 
1285 		jh->b_committed_data = committed_data;
1286 		committed_data = NULL;
1287 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1288 	}
1289 	jbd_unlock_bh_state(bh);
1290 out:
1291 	jbd2_journal_put_journal_head(jh);
1292 	if (unlikely(committed_data))
1293 		jbd2_free(committed_data, bh->b_size);
1294 	return err;
1295 }
1296 
1297 /**
1298  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1299  * @bh: buffer to trigger on
1300  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1301  *
1302  * Set any triggers on this journal_head.  This is always safe, because
1303  * triggers for a committing buffer will be saved off, and triggers for
1304  * a running transaction will match the buffer in that transaction.
1305  *
1306  * Call with NULL to clear the triggers.
1307  */
1308 void jbd2_journal_set_triggers(struct buffer_head *bh,
1309 			       struct jbd2_buffer_trigger_type *type)
1310 {
1311 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1312 
1313 	if (WARN_ON(!jh))
1314 		return;
1315 	jh->b_triggers = type;
1316 	jbd2_journal_put_journal_head(jh);
1317 }
1318 
1319 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1320 				struct jbd2_buffer_trigger_type *triggers)
1321 {
1322 	struct buffer_head *bh = jh2bh(jh);
1323 
1324 	if (!triggers || !triggers->t_frozen)
1325 		return;
1326 
1327 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1328 }
1329 
1330 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1331 			       struct jbd2_buffer_trigger_type *triggers)
1332 {
1333 	if (!triggers || !triggers->t_abort)
1334 		return;
1335 
1336 	triggers->t_abort(triggers, jh2bh(jh));
1337 }
1338 
1339 /**
1340  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1341  * @handle: transaction to add buffer to.
1342  * @bh: buffer to mark
1343  *
1344  * mark dirty metadata which needs to be journaled as part of the current
1345  * transaction.
1346  *
1347  * The buffer must have previously had jbd2_journal_get_write_access()
1348  * called so that it has a valid journal_head attached to the buffer
1349  * head.
1350  *
1351  * The buffer is placed on the transaction's metadata list and is marked
1352  * as belonging to the transaction.
1353  *
1354  * Returns error number or 0 on success.
1355  *
1356  * Special care needs to be taken if the buffer already belongs to the
1357  * current committing transaction (in which case we should have frozen
1358  * data present for that commit).  In that case, we don't relink the
1359  * buffer: that only gets done when the old transaction finally
1360  * completes its commit.
1361  */
1362 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1363 {
1364 	transaction_t *transaction = handle->h_transaction;
1365 	journal_t *journal;
1366 	struct journal_head *jh;
1367 	int ret = 0;
1368 
1369 	if (is_handle_aborted(handle))
1370 		return -EROFS;
1371 	if (!buffer_jbd(bh))
1372 		return -EUCLEAN;
1373 
1374 	/*
1375 	 * We don't grab jh reference here since the buffer must be part
1376 	 * of the running transaction.
1377 	 */
1378 	jh = bh2jh(bh);
1379 	jbd_debug(5, "journal_head %p\n", jh);
1380 	JBUFFER_TRACE(jh, "entry");
1381 
1382 	/*
1383 	 * This and the following assertions are unreliable since we may see jh
1384 	 * in inconsistent state unless we grab bh_state lock. But this is
1385 	 * crucial to catch bugs so let's do a reliable check until the
1386 	 * lockless handling is fully proven.
1387 	 */
1388 	if (jh->b_transaction != transaction &&
1389 	    jh->b_next_transaction != transaction) {
1390 		jbd_lock_bh_state(bh);
1391 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1392 				jh->b_next_transaction == transaction);
1393 		jbd_unlock_bh_state(bh);
1394 	}
1395 	if (jh->b_modified == 1) {
1396 		/* If it's in our transaction it must be in BJ_Metadata list. */
1397 		if (jh->b_transaction == transaction &&
1398 		    jh->b_jlist != BJ_Metadata) {
1399 			jbd_lock_bh_state(bh);
1400 			if (jh->b_transaction == transaction &&
1401 			    jh->b_jlist != BJ_Metadata)
1402 				pr_err("JBD2: assertion failure: h_type=%u "
1403 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1404 				       handle->h_type, handle->h_line_no,
1405 				       (unsigned long long) bh->b_blocknr,
1406 				       jh->b_jlist);
1407 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1408 					jh->b_jlist == BJ_Metadata);
1409 			jbd_unlock_bh_state(bh);
1410 		}
1411 		goto out;
1412 	}
1413 
1414 	journal = transaction->t_journal;
1415 	jbd_lock_bh_state(bh);
1416 
1417 	if (jh->b_modified == 0) {
1418 		/*
1419 		 * This buffer's got modified and becoming part
1420 		 * of the transaction. This needs to be done
1421 		 * once a transaction -bzzz
1422 		 */
1423 		if (handle->h_buffer_credits <= 0) {
1424 			ret = -ENOSPC;
1425 			goto out_unlock_bh;
1426 		}
1427 		jh->b_modified = 1;
1428 		handle->h_buffer_credits--;
1429 	}
1430 
1431 	/*
1432 	 * fastpath, to avoid expensive locking.  If this buffer is already
1433 	 * on the running transaction's metadata list there is nothing to do.
1434 	 * Nobody can take it off again because there is a handle open.
1435 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1436 	 * result in this test being false, so we go in and take the locks.
1437 	 */
1438 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1439 		JBUFFER_TRACE(jh, "fastpath");
1440 		if (unlikely(jh->b_transaction !=
1441 			     journal->j_running_transaction)) {
1442 			printk(KERN_ERR "JBD2: %s: "
1443 			       "jh->b_transaction (%llu, %p, %u) != "
1444 			       "journal->j_running_transaction (%p, %u)\n",
1445 			       journal->j_devname,
1446 			       (unsigned long long) bh->b_blocknr,
1447 			       jh->b_transaction,
1448 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1449 			       journal->j_running_transaction,
1450 			       journal->j_running_transaction ?
1451 			       journal->j_running_transaction->t_tid : 0);
1452 			ret = -EINVAL;
1453 		}
1454 		goto out_unlock_bh;
1455 	}
1456 
1457 	set_buffer_jbddirty(bh);
1458 
1459 	/*
1460 	 * Metadata already on the current transaction list doesn't
1461 	 * need to be filed.  Metadata on another transaction's list must
1462 	 * be committing, and will be refiled once the commit completes:
1463 	 * leave it alone for now.
1464 	 */
1465 	if (jh->b_transaction != transaction) {
1466 		JBUFFER_TRACE(jh, "already on other transaction");
1467 		if (unlikely(((jh->b_transaction !=
1468 			       journal->j_committing_transaction)) ||
1469 			     (jh->b_next_transaction != transaction))) {
1470 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1471 			       "bad jh for block %llu: "
1472 			       "transaction (%p, %u), "
1473 			       "jh->b_transaction (%p, %u), "
1474 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1475 			       journal->j_devname,
1476 			       (unsigned long long) bh->b_blocknr,
1477 			       transaction, transaction->t_tid,
1478 			       jh->b_transaction,
1479 			       jh->b_transaction ?
1480 			       jh->b_transaction->t_tid : 0,
1481 			       jh->b_next_transaction,
1482 			       jh->b_next_transaction ?
1483 			       jh->b_next_transaction->t_tid : 0,
1484 			       jh->b_jlist);
1485 			WARN_ON(1);
1486 			ret = -EINVAL;
1487 		}
1488 		/* And this case is illegal: we can't reuse another
1489 		 * transaction's data buffer, ever. */
1490 		goto out_unlock_bh;
1491 	}
1492 
1493 	/* That test should have eliminated the following case: */
1494 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1495 
1496 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1497 	spin_lock(&journal->j_list_lock);
1498 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1499 	spin_unlock(&journal->j_list_lock);
1500 out_unlock_bh:
1501 	jbd_unlock_bh_state(bh);
1502 out:
1503 	JBUFFER_TRACE(jh, "exit");
1504 	return ret;
1505 }
1506 
1507 /**
1508  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1509  * @handle: transaction handle
1510  * @bh:     bh to 'forget'
1511  *
1512  * We can only do the bforget if there are no commits pending against the
1513  * buffer.  If the buffer is dirty in the current running transaction we
1514  * can safely unlink it.
1515  *
1516  * bh may not be a journalled buffer at all - it may be a non-JBD
1517  * buffer which came off the hashtable.  Check for this.
1518  *
1519  * Decrements bh->b_count by one.
1520  *
1521  * Allow this call even if the handle has aborted --- it may be part of
1522  * the caller's cleanup after an abort.
1523  */
1524 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1525 {
1526 	transaction_t *transaction = handle->h_transaction;
1527 	journal_t *journal;
1528 	struct journal_head *jh;
1529 	int drop_reserve = 0;
1530 	int err = 0;
1531 	int was_modified = 0;
1532 
1533 	if (is_handle_aborted(handle))
1534 		return -EROFS;
1535 	journal = transaction->t_journal;
1536 
1537 	BUFFER_TRACE(bh, "entry");
1538 
1539 	jbd_lock_bh_state(bh);
1540 
1541 	if (!buffer_jbd(bh))
1542 		goto not_jbd;
1543 	jh = bh2jh(bh);
1544 
1545 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1546 	 * Don't do any jbd operations, and return an error. */
1547 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1548 			 "inconsistent data on disk")) {
1549 		err = -EIO;
1550 		goto not_jbd;
1551 	}
1552 
1553 	/* keep track of whether or not this transaction modified us */
1554 	was_modified = jh->b_modified;
1555 
1556 	/*
1557 	 * The buffer's going from the transaction, we must drop
1558 	 * all references -bzzz
1559 	 */
1560 	jh->b_modified = 0;
1561 
1562 	if (jh->b_transaction == transaction) {
1563 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1564 
1565 		/* If we are forgetting a buffer which is already part
1566 		 * of this transaction, then we can just drop it from
1567 		 * the transaction immediately. */
1568 		clear_buffer_dirty(bh);
1569 		clear_buffer_jbddirty(bh);
1570 
1571 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1572 
1573 		/*
1574 		 * we only want to drop a reference if this transaction
1575 		 * modified the buffer
1576 		 */
1577 		if (was_modified)
1578 			drop_reserve = 1;
1579 
1580 		/*
1581 		 * We are no longer going to journal this buffer.
1582 		 * However, the commit of this transaction is still
1583 		 * important to the buffer: the delete that we are now
1584 		 * processing might obsolete an old log entry, so by
1585 		 * committing, we can satisfy the buffer's checkpoint.
1586 		 *
1587 		 * So, if we have a checkpoint on the buffer, we should
1588 		 * now refile the buffer on our BJ_Forget list so that
1589 		 * we know to remove the checkpoint after we commit.
1590 		 */
1591 
1592 		spin_lock(&journal->j_list_lock);
1593 		if (jh->b_cp_transaction) {
1594 			__jbd2_journal_temp_unlink_buffer(jh);
1595 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1596 		} else {
1597 			__jbd2_journal_unfile_buffer(jh);
1598 			if (!buffer_jbd(bh)) {
1599 				spin_unlock(&journal->j_list_lock);
1600 				goto not_jbd;
1601 			}
1602 		}
1603 		spin_unlock(&journal->j_list_lock);
1604 	} else if (jh->b_transaction) {
1605 		J_ASSERT_JH(jh, (jh->b_transaction ==
1606 				 journal->j_committing_transaction));
1607 		/* However, if the buffer is still owned by a prior
1608 		 * (committing) transaction, we can't drop it yet... */
1609 		JBUFFER_TRACE(jh, "belongs to older transaction");
1610 		/* ... but we CAN drop it from the new transaction through
1611 		 * marking the buffer as freed and set j_next_transaction to
1612 		 * the new transaction, so that not only the commit code
1613 		 * knows it should clear dirty bits when it is done with the
1614 		 * buffer, but also the buffer can be checkpointed only
1615 		 * after the new transaction commits. */
1616 
1617 		set_buffer_freed(bh);
1618 
1619 		if (!jh->b_next_transaction) {
1620 			spin_lock(&journal->j_list_lock);
1621 			jh->b_next_transaction = transaction;
1622 			spin_unlock(&journal->j_list_lock);
1623 		} else {
1624 			J_ASSERT(jh->b_next_transaction == transaction);
1625 
1626 			/*
1627 			 * only drop a reference if this transaction modified
1628 			 * the buffer
1629 			 */
1630 			if (was_modified)
1631 				drop_reserve = 1;
1632 		}
1633 	} else {
1634 		/*
1635 		 * Finally, if the buffer is not belongs to any
1636 		 * transaction, we can just drop it now if it has no
1637 		 * checkpoint.
1638 		 */
1639 		spin_lock(&journal->j_list_lock);
1640 		if (!jh->b_cp_transaction) {
1641 			JBUFFER_TRACE(jh, "belongs to none transaction");
1642 			spin_unlock(&journal->j_list_lock);
1643 			goto not_jbd;
1644 		}
1645 
1646 		/*
1647 		 * Otherwise, if the buffer has been written to disk,
1648 		 * it is safe to remove the checkpoint and drop it.
1649 		 */
1650 		if (!buffer_dirty(bh)) {
1651 			__jbd2_journal_remove_checkpoint(jh);
1652 			spin_unlock(&journal->j_list_lock);
1653 			goto not_jbd;
1654 		}
1655 
1656 		/*
1657 		 * The buffer is still not written to disk, we should
1658 		 * attach this buffer to current transaction so that the
1659 		 * buffer can be checkpointed only after the current
1660 		 * transaction commits.
1661 		 */
1662 		clear_buffer_dirty(bh);
1663 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1664 		spin_unlock(&journal->j_list_lock);
1665 	}
1666 
1667 	jbd_unlock_bh_state(bh);
1668 	__brelse(bh);
1669 drop:
1670 	if (drop_reserve) {
1671 		/* no need to reserve log space for this block -bzzz */
1672 		handle->h_buffer_credits++;
1673 	}
1674 	return err;
1675 
1676 not_jbd:
1677 	jbd_unlock_bh_state(bh);
1678 	__bforget(bh);
1679 	goto drop;
1680 }
1681 
1682 /**
1683  * int jbd2_journal_stop() - complete a transaction
1684  * @handle: transaction to complete.
1685  *
1686  * All done for a particular handle.
1687  *
1688  * There is not much action needed here.  We just return any remaining
1689  * buffer credits to the transaction and remove the handle.  The only
1690  * complication is that we need to start a commit operation if the
1691  * filesystem is marked for synchronous update.
1692  *
1693  * jbd2_journal_stop itself will not usually return an error, but it may
1694  * do so in unusual circumstances.  In particular, expect it to
1695  * return -EIO if a jbd2_journal_abort has been executed since the
1696  * transaction began.
1697  */
1698 int jbd2_journal_stop(handle_t *handle)
1699 {
1700 	transaction_t *transaction = handle->h_transaction;
1701 	journal_t *journal;
1702 	int err = 0, wait_for_commit = 0;
1703 	tid_t tid;
1704 	pid_t pid;
1705 
1706 	if (!transaction) {
1707 		/*
1708 		 * Handle is already detached from the transaction so
1709 		 * there is nothing to do other than decrease a refcount,
1710 		 * or free the handle if refcount drops to zero
1711 		 */
1712 		if (--handle->h_ref > 0) {
1713 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1714 							 handle->h_ref);
1715 			return err;
1716 		} else {
1717 			if (handle->h_rsv_handle)
1718 				jbd2_free_handle(handle->h_rsv_handle);
1719 			goto free_and_exit;
1720 		}
1721 	}
1722 	journal = transaction->t_journal;
1723 
1724 	J_ASSERT(journal_current_handle() == handle);
1725 
1726 	if (is_handle_aborted(handle))
1727 		err = -EIO;
1728 	else
1729 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1730 
1731 	if (--handle->h_ref > 0) {
1732 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1733 			  handle->h_ref);
1734 		return err;
1735 	}
1736 
1737 	jbd_debug(4, "Handle %p going down\n", handle);
1738 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1739 				transaction->t_tid,
1740 				handle->h_type, handle->h_line_no,
1741 				jiffies - handle->h_start_jiffies,
1742 				handle->h_sync, handle->h_requested_credits,
1743 				(handle->h_requested_credits -
1744 				 handle->h_buffer_credits));
1745 
1746 	/*
1747 	 * Implement synchronous transaction batching.  If the handle
1748 	 * was synchronous, don't force a commit immediately.  Let's
1749 	 * yield and let another thread piggyback onto this
1750 	 * transaction.  Keep doing that while new threads continue to
1751 	 * arrive.  It doesn't cost much - we're about to run a commit
1752 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1753 	 * operations by 30x or more...
1754 	 *
1755 	 * We try and optimize the sleep time against what the
1756 	 * underlying disk can do, instead of having a static sleep
1757 	 * time.  This is useful for the case where our storage is so
1758 	 * fast that it is more optimal to go ahead and force a flush
1759 	 * and wait for the transaction to be committed than it is to
1760 	 * wait for an arbitrary amount of time for new writers to
1761 	 * join the transaction.  We achieve this by measuring how
1762 	 * long it takes to commit a transaction, and compare it with
1763 	 * how long this transaction has been running, and if run time
1764 	 * < commit time then we sleep for the delta and commit.  This
1765 	 * greatly helps super fast disks that would see slowdowns as
1766 	 * more threads started doing fsyncs.
1767 	 *
1768 	 * But don't do this if this process was the most recent one
1769 	 * to perform a synchronous write.  We do this to detect the
1770 	 * case where a single process is doing a stream of sync
1771 	 * writes.  No point in waiting for joiners in that case.
1772 	 *
1773 	 * Setting max_batch_time to 0 disables this completely.
1774 	 */
1775 	pid = current->pid;
1776 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1777 	    journal->j_max_batch_time) {
1778 		u64 commit_time, trans_time;
1779 
1780 		journal->j_last_sync_writer = pid;
1781 
1782 		read_lock(&journal->j_state_lock);
1783 		commit_time = journal->j_average_commit_time;
1784 		read_unlock(&journal->j_state_lock);
1785 
1786 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1787 						   transaction->t_start_time));
1788 
1789 		commit_time = max_t(u64, commit_time,
1790 				    1000*journal->j_min_batch_time);
1791 		commit_time = min_t(u64, commit_time,
1792 				    1000*journal->j_max_batch_time);
1793 
1794 		if (trans_time < commit_time) {
1795 			ktime_t expires = ktime_add_ns(ktime_get(),
1796 						       commit_time);
1797 			set_current_state(TASK_UNINTERRUPTIBLE);
1798 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1799 		}
1800 	}
1801 
1802 	if (handle->h_sync)
1803 		transaction->t_synchronous_commit = 1;
1804 	current->journal_info = NULL;
1805 	atomic_sub(handle->h_buffer_credits,
1806 		   &transaction->t_outstanding_credits);
1807 
1808 	/*
1809 	 * If the handle is marked SYNC, we need to set another commit
1810 	 * going!  We also want to force a commit if the current
1811 	 * transaction is occupying too much of the log, or if the
1812 	 * transaction is too old now.
1813 	 */
1814 	if (handle->h_sync ||
1815 	    (atomic_read(&transaction->t_outstanding_credits) >
1816 	     journal->j_max_transaction_buffers) ||
1817 	    time_after_eq(jiffies, transaction->t_expires)) {
1818 		/* Do this even for aborted journals: an abort still
1819 		 * completes the commit thread, it just doesn't write
1820 		 * anything to disk. */
1821 
1822 		jbd_debug(2, "transaction too old, requesting commit for "
1823 					"handle %p\n", handle);
1824 		/* This is non-blocking */
1825 		jbd2_log_start_commit(journal, transaction->t_tid);
1826 
1827 		/*
1828 		 * Special case: JBD2_SYNC synchronous updates require us
1829 		 * to wait for the commit to complete.
1830 		 */
1831 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1832 			wait_for_commit = 1;
1833 	}
1834 
1835 	/*
1836 	 * Once we drop t_updates, if it goes to zero the transaction
1837 	 * could start committing on us and eventually disappear.  So
1838 	 * once we do this, we must not dereference transaction
1839 	 * pointer again.
1840 	 */
1841 	tid = transaction->t_tid;
1842 	if (atomic_dec_and_test(&transaction->t_updates)) {
1843 		wake_up(&journal->j_wait_updates);
1844 		if (journal->j_barrier_count)
1845 			wake_up(&journal->j_wait_transaction_locked);
1846 	}
1847 
1848 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1849 
1850 	if (wait_for_commit)
1851 		err = jbd2_log_wait_commit(journal, tid);
1852 
1853 	if (handle->h_rsv_handle)
1854 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1855 free_and_exit:
1856 	/*
1857 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1858 	 * original alloc context.
1859 	 */
1860 	memalloc_nofs_restore(handle->saved_alloc_context);
1861 	jbd2_free_handle(handle);
1862 	return err;
1863 }
1864 
1865 /*
1866  *
1867  * List management code snippets: various functions for manipulating the
1868  * transaction buffer lists.
1869  *
1870  */
1871 
1872 /*
1873  * Append a buffer to a transaction list, given the transaction's list head
1874  * pointer.
1875  *
1876  * j_list_lock is held.
1877  *
1878  * jbd_lock_bh_state(jh2bh(jh)) is held.
1879  */
1880 
1881 static inline void
1882 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1883 {
1884 	if (!*list) {
1885 		jh->b_tnext = jh->b_tprev = jh;
1886 		*list = jh;
1887 	} else {
1888 		/* Insert at the tail of the list to preserve order */
1889 		struct journal_head *first = *list, *last = first->b_tprev;
1890 		jh->b_tprev = last;
1891 		jh->b_tnext = first;
1892 		last->b_tnext = first->b_tprev = jh;
1893 	}
1894 }
1895 
1896 /*
1897  * Remove a buffer from a transaction list, given the transaction's list
1898  * head pointer.
1899  *
1900  * Called with j_list_lock held, and the journal may not be locked.
1901  *
1902  * jbd_lock_bh_state(jh2bh(jh)) is held.
1903  */
1904 
1905 static inline void
1906 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1907 {
1908 	if (*list == jh) {
1909 		*list = jh->b_tnext;
1910 		if (*list == jh)
1911 			*list = NULL;
1912 	}
1913 	jh->b_tprev->b_tnext = jh->b_tnext;
1914 	jh->b_tnext->b_tprev = jh->b_tprev;
1915 }
1916 
1917 /*
1918  * Remove a buffer from the appropriate transaction list.
1919  *
1920  * Note that this function can *change* the value of
1921  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1922  * t_reserved_list.  If the caller is holding onto a copy of one of these
1923  * pointers, it could go bad.  Generally the caller needs to re-read the
1924  * pointer from the transaction_t.
1925  *
1926  * Called under j_list_lock.
1927  */
1928 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1929 {
1930 	struct journal_head **list = NULL;
1931 	transaction_t *transaction;
1932 	struct buffer_head *bh = jh2bh(jh);
1933 
1934 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1935 	transaction = jh->b_transaction;
1936 	if (transaction)
1937 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1938 
1939 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1940 	if (jh->b_jlist != BJ_None)
1941 		J_ASSERT_JH(jh, transaction != NULL);
1942 
1943 	switch (jh->b_jlist) {
1944 	case BJ_None:
1945 		return;
1946 	case BJ_Metadata:
1947 		transaction->t_nr_buffers--;
1948 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1949 		list = &transaction->t_buffers;
1950 		break;
1951 	case BJ_Forget:
1952 		list = &transaction->t_forget;
1953 		break;
1954 	case BJ_Shadow:
1955 		list = &transaction->t_shadow_list;
1956 		break;
1957 	case BJ_Reserved:
1958 		list = &transaction->t_reserved_list;
1959 		break;
1960 	}
1961 
1962 	__blist_del_buffer(list, jh);
1963 	jh->b_jlist = BJ_None;
1964 	if (transaction && is_journal_aborted(transaction->t_journal))
1965 		clear_buffer_jbddirty(bh);
1966 	else if (test_clear_buffer_jbddirty(bh))
1967 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1968 }
1969 
1970 /*
1971  * Remove buffer from all transactions.
1972  *
1973  * Called with bh_state lock and j_list_lock
1974  *
1975  * jh and bh may be already freed when this function returns.
1976  */
1977 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1978 {
1979 	__jbd2_journal_temp_unlink_buffer(jh);
1980 	jh->b_transaction = NULL;
1981 	jbd2_journal_put_journal_head(jh);
1982 }
1983 
1984 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1985 {
1986 	struct buffer_head *bh = jh2bh(jh);
1987 
1988 	/* Get reference so that buffer cannot be freed before we unlock it */
1989 	get_bh(bh);
1990 	jbd_lock_bh_state(bh);
1991 	spin_lock(&journal->j_list_lock);
1992 	__jbd2_journal_unfile_buffer(jh);
1993 	spin_unlock(&journal->j_list_lock);
1994 	jbd_unlock_bh_state(bh);
1995 	__brelse(bh);
1996 }
1997 
1998 /*
1999  * Called from jbd2_journal_try_to_free_buffers().
2000  *
2001  * Called under jbd_lock_bh_state(bh)
2002  */
2003 static void
2004 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2005 {
2006 	struct journal_head *jh;
2007 
2008 	jh = bh2jh(bh);
2009 
2010 	if (buffer_locked(bh) || buffer_dirty(bh))
2011 		goto out;
2012 
2013 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2014 		goto out;
2015 
2016 	spin_lock(&journal->j_list_lock);
2017 	if (jh->b_cp_transaction != NULL) {
2018 		/* written-back checkpointed metadata buffer */
2019 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2020 		__jbd2_journal_remove_checkpoint(jh);
2021 	}
2022 	spin_unlock(&journal->j_list_lock);
2023 out:
2024 	return;
2025 }
2026 
2027 /**
2028  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2029  * @journal: journal for operation
2030  * @page: to try and free
2031  * @gfp_mask: we use the mask to detect how hard should we try to release
2032  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2033  * code to release the buffers.
2034  *
2035  *
2036  * For all the buffers on this page,
2037  * if they are fully written out ordered data, move them onto BUF_CLEAN
2038  * so try_to_free_buffers() can reap them.
2039  *
2040  * This function returns non-zero if we wish try_to_free_buffers()
2041  * to be called. We do this if the page is releasable by try_to_free_buffers().
2042  * We also do it if the page has locked or dirty buffers and the caller wants
2043  * us to perform sync or async writeout.
2044  *
2045  * This complicates JBD locking somewhat.  We aren't protected by the
2046  * BKL here.  We wish to remove the buffer from its committing or
2047  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2048  *
2049  * This may *change* the value of transaction_t->t_datalist, so anyone
2050  * who looks at t_datalist needs to lock against this function.
2051  *
2052  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2053  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2054  * will come out of the lock with the buffer dirty, which makes it
2055  * ineligible for release here.
2056  *
2057  * Who else is affected by this?  hmm...  Really the only contender
2058  * is do_get_write_access() - it could be looking at the buffer while
2059  * journal_try_to_free_buffer() is changing its state.  But that
2060  * cannot happen because we never reallocate freed data as metadata
2061  * while the data is part of a transaction.  Yes?
2062  *
2063  * Return 0 on failure, 1 on success
2064  */
2065 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2066 				struct page *page, gfp_t gfp_mask)
2067 {
2068 	struct buffer_head *head;
2069 	struct buffer_head *bh;
2070 	int ret = 0;
2071 
2072 	J_ASSERT(PageLocked(page));
2073 
2074 	head = page_buffers(page);
2075 	bh = head;
2076 	do {
2077 		struct journal_head *jh;
2078 
2079 		/*
2080 		 * We take our own ref against the journal_head here to avoid
2081 		 * having to add tons of locking around each instance of
2082 		 * jbd2_journal_put_journal_head().
2083 		 */
2084 		jh = jbd2_journal_grab_journal_head(bh);
2085 		if (!jh)
2086 			continue;
2087 
2088 		jbd_lock_bh_state(bh);
2089 		__journal_try_to_free_buffer(journal, bh);
2090 		jbd2_journal_put_journal_head(jh);
2091 		jbd_unlock_bh_state(bh);
2092 		if (buffer_jbd(bh))
2093 			goto busy;
2094 	} while ((bh = bh->b_this_page) != head);
2095 
2096 	ret = try_to_free_buffers(page);
2097 
2098 busy:
2099 	return ret;
2100 }
2101 
2102 /*
2103  * This buffer is no longer needed.  If it is on an older transaction's
2104  * checkpoint list we need to record it on this transaction's forget list
2105  * to pin this buffer (and hence its checkpointing transaction) down until
2106  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2107  * release it.
2108  * Returns non-zero if JBD no longer has an interest in the buffer.
2109  *
2110  * Called under j_list_lock.
2111  *
2112  * Called under jbd_lock_bh_state(bh).
2113  */
2114 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2115 {
2116 	int may_free = 1;
2117 	struct buffer_head *bh = jh2bh(jh);
2118 
2119 	if (jh->b_cp_transaction) {
2120 		JBUFFER_TRACE(jh, "on running+cp transaction");
2121 		__jbd2_journal_temp_unlink_buffer(jh);
2122 		/*
2123 		 * We don't want to write the buffer anymore, clear the
2124 		 * bit so that we don't confuse checks in
2125 		 * __journal_file_buffer
2126 		 */
2127 		clear_buffer_dirty(bh);
2128 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2129 		may_free = 0;
2130 	} else {
2131 		JBUFFER_TRACE(jh, "on running transaction");
2132 		__jbd2_journal_unfile_buffer(jh);
2133 	}
2134 	return may_free;
2135 }
2136 
2137 /*
2138  * jbd2_journal_invalidatepage
2139  *
2140  * This code is tricky.  It has a number of cases to deal with.
2141  *
2142  * There are two invariants which this code relies on:
2143  *
2144  * i_size must be updated on disk before we start calling invalidatepage on the
2145  * data.
2146  *
2147  *  This is done in ext3 by defining an ext3_setattr method which
2148  *  updates i_size before truncate gets going.  By maintaining this
2149  *  invariant, we can be sure that it is safe to throw away any buffers
2150  *  attached to the current transaction: once the transaction commits,
2151  *  we know that the data will not be needed.
2152  *
2153  *  Note however that we can *not* throw away data belonging to the
2154  *  previous, committing transaction!
2155  *
2156  * Any disk blocks which *are* part of the previous, committing
2157  * transaction (and which therefore cannot be discarded immediately) are
2158  * not going to be reused in the new running transaction
2159  *
2160  *  The bitmap committed_data images guarantee this: any block which is
2161  *  allocated in one transaction and removed in the next will be marked
2162  *  as in-use in the committed_data bitmap, so cannot be reused until
2163  *  the next transaction to delete the block commits.  This means that
2164  *  leaving committing buffers dirty is quite safe: the disk blocks
2165  *  cannot be reallocated to a different file and so buffer aliasing is
2166  *  not possible.
2167  *
2168  *
2169  * The above applies mainly to ordered data mode.  In writeback mode we
2170  * don't make guarantees about the order in which data hits disk --- in
2171  * particular we don't guarantee that new dirty data is flushed before
2172  * transaction commit --- so it is always safe just to discard data
2173  * immediately in that mode.  --sct
2174  */
2175 
2176 /*
2177  * The journal_unmap_buffer helper function returns zero if the buffer
2178  * concerned remains pinned as an anonymous buffer belonging to an older
2179  * transaction.
2180  *
2181  * We're outside-transaction here.  Either or both of j_running_transaction
2182  * and j_committing_transaction may be NULL.
2183  */
2184 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2185 				int partial_page)
2186 {
2187 	transaction_t *transaction;
2188 	struct journal_head *jh;
2189 	int may_free = 1;
2190 
2191 	BUFFER_TRACE(bh, "entry");
2192 
2193 	/*
2194 	 * It is safe to proceed here without the j_list_lock because the
2195 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2196 	 * holding the page lock. --sct
2197 	 */
2198 
2199 	if (!buffer_jbd(bh))
2200 		goto zap_buffer_unlocked;
2201 
2202 	/* OK, we have data buffer in journaled mode */
2203 	write_lock(&journal->j_state_lock);
2204 	jbd_lock_bh_state(bh);
2205 	spin_lock(&journal->j_list_lock);
2206 
2207 	jh = jbd2_journal_grab_journal_head(bh);
2208 	if (!jh)
2209 		goto zap_buffer_no_jh;
2210 
2211 	/*
2212 	 * We cannot remove the buffer from checkpoint lists until the
2213 	 * transaction adding inode to orphan list (let's call it T)
2214 	 * is committed.  Otherwise if the transaction changing the
2215 	 * buffer would be cleaned from the journal before T is
2216 	 * committed, a crash will cause that the correct contents of
2217 	 * the buffer will be lost.  On the other hand we have to
2218 	 * clear the buffer dirty bit at latest at the moment when the
2219 	 * transaction marking the buffer as freed in the filesystem
2220 	 * structures is committed because from that moment on the
2221 	 * block can be reallocated and used by a different page.
2222 	 * Since the block hasn't been freed yet but the inode has
2223 	 * already been added to orphan list, it is safe for us to add
2224 	 * the buffer to BJ_Forget list of the newest transaction.
2225 	 *
2226 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2227 	 * because the buffer_head may be attached to the page straddling
2228 	 * i_size (can happen only when blocksize < pagesize) and thus the
2229 	 * buffer_head can be reused when the file is extended again. So we end
2230 	 * up keeping around invalidated buffers attached to transactions'
2231 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2232 	 * the transaction this buffer was modified in.
2233 	 */
2234 	transaction = jh->b_transaction;
2235 	if (transaction == NULL) {
2236 		/* First case: not on any transaction.  If it
2237 		 * has no checkpoint link, then we can zap it:
2238 		 * it's a writeback-mode buffer so we don't care
2239 		 * if it hits disk safely. */
2240 		if (!jh->b_cp_transaction) {
2241 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2242 			goto zap_buffer;
2243 		}
2244 
2245 		if (!buffer_dirty(bh)) {
2246 			/* bdflush has written it.  We can drop it now */
2247 			__jbd2_journal_remove_checkpoint(jh);
2248 			goto zap_buffer;
2249 		}
2250 
2251 		/* OK, it must be in the journal but still not
2252 		 * written fully to disk: it's metadata or
2253 		 * journaled data... */
2254 
2255 		if (journal->j_running_transaction) {
2256 			/* ... and once the current transaction has
2257 			 * committed, the buffer won't be needed any
2258 			 * longer. */
2259 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2260 			may_free = __dispose_buffer(jh,
2261 					journal->j_running_transaction);
2262 			goto zap_buffer;
2263 		} else {
2264 			/* There is no currently-running transaction. So the
2265 			 * orphan record which we wrote for this file must have
2266 			 * passed into commit.  We must attach this buffer to
2267 			 * the committing transaction, if it exists. */
2268 			if (journal->j_committing_transaction) {
2269 				JBUFFER_TRACE(jh, "give to committing trans");
2270 				may_free = __dispose_buffer(jh,
2271 					journal->j_committing_transaction);
2272 				goto zap_buffer;
2273 			} else {
2274 				/* The orphan record's transaction has
2275 				 * committed.  We can cleanse this buffer */
2276 				clear_buffer_jbddirty(bh);
2277 				__jbd2_journal_remove_checkpoint(jh);
2278 				goto zap_buffer;
2279 			}
2280 		}
2281 	} else if (transaction == journal->j_committing_transaction) {
2282 		JBUFFER_TRACE(jh, "on committing transaction");
2283 		/*
2284 		 * The buffer is committing, we simply cannot touch
2285 		 * it. If the page is straddling i_size we have to wait
2286 		 * for commit and try again.
2287 		 */
2288 		if (partial_page) {
2289 			jbd2_journal_put_journal_head(jh);
2290 			spin_unlock(&journal->j_list_lock);
2291 			jbd_unlock_bh_state(bh);
2292 			write_unlock(&journal->j_state_lock);
2293 			return -EBUSY;
2294 		}
2295 		/*
2296 		 * OK, buffer won't be reachable after truncate. We just set
2297 		 * j_next_transaction to the running transaction (if there is
2298 		 * one) and mark buffer as freed so that commit code knows it
2299 		 * should clear dirty bits when it is done with the buffer.
2300 		 */
2301 		set_buffer_freed(bh);
2302 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2303 			jh->b_next_transaction = journal->j_running_transaction;
2304 		jbd2_journal_put_journal_head(jh);
2305 		spin_unlock(&journal->j_list_lock);
2306 		jbd_unlock_bh_state(bh);
2307 		write_unlock(&journal->j_state_lock);
2308 		return 0;
2309 	} else {
2310 		/* Good, the buffer belongs to the running transaction.
2311 		 * We are writing our own transaction's data, not any
2312 		 * previous one's, so it is safe to throw it away
2313 		 * (remember that we expect the filesystem to have set
2314 		 * i_size already for this truncate so recovery will not
2315 		 * expose the disk blocks we are discarding here.) */
2316 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2317 		JBUFFER_TRACE(jh, "on running transaction");
2318 		may_free = __dispose_buffer(jh, transaction);
2319 	}
2320 
2321 zap_buffer:
2322 	/*
2323 	 * This is tricky. Although the buffer is truncated, it may be reused
2324 	 * if blocksize < pagesize and it is attached to the page straddling
2325 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2326 	 * running transaction, journal_get_write_access() won't clear
2327 	 * b_modified and credit accounting gets confused. So clear b_modified
2328 	 * here.
2329 	 */
2330 	jh->b_modified = 0;
2331 	jbd2_journal_put_journal_head(jh);
2332 zap_buffer_no_jh:
2333 	spin_unlock(&journal->j_list_lock);
2334 	jbd_unlock_bh_state(bh);
2335 	write_unlock(&journal->j_state_lock);
2336 zap_buffer_unlocked:
2337 	clear_buffer_dirty(bh);
2338 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2339 	clear_buffer_mapped(bh);
2340 	clear_buffer_req(bh);
2341 	clear_buffer_new(bh);
2342 	clear_buffer_delay(bh);
2343 	clear_buffer_unwritten(bh);
2344 	bh->b_bdev = NULL;
2345 	return may_free;
2346 }
2347 
2348 /**
2349  * void jbd2_journal_invalidatepage()
2350  * @journal: journal to use for flush...
2351  * @page:    page to flush
2352  * @offset:  start of the range to invalidate
2353  * @length:  length of the range to invalidate
2354  *
2355  * Reap page buffers containing data after in the specified range in page.
2356  * Can return -EBUSY if buffers are part of the committing transaction and
2357  * the page is straddling i_size. Caller then has to wait for current commit
2358  * and try again.
2359  */
2360 int jbd2_journal_invalidatepage(journal_t *journal,
2361 				struct page *page,
2362 				unsigned int offset,
2363 				unsigned int length)
2364 {
2365 	struct buffer_head *head, *bh, *next;
2366 	unsigned int stop = offset + length;
2367 	unsigned int curr_off = 0;
2368 	int partial_page = (offset || length < PAGE_SIZE);
2369 	int may_free = 1;
2370 	int ret = 0;
2371 
2372 	if (!PageLocked(page))
2373 		BUG();
2374 	if (!page_has_buffers(page))
2375 		return 0;
2376 
2377 	BUG_ON(stop > PAGE_SIZE || stop < length);
2378 
2379 	/* We will potentially be playing with lists other than just the
2380 	 * data lists (especially for journaled data mode), so be
2381 	 * cautious in our locking. */
2382 
2383 	head = bh = page_buffers(page);
2384 	do {
2385 		unsigned int next_off = curr_off + bh->b_size;
2386 		next = bh->b_this_page;
2387 
2388 		if (next_off > stop)
2389 			return 0;
2390 
2391 		if (offset <= curr_off) {
2392 			/* This block is wholly outside the truncation point */
2393 			lock_buffer(bh);
2394 			ret = journal_unmap_buffer(journal, bh, partial_page);
2395 			unlock_buffer(bh);
2396 			if (ret < 0)
2397 				return ret;
2398 			may_free &= ret;
2399 		}
2400 		curr_off = next_off;
2401 		bh = next;
2402 
2403 	} while (bh != head);
2404 
2405 	if (!partial_page) {
2406 		if (may_free && try_to_free_buffers(page))
2407 			J_ASSERT(!page_has_buffers(page));
2408 	}
2409 	return 0;
2410 }
2411 
2412 /*
2413  * File a buffer on the given transaction list.
2414  */
2415 void __jbd2_journal_file_buffer(struct journal_head *jh,
2416 			transaction_t *transaction, int jlist)
2417 {
2418 	struct journal_head **list = NULL;
2419 	int was_dirty = 0;
2420 	struct buffer_head *bh = jh2bh(jh);
2421 
2422 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2423 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2424 
2425 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2426 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2427 				jh->b_transaction == NULL);
2428 
2429 	if (jh->b_transaction && jh->b_jlist == jlist)
2430 		return;
2431 
2432 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2433 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2434 		/*
2435 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2436 		 * instead of buffer_dirty. We should not see a dirty bit set
2437 		 * here because we clear it in do_get_write_access but e.g.
2438 		 * tune2fs can modify the sb and set the dirty bit at any time
2439 		 * so we try to gracefully handle that.
2440 		 */
2441 		if (buffer_dirty(bh))
2442 			warn_dirty_buffer(bh);
2443 		if (test_clear_buffer_dirty(bh) ||
2444 		    test_clear_buffer_jbddirty(bh))
2445 			was_dirty = 1;
2446 	}
2447 
2448 	if (jh->b_transaction)
2449 		__jbd2_journal_temp_unlink_buffer(jh);
2450 	else
2451 		jbd2_journal_grab_journal_head(bh);
2452 	jh->b_transaction = transaction;
2453 
2454 	switch (jlist) {
2455 	case BJ_None:
2456 		J_ASSERT_JH(jh, !jh->b_committed_data);
2457 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2458 		return;
2459 	case BJ_Metadata:
2460 		transaction->t_nr_buffers++;
2461 		list = &transaction->t_buffers;
2462 		break;
2463 	case BJ_Forget:
2464 		list = &transaction->t_forget;
2465 		break;
2466 	case BJ_Shadow:
2467 		list = &transaction->t_shadow_list;
2468 		break;
2469 	case BJ_Reserved:
2470 		list = &transaction->t_reserved_list;
2471 		break;
2472 	}
2473 
2474 	__blist_add_buffer(list, jh);
2475 	jh->b_jlist = jlist;
2476 
2477 	if (was_dirty)
2478 		set_buffer_jbddirty(bh);
2479 }
2480 
2481 void jbd2_journal_file_buffer(struct journal_head *jh,
2482 				transaction_t *transaction, int jlist)
2483 {
2484 	jbd_lock_bh_state(jh2bh(jh));
2485 	spin_lock(&transaction->t_journal->j_list_lock);
2486 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2487 	spin_unlock(&transaction->t_journal->j_list_lock);
2488 	jbd_unlock_bh_state(jh2bh(jh));
2489 }
2490 
2491 /*
2492  * Remove a buffer from its current buffer list in preparation for
2493  * dropping it from its current transaction entirely.  If the buffer has
2494  * already started to be used by a subsequent transaction, refile the
2495  * buffer on that transaction's metadata list.
2496  *
2497  * Called under j_list_lock
2498  * Called under jbd_lock_bh_state(jh2bh(jh))
2499  *
2500  * jh and bh may be already free when this function returns
2501  */
2502 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2503 {
2504 	int was_dirty, jlist;
2505 	struct buffer_head *bh = jh2bh(jh);
2506 
2507 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2508 	if (jh->b_transaction)
2509 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2510 
2511 	/* If the buffer is now unused, just drop it. */
2512 	if (jh->b_next_transaction == NULL) {
2513 		__jbd2_journal_unfile_buffer(jh);
2514 		return;
2515 	}
2516 
2517 	/*
2518 	 * It has been modified by a later transaction: add it to the new
2519 	 * transaction's metadata list.
2520 	 */
2521 
2522 	was_dirty = test_clear_buffer_jbddirty(bh);
2523 	__jbd2_journal_temp_unlink_buffer(jh);
2524 	/*
2525 	 * We set b_transaction here because b_next_transaction will inherit
2526 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2527 	 * take a new one.
2528 	 */
2529 	jh->b_transaction = jh->b_next_transaction;
2530 	jh->b_next_transaction = NULL;
2531 	if (buffer_freed(bh))
2532 		jlist = BJ_Forget;
2533 	else if (jh->b_modified)
2534 		jlist = BJ_Metadata;
2535 	else
2536 		jlist = BJ_Reserved;
2537 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2538 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2539 
2540 	if (was_dirty)
2541 		set_buffer_jbddirty(bh);
2542 }
2543 
2544 /*
2545  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2546  * bh reference so that we can safely unlock bh.
2547  *
2548  * The jh and bh may be freed by this call.
2549  */
2550 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2551 {
2552 	struct buffer_head *bh = jh2bh(jh);
2553 
2554 	/* Get reference so that buffer cannot be freed before we unlock it */
2555 	get_bh(bh);
2556 	jbd_lock_bh_state(bh);
2557 	spin_lock(&journal->j_list_lock);
2558 	__jbd2_journal_refile_buffer(jh);
2559 	jbd_unlock_bh_state(bh);
2560 	spin_unlock(&journal->j_list_lock);
2561 	__brelse(bh);
2562 }
2563 
2564 /*
2565  * File inode in the inode list of the handle's transaction
2566  */
2567 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2568 				   unsigned long flags)
2569 {
2570 	transaction_t *transaction = handle->h_transaction;
2571 	journal_t *journal;
2572 
2573 	if (is_handle_aborted(handle))
2574 		return -EROFS;
2575 	journal = transaction->t_journal;
2576 
2577 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2578 			transaction->t_tid);
2579 
2580 	/*
2581 	 * First check whether inode isn't already on the transaction's
2582 	 * lists without taking the lock. Note that this check is safe
2583 	 * without the lock as we cannot race with somebody removing inode
2584 	 * from the transaction. The reason is that we remove inode from the
2585 	 * transaction only in journal_release_jbd_inode() and when we commit
2586 	 * the transaction. We are guarded from the first case by holding
2587 	 * a reference to the inode. We are safe against the second case
2588 	 * because if jinode->i_transaction == transaction, commit code
2589 	 * cannot touch the transaction because we hold reference to it,
2590 	 * and if jinode->i_next_transaction == transaction, commit code
2591 	 * will only file the inode where we want it.
2592 	 */
2593 	if ((jinode->i_transaction == transaction ||
2594 	    jinode->i_next_transaction == transaction) &&
2595 	    (jinode->i_flags & flags) == flags)
2596 		return 0;
2597 
2598 	spin_lock(&journal->j_list_lock);
2599 	jinode->i_flags |= flags;
2600 	/* Is inode already attached where we need it? */
2601 	if (jinode->i_transaction == transaction ||
2602 	    jinode->i_next_transaction == transaction)
2603 		goto done;
2604 
2605 	/*
2606 	 * We only ever set this variable to 1 so the test is safe. Since
2607 	 * t_need_data_flush is likely to be set, we do the test to save some
2608 	 * cacheline bouncing
2609 	 */
2610 	if (!transaction->t_need_data_flush)
2611 		transaction->t_need_data_flush = 1;
2612 	/* On some different transaction's list - should be
2613 	 * the committing one */
2614 	if (jinode->i_transaction) {
2615 		J_ASSERT(jinode->i_next_transaction == NULL);
2616 		J_ASSERT(jinode->i_transaction ==
2617 					journal->j_committing_transaction);
2618 		jinode->i_next_transaction = transaction;
2619 		goto done;
2620 	}
2621 	/* Not on any transaction list... */
2622 	J_ASSERT(!jinode->i_next_transaction);
2623 	jinode->i_transaction = transaction;
2624 	list_add(&jinode->i_list, &transaction->t_inode_list);
2625 done:
2626 	spin_unlock(&journal->j_list_lock);
2627 
2628 	return 0;
2629 }
2630 
2631 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2632 {
2633 	return jbd2_journal_file_inode(handle, jinode,
2634 				       JI_WRITE_DATA | JI_WAIT_DATA);
2635 }
2636 
2637 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2638 {
2639 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2640 }
2641 
2642 /*
2643  * File truncate and transaction commit interact with each other in a
2644  * non-trivial way.  If a transaction writing data block A is
2645  * committing, we cannot discard the data by truncate until we have
2646  * written them.  Otherwise if we crashed after the transaction with
2647  * write has committed but before the transaction with truncate has
2648  * committed, we could see stale data in block A.  This function is a
2649  * helper to solve this problem.  It starts writeout of the truncated
2650  * part in case it is in the committing transaction.
2651  *
2652  * Filesystem code must call this function when inode is journaled in
2653  * ordered mode before truncation happens and after the inode has been
2654  * placed on orphan list with the new inode size. The second condition
2655  * avoids the race that someone writes new data and we start
2656  * committing the transaction after this function has been called but
2657  * before a transaction for truncate is started (and furthermore it
2658  * allows us to optimize the case where the addition to orphan list
2659  * happens in the same transaction as write --- we don't have to write
2660  * any data in such case).
2661  */
2662 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2663 					struct jbd2_inode *jinode,
2664 					loff_t new_size)
2665 {
2666 	transaction_t *inode_trans, *commit_trans;
2667 	int ret = 0;
2668 
2669 	/* This is a quick check to avoid locking if not necessary */
2670 	if (!jinode->i_transaction)
2671 		goto out;
2672 	/* Locks are here just to force reading of recent values, it is
2673 	 * enough that the transaction was not committing before we started
2674 	 * a transaction adding the inode to orphan list */
2675 	read_lock(&journal->j_state_lock);
2676 	commit_trans = journal->j_committing_transaction;
2677 	read_unlock(&journal->j_state_lock);
2678 	spin_lock(&journal->j_list_lock);
2679 	inode_trans = jinode->i_transaction;
2680 	spin_unlock(&journal->j_list_lock);
2681 	if (inode_trans == commit_trans) {
2682 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2683 			new_size, LLONG_MAX);
2684 		if (ret)
2685 			jbd2_journal_abort(journal, ret);
2686 	}
2687 out:
2688 	return ret;
2689 }
2690