1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 jbd2_might_wait_for_commit(journal); 163 schedule(); 164 finish_wait(&journal->j_wait_transaction_locked, &wait); 165 } 166 167 static void sub_reserved_credits(journal_t *journal, int blocks) 168 { 169 atomic_sub(blocks, &journal->j_reserved_credits); 170 wake_up(&journal->j_wait_reserved); 171 } 172 173 /* 174 * Wait until we can add credits for handle to the running transaction. Called 175 * with j_state_lock held for reading. Returns 0 if handle joined the running 176 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 177 * caller must retry. 178 */ 179 static int add_transaction_credits(journal_t *journal, int blocks, 180 int rsv_blocks) 181 { 182 transaction_t *t = journal->j_running_transaction; 183 int needed; 184 int total = blocks + rsv_blocks; 185 186 /* 187 * If the current transaction is locked down for commit, wait 188 * for the lock to be released. 189 */ 190 if (t->t_state == T_LOCKED) { 191 wait_transaction_locked(journal); 192 return 1; 193 } 194 195 /* 196 * If there is not enough space left in the log to write all 197 * potential buffers requested by this operation, we need to 198 * stall pending a log checkpoint to free some more log space. 199 */ 200 needed = atomic_add_return(total, &t->t_outstanding_credits); 201 if (needed > journal->j_max_transaction_buffers) { 202 /* 203 * If the current transaction is already too large, 204 * then start to commit it: we can then go back and 205 * attach this handle to a new transaction. 206 */ 207 atomic_sub(total, &t->t_outstanding_credits); 208 209 /* 210 * Is the number of reserved credits in the current transaction too 211 * big to fit this handle? Wait until reserved credits are freed. 212 */ 213 if (atomic_read(&journal->j_reserved_credits) + total > 214 journal->j_max_transaction_buffers) { 215 read_unlock(&journal->j_state_lock); 216 jbd2_might_wait_for_commit(journal); 217 wait_event(journal->j_wait_reserved, 218 atomic_read(&journal->j_reserved_credits) + total <= 219 journal->j_max_transaction_buffers); 220 return 1; 221 } 222 223 wait_transaction_locked(journal); 224 return 1; 225 } 226 227 /* 228 * The commit code assumes that it can get enough log space 229 * without forcing a checkpoint. This is *critical* for 230 * correctness: a checkpoint of a buffer which is also 231 * associated with a committing transaction creates a deadlock, 232 * so commit simply cannot force through checkpoints. 233 * 234 * We must therefore ensure the necessary space in the journal 235 * *before* starting to dirty potentially checkpointed buffers 236 * in the new transaction. 237 */ 238 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 239 atomic_sub(total, &t->t_outstanding_credits); 240 read_unlock(&journal->j_state_lock); 241 jbd2_might_wait_for_commit(journal); 242 write_lock(&journal->j_state_lock); 243 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 244 __jbd2_log_wait_for_space(journal); 245 write_unlock(&journal->j_state_lock); 246 return 1; 247 } 248 249 /* No reservation? We are done... */ 250 if (!rsv_blocks) 251 return 0; 252 253 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 254 /* We allow at most half of a transaction to be reserved */ 255 if (needed > journal->j_max_transaction_buffers / 2) { 256 sub_reserved_credits(journal, rsv_blocks); 257 atomic_sub(total, &t->t_outstanding_credits); 258 read_unlock(&journal->j_state_lock); 259 jbd2_might_wait_for_commit(journal); 260 wait_event(journal->j_wait_reserved, 261 atomic_read(&journal->j_reserved_credits) + rsv_blocks 262 <= journal->j_max_transaction_buffers / 2); 263 return 1; 264 } 265 return 0; 266 } 267 268 /* 269 * start_this_handle: Given a handle, deal with any locking or stalling 270 * needed to make sure that there is enough journal space for the handle 271 * to begin. Attach the handle to a transaction and set up the 272 * transaction's buffer credits. 273 */ 274 275 static int start_this_handle(journal_t *journal, handle_t *handle, 276 gfp_t gfp_mask) 277 { 278 transaction_t *transaction, *new_transaction = NULL; 279 int blocks = handle->h_buffer_credits; 280 int rsv_blocks = 0; 281 unsigned long ts = jiffies; 282 283 if (handle->h_rsv_handle) 284 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 285 286 /* 287 * Limit the number of reserved credits to 1/2 of maximum transaction 288 * size and limit the number of total credits to not exceed maximum 289 * transaction size per operation. 290 */ 291 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 292 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 293 printk(KERN_ERR "JBD2: %s wants too many credits " 294 "credits:%d rsv_credits:%d max:%d\n", 295 current->comm, blocks, rsv_blocks, 296 journal->j_max_transaction_buffers); 297 WARN_ON(1); 298 return -ENOSPC; 299 } 300 301 alloc_transaction: 302 if (!journal->j_running_transaction) { 303 /* 304 * If __GFP_FS is not present, then we may be being called from 305 * inside the fs writeback layer, so we MUST NOT fail. 306 */ 307 if ((gfp_mask & __GFP_FS) == 0) 308 gfp_mask |= __GFP_NOFAIL; 309 new_transaction = kmem_cache_zalloc(transaction_cache, 310 gfp_mask); 311 if (!new_transaction) 312 return -ENOMEM; 313 } 314 315 jbd_debug(3, "New handle %p going live.\n", handle); 316 317 /* 318 * We need to hold j_state_lock until t_updates has been incremented, 319 * for proper journal barrier handling 320 */ 321 repeat: 322 read_lock(&journal->j_state_lock); 323 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 324 if (is_journal_aborted(journal) || 325 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 326 read_unlock(&journal->j_state_lock); 327 jbd2_journal_free_transaction(new_transaction); 328 return -EROFS; 329 } 330 331 /* 332 * Wait on the journal's transaction barrier if necessary. Specifically 333 * we allow reserved handles to proceed because otherwise commit could 334 * deadlock on page writeback not being able to complete. 335 */ 336 if (!handle->h_reserved && journal->j_barrier_count) { 337 read_unlock(&journal->j_state_lock); 338 wait_event(journal->j_wait_transaction_locked, 339 journal->j_barrier_count == 0); 340 goto repeat; 341 } 342 343 if (!journal->j_running_transaction) { 344 read_unlock(&journal->j_state_lock); 345 if (!new_transaction) 346 goto alloc_transaction; 347 write_lock(&journal->j_state_lock); 348 if (!journal->j_running_transaction && 349 (handle->h_reserved || !journal->j_barrier_count)) { 350 jbd2_get_transaction(journal, new_transaction); 351 new_transaction = NULL; 352 } 353 write_unlock(&journal->j_state_lock); 354 goto repeat; 355 } 356 357 transaction = journal->j_running_transaction; 358 359 if (!handle->h_reserved) { 360 /* We may have dropped j_state_lock - restart in that case */ 361 if (add_transaction_credits(journal, blocks, rsv_blocks)) 362 goto repeat; 363 } else { 364 /* 365 * We have handle reserved so we are allowed to join T_LOCKED 366 * transaction and we don't have to check for transaction size 367 * and journal space. 368 */ 369 sub_reserved_credits(journal, blocks); 370 handle->h_reserved = 0; 371 } 372 373 /* OK, account for the buffers that this operation expects to 374 * use and add the handle to the running transaction. 375 */ 376 update_t_max_wait(transaction, ts); 377 handle->h_transaction = transaction; 378 handle->h_requested_credits = blocks; 379 handle->h_start_jiffies = jiffies; 380 atomic_inc(&transaction->t_updates); 381 atomic_inc(&transaction->t_handle_count); 382 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 383 handle, blocks, 384 atomic_read(&transaction->t_outstanding_credits), 385 jbd2_log_space_left(journal)); 386 read_unlock(&journal->j_state_lock); 387 current->journal_info = handle; 388 389 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 390 jbd2_journal_free_transaction(new_transaction); 391 return 0; 392 } 393 394 /* Allocate a new handle. This should probably be in a slab... */ 395 static handle_t *new_handle(int nblocks) 396 { 397 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 398 if (!handle) 399 return NULL; 400 handle->h_buffer_credits = nblocks; 401 handle->h_ref = 1; 402 403 return handle; 404 } 405 406 /** 407 * handle_t *jbd2_journal_start() - Obtain a new handle. 408 * @journal: Journal to start transaction on. 409 * @nblocks: number of block buffer we might modify 410 * 411 * We make sure that the transaction can guarantee at least nblocks of 412 * modified buffers in the log. We block until the log can guarantee 413 * that much space. Additionally, if rsv_blocks > 0, we also create another 414 * handle with rsv_blocks reserved blocks in the journal. This handle is 415 * is stored in h_rsv_handle. It is not attached to any particular transaction 416 * and thus doesn't block transaction commit. If the caller uses this reserved 417 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 418 * on the parent handle will dispose the reserved one. Reserved handle has to 419 * be converted to a normal handle using jbd2_journal_start_reserved() before 420 * it can be used. 421 * 422 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 423 * on failure. 424 */ 425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 426 gfp_t gfp_mask, unsigned int type, 427 unsigned int line_no) 428 { 429 handle_t *handle = journal_current_handle(); 430 int err; 431 432 if (!journal) 433 return ERR_PTR(-EROFS); 434 435 if (handle) { 436 J_ASSERT(handle->h_transaction->t_journal == journal); 437 handle->h_ref++; 438 return handle; 439 } 440 441 handle = new_handle(nblocks); 442 if (!handle) 443 return ERR_PTR(-ENOMEM); 444 if (rsv_blocks) { 445 handle_t *rsv_handle; 446 447 rsv_handle = new_handle(rsv_blocks); 448 if (!rsv_handle) { 449 jbd2_free_handle(handle); 450 return ERR_PTR(-ENOMEM); 451 } 452 rsv_handle->h_reserved = 1; 453 rsv_handle->h_journal = journal; 454 handle->h_rsv_handle = rsv_handle; 455 } 456 457 err = start_this_handle(journal, handle, gfp_mask); 458 if (err < 0) { 459 if (handle->h_rsv_handle) 460 jbd2_free_handle(handle->h_rsv_handle); 461 jbd2_free_handle(handle); 462 return ERR_PTR(err); 463 } 464 handle->h_type = type; 465 handle->h_line_no = line_no; 466 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 467 handle->h_transaction->t_tid, type, 468 line_no, nblocks); 469 return handle; 470 } 471 EXPORT_SYMBOL(jbd2__journal_start); 472 473 474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 475 { 476 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 477 } 478 EXPORT_SYMBOL(jbd2_journal_start); 479 480 void jbd2_journal_free_reserved(handle_t *handle) 481 { 482 journal_t *journal = handle->h_journal; 483 484 WARN_ON(!handle->h_reserved); 485 sub_reserved_credits(journal, handle->h_buffer_credits); 486 jbd2_free_handle(handle); 487 } 488 EXPORT_SYMBOL(jbd2_journal_free_reserved); 489 490 /** 491 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 492 * @handle: handle to start 493 * 494 * Start handle that has been previously reserved with jbd2_journal_reserve(). 495 * This attaches @handle to the running transaction (or creates one if there's 496 * not transaction running). Unlike jbd2_journal_start() this function cannot 497 * block on journal commit, checkpointing, or similar stuff. It can block on 498 * memory allocation or frozen journal though. 499 * 500 * Return 0 on success, non-zero on error - handle is freed in that case. 501 */ 502 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 503 unsigned int line_no) 504 { 505 journal_t *journal = handle->h_journal; 506 int ret = -EIO; 507 508 if (WARN_ON(!handle->h_reserved)) { 509 /* Someone passed in normal handle? Just stop it. */ 510 jbd2_journal_stop(handle); 511 return ret; 512 } 513 /* 514 * Usefulness of mixing of reserved and unreserved handles is 515 * questionable. So far nobody seems to need it so just error out. 516 */ 517 if (WARN_ON(current->journal_info)) { 518 jbd2_journal_free_reserved(handle); 519 return ret; 520 } 521 522 handle->h_journal = NULL; 523 /* 524 * GFP_NOFS is here because callers are likely from writeback or 525 * similarly constrained call sites 526 */ 527 ret = start_this_handle(journal, handle, GFP_NOFS); 528 if (ret < 0) { 529 jbd2_journal_free_reserved(handle); 530 return ret; 531 } 532 handle->h_type = type; 533 handle->h_line_no = line_no; 534 return 0; 535 } 536 EXPORT_SYMBOL(jbd2_journal_start_reserved); 537 538 /** 539 * int jbd2_journal_extend() - extend buffer credits. 540 * @handle: handle to 'extend' 541 * @nblocks: nr blocks to try to extend by. 542 * 543 * Some transactions, such as large extends and truncates, can be done 544 * atomically all at once or in several stages. The operation requests 545 * a credit for a number of buffer modifications in advance, but can 546 * extend its credit if it needs more. 547 * 548 * jbd2_journal_extend tries to give the running handle more buffer credits. 549 * It does not guarantee that allocation - this is a best-effort only. 550 * The calling process MUST be able to deal cleanly with a failure to 551 * extend here. 552 * 553 * Return 0 on success, non-zero on failure. 554 * 555 * return code < 0 implies an error 556 * return code > 0 implies normal transaction-full status. 557 */ 558 int jbd2_journal_extend(handle_t *handle, int nblocks) 559 { 560 transaction_t *transaction = handle->h_transaction; 561 journal_t *journal; 562 int result; 563 int wanted; 564 565 if (is_handle_aborted(handle)) 566 return -EROFS; 567 journal = transaction->t_journal; 568 569 result = 1; 570 571 read_lock(&journal->j_state_lock); 572 573 /* Don't extend a locked-down transaction! */ 574 if (transaction->t_state != T_RUNNING) { 575 jbd_debug(3, "denied handle %p %d blocks: " 576 "transaction not running\n", handle, nblocks); 577 goto error_out; 578 } 579 580 spin_lock(&transaction->t_handle_lock); 581 wanted = atomic_add_return(nblocks, 582 &transaction->t_outstanding_credits); 583 584 if (wanted > journal->j_max_transaction_buffers) { 585 jbd_debug(3, "denied handle %p %d blocks: " 586 "transaction too large\n", handle, nblocks); 587 atomic_sub(nblocks, &transaction->t_outstanding_credits); 588 goto unlock; 589 } 590 591 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 592 jbd2_log_space_left(journal)) { 593 jbd_debug(3, "denied handle %p %d blocks: " 594 "insufficient log space\n", handle, nblocks); 595 atomic_sub(nblocks, &transaction->t_outstanding_credits); 596 goto unlock; 597 } 598 599 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 600 transaction->t_tid, 601 handle->h_type, handle->h_line_no, 602 handle->h_buffer_credits, 603 nblocks); 604 605 handle->h_buffer_credits += nblocks; 606 handle->h_requested_credits += nblocks; 607 result = 0; 608 609 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 610 unlock: 611 spin_unlock(&transaction->t_handle_lock); 612 error_out: 613 read_unlock(&journal->j_state_lock); 614 return result; 615 } 616 617 618 /** 619 * int jbd2_journal_restart() - restart a handle . 620 * @handle: handle to restart 621 * @nblocks: nr credits requested 622 * 623 * Restart a handle for a multi-transaction filesystem 624 * operation. 625 * 626 * If the jbd2_journal_extend() call above fails to grant new buffer credits 627 * to a running handle, a call to jbd2_journal_restart will commit the 628 * handle's transaction so far and reattach the handle to a new 629 * transaction capable of guaranteeing the requested number of 630 * credits. We preserve reserved handle if there's any attached to the 631 * passed in handle. 632 */ 633 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 634 { 635 transaction_t *transaction = handle->h_transaction; 636 journal_t *journal; 637 tid_t tid; 638 int need_to_start, ret; 639 640 /* If we've had an abort of any type, don't even think about 641 * actually doing the restart! */ 642 if (is_handle_aborted(handle)) 643 return 0; 644 journal = transaction->t_journal; 645 646 /* 647 * First unlink the handle from its current transaction, and start the 648 * commit on that. 649 */ 650 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 651 J_ASSERT(journal_current_handle() == handle); 652 653 read_lock(&journal->j_state_lock); 654 spin_lock(&transaction->t_handle_lock); 655 atomic_sub(handle->h_buffer_credits, 656 &transaction->t_outstanding_credits); 657 if (handle->h_rsv_handle) { 658 sub_reserved_credits(journal, 659 handle->h_rsv_handle->h_buffer_credits); 660 } 661 if (atomic_dec_and_test(&transaction->t_updates)) 662 wake_up(&journal->j_wait_updates); 663 tid = transaction->t_tid; 664 spin_unlock(&transaction->t_handle_lock); 665 handle->h_transaction = NULL; 666 current->journal_info = NULL; 667 668 jbd_debug(2, "restarting handle %p\n", handle); 669 need_to_start = !tid_geq(journal->j_commit_request, tid); 670 read_unlock(&journal->j_state_lock); 671 if (need_to_start) 672 jbd2_log_start_commit(journal, tid); 673 674 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 675 handle->h_buffer_credits = nblocks; 676 ret = start_this_handle(journal, handle, gfp_mask); 677 return ret; 678 } 679 EXPORT_SYMBOL(jbd2__journal_restart); 680 681 682 int jbd2_journal_restart(handle_t *handle, int nblocks) 683 { 684 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 685 } 686 EXPORT_SYMBOL(jbd2_journal_restart); 687 688 /** 689 * void jbd2_journal_lock_updates () - establish a transaction barrier. 690 * @journal: Journal to establish a barrier on. 691 * 692 * This locks out any further updates from being started, and blocks 693 * until all existing updates have completed, returning only once the 694 * journal is in a quiescent state with no updates running. 695 * 696 * The journal lock should not be held on entry. 697 */ 698 void jbd2_journal_lock_updates(journal_t *journal) 699 { 700 DEFINE_WAIT(wait); 701 702 jbd2_might_wait_for_commit(journal); 703 704 write_lock(&journal->j_state_lock); 705 ++journal->j_barrier_count; 706 707 /* Wait until there are no reserved handles */ 708 if (atomic_read(&journal->j_reserved_credits)) { 709 write_unlock(&journal->j_state_lock); 710 wait_event(journal->j_wait_reserved, 711 atomic_read(&journal->j_reserved_credits) == 0); 712 write_lock(&journal->j_state_lock); 713 } 714 715 /* Wait until there are no running updates */ 716 while (1) { 717 transaction_t *transaction = journal->j_running_transaction; 718 719 if (!transaction) 720 break; 721 722 spin_lock(&transaction->t_handle_lock); 723 prepare_to_wait(&journal->j_wait_updates, &wait, 724 TASK_UNINTERRUPTIBLE); 725 if (!atomic_read(&transaction->t_updates)) { 726 spin_unlock(&transaction->t_handle_lock); 727 finish_wait(&journal->j_wait_updates, &wait); 728 break; 729 } 730 spin_unlock(&transaction->t_handle_lock); 731 write_unlock(&journal->j_state_lock); 732 schedule(); 733 finish_wait(&journal->j_wait_updates, &wait); 734 write_lock(&journal->j_state_lock); 735 } 736 write_unlock(&journal->j_state_lock); 737 738 /* 739 * We have now established a barrier against other normal updates, but 740 * we also need to barrier against other jbd2_journal_lock_updates() calls 741 * to make sure that we serialise special journal-locked operations 742 * too. 743 */ 744 mutex_lock(&journal->j_barrier); 745 } 746 747 /** 748 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 749 * @journal: Journal to release the barrier on. 750 * 751 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 752 * 753 * Should be called without the journal lock held. 754 */ 755 void jbd2_journal_unlock_updates (journal_t *journal) 756 { 757 J_ASSERT(journal->j_barrier_count != 0); 758 759 mutex_unlock(&journal->j_barrier); 760 write_lock(&journal->j_state_lock); 761 --journal->j_barrier_count; 762 write_unlock(&journal->j_state_lock); 763 wake_up(&journal->j_wait_transaction_locked); 764 } 765 766 static void warn_dirty_buffer(struct buffer_head *bh) 767 { 768 printk(KERN_WARNING 769 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 770 "There's a risk of filesystem corruption in case of system " 771 "crash.\n", 772 bh->b_bdev, (unsigned long long)bh->b_blocknr); 773 } 774 775 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 776 static void jbd2_freeze_jh_data(struct journal_head *jh) 777 { 778 struct page *page; 779 int offset; 780 char *source; 781 struct buffer_head *bh = jh2bh(jh); 782 783 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 784 page = bh->b_page; 785 offset = offset_in_page(bh->b_data); 786 source = kmap_atomic(page); 787 /* Fire data frozen trigger just before we copy the data */ 788 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 789 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 790 kunmap_atomic(source); 791 792 /* 793 * Now that the frozen data is saved off, we need to store any matching 794 * triggers. 795 */ 796 jh->b_frozen_triggers = jh->b_triggers; 797 } 798 799 /* 800 * If the buffer is already part of the current transaction, then there 801 * is nothing we need to do. If it is already part of a prior 802 * transaction which we are still committing to disk, then we need to 803 * make sure that we do not overwrite the old copy: we do copy-out to 804 * preserve the copy going to disk. We also account the buffer against 805 * the handle's metadata buffer credits (unless the buffer is already 806 * part of the transaction, that is). 807 * 808 */ 809 static int 810 do_get_write_access(handle_t *handle, struct journal_head *jh, 811 int force_copy) 812 { 813 struct buffer_head *bh; 814 transaction_t *transaction = handle->h_transaction; 815 journal_t *journal; 816 int error; 817 char *frozen_buffer = NULL; 818 unsigned long start_lock, time_lock; 819 820 if (is_handle_aborted(handle)) 821 return -EROFS; 822 journal = transaction->t_journal; 823 824 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 825 826 JBUFFER_TRACE(jh, "entry"); 827 repeat: 828 bh = jh2bh(jh); 829 830 /* @@@ Need to check for errors here at some point. */ 831 832 start_lock = jiffies; 833 lock_buffer(bh); 834 jbd_lock_bh_state(bh); 835 836 /* If it takes too long to lock the buffer, trace it */ 837 time_lock = jbd2_time_diff(start_lock, jiffies); 838 if (time_lock > HZ/10) 839 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 840 jiffies_to_msecs(time_lock)); 841 842 /* We now hold the buffer lock so it is safe to query the buffer 843 * state. Is the buffer dirty? 844 * 845 * If so, there are two possibilities. The buffer may be 846 * non-journaled, and undergoing a quite legitimate writeback. 847 * Otherwise, it is journaled, and we don't expect dirty buffers 848 * in that state (the buffers should be marked JBD_Dirty 849 * instead.) So either the IO is being done under our own 850 * control and this is a bug, or it's a third party IO such as 851 * dump(8) (which may leave the buffer scheduled for read --- 852 * ie. locked but not dirty) or tune2fs (which may actually have 853 * the buffer dirtied, ugh.) */ 854 855 if (buffer_dirty(bh)) { 856 /* 857 * First question: is this buffer already part of the current 858 * transaction or the existing committing transaction? 859 */ 860 if (jh->b_transaction) { 861 J_ASSERT_JH(jh, 862 jh->b_transaction == transaction || 863 jh->b_transaction == 864 journal->j_committing_transaction); 865 if (jh->b_next_transaction) 866 J_ASSERT_JH(jh, jh->b_next_transaction == 867 transaction); 868 warn_dirty_buffer(bh); 869 } 870 /* 871 * In any case we need to clean the dirty flag and we must 872 * do it under the buffer lock to be sure we don't race 873 * with running write-out. 874 */ 875 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 876 clear_buffer_dirty(bh); 877 set_buffer_jbddirty(bh); 878 } 879 880 unlock_buffer(bh); 881 882 error = -EROFS; 883 if (is_handle_aborted(handle)) { 884 jbd_unlock_bh_state(bh); 885 goto out; 886 } 887 error = 0; 888 889 /* 890 * The buffer is already part of this transaction if b_transaction or 891 * b_next_transaction points to it 892 */ 893 if (jh->b_transaction == transaction || 894 jh->b_next_transaction == transaction) 895 goto done; 896 897 /* 898 * this is the first time this transaction is touching this buffer, 899 * reset the modified flag 900 */ 901 jh->b_modified = 0; 902 903 /* 904 * If the buffer is not journaled right now, we need to make sure it 905 * doesn't get written to disk before the caller actually commits the 906 * new data 907 */ 908 if (!jh->b_transaction) { 909 JBUFFER_TRACE(jh, "no transaction"); 910 J_ASSERT_JH(jh, !jh->b_next_transaction); 911 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 912 /* 913 * Make sure all stores to jh (b_modified, b_frozen_data) are 914 * visible before attaching it to the running transaction. 915 * Paired with barrier in jbd2_write_access_granted() 916 */ 917 smp_wmb(); 918 spin_lock(&journal->j_list_lock); 919 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 920 spin_unlock(&journal->j_list_lock); 921 goto done; 922 } 923 /* 924 * If there is already a copy-out version of this buffer, then we don't 925 * need to make another one 926 */ 927 if (jh->b_frozen_data) { 928 JBUFFER_TRACE(jh, "has frozen data"); 929 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 930 goto attach_next; 931 } 932 933 JBUFFER_TRACE(jh, "owned by older transaction"); 934 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 935 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 936 937 /* 938 * There is one case we have to be very careful about. If the 939 * committing transaction is currently writing this buffer out to disk 940 * and has NOT made a copy-out, then we cannot modify the buffer 941 * contents at all right now. The essence of copy-out is that it is 942 * the extra copy, not the primary copy, which gets journaled. If the 943 * primary copy is already going to disk then we cannot do copy-out 944 * here. 945 */ 946 if (buffer_shadow(bh)) { 947 JBUFFER_TRACE(jh, "on shadow: sleep"); 948 jbd_unlock_bh_state(bh); 949 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 950 goto repeat; 951 } 952 953 /* 954 * Only do the copy if the currently-owning transaction still needs it. 955 * If buffer isn't on BJ_Metadata list, the committing transaction is 956 * past that stage (here we use the fact that BH_Shadow is set under 957 * bh_state lock together with refiling to BJ_Shadow list and at this 958 * point we know the buffer doesn't have BH_Shadow set). 959 * 960 * Subtle point, though: if this is a get_undo_access, then we will be 961 * relying on the frozen_data to contain the new value of the 962 * committed_data record after the transaction, so we HAVE to force the 963 * frozen_data copy in that case. 964 */ 965 if (jh->b_jlist == BJ_Metadata || force_copy) { 966 JBUFFER_TRACE(jh, "generate frozen data"); 967 if (!frozen_buffer) { 968 JBUFFER_TRACE(jh, "allocate memory for buffer"); 969 jbd_unlock_bh_state(bh); 970 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 971 GFP_NOFS | __GFP_NOFAIL); 972 goto repeat; 973 } 974 jh->b_frozen_data = frozen_buffer; 975 frozen_buffer = NULL; 976 jbd2_freeze_jh_data(jh); 977 } 978 attach_next: 979 /* 980 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 981 * before attaching it to the running transaction. Paired with barrier 982 * in jbd2_write_access_granted() 983 */ 984 smp_wmb(); 985 jh->b_next_transaction = transaction; 986 987 done: 988 jbd_unlock_bh_state(bh); 989 990 /* 991 * If we are about to journal a buffer, then any revoke pending on it is 992 * no longer valid 993 */ 994 jbd2_journal_cancel_revoke(handle, jh); 995 996 out: 997 if (unlikely(frozen_buffer)) /* It's usually NULL */ 998 jbd2_free(frozen_buffer, bh->b_size); 999 1000 JBUFFER_TRACE(jh, "exit"); 1001 return error; 1002 } 1003 1004 /* Fast check whether buffer is already attached to the required transaction */ 1005 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1006 bool undo) 1007 { 1008 struct journal_head *jh; 1009 bool ret = false; 1010 1011 /* Dirty buffers require special handling... */ 1012 if (buffer_dirty(bh)) 1013 return false; 1014 1015 /* 1016 * RCU protects us from dereferencing freed pages. So the checks we do 1017 * are guaranteed not to oops. However the jh slab object can get freed 1018 * & reallocated while we work with it. So we have to be careful. When 1019 * we see jh attached to the running transaction, we know it must stay 1020 * so until the transaction is committed. Thus jh won't be freed and 1021 * will be attached to the same bh while we run. However it can 1022 * happen jh gets freed, reallocated, and attached to the transaction 1023 * just after we get pointer to it from bh. So we have to be careful 1024 * and recheck jh still belongs to our bh before we return success. 1025 */ 1026 rcu_read_lock(); 1027 if (!buffer_jbd(bh)) 1028 goto out; 1029 /* This should be bh2jh() but that doesn't work with inline functions */ 1030 jh = READ_ONCE(bh->b_private); 1031 if (!jh) 1032 goto out; 1033 /* For undo access buffer must have data copied */ 1034 if (undo && !jh->b_committed_data) 1035 goto out; 1036 if (jh->b_transaction != handle->h_transaction && 1037 jh->b_next_transaction != handle->h_transaction) 1038 goto out; 1039 /* 1040 * There are two reasons for the barrier here: 1041 * 1) Make sure to fetch b_bh after we did previous checks so that we 1042 * detect when jh went through free, realloc, attach to transaction 1043 * while we were checking. Paired with implicit barrier in that path. 1044 * 2) So that access to bh done after jbd2_write_access_granted() 1045 * doesn't get reordered and see inconsistent state of concurrent 1046 * do_get_write_access(). 1047 */ 1048 smp_mb(); 1049 if (unlikely(jh->b_bh != bh)) 1050 goto out; 1051 ret = true; 1052 out: 1053 rcu_read_unlock(); 1054 return ret; 1055 } 1056 1057 /** 1058 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1059 * @handle: transaction to add buffer modifications to 1060 * @bh: bh to be used for metadata writes 1061 * 1062 * Returns an error code or 0 on success. 1063 * 1064 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1065 * because we're write()ing a buffer which is also part of a shared mapping. 1066 */ 1067 1068 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1069 { 1070 struct journal_head *jh; 1071 int rc; 1072 1073 if (jbd2_write_access_granted(handle, bh, false)) 1074 return 0; 1075 1076 jh = jbd2_journal_add_journal_head(bh); 1077 /* We do not want to get caught playing with fields which the 1078 * log thread also manipulates. Make sure that the buffer 1079 * completes any outstanding IO before proceeding. */ 1080 rc = do_get_write_access(handle, jh, 0); 1081 jbd2_journal_put_journal_head(jh); 1082 return rc; 1083 } 1084 1085 1086 /* 1087 * When the user wants to journal a newly created buffer_head 1088 * (ie. getblk() returned a new buffer and we are going to populate it 1089 * manually rather than reading off disk), then we need to keep the 1090 * buffer_head locked until it has been completely filled with new 1091 * data. In this case, we should be able to make the assertion that 1092 * the bh is not already part of an existing transaction. 1093 * 1094 * The buffer should already be locked by the caller by this point. 1095 * There is no lock ranking violation: it was a newly created, 1096 * unlocked buffer beforehand. */ 1097 1098 /** 1099 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1100 * @handle: transaction to new buffer to 1101 * @bh: new buffer. 1102 * 1103 * Call this if you create a new bh. 1104 */ 1105 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1106 { 1107 transaction_t *transaction = handle->h_transaction; 1108 journal_t *journal; 1109 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1110 int err; 1111 1112 jbd_debug(5, "journal_head %p\n", jh); 1113 err = -EROFS; 1114 if (is_handle_aborted(handle)) 1115 goto out; 1116 journal = transaction->t_journal; 1117 err = 0; 1118 1119 JBUFFER_TRACE(jh, "entry"); 1120 /* 1121 * The buffer may already belong to this transaction due to pre-zeroing 1122 * in the filesystem's new_block code. It may also be on the previous, 1123 * committing transaction's lists, but it HAS to be in Forget state in 1124 * that case: the transaction must have deleted the buffer for it to be 1125 * reused here. 1126 */ 1127 jbd_lock_bh_state(bh); 1128 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1129 jh->b_transaction == NULL || 1130 (jh->b_transaction == journal->j_committing_transaction && 1131 jh->b_jlist == BJ_Forget))); 1132 1133 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1134 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1135 1136 if (jh->b_transaction == NULL) { 1137 /* 1138 * Previous jbd2_journal_forget() could have left the buffer 1139 * with jbddirty bit set because it was being committed. When 1140 * the commit finished, we've filed the buffer for 1141 * checkpointing and marked it dirty. Now we are reallocating 1142 * the buffer so the transaction freeing it must have 1143 * committed and so it's safe to clear the dirty bit. 1144 */ 1145 clear_buffer_dirty(jh2bh(jh)); 1146 /* first access by this transaction */ 1147 jh->b_modified = 0; 1148 1149 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1150 spin_lock(&journal->j_list_lock); 1151 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1152 spin_unlock(&journal->j_list_lock); 1153 } else if (jh->b_transaction == journal->j_committing_transaction) { 1154 /* first access by this transaction */ 1155 jh->b_modified = 0; 1156 1157 JBUFFER_TRACE(jh, "set next transaction"); 1158 spin_lock(&journal->j_list_lock); 1159 jh->b_next_transaction = transaction; 1160 spin_unlock(&journal->j_list_lock); 1161 } 1162 jbd_unlock_bh_state(bh); 1163 1164 /* 1165 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1166 * blocks which contain freed but then revoked metadata. We need 1167 * to cancel the revoke in case we end up freeing it yet again 1168 * and the reallocating as data - this would cause a second revoke, 1169 * which hits an assertion error. 1170 */ 1171 JBUFFER_TRACE(jh, "cancelling revoke"); 1172 jbd2_journal_cancel_revoke(handle, jh); 1173 out: 1174 jbd2_journal_put_journal_head(jh); 1175 return err; 1176 } 1177 1178 /** 1179 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1180 * non-rewindable consequences 1181 * @handle: transaction 1182 * @bh: buffer to undo 1183 * 1184 * Sometimes there is a need to distinguish between metadata which has 1185 * been committed to disk and that which has not. The ext3fs code uses 1186 * this for freeing and allocating space, we have to make sure that we 1187 * do not reuse freed space until the deallocation has been committed, 1188 * since if we overwrote that space we would make the delete 1189 * un-rewindable in case of a crash. 1190 * 1191 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1192 * buffer for parts of non-rewindable operations such as delete 1193 * operations on the bitmaps. The journaling code must keep a copy of 1194 * the buffer's contents prior to the undo_access call until such time 1195 * as we know that the buffer has definitely been committed to disk. 1196 * 1197 * We never need to know which transaction the committed data is part 1198 * of, buffers touched here are guaranteed to be dirtied later and so 1199 * will be committed to a new transaction in due course, at which point 1200 * we can discard the old committed data pointer. 1201 * 1202 * Returns error number or 0 on success. 1203 */ 1204 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1205 { 1206 int err; 1207 struct journal_head *jh; 1208 char *committed_data = NULL; 1209 1210 JBUFFER_TRACE(jh, "entry"); 1211 if (jbd2_write_access_granted(handle, bh, true)) 1212 return 0; 1213 1214 jh = jbd2_journal_add_journal_head(bh); 1215 /* 1216 * Do this first --- it can drop the journal lock, so we want to 1217 * make sure that obtaining the committed_data is done 1218 * atomically wrt. completion of any outstanding commits. 1219 */ 1220 err = do_get_write_access(handle, jh, 1); 1221 if (err) 1222 goto out; 1223 1224 repeat: 1225 if (!jh->b_committed_data) 1226 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1227 GFP_NOFS|__GFP_NOFAIL); 1228 1229 jbd_lock_bh_state(bh); 1230 if (!jh->b_committed_data) { 1231 /* Copy out the current buffer contents into the 1232 * preserved, committed copy. */ 1233 JBUFFER_TRACE(jh, "generate b_committed data"); 1234 if (!committed_data) { 1235 jbd_unlock_bh_state(bh); 1236 goto repeat; 1237 } 1238 1239 jh->b_committed_data = committed_data; 1240 committed_data = NULL; 1241 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1242 } 1243 jbd_unlock_bh_state(bh); 1244 out: 1245 jbd2_journal_put_journal_head(jh); 1246 if (unlikely(committed_data)) 1247 jbd2_free(committed_data, bh->b_size); 1248 return err; 1249 } 1250 1251 /** 1252 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1253 * @bh: buffer to trigger on 1254 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1255 * 1256 * Set any triggers on this journal_head. This is always safe, because 1257 * triggers for a committing buffer will be saved off, and triggers for 1258 * a running transaction will match the buffer in that transaction. 1259 * 1260 * Call with NULL to clear the triggers. 1261 */ 1262 void jbd2_journal_set_triggers(struct buffer_head *bh, 1263 struct jbd2_buffer_trigger_type *type) 1264 { 1265 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1266 1267 if (WARN_ON(!jh)) 1268 return; 1269 jh->b_triggers = type; 1270 jbd2_journal_put_journal_head(jh); 1271 } 1272 1273 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1274 struct jbd2_buffer_trigger_type *triggers) 1275 { 1276 struct buffer_head *bh = jh2bh(jh); 1277 1278 if (!triggers || !triggers->t_frozen) 1279 return; 1280 1281 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1282 } 1283 1284 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1285 struct jbd2_buffer_trigger_type *triggers) 1286 { 1287 if (!triggers || !triggers->t_abort) 1288 return; 1289 1290 triggers->t_abort(triggers, jh2bh(jh)); 1291 } 1292 1293 /** 1294 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1295 * @handle: transaction to add buffer to. 1296 * @bh: buffer to mark 1297 * 1298 * mark dirty metadata which needs to be journaled as part of the current 1299 * transaction. 1300 * 1301 * The buffer must have previously had jbd2_journal_get_write_access() 1302 * called so that it has a valid journal_head attached to the buffer 1303 * head. 1304 * 1305 * The buffer is placed on the transaction's metadata list and is marked 1306 * as belonging to the transaction. 1307 * 1308 * Returns error number or 0 on success. 1309 * 1310 * Special care needs to be taken if the buffer already belongs to the 1311 * current committing transaction (in which case we should have frozen 1312 * data present for that commit). In that case, we don't relink the 1313 * buffer: that only gets done when the old transaction finally 1314 * completes its commit. 1315 */ 1316 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1317 { 1318 transaction_t *transaction = handle->h_transaction; 1319 journal_t *journal; 1320 struct journal_head *jh; 1321 int ret = 0; 1322 1323 if (is_handle_aborted(handle)) 1324 return -EROFS; 1325 if (!buffer_jbd(bh)) { 1326 ret = -EUCLEAN; 1327 goto out; 1328 } 1329 /* 1330 * We don't grab jh reference here since the buffer must be part 1331 * of the running transaction. 1332 */ 1333 jh = bh2jh(bh); 1334 /* 1335 * This and the following assertions are unreliable since we may see jh 1336 * in inconsistent state unless we grab bh_state lock. But this is 1337 * crucial to catch bugs so let's do a reliable check until the 1338 * lockless handling is fully proven. 1339 */ 1340 if (jh->b_transaction != transaction && 1341 jh->b_next_transaction != transaction) { 1342 jbd_lock_bh_state(bh); 1343 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1344 jh->b_next_transaction == transaction); 1345 jbd_unlock_bh_state(bh); 1346 } 1347 if (jh->b_modified == 1) { 1348 /* If it's in our transaction it must be in BJ_Metadata list. */ 1349 if (jh->b_transaction == transaction && 1350 jh->b_jlist != BJ_Metadata) { 1351 jbd_lock_bh_state(bh); 1352 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1353 jh->b_jlist == BJ_Metadata); 1354 jbd_unlock_bh_state(bh); 1355 } 1356 goto out; 1357 } 1358 1359 journal = transaction->t_journal; 1360 jbd_debug(5, "journal_head %p\n", jh); 1361 JBUFFER_TRACE(jh, "entry"); 1362 1363 jbd_lock_bh_state(bh); 1364 1365 if (jh->b_modified == 0) { 1366 /* 1367 * This buffer's got modified and becoming part 1368 * of the transaction. This needs to be done 1369 * once a transaction -bzzz 1370 */ 1371 jh->b_modified = 1; 1372 if (handle->h_buffer_credits <= 0) { 1373 ret = -ENOSPC; 1374 goto out_unlock_bh; 1375 } 1376 handle->h_buffer_credits--; 1377 } 1378 1379 /* 1380 * fastpath, to avoid expensive locking. If this buffer is already 1381 * on the running transaction's metadata list there is nothing to do. 1382 * Nobody can take it off again because there is a handle open. 1383 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1384 * result in this test being false, so we go in and take the locks. 1385 */ 1386 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1387 JBUFFER_TRACE(jh, "fastpath"); 1388 if (unlikely(jh->b_transaction != 1389 journal->j_running_transaction)) { 1390 printk(KERN_ERR "JBD2: %s: " 1391 "jh->b_transaction (%llu, %p, %u) != " 1392 "journal->j_running_transaction (%p, %u)\n", 1393 journal->j_devname, 1394 (unsigned long long) bh->b_blocknr, 1395 jh->b_transaction, 1396 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1397 journal->j_running_transaction, 1398 journal->j_running_transaction ? 1399 journal->j_running_transaction->t_tid : 0); 1400 ret = -EINVAL; 1401 } 1402 goto out_unlock_bh; 1403 } 1404 1405 set_buffer_jbddirty(bh); 1406 1407 /* 1408 * Metadata already on the current transaction list doesn't 1409 * need to be filed. Metadata on another transaction's list must 1410 * be committing, and will be refiled once the commit completes: 1411 * leave it alone for now. 1412 */ 1413 if (jh->b_transaction != transaction) { 1414 JBUFFER_TRACE(jh, "already on other transaction"); 1415 if (unlikely(((jh->b_transaction != 1416 journal->j_committing_transaction)) || 1417 (jh->b_next_transaction != transaction))) { 1418 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1419 "bad jh for block %llu: " 1420 "transaction (%p, %u), " 1421 "jh->b_transaction (%p, %u), " 1422 "jh->b_next_transaction (%p, %u), jlist %u\n", 1423 journal->j_devname, 1424 (unsigned long long) bh->b_blocknr, 1425 transaction, transaction->t_tid, 1426 jh->b_transaction, 1427 jh->b_transaction ? 1428 jh->b_transaction->t_tid : 0, 1429 jh->b_next_transaction, 1430 jh->b_next_transaction ? 1431 jh->b_next_transaction->t_tid : 0, 1432 jh->b_jlist); 1433 WARN_ON(1); 1434 ret = -EINVAL; 1435 } 1436 /* And this case is illegal: we can't reuse another 1437 * transaction's data buffer, ever. */ 1438 goto out_unlock_bh; 1439 } 1440 1441 /* That test should have eliminated the following case: */ 1442 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1443 1444 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1445 spin_lock(&journal->j_list_lock); 1446 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1447 spin_unlock(&journal->j_list_lock); 1448 out_unlock_bh: 1449 jbd_unlock_bh_state(bh); 1450 out: 1451 JBUFFER_TRACE(jh, "exit"); 1452 return ret; 1453 } 1454 1455 /** 1456 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1457 * @handle: transaction handle 1458 * @bh: bh to 'forget' 1459 * 1460 * We can only do the bforget if there are no commits pending against the 1461 * buffer. If the buffer is dirty in the current running transaction we 1462 * can safely unlink it. 1463 * 1464 * bh may not be a journalled buffer at all - it may be a non-JBD 1465 * buffer which came off the hashtable. Check for this. 1466 * 1467 * Decrements bh->b_count by one. 1468 * 1469 * Allow this call even if the handle has aborted --- it may be part of 1470 * the caller's cleanup after an abort. 1471 */ 1472 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1473 { 1474 transaction_t *transaction = handle->h_transaction; 1475 journal_t *journal; 1476 struct journal_head *jh; 1477 int drop_reserve = 0; 1478 int err = 0; 1479 int was_modified = 0; 1480 1481 if (is_handle_aborted(handle)) 1482 return -EROFS; 1483 journal = transaction->t_journal; 1484 1485 BUFFER_TRACE(bh, "entry"); 1486 1487 jbd_lock_bh_state(bh); 1488 1489 if (!buffer_jbd(bh)) 1490 goto not_jbd; 1491 jh = bh2jh(bh); 1492 1493 /* Critical error: attempting to delete a bitmap buffer, maybe? 1494 * Don't do any jbd operations, and return an error. */ 1495 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1496 "inconsistent data on disk")) { 1497 err = -EIO; 1498 goto not_jbd; 1499 } 1500 1501 /* keep track of whether or not this transaction modified us */ 1502 was_modified = jh->b_modified; 1503 1504 /* 1505 * The buffer's going from the transaction, we must drop 1506 * all references -bzzz 1507 */ 1508 jh->b_modified = 0; 1509 1510 if (jh->b_transaction == transaction) { 1511 J_ASSERT_JH(jh, !jh->b_frozen_data); 1512 1513 /* If we are forgetting a buffer which is already part 1514 * of this transaction, then we can just drop it from 1515 * the transaction immediately. */ 1516 clear_buffer_dirty(bh); 1517 clear_buffer_jbddirty(bh); 1518 1519 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1520 1521 /* 1522 * we only want to drop a reference if this transaction 1523 * modified the buffer 1524 */ 1525 if (was_modified) 1526 drop_reserve = 1; 1527 1528 /* 1529 * We are no longer going to journal this buffer. 1530 * However, the commit of this transaction is still 1531 * important to the buffer: the delete that we are now 1532 * processing might obsolete an old log entry, so by 1533 * committing, we can satisfy the buffer's checkpoint. 1534 * 1535 * So, if we have a checkpoint on the buffer, we should 1536 * now refile the buffer on our BJ_Forget list so that 1537 * we know to remove the checkpoint after we commit. 1538 */ 1539 1540 spin_lock(&journal->j_list_lock); 1541 if (jh->b_cp_transaction) { 1542 __jbd2_journal_temp_unlink_buffer(jh); 1543 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1544 } else { 1545 __jbd2_journal_unfile_buffer(jh); 1546 if (!buffer_jbd(bh)) { 1547 spin_unlock(&journal->j_list_lock); 1548 jbd_unlock_bh_state(bh); 1549 __bforget(bh); 1550 goto drop; 1551 } 1552 } 1553 spin_unlock(&journal->j_list_lock); 1554 } else if (jh->b_transaction) { 1555 J_ASSERT_JH(jh, (jh->b_transaction == 1556 journal->j_committing_transaction)); 1557 /* However, if the buffer is still owned by a prior 1558 * (committing) transaction, we can't drop it yet... */ 1559 JBUFFER_TRACE(jh, "belongs to older transaction"); 1560 /* ... but we CAN drop it from the new transaction if we 1561 * have also modified it since the original commit. */ 1562 1563 if (jh->b_next_transaction) { 1564 J_ASSERT(jh->b_next_transaction == transaction); 1565 spin_lock(&journal->j_list_lock); 1566 jh->b_next_transaction = NULL; 1567 spin_unlock(&journal->j_list_lock); 1568 1569 /* 1570 * only drop a reference if this transaction modified 1571 * the buffer 1572 */ 1573 if (was_modified) 1574 drop_reserve = 1; 1575 } 1576 } 1577 1578 not_jbd: 1579 jbd_unlock_bh_state(bh); 1580 __brelse(bh); 1581 drop: 1582 if (drop_reserve) { 1583 /* no need to reserve log space for this block -bzzz */ 1584 handle->h_buffer_credits++; 1585 } 1586 return err; 1587 } 1588 1589 /** 1590 * int jbd2_journal_stop() - complete a transaction 1591 * @handle: transaction to complete. 1592 * 1593 * All done for a particular handle. 1594 * 1595 * There is not much action needed here. We just return any remaining 1596 * buffer credits to the transaction and remove the handle. The only 1597 * complication is that we need to start a commit operation if the 1598 * filesystem is marked for synchronous update. 1599 * 1600 * jbd2_journal_stop itself will not usually return an error, but it may 1601 * do so in unusual circumstances. In particular, expect it to 1602 * return -EIO if a jbd2_journal_abort has been executed since the 1603 * transaction began. 1604 */ 1605 int jbd2_journal_stop(handle_t *handle) 1606 { 1607 transaction_t *transaction = handle->h_transaction; 1608 journal_t *journal; 1609 int err = 0, wait_for_commit = 0; 1610 tid_t tid; 1611 pid_t pid; 1612 1613 if (!transaction) { 1614 /* 1615 * Handle is already detached from the transaction so 1616 * there is nothing to do other than decrease a refcount, 1617 * or free the handle if refcount drops to zero 1618 */ 1619 if (--handle->h_ref > 0) { 1620 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1621 handle->h_ref); 1622 return err; 1623 } else { 1624 if (handle->h_rsv_handle) 1625 jbd2_free_handle(handle->h_rsv_handle); 1626 goto free_and_exit; 1627 } 1628 } 1629 journal = transaction->t_journal; 1630 1631 J_ASSERT(journal_current_handle() == handle); 1632 1633 if (is_handle_aborted(handle)) 1634 err = -EIO; 1635 else 1636 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1637 1638 if (--handle->h_ref > 0) { 1639 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1640 handle->h_ref); 1641 return err; 1642 } 1643 1644 jbd_debug(4, "Handle %p going down\n", handle); 1645 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1646 transaction->t_tid, 1647 handle->h_type, handle->h_line_no, 1648 jiffies - handle->h_start_jiffies, 1649 handle->h_sync, handle->h_requested_credits, 1650 (handle->h_requested_credits - 1651 handle->h_buffer_credits)); 1652 1653 /* 1654 * Implement synchronous transaction batching. If the handle 1655 * was synchronous, don't force a commit immediately. Let's 1656 * yield and let another thread piggyback onto this 1657 * transaction. Keep doing that while new threads continue to 1658 * arrive. It doesn't cost much - we're about to run a commit 1659 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1660 * operations by 30x or more... 1661 * 1662 * We try and optimize the sleep time against what the 1663 * underlying disk can do, instead of having a static sleep 1664 * time. This is useful for the case where our storage is so 1665 * fast that it is more optimal to go ahead and force a flush 1666 * and wait for the transaction to be committed than it is to 1667 * wait for an arbitrary amount of time for new writers to 1668 * join the transaction. We achieve this by measuring how 1669 * long it takes to commit a transaction, and compare it with 1670 * how long this transaction has been running, and if run time 1671 * < commit time then we sleep for the delta and commit. This 1672 * greatly helps super fast disks that would see slowdowns as 1673 * more threads started doing fsyncs. 1674 * 1675 * But don't do this if this process was the most recent one 1676 * to perform a synchronous write. We do this to detect the 1677 * case where a single process is doing a stream of sync 1678 * writes. No point in waiting for joiners in that case. 1679 * 1680 * Setting max_batch_time to 0 disables this completely. 1681 */ 1682 pid = current->pid; 1683 if (handle->h_sync && journal->j_last_sync_writer != pid && 1684 journal->j_max_batch_time) { 1685 u64 commit_time, trans_time; 1686 1687 journal->j_last_sync_writer = pid; 1688 1689 read_lock(&journal->j_state_lock); 1690 commit_time = journal->j_average_commit_time; 1691 read_unlock(&journal->j_state_lock); 1692 1693 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1694 transaction->t_start_time)); 1695 1696 commit_time = max_t(u64, commit_time, 1697 1000*journal->j_min_batch_time); 1698 commit_time = min_t(u64, commit_time, 1699 1000*journal->j_max_batch_time); 1700 1701 if (trans_time < commit_time) { 1702 ktime_t expires = ktime_add_ns(ktime_get(), 1703 commit_time); 1704 set_current_state(TASK_UNINTERRUPTIBLE); 1705 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1706 } 1707 } 1708 1709 if (handle->h_sync) 1710 transaction->t_synchronous_commit = 1; 1711 current->journal_info = NULL; 1712 atomic_sub(handle->h_buffer_credits, 1713 &transaction->t_outstanding_credits); 1714 1715 /* 1716 * If the handle is marked SYNC, we need to set another commit 1717 * going! We also want to force a commit if the current 1718 * transaction is occupying too much of the log, or if the 1719 * transaction is too old now. 1720 */ 1721 if (handle->h_sync || 1722 (atomic_read(&transaction->t_outstanding_credits) > 1723 journal->j_max_transaction_buffers) || 1724 time_after_eq(jiffies, transaction->t_expires)) { 1725 /* Do this even for aborted journals: an abort still 1726 * completes the commit thread, it just doesn't write 1727 * anything to disk. */ 1728 1729 jbd_debug(2, "transaction too old, requesting commit for " 1730 "handle %p\n", handle); 1731 /* This is non-blocking */ 1732 jbd2_log_start_commit(journal, transaction->t_tid); 1733 1734 /* 1735 * Special case: JBD2_SYNC synchronous updates require us 1736 * to wait for the commit to complete. 1737 */ 1738 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1739 wait_for_commit = 1; 1740 } 1741 1742 /* 1743 * Once we drop t_updates, if it goes to zero the transaction 1744 * could start committing on us and eventually disappear. So 1745 * once we do this, we must not dereference transaction 1746 * pointer again. 1747 */ 1748 tid = transaction->t_tid; 1749 if (atomic_dec_and_test(&transaction->t_updates)) { 1750 wake_up(&journal->j_wait_updates); 1751 if (journal->j_barrier_count) 1752 wake_up(&journal->j_wait_transaction_locked); 1753 } 1754 1755 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1756 1757 if (wait_for_commit) 1758 err = jbd2_log_wait_commit(journal, tid); 1759 1760 if (handle->h_rsv_handle) 1761 jbd2_journal_free_reserved(handle->h_rsv_handle); 1762 free_and_exit: 1763 jbd2_free_handle(handle); 1764 return err; 1765 } 1766 1767 /* 1768 * 1769 * List management code snippets: various functions for manipulating the 1770 * transaction buffer lists. 1771 * 1772 */ 1773 1774 /* 1775 * Append a buffer to a transaction list, given the transaction's list head 1776 * pointer. 1777 * 1778 * j_list_lock is held. 1779 * 1780 * jbd_lock_bh_state(jh2bh(jh)) is held. 1781 */ 1782 1783 static inline void 1784 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1785 { 1786 if (!*list) { 1787 jh->b_tnext = jh->b_tprev = jh; 1788 *list = jh; 1789 } else { 1790 /* Insert at the tail of the list to preserve order */ 1791 struct journal_head *first = *list, *last = first->b_tprev; 1792 jh->b_tprev = last; 1793 jh->b_tnext = first; 1794 last->b_tnext = first->b_tprev = jh; 1795 } 1796 } 1797 1798 /* 1799 * Remove a buffer from a transaction list, given the transaction's list 1800 * head pointer. 1801 * 1802 * Called with j_list_lock held, and the journal may not be locked. 1803 * 1804 * jbd_lock_bh_state(jh2bh(jh)) is held. 1805 */ 1806 1807 static inline void 1808 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1809 { 1810 if (*list == jh) { 1811 *list = jh->b_tnext; 1812 if (*list == jh) 1813 *list = NULL; 1814 } 1815 jh->b_tprev->b_tnext = jh->b_tnext; 1816 jh->b_tnext->b_tprev = jh->b_tprev; 1817 } 1818 1819 /* 1820 * Remove a buffer from the appropriate transaction list. 1821 * 1822 * Note that this function can *change* the value of 1823 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1824 * t_reserved_list. If the caller is holding onto a copy of one of these 1825 * pointers, it could go bad. Generally the caller needs to re-read the 1826 * pointer from the transaction_t. 1827 * 1828 * Called under j_list_lock. 1829 */ 1830 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1831 { 1832 struct journal_head **list = NULL; 1833 transaction_t *transaction; 1834 struct buffer_head *bh = jh2bh(jh); 1835 1836 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1837 transaction = jh->b_transaction; 1838 if (transaction) 1839 assert_spin_locked(&transaction->t_journal->j_list_lock); 1840 1841 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1842 if (jh->b_jlist != BJ_None) 1843 J_ASSERT_JH(jh, transaction != NULL); 1844 1845 switch (jh->b_jlist) { 1846 case BJ_None: 1847 return; 1848 case BJ_Metadata: 1849 transaction->t_nr_buffers--; 1850 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1851 list = &transaction->t_buffers; 1852 break; 1853 case BJ_Forget: 1854 list = &transaction->t_forget; 1855 break; 1856 case BJ_Shadow: 1857 list = &transaction->t_shadow_list; 1858 break; 1859 case BJ_Reserved: 1860 list = &transaction->t_reserved_list; 1861 break; 1862 } 1863 1864 __blist_del_buffer(list, jh); 1865 jh->b_jlist = BJ_None; 1866 if (transaction && is_journal_aborted(transaction->t_journal)) 1867 clear_buffer_jbddirty(bh); 1868 else if (test_clear_buffer_jbddirty(bh)) 1869 mark_buffer_dirty(bh); /* Expose it to the VM */ 1870 } 1871 1872 /* 1873 * Remove buffer from all transactions. 1874 * 1875 * Called with bh_state lock and j_list_lock 1876 * 1877 * jh and bh may be already freed when this function returns. 1878 */ 1879 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1880 { 1881 __jbd2_journal_temp_unlink_buffer(jh); 1882 jh->b_transaction = NULL; 1883 jbd2_journal_put_journal_head(jh); 1884 } 1885 1886 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1887 { 1888 struct buffer_head *bh = jh2bh(jh); 1889 1890 /* Get reference so that buffer cannot be freed before we unlock it */ 1891 get_bh(bh); 1892 jbd_lock_bh_state(bh); 1893 spin_lock(&journal->j_list_lock); 1894 __jbd2_journal_unfile_buffer(jh); 1895 spin_unlock(&journal->j_list_lock); 1896 jbd_unlock_bh_state(bh); 1897 __brelse(bh); 1898 } 1899 1900 /* 1901 * Called from jbd2_journal_try_to_free_buffers(). 1902 * 1903 * Called under jbd_lock_bh_state(bh) 1904 */ 1905 static void 1906 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1907 { 1908 struct journal_head *jh; 1909 1910 jh = bh2jh(bh); 1911 1912 if (buffer_locked(bh) || buffer_dirty(bh)) 1913 goto out; 1914 1915 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1916 goto out; 1917 1918 spin_lock(&journal->j_list_lock); 1919 if (jh->b_cp_transaction != NULL) { 1920 /* written-back checkpointed metadata buffer */ 1921 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1922 __jbd2_journal_remove_checkpoint(jh); 1923 } 1924 spin_unlock(&journal->j_list_lock); 1925 out: 1926 return; 1927 } 1928 1929 /** 1930 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1931 * @journal: journal for operation 1932 * @page: to try and free 1933 * @gfp_mask: we use the mask to detect how hard should we try to release 1934 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1935 * code to release the buffers. 1936 * 1937 * 1938 * For all the buffers on this page, 1939 * if they are fully written out ordered data, move them onto BUF_CLEAN 1940 * so try_to_free_buffers() can reap them. 1941 * 1942 * This function returns non-zero if we wish try_to_free_buffers() 1943 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1944 * We also do it if the page has locked or dirty buffers and the caller wants 1945 * us to perform sync or async writeout. 1946 * 1947 * This complicates JBD locking somewhat. We aren't protected by the 1948 * BKL here. We wish to remove the buffer from its committing or 1949 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1950 * 1951 * This may *change* the value of transaction_t->t_datalist, so anyone 1952 * who looks at t_datalist needs to lock against this function. 1953 * 1954 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1955 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1956 * will come out of the lock with the buffer dirty, which makes it 1957 * ineligible for release here. 1958 * 1959 * Who else is affected by this? hmm... Really the only contender 1960 * is do_get_write_access() - it could be looking at the buffer while 1961 * journal_try_to_free_buffer() is changing its state. But that 1962 * cannot happen because we never reallocate freed data as metadata 1963 * while the data is part of a transaction. Yes? 1964 * 1965 * Return 0 on failure, 1 on success 1966 */ 1967 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1968 struct page *page, gfp_t gfp_mask) 1969 { 1970 struct buffer_head *head; 1971 struct buffer_head *bh; 1972 int ret = 0; 1973 1974 J_ASSERT(PageLocked(page)); 1975 1976 head = page_buffers(page); 1977 bh = head; 1978 do { 1979 struct journal_head *jh; 1980 1981 /* 1982 * We take our own ref against the journal_head here to avoid 1983 * having to add tons of locking around each instance of 1984 * jbd2_journal_put_journal_head(). 1985 */ 1986 jh = jbd2_journal_grab_journal_head(bh); 1987 if (!jh) 1988 continue; 1989 1990 jbd_lock_bh_state(bh); 1991 __journal_try_to_free_buffer(journal, bh); 1992 jbd2_journal_put_journal_head(jh); 1993 jbd_unlock_bh_state(bh); 1994 if (buffer_jbd(bh)) 1995 goto busy; 1996 } while ((bh = bh->b_this_page) != head); 1997 1998 ret = try_to_free_buffers(page); 1999 2000 busy: 2001 return ret; 2002 } 2003 2004 /* 2005 * This buffer is no longer needed. If it is on an older transaction's 2006 * checkpoint list we need to record it on this transaction's forget list 2007 * to pin this buffer (and hence its checkpointing transaction) down until 2008 * this transaction commits. If the buffer isn't on a checkpoint list, we 2009 * release it. 2010 * Returns non-zero if JBD no longer has an interest in the buffer. 2011 * 2012 * Called under j_list_lock. 2013 * 2014 * Called under jbd_lock_bh_state(bh). 2015 */ 2016 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2017 { 2018 int may_free = 1; 2019 struct buffer_head *bh = jh2bh(jh); 2020 2021 if (jh->b_cp_transaction) { 2022 JBUFFER_TRACE(jh, "on running+cp transaction"); 2023 __jbd2_journal_temp_unlink_buffer(jh); 2024 /* 2025 * We don't want to write the buffer anymore, clear the 2026 * bit so that we don't confuse checks in 2027 * __journal_file_buffer 2028 */ 2029 clear_buffer_dirty(bh); 2030 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2031 may_free = 0; 2032 } else { 2033 JBUFFER_TRACE(jh, "on running transaction"); 2034 __jbd2_journal_unfile_buffer(jh); 2035 } 2036 return may_free; 2037 } 2038 2039 /* 2040 * jbd2_journal_invalidatepage 2041 * 2042 * This code is tricky. It has a number of cases to deal with. 2043 * 2044 * There are two invariants which this code relies on: 2045 * 2046 * i_size must be updated on disk before we start calling invalidatepage on the 2047 * data. 2048 * 2049 * This is done in ext3 by defining an ext3_setattr method which 2050 * updates i_size before truncate gets going. By maintaining this 2051 * invariant, we can be sure that it is safe to throw away any buffers 2052 * attached to the current transaction: once the transaction commits, 2053 * we know that the data will not be needed. 2054 * 2055 * Note however that we can *not* throw away data belonging to the 2056 * previous, committing transaction! 2057 * 2058 * Any disk blocks which *are* part of the previous, committing 2059 * transaction (and which therefore cannot be discarded immediately) are 2060 * not going to be reused in the new running transaction 2061 * 2062 * The bitmap committed_data images guarantee this: any block which is 2063 * allocated in one transaction and removed in the next will be marked 2064 * as in-use in the committed_data bitmap, so cannot be reused until 2065 * the next transaction to delete the block commits. This means that 2066 * leaving committing buffers dirty is quite safe: the disk blocks 2067 * cannot be reallocated to a different file and so buffer aliasing is 2068 * not possible. 2069 * 2070 * 2071 * The above applies mainly to ordered data mode. In writeback mode we 2072 * don't make guarantees about the order in which data hits disk --- in 2073 * particular we don't guarantee that new dirty data is flushed before 2074 * transaction commit --- so it is always safe just to discard data 2075 * immediately in that mode. --sct 2076 */ 2077 2078 /* 2079 * The journal_unmap_buffer helper function returns zero if the buffer 2080 * concerned remains pinned as an anonymous buffer belonging to an older 2081 * transaction. 2082 * 2083 * We're outside-transaction here. Either or both of j_running_transaction 2084 * and j_committing_transaction may be NULL. 2085 */ 2086 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2087 int partial_page) 2088 { 2089 transaction_t *transaction; 2090 struct journal_head *jh; 2091 int may_free = 1; 2092 2093 BUFFER_TRACE(bh, "entry"); 2094 2095 /* 2096 * It is safe to proceed here without the j_list_lock because the 2097 * buffers cannot be stolen by try_to_free_buffers as long as we are 2098 * holding the page lock. --sct 2099 */ 2100 2101 if (!buffer_jbd(bh)) 2102 goto zap_buffer_unlocked; 2103 2104 /* OK, we have data buffer in journaled mode */ 2105 write_lock(&journal->j_state_lock); 2106 jbd_lock_bh_state(bh); 2107 spin_lock(&journal->j_list_lock); 2108 2109 jh = jbd2_journal_grab_journal_head(bh); 2110 if (!jh) 2111 goto zap_buffer_no_jh; 2112 2113 /* 2114 * We cannot remove the buffer from checkpoint lists until the 2115 * transaction adding inode to orphan list (let's call it T) 2116 * is committed. Otherwise if the transaction changing the 2117 * buffer would be cleaned from the journal before T is 2118 * committed, a crash will cause that the correct contents of 2119 * the buffer will be lost. On the other hand we have to 2120 * clear the buffer dirty bit at latest at the moment when the 2121 * transaction marking the buffer as freed in the filesystem 2122 * structures is committed because from that moment on the 2123 * block can be reallocated and used by a different page. 2124 * Since the block hasn't been freed yet but the inode has 2125 * already been added to orphan list, it is safe for us to add 2126 * the buffer to BJ_Forget list of the newest transaction. 2127 * 2128 * Also we have to clear buffer_mapped flag of a truncated buffer 2129 * because the buffer_head may be attached to the page straddling 2130 * i_size (can happen only when blocksize < pagesize) and thus the 2131 * buffer_head can be reused when the file is extended again. So we end 2132 * up keeping around invalidated buffers attached to transactions' 2133 * BJ_Forget list just to stop checkpointing code from cleaning up 2134 * the transaction this buffer was modified in. 2135 */ 2136 transaction = jh->b_transaction; 2137 if (transaction == NULL) { 2138 /* First case: not on any transaction. If it 2139 * has no checkpoint link, then we can zap it: 2140 * it's a writeback-mode buffer so we don't care 2141 * if it hits disk safely. */ 2142 if (!jh->b_cp_transaction) { 2143 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2144 goto zap_buffer; 2145 } 2146 2147 if (!buffer_dirty(bh)) { 2148 /* bdflush has written it. We can drop it now */ 2149 __jbd2_journal_remove_checkpoint(jh); 2150 goto zap_buffer; 2151 } 2152 2153 /* OK, it must be in the journal but still not 2154 * written fully to disk: it's metadata or 2155 * journaled data... */ 2156 2157 if (journal->j_running_transaction) { 2158 /* ... and once the current transaction has 2159 * committed, the buffer won't be needed any 2160 * longer. */ 2161 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2162 may_free = __dispose_buffer(jh, 2163 journal->j_running_transaction); 2164 goto zap_buffer; 2165 } else { 2166 /* There is no currently-running transaction. So the 2167 * orphan record which we wrote for this file must have 2168 * passed into commit. We must attach this buffer to 2169 * the committing transaction, if it exists. */ 2170 if (journal->j_committing_transaction) { 2171 JBUFFER_TRACE(jh, "give to committing trans"); 2172 may_free = __dispose_buffer(jh, 2173 journal->j_committing_transaction); 2174 goto zap_buffer; 2175 } else { 2176 /* The orphan record's transaction has 2177 * committed. We can cleanse this buffer */ 2178 clear_buffer_jbddirty(bh); 2179 __jbd2_journal_remove_checkpoint(jh); 2180 goto zap_buffer; 2181 } 2182 } 2183 } else if (transaction == journal->j_committing_transaction) { 2184 JBUFFER_TRACE(jh, "on committing transaction"); 2185 /* 2186 * The buffer is committing, we simply cannot touch 2187 * it. If the page is straddling i_size we have to wait 2188 * for commit and try again. 2189 */ 2190 if (partial_page) { 2191 jbd2_journal_put_journal_head(jh); 2192 spin_unlock(&journal->j_list_lock); 2193 jbd_unlock_bh_state(bh); 2194 write_unlock(&journal->j_state_lock); 2195 return -EBUSY; 2196 } 2197 /* 2198 * OK, buffer won't be reachable after truncate. We just set 2199 * j_next_transaction to the running transaction (if there is 2200 * one) and mark buffer as freed so that commit code knows it 2201 * should clear dirty bits when it is done with the buffer. 2202 */ 2203 set_buffer_freed(bh); 2204 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2205 jh->b_next_transaction = journal->j_running_transaction; 2206 jbd2_journal_put_journal_head(jh); 2207 spin_unlock(&journal->j_list_lock); 2208 jbd_unlock_bh_state(bh); 2209 write_unlock(&journal->j_state_lock); 2210 return 0; 2211 } else { 2212 /* Good, the buffer belongs to the running transaction. 2213 * We are writing our own transaction's data, not any 2214 * previous one's, so it is safe to throw it away 2215 * (remember that we expect the filesystem to have set 2216 * i_size already for this truncate so recovery will not 2217 * expose the disk blocks we are discarding here.) */ 2218 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2219 JBUFFER_TRACE(jh, "on running transaction"); 2220 may_free = __dispose_buffer(jh, transaction); 2221 } 2222 2223 zap_buffer: 2224 /* 2225 * This is tricky. Although the buffer is truncated, it may be reused 2226 * if blocksize < pagesize and it is attached to the page straddling 2227 * EOF. Since the buffer might have been added to BJ_Forget list of the 2228 * running transaction, journal_get_write_access() won't clear 2229 * b_modified and credit accounting gets confused. So clear b_modified 2230 * here. 2231 */ 2232 jh->b_modified = 0; 2233 jbd2_journal_put_journal_head(jh); 2234 zap_buffer_no_jh: 2235 spin_unlock(&journal->j_list_lock); 2236 jbd_unlock_bh_state(bh); 2237 write_unlock(&journal->j_state_lock); 2238 zap_buffer_unlocked: 2239 clear_buffer_dirty(bh); 2240 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2241 clear_buffer_mapped(bh); 2242 clear_buffer_req(bh); 2243 clear_buffer_new(bh); 2244 clear_buffer_delay(bh); 2245 clear_buffer_unwritten(bh); 2246 bh->b_bdev = NULL; 2247 return may_free; 2248 } 2249 2250 /** 2251 * void jbd2_journal_invalidatepage() 2252 * @journal: journal to use for flush... 2253 * @page: page to flush 2254 * @offset: start of the range to invalidate 2255 * @length: length of the range to invalidate 2256 * 2257 * Reap page buffers containing data after in the specified range in page. 2258 * Can return -EBUSY if buffers are part of the committing transaction and 2259 * the page is straddling i_size. Caller then has to wait for current commit 2260 * and try again. 2261 */ 2262 int jbd2_journal_invalidatepage(journal_t *journal, 2263 struct page *page, 2264 unsigned int offset, 2265 unsigned int length) 2266 { 2267 struct buffer_head *head, *bh, *next; 2268 unsigned int stop = offset + length; 2269 unsigned int curr_off = 0; 2270 int partial_page = (offset || length < PAGE_SIZE); 2271 int may_free = 1; 2272 int ret = 0; 2273 2274 if (!PageLocked(page)) 2275 BUG(); 2276 if (!page_has_buffers(page)) 2277 return 0; 2278 2279 BUG_ON(stop > PAGE_SIZE || stop < length); 2280 2281 /* We will potentially be playing with lists other than just the 2282 * data lists (especially for journaled data mode), so be 2283 * cautious in our locking. */ 2284 2285 head = bh = page_buffers(page); 2286 do { 2287 unsigned int next_off = curr_off + bh->b_size; 2288 next = bh->b_this_page; 2289 2290 if (next_off > stop) 2291 return 0; 2292 2293 if (offset <= curr_off) { 2294 /* This block is wholly outside the truncation point */ 2295 lock_buffer(bh); 2296 ret = journal_unmap_buffer(journal, bh, partial_page); 2297 unlock_buffer(bh); 2298 if (ret < 0) 2299 return ret; 2300 may_free &= ret; 2301 } 2302 curr_off = next_off; 2303 bh = next; 2304 2305 } while (bh != head); 2306 2307 if (!partial_page) { 2308 if (may_free && try_to_free_buffers(page)) 2309 J_ASSERT(!page_has_buffers(page)); 2310 } 2311 return 0; 2312 } 2313 2314 /* 2315 * File a buffer on the given transaction list. 2316 */ 2317 void __jbd2_journal_file_buffer(struct journal_head *jh, 2318 transaction_t *transaction, int jlist) 2319 { 2320 struct journal_head **list = NULL; 2321 int was_dirty = 0; 2322 struct buffer_head *bh = jh2bh(jh); 2323 2324 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2325 assert_spin_locked(&transaction->t_journal->j_list_lock); 2326 2327 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2328 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2329 jh->b_transaction == NULL); 2330 2331 if (jh->b_transaction && jh->b_jlist == jlist) 2332 return; 2333 2334 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2335 jlist == BJ_Shadow || jlist == BJ_Forget) { 2336 /* 2337 * For metadata buffers, we track dirty bit in buffer_jbddirty 2338 * instead of buffer_dirty. We should not see a dirty bit set 2339 * here because we clear it in do_get_write_access but e.g. 2340 * tune2fs can modify the sb and set the dirty bit at any time 2341 * so we try to gracefully handle that. 2342 */ 2343 if (buffer_dirty(bh)) 2344 warn_dirty_buffer(bh); 2345 if (test_clear_buffer_dirty(bh) || 2346 test_clear_buffer_jbddirty(bh)) 2347 was_dirty = 1; 2348 } 2349 2350 if (jh->b_transaction) 2351 __jbd2_journal_temp_unlink_buffer(jh); 2352 else 2353 jbd2_journal_grab_journal_head(bh); 2354 jh->b_transaction = transaction; 2355 2356 switch (jlist) { 2357 case BJ_None: 2358 J_ASSERT_JH(jh, !jh->b_committed_data); 2359 J_ASSERT_JH(jh, !jh->b_frozen_data); 2360 return; 2361 case BJ_Metadata: 2362 transaction->t_nr_buffers++; 2363 list = &transaction->t_buffers; 2364 break; 2365 case BJ_Forget: 2366 list = &transaction->t_forget; 2367 break; 2368 case BJ_Shadow: 2369 list = &transaction->t_shadow_list; 2370 break; 2371 case BJ_Reserved: 2372 list = &transaction->t_reserved_list; 2373 break; 2374 } 2375 2376 __blist_add_buffer(list, jh); 2377 jh->b_jlist = jlist; 2378 2379 if (was_dirty) 2380 set_buffer_jbddirty(bh); 2381 } 2382 2383 void jbd2_journal_file_buffer(struct journal_head *jh, 2384 transaction_t *transaction, int jlist) 2385 { 2386 jbd_lock_bh_state(jh2bh(jh)); 2387 spin_lock(&transaction->t_journal->j_list_lock); 2388 __jbd2_journal_file_buffer(jh, transaction, jlist); 2389 spin_unlock(&transaction->t_journal->j_list_lock); 2390 jbd_unlock_bh_state(jh2bh(jh)); 2391 } 2392 2393 /* 2394 * Remove a buffer from its current buffer list in preparation for 2395 * dropping it from its current transaction entirely. If the buffer has 2396 * already started to be used by a subsequent transaction, refile the 2397 * buffer on that transaction's metadata list. 2398 * 2399 * Called under j_list_lock 2400 * Called under jbd_lock_bh_state(jh2bh(jh)) 2401 * 2402 * jh and bh may be already free when this function returns 2403 */ 2404 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2405 { 2406 int was_dirty, jlist; 2407 struct buffer_head *bh = jh2bh(jh); 2408 2409 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2410 if (jh->b_transaction) 2411 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2412 2413 /* If the buffer is now unused, just drop it. */ 2414 if (jh->b_next_transaction == NULL) { 2415 __jbd2_journal_unfile_buffer(jh); 2416 return; 2417 } 2418 2419 /* 2420 * It has been modified by a later transaction: add it to the new 2421 * transaction's metadata list. 2422 */ 2423 2424 was_dirty = test_clear_buffer_jbddirty(bh); 2425 __jbd2_journal_temp_unlink_buffer(jh); 2426 /* 2427 * We set b_transaction here because b_next_transaction will inherit 2428 * our jh reference and thus __jbd2_journal_file_buffer() must not 2429 * take a new one. 2430 */ 2431 jh->b_transaction = jh->b_next_transaction; 2432 jh->b_next_transaction = NULL; 2433 if (buffer_freed(bh)) 2434 jlist = BJ_Forget; 2435 else if (jh->b_modified) 2436 jlist = BJ_Metadata; 2437 else 2438 jlist = BJ_Reserved; 2439 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2440 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2441 2442 if (was_dirty) 2443 set_buffer_jbddirty(bh); 2444 } 2445 2446 /* 2447 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2448 * bh reference so that we can safely unlock bh. 2449 * 2450 * The jh and bh may be freed by this call. 2451 */ 2452 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2453 { 2454 struct buffer_head *bh = jh2bh(jh); 2455 2456 /* Get reference so that buffer cannot be freed before we unlock it */ 2457 get_bh(bh); 2458 jbd_lock_bh_state(bh); 2459 spin_lock(&journal->j_list_lock); 2460 __jbd2_journal_refile_buffer(jh); 2461 jbd_unlock_bh_state(bh); 2462 spin_unlock(&journal->j_list_lock); 2463 __brelse(bh); 2464 } 2465 2466 /* 2467 * File inode in the inode list of the handle's transaction 2468 */ 2469 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2470 unsigned long flags) 2471 { 2472 transaction_t *transaction = handle->h_transaction; 2473 journal_t *journal; 2474 2475 if (is_handle_aborted(handle)) 2476 return -EROFS; 2477 journal = transaction->t_journal; 2478 2479 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2480 transaction->t_tid); 2481 2482 /* 2483 * First check whether inode isn't already on the transaction's 2484 * lists without taking the lock. Note that this check is safe 2485 * without the lock as we cannot race with somebody removing inode 2486 * from the transaction. The reason is that we remove inode from the 2487 * transaction only in journal_release_jbd_inode() and when we commit 2488 * the transaction. We are guarded from the first case by holding 2489 * a reference to the inode. We are safe against the second case 2490 * because if jinode->i_transaction == transaction, commit code 2491 * cannot touch the transaction because we hold reference to it, 2492 * and if jinode->i_next_transaction == transaction, commit code 2493 * will only file the inode where we want it. 2494 */ 2495 if ((jinode->i_transaction == transaction || 2496 jinode->i_next_transaction == transaction) && 2497 (jinode->i_flags & flags) == flags) 2498 return 0; 2499 2500 spin_lock(&journal->j_list_lock); 2501 jinode->i_flags |= flags; 2502 /* Is inode already attached where we need it? */ 2503 if (jinode->i_transaction == transaction || 2504 jinode->i_next_transaction == transaction) 2505 goto done; 2506 2507 /* 2508 * We only ever set this variable to 1 so the test is safe. Since 2509 * t_need_data_flush is likely to be set, we do the test to save some 2510 * cacheline bouncing 2511 */ 2512 if (!transaction->t_need_data_flush) 2513 transaction->t_need_data_flush = 1; 2514 /* On some different transaction's list - should be 2515 * the committing one */ 2516 if (jinode->i_transaction) { 2517 J_ASSERT(jinode->i_next_transaction == NULL); 2518 J_ASSERT(jinode->i_transaction == 2519 journal->j_committing_transaction); 2520 jinode->i_next_transaction = transaction; 2521 goto done; 2522 } 2523 /* Not on any transaction list... */ 2524 J_ASSERT(!jinode->i_next_transaction); 2525 jinode->i_transaction = transaction; 2526 list_add(&jinode->i_list, &transaction->t_inode_list); 2527 done: 2528 spin_unlock(&journal->j_list_lock); 2529 2530 return 0; 2531 } 2532 2533 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2534 { 2535 return jbd2_journal_file_inode(handle, jinode, 2536 JI_WRITE_DATA | JI_WAIT_DATA); 2537 } 2538 2539 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2540 { 2541 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2542 } 2543 2544 /* 2545 * File truncate and transaction commit interact with each other in a 2546 * non-trivial way. If a transaction writing data block A is 2547 * committing, we cannot discard the data by truncate until we have 2548 * written them. Otherwise if we crashed after the transaction with 2549 * write has committed but before the transaction with truncate has 2550 * committed, we could see stale data in block A. This function is a 2551 * helper to solve this problem. It starts writeout of the truncated 2552 * part in case it is in the committing transaction. 2553 * 2554 * Filesystem code must call this function when inode is journaled in 2555 * ordered mode before truncation happens and after the inode has been 2556 * placed on orphan list with the new inode size. The second condition 2557 * avoids the race that someone writes new data and we start 2558 * committing the transaction after this function has been called but 2559 * before a transaction for truncate is started (and furthermore it 2560 * allows us to optimize the case where the addition to orphan list 2561 * happens in the same transaction as write --- we don't have to write 2562 * any data in such case). 2563 */ 2564 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2565 struct jbd2_inode *jinode, 2566 loff_t new_size) 2567 { 2568 transaction_t *inode_trans, *commit_trans; 2569 int ret = 0; 2570 2571 /* This is a quick check to avoid locking if not necessary */ 2572 if (!jinode->i_transaction) 2573 goto out; 2574 /* Locks are here just to force reading of recent values, it is 2575 * enough that the transaction was not committing before we started 2576 * a transaction adding the inode to orphan list */ 2577 read_lock(&journal->j_state_lock); 2578 commit_trans = journal->j_committing_transaction; 2579 read_unlock(&journal->j_state_lock); 2580 spin_lock(&journal->j_list_lock); 2581 inode_trans = jinode->i_transaction; 2582 spin_unlock(&journal->j_list_lock); 2583 if (inode_trans == commit_trans) { 2584 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2585 new_size, LLONG_MAX); 2586 if (ret) 2587 jbd2_journal_abort(journal, ret); 2588 } 2589 out: 2590 return ret; 2591 } 2592