xref: /openbmc/linux/fs/jbd2/transaction.c (revision 4da722ca)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33 
34 #include <trace/events/jbd2.h>
35 
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38 
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42 	J_ASSERT(!transaction_cache);
43 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
44 					sizeof(transaction_t),
45 					0,
46 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47 					NULL);
48 	if (transaction_cache)
49 		return 0;
50 	return -ENOMEM;
51 }
52 
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55 	if (transaction_cache) {
56 		kmem_cache_destroy(transaction_cache);
57 		transaction_cache = NULL;
58 	}
59 }
60 
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64 		return;
65 	kmem_cache_free(transaction_cache, transaction);
66 }
67 
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *	The journal MUST be locked.  We don't perform atomic mallocs on the
78  *	new transaction	and we can't block without protecting against other
79  *	processes trying to touch the journal while it is in transition.
80  *
81  */
82 
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86 	transaction->t_journal = journal;
87 	transaction->t_state = T_RUNNING;
88 	transaction->t_start_time = ktime_get();
89 	transaction->t_tid = journal->j_transaction_sequence++;
90 	transaction->t_expires = jiffies + journal->j_commit_interval;
91 	spin_lock_init(&transaction->t_handle_lock);
92 	atomic_set(&transaction->t_updates, 0);
93 	atomic_set(&transaction->t_outstanding_credits,
94 		   atomic_read(&journal->j_reserved_credits));
95 	atomic_set(&transaction->t_handle_count, 0);
96 	INIT_LIST_HEAD(&transaction->t_inode_list);
97 	INIT_LIST_HEAD(&transaction->t_private_list);
98 
99 	/* Set up the commit timer for the new transaction. */
100 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101 	add_timer(&journal->j_commit_timer);
102 
103 	J_ASSERT(journal->j_running_transaction == NULL);
104 	journal->j_running_transaction = transaction;
105 	transaction->t_max_wait = 0;
106 	transaction->t_start = jiffies;
107 	transaction->t_requested = 0;
108 
109 	return transaction;
110 }
111 
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119 
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131 				     unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134 	if (jbd2_journal_enable_debug &&
135 	    time_after(transaction->t_start, ts)) {
136 		ts = jbd2_time_diff(ts, transaction->t_start);
137 		spin_lock(&transaction->t_handle_lock);
138 		if (ts > transaction->t_max_wait)
139 			transaction->t_max_wait = ts;
140 		spin_unlock(&transaction->t_handle_lock);
141 	}
142 #endif
143 }
144 
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151 	__releases(journal->j_state_lock)
152 {
153 	DEFINE_WAIT(wait);
154 	int need_to_start;
155 	tid_t tid = journal->j_running_transaction->t_tid;
156 
157 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158 			TASK_UNINTERRUPTIBLE);
159 	need_to_start = !tid_geq(journal->j_commit_request, tid);
160 	read_unlock(&journal->j_state_lock);
161 	if (need_to_start)
162 		jbd2_log_start_commit(journal, tid);
163 	jbd2_might_wait_for_commit(journal);
164 	schedule();
165 	finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167 
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170 	atomic_sub(blocks, &journal->j_reserved_credits);
171 	wake_up(&journal->j_wait_reserved);
172 }
173 
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181 				   int rsv_blocks)
182 {
183 	transaction_t *t = journal->j_running_transaction;
184 	int needed;
185 	int total = blocks + rsv_blocks;
186 
187 	/*
188 	 * If the current transaction is locked down for commit, wait
189 	 * for the lock to be released.
190 	 */
191 	if (t->t_state == T_LOCKED) {
192 		wait_transaction_locked(journal);
193 		return 1;
194 	}
195 
196 	/*
197 	 * If there is not enough space left in the log to write all
198 	 * potential buffers requested by this operation, we need to
199 	 * stall pending a log checkpoint to free some more log space.
200 	 */
201 	needed = atomic_add_return(total, &t->t_outstanding_credits);
202 	if (needed > journal->j_max_transaction_buffers) {
203 		/*
204 		 * If the current transaction is already too large,
205 		 * then start to commit it: we can then go back and
206 		 * attach this handle to a new transaction.
207 		 */
208 		atomic_sub(total, &t->t_outstanding_credits);
209 
210 		/*
211 		 * Is the number of reserved credits in the current transaction too
212 		 * big to fit this handle? Wait until reserved credits are freed.
213 		 */
214 		if (atomic_read(&journal->j_reserved_credits) + total >
215 		    journal->j_max_transaction_buffers) {
216 			read_unlock(&journal->j_state_lock);
217 			jbd2_might_wait_for_commit(journal);
218 			wait_event(journal->j_wait_reserved,
219 				   atomic_read(&journal->j_reserved_credits) + total <=
220 				   journal->j_max_transaction_buffers);
221 			return 1;
222 		}
223 
224 		wait_transaction_locked(journal);
225 		return 1;
226 	}
227 
228 	/*
229 	 * The commit code assumes that it can get enough log space
230 	 * without forcing a checkpoint.  This is *critical* for
231 	 * correctness: a checkpoint of a buffer which is also
232 	 * associated with a committing transaction creates a deadlock,
233 	 * so commit simply cannot force through checkpoints.
234 	 *
235 	 * We must therefore ensure the necessary space in the journal
236 	 * *before* starting to dirty potentially checkpointed buffers
237 	 * in the new transaction.
238 	 */
239 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240 		atomic_sub(total, &t->t_outstanding_credits);
241 		read_unlock(&journal->j_state_lock);
242 		jbd2_might_wait_for_commit(journal);
243 		write_lock(&journal->j_state_lock);
244 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245 			__jbd2_log_wait_for_space(journal);
246 		write_unlock(&journal->j_state_lock);
247 		return 1;
248 	}
249 
250 	/* No reservation? We are done... */
251 	if (!rsv_blocks)
252 		return 0;
253 
254 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255 	/* We allow at most half of a transaction to be reserved */
256 	if (needed > journal->j_max_transaction_buffers / 2) {
257 		sub_reserved_credits(journal, rsv_blocks);
258 		atomic_sub(total, &t->t_outstanding_credits);
259 		read_unlock(&journal->j_state_lock);
260 		jbd2_might_wait_for_commit(journal);
261 		wait_event(journal->j_wait_reserved,
262 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
263 			 <= journal->j_max_transaction_buffers / 2);
264 		return 1;
265 	}
266 	return 0;
267 }
268 
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275 
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277 			     gfp_t gfp_mask)
278 {
279 	transaction_t	*transaction, *new_transaction = NULL;
280 	int		blocks = handle->h_buffer_credits;
281 	int		rsv_blocks = 0;
282 	unsigned long ts = jiffies;
283 
284 	if (handle->h_rsv_handle)
285 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286 
287 	/*
288 	 * Limit the number of reserved credits to 1/2 of maximum transaction
289 	 * size and limit the number of total credits to not exceed maximum
290 	 * transaction size per operation.
291 	 */
292 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294 		printk(KERN_ERR "JBD2: %s wants too many credits "
295 		       "credits:%d rsv_credits:%d max:%d\n",
296 		       current->comm, blocks, rsv_blocks,
297 		       journal->j_max_transaction_buffers);
298 		WARN_ON(1);
299 		return -ENOSPC;
300 	}
301 
302 alloc_transaction:
303 	if (!journal->j_running_transaction) {
304 		/*
305 		 * If __GFP_FS is not present, then we may be being called from
306 		 * inside the fs writeback layer, so we MUST NOT fail.
307 		 */
308 		if ((gfp_mask & __GFP_FS) == 0)
309 			gfp_mask |= __GFP_NOFAIL;
310 		new_transaction = kmem_cache_zalloc(transaction_cache,
311 						    gfp_mask);
312 		if (!new_transaction)
313 			return -ENOMEM;
314 	}
315 
316 	jbd_debug(3, "New handle %p going live.\n", handle);
317 
318 	/*
319 	 * We need to hold j_state_lock until t_updates has been incremented,
320 	 * for proper journal barrier handling
321 	 */
322 repeat:
323 	read_lock(&journal->j_state_lock);
324 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325 	if (is_journal_aborted(journal) ||
326 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327 		read_unlock(&journal->j_state_lock);
328 		jbd2_journal_free_transaction(new_transaction);
329 		return -EROFS;
330 	}
331 
332 	/*
333 	 * Wait on the journal's transaction barrier if necessary. Specifically
334 	 * we allow reserved handles to proceed because otherwise commit could
335 	 * deadlock on page writeback not being able to complete.
336 	 */
337 	if (!handle->h_reserved && journal->j_barrier_count) {
338 		read_unlock(&journal->j_state_lock);
339 		wait_event(journal->j_wait_transaction_locked,
340 				journal->j_barrier_count == 0);
341 		goto repeat;
342 	}
343 
344 	if (!journal->j_running_transaction) {
345 		read_unlock(&journal->j_state_lock);
346 		if (!new_transaction)
347 			goto alloc_transaction;
348 		write_lock(&journal->j_state_lock);
349 		if (!journal->j_running_transaction &&
350 		    (handle->h_reserved || !journal->j_barrier_count)) {
351 			jbd2_get_transaction(journal, new_transaction);
352 			new_transaction = NULL;
353 		}
354 		write_unlock(&journal->j_state_lock);
355 		goto repeat;
356 	}
357 
358 	transaction = journal->j_running_transaction;
359 
360 	if (!handle->h_reserved) {
361 		/* We may have dropped j_state_lock - restart in that case */
362 		if (add_transaction_credits(journal, blocks, rsv_blocks))
363 			goto repeat;
364 	} else {
365 		/*
366 		 * We have handle reserved so we are allowed to join T_LOCKED
367 		 * transaction and we don't have to check for transaction size
368 		 * and journal space.
369 		 */
370 		sub_reserved_credits(journal, blocks);
371 		handle->h_reserved = 0;
372 	}
373 
374 	/* OK, account for the buffers that this operation expects to
375 	 * use and add the handle to the running transaction.
376 	 */
377 	update_t_max_wait(transaction, ts);
378 	handle->h_transaction = transaction;
379 	handle->h_requested_credits = blocks;
380 	handle->h_start_jiffies = jiffies;
381 	atomic_inc(&transaction->t_updates);
382 	atomic_inc(&transaction->t_handle_count);
383 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384 		  handle, blocks,
385 		  atomic_read(&transaction->t_outstanding_credits),
386 		  jbd2_log_space_left(journal));
387 	read_unlock(&journal->j_state_lock);
388 	current->journal_info = handle;
389 
390 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391 	jbd2_journal_free_transaction(new_transaction);
392 	/*
393 	 * Ensure that no allocations done while the transaction is open are
394 	 * going to recurse back to the fs layer.
395 	 */
396 	handle->saved_alloc_context = memalloc_nofs_save();
397 	return 0;
398 }
399 
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404 	if (!handle)
405 		return NULL;
406 	handle->h_buffer_credits = nblocks;
407 	handle->h_ref = 1;
408 
409 	return handle;
410 }
411 
412 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
413 			      gfp_t gfp_mask, unsigned int type,
414 			      unsigned int line_no)
415 {
416 	handle_t *handle = journal_current_handle();
417 	int err;
418 
419 	if (!journal)
420 		return ERR_PTR(-EROFS);
421 
422 	if (handle) {
423 		J_ASSERT(handle->h_transaction->t_journal == journal);
424 		handle->h_ref++;
425 		return handle;
426 	}
427 
428 	handle = new_handle(nblocks);
429 	if (!handle)
430 		return ERR_PTR(-ENOMEM);
431 	if (rsv_blocks) {
432 		handle_t *rsv_handle;
433 
434 		rsv_handle = new_handle(rsv_blocks);
435 		if (!rsv_handle) {
436 			jbd2_free_handle(handle);
437 			return ERR_PTR(-ENOMEM);
438 		}
439 		rsv_handle->h_reserved = 1;
440 		rsv_handle->h_journal = journal;
441 		handle->h_rsv_handle = rsv_handle;
442 	}
443 
444 	err = start_this_handle(journal, handle, gfp_mask);
445 	if (err < 0) {
446 		if (handle->h_rsv_handle)
447 			jbd2_free_handle(handle->h_rsv_handle);
448 		jbd2_free_handle(handle);
449 		return ERR_PTR(err);
450 	}
451 	handle->h_type = type;
452 	handle->h_line_no = line_no;
453 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
454 				handle->h_transaction->t_tid, type,
455 				line_no, nblocks);
456 
457 	return handle;
458 }
459 EXPORT_SYMBOL(jbd2__journal_start);
460 
461 
462 /**
463  * handle_t *jbd2_journal_start() - Obtain a new handle.
464  * @journal: Journal to start transaction on.
465  * @nblocks: number of block buffer we might modify
466  *
467  * We make sure that the transaction can guarantee at least nblocks of
468  * modified buffers in the log.  We block until the log can guarantee
469  * that much space. Additionally, if rsv_blocks > 0, we also create another
470  * handle with rsv_blocks reserved blocks in the journal. This handle is
471  * is stored in h_rsv_handle. It is not attached to any particular transaction
472  * and thus doesn't block transaction commit. If the caller uses this reserved
473  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
474  * on the parent handle will dispose the reserved one. Reserved handle has to
475  * be converted to a normal handle using jbd2_journal_start_reserved() before
476  * it can be used.
477  *
478  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
479  * on failure.
480  */
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486 
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489 	journal_t *journal = handle->h_journal;
490 
491 	WARN_ON(!handle->h_reserved);
492 	sub_reserved_credits(journal, handle->h_buffer_credits);
493 	jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496 
497 /**
498  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
499  * @handle: handle to start
500  *
501  * Start handle that has been previously reserved with jbd2_journal_reserve().
502  * This attaches @handle to the running transaction (or creates one if there's
503  * not transaction running). Unlike jbd2_journal_start() this function cannot
504  * block on journal commit, checkpointing, or similar stuff. It can block on
505  * memory allocation or frozen journal though.
506  *
507  * Return 0 on success, non-zero on error - handle is freed in that case.
508  */
509 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
510 				unsigned int line_no)
511 {
512 	journal_t *journal = handle->h_journal;
513 	int ret = -EIO;
514 
515 	if (WARN_ON(!handle->h_reserved)) {
516 		/* Someone passed in normal handle? Just stop it. */
517 		jbd2_journal_stop(handle);
518 		return ret;
519 	}
520 	/*
521 	 * Usefulness of mixing of reserved and unreserved handles is
522 	 * questionable. So far nobody seems to need it so just error out.
523 	 */
524 	if (WARN_ON(current->journal_info)) {
525 		jbd2_journal_free_reserved(handle);
526 		return ret;
527 	}
528 
529 	handle->h_journal = NULL;
530 	/*
531 	 * GFP_NOFS is here because callers are likely from writeback or
532 	 * similarly constrained call sites
533 	 */
534 	ret = start_this_handle(journal, handle, GFP_NOFS);
535 	if (ret < 0) {
536 		jbd2_journal_free_reserved(handle);
537 		return ret;
538 	}
539 	handle->h_type = type;
540 	handle->h_line_no = line_no;
541 	return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544 
545 /**
546  * int jbd2_journal_extend() - extend buffer credits.
547  * @handle:  handle to 'extend'
548  * @nblocks: nr blocks to try to extend by.
549  *
550  * Some transactions, such as large extends and truncates, can be done
551  * atomically all at once or in several stages.  The operation requests
552  * a credit for a number of buffer modifications in advance, but can
553  * extend its credit if it needs more.
554  *
555  * jbd2_journal_extend tries to give the running handle more buffer credits.
556  * It does not guarantee that allocation - this is a best-effort only.
557  * The calling process MUST be able to deal cleanly with a failure to
558  * extend here.
559  *
560  * Return 0 on success, non-zero on failure.
561  *
562  * return code < 0 implies an error
563  * return code > 0 implies normal transaction-full status.
564  */
565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567 	transaction_t *transaction = handle->h_transaction;
568 	journal_t *journal;
569 	int result;
570 	int wanted;
571 
572 	if (is_handle_aborted(handle))
573 		return -EROFS;
574 	journal = transaction->t_journal;
575 
576 	result = 1;
577 
578 	read_lock(&journal->j_state_lock);
579 
580 	/* Don't extend a locked-down transaction! */
581 	if (transaction->t_state != T_RUNNING) {
582 		jbd_debug(3, "denied handle %p %d blocks: "
583 			  "transaction not running\n", handle, nblocks);
584 		goto error_out;
585 	}
586 
587 	spin_lock(&transaction->t_handle_lock);
588 	wanted = atomic_add_return(nblocks,
589 				   &transaction->t_outstanding_credits);
590 
591 	if (wanted > journal->j_max_transaction_buffers) {
592 		jbd_debug(3, "denied handle %p %d blocks: "
593 			  "transaction too large\n", handle, nblocks);
594 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
595 		goto unlock;
596 	}
597 
598 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599 	    jbd2_log_space_left(journal)) {
600 		jbd_debug(3, "denied handle %p %d blocks: "
601 			  "insufficient log space\n", handle, nblocks);
602 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
603 		goto unlock;
604 	}
605 
606 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607 				 transaction->t_tid,
608 				 handle->h_type, handle->h_line_no,
609 				 handle->h_buffer_credits,
610 				 nblocks);
611 
612 	handle->h_buffer_credits += nblocks;
613 	handle->h_requested_credits += nblocks;
614 	result = 0;
615 
616 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618 	spin_unlock(&transaction->t_handle_lock);
619 error_out:
620 	read_unlock(&journal->j_state_lock);
621 	return result;
622 }
623 
624 
625 /**
626  * int jbd2_journal_restart() - restart a handle .
627  * @handle:  handle to restart
628  * @nblocks: nr credits requested
629  *
630  * Restart a handle for a multi-transaction filesystem
631  * operation.
632  *
633  * If the jbd2_journal_extend() call above fails to grant new buffer credits
634  * to a running handle, a call to jbd2_journal_restart will commit the
635  * handle's transaction so far and reattach the handle to a new
636  * transaction capable of guaranteeing the requested number of
637  * credits. We preserve reserved handle if there's any attached to the
638  * passed in handle.
639  */
640 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
641 {
642 	transaction_t *transaction = handle->h_transaction;
643 	journal_t *journal;
644 	tid_t		tid;
645 	int		need_to_start, ret;
646 
647 	/* If we've had an abort of any type, don't even think about
648 	 * actually doing the restart! */
649 	if (is_handle_aborted(handle))
650 		return 0;
651 	journal = transaction->t_journal;
652 
653 	/*
654 	 * First unlink the handle from its current transaction, and start the
655 	 * commit on that.
656 	 */
657 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
658 	J_ASSERT(journal_current_handle() == handle);
659 
660 	read_lock(&journal->j_state_lock);
661 	spin_lock(&transaction->t_handle_lock);
662 	atomic_sub(handle->h_buffer_credits,
663 		   &transaction->t_outstanding_credits);
664 	if (handle->h_rsv_handle) {
665 		sub_reserved_credits(journal,
666 				     handle->h_rsv_handle->h_buffer_credits);
667 	}
668 	if (atomic_dec_and_test(&transaction->t_updates))
669 		wake_up(&journal->j_wait_updates);
670 	tid = transaction->t_tid;
671 	spin_unlock(&transaction->t_handle_lock);
672 	handle->h_transaction = NULL;
673 	current->journal_info = NULL;
674 
675 	jbd_debug(2, "restarting handle %p\n", handle);
676 	need_to_start = !tid_geq(journal->j_commit_request, tid);
677 	read_unlock(&journal->j_state_lock);
678 	if (need_to_start)
679 		jbd2_log_start_commit(journal, tid);
680 
681 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
682 	handle->h_buffer_credits = nblocks;
683 	/*
684 	 * Restore the original nofs context because the journal restart
685 	 * is basically the same thing as journal stop and start.
686 	 * start_this_handle will start a new nofs context.
687 	 */
688 	memalloc_nofs_restore(handle->saved_alloc_context);
689 	ret = start_this_handle(journal, handle, gfp_mask);
690 	return ret;
691 }
692 EXPORT_SYMBOL(jbd2__journal_restart);
693 
694 
695 int jbd2_journal_restart(handle_t *handle, int nblocks)
696 {
697 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
698 }
699 EXPORT_SYMBOL(jbd2_journal_restart);
700 
701 /**
702  * void jbd2_journal_lock_updates () - establish a transaction barrier.
703  * @journal:  Journal to establish a barrier on.
704  *
705  * This locks out any further updates from being started, and blocks
706  * until all existing updates have completed, returning only once the
707  * journal is in a quiescent state with no updates running.
708  *
709  * The journal lock should not be held on entry.
710  */
711 void jbd2_journal_lock_updates(journal_t *journal)
712 {
713 	DEFINE_WAIT(wait);
714 
715 	jbd2_might_wait_for_commit(journal);
716 
717 	write_lock(&journal->j_state_lock);
718 	++journal->j_barrier_count;
719 
720 	/* Wait until there are no reserved handles */
721 	if (atomic_read(&journal->j_reserved_credits)) {
722 		write_unlock(&journal->j_state_lock);
723 		wait_event(journal->j_wait_reserved,
724 			   atomic_read(&journal->j_reserved_credits) == 0);
725 		write_lock(&journal->j_state_lock);
726 	}
727 
728 	/* Wait until there are no running updates */
729 	while (1) {
730 		transaction_t *transaction = journal->j_running_transaction;
731 
732 		if (!transaction)
733 			break;
734 
735 		spin_lock(&transaction->t_handle_lock);
736 		prepare_to_wait(&journal->j_wait_updates, &wait,
737 				TASK_UNINTERRUPTIBLE);
738 		if (!atomic_read(&transaction->t_updates)) {
739 			spin_unlock(&transaction->t_handle_lock);
740 			finish_wait(&journal->j_wait_updates, &wait);
741 			break;
742 		}
743 		spin_unlock(&transaction->t_handle_lock);
744 		write_unlock(&journal->j_state_lock);
745 		schedule();
746 		finish_wait(&journal->j_wait_updates, &wait);
747 		write_lock(&journal->j_state_lock);
748 	}
749 	write_unlock(&journal->j_state_lock);
750 
751 	/*
752 	 * We have now established a barrier against other normal updates, but
753 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
754 	 * to make sure that we serialise special journal-locked operations
755 	 * too.
756 	 */
757 	mutex_lock(&journal->j_barrier);
758 }
759 
760 /**
761  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
762  * @journal:  Journal to release the barrier on.
763  *
764  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
765  *
766  * Should be called without the journal lock held.
767  */
768 void jbd2_journal_unlock_updates (journal_t *journal)
769 {
770 	J_ASSERT(journal->j_barrier_count != 0);
771 
772 	mutex_unlock(&journal->j_barrier);
773 	write_lock(&journal->j_state_lock);
774 	--journal->j_barrier_count;
775 	write_unlock(&journal->j_state_lock);
776 	wake_up(&journal->j_wait_transaction_locked);
777 }
778 
779 static void warn_dirty_buffer(struct buffer_head *bh)
780 {
781 	printk(KERN_WARNING
782 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
783 	       "There's a risk of filesystem corruption in case of system "
784 	       "crash.\n",
785 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
786 }
787 
788 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
789 static void jbd2_freeze_jh_data(struct journal_head *jh)
790 {
791 	struct page *page;
792 	int offset;
793 	char *source;
794 	struct buffer_head *bh = jh2bh(jh);
795 
796 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
797 	page = bh->b_page;
798 	offset = offset_in_page(bh->b_data);
799 	source = kmap_atomic(page);
800 	/* Fire data frozen trigger just before we copy the data */
801 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
802 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
803 	kunmap_atomic(source);
804 
805 	/*
806 	 * Now that the frozen data is saved off, we need to store any matching
807 	 * triggers.
808 	 */
809 	jh->b_frozen_triggers = jh->b_triggers;
810 }
811 
812 /*
813  * If the buffer is already part of the current transaction, then there
814  * is nothing we need to do.  If it is already part of a prior
815  * transaction which we are still committing to disk, then we need to
816  * make sure that we do not overwrite the old copy: we do copy-out to
817  * preserve the copy going to disk.  We also account the buffer against
818  * the handle's metadata buffer credits (unless the buffer is already
819  * part of the transaction, that is).
820  *
821  */
822 static int
823 do_get_write_access(handle_t *handle, struct journal_head *jh,
824 			int force_copy)
825 {
826 	struct buffer_head *bh;
827 	transaction_t *transaction = handle->h_transaction;
828 	journal_t *journal;
829 	int error;
830 	char *frozen_buffer = NULL;
831 	unsigned long start_lock, time_lock;
832 
833 	if (is_handle_aborted(handle))
834 		return -EROFS;
835 	journal = transaction->t_journal;
836 
837 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
838 
839 	JBUFFER_TRACE(jh, "entry");
840 repeat:
841 	bh = jh2bh(jh);
842 
843 	/* @@@ Need to check for errors here at some point. */
844 
845  	start_lock = jiffies;
846 	lock_buffer(bh);
847 	jbd_lock_bh_state(bh);
848 
849 	/* If it takes too long to lock the buffer, trace it */
850 	time_lock = jbd2_time_diff(start_lock, jiffies);
851 	if (time_lock > HZ/10)
852 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
853 			jiffies_to_msecs(time_lock));
854 
855 	/* We now hold the buffer lock so it is safe to query the buffer
856 	 * state.  Is the buffer dirty?
857 	 *
858 	 * If so, there are two possibilities.  The buffer may be
859 	 * non-journaled, and undergoing a quite legitimate writeback.
860 	 * Otherwise, it is journaled, and we don't expect dirty buffers
861 	 * in that state (the buffers should be marked JBD_Dirty
862 	 * instead.)  So either the IO is being done under our own
863 	 * control and this is a bug, or it's a third party IO such as
864 	 * dump(8) (which may leave the buffer scheduled for read ---
865 	 * ie. locked but not dirty) or tune2fs (which may actually have
866 	 * the buffer dirtied, ugh.)  */
867 
868 	if (buffer_dirty(bh)) {
869 		/*
870 		 * First question: is this buffer already part of the current
871 		 * transaction or the existing committing transaction?
872 		 */
873 		if (jh->b_transaction) {
874 			J_ASSERT_JH(jh,
875 				jh->b_transaction == transaction ||
876 				jh->b_transaction ==
877 					journal->j_committing_transaction);
878 			if (jh->b_next_transaction)
879 				J_ASSERT_JH(jh, jh->b_next_transaction ==
880 							transaction);
881 			warn_dirty_buffer(bh);
882 		}
883 		/*
884 		 * In any case we need to clean the dirty flag and we must
885 		 * do it under the buffer lock to be sure we don't race
886 		 * with running write-out.
887 		 */
888 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
889 		clear_buffer_dirty(bh);
890 		set_buffer_jbddirty(bh);
891 	}
892 
893 	unlock_buffer(bh);
894 
895 	error = -EROFS;
896 	if (is_handle_aborted(handle)) {
897 		jbd_unlock_bh_state(bh);
898 		goto out;
899 	}
900 	error = 0;
901 
902 	/*
903 	 * The buffer is already part of this transaction if b_transaction or
904 	 * b_next_transaction points to it
905 	 */
906 	if (jh->b_transaction == transaction ||
907 	    jh->b_next_transaction == transaction)
908 		goto done;
909 
910 	/*
911 	 * this is the first time this transaction is touching this buffer,
912 	 * reset the modified flag
913 	 */
914        jh->b_modified = 0;
915 
916 	/*
917 	 * If the buffer is not journaled right now, we need to make sure it
918 	 * doesn't get written to disk before the caller actually commits the
919 	 * new data
920 	 */
921 	if (!jh->b_transaction) {
922 		JBUFFER_TRACE(jh, "no transaction");
923 		J_ASSERT_JH(jh, !jh->b_next_transaction);
924 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
925 		/*
926 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
927 		 * visible before attaching it to the running transaction.
928 		 * Paired with barrier in jbd2_write_access_granted()
929 		 */
930 		smp_wmb();
931 		spin_lock(&journal->j_list_lock);
932 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
933 		spin_unlock(&journal->j_list_lock);
934 		goto done;
935 	}
936 	/*
937 	 * If there is already a copy-out version of this buffer, then we don't
938 	 * need to make another one
939 	 */
940 	if (jh->b_frozen_data) {
941 		JBUFFER_TRACE(jh, "has frozen data");
942 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
943 		goto attach_next;
944 	}
945 
946 	JBUFFER_TRACE(jh, "owned by older transaction");
947 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
948 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
949 
950 	/*
951 	 * There is one case we have to be very careful about.  If the
952 	 * committing transaction is currently writing this buffer out to disk
953 	 * and has NOT made a copy-out, then we cannot modify the buffer
954 	 * contents at all right now.  The essence of copy-out is that it is
955 	 * the extra copy, not the primary copy, which gets journaled.  If the
956 	 * primary copy is already going to disk then we cannot do copy-out
957 	 * here.
958 	 */
959 	if (buffer_shadow(bh)) {
960 		JBUFFER_TRACE(jh, "on shadow: sleep");
961 		jbd_unlock_bh_state(bh);
962 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
963 		goto repeat;
964 	}
965 
966 	/*
967 	 * Only do the copy if the currently-owning transaction still needs it.
968 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
969 	 * past that stage (here we use the fact that BH_Shadow is set under
970 	 * bh_state lock together with refiling to BJ_Shadow list and at this
971 	 * point we know the buffer doesn't have BH_Shadow set).
972 	 *
973 	 * Subtle point, though: if this is a get_undo_access, then we will be
974 	 * relying on the frozen_data to contain the new value of the
975 	 * committed_data record after the transaction, so we HAVE to force the
976 	 * frozen_data copy in that case.
977 	 */
978 	if (jh->b_jlist == BJ_Metadata || force_copy) {
979 		JBUFFER_TRACE(jh, "generate frozen data");
980 		if (!frozen_buffer) {
981 			JBUFFER_TRACE(jh, "allocate memory for buffer");
982 			jbd_unlock_bh_state(bh);
983 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
984 						   GFP_NOFS | __GFP_NOFAIL);
985 			goto repeat;
986 		}
987 		jh->b_frozen_data = frozen_buffer;
988 		frozen_buffer = NULL;
989 		jbd2_freeze_jh_data(jh);
990 	}
991 attach_next:
992 	/*
993 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
994 	 * before attaching it to the running transaction. Paired with barrier
995 	 * in jbd2_write_access_granted()
996 	 */
997 	smp_wmb();
998 	jh->b_next_transaction = transaction;
999 
1000 done:
1001 	jbd_unlock_bh_state(bh);
1002 
1003 	/*
1004 	 * If we are about to journal a buffer, then any revoke pending on it is
1005 	 * no longer valid
1006 	 */
1007 	jbd2_journal_cancel_revoke(handle, jh);
1008 
1009 out:
1010 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1011 		jbd2_free(frozen_buffer, bh->b_size);
1012 
1013 	JBUFFER_TRACE(jh, "exit");
1014 	return error;
1015 }
1016 
1017 /* Fast check whether buffer is already attached to the required transaction */
1018 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1019 							bool undo)
1020 {
1021 	struct journal_head *jh;
1022 	bool ret = false;
1023 
1024 	/* Dirty buffers require special handling... */
1025 	if (buffer_dirty(bh))
1026 		return false;
1027 
1028 	/*
1029 	 * RCU protects us from dereferencing freed pages. So the checks we do
1030 	 * are guaranteed not to oops. However the jh slab object can get freed
1031 	 * & reallocated while we work with it. So we have to be careful. When
1032 	 * we see jh attached to the running transaction, we know it must stay
1033 	 * so until the transaction is committed. Thus jh won't be freed and
1034 	 * will be attached to the same bh while we run.  However it can
1035 	 * happen jh gets freed, reallocated, and attached to the transaction
1036 	 * just after we get pointer to it from bh. So we have to be careful
1037 	 * and recheck jh still belongs to our bh before we return success.
1038 	 */
1039 	rcu_read_lock();
1040 	if (!buffer_jbd(bh))
1041 		goto out;
1042 	/* This should be bh2jh() but that doesn't work with inline functions */
1043 	jh = READ_ONCE(bh->b_private);
1044 	if (!jh)
1045 		goto out;
1046 	/* For undo access buffer must have data copied */
1047 	if (undo && !jh->b_committed_data)
1048 		goto out;
1049 	if (jh->b_transaction != handle->h_transaction &&
1050 	    jh->b_next_transaction != handle->h_transaction)
1051 		goto out;
1052 	/*
1053 	 * There are two reasons for the barrier here:
1054 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1055 	 * detect when jh went through free, realloc, attach to transaction
1056 	 * while we were checking. Paired with implicit barrier in that path.
1057 	 * 2) So that access to bh done after jbd2_write_access_granted()
1058 	 * doesn't get reordered and see inconsistent state of concurrent
1059 	 * do_get_write_access().
1060 	 */
1061 	smp_mb();
1062 	if (unlikely(jh->b_bh != bh))
1063 		goto out;
1064 	ret = true;
1065 out:
1066 	rcu_read_unlock();
1067 	return ret;
1068 }
1069 
1070 /**
1071  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1072  * @handle: transaction to add buffer modifications to
1073  * @bh:     bh to be used for metadata writes
1074  *
1075  * Returns: error code or 0 on success.
1076  *
1077  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1078  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1079  */
1080 
1081 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1082 {
1083 	struct journal_head *jh;
1084 	int rc;
1085 
1086 	if (jbd2_write_access_granted(handle, bh, false))
1087 		return 0;
1088 
1089 	jh = jbd2_journal_add_journal_head(bh);
1090 	/* We do not want to get caught playing with fields which the
1091 	 * log thread also manipulates.  Make sure that the buffer
1092 	 * completes any outstanding IO before proceeding. */
1093 	rc = do_get_write_access(handle, jh, 0);
1094 	jbd2_journal_put_journal_head(jh);
1095 	return rc;
1096 }
1097 
1098 
1099 /*
1100  * When the user wants to journal a newly created buffer_head
1101  * (ie. getblk() returned a new buffer and we are going to populate it
1102  * manually rather than reading off disk), then we need to keep the
1103  * buffer_head locked until it has been completely filled with new
1104  * data.  In this case, we should be able to make the assertion that
1105  * the bh is not already part of an existing transaction.
1106  *
1107  * The buffer should already be locked by the caller by this point.
1108  * There is no lock ranking violation: it was a newly created,
1109  * unlocked buffer beforehand. */
1110 
1111 /**
1112  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1113  * @handle: transaction to new buffer to
1114  * @bh: new buffer.
1115  *
1116  * Call this if you create a new bh.
1117  */
1118 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1119 {
1120 	transaction_t *transaction = handle->h_transaction;
1121 	journal_t *journal;
1122 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1123 	int err;
1124 
1125 	jbd_debug(5, "journal_head %p\n", jh);
1126 	err = -EROFS;
1127 	if (is_handle_aborted(handle))
1128 		goto out;
1129 	journal = transaction->t_journal;
1130 	err = 0;
1131 
1132 	JBUFFER_TRACE(jh, "entry");
1133 	/*
1134 	 * The buffer may already belong to this transaction due to pre-zeroing
1135 	 * in the filesystem's new_block code.  It may also be on the previous,
1136 	 * committing transaction's lists, but it HAS to be in Forget state in
1137 	 * that case: the transaction must have deleted the buffer for it to be
1138 	 * reused here.
1139 	 */
1140 	jbd_lock_bh_state(bh);
1141 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1142 		jh->b_transaction == NULL ||
1143 		(jh->b_transaction == journal->j_committing_transaction &&
1144 			  jh->b_jlist == BJ_Forget)));
1145 
1146 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1147 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1148 
1149 	if (jh->b_transaction == NULL) {
1150 		/*
1151 		 * Previous jbd2_journal_forget() could have left the buffer
1152 		 * with jbddirty bit set because it was being committed. When
1153 		 * the commit finished, we've filed the buffer for
1154 		 * checkpointing and marked it dirty. Now we are reallocating
1155 		 * the buffer so the transaction freeing it must have
1156 		 * committed and so it's safe to clear the dirty bit.
1157 		 */
1158 		clear_buffer_dirty(jh2bh(jh));
1159 		/* first access by this transaction */
1160 		jh->b_modified = 0;
1161 
1162 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1163 		spin_lock(&journal->j_list_lock);
1164 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1165 		spin_unlock(&journal->j_list_lock);
1166 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1167 		/* first access by this transaction */
1168 		jh->b_modified = 0;
1169 
1170 		JBUFFER_TRACE(jh, "set next transaction");
1171 		spin_lock(&journal->j_list_lock);
1172 		jh->b_next_transaction = transaction;
1173 		spin_unlock(&journal->j_list_lock);
1174 	}
1175 	jbd_unlock_bh_state(bh);
1176 
1177 	/*
1178 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1179 	 * blocks which contain freed but then revoked metadata.  We need
1180 	 * to cancel the revoke in case we end up freeing it yet again
1181 	 * and the reallocating as data - this would cause a second revoke,
1182 	 * which hits an assertion error.
1183 	 */
1184 	JBUFFER_TRACE(jh, "cancelling revoke");
1185 	jbd2_journal_cancel_revoke(handle, jh);
1186 out:
1187 	jbd2_journal_put_journal_head(jh);
1188 	return err;
1189 }
1190 
1191 /**
1192  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1193  *     non-rewindable consequences
1194  * @handle: transaction
1195  * @bh: buffer to undo
1196  *
1197  * Sometimes there is a need to distinguish between metadata which has
1198  * been committed to disk and that which has not.  The ext3fs code uses
1199  * this for freeing and allocating space, we have to make sure that we
1200  * do not reuse freed space until the deallocation has been committed,
1201  * since if we overwrote that space we would make the delete
1202  * un-rewindable in case of a crash.
1203  *
1204  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1205  * buffer for parts of non-rewindable operations such as delete
1206  * operations on the bitmaps.  The journaling code must keep a copy of
1207  * the buffer's contents prior to the undo_access call until such time
1208  * as we know that the buffer has definitely been committed to disk.
1209  *
1210  * We never need to know which transaction the committed data is part
1211  * of, buffers touched here are guaranteed to be dirtied later and so
1212  * will be committed to a new transaction in due course, at which point
1213  * we can discard the old committed data pointer.
1214  *
1215  * Returns error number or 0 on success.
1216  */
1217 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1218 {
1219 	int err;
1220 	struct journal_head *jh;
1221 	char *committed_data = NULL;
1222 
1223 	JBUFFER_TRACE(jh, "entry");
1224 	if (jbd2_write_access_granted(handle, bh, true))
1225 		return 0;
1226 
1227 	jh = jbd2_journal_add_journal_head(bh);
1228 	/*
1229 	 * Do this first --- it can drop the journal lock, so we want to
1230 	 * make sure that obtaining the committed_data is done
1231 	 * atomically wrt. completion of any outstanding commits.
1232 	 */
1233 	err = do_get_write_access(handle, jh, 1);
1234 	if (err)
1235 		goto out;
1236 
1237 repeat:
1238 	if (!jh->b_committed_data)
1239 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1240 					    GFP_NOFS|__GFP_NOFAIL);
1241 
1242 	jbd_lock_bh_state(bh);
1243 	if (!jh->b_committed_data) {
1244 		/* Copy out the current buffer contents into the
1245 		 * preserved, committed copy. */
1246 		JBUFFER_TRACE(jh, "generate b_committed data");
1247 		if (!committed_data) {
1248 			jbd_unlock_bh_state(bh);
1249 			goto repeat;
1250 		}
1251 
1252 		jh->b_committed_data = committed_data;
1253 		committed_data = NULL;
1254 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1255 	}
1256 	jbd_unlock_bh_state(bh);
1257 out:
1258 	jbd2_journal_put_journal_head(jh);
1259 	if (unlikely(committed_data))
1260 		jbd2_free(committed_data, bh->b_size);
1261 	return err;
1262 }
1263 
1264 /**
1265  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1266  * @bh: buffer to trigger on
1267  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1268  *
1269  * Set any triggers on this journal_head.  This is always safe, because
1270  * triggers for a committing buffer will be saved off, and triggers for
1271  * a running transaction will match the buffer in that transaction.
1272  *
1273  * Call with NULL to clear the triggers.
1274  */
1275 void jbd2_journal_set_triggers(struct buffer_head *bh,
1276 			       struct jbd2_buffer_trigger_type *type)
1277 {
1278 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1279 
1280 	if (WARN_ON(!jh))
1281 		return;
1282 	jh->b_triggers = type;
1283 	jbd2_journal_put_journal_head(jh);
1284 }
1285 
1286 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1287 				struct jbd2_buffer_trigger_type *triggers)
1288 {
1289 	struct buffer_head *bh = jh2bh(jh);
1290 
1291 	if (!triggers || !triggers->t_frozen)
1292 		return;
1293 
1294 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1295 }
1296 
1297 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1298 			       struct jbd2_buffer_trigger_type *triggers)
1299 {
1300 	if (!triggers || !triggers->t_abort)
1301 		return;
1302 
1303 	triggers->t_abort(triggers, jh2bh(jh));
1304 }
1305 
1306 /**
1307  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1308  * @handle: transaction to add buffer to.
1309  * @bh: buffer to mark
1310  *
1311  * mark dirty metadata which needs to be journaled as part of the current
1312  * transaction.
1313  *
1314  * The buffer must have previously had jbd2_journal_get_write_access()
1315  * called so that it has a valid journal_head attached to the buffer
1316  * head.
1317  *
1318  * The buffer is placed on the transaction's metadata list and is marked
1319  * as belonging to the transaction.
1320  *
1321  * Returns error number or 0 on success.
1322  *
1323  * Special care needs to be taken if the buffer already belongs to the
1324  * current committing transaction (in which case we should have frozen
1325  * data present for that commit).  In that case, we don't relink the
1326  * buffer: that only gets done when the old transaction finally
1327  * completes its commit.
1328  */
1329 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1330 {
1331 	transaction_t *transaction = handle->h_transaction;
1332 	journal_t *journal;
1333 	struct journal_head *jh;
1334 	int ret = 0;
1335 
1336 	if (is_handle_aborted(handle))
1337 		return -EROFS;
1338 	if (!buffer_jbd(bh)) {
1339 		ret = -EUCLEAN;
1340 		goto out;
1341 	}
1342 	/*
1343 	 * We don't grab jh reference here since the buffer must be part
1344 	 * of the running transaction.
1345 	 */
1346 	jh = bh2jh(bh);
1347 	/*
1348 	 * This and the following assertions are unreliable since we may see jh
1349 	 * in inconsistent state unless we grab bh_state lock. But this is
1350 	 * crucial to catch bugs so let's do a reliable check until the
1351 	 * lockless handling is fully proven.
1352 	 */
1353 	if (jh->b_transaction != transaction &&
1354 	    jh->b_next_transaction != transaction) {
1355 		jbd_lock_bh_state(bh);
1356 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1357 				jh->b_next_transaction == transaction);
1358 		jbd_unlock_bh_state(bh);
1359 	}
1360 	if (jh->b_modified == 1) {
1361 		/* If it's in our transaction it must be in BJ_Metadata list. */
1362 		if (jh->b_transaction == transaction &&
1363 		    jh->b_jlist != BJ_Metadata) {
1364 			jbd_lock_bh_state(bh);
1365 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1366 					jh->b_jlist == BJ_Metadata);
1367 			jbd_unlock_bh_state(bh);
1368 		}
1369 		goto out;
1370 	}
1371 
1372 	journal = transaction->t_journal;
1373 	jbd_debug(5, "journal_head %p\n", jh);
1374 	JBUFFER_TRACE(jh, "entry");
1375 
1376 	jbd_lock_bh_state(bh);
1377 
1378 	if (jh->b_modified == 0) {
1379 		/*
1380 		 * This buffer's got modified and becoming part
1381 		 * of the transaction. This needs to be done
1382 		 * once a transaction -bzzz
1383 		 */
1384 		jh->b_modified = 1;
1385 		if (handle->h_buffer_credits <= 0) {
1386 			ret = -ENOSPC;
1387 			goto out_unlock_bh;
1388 		}
1389 		handle->h_buffer_credits--;
1390 	}
1391 
1392 	/*
1393 	 * fastpath, to avoid expensive locking.  If this buffer is already
1394 	 * on the running transaction's metadata list there is nothing to do.
1395 	 * Nobody can take it off again because there is a handle open.
1396 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1397 	 * result in this test being false, so we go in and take the locks.
1398 	 */
1399 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1400 		JBUFFER_TRACE(jh, "fastpath");
1401 		if (unlikely(jh->b_transaction !=
1402 			     journal->j_running_transaction)) {
1403 			printk(KERN_ERR "JBD2: %s: "
1404 			       "jh->b_transaction (%llu, %p, %u) != "
1405 			       "journal->j_running_transaction (%p, %u)\n",
1406 			       journal->j_devname,
1407 			       (unsigned long long) bh->b_blocknr,
1408 			       jh->b_transaction,
1409 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1410 			       journal->j_running_transaction,
1411 			       journal->j_running_transaction ?
1412 			       journal->j_running_transaction->t_tid : 0);
1413 			ret = -EINVAL;
1414 		}
1415 		goto out_unlock_bh;
1416 	}
1417 
1418 	set_buffer_jbddirty(bh);
1419 
1420 	/*
1421 	 * Metadata already on the current transaction list doesn't
1422 	 * need to be filed.  Metadata on another transaction's list must
1423 	 * be committing, and will be refiled once the commit completes:
1424 	 * leave it alone for now.
1425 	 */
1426 	if (jh->b_transaction != transaction) {
1427 		JBUFFER_TRACE(jh, "already on other transaction");
1428 		if (unlikely(((jh->b_transaction !=
1429 			       journal->j_committing_transaction)) ||
1430 			     (jh->b_next_transaction != transaction))) {
1431 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1432 			       "bad jh for block %llu: "
1433 			       "transaction (%p, %u), "
1434 			       "jh->b_transaction (%p, %u), "
1435 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1436 			       journal->j_devname,
1437 			       (unsigned long long) bh->b_blocknr,
1438 			       transaction, transaction->t_tid,
1439 			       jh->b_transaction,
1440 			       jh->b_transaction ?
1441 			       jh->b_transaction->t_tid : 0,
1442 			       jh->b_next_transaction,
1443 			       jh->b_next_transaction ?
1444 			       jh->b_next_transaction->t_tid : 0,
1445 			       jh->b_jlist);
1446 			WARN_ON(1);
1447 			ret = -EINVAL;
1448 		}
1449 		/* And this case is illegal: we can't reuse another
1450 		 * transaction's data buffer, ever. */
1451 		goto out_unlock_bh;
1452 	}
1453 
1454 	/* That test should have eliminated the following case: */
1455 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1456 
1457 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1458 	spin_lock(&journal->j_list_lock);
1459 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1460 	spin_unlock(&journal->j_list_lock);
1461 out_unlock_bh:
1462 	jbd_unlock_bh_state(bh);
1463 out:
1464 	JBUFFER_TRACE(jh, "exit");
1465 	return ret;
1466 }
1467 
1468 /**
1469  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1470  * @handle: transaction handle
1471  * @bh:     bh to 'forget'
1472  *
1473  * We can only do the bforget if there are no commits pending against the
1474  * buffer.  If the buffer is dirty in the current running transaction we
1475  * can safely unlink it.
1476  *
1477  * bh may not be a journalled buffer at all - it may be a non-JBD
1478  * buffer which came off the hashtable.  Check for this.
1479  *
1480  * Decrements bh->b_count by one.
1481  *
1482  * Allow this call even if the handle has aborted --- it may be part of
1483  * the caller's cleanup after an abort.
1484  */
1485 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1486 {
1487 	transaction_t *transaction = handle->h_transaction;
1488 	journal_t *journal;
1489 	struct journal_head *jh;
1490 	int drop_reserve = 0;
1491 	int err = 0;
1492 	int was_modified = 0;
1493 
1494 	if (is_handle_aborted(handle))
1495 		return -EROFS;
1496 	journal = transaction->t_journal;
1497 
1498 	BUFFER_TRACE(bh, "entry");
1499 
1500 	jbd_lock_bh_state(bh);
1501 
1502 	if (!buffer_jbd(bh))
1503 		goto not_jbd;
1504 	jh = bh2jh(bh);
1505 
1506 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1507 	 * Don't do any jbd operations, and return an error. */
1508 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1509 			 "inconsistent data on disk")) {
1510 		err = -EIO;
1511 		goto not_jbd;
1512 	}
1513 
1514 	/* keep track of whether or not this transaction modified us */
1515 	was_modified = jh->b_modified;
1516 
1517 	/*
1518 	 * The buffer's going from the transaction, we must drop
1519 	 * all references -bzzz
1520 	 */
1521 	jh->b_modified = 0;
1522 
1523 	if (jh->b_transaction == transaction) {
1524 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1525 
1526 		/* If we are forgetting a buffer which is already part
1527 		 * of this transaction, then we can just drop it from
1528 		 * the transaction immediately. */
1529 		clear_buffer_dirty(bh);
1530 		clear_buffer_jbddirty(bh);
1531 
1532 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1533 
1534 		/*
1535 		 * we only want to drop a reference if this transaction
1536 		 * modified the buffer
1537 		 */
1538 		if (was_modified)
1539 			drop_reserve = 1;
1540 
1541 		/*
1542 		 * We are no longer going to journal this buffer.
1543 		 * However, the commit of this transaction is still
1544 		 * important to the buffer: the delete that we are now
1545 		 * processing might obsolete an old log entry, so by
1546 		 * committing, we can satisfy the buffer's checkpoint.
1547 		 *
1548 		 * So, if we have a checkpoint on the buffer, we should
1549 		 * now refile the buffer on our BJ_Forget list so that
1550 		 * we know to remove the checkpoint after we commit.
1551 		 */
1552 
1553 		spin_lock(&journal->j_list_lock);
1554 		if (jh->b_cp_transaction) {
1555 			__jbd2_journal_temp_unlink_buffer(jh);
1556 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1557 		} else {
1558 			__jbd2_journal_unfile_buffer(jh);
1559 			if (!buffer_jbd(bh)) {
1560 				spin_unlock(&journal->j_list_lock);
1561 				jbd_unlock_bh_state(bh);
1562 				__bforget(bh);
1563 				goto drop;
1564 			}
1565 		}
1566 		spin_unlock(&journal->j_list_lock);
1567 	} else if (jh->b_transaction) {
1568 		J_ASSERT_JH(jh, (jh->b_transaction ==
1569 				 journal->j_committing_transaction));
1570 		/* However, if the buffer is still owned by a prior
1571 		 * (committing) transaction, we can't drop it yet... */
1572 		JBUFFER_TRACE(jh, "belongs to older transaction");
1573 		/* ... but we CAN drop it from the new transaction if we
1574 		 * have also modified it since the original commit. */
1575 
1576 		if (jh->b_next_transaction) {
1577 			J_ASSERT(jh->b_next_transaction == transaction);
1578 			spin_lock(&journal->j_list_lock);
1579 			jh->b_next_transaction = NULL;
1580 			spin_unlock(&journal->j_list_lock);
1581 
1582 			/*
1583 			 * only drop a reference if this transaction modified
1584 			 * the buffer
1585 			 */
1586 			if (was_modified)
1587 				drop_reserve = 1;
1588 		}
1589 	}
1590 
1591 not_jbd:
1592 	jbd_unlock_bh_state(bh);
1593 	__brelse(bh);
1594 drop:
1595 	if (drop_reserve) {
1596 		/* no need to reserve log space for this block -bzzz */
1597 		handle->h_buffer_credits++;
1598 	}
1599 	return err;
1600 }
1601 
1602 /**
1603  * int jbd2_journal_stop() - complete a transaction
1604  * @handle: transaction to complete.
1605  *
1606  * All done for a particular handle.
1607  *
1608  * There is not much action needed here.  We just return any remaining
1609  * buffer credits to the transaction and remove the handle.  The only
1610  * complication is that we need to start a commit operation if the
1611  * filesystem is marked for synchronous update.
1612  *
1613  * jbd2_journal_stop itself will not usually return an error, but it may
1614  * do so in unusual circumstances.  In particular, expect it to
1615  * return -EIO if a jbd2_journal_abort has been executed since the
1616  * transaction began.
1617  */
1618 int jbd2_journal_stop(handle_t *handle)
1619 {
1620 	transaction_t *transaction = handle->h_transaction;
1621 	journal_t *journal;
1622 	int err = 0, wait_for_commit = 0;
1623 	tid_t tid;
1624 	pid_t pid;
1625 
1626 	if (!transaction) {
1627 		/*
1628 		 * Handle is already detached from the transaction so
1629 		 * there is nothing to do other than decrease a refcount,
1630 		 * or free the handle if refcount drops to zero
1631 		 */
1632 		if (--handle->h_ref > 0) {
1633 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1634 							 handle->h_ref);
1635 			return err;
1636 		} else {
1637 			if (handle->h_rsv_handle)
1638 				jbd2_free_handle(handle->h_rsv_handle);
1639 			goto free_and_exit;
1640 		}
1641 	}
1642 	journal = transaction->t_journal;
1643 
1644 	J_ASSERT(journal_current_handle() == handle);
1645 
1646 	if (is_handle_aborted(handle))
1647 		err = -EIO;
1648 	else
1649 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1650 
1651 	if (--handle->h_ref > 0) {
1652 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1653 			  handle->h_ref);
1654 		return err;
1655 	}
1656 
1657 	jbd_debug(4, "Handle %p going down\n", handle);
1658 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1659 				transaction->t_tid,
1660 				handle->h_type, handle->h_line_no,
1661 				jiffies - handle->h_start_jiffies,
1662 				handle->h_sync, handle->h_requested_credits,
1663 				(handle->h_requested_credits -
1664 				 handle->h_buffer_credits));
1665 
1666 	/*
1667 	 * Implement synchronous transaction batching.  If the handle
1668 	 * was synchronous, don't force a commit immediately.  Let's
1669 	 * yield and let another thread piggyback onto this
1670 	 * transaction.  Keep doing that while new threads continue to
1671 	 * arrive.  It doesn't cost much - we're about to run a commit
1672 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1673 	 * operations by 30x or more...
1674 	 *
1675 	 * We try and optimize the sleep time against what the
1676 	 * underlying disk can do, instead of having a static sleep
1677 	 * time.  This is useful for the case where our storage is so
1678 	 * fast that it is more optimal to go ahead and force a flush
1679 	 * and wait for the transaction to be committed than it is to
1680 	 * wait for an arbitrary amount of time for new writers to
1681 	 * join the transaction.  We achieve this by measuring how
1682 	 * long it takes to commit a transaction, and compare it with
1683 	 * how long this transaction has been running, and if run time
1684 	 * < commit time then we sleep for the delta and commit.  This
1685 	 * greatly helps super fast disks that would see slowdowns as
1686 	 * more threads started doing fsyncs.
1687 	 *
1688 	 * But don't do this if this process was the most recent one
1689 	 * to perform a synchronous write.  We do this to detect the
1690 	 * case where a single process is doing a stream of sync
1691 	 * writes.  No point in waiting for joiners in that case.
1692 	 *
1693 	 * Setting max_batch_time to 0 disables this completely.
1694 	 */
1695 	pid = current->pid;
1696 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1697 	    journal->j_max_batch_time) {
1698 		u64 commit_time, trans_time;
1699 
1700 		journal->j_last_sync_writer = pid;
1701 
1702 		read_lock(&journal->j_state_lock);
1703 		commit_time = journal->j_average_commit_time;
1704 		read_unlock(&journal->j_state_lock);
1705 
1706 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1707 						   transaction->t_start_time));
1708 
1709 		commit_time = max_t(u64, commit_time,
1710 				    1000*journal->j_min_batch_time);
1711 		commit_time = min_t(u64, commit_time,
1712 				    1000*journal->j_max_batch_time);
1713 
1714 		if (trans_time < commit_time) {
1715 			ktime_t expires = ktime_add_ns(ktime_get(),
1716 						       commit_time);
1717 			set_current_state(TASK_UNINTERRUPTIBLE);
1718 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1719 		}
1720 	}
1721 
1722 	if (handle->h_sync)
1723 		transaction->t_synchronous_commit = 1;
1724 	current->journal_info = NULL;
1725 	atomic_sub(handle->h_buffer_credits,
1726 		   &transaction->t_outstanding_credits);
1727 
1728 	/*
1729 	 * If the handle is marked SYNC, we need to set another commit
1730 	 * going!  We also want to force a commit if the current
1731 	 * transaction is occupying too much of the log, or if the
1732 	 * transaction is too old now.
1733 	 */
1734 	if (handle->h_sync ||
1735 	    (atomic_read(&transaction->t_outstanding_credits) >
1736 	     journal->j_max_transaction_buffers) ||
1737 	    time_after_eq(jiffies, transaction->t_expires)) {
1738 		/* Do this even for aborted journals: an abort still
1739 		 * completes the commit thread, it just doesn't write
1740 		 * anything to disk. */
1741 
1742 		jbd_debug(2, "transaction too old, requesting commit for "
1743 					"handle %p\n", handle);
1744 		/* This is non-blocking */
1745 		jbd2_log_start_commit(journal, transaction->t_tid);
1746 
1747 		/*
1748 		 * Special case: JBD2_SYNC synchronous updates require us
1749 		 * to wait for the commit to complete.
1750 		 */
1751 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1752 			wait_for_commit = 1;
1753 	}
1754 
1755 	/*
1756 	 * Once we drop t_updates, if it goes to zero the transaction
1757 	 * could start committing on us and eventually disappear.  So
1758 	 * once we do this, we must not dereference transaction
1759 	 * pointer again.
1760 	 */
1761 	tid = transaction->t_tid;
1762 	if (atomic_dec_and_test(&transaction->t_updates)) {
1763 		wake_up(&journal->j_wait_updates);
1764 		if (journal->j_barrier_count)
1765 			wake_up(&journal->j_wait_transaction_locked);
1766 	}
1767 
1768 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1769 
1770 	if (wait_for_commit)
1771 		err = jbd2_log_wait_commit(journal, tid);
1772 
1773 	if (handle->h_rsv_handle)
1774 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1775 free_and_exit:
1776 	/*
1777 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1778 	 * original alloc context.
1779 	 */
1780 	memalloc_nofs_restore(handle->saved_alloc_context);
1781 	jbd2_free_handle(handle);
1782 	return err;
1783 }
1784 
1785 /*
1786  *
1787  * List management code snippets: various functions for manipulating the
1788  * transaction buffer lists.
1789  *
1790  */
1791 
1792 /*
1793  * Append a buffer to a transaction list, given the transaction's list head
1794  * pointer.
1795  *
1796  * j_list_lock is held.
1797  *
1798  * jbd_lock_bh_state(jh2bh(jh)) is held.
1799  */
1800 
1801 static inline void
1802 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1803 {
1804 	if (!*list) {
1805 		jh->b_tnext = jh->b_tprev = jh;
1806 		*list = jh;
1807 	} else {
1808 		/* Insert at the tail of the list to preserve order */
1809 		struct journal_head *first = *list, *last = first->b_tprev;
1810 		jh->b_tprev = last;
1811 		jh->b_tnext = first;
1812 		last->b_tnext = first->b_tprev = jh;
1813 	}
1814 }
1815 
1816 /*
1817  * Remove a buffer from a transaction list, given the transaction's list
1818  * head pointer.
1819  *
1820  * Called with j_list_lock held, and the journal may not be locked.
1821  *
1822  * jbd_lock_bh_state(jh2bh(jh)) is held.
1823  */
1824 
1825 static inline void
1826 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1827 {
1828 	if (*list == jh) {
1829 		*list = jh->b_tnext;
1830 		if (*list == jh)
1831 			*list = NULL;
1832 	}
1833 	jh->b_tprev->b_tnext = jh->b_tnext;
1834 	jh->b_tnext->b_tprev = jh->b_tprev;
1835 }
1836 
1837 /*
1838  * Remove a buffer from the appropriate transaction list.
1839  *
1840  * Note that this function can *change* the value of
1841  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1842  * t_reserved_list.  If the caller is holding onto a copy of one of these
1843  * pointers, it could go bad.  Generally the caller needs to re-read the
1844  * pointer from the transaction_t.
1845  *
1846  * Called under j_list_lock.
1847  */
1848 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1849 {
1850 	struct journal_head **list = NULL;
1851 	transaction_t *transaction;
1852 	struct buffer_head *bh = jh2bh(jh);
1853 
1854 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1855 	transaction = jh->b_transaction;
1856 	if (transaction)
1857 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1858 
1859 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1860 	if (jh->b_jlist != BJ_None)
1861 		J_ASSERT_JH(jh, transaction != NULL);
1862 
1863 	switch (jh->b_jlist) {
1864 	case BJ_None:
1865 		return;
1866 	case BJ_Metadata:
1867 		transaction->t_nr_buffers--;
1868 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1869 		list = &transaction->t_buffers;
1870 		break;
1871 	case BJ_Forget:
1872 		list = &transaction->t_forget;
1873 		break;
1874 	case BJ_Shadow:
1875 		list = &transaction->t_shadow_list;
1876 		break;
1877 	case BJ_Reserved:
1878 		list = &transaction->t_reserved_list;
1879 		break;
1880 	}
1881 
1882 	__blist_del_buffer(list, jh);
1883 	jh->b_jlist = BJ_None;
1884 	if (transaction && is_journal_aborted(transaction->t_journal))
1885 		clear_buffer_jbddirty(bh);
1886 	else if (test_clear_buffer_jbddirty(bh))
1887 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1888 }
1889 
1890 /*
1891  * Remove buffer from all transactions.
1892  *
1893  * Called with bh_state lock and j_list_lock
1894  *
1895  * jh and bh may be already freed when this function returns.
1896  */
1897 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1898 {
1899 	__jbd2_journal_temp_unlink_buffer(jh);
1900 	jh->b_transaction = NULL;
1901 	jbd2_journal_put_journal_head(jh);
1902 }
1903 
1904 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1905 {
1906 	struct buffer_head *bh = jh2bh(jh);
1907 
1908 	/* Get reference so that buffer cannot be freed before we unlock it */
1909 	get_bh(bh);
1910 	jbd_lock_bh_state(bh);
1911 	spin_lock(&journal->j_list_lock);
1912 	__jbd2_journal_unfile_buffer(jh);
1913 	spin_unlock(&journal->j_list_lock);
1914 	jbd_unlock_bh_state(bh);
1915 	__brelse(bh);
1916 }
1917 
1918 /*
1919  * Called from jbd2_journal_try_to_free_buffers().
1920  *
1921  * Called under jbd_lock_bh_state(bh)
1922  */
1923 static void
1924 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1925 {
1926 	struct journal_head *jh;
1927 
1928 	jh = bh2jh(bh);
1929 
1930 	if (buffer_locked(bh) || buffer_dirty(bh))
1931 		goto out;
1932 
1933 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1934 		goto out;
1935 
1936 	spin_lock(&journal->j_list_lock);
1937 	if (jh->b_cp_transaction != NULL) {
1938 		/* written-back checkpointed metadata buffer */
1939 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1940 		__jbd2_journal_remove_checkpoint(jh);
1941 	}
1942 	spin_unlock(&journal->j_list_lock);
1943 out:
1944 	return;
1945 }
1946 
1947 /**
1948  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1949  * @journal: journal for operation
1950  * @page: to try and free
1951  * @gfp_mask: we use the mask to detect how hard should we try to release
1952  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1953  * code to release the buffers.
1954  *
1955  *
1956  * For all the buffers on this page,
1957  * if they are fully written out ordered data, move them onto BUF_CLEAN
1958  * so try_to_free_buffers() can reap them.
1959  *
1960  * This function returns non-zero if we wish try_to_free_buffers()
1961  * to be called. We do this if the page is releasable by try_to_free_buffers().
1962  * We also do it if the page has locked or dirty buffers and the caller wants
1963  * us to perform sync or async writeout.
1964  *
1965  * This complicates JBD locking somewhat.  We aren't protected by the
1966  * BKL here.  We wish to remove the buffer from its committing or
1967  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1968  *
1969  * This may *change* the value of transaction_t->t_datalist, so anyone
1970  * who looks at t_datalist needs to lock against this function.
1971  *
1972  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1973  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1974  * will come out of the lock with the buffer dirty, which makes it
1975  * ineligible for release here.
1976  *
1977  * Who else is affected by this?  hmm...  Really the only contender
1978  * is do_get_write_access() - it could be looking at the buffer while
1979  * journal_try_to_free_buffer() is changing its state.  But that
1980  * cannot happen because we never reallocate freed data as metadata
1981  * while the data is part of a transaction.  Yes?
1982  *
1983  * Return 0 on failure, 1 on success
1984  */
1985 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1986 				struct page *page, gfp_t gfp_mask)
1987 {
1988 	struct buffer_head *head;
1989 	struct buffer_head *bh;
1990 	int ret = 0;
1991 
1992 	J_ASSERT(PageLocked(page));
1993 
1994 	head = page_buffers(page);
1995 	bh = head;
1996 	do {
1997 		struct journal_head *jh;
1998 
1999 		/*
2000 		 * We take our own ref against the journal_head here to avoid
2001 		 * having to add tons of locking around each instance of
2002 		 * jbd2_journal_put_journal_head().
2003 		 */
2004 		jh = jbd2_journal_grab_journal_head(bh);
2005 		if (!jh)
2006 			continue;
2007 
2008 		jbd_lock_bh_state(bh);
2009 		__journal_try_to_free_buffer(journal, bh);
2010 		jbd2_journal_put_journal_head(jh);
2011 		jbd_unlock_bh_state(bh);
2012 		if (buffer_jbd(bh))
2013 			goto busy;
2014 	} while ((bh = bh->b_this_page) != head);
2015 
2016 	ret = try_to_free_buffers(page);
2017 
2018 busy:
2019 	return ret;
2020 }
2021 
2022 /*
2023  * This buffer is no longer needed.  If it is on an older transaction's
2024  * checkpoint list we need to record it on this transaction's forget list
2025  * to pin this buffer (and hence its checkpointing transaction) down until
2026  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2027  * release it.
2028  * Returns non-zero if JBD no longer has an interest in the buffer.
2029  *
2030  * Called under j_list_lock.
2031  *
2032  * Called under jbd_lock_bh_state(bh).
2033  */
2034 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2035 {
2036 	int may_free = 1;
2037 	struct buffer_head *bh = jh2bh(jh);
2038 
2039 	if (jh->b_cp_transaction) {
2040 		JBUFFER_TRACE(jh, "on running+cp transaction");
2041 		__jbd2_journal_temp_unlink_buffer(jh);
2042 		/*
2043 		 * We don't want to write the buffer anymore, clear the
2044 		 * bit so that we don't confuse checks in
2045 		 * __journal_file_buffer
2046 		 */
2047 		clear_buffer_dirty(bh);
2048 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2049 		may_free = 0;
2050 	} else {
2051 		JBUFFER_TRACE(jh, "on running transaction");
2052 		__jbd2_journal_unfile_buffer(jh);
2053 	}
2054 	return may_free;
2055 }
2056 
2057 /*
2058  * jbd2_journal_invalidatepage
2059  *
2060  * This code is tricky.  It has a number of cases to deal with.
2061  *
2062  * There are two invariants which this code relies on:
2063  *
2064  * i_size must be updated on disk before we start calling invalidatepage on the
2065  * data.
2066  *
2067  *  This is done in ext3 by defining an ext3_setattr method which
2068  *  updates i_size before truncate gets going.  By maintaining this
2069  *  invariant, we can be sure that it is safe to throw away any buffers
2070  *  attached to the current transaction: once the transaction commits,
2071  *  we know that the data will not be needed.
2072  *
2073  *  Note however that we can *not* throw away data belonging to the
2074  *  previous, committing transaction!
2075  *
2076  * Any disk blocks which *are* part of the previous, committing
2077  * transaction (and which therefore cannot be discarded immediately) are
2078  * not going to be reused in the new running transaction
2079  *
2080  *  The bitmap committed_data images guarantee this: any block which is
2081  *  allocated in one transaction and removed in the next will be marked
2082  *  as in-use in the committed_data bitmap, so cannot be reused until
2083  *  the next transaction to delete the block commits.  This means that
2084  *  leaving committing buffers dirty is quite safe: the disk blocks
2085  *  cannot be reallocated to a different file and so buffer aliasing is
2086  *  not possible.
2087  *
2088  *
2089  * The above applies mainly to ordered data mode.  In writeback mode we
2090  * don't make guarantees about the order in which data hits disk --- in
2091  * particular we don't guarantee that new dirty data is flushed before
2092  * transaction commit --- so it is always safe just to discard data
2093  * immediately in that mode.  --sct
2094  */
2095 
2096 /*
2097  * The journal_unmap_buffer helper function returns zero if the buffer
2098  * concerned remains pinned as an anonymous buffer belonging to an older
2099  * transaction.
2100  *
2101  * We're outside-transaction here.  Either or both of j_running_transaction
2102  * and j_committing_transaction may be NULL.
2103  */
2104 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2105 				int partial_page)
2106 {
2107 	transaction_t *transaction;
2108 	struct journal_head *jh;
2109 	int may_free = 1;
2110 
2111 	BUFFER_TRACE(bh, "entry");
2112 
2113 	/*
2114 	 * It is safe to proceed here without the j_list_lock because the
2115 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2116 	 * holding the page lock. --sct
2117 	 */
2118 
2119 	if (!buffer_jbd(bh))
2120 		goto zap_buffer_unlocked;
2121 
2122 	/* OK, we have data buffer in journaled mode */
2123 	write_lock(&journal->j_state_lock);
2124 	jbd_lock_bh_state(bh);
2125 	spin_lock(&journal->j_list_lock);
2126 
2127 	jh = jbd2_journal_grab_journal_head(bh);
2128 	if (!jh)
2129 		goto zap_buffer_no_jh;
2130 
2131 	/*
2132 	 * We cannot remove the buffer from checkpoint lists until the
2133 	 * transaction adding inode to orphan list (let's call it T)
2134 	 * is committed.  Otherwise if the transaction changing the
2135 	 * buffer would be cleaned from the journal before T is
2136 	 * committed, a crash will cause that the correct contents of
2137 	 * the buffer will be lost.  On the other hand we have to
2138 	 * clear the buffer dirty bit at latest at the moment when the
2139 	 * transaction marking the buffer as freed in the filesystem
2140 	 * structures is committed because from that moment on the
2141 	 * block can be reallocated and used by a different page.
2142 	 * Since the block hasn't been freed yet but the inode has
2143 	 * already been added to orphan list, it is safe for us to add
2144 	 * the buffer to BJ_Forget list of the newest transaction.
2145 	 *
2146 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2147 	 * because the buffer_head may be attached to the page straddling
2148 	 * i_size (can happen only when blocksize < pagesize) and thus the
2149 	 * buffer_head can be reused when the file is extended again. So we end
2150 	 * up keeping around invalidated buffers attached to transactions'
2151 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2152 	 * the transaction this buffer was modified in.
2153 	 */
2154 	transaction = jh->b_transaction;
2155 	if (transaction == NULL) {
2156 		/* First case: not on any transaction.  If it
2157 		 * has no checkpoint link, then we can zap it:
2158 		 * it's a writeback-mode buffer so we don't care
2159 		 * if it hits disk safely. */
2160 		if (!jh->b_cp_transaction) {
2161 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2162 			goto zap_buffer;
2163 		}
2164 
2165 		if (!buffer_dirty(bh)) {
2166 			/* bdflush has written it.  We can drop it now */
2167 			__jbd2_journal_remove_checkpoint(jh);
2168 			goto zap_buffer;
2169 		}
2170 
2171 		/* OK, it must be in the journal but still not
2172 		 * written fully to disk: it's metadata or
2173 		 * journaled data... */
2174 
2175 		if (journal->j_running_transaction) {
2176 			/* ... and once the current transaction has
2177 			 * committed, the buffer won't be needed any
2178 			 * longer. */
2179 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2180 			may_free = __dispose_buffer(jh,
2181 					journal->j_running_transaction);
2182 			goto zap_buffer;
2183 		} else {
2184 			/* There is no currently-running transaction. So the
2185 			 * orphan record which we wrote for this file must have
2186 			 * passed into commit.  We must attach this buffer to
2187 			 * the committing transaction, if it exists. */
2188 			if (journal->j_committing_transaction) {
2189 				JBUFFER_TRACE(jh, "give to committing trans");
2190 				may_free = __dispose_buffer(jh,
2191 					journal->j_committing_transaction);
2192 				goto zap_buffer;
2193 			} else {
2194 				/* The orphan record's transaction has
2195 				 * committed.  We can cleanse this buffer */
2196 				clear_buffer_jbddirty(bh);
2197 				__jbd2_journal_remove_checkpoint(jh);
2198 				goto zap_buffer;
2199 			}
2200 		}
2201 	} else if (transaction == journal->j_committing_transaction) {
2202 		JBUFFER_TRACE(jh, "on committing transaction");
2203 		/*
2204 		 * The buffer is committing, we simply cannot touch
2205 		 * it. If the page is straddling i_size we have to wait
2206 		 * for commit and try again.
2207 		 */
2208 		if (partial_page) {
2209 			jbd2_journal_put_journal_head(jh);
2210 			spin_unlock(&journal->j_list_lock);
2211 			jbd_unlock_bh_state(bh);
2212 			write_unlock(&journal->j_state_lock);
2213 			return -EBUSY;
2214 		}
2215 		/*
2216 		 * OK, buffer won't be reachable after truncate. We just set
2217 		 * j_next_transaction to the running transaction (if there is
2218 		 * one) and mark buffer as freed so that commit code knows it
2219 		 * should clear dirty bits when it is done with the buffer.
2220 		 */
2221 		set_buffer_freed(bh);
2222 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2223 			jh->b_next_transaction = journal->j_running_transaction;
2224 		jbd2_journal_put_journal_head(jh);
2225 		spin_unlock(&journal->j_list_lock);
2226 		jbd_unlock_bh_state(bh);
2227 		write_unlock(&journal->j_state_lock);
2228 		return 0;
2229 	} else {
2230 		/* Good, the buffer belongs to the running transaction.
2231 		 * We are writing our own transaction's data, not any
2232 		 * previous one's, so it is safe to throw it away
2233 		 * (remember that we expect the filesystem to have set
2234 		 * i_size already for this truncate so recovery will not
2235 		 * expose the disk blocks we are discarding here.) */
2236 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2237 		JBUFFER_TRACE(jh, "on running transaction");
2238 		may_free = __dispose_buffer(jh, transaction);
2239 	}
2240 
2241 zap_buffer:
2242 	/*
2243 	 * This is tricky. Although the buffer is truncated, it may be reused
2244 	 * if blocksize < pagesize and it is attached to the page straddling
2245 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2246 	 * running transaction, journal_get_write_access() won't clear
2247 	 * b_modified and credit accounting gets confused. So clear b_modified
2248 	 * here.
2249 	 */
2250 	jh->b_modified = 0;
2251 	jbd2_journal_put_journal_head(jh);
2252 zap_buffer_no_jh:
2253 	spin_unlock(&journal->j_list_lock);
2254 	jbd_unlock_bh_state(bh);
2255 	write_unlock(&journal->j_state_lock);
2256 zap_buffer_unlocked:
2257 	clear_buffer_dirty(bh);
2258 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2259 	clear_buffer_mapped(bh);
2260 	clear_buffer_req(bh);
2261 	clear_buffer_new(bh);
2262 	clear_buffer_delay(bh);
2263 	clear_buffer_unwritten(bh);
2264 	bh->b_bdev = NULL;
2265 	return may_free;
2266 }
2267 
2268 /**
2269  * void jbd2_journal_invalidatepage()
2270  * @journal: journal to use for flush...
2271  * @page:    page to flush
2272  * @offset:  start of the range to invalidate
2273  * @length:  length of the range to invalidate
2274  *
2275  * Reap page buffers containing data after in the specified range in page.
2276  * Can return -EBUSY if buffers are part of the committing transaction and
2277  * the page is straddling i_size. Caller then has to wait for current commit
2278  * and try again.
2279  */
2280 int jbd2_journal_invalidatepage(journal_t *journal,
2281 				struct page *page,
2282 				unsigned int offset,
2283 				unsigned int length)
2284 {
2285 	struct buffer_head *head, *bh, *next;
2286 	unsigned int stop = offset + length;
2287 	unsigned int curr_off = 0;
2288 	int partial_page = (offset || length < PAGE_SIZE);
2289 	int may_free = 1;
2290 	int ret = 0;
2291 
2292 	if (!PageLocked(page))
2293 		BUG();
2294 	if (!page_has_buffers(page))
2295 		return 0;
2296 
2297 	BUG_ON(stop > PAGE_SIZE || stop < length);
2298 
2299 	/* We will potentially be playing with lists other than just the
2300 	 * data lists (especially for journaled data mode), so be
2301 	 * cautious in our locking. */
2302 
2303 	head = bh = page_buffers(page);
2304 	do {
2305 		unsigned int next_off = curr_off + bh->b_size;
2306 		next = bh->b_this_page;
2307 
2308 		if (next_off > stop)
2309 			return 0;
2310 
2311 		if (offset <= curr_off) {
2312 			/* This block is wholly outside the truncation point */
2313 			lock_buffer(bh);
2314 			ret = journal_unmap_buffer(journal, bh, partial_page);
2315 			unlock_buffer(bh);
2316 			if (ret < 0)
2317 				return ret;
2318 			may_free &= ret;
2319 		}
2320 		curr_off = next_off;
2321 		bh = next;
2322 
2323 	} while (bh != head);
2324 
2325 	if (!partial_page) {
2326 		if (may_free && try_to_free_buffers(page))
2327 			J_ASSERT(!page_has_buffers(page));
2328 	}
2329 	return 0;
2330 }
2331 
2332 /*
2333  * File a buffer on the given transaction list.
2334  */
2335 void __jbd2_journal_file_buffer(struct journal_head *jh,
2336 			transaction_t *transaction, int jlist)
2337 {
2338 	struct journal_head **list = NULL;
2339 	int was_dirty = 0;
2340 	struct buffer_head *bh = jh2bh(jh);
2341 
2342 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2343 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2344 
2345 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2346 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2347 				jh->b_transaction == NULL);
2348 
2349 	if (jh->b_transaction && jh->b_jlist == jlist)
2350 		return;
2351 
2352 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2353 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2354 		/*
2355 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2356 		 * instead of buffer_dirty. We should not see a dirty bit set
2357 		 * here because we clear it in do_get_write_access but e.g.
2358 		 * tune2fs can modify the sb and set the dirty bit at any time
2359 		 * so we try to gracefully handle that.
2360 		 */
2361 		if (buffer_dirty(bh))
2362 			warn_dirty_buffer(bh);
2363 		if (test_clear_buffer_dirty(bh) ||
2364 		    test_clear_buffer_jbddirty(bh))
2365 			was_dirty = 1;
2366 	}
2367 
2368 	if (jh->b_transaction)
2369 		__jbd2_journal_temp_unlink_buffer(jh);
2370 	else
2371 		jbd2_journal_grab_journal_head(bh);
2372 	jh->b_transaction = transaction;
2373 
2374 	switch (jlist) {
2375 	case BJ_None:
2376 		J_ASSERT_JH(jh, !jh->b_committed_data);
2377 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2378 		return;
2379 	case BJ_Metadata:
2380 		transaction->t_nr_buffers++;
2381 		list = &transaction->t_buffers;
2382 		break;
2383 	case BJ_Forget:
2384 		list = &transaction->t_forget;
2385 		break;
2386 	case BJ_Shadow:
2387 		list = &transaction->t_shadow_list;
2388 		break;
2389 	case BJ_Reserved:
2390 		list = &transaction->t_reserved_list;
2391 		break;
2392 	}
2393 
2394 	__blist_add_buffer(list, jh);
2395 	jh->b_jlist = jlist;
2396 
2397 	if (was_dirty)
2398 		set_buffer_jbddirty(bh);
2399 }
2400 
2401 void jbd2_journal_file_buffer(struct journal_head *jh,
2402 				transaction_t *transaction, int jlist)
2403 {
2404 	jbd_lock_bh_state(jh2bh(jh));
2405 	spin_lock(&transaction->t_journal->j_list_lock);
2406 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2407 	spin_unlock(&transaction->t_journal->j_list_lock);
2408 	jbd_unlock_bh_state(jh2bh(jh));
2409 }
2410 
2411 /*
2412  * Remove a buffer from its current buffer list in preparation for
2413  * dropping it from its current transaction entirely.  If the buffer has
2414  * already started to be used by a subsequent transaction, refile the
2415  * buffer on that transaction's metadata list.
2416  *
2417  * Called under j_list_lock
2418  * Called under jbd_lock_bh_state(jh2bh(jh))
2419  *
2420  * jh and bh may be already free when this function returns
2421  */
2422 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2423 {
2424 	int was_dirty, jlist;
2425 	struct buffer_head *bh = jh2bh(jh);
2426 
2427 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2428 	if (jh->b_transaction)
2429 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2430 
2431 	/* If the buffer is now unused, just drop it. */
2432 	if (jh->b_next_transaction == NULL) {
2433 		__jbd2_journal_unfile_buffer(jh);
2434 		return;
2435 	}
2436 
2437 	/*
2438 	 * It has been modified by a later transaction: add it to the new
2439 	 * transaction's metadata list.
2440 	 */
2441 
2442 	was_dirty = test_clear_buffer_jbddirty(bh);
2443 	__jbd2_journal_temp_unlink_buffer(jh);
2444 	/*
2445 	 * We set b_transaction here because b_next_transaction will inherit
2446 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2447 	 * take a new one.
2448 	 */
2449 	jh->b_transaction = jh->b_next_transaction;
2450 	jh->b_next_transaction = NULL;
2451 	if (buffer_freed(bh))
2452 		jlist = BJ_Forget;
2453 	else if (jh->b_modified)
2454 		jlist = BJ_Metadata;
2455 	else
2456 		jlist = BJ_Reserved;
2457 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2458 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2459 
2460 	if (was_dirty)
2461 		set_buffer_jbddirty(bh);
2462 }
2463 
2464 /*
2465  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2466  * bh reference so that we can safely unlock bh.
2467  *
2468  * The jh and bh may be freed by this call.
2469  */
2470 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2471 {
2472 	struct buffer_head *bh = jh2bh(jh);
2473 
2474 	/* Get reference so that buffer cannot be freed before we unlock it */
2475 	get_bh(bh);
2476 	jbd_lock_bh_state(bh);
2477 	spin_lock(&journal->j_list_lock);
2478 	__jbd2_journal_refile_buffer(jh);
2479 	jbd_unlock_bh_state(bh);
2480 	spin_unlock(&journal->j_list_lock);
2481 	__brelse(bh);
2482 }
2483 
2484 /*
2485  * File inode in the inode list of the handle's transaction
2486  */
2487 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2488 				   unsigned long flags)
2489 {
2490 	transaction_t *transaction = handle->h_transaction;
2491 	journal_t *journal;
2492 
2493 	if (is_handle_aborted(handle))
2494 		return -EROFS;
2495 	journal = transaction->t_journal;
2496 
2497 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2498 			transaction->t_tid);
2499 
2500 	/*
2501 	 * First check whether inode isn't already on the transaction's
2502 	 * lists without taking the lock. Note that this check is safe
2503 	 * without the lock as we cannot race with somebody removing inode
2504 	 * from the transaction. The reason is that we remove inode from the
2505 	 * transaction only in journal_release_jbd_inode() and when we commit
2506 	 * the transaction. We are guarded from the first case by holding
2507 	 * a reference to the inode. We are safe against the second case
2508 	 * because if jinode->i_transaction == transaction, commit code
2509 	 * cannot touch the transaction because we hold reference to it,
2510 	 * and if jinode->i_next_transaction == transaction, commit code
2511 	 * will only file the inode where we want it.
2512 	 */
2513 	if ((jinode->i_transaction == transaction ||
2514 	    jinode->i_next_transaction == transaction) &&
2515 	    (jinode->i_flags & flags) == flags)
2516 		return 0;
2517 
2518 	spin_lock(&journal->j_list_lock);
2519 	jinode->i_flags |= flags;
2520 	/* Is inode already attached where we need it? */
2521 	if (jinode->i_transaction == transaction ||
2522 	    jinode->i_next_transaction == transaction)
2523 		goto done;
2524 
2525 	/*
2526 	 * We only ever set this variable to 1 so the test is safe. Since
2527 	 * t_need_data_flush is likely to be set, we do the test to save some
2528 	 * cacheline bouncing
2529 	 */
2530 	if (!transaction->t_need_data_flush)
2531 		transaction->t_need_data_flush = 1;
2532 	/* On some different transaction's list - should be
2533 	 * the committing one */
2534 	if (jinode->i_transaction) {
2535 		J_ASSERT(jinode->i_next_transaction == NULL);
2536 		J_ASSERT(jinode->i_transaction ==
2537 					journal->j_committing_transaction);
2538 		jinode->i_next_transaction = transaction;
2539 		goto done;
2540 	}
2541 	/* Not on any transaction list... */
2542 	J_ASSERT(!jinode->i_next_transaction);
2543 	jinode->i_transaction = transaction;
2544 	list_add(&jinode->i_list, &transaction->t_inode_list);
2545 done:
2546 	spin_unlock(&journal->j_list_lock);
2547 
2548 	return 0;
2549 }
2550 
2551 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2552 {
2553 	return jbd2_journal_file_inode(handle, jinode,
2554 				       JI_WRITE_DATA | JI_WAIT_DATA);
2555 }
2556 
2557 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2558 {
2559 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2560 }
2561 
2562 /*
2563  * File truncate and transaction commit interact with each other in a
2564  * non-trivial way.  If a transaction writing data block A is
2565  * committing, we cannot discard the data by truncate until we have
2566  * written them.  Otherwise if we crashed after the transaction with
2567  * write has committed but before the transaction with truncate has
2568  * committed, we could see stale data in block A.  This function is a
2569  * helper to solve this problem.  It starts writeout of the truncated
2570  * part in case it is in the committing transaction.
2571  *
2572  * Filesystem code must call this function when inode is journaled in
2573  * ordered mode before truncation happens and after the inode has been
2574  * placed on orphan list with the new inode size. The second condition
2575  * avoids the race that someone writes new data and we start
2576  * committing the transaction after this function has been called but
2577  * before a transaction for truncate is started (and furthermore it
2578  * allows us to optimize the case where the addition to orphan list
2579  * happens in the same transaction as write --- we don't have to write
2580  * any data in such case).
2581  */
2582 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2583 					struct jbd2_inode *jinode,
2584 					loff_t new_size)
2585 {
2586 	transaction_t *inode_trans, *commit_trans;
2587 	int ret = 0;
2588 
2589 	/* This is a quick check to avoid locking if not necessary */
2590 	if (!jinode->i_transaction)
2591 		goto out;
2592 	/* Locks are here just to force reading of recent values, it is
2593 	 * enough that the transaction was not committing before we started
2594 	 * a transaction adding the inode to orphan list */
2595 	read_lock(&journal->j_state_lock);
2596 	commit_trans = journal->j_committing_transaction;
2597 	read_unlock(&journal->j_state_lock);
2598 	spin_lock(&journal->j_list_lock);
2599 	inode_trans = jinode->i_transaction;
2600 	spin_unlock(&journal->j_list_lock);
2601 	if (inode_trans == commit_trans) {
2602 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2603 			new_size, LLONG_MAX);
2604 		if (ret)
2605 			jbd2_journal_abort(journal, ret);
2606 	}
2607 out:
2608 	return ret;
2609 }
2610