1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) { 199 read_unlock(&journal->j_state_lock); 200 return; 201 } 202 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 203 TASK_UNINTERRUPTIBLE); 204 read_unlock(&journal->j_state_lock); 205 /* 206 * We don't call jbd2_might_wait_for_commit() here as there's no 207 * waiting for outstanding handles happening anymore in T_SWITCH state 208 * and handling of reserved handles actually relies on that for 209 * correctness. 210 */ 211 schedule(); 212 finish_wait(&journal->j_wait_transaction_locked, &wait); 213 } 214 215 static void sub_reserved_credits(journal_t *journal, int blocks) 216 { 217 atomic_sub(blocks, &journal->j_reserved_credits); 218 wake_up(&journal->j_wait_reserved); 219 } 220 221 /* 222 * Wait until we can add credits for handle to the running transaction. Called 223 * with j_state_lock held for reading. Returns 0 if handle joined the running 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 225 * caller must retry. 226 * 227 * Note: because j_state_lock may be dropped depending on the return 228 * value, we need to fake out sparse so ti doesn't complain about a 229 * locking imbalance. Callers of add_transaction_credits will need to 230 * make a similar accomodation. 231 */ 232 static int add_transaction_credits(journal_t *journal, int blocks, 233 int rsv_blocks) 234 __must_hold(&journal->j_state_lock) 235 { 236 transaction_t *t = journal->j_running_transaction; 237 int needed; 238 int total = blocks + rsv_blocks; 239 240 /* 241 * If the current transaction is locked down for commit, wait 242 * for the lock to be released. 243 */ 244 if (t->t_state != T_RUNNING) { 245 WARN_ON_ONCE(t->t_state >= T_FLUSH); 246 wait_transaction_locked(journal); 247 __acquire(&journal->j_state_lock); /* fake out sparse */ 248 return 1; 249 } 250 251 /* 252 * If there is not enough space left in the log to write all 253 * potential buffers requested by this operation, we need to 254 * stall pending a log checkpoint to free some more log space. 255 */ 256 needed = atomic_add_return(total, &t->t_outstanding_credits); 257 if (needed > journal->j_max_transaction_buffers) { 258 /* 259 * If the current transaction is already too large, 260 * then start to commit it: we can then go back and 261 * attach this handle to a new transaction. 262 */ 263 atomic_sub(total, &t->t_outstanding_credits); 264 265 /* 266 * Is the number of reserved credits in the current transaction too 267 * big to fit this handle? Wait until reserved credits are freed. 268 */ 269 if (atomic_read(&journal->j_reserved_credits) + total > 270 journal->j_max_transaction_buffers) { 271 read_unlock(&journal->j_state_lock); 272 jbd2_might_wait_for_commit(journal); 273 wait_event(journal->j_wait_reserved, 274 atomic_read(&journal->j_reserved_credits) + total <= 275 journal->j_max_transaction_buffers); 276 __acquire(&journal->j_state_lock); /* fake out sparse */ 277 return 1; 278 } 279 280 wait_transaction_locked(journal); 281 __acquire(&journal->j_state_lock); /* fake out sparse */ 282 return 1; 283 } 284 285 /* 286 * The commit code assumes that it can get enough log space 287 * without forcing a checkpoint. This is *critical* for 288 * correctness: a checkpoint of a buffer which is also 289 * associated with a committing transaction creates a deadlock, 290 * so commit simply cannot force through checkpoints. 291 * 292 * We must therefore ensure the necessary space in the journal 293 * *before* starting to dirty potentially checkpointed buffers 294 * in the new transaction. 295 */ 296 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 297 atomic_sub(total, &t->t_outstanding_credits); 298 read_unlock(&journal->j_state_lock); 299 jbd2_might_wait_for_commit(journal); 300 write_lock(&journal->j_state_lock); 301 if (jbd2_log_space_left(journal) < 302 journal->j_max_transaction_buffers) 303 __jbd2_log_wait_for_space(journal); 304 write_unlock(&journal->j_state_lock); 305 __acquire(&journal->j_state_lock); /* fake out sparse */ 306 return 1; 307 } 308 309 /* No reservation? We are done... */ 310 if (!rsv_blocks) 311 return 0; 312 313 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 314 /* We allow at most half of a transaction to be reserved */ 315 if (needed > journal->j_max_transaction_buffers / 2) { 316 sub_reserved_credits(journal, rsv_blocks); 317 atomic_sub(total, &t->t_outstanding_credits); 318 read_unlock(&journal->j_state_lock); 319 jbd2_might_wait_for_commit(journal); 320 wait_event(journal->j_wait_reserved, 321 atomic_read(&journal->j_reserved_credits) + rsv_blocks 322 <= journal->j_max_transaction_buffers / 2); 323 __acquire(&journal->j_state_lock); /* fake out sparse */ 324 return 1; 325 } 326 return 0; 327 } 328 329 /* 330 * start_this_handle: Given a handle, deal with any locking or stalling 331 * needed to make sure that there is enough journal space for the handle 332 * to begin. Attach the handle to a transaction and set up the 333 * transaction's buffer credits. 334 */ 335 336 static int start_this_handle(journal_t *journal, handle_t *handle, 337 gfp_t gfp_mask) 338 { 339 transaction_t *transaction, *new_transaction = NULL; 340 int blocks = handle->h_total_credits; 341 int rsv_blocks = 0; 342 unsigned long ts = jiffies; 343 344 if (handle->h_rsv_handle) 345 rsv_blocks = handle->h_rsv_handle->h_total_credits; 346 347 /* 348 * Limit the number of reserved credits to 1/2 of maximum transaction 349 * size and limit the number of total credits to not exceed maximum 350 * transaction size per operation. 351 */ 352 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 353 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 354 printk(KERN_ERR "JBD2: %s wants too many credits " 355 "credits:%d rsv_credits:%d max:%d\n", 356 current->comm, blocks, rsv_blocks, 357 journal->j_max_transaction_buffers); 358 WARN_ON(1); 359 return -ENOSPC; 360 } 361 362 alloc_transaction: 363 /* 364 * This check is racy but it is just an optimization of allocating new 365 * transaction early if there are high chances we'll need it. If we 366 * guess wrong, we'll retry or free unused transaction. 367 */ 368 if (!data_race(journal->j_running_transaction)) { 369 /* 370 * If __GFP_FS is not present, then we may be being called from 371 * inside the fs writeback layer, so we MUST NOT fail. 372 */ 373 if ((gfp_mask & __GFP_FS) == 0) 374 gfp_mask |= __GFP_NOFAIL; 375 new_transaction = kmem_cache_zalloc(transaction_cache, 376 gfp_mask); 377 if (!new_transaction) 378 return -ENOMEM; 379 } 380 381 jbd_debug(3, "New handle %p going live.\n", handle); 382 383 /* 384 * We need to hold j_state_lock until t_updates has been incremented, 385 * for proper journal barrier handling 386 */ 387 repeat: 388 read_lock(&journal->j_state_lock); 389 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 390 if (is_journal_aborted(journal) || 391 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 392 read_unlock(&journal->j_state_lock); 393 jbd2_journal_free_transaction(new_transaction); 394 return -EROFS; 395 } 396 397 /* 398 * Wait on the journal's transaction barrier if necessary. Specifically 399 * we allow reserved handles to proceed because otherwise commit could 400 * deadlock on page writeback not being able to complete. 401 */ 402 if (!handle->h_reserved && journal->j_barrier_count) { 403 read_unlock(&journal->j_state_lock); 404 wait_event(journal->j_wait_transaction_locked, 405 journal->j_barrier_count == 0); 406 goto repeat; 407 } 408 409 if (!journal->j_running_transaction) { 410 read_unlock(&journal->j_state_lock); 411 if (!new_transaction) 412 goto alloc_transaction; 413 write_lock(&journal->j_state_lock); 414 if (!journal->j_running_transaction && 415 (handle->h_reserved || !journal->j_barrier_count)) { 416 jbd2_get_transaction(journal, new_transaction); 417 new_transaction = NULL; 418 } 419 write_unlock(&journal->j_state_lock); 420 goto repeat; 421 } 422 423 transaction = journal->j_running_transaction; 424 425 if (!handle->h_reserved) { 426 /* We may have dropped j_state_lock - restart in that case */ 427 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 428 /* 429 * add_transaction_credits releases 430 * j_state_lock on a non-zero return 431 */ 432 __release(&journal->j_state_lock); 433 goto repeat; 434 } 435 } else { 436 /* 437 * We have handle reserved so we are allowed to join T_LOCKED 438 * transaction and we don't have to check for transaction size 439 * and journal space. But we still have to wait while running 440 * transaction is being switched to a committing one as it 441 * won't wait for any handles anymore. 442 */ 443 if (transaction->t_state == T_SWITCH) { 444 wait_transaction_switching(journal); 445 goto repeat; 446 } 447 sub_reserved_credits(journal, blocks); 448 handle->h_reserved = 0; 449 } 450 451 /* OK, account for the buffers that this operation expects to 452 * use and add the handle to the running transaction. 453 */ 454 update_t_max_wait(transaction, ts); 455 handle->h_transaction = transaction; 456 handle->h_requested_credits = blocks; 457 handle->h_revoke_credits_requested = handle->h_revoke_credits; 458 handle->h_start_jiffies = jiffies; 459 atomic_inc(&transaction->t_updates); 460 atomic_inc(&transaction->t_handle_count); 461 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 462 handle, blocks, 463 atomic_read(&transaction->t_outstanding_credits), 464 jbd2_log_space_left(journal)); 465 read_unlock(&journal->j_state_lock); 466 current->journal_info = handle; 467 468 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 469 jbd2_journal_free_transaction(new_transaction); 470 /* 471 * Ensure that no allocations done while the transaction is open are 472 * going to recurse back to the fs layer. 473 */ 474 handle->saved_alloc_context = memalloc_nofs_save(); 475 return 0; 476 } 477 478 /* Allocate a new handle. This should probably be in a slab... */ 479 static handle_t *new_handle(int nblocks) 480 { 481 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 482 if (!handle) 483 return NULL; 484 handle->h_total_credits = nblocks; 485 handle->h_ref = 1; 486 487 return handle; 488 } 489 490 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 491 int revoke_records, gfp_t gfp_mask, 492 unsigned int type, unsigned int line_no) 493 { 494 handle_t *handle = journal_current_handle(); 495 int err; 496 497 if (!journal) 498 return ERR_PTR(-EROFS); 499 500 if (handle) { 501 J_ASSERT(handle->h_transaction->t_journal == journal); 502 handle->h_ref++; 503 return handle; 504 } 505 506 nblocks += DIV_ROUND_UP(revoke_records, 507 journal->j_revoke_records_per_block); 508 handle = new_handle(nblocks); 509 if (!handle) 510 return ERR_PTR(-ENOMEM); 511 if (rsv_blocks) { 512 handle_t *rsv_handle; 513 514 rsv_handle = new_handle(rsv_blocks); 515 if (!rsv_handle) { 516 jbd2_free_handle(handle); 517 return ERR_PTR(-ENOMEM); 518 } 519 rsv_handle->h_reserved = 1; 520 rsv_handle->h_journal = journal; 521 handle->h_rsv_handle = rsv_handle; 522 } 523 handle->h_revoke_credits = revoke_records; 524 525 err = start_this_handle(journal, handle, gfp_mask); 526 if (err < 0) { 527 if (handle->h_rsv_handle) 528 jbd2_free_handle(handle->h_rsv_handle); 529 jbd2_free_handle(handle); 530 return ERR_PTR(err); 531 } 532 handle->h_type = type; 533 handle->h_line_no = line_no; 534 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 535 handle->h_transaction->t_tid, type, 536 line_no, nblocks); 537 538 return handle; 539 } 540 EXPORT_SYMBOL(jbd2__journal_start); 541 542 543 /** 544 * jbd2_journal_start() - Obtain a new handle. 545 * @journal: Journal to start transaction on. 546 * @nblocks: number of block buffer we might modify 547 * 548 * We make sure that the transaction can guarantee at least nblocks of 549 * modified buffers in the log. We block until the log can guarantee 550 * that much space. Additionally, if rsv_blocks > 0, we also create another 551 * handle with rsv_blocks reserved blocks in the journal. This handle is 552 * stored in h_rsv_handle. It is not attached to any particular transaction 553 * and thus doesn't block transaction commit. If the caller uses this reserved 554 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 555 * on the parent handle will dispose the reserved one. Reserved handle has to 556 * be converted to a normal handle using jbd2_journal_start_reserved() before 557 * it can be used. 558 * 559 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 560 * on failure. 561 */ 562 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 563 { 564 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 565 } 566 EXPORT_SYMBOL(jbd2_journal_start); 567 568 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 569 { 570 journal_t *journal = handle->h_journal; 571 572 WARN_ON(!handle->h_reserved); 573 sub_reserved_credits(journal, handle->h_total_credits); 574 if (t) 575 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 576 } 577 578 void jbd2_journal_free_reserved(handle_t *handle) 579 { 580 journal_t *journal = handle->h_journal; 581 582 /* Get j_state_lock to pin running transaction if it exists */ 583 read_lock(&journal->j_state_lock); 584 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 585 read_unlock(&journal->j_state_lock); 586 jbd2_free_handle(handle); 587 } 588 EXPORT_SYMBOL(jbd2_journal_free_reserved); 589 590 /** 591 * jbd2_journal_start_reserved() - start reserved handle 592 * @handle: handle to start 593 * @type: for handle statistics 594 * @line_no: for handle statistics 595 * 596 * Start handle that has been previously reserved with jbd2_journal_reserve(). 597 * This attaches @handle to the running transaction (or creates one if there's 598 * not transaction running). Unlike jbd2_journal_start() this function cannot 599 * block on journal commit, checkpointing, or similar stuff. It can block on 600 * memory allocation or frozen journal though. 601 * 602 * Return 0 on success, non-zero on error - handle is freed in that case. 603 */ 604 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 605 unsigned int line_no) 606 { 607 journal_t *journal = handle->h_journal; 608 int ret = -EIO; 609 610 if (WARN_ON(!handle->h_reserved)) { 611 /* Someone passed in normal handle? Just stop it. */ 612 jbd2_journal_stop(handle); 613 return ret; 614 } 615 /* 616 * Usefulness of mixing of reserved and unreserved handles is 617 * questionable. So far nobody seems to need it so just error out. 618 */ 619 if (WARN_ON(current->journal_info)) { 620 jbd2_journal_free_reserved(handle); 621 return ret; 622 } 623 624 handle->h_journal = NULL; 625 /* 626 * GFP_NOFS is here because callers are likely from writeback or 627 * similarly constrained call sites 628 */ 629 ret = start_this_handle(journal, handle, GFP_NOFS); 630 if (ret < 0) { 631 handle->h_journal = journal; 632 jbd2_journal_free_reserved(handle); 633 return ret; 634 } 635 handle->h_type = type; 636 handle->h_line_no = line_no; 637 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 638 handle->h_transaction->t_tid, type, 639 line_no, handle->h_total_credits); 640 return 0; 641 } 642 EXPORT_SYMBOL(jbd2_journal_start_reserved); 643 644 /** 645 * jbd2_journal_extend() - extend buffer credits. 646 * @handle: handle to 'extend' 647 * @nblocks: nr blocks to try to extend by. 648 * @revoke_records: number of revoke records to try to extend by. 649 * 650 * Some transactions, such as large extends and truncates, can be done 651 * atomically all at once or in several stages. The operation requests 652 * a credit for a number of buffer modifications in advance, but can 653 * extend its credit if it needs more. 654 * 655 * jbd2_journal_extend tries to give the running handle more buffer credits. 656 * It does not guarantee that allocation - this is a best-effort only. 657 * The calling process MUST be able to deal cleanly with a failure to 658 * extend here. 659 * 660 * Return 0 on success, non-zero on failure. 661 * 662 * return code < 0 implies an error 663 * return code > 0 implies normal transaction-full status. 664 */ 665 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 666 { 667 transaction_t *transaction = handle->h_transaction; 668 journal_t *journal; 669 int result; 670 int wanted; 671 672 if (is_handle_aborted(handle)) 673 return -EROFS; 674 journal = transaction->t_journal; 675 676 result = 1; 677 678 read_lock(&journal->j_state_lock); 679 680 /* Don't extend a locked-down transaction! */ 681 if (transaction->t_state != T_RUNNING) { 682 jbd_debug(3, "denied handle %p %d blocks: " 683 "transaction not running\n", handle, nblocks); 684 goto error_out; 685 } 686 687 nblocks += DIV_ROUND_UP( 688 handle->h_revoke_credits_requested + revoke_records, 689 journal->j_revoke_records_per_block) - 690 DIV_ROUND_UP( 691 handle->h_revoke_credits_requested, 692 journal->j_revoke_records_per_block); 693 spin_lock(&transaction->t_handle_lock); 694 wanted = atomic_add_return(nblocks, 695 &transaction->t_outstanding_credits); 696 697 if (wanted > journal->j_max_transaction_buffers) { 698 jbd_debug(3, "denied handle %p %d blocks: " 699 "transaction too large\n", handle, nblocks); 700 atomic_sub(nblocks, &transaction->t_outstanding_credits); 701 goto unlock; 702 } 703 704 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 705 transaction->t_tid, 706 handle->h_type, handle->h_line_no, 707 handle->h_total_credits, 708 nblocks); 709 710 handle->h_total_credits += nblocks; 711 handle->h_requested_credits += nblocks; 712 handle->h_revoke_credits += revoke_records; 713 handle->h_revoke_credits_requested += revoke_records; 714 result = 0; 715 716 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 717 unlock: 718 spin_unlock(&transaction->t_handle_lock); 719 error_out: 720 read_unlock(&journal->j_state_lock); 721 return result; 722 } 723 724 static void stop_this_handle(handle_t *handle) 725 { 726 transaction_t *transaction = handle->h_transaction; 727 journal_t *journal = transaction->t_journal; 728 int revokes; 729 730 J_ASSERT(journal_current_handle() == handle); 731 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 732 current->journal_info = NULL; 733 /* 734 * Subtract necessary revoke descriptor blocks from handle credits. We 735 * take care to account only for revoke descriptor blocks the 736 * transaction will really need as large sequences of transactions with 737 * small numbers of revokes are relatively common. 738 */ 739 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 740 if (revokes) { 741 int t_revokes, revoke_descriptors; 742 int rr_per_blk = journal->j_revoke_records_per_block; 743 744 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 745 > handle->h_total_credits); 746 t_revokes = atomic_add_return(revokes, 747 &transaction->t_outstanding_revokes); 748 revoke_descriptors = 749 DIV_ROUND_UP(t_revokes, rr_per_blk) - 750 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 751 handle->h_total_credits -= revoke_descriptors; 752 } 753 atomic_sub(handle->h_total_credits, 754 &transaction->t_outstanding_credits); 755 if (handle->h_rsv_handle) 756 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 757 transaction); 758 if (atomic_dec_and_test(&transaction->t_updates)) 759 wake_up(&journal->j_wait_updates); 760 761 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 762 /* 763 * Scope of the GFP_NOFS context is over here and so we can restore the 764 * original alloc context. 765 */ 766 memalloc_nofs_restore(handle->saved_alloc_context); 767 } 768 769 /** 770 * jbd2__journal_restart() - restart a handle . 771 * @handle: handle to restart 772 * @nblocks: nr credits requested 773 * @revoke_records: number of revoke record credits requested 774 * @gfp_mask: memory allocation flags (for start_this_handle) 775 * 776 * Restart a handle for a multi-transaction filesystem 777 * operation. 778 * 779 * If the jbd2_journal_extend() call above fails to grant new buffer credits 780 * to a running handle, a call to jbd2_journal_restart will commit the 781 * handle's transaction so far and reattach the handle to a new 782 * transaction capable of guaranteeing the requested number of 783 * credits. We preserve reserved handle if there's any attached to the 784 * passed in handle. 785 */ 786 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 787 gfp_t gfp_mask) 788 { 789 transaction_t *transaction = handle->h_transaction; 790 journal_t *journal; 791 tid_t tid; 792 int need_to_start; 793 int ret; 794 795 /* If we've had an abort of any type, don't even think about 796 * actually doing the restart! */ 797 if (is_handle_aborted(handle)) 798 return 0; 799 journal = transaction->t_journal; 800 tid = transaction->t_tid; 801 802 /* 803 * First unlink the handle from its current transaction, and start the 804 * commit on that. 805 */ 806 jbd_debug(2, "restarting handle %p\n", handle); 807 stop_this_handle(handle); 808 handle->h_transaction = NULL; 809 810 /* 811 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 812 * get rid of pointless j_state_lock traffic like this. 813 */ 814 read_lock(&journal->j_state_lock); 815 need_to_start = !tid_geq(journal->j_commit_request, tid); 816 read_unlock(&journal->j_state_lock); 817 if (need_to_start) 818 jbd2_log_start_commit(journal, tid); 819 handle->h_total_credits = nblocks + 820 DIV_ROUND_UP(revoke_records, 821 journal->j_revoke_records_per_block); 822 handle->h_revoke_credits = revoke_records; 823 ret = start_this_handle(journal, handle, gfp_mask); 824 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 825 ret ? 0 : handle->h_transaction->t_tid, 826 handle->h_type, handle->h_line_no, 827 handle->h_total_credits); 828 return ret; 829 } 830 EXPORT_SYMBOL(jbd2__journal_restart); 831 832 833 int jbd2_journal_restart(handle_t *handle, int nblocks) 834 { 835 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 836 } 837 EXPORT_SYMBOL(jbd2_journal_restart); 838 839 /* 840 * Waits for any outstanding t_updates to finish. 841 * This is called with write j_state_lock held. 842 */ 843 void jbd2_journal_wait_updates(journal_t *journal) 844 { 845 transaction_t *commit_transaction = journal->j_running_transaction; 846 847 if (!commit_transaction) 848 return; 849 850 spin_lock(&commit_transaction->t_handle_lock); 851 while (atomic_read(&commit_transaction->t_updates)) { 852 DEFINE_WAIT(wait); 853 854 prepare_to_wait(&journal->j_wait_updates, &wait, 855 TASK_UNINTERRUPTIBLE); 856 if (atomic_read(&commit_transaction->t_updates)) { 857 spin_unlock(&commit_transaction->t_handle_lock); 858 write_unlock(&journal->j_state_lock); 859 schedule(); 860 write_lock(&journal->j_state_lock); 861 spin_lock(&commit_transaction->t_handle_lock); 862 } 863 finish_wait(&journal->j_wait_updates, &wait); 864 } 865 spin_unlock(&commit_transaction->t_handle_lock); 866 } 867 868 /** 869 * jbd2_journal_lock_updates () - establish a transaction barrier. 870 * @journal: Journal to establish a barrier on. 871 * 872 * This locks out any further updates from being started, and blocks 873 * until all existing updates have completed, returning only once the 874 * journal is in a quiescent state with no updates running. 875 * 876 * The journal lock should not be held on entry. 877 */ 878 void jbd2_journal_lock_updates(journal_t *journal) 879 { 880 DEFINE_WAIT(wait); 881 882 jbd2_might_wait_for_commit(journal); 883 884 write_lock(&journal->j_state_lock); 885 ++journal->j_barrier_count; 886 887 /* Wait until there are no reserved handles */ 888 if (atomic_read(&journal->j_reserved_credits)) { 889 write_unlock(&journal->j_state_lock); 890 wait_event(journal->j_wait_reserved, 891 atomic_read(&journal->j_reserved_credits) == 0); 892 write_lock(&journal->j_state_lock); 893 } 894 895 /* Wait until there are no running t_updates */ 896 jbd2_journal_wait_updates(journal); 897 898 write_unlock(&journal->j_state_lock); 899 900 /* 901 * We have now established a barrier against other normal updates, but 902 * we also need to barrier against other jbd2_journal_lock_updates() calls 903 * to make sure that we serialise special journal-locked operations 904 * too. 905 */ 906 mutex_lock(&journal->j_barrier); 907 } 908 909 /** 910 * jbd2_journal_unlock_updates () - release barrier 911 * @journal: Journal to release the barrier on. 912 * 913 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 914 * 915 * Should be called without the journal lock held. 916 */ 917 void jbd2_journal_unlock_updates (journal_t *journal) 918 { 919 J_ASSERT(journal->j_barrier_count != 0); 920 921 mutex_unlock(&journal->j_barrier); 922 write_lock(&journal->j_state_lock); 923 --journal->j_barrier_count; 924 write_unlock(&journal->j_state_lock); 925 wake_up(&journal->j_wait_transaction_locked); 926 } 927 928 static void warn_dirty_buffer(struct buffer_head *bh) 929 { 930 printk(KERN_WARNING 931 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 932 "There's a risk of filesystem corruption in case of system " 933 "crash.\n", 934 bh->b_bdev, (unsigned long long)bh->b_blocknr); 935 } 936 937 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 938 static void jbd2_freeze_jh_data(struct journal_head *jh) 939 { 940 struct page *page; 941 int offset; 942 char *source; 943 struct buffer_head *bh = jh2bh(jh); 944 945 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 946 page = bh->b_page; 947 offset = offset_in_page(bh->b_data); 948 source = kmap_atomic(page); 949 /* Fire data frozen trigger just before we copy the data */ 950 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 951 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 952 kunmap_atomic(source); 953 954 /* 955 * Now that the frozen data is saved off, we need to store any matching 956 * triggers. 957 */ 958 jh->b_frozen_triggers = jh->b_triggers; 959 } 960 961 /* 962 * If the buffer is already part of the current transaction, then there 963 * is nothing we need to do. If it is already part of a prior 964 * transaction which we are still committing to disk, then we need to 965 * make sure that we do not overwrite the old copy: we do copy-out to 966 * preserve the copy going to disk. We also account the buffer against 967 * the handle's metadata buffer credits (unless the buffer is already 968 * part of the transaction, that is). 969 * 970 */ 971 static int 972 do_get_write_access(handle_t *handle, struct journal_head *jh, 973 int force_copy) 974 { 975 struct buffer_head *bh; 976 transaction_t *transaction = handle->h_transaction; 977 journal_t *journal; 978 int error; 979 char *frozen_buffer = NULL; 980 unsigned long start_lock, time_lock; 981 982 journal = transaction->t_journal; 983 984 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 985 986 JBUFFER_TRACE(jh, "entry"); 987 repeat: 988 bh = jh2bh(jh); 989 990 /* @@@ Need to check for errors here at some point. */ 991 992 start_lock = jiffies; 993 lock_buffer(bh); 994 spin_lock(&jh->b_state_lock); 995 996 /* If it takes too long to lock the buffer, trace it */ 997 time_lock = jbd2_time_diff(start_lock, jiffies); 998 if (time_lock > HZ/10) 999 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 1000 jiffies_to_msecs(time_lock)); 1001 1002 /* We now hold the buffer lock so it is safe to query the buffer 1003 * state. Is the buffer dirty? 1004 * 1005 * If so, there are two possibilities. The buffer may be 1006 * non-journaled, and undergoing a quite legitimate writeback. 1007 * Otherwise, it is journaled, and we don't expect dirty buffers 1008 * in that state (the buffers should be marked JBD_Dirty 1009 * instead.) So either the IO is being done under our own 1010 * control and this is a bug, or it's a third party IO such as 1011 * dump(8) (which may leave the buffer scheduled for read --- 1012 * ie. locked but not dirty) or tune2fs (which may actually have 1013 * the buffer dirtied, ugh.) */ 1014 1015 if (buffer_dirty(bh)) { 1016 /* 1017 * First question: is this buffer already part of the current 1018 * transaction or the existing committing transaction? 1019 */ 1020 if (jh->b_transaction) { 1021 J_ASSERT_JH(jh, 1022 jh->b_transaction == transaction || 1023 jh->b_transaction == 1024 journal->j_committing_transaction); 1025 if (jh->b_next_transaction) 1026 J_ASSERT_JH(jh, jh->b_next_transaction == 1027 transaction); 1028 warn_dirty_buffer(bh); 1029 } 1030 /* 1031 * In any case we need to clean the dirty flag and we must 1032 * do it under the buffer lock to be sure we don't race 1033 * with running write-out. 1034 */ 1035 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1036 clear_buffer_dirty(bh); 1037 set_buffer_jbddirty(bh); 1038 } 1039 1040 unlock_buffer(bh); 1041 1042 error = -EROFS; 1043 if (is_handle_aborted(handle)) { 1044 spin_unlock(&jh->b_state_lock); 1045 goto out; 1046 } 1047 error = 0; 1048 1049 /* 1050 * The buffer is already part of this transaction if b_transaction or 1051 * b_next_transaction points to it 1052 */ 1053 if (jh->b_transaction == transaction || 1054 jh->b_next_transaction == transaction) 1055 goto done; 1056 1057 /* 1058 * this is the first time this transaction is touching this buffer, 1059 * reset the modified flag 1060 */ 1061 jh->b_modified = 0; 1062 1063 /* 1064 * If the buffer is not journaled right now, we need to make sure it 1065 * doesn't get written to disk before the caller actually commits the 1066 * new data 1067 */ 1068 if (!jh->b_transaction) { 1069 JBUFFER_TRACE(jh, "no transaction"); 1070 J_ASSERT_JH(jh, !jh->b_next_transaction); 1071 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1072 /* 1073 * Make sure all stores to jh (b_modified, b_frozen_data) are 1074 * visible before attaching it to the running transaction. 1075 * Paired with barrier in jbd2_write_access_granted() 1076 */ 1077 smp_wmb(); 1078 spin_lock(&journal->j_list_lock); 1079 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1080 spin_unlock(&journal->j_list_lock); 1081 goto done; 1082 } 1083 /* 1084 * If there is already a copy-out version of this buffer, then we don't 1085 * need to make another one 1086 */ 1087 if (jh->b_frozen_data) { 1088 JBUFFER_TRACE(jh, "has frozen data"); 1089 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1090 goto attach_next; 1091 } 1092 1093 JBUFFER_TRACE(jh, "owned by older transaction"); 1094 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1095 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1096 1097 /* 1098 * There is one case we have to be very careful about. If the 1099 * committing transaction is currently writing this buffer out to disk 1100 * and has NOT made a copy-out, then we cannot modify the buffer 1101 * contents at all right now. The essence of copy-out is that it is 1102 * the extra copy, not the primary copy, which gets journaled. If the 1103 * primary copy is already going to disk then we cannot do copy-out 1104 * here. 1105 */ 1106 if (buffer_shadow(bh)) { 1107 JBUFFER_TRACE(jh, "on shadow: sleep"); 1108 spin_unlock(&jh->b_state_lock); 1109 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1110 goto repeat; 1111 } 1112 1113 /* 1114 * Only do the copy if the currently-owning transaction still needs it. 1115 * If buffer isn't on BJ_Metadata list, the committing transaction is 1116 * past that stage (here we use the fact that BH_Shadow is set under 1117 * bh_state lock together with refiling to BJ_Shadow list and at this 1118 * point we know the buffer doesn't have BH_Shadow set). 1119 * 1120 * Subtle point, though: if this is a get_undo_access, then we will be 1121 * relying on the frozen_data to contain the new value of the 1122 * committed_data record after the transaction, so we HAVE to force the 1123 * frozen_data copy in that case. 1124 */ 1125 if (jh->b_jlist == BJ_Metadata || force_copy) { 1126 JBUFFER_TRACE(jh, "generate frozen data"); 1127 if (!frozen_buffer) { 1128 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1129 spin_unlock(&jh->b_state_lock); 1130 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1131 GFP_NOFS | __GFP_NOFAIL); 1132 goto repeat; 1133 } 1134 jh->b_frozen_data = frozen_buffer; 1135 frozen_buffer = NULL; 1136 jbd2_freeze_jh_data(jh); 1137 } 1138 attach_next: 1139 /* 1140 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1141 * before attaching it to the running transaction. Paired with barrier 1142 * in jbd2_write_access_granted() 1143 */ 1144 smp_wmb(); 1145 jh->b_next_transaction = transaction; 1146 1147 done: 1148 spin_unlock(&jh->b_state_lock); 1149 1150 /* 1151 * If we are about to journal a buffer, then any revoke pending on it is 1152 * no longer valid 1153 */ 1154 jbd2_journal_cancel_revoke(handle, jh); 1155 1156 out: 1157 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1158 jbd2_free(frozen_buffer, bh->b_size); 1159 1160 JBUFFER_TRACE(jh, "exit"); 1161 return error; 1162 } 1163 1164 /* Fast check whether buffer is already attached to the required transaction */ 1165 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1166 bool undo) 1167 { 1168 struct journal_head *jh; 1169 bool ret = false; 1170 1171 /* Dirty buffers require special handling... */ 1172 if (buffer_dirty(bh)) 1173 return false; 1174 1175 /* 1176 * RCU protects us from dereferencing freed pages. So the checks we do 1177 * are guaranteed not to oops. However the jh slab object can get freed 1178 * & reallocated while we work with it. So we have to be careful. When 1179 * we see jh attached to the running transaction, we know it must stay 1180 * so until the transaction is committed. Thus jh won't be freed and 1181 * will be attached to the same bh while we run. However it can 1182 * happen jh gets freed, reallocated, and attached to the transaction 1183 * just after we get pointer to it from bh. So we have to be careful 1184 * and recheck jh still belongs to our bh before we return success. 1185 */ 1186 rcu_read_lock(); 1187 if (!buffer_jbd(bh)) 1188 goto out; 1189 /* This should be bh2jh() but that doesn't work with inline functions */ 1190 jh = READ_ONCE(bh->b_private); 1191 if (!jh) 1192 goto out; 1193 /* For undo access buffer must have data copied */ 1194 if (undo && !jh->b_committed_data) 1195 goto out; 1196 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1197 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1198 goto out; 1199 /* 1200 * There are two reasons for the barrier here: 1201 * 1) Make sure to fetch b_bh after we did previous checks so that we 1202 * detect when jh went through free, realloc, attach to transaction 1203 * while we were checking. Paired with implicit barrier in that path. 1204 * 2) So that access to bh done after jbd2_write_access_granted() 1205 * doesn't get reordered and see inconsistent state of concurrent 1206 * do_get_write_access(). 1207 */ 1208 smp_mb(); 1209 if (unlikely(jh->b_bh != bh)) 1210 goto out; 1211 ret = true; 1212 out: 1213 rcu_read_unlock(); 1214 return ret; 1215 } 1216 1217 /** 1218 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1219 * for metadata (not data) update. 1220 * @handle: transaction to add buffer modifications to 1221 * @bh: bh to be used for metadata writes 1222 * 1223 * Returns: error code or 0 on success. 1224 * 1225 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1226 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1227 */ 1228 1229 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1230 { 1231 struct journal_head *jh; 1232 int rc; 1233 1234 if (is_handle_aborted(handle)) 1235 return -EROFS; 1236 1237 if (jbd2_write_access_granted(handle, bh, false)) 1238 return 0; 1239 1240 jh = jbd2_journal_add_journal_head(bh); 1241 /* We do not want to get caught playing with fields which the 1242 * log thread also manipulates. Make sure that the buffer 1243 * completes any outstanding IO before proceeding. */ 1244 rc = do_get_write_access(handle, jh, 0); 1245 jbd2_journal_put_journal_head(jh); 1246 return rc; 1247 } 1248 1249 1250 /* 1251 * When the user wants to journal a newly created buffer_head 1252 * (ie. getblk() returned a new buffer and we are going to populate it 1253 * manually rather than reading off disk), then we need to keep the 1254 * buffer_head locked until it has been completely filled with new 1255 * data. In this case, we should be able to make the assertion that 1256 * the bh is not already part of an existing transaction. 1257 * 1258 * The buffer should already be locked by the caller by this point. 1259 * There is no lock ranking violation: it was a newly created, 1260 * unlocked buffer beforehand. */ 1261 1262 /** 1263 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1264 * @handle: transaction to new buffer to 1265 * @bh: new buffer. 1266 * 1267 * Call this if you create a new bh. 1268 */ 1269 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1270 { 1271 transaction_t *transaction = handle->h_transaction; 1272 journal_t *journal; 1273 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1274 int err; 1275 1276 jbd_debug(5, "journal_head %p\n", jh); 1277 err = -EROFS; 1278 if (is_handle_aborted(handle)) 1279 goto out; 1280 journal = transaction->t_journal; 1281 err = 0; 1282 1283 JBUFFER_TRACE(jh, "entry"); 1284 /* 1285 * The buffer may already belong to this transaction due to pre-zeroing 1286 * in the filesystem's new_block code. It may also be on the previous, 1287 * committing transaction's lists, but it HAS to be in Forget state in 1288 * that case: the transaction must have deleted the buffer for it to be 1289 * reused here. 1290 */ 1291 spin_lock(&jh->b_state_lock); 1292 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1293 jh->b_transaction == NULL || 1294 (jh->b_transaction == journal->j_committing_transaction && 1295 jh->b_jlist == BJ_Forget))); 1296 1297 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1298 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1299 1300 if (jh->b_transaction == NULL) { 1301 /* 1302 * Previous jbd2_journal_forget() could have left the buffer 1303 * with jbddirty bit set because it was being committed. When 1304 * the commit finished, we've filed the buffer for 1305 * checkpointing and marked it dirty. Now we are reallocating 1306 * the buffer so the transaction freeing it must have 1307 * committed and so it's safe to clear the dirty bit. 1308 */ 1309 clear_buffer_dirty(jh2bh(jh)); 1310 /* first access by this transaction */ 1311 jh->b_modified = 0; 1312 1313 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1314 spin_lock(&journal->j_list_lock); 1315 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1316 spin_unlock(&journal->j_list_lock); 1317 } else if (jh->b_transaction == journal->j_committing_transaction) { 1318 /* first access by this transaction */ 1319 jh->b_modified = 0; 1320 1321 JBUFFER_TRACE(jh, "set next transaction"); 1322 spin_lock(&journal->j_list_lock); 1323 jh->b_next_transaction = transaction; 1324 spin_unlock(&journal->j_list_lock); 1325 } 1326 spin_unlock(&jh->b_state_lock); 1327 1328 /* 1329 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1330 * blocks which contain freed but then revoked metadata. We need 1331 * to cancel the revoke in case we end up freeing it yet again 1332 * and the reallocating as data - this would cause a second revoke, 1333 * which hits an assertion error. 1334 */ 1335 JBUFFER_TRACE(jh, "cancelling revoke"); 1336 jbd2_journal_cancel_revoke(handle, jh); 1337 out: 1338 jbd2_journal_put_journal_head(jh); 1339 return err; 1340 } 1341 1342 /** 1343 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1344 * non-rewindable consequences 1345 * @handle: transaction 1346 * @bh: buffer to undo 1347 * 1348 * Sometimes there is a need to distinguish between metadata which has 1349 * been committed to disk and that which has not. The ext3fs code uses 1350 * this for freeing and allocating space, we have to make sure that we 1351 * do not reuse freed space until the deallocation has been committed, 1352 * since if we overwrote that space we would make the delete 1353 * un-rewindable in case of a crash. 1354 * 1355 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1356 * buffer for parts of non-rewindable operations such as delete 1357 * operations on the bitmaps. The journaling code must keep a copy of 1358 * the buffer's contents prior to the undo_access call until such time 1359 * as we know that the buffer has definitely been committed to disk. 1360 * 1361 * We never need to know which transaction the committed data is part 1362 * of, buffers touched here are guaranteed to be dirtied later and so 1363 * will be committed to a new transaction in due course, at which point 1364 * we can discard the old committed data pointer. 1365 * 1366 * Returns error number or 0 on success. 1367 */ 1368 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1369 { 1370 int err; 1371 struct journal_head *jh; 1372 char *committed_data = NULL; 1373 1374 if (is_handle_aborted(handle)) 1375 return -EROFS; 1376 1377 if (jbd2_write_access_granted(handle, bh, true)) 1378 return 0; 1379 1380 jh = jbd2_journal_add_journal_head(bh); 1381 JBUFFER_TRACE(jh, "entry"); 1382 1383 /* 1384 * Do this first --- it can drop the journal lock, so we want to 1385 * make sure that obtaining the committed_data is done 1386 * atomically wrt. completion of any outstanding commits. 1387 */ 1388 err = do_get_write_access(handle, jh, 1); 1389 if (err) 1390 goto out; 1391 1392 repeat: 1393 if (!jh->b_committed_data) 1394 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1395 GFP_NOFS|__GFP_NOFAIL); 1396 1397 spin_lock(&jh->b_state_lock); 1398 if (!jh->b_committed_data) { 1399 /* Copy out the current buffer contents into the 1400 * preserved, committed copy. */ 1401 JBUFFER_TRACE(jh, "generate b_committed data"); 1402 if (!committed_data) { 1403 spin_unlock(&jh->b_state_lock); 1404 goto repeat; 1405 } 1406 1407 jh->b_committed_data = committed_data; 1408 committed_data = NULL; 1409 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1410 } 1411 spin_unlock(&jh->b_state_lock); 1412 out: 1413 jbd2_journal_put_journal_head(jh); 1414 if (unlikely(committed_data)) 1415 jbd2_free(committed_data, bh->b_size); 1416 return err; 1417 } 1418 1419 /** 1420 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1421 * @bh: buffer to trigger on 1422 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1423 * 1424 * Set any triggers on this journal_head. This is always safe, because 1425 * triggers for a committing buffer will be saved off, and triggers for 1426 * a running transaction will match the buffer in that transaction. 1427 * 1428 * Call with NULL to clear the triggers. 1429 */ 1430 void jbd2_journal_set_triggers(struct buffer_head *bh, 1431 struct jbd2_buffer_trigger_type *type) 1432 { 1433 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1434 1435 if (WARN_ON_ONCE(!jh)) 1436 return; 1437 jh->b_triggers = type; 1438 jbd2_journal_put_journal_head(jh); 1439 } 1440 1441 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1442 struct jbd2_buffer_trigger_type *triggers) 1443 { 1444 struct buffer_head *bh = jh2bh(jh); 1445 1446 if (!triggers || !triggers->t_frozen) 1447 return; 1448 1449 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1450 } 1451 1452 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1453 struct jbd2_buffer_trigger_type *triggers) 1454 { 1455 if (!triggers || !triggers->t_abort) 1456 return; 1457 1458 triggers->t_abort(triggers, jh2bh(jh)); 1459 } 1460 1461 /** 1462 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1463 * @handle: transaction to add buffer to. 1464 * @bh: buffer to mark 1465 * 1466 * mark dirty metadata which needs to be journaled as part of the current 1467 * transaction. 1468 * 1469 * The buffer must have previously had jbd2_journal_get_write_access() 1470 * called so that it has a valid journal_head attached to the buffer 1471 * head. 1472 * 1473 * The buffer is placed on the transaction's metadata list and is marked 1474 * as belonging to the transaction. 1475 * 1476 * Returns error number or 0 on success. 1477 * 1478 * Special care needs to be taken if the buffer already belongs to the 1479 * current committing transaction (in which case we should have frozen 1480 * data present for that commit). In that case, we don't relink the 1481 * buffer: that only gets done when the old transaction finally 1482 * completes its commit. 1483 */ 1484 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1485 { 1486 transaction_t *transaction = handle->h_transaction; 1487 journal_t *journal; 1488 struct journal_head *jh; 1489 int ret = 0; 1490 1491 if (is_handle_aborted(handle)) 1492 return -EROFS; 1493 if (!buffer_jbd(bh)) 1494 return -EUCLEAN; 1495 1496 /* 1497 * We don't grab jh reference here since the buffer must be part 1498 * of the running transaction. 1499 */ 1500 jh = bh2jh(bh); 1501 jbd_debug(5, "journal_head %p\n", jh); 1502 JBUFFER_TRACE(jh, "entry"); 1503 1504 /* 1505 * This and the following assertions are unreliable since we may see jh 1506 * in inconsistent state unless we grab bh_state lock. But this is 1507 * crucial to catch bugs so let's do a reliable check until the 1508 * lockless handling is fully proven. 1509 */ 1510 if (data_race(jh->b_transaction != transaction && 1511 jh->b_next_transaction != transaction)) { 1512 spin_lock(&jh->b_state_lock); 1513 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1514 jh->b_next_transaction == transaction); 1515 spin_unlock(&jh->b_state_lock); 1516 } 1517 if (jh->b_modified == 1) { 1518 /* If it's in our transaction it must be in BJ_Metadata list. */ 1519 if (data_race(jh->b_transaction == transaction && 1520 jh->b_jlist != BJ_Metadata)) { 1521 spin_lock(&jh->b_state_lock); 1522 if (jh->b_transaction == transaction && 1523 jh->b_jlist != BJ_Metadata) 1524 pr_err("JBD2: assertion failure: h_type=%u " 1525 "h_line_no=%u block_no=%llu jlist=%u\n", 1526 handle->h_type, handle->h_line_no, 1527 (unsigned long long) bh->b_blocknr, 1528 jh->b_jlist); 1529 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1530 jh->b_jlist == BJ_Metadata); 1531 spin_unlock(&jh->b_state_lock); 1532 } 1533 goto out; 1534 } 1535 1536 journal = transaction->t_journal; 1537 spin_lock(&jh->b_state_lock); 1538 1539 if (jh->b_modified == 0) { 1540 /* 1541 * This buffer's got modified and becoming part 1542 * of the transaction. This needs to be done 1543 * once a transaction -bzzz 1544 */ 1545 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1546 ret = -ENOSPC; 1547 goto out_unlock_bh; 1548 } 1549 jh->b_modified = 1; 1550 handle->h_total_credits--; 1551 } 1552 1553 /* 1554 * fastpath, to avoid expensive locking. If this buffer is already 1555 * on the running transaction's metadata list there is nothing to do. 1556 * Nobody can take it off again because there is a handle open. 1557 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1558 * result in this test being false, so we go in and take the locks. 1559 */ 1560 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1561 JBUFFER_TRACE(jh, "fastpath"); 1562 if (unlikely(jh->b_transaction != 1563 journal->j_running_transaction)) { 1564 printk(KERN_ERR "JBD2: %s: " 1565 "jh->b_transaction (%llu, %p, %u) != " 1566 "journal->j_running_transaction (%p, %u)\n", 1567 journal->j_devname, 1568 (unsigned long long) bh->b_blocknr, 1569 jh->b_transaction, 1570 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1571 journal->j_running_transaction, 1572 journal->j_running_transaction ? 1573 journal->j_running_transaction->t_tid : 0); 1574 ret = -EINVAL; 1575 } 1576 goto out_unlock_bh; 1577 } 1578 1579 set_buffer_jbddirty(bh); 1580 1581 /* 1582 * Metadata already on the current transaction list doesn't 1583 * need to be filed. Metadata on another transaction's list must 1584 * be committing, and will be refiled once the commit completes: 1585 * leave it alone for now. 1586 */ 1587 if (jh->b_transaction != transaction) { 1588 JBUFFER_TRACE(jh, "already on other transaction"); 1589 if (unlikely(((jh->b_transaction != 1590 journal->j_committing_transaction)) || 1591 (jh->b_next_transaction != transaction))) { 1592 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1593 "bad jh for block %llu: " 1594 "transaction (%p, %u), " 1595 "jh->b_transaction (%p, %u), " 1596 "jh->b_next_transaction (%p, %u), jlist %u\n", 1597 journal->j_devname, 1598 (unsigned long long) bh->b_blocknr, 1599 transaction, transaction->t_tid, 1600 jh->b_transaction, 1601 jh->b_transaction ? 1602 jh->b_transaction->t_tid : 0, 1603 jh->b_next_transaction, 1604 jh->b_next_transaction ? 1605 jh->b_next_transaction->t_tid : 0, 1606 jh->b_jlist); 1607 WARN_ON(1); 1608 ret = -EINVAL; 1609 } 1610 /* And this case is illegal: we can't reuse another 1611 * transaction's data buffer, ever. */ 1612 goto out_unlock_bh; 1613 } 1614 1615 /* That test should have eliminated the following case: */ 1616 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1617 1618 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1619 spin_lock(&journal->j_list_lock); 1620 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1621 spin_unlock(&journal->j_list_lock); 1622 out_unlock_bh: 1623 spin_unlock(&jh->b_state_lock); 1624 out: 1625 JBUFFER_TRACE(jh, "exit"); 1626 return ret; 1627 } 1628 1629 /** 1630 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1631 * @handle: transaction handle 1632 * @bh: bh to 'forget' 1633 * 1634 * We can only do the bforget if there are no commits pending against the 1635 * buffer. If the buffer is dirty in the current running transaction we 1636 * can safely unlink it. 1637 * 1638 * bh may not be a journalled buffer at all - it may be a non-JBD 1639 * buffer which came off the hashtable. Check for this. 1640 * 1641 * Decrements bh->b_count by one. 1642 * 1643 * Allow this call even if the handle has aborted --- it may be part of 1644 * the caller's cleanup after an abort. 1645 */ 1646 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1647 { 1648 transaction_t *transaction = handle->h_transaction; 1649 journal_t *journal; 1650 struct journal_head *jh; 1651 int drop_reserve = 0; 1652 int err = 0; 1653 int was_modified = 0; 1654 1655 if (is_handle_aborted(handle)) 1656 return -EROFS; 1657 journal = transaction->t_journal; 1658 1659 BUFFER_TRACE(bh, "entry"); 1660 1661 jh = jbd2_journal_grab_journal_head(bh); 1662 if (!jh) { 1663 __bforget(bh); 1664 return 0; 1665 } 1666 1667 spin_lock(&jh->b_state_lock); 1668 1669 /* Critical error: attempting to delete a bitmap buffer, maybe? 1670 * Don't do any jbd operations, and return an error. */ 1671 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1672 "inconsistent data on disk")) { 1673 err = -EIO; 1674 goto drop; 1675 } 1676 1677 /* keep track of whether or not this transaction modified us */ 1678 was_modified = jh->b_modified; 1679 1680 /* 1681 * The buffer's going from the transaction, we must drop 1682 * all references -bzzz 1683 */ 1684 jh->b_modified = 0; 1685 1686 if (jh->b_transaction == transaction) { 1687 J_ASSERT_JH(jh, !jh->b_frozen_data); 1688 1689 /* If we are forgetting a buffer which is already part 1690 * of this transaction, then we can just drop it from 1691 * the transaction immediately. */ 1692 clear_buffer_dirty(bh); 1693 clear_buffer_jbddirty(bh); 1694 1695 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1696 1697 /* 1698 * we only want to drop a reference if this transaction 1699 * modified the buffer 1700 */ 1701 if (was_modified) 1702 drop_reserve = 1; 1703 1704 /* 1705 * We are no longer going to journal this buffer. 1706 * However, the commit of this transaction is still 1707 * important to the buffer: the delete that we are now 1708 * processing might obsolete an old log entry, so by 1709 * committing, we can satisfy the buffer's checkpoint. 1710 * 1711 * So, if we have a checkpoint on the buffer, we should 1712 * now refile the buffer on our BJ_Forget list so that 1713 * we know to remove the checkpoint after we commit. 1714 */ 1715 1716 spin_lock(&journal->j_list_lock); 1717 if (jh->b_cp_transaction) { 1718 __jbd2_journal_temp_unlink_buffer(jh); 1719 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1720 } else { 1721 __jbd2_journal_unfile_buffer(jh); 1722 jbd2_journal_put_journal_head(jh); 1723 } 1724 spin_unlock(&journal->j_list_lock); 1725 } else if (jh->b_transaction) { 1726 J_ASSERT_JH(jh, (jh->b_transaction == 1727 journal->j_committing_transaction)); 1728 /* However, if the buffer is still owned by a prior 1729 * (committing) transaction, we can't drop it yet... */ 1730 JBUFFER_TRACE(jh, "belongs to older transaction"); 1731 /* ... but we CAN drop it from the new transaction through 1732 * marking the buffer as freed and set j_next_transaction to 1733 * the new transaction, so that not only the commit code 1734 * knows it should clear dirty bits when it is done with the 1735 * buffer, but also the buffer can be checkpointed only 1736 * after the new transaction commits. */ 1737 1738 set_buffer_freed(bh); 1739 1740 if (!jh->b_next_transaction) { 1741 spin_lock(&journal->j_list_lock); 1742 jh->b_next_transaction = transaction; 1743 spin_unlock(&journal->j_list_lock); 1744 } else { 1745 J_ASSERT(jh->b_next_transaction == transaction); 1746 1747 /* 1748 * only drop a reference if this transaction modified 1749 * the buffer 1750 */ 1751 if (was_modified) 1752 drop_reserve = 1; 1753 } 1754 } else { 1755 /* 1756 * Finally, if the buffer is not belongs to any 1757 * transaction, we can just drop it now if it has no 1758 * checkpoint. 1759 */ 1760 spin_lock(&journal->j_list_lock); 1761 if (!jh->b_cp_transaction) { 1762 JBUFFER_TRACE(jh, "belongs to none transaction"); 1763 spin_unlock(&journal->j_list_lock); 1764 goto drop; 1765 } 1766 1767 /* 1768 * Otherwise, if the buffer has been written to disk, 1769 * it is safe to remove the checkpoint and drop it. 1770 */ 1771 if (!buffer_dirty(bh)) { 1772 __jbd2_journal_remove_checkpoint(jh); 1773 spin_unlock(&journal->j_list_lock); 1774 goto drop; 1775 } 1776 1777 /* 1778 * The buffer is still not written to disk, we should 1779 * attach this buffer to current transaction so that the 1780 * buffer can be checkpointed only after the current 1781 * transaction commits. 1782 */ 1783 clear_buffer_dirty(bh); 1784 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1785 spin_unlock(&journal->j_list_lock); 1786 } 1787 drop: 1788 __brelse(bh); 1789 spin_unlock(&jh->b_state_lock); 1790 jbd2_journal_put_journal_head(jh); 1791 if (drop_reserve) { 1792 /* no need to reserve log space for this block -bzzz */ 1793 handle->h_total_credits++; 1794 } 1795 return err; 1796 } 1797 1798 /** 1799 * jbd2_journal_stop() - complete a transaction 1800 * @handle: transaction to complete. 1801 * 1802 * All done for a particular handle. 1803 * 1804 * There is not much action needed here. We just return any remaining 1805 * buffer credits to the transaction and remove the handle. The only 1806 * complication is that we need to start a commit operation if the 1807 * filesystem is marked for synchronous update. 1808 * 1809 * jbd2_journal_stop itself will not usually return an error, but it may 1810 * do so in unusual circumstances. In particular, expect it to 1811 * return -EIO if a jbd2_journal_abort has been executed since the 1812 * transaction began. 1813 */ 1814 int jbd2_journal_stop(handle_t *handle) 1815 { 1816 transaction_t *transaction = handle->h_transaction; 1817 journal_t *journal; 1818 int err = 0, wait_for_commit = 0; 1819 tid_t tid; 1820 pid_t pid; 1821 1822 if (--handle->h_ref > 0) { 1823 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1824 handle->h_ref); 1825 if (is_handle_aborted(handle)) 1826 return -EIO; 1827 return 0; 1828 } 1829 if (!transaction) { 1830 /* 1831 * Handle is already detached from the transaction so there is 1832 * nothing to do other than free the handle. 1833 */ 1834 memalloc_nofs_restore(handle->saved_alloc_context); 1835 goto free_and_exit; 1836 } 1837 journal = transaction->t_journal; 1838 tid = transaction->t_tid; 1839 1840 if (is_handle_aborted(handle)) 1841 err = -EIO; 1842 1843 jbd_debug(4, "Handle %p going down\n", handle); 1844 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1845 tid, handle->h_type, handle->h_line_no, 1846 jiffies - handle->h_start_jiffies, 1847 handle->h_sync, handle->h_requested_credits, 1848 (handle->h_requested_credits - 1849 handle->h_total_credits)); 1850 1851 /* 1852 * Implement synchronous transaction batching. If the handle 1853 * was synchronous, don't force a commit immediately. Let's 1854 * yield and let another thread piggyback onto this 1855 * transaction. Keep doing that while new threads continue to 1856 * arrive. It doesn't cost much - we're about to run a commit 1857 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1858 * operations by 30x or more... 1859 * 1860 * We try and optimize the sleep time against what the 1861 * underlying disk can do, instead of having a static sleep 1862 * time. This is useful for the case where our storage is so 1863 * fast that it is more optimal to go ahead and force a flush 1864 * and wait for the transaction to be committed than it is to 1865 * wait for an arbitrary amount of time for new writers to 1866 * join the transaction. We achieve this by measuring how 1867 * long it takes to commit a transaction, and compare it with 1868 * how long this transaction has been running, and if run time 1869 * < commit time then we sleep for the delta and commit. This 1870 * greatly helps super fast disks that would see slowdowns as 1871 * more threads started doing fsyncs. 1872 * 1873 * But don't do this if this process was the most recent one 1874 * to perform a synchronous write. We do this to detect the 1875 * case where a single process is doing a stream of sync 1876 * writes. No point in waiting for joiners in that case. 1877 * 1878 * Setting max_batch_time to 0 disables this completely. 1879 */ 1880 pid = current->pid; 1881 if (handle->h_sync && journal->j_last_sync_writer != pid && 1882 journal->j_max_batch_time) { 1883 u64 commit_time, trans_time; 1884 1885 journal->j_last_sync_writer = pid; 1886 1887 read_lock(&journal->j_state_lock); 1888 commit_time = journal->j_average_commit_time; 1889 read_unlock(&journal->j_state_lock); 1890 1891 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1892 transaction->t_start_time)); 1893 1894 commit_time = max_t(u64, commit_time, 1895 1000*journal->j_min_batch_time); 1896 commit_time = min_t(u64, commit_time, 1897 1000*journal->j_max_batch_time); 1898 1899 if (trans_time < commit_time) { 1900 ktime_t expires = ktime_add_ns(ktime_get(), 1901 commit_time); 1902 set_current_state(TASK_UNINTERRUPTIBLE); 1903 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1904 } 1905 } 1906 1907 if (handle->h_sync) 1908 transaction->t_synchronous_commit = 1; 1909 1910 /* 1911 * If the handle is marked SYNC, we need to set another commit 1912 * going! We also want to force a commit if the transaction is too 1913 * old now. 1914 */ 1915 if (handle->h_sync || 1916 time_after_eq(jiffies, transaction->t_expires)) { 1917 /* Do this even for aborted journals: an abort still 1918 * completes the commit thread, it just doesn't write 1919 * anything to disk. */ 1920 1921 jbd_debug(2, "transaction too old, requesting commit for " 1922 "handle %p\n", handle); 1923 /* This is non-blocking */ 1924 jbd2_log_start_commit(journal, tid); 1925 1926 /* 1927 * Special case: JBD2_SYNC synchronous updates require us 1928 * to wait for the commit to complete. 1929 */ 1930 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1931 wait_for_commit = 1; 1932 } 1933 1934 /* 1935 * Once stop_this_handle() drops t_updates, the transaction could start 1936 * committing on us and eventually disappear. So we must not 1937 * dereference transaction pointer again after calling 1938 * stop_this_handle(). 1939 */ 1940 stop_this_handle(handle); 1941 1942 if (wait_for_commit) 1943 err = jbd2_log_wait_commit(journal, tid); 1944 1945 free_and_exit: 1946 if (handle->h_rsv_handle) 1947 jbd2_free_handle(handle->h_rsv_handle); 1948 jbd2_free_handle(handle); 1949 return err; 1950 } 1951 1952 /* 1953 * 1954 * List management code snippets: various functions for manipulating the 1955 * transaction buffer lists. 1956 * 1957 */ 1958 1959 /* 1960 * Append a buffer to a transaction list, given the transaction's list head 1961 * pointer. 1962 * 1963 * j_list_lock is held. 1964 * 1965 * jh->b_state_lock is held. 1966 */ 1967 1968 static inline void 1969 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1970 { 1971 if (!*list) { 1972 jh->b_tnext = jh->b_tprev = jh; 1973 *list = jh; 1974 } else { 1975 /* Insert at the tail of the list to preserve order */ 1976 struct journal_head *first = *list, *last = first->b_tprev; 1977 jh->b_tprev = last; 1978 jh->b_tnext = first; 1979 last->b_tnext = first->b_tprev = jh; 1980 } 1981 } 1982 1983 /* 1984 * Remove a buffer from a transaction list, given the transaction's list 1985 * head pointer. 1986 * 1987 * Called with j_list_lock held, and the journal may not be locked. 1988 * 1989 * jh->b_state_lock is held. 1990 */ 1991 1992 static inline void 1993 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1994 { 1995 if (*list == jh) { 1996 *list = jh->b_tnext; 1997 if (*list == jh) 1998 *list = NULL; 1999 } 2000 jh->b_tprev->b_tnext = jh->b_tnext; 2001 jh->b_tnext->b_tprev = jh->b_tprev; 2002 } 2003 2004 /* 2005 * Remove a buffer from the appropriate transaction list. 2006 * 2007 * Note that this function can *change* the value of 2008 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 2009 * t_reserved_list. If the caller is holding onto a copy of one of these 2010 * pointers, it could go bad. Generally the caller needs to re-read the 2011 * pointer from the transaction_t. 2012 * 2013 * Called under j_list_lock. 2014 */ 2015 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2016 { 2017 struct journal_head **list = NULL; 2018 transaction_t *transaction; 2019 struct buffer_head *bh = jh2bh(jh); 2020 2021 lockdep_assert_held(&jh->b_state_lock); 2022 transaction = jh->b_transaction; 2023 if (transaction) 2024 assert_spin_locked(&transaction->t_journal->j_list_lock); 2025 2026 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2027 if (jh->b_jlist != BJ_None) 2028 J_ASSERT_JH(jh, transaction != NULL); 2029 2030 switch (jh->b_jlist) { 2031 case BJ_None: 2032 return; 2033 case BJ_Metadata: 2034 transaction->t_nr_buffers--; 2035 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2036 list = &transaction->t_buffers; 2037 break; 2038 case BJ_Forget: 2039 list = &transaction->t_forget; 2040 break; 2041 case BJ_Shadow: 2042 list = &transaction->t_shadow_list; 2043 break; 2044 case BJ_Reserved: 2045 list = &transaction->t_reserved_list; 2046 break; 2047 } 2048 2049 __blist_del_buffer(list, jh); 2050 jh->b_jlist = BJ_None; 2051 if (transaction && is_journal_aborted(transaction->t_journal)) 2052 clear_buffer_jbddirty(bh); 2053 else if (test_clear_buffer_jbddirty(bh)) 2054 mark_buffer_dirty(bh); /* Expose it to the VM */ 2055 } 2056 2057 /* 2058 * Remove buffer from all transactions. The caller is responsible for dropping 2059 * the jh reference that belonged to the transaction. 2060 * 2061 * Called with bh_state lock and j_list_lock 2062 */ 2063 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2064 { 2065 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2066 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2067 2068 __jbd2_journal_temp_unlink_buffer(jh); 2069 jh->b_transaction = NULL; 2070 } 2071 2072 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2073 { 2074 struct buffer_head *bh = jh2bh(jh); 2075 2076 /* Get reference so that buffer cannot be freed before we unlock it */ 2077 get_bh(bh); 2078 spin_lock(&jh->b_state_lock); 2079 spin_lock(&journal->j_list_lock); 2080 __jbd2_journal_unfile_buffer(jh); 2081 spin_unlock(&journal->j_list_lock); 2082 spin_unlock(&jh->b_state_lock); 2083 jbd2_journal_put_journal_head(jh); 2084 __brelse(bh); 2085 } 2086 2087 /* 2088 * Called from jbd2_journal_try_to_free_buffers(). 2089 * 2090 * Called under jh->b_state_lock 2091 */ 2092 static void 2093 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2094 { 2095 struct journal_head *jh; 2096 2097 jh = bh2jh(bh); 2098 2099 if (buffer_locked(bh) || buffer_dirty(bh)) 2100 goto out; 2101 2102 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2103 goto out; 2104 2105 spin_lock(&journal->j_list_lock); 2106 if (jh->b_cp_transaction != NULL) { 2107 /* written-back checkpointed metadata buffer */ 2108 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2109 __jbd2_journal_remove_checkpoint(jh); 2110 } 2111 spin_unlock(&journal->j_list_lock); 2112 out: 2113 return; 2114 } 2115 2116 /** 2117 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2118 * @journal: journal for operation 2119 * @page: to try and free 2120 * 2121 * For all the buffers on this page, 2122 * if they are fully written out ordered data, move them onto BUF_CLEAN 2123 * so try_to_free_buffers() can reap them. 2124 * 2125 * This function returns non-zero if we wish try_to_free_buffers() 2126 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2127 * We also do it if the page has locked or dirty buffers and the caller wants 2128 * us to perform sync or async writeout. 2129 * 2130 * This complicates JBD locking somewhat. We aren't protected by the 2131 * BKL here. We wish to remove the buffer from its committing or 2132 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2133 * 2134 * This may *change* the value of transaction_t->t_datalist, so anyone 2135 * who looks at t_datalist needs to lock against this function. 2136 * 2137 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2138 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2139 * will come out of the lock with the buffer dirty, which makes it 2140 * ineligible for release here. 2141 * 2142 * Who else is affected by this? hmm... Really the only contender 2143 * is do_get_write_access() - it could be looking at the buffer while 2144 * journal_try_to_free_buffer() is changing its state. But that 2145 * cannot happen because we never reallocate freed data as metadata 2146 * while the data is part of a transaction. Yes? 2147 * 2148 * Return 0 on failure, 1 on success 2149 */ 2150 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page) 2151 { 2152 struct buffer_head *head; 2153 struct buffer_head *bh; 2154 int ret = 0; 2155 2156 J_ASSERT(PageLocked(page)); 2157 2158 head = page_buffers(page); 2159 bh = head; 2160 do { 2161 struct journal_head *jh; 2162 2163 /* 2164 * We take our own ref against the journal_head here to avoid 2165 * having to add tons of locking around each instance of 2166 * jbd2_journal_put_journal_head(). 2167 */ 2168 jh = jbd2_journal_grab_journal_head(bh); 2169 if (!jh) 2170 continue; 2171 2172 spin_lock(&jh->b_state_lock); 2173 __journal_try_to_free_buffer(journal, bh); 2174 spin_unlock(&jh->b_state_lock); 2175 jbd2_journal_put_journal_head(jh); 2176 if (buffer_jbd(bh)) 2177 goto busy; 2178 } while ((bh = bh->b_this_page) != head); 2179 2180 ret = try_to_free_buffers(page); 2181 busy: 2182 return ret; 2183 } 2184 2185 /* 2186 * This buffer is no longer needed. If it is on an older transaction's 2187 * checkpoint list we need to record it on this transaction's forget list 2188 * to pin this buffer (and hence its checkpointing transaction) down until 2189 * this transaction commits. If the buffer isn't on a checkpoint list, we 2190 * release it. 2191 * Returns non-zero if JBD no longer has an interest in the buffer. 2192 * 2193 * Called under j_list_lock. 2194 * 2195 * Called under jh->b_state_lock. 2196 */ 2197 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2198 { 2199 int may_free = 1; 2200 struct buffer_head *bh = jh2bh(jh); 2201 2202 if (jh->b_cp_transaction) { 2203 JBUFFER_TRACE(jh, "on running+cp transaction"); 2204 __jbd2_journal_temp_unlink_buffer(jh); 2205 /* 2206 * We don't want to write the buffer anymore, clear the 2207 * bit so that we don't confuse checks in 2208 * __journal_file_buffer 2209 */ 2210 clear_buffer_dirty(bh); 2211 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2212 may_free = 0; 2213 } else { 2214 JBUFFER_TRACE(jh, "on running transaction"); 2215 __jbd2_journal_unfile_buffer(jh); 2216 jbd2_journal_put_journal_head(jh); 2217 } 2218 return may_free; 2219 } 2220 2221 /* 2222 * jbd2_journal_invalidatepage 2223 * 2224 * This code is tricky. It has a number of cases to deal with. 2225 * 2226 * There are two invariants which this code relies on: 2227 * 2228 * i_size must be updated on disk before we start calling invalidatepage on the 2229 * data. 2230 * 2231 * This is done in ext3 by defining an ext3_setattr method which 2232 * updates i_size before truncate gets going. By maintaining this 2233 * invariant, we can be sure that it is safe to throw away any buffers 2234 * attached to the current transaction: once the transaction commits, 2235 * we know that the data will not be needed. 2236 * 2237 * Note however that we can *not* throw away data belonging to the 2238 * previous, committing transaction! 2239 * 2240 * Any disk blocks which *are* part of the previous, committing 2241 * transaction (and which therefore cannot be discarded immediately) are 2242 * not going to be reused in the new running transaction 2243 * 2244 * The bitmap committed_data images guarantee this: any block which is 2245 * allocated in one transaction and removed in the next will be marked 2246 * as in-use in the committed_data bitmap, so cannot be reused until 2247 * the next transaction to delete the block commits. This means that 2248 * leaving committing buffers dirty is quite safe: the disk blocks 2249 * cannot be reallocated to a different file and so buffer aliasing is 2250 * not possible. 2251 * 2252 * 2253 * The above applies mainly to ordered data mode. In writeback mode we 2254 * don't make guarantees about the order in which data hits disk --- in 2255 * particular we don't guarantee that new dirty data is flushed before 2256 * transaction commit --- so it is always safe just to discard data 2257 * immediately in that mode. --sct 2258 */ 2259 2260 /* 2261 * The journal_unmap_buffer helper function returns zero if the buffer 2262 * concerned remains pinned as an anonymous buffer belonging to an older 2263 * transaction. 2264 * 2265 * We're outside-transaction here. Either or both of j_running_transaction 2266 * and j_committing_transaction may be NULL. 2267 */ 2268 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2269 int partial_page) 2270 { 2271 transaction_t *transaction; 2272 struct journal_head *jh; 2273 int may_free = 1; 2274 2275 BUFFER_TRACE(bh, "entry"); 2276 2277 /* 2278 * It is safe to proceed here without the j_list_lock because the 2279 * buffers cannot be stolen by try_to_free_buffers as long as we are 2280 * holding the page lock. --sct 2281 */ 2282 2283 jh = jbd2_journal_grab_journal_head(bh); 2284 if (!jh) 2285 goto zap_buffer_unlocked; 2286 2287 /* OK, we have data buffer in journaled mode */ 2288 write_lock(&journal->j_state_lock); 2289 spin_lock(&jh->b_state_lock); 2290 spin_lock(&journal->j_list_lock); 2291 2292 /* 2293 * We cannot remove the buffer from checkpoint lists until the 2294 * transaction adding inode to orphan list (let's call it T) 2295 * is committed. Otherwise if the transaction changing the 2296 * buffer would be cleaned from the journal before T is 2297 * committed, a crash will cause that the correct contents of 2298 * the buffer will be lost. On the other hand we have to 2299 * clear the buffer dirty bit at latest at the moment when the 2300 * transaction marking the buffer as freed in the filesystem 2301 * structures is committed because from that moment on the 2302 * block can be reallocated and used by a different page. 2303 * Since the block hasn't been freed yet but the inode has 2304 * already been added to orphan list, it is safe for us to add 2305 * the buffer to BJ_Forget list of the newest transaction. 2306 * 2307 * Also we have to clear buffer_mapped flag of a truncated buffer 2308 * because the buffer_head may be attached to the page straddling 2309 * i_size (can happen only when blocksize < pagesize) and thus the 2310 * buffer_head can be reused when the file is extended again. So we end 2311 * up keeping around invalidated buffers attached to transactions' 2312 * BJ_Forget list just to stop checkpointing code from cleaning up 2313 * the transaction this buffer was modified in. 2314 */ 2315 transaction = jh->b_transaction; 2316 if (transaction == NULL) { 2317 /* First case: not on any transaction. If it 2318 * has no checkpoint link, then we can zap it: 2319 * it's a writeback-mode buffer so we don't care 2320 * if it hits disk safely. */ 2321 if (!jh->b_cp_transaction) { 2322 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2323 goto zap_buffer; 2324 } 2325 2326 if (!buffer_dirty(bh)) { 2327 /* bdflush has written it. We can drop it now */ 2328 __jbd2_journal_remove_checkpoint(jh); 2329 goto zap_buffer; 2330 } 2331 2332 /* OK, it must be in the journal but still not 2333 * written fully to disk: it's metadata or 2334 * journaled data... */ 2335 2336 if (journal->j_running_transaction) { 2337 /* ... and once the current transaction has 2338 * committed, the buffer won't be needed any 2339 * longer. */ 2340 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2341 may_free = __dispose_buffer(jh, 2342 journal->j_running_transaction); 2343 goto zap_buffer; 2344 } else { 2345 /* There is no currently-running transaction. So the 2346 * orphan record which we wrote for this file must have 2347 * passed into commit. We must attach this buffer to 2348 * the committing transaction, if it exists. */ 2349 if (journal->j_committing_transaction) { 2350 JBUFFER_TRACE(jh, "give to committing trans"); 2351 may_free = __dispose_buffer(jh, 2352 journal->j_committing_transaction); 2353 goto zap_buffer; 2354 } else { 2355 /* The orphan record's transaction has 2356 * committed. We can cleanse this buffer */ 2357 clear_buffer_jbddirty(bh); 2358 __jbd2_journal_remove_checkpoint(jh); 2359 goto zap_buffer; 2360 } 2361 } 2362 } else if (transaction == journal->j_committing_transaction) { 2363 JBUFFER_TRACE(jh, "on committing transaction"); 2364 /* 2365 * The buffer is committing, we simply cannot touch 2366 * it. If the page is straddling i_size we have to wait 2367 * for commit and try again. 2368 */ 2369 if (partial_page) { 2370 spin_unlock(&journal->j_list_lock); 2371 spin_unlock(&jh->b_state_lock); 2372 write_unlock(&journal->j_state_lock); 2373 jbd2_journal_put_journal_head(jh); 2374 return -EBUSY; 2375 } 2376 /* 2377 * OK, buffer won't be reachable after truncate. We just clear 2378 * b_modified to not confuse transaction credit accounting, and 2379 * set j_next_transaction to the running transaction (if there 2380 * is one) and mark buffer as freed so that commit code knows 2381 * it should clear dirty bits when it is done with the buffer. 2382 */ 2383 set_buffer_freed(bh); 2384 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2385 jh->b_next_transaction = journal->j_running_transaction; 2386 jh->b_modified = 0; 2387 spin_unlock(&journal->j_list_lock); 2388 spin_unlock(&jh->b_state_lock); 2389 write_unlock(&journal->j_state_lock); 2390 jbd2_journal_put_journal_head(jh); 2391 return 0; 2392 } else { 2393 /* Good, the buffer belongs to the running transaction. 2394 * We are writing our own transaction's data, not any 2395 * previous one's, so it is safe to throw it away 2396 * (remember that we expect the filesystem to have set 2397 * i_size already for this truncate so recovery will not 2398 * expose the disk blocks we are discarding here.) */ 2399 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2400 JBUFFER_TRACE(jh, "on running transaction"); 2401 may_free = __dispose_buffer(jh, transaction); 2402 } 2403 2404 zap_buffer: 2405 /* 2406 * This is tricky. Although the buffer is truncated, it may be reused 2407 * if blocksize < pagesize and it is attached to the page straddling 2408 * EOF. Since the buffer might have been added to BJ_Forget list of the 2409 * running transaction, journal_get_write_access() won't clear 2410 * b_modified and credit accounting gets confused. So clear b_modified 2411 * here. 2412 */ 2413 jh->b_modified = 0; 2414 spin_unlock(&journal->j_list_lock); 2415 spin_unlock(&jh->b_state_lock); 2416 write_unlock(&journal->j_state_lock); 2417 jbd2_journal_put_journal_head(jh); 2418 zap_buffer_unlocked: 2419 clear_buffer_dirty(bh); 2420 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2421 clear_buffer_mapped(bh); 2422 clear_buffer_req(bh); 2423 clear_buffer_new(bh); 2424 clear_buffer_delay(bh); 2425 clear_buffer_unwritten(bh); 2426 bh->b_bdev = NULL; 2427 return may_free; 2428 } 2429 2430 /** 2431 * jbd2_journal_invalidatepage() 2432 * @journal: journal to use for flush... 2433 * @page: page to flush 2434 * @offset: start of the range to invalidate 2435 * @length: length of the range to invalidate 2436 * 2437 * Reap page buffers containing data after in the specified range in page. 2438 * Can return -EBUSY if buffers are part of the committing transaction and 2439 * the page is straddling i_size. Caller then has to wait for current commit 2440 * and try again. 2441 */ 2442 int jbd2_journal_invalidatepage(journal_t *journal, 2443 struct page *page, 2444 unsigned int offset, 2445 unsigned int length) 2446 { 2447 struct buffer_head *head, *bh, *next; 2448 unsigned int stop = offset + length; 2449 unsigned int curr_off = 0; 2450 int partial_page = (offset || length < PAGE_SIZE); 2451 int may_free = 1; 2452 int ret = 0; 2453 2454 if (!PageLocked(page)) 2455 BUG(); 2456 if (!page_has_buffers(page)) 2457 return 0; 2458 2459 BUG_ON(stop > PAGE_SIZE || stop < length); 2460 2461 /* We will potentially be playing with lists other than just the 2462 * data lists (especially for journaled data mode), so be 2463 * cautious in our locking. */ 2464 2465 head = bh = page_buffers(page); 2466 do { 2467 unsigned int next_off = curr_off + bh->b_size; 2468 next = bh->b_this_page; 2469 2470 if (next_off > stop) 2471 return 0; 2472 2473 if (offset <= curr_off) { 2474 /* This block is wholly outside the truncation point */ 2475 lock_buffer(bh); 2476 ret = journal_unmap_buffer(journal, bh, partial_page); 2477 unlock_buffer(bh); 2478 if (ret < 0) 2479 return ret; 2480 may_free &= ret; 2481 } 2482 curr_off = next_off; 2483 bh = next; 2484 2485 } while (bh != head); 2486 2487 if (!partial_page) { 2488 if (may_free && try_to_free_buffers(page)) 2489 J_ASSERT(!page_has_buffers(page)); 2490 } 2491 return 0; 2492 } 2493 2494 /* 2495 * File a buffer on the given transaction list. 2496 */ 2497 void __jbd2_journal_file_buffer(struct journal_head *jh, 2498 transaction_t *transaction, int jlist) 2499 { 2500 struct journal_head **list = NULL; 2501 int was_dirty = 0; 2502 struct buffer_head *bh = jh2bh(jh); 2503 2504 lockdep_assert_held(&jh->b_state_lock); 2505 assert_spin_locked(&transaction->t_journal->j_list_lock); 2506 2507 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2508 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2509 jh->b_transaction == NULL); 2510 2511 if (jh->b_transaction && jh->b_jlist == jlist) 2512 return; 2513 2514 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2515 jlist == BJ_Shadow || jlist == BJ_Forget) { 2516 /* 2517 * For metadata buffers, we track dirty bit in buffer_jbddirty 2518 * instead of buffer_dirty. We should not see a dirty bit set 2519 * here because we clear it in do_get_write_access but e.g. 2520 * tune2fs can modify the sb and set the dirty bit at any time 2521 * so we try to gracefully handle that. 2522 */ 2523 if (buffer_dirty(bh)) 2524 warn_dirty_buffer(bh); 2525 if (test_clear_buffer_dirty(bh) || 2526 test_clear_buffer_jbddirty(bh)) 2527 was_dirty = 1; 2528 } 2529 2530 if (jh->b_transaction) 2531 __jbd2_journal_temp_unlink_buffer(jh); 2532 else 2533 jbd2_journal_grab_journal_head(bh); 2534 jh->b_transaction = transaction; 2535 2536 switch (jlist) { 2537 case BJ_None: 2538 J_ASSERT_JH(jh, !jh->b_committed_data); 2539 J_ASSERT_JH(jh, !jh->b_frozen_data); 2540 return; 2541 case BJ_Metadata: 2542 transaction->t_nr_buffers++; 2543 list = &transaction->t_buffers; 2544 break; 2545 case BJ_Forget: 2546 list = &transaction->t_forget; 2547 break; 2548 case BJ_Shadow: 2549 list = &transaction->t_shadow_list; 2550 break; 2551 case BJ_Reserved: 2552 list = &transaction->t_reserved_list; 2553 break; 2554 } 2555 2556 __blist_add_buffer(list, jh); 2557 jh->b_jlist = jlist; 2558 2559 if (was_dirty) 2560 set_buffer_jbddirty(bh); 2561 } 2562 2563 void jbd2_journal_file_buffer(struct journal_head *jh, 2564 transaction_t *transaction, int jlist) 2565 { 2566 spin_lock(&jh->b_state_lock); 2567 spin_lock(&transaction->t_journal->j_list_lock); 2568 __jbd2_journal_file_buffer(jh, transaction, jlist); 2569 spin_unlock(&transaction->t_journal->j_list_lock); 2570 spin_unlock(&jh->b_state_lock); 2571 } 2572 2573 /* 2574 * Remove a buffer from its current buffer list in preparation for 2575 * dropping it from its current transaction entirely. If the buffer has 2576 * already started to be used by a subsequent transaction, refile the 2577 * buffer on that transaction's metadata list. 2578 * 2579 * Called under j_list_lock 2580 * Called under jh->b_state_lock 2581 * 2582 * When this function returns true, there's no next transaction to refile to 2583 * and the caller has to drop jh reference through 2584 * jbd2_journal_put_journal_head(). 2585 */ 2586 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2587 { 2588 int was_dirty, jlist; 2589 struct buffer_head *bh = jh2bh(jh); 2590 2591 lockdep_assert_held(&jh->b_state_lock); 2592 if (jh->b_transaction) 2593 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2594 2595 /* If the buffer is now unused, just drop it. */ 2596 if (jh->b_next_transaction == NULL) { 2597 __jbd2_journal_unfile_buffer(jh); 2598 return true; 2599 } 2600 2601 /* 2602 * It has been modified by a later transaction: add it to the new 2603 * transaction's metadata list. 2604 */ 2605 2606 was_dirty = test_clear_buffer_jbddirty(bh); 2607 __jbd2_journal_temp_unlink_buffer(jh); 2608 2609 /* 2610 * b_transaction must be set, otherwise the new b_transaction won't 2611 * be holding jh reference 2612 */ 2613 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2614 2615 /* 2616 * We set b_transaction here because b_next_transaction will inherit 2617 * our jh reference and thus __jbd2_journal_file_buffer() must not 2618 * take a new one. 2619 */ 2620 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2621 WRITE_ONCE(jh->b_next_transaction, NULL); 2622 if (buffer_freed(bh)) 2623 jlist = BJ_Forget; 2624 else if (jh->b_modified) 2625 jlist = BJ_Metadata; 2626 else 2627 jlist = BJ_Reserved; 2628 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2629 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2630 2631 if (was_dirty) 2632 set_buffer_jbddirty(bh); 2633 return false; 2634 } 2635 2636 /* 2637 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2638 * bh reference so that we can safely unlock bh. 2639 * 2640 * The jh and bh may be freed by this call. 2641 */ 2642 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2643 { 2644 bool drop; 2645 2646 spin_lock(&jh->b_state_lock); 2647 spin_lock(&journal->j_list_lock); 2648 drop = __jbd2_journal_refile_buffer(jh); 2649 spin_unlock(&jh->b_state_lock); 2650 spin_unlock(&journal->j_list_lock); 2651 if (drop) 2652 jbd2_journal_put_journal_head(jh); 2653 } 2654 2655 /* 2656 * File inode in the inode list of the handle's transaction 2657 */ 2658 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2659 unsigned long flags, loff_t start_byte, loff_t end_byte) 2660 { 2661 transaction_t *transaction = handle->h_transaction; 2662 journal_t *journal; 2663 2664 if (is_handle_aborted(handle)) 2665 return -EROFS; 2666 journal = transaction->t_journal; 2667 2668 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2669 transaction->t_tid); 2670 2671 spin_lock(&journal->j_list_lock); 2672 jinode->i_flags |= flags; 2673 2674 if (jinode->i_dirty_end) { 2675 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2676 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2677 } else { 2678 jinode->i_dirty_start = start_byte; 2679 jinode->i_dirty_end = end_byte; 2680 } 2681 2682 /* Is inode already attached where we need it? */ 2683 if (jinode->i_transaction == transaction || 2684 jinode->i_next_transaction == transaction) 2685 goto done; 2686 2687 /* 2688 * We only ever set this variable to 1 so the test is safe. Since 2689 * t_need_data_flush is likely to be set, we do the test to save some 2690 * cacheline bouncing 2691 */ 2692 if (!transaction->t_need_data_flush) 2693 transaction->t_need_data_flush = 1; 2694 /* On some different transaction's list - should be 2695 * the committing one */ 2696 if (jinode->i_transaction) { 2697 J_ASSERT(jinode->i_next_transaction == NULL); 2698 J_ASSERT(jinode->i_transaction == 2699 journal->j_committing_transaction); 2700 jinode->i_next_transaction = transaction; 2701 goto done; 2702 } 2703 /* Not on any transaction list... */ 2704 J_ASSERT(!jinode->i_next_transaction); 2705 jinode->i_transaction = transaction; 2706 list_add(&jinode->i_list, &transaction->t_inode_list); 2707 done: 2708 spin_unlock(&journal->j_list_lock); 2709 2710 return 0; 2711 } 2712 2713 int jbd2_journal_inode_ranged_write(handle_t *handle, 2714 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2715 { 2716 return jbd2_journal_file_inode(handle, jinode, 2717 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2718 start_byte + length - 1); 2719 } 2720 2721 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2722 loff_t start_byte, loff_t length) 2723 { 2724 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2725 start_byte, start_byte + length - 1); 2726 } 2727 2728 /* 2729 * File truncate and transaction commit interact with each other in a 2730 * non-trivial way. If a transaction writing data block A is 2731 * committing, we cannot discard the data by truncate until we have 2732 * written them. Otherwise if we crashed after the transaction with 2733 * write has committed but before the transaction with truncate has 2734 * committed, we could see stale data in block A. This function is a 2735 * helper to solve this problem. It starts writeout of the truncated 2736 * part in case it is in the committing transaction. 2737 * 2738 * Filesystem code must call this function when inode is journaled in 2739 * ordered mode before truncation happens and after the inode has been 2740 * placed on orphan list with the new inode size. The second condition 2741 * avoids the race that someone writes new data and we start 2742 * committing the transaction after this function has been called but 2743 * before a transaction for truncate is started (and furthermore it 2744 * allows us to optimize the case where the addition to orphan list 2745 * happens in the same transaction as write --- we don't have to write 2746 * any data in such case). 2747 */ 2748 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2749 struct jbd2_inode *jinode, 2750 loff_t new_size) 2751 { 2752 transaction_t *inode_trans, *commit_trans; 2753 int ret = 0; 2754 2755 /* This is a quick check to avoid locking if not necessary */ 2756 if (!jinode->i_transaction) 2757 goto out; 2758 /* Locks are here just to force reading of recent values, it is 2759 * enough that the transaction was not committing before we started 2760 * a transaction adding the inode to orphan list */ 2761 read_lock(&journal->j_state_lock); 2762 commit_trans = journal->j_committing_transaction; 2763 read_unlock(&journal->j_state_lock); 2764 spin_lock(&journal->j_list_lock); 2765 inode_trans = jinode->i_transaction; 2766 spin_unlock(&journal->j_list_lock); 2767 if (inode_trans == commit_trans) { 2768 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2769 new_size, LLONG_MAX); 2770 if (ret) 2771 jbd2_journal_abort(journal, ret); 2772 } 2773 out: 2774 return ret; 2775 } 2776