xref: /openbmc/linux/fs/jbd2/transaction.c (revision 4800cd83)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *	The journal MUST be locked.  We don't perform atomic mallocs on the
44  *	new transaction	and we can't block without protecting against other
45  *	processes trying to touch the journal while it is in transition.
46  *
47  */
48 
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 	atomic_set(&transaction->t_updates, 0);
59 	atomic_set(&transaction->t_outstanding_credits, 0);
60 	atomic_set(&transaction->t_handle_count, 0);
61 	INIT_LIST_HEAD(&transaction->t_inode_list);
62 	INIT_LIST_HEAD(&transaction->t_private_list);
63 
64 	/* Set up the commit timer for the new transaction. */
65 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 	add_timer(&journal->j_commit_timer);
67 
68 	J_ASSERT(journal->j_running_transaction == NULL);
69 	journal->j_running_transaction = transaction;
70 	transaction->t_max_wait = 0;
71 	transaction->t_start = jiffies;
72 
73 	return transaction;
74 }
75 
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83 
84 /*
85  * Update transiaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction)
95 {
96 #ifdef CONFIG_JBD2_DEBUG
97 	unsigned long ts = jiffies;
98 
99 	if (jbd2_journal_enable_debug &&
100 	    time_after(transaction->t_start, ts)) {
101 		ts = jbd2_time_diff(ts, transaction->t_start);
102 		spin_lock(&transaction->t_handle_lock);
103 		if (ts > transaction->t_max_wait)
104 			transaction->t_max_wait = ts;
105 		spin_unlock(&transaction->t_handle_lock);
106 	}
107 #endif
108 }
109 
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116 
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118 			     int gfp_mask)
119 {
120 	transaction_t	*transaction, *new_transaction = NULL;
121 	tid_t		tid;
122 	int		needed, need_to_start;
123 	int		nblocks = handle->h_buffer_credits;
124 
125 	if (nblocks > journal->j_max_transaction_buffers) {
126 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127 		       current->comm, nblocks,
128 		       journal->j_max_transaction_buffers);
129 		return -ENOSPC;
130 	}
131 
132 alloc_transaction:
133 	if (!journal->j_running_transaction) {
134 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135 		if (!new_transaction) {
136 			/*
137 			 * If __GFP_FS is not present, then we may be
138 			 * being called from inside the fs writeback
139 			 * layer, so we MUST NOT fail.  Since
140 			 * __GFP_NOFAIL is going away, we will arrange
141 			 * to retry the allocation ourselves.
142 			 */
143 			if ((gfp_mask & __GFP_FS) == 0) {
144 				congestion_wait(BLK_RW_ASYNC, HZ/50);
145 				goto alloc_transaction;
146 			}
147 			return -ENOMEM;
148 		}
149 	}
150 
151 	jbd_debug(3, "New handle %p going live.\n", handle);
152 
153 	/*
154 	 * We need to hold j_state_lock until t_updates has been incremented,
155 	 * for proper journal barrier handling
156 	 */
157 repeat:
158 	read_lock(&journal->j_state_lock);
159 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160 	if (is_journal_aborted(journal) ||
161 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162 		read_unlock(&journal->j_state_lock);
163 		kfree(new_transaction);
164 		return -EROFS;
165 	}
166 
167 	/* Wait on the journal's transaction barrier if necessary */
168 	if (journal->j_barrier_count) {
169 		read_unlock(&journal->j_state_lock);
170 		wait_event(journal->j_wait_transaction_locked,
171 				journal->j_barrier_count == 0);
172 		goto repeat;
173 	}
174 
175 	if (!journal->j_running_transaction) {
176 		read_unlock(&journal->j_state_lock);
177 		if (!new_transaction)
178 			goto alloc_transaction;
179 		write_lock(&journal->j_state_lock);
180 		if (!journal->j_running_transaction) {
181 			jbd2_get_transaction(journal, new_transaction);
182 			new_transaction = NULL;
183 		}
184 		write_unlock(&journal->j_state_lock);
185 		goto repeat;
186 	}
187 
188 	transaction = journal->j_running_transaction;
189 
190 	/*
191 	 * If the current transaction is locked down for commit, wait for the
192 	 * lock to be released.
193 	 */
194 	if (transaction->t_state == T_LOCKED) {
195 		DEFINE_WAIT(wait);
196 
197 		prepare_to_wait(&journal->j_wait_transaction_locked,
198 					&wait, TASK_UNINTERRUPTIBLE);
199 		read_unlock(&journal->j_state_lock);
200 		schedule();
201 		finish_wait(&journal->j_wait_transaction_locked, &wait);
202 		goto repeat;
203 	}
204 
205 	/*
206 	 * If there is not enough space left in the log to write all potential
207 	 * buffers requested by this operation, we need to stall pending a log
208 	 * checkpoint to free some more log space.
209 	 */
210 	needed = atomic_add_return(nblocks,
211 				   &transaction->t_outstanding_credits);
212 
213 	if (needed > journal->j_max_transaction_buffers) {
214 		/*
215 		 * If the current transaction is already too large, then start
216 		 * to commit it: we can then go back and attach this handle to
217 		 * a new transaction.
218 		 */
219 		DEFINE_WAIT(wait);
220 
221 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
222 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
223 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
224 				TASK_UNINTERRUPTIBLE);
225 		tid = transaction->t_tid;
226 		need_to_start = !tid_geq(journal->j_commit_request, tid);
227 		read_unlock(&journal->j_state_lock);
228 		if (need_to_start)
229 			jbd2_log_start_commit(journal, tid);
230 		schedule();
231 		finish_wait(&journal->j_wait_transaction_locked, &wait);
232 		goto repeat;
233 	}
234 
235 	/*
236 	 * The commit code assumes that it can get enough log space
237 	 * without forcing a checkpoint.  This is *critical* for
238 	 * correctness: a checkpoint of a buffer which is also
239 	 * associated with a committing transaction creates a deadlock,
240 	 * so commit simply cannot force through checkpoints.
241 	 *
242 	 * We must therefore ensure the necessary space in the journal
243 	 * *before* starting to dirty potentially checkpointed buffers
244 	 * in the new transaction.
245 	 *
246 	 * The worst part is, any transaction currently committing can
247 	 * reduce the free space arbitrarily.  Be careful to account for
248 	 * those buffers when checkpointing.
249 	 */
250 
251 	/*
252 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
253 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
254 	 * the committing transaction.  Really, we only need to give it
255 	 * committing_transaction->t_outstanding_credits plus "enough" for
256 	 * the log control blocks.
257 	 * Also, this test is inconsistent with the matching one in
258 	 * jbd2_journal_extend().
259 	 */
260 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
261 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
262 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
263 		read_unlock(&journal->j_state_lock);
264 		write_lock(&journal->j_state_lock);
265 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
266 			__jbd2_log_wait_for_space(journal);
267 		write_unlock(&journal->j_state_lock);
268 		goto repeat;
269 	}
270 
271 	/* OK, account for the buffers that this operation expects to
272 	 * use and add the handle to the running transaction.
273 	 */
274 	update_t_max_wait(transaction);
275 	handle->h_transaction = transaction;
276 	atomic_inc(&transaction->t_updates);
277 	atomic_inc(&transaction->t_handle_count);
278 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
279 		  handle, nblocks,
280 		  atomic_read(&transaction->t_outstanding_credits),
281 		  __jbd2_log_space_left(journal));
282 	read_unlock(&journal->j_state_lock);
283 
284 	lock_map_acquire(&handle->h_lockdep_map);
285 	kfree(new_transaction);
286 	return 0;
287 }
288 
289 static struct lock_class_key jbd2_handle_key;
290 
291 /* Allocate a new handle.  This should probably be in a slab... */
292 static handle_t *new_handle(int nblocks)
293 {
294 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
295 	if (!handle)
296 		return NULL;
297 	memset(handle, 0, sizeof(*handle));
298 	handle->h_buffer_credits = nblocks;
299 	handle->h_ref = 1;
300 
301 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
302 						&jbd2_handle_key, 0);
303 
304 	return handle;
305 }
306 
307 /**
308  * handle_t *jbd2_journal_start() - Obtain a new handle.
309  * @journal: Journal to start transaction on.
310  * @nblocks: number of block buffer we might modify
311  *
312  * We make sure that the transaction can guarantee at least nblocks of
313  * modified buffers in the log.  We block until the log can guarantee
314  * that much space.
315  *
316  * This function is visible to journal users (like ext3fs), so is not
317  * called with the journal already locked.
318  *
319  * Return a pointer to a newly allocated handle, or NULL on failure
320  */
321 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
322 {
323 	handle_t *handle = journal_current_handle();
324 	int err;
325 
326 	if (!journal)
327 		return ERR_PTR(-EROFS);
328 
329 	if (handle) {
330 		J_ASSERT(handle->h_transaction->t_journal == journal);
331 		handle->h_ref++;
332 		return handle;
333 	}
334 
335 	handle = new_handle(nblocks);
336 	if (!handle)
337 		return ERR_PTR(-ENOMEM);
338 
339 	current->journal_info = handle;
340 
341 	err = start_this_handle(journal, handle, gfp_mask);
342 	if (err < 0) {
343 		jbd2_free_handle(handle);
344 		current->journal_info = NULL;
345 		handle = ERR_PTR(err);
346 	}
347 	return handle;
348 }
349 EXPORT_SYMBOL(jbd2__journal_start);
350 
351 
352 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
353 {
354 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
355 }
356 EXPORT_SYMBOL(jbd2_journal_start);
357 
358 
359 /**
360  * int jbd2_journal_extend() - extend buffer credits.
361  * @handle:  handle to 'extend'
362  * @nblocks: nr blocks to try to extend by.
363  *
364  * Some transactions, such as large extends and truncates, can be done
365  * atomically all at once or in several stages.  The operation requests
366  * a credit for a number of buffer modications in advance, but can
367  * extend its credit if it needs more.
368  *
369  * jbd2_journal_extend tries to give the running handle more buffer credits.
370  * It does not guarantee that allocation - this is a best-effort only.
371  * The calling process MUST be able to deal cleanly with a failure to
372  * extend here.
373  *
374  * Return 0 on success, non-zero on failure.
375  *
376  * return code < 0 implies an error
377  * return code > 0 implies normal transaction-full status.
378  */
379 int jbd2_journal_extend(handle_t *handle, int nblocks)
380 {
381 	transaction_t *transaction = handle->h_transaction;
382 	journal_t *journal = transaction->t_journal;
383 	int result;
384 	int wanted;
385 
386 	result = -EIO;
387 	if (is_handle_aborted(handle))
388 		goto out;
389 
390 	result = 1;
391 
392 	read_lock(&journal->j_state_lock);
393 
394 	/* Don't extend a locked-down transaction! */
395 	if (handle->h_transaction->t_state != T_RUNNING) {
396 		jbd_debug(3, "denied handle %p %d blocks: "
397 			  "transaction not running\n", handle, nblocks);
398 		goto error_out;
399 	}
400 
401 	spin_lock(&transaction->t_handle_lock);
402 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
403 
404 	if (wanted > journal->j_max_transaction_buffers) {
405 		jbd_debug(3, "denied handle %p %d blocks: "
406 			  "transaction too large\n", handle, nblocks);
407 		goto unlock;
408 	}
409 
410 	if (wanted > __jbd2_log_space_left(journal)) {
411 		jbd_debug(3, "denied handle %p %d blocks: "
412 			  "insufficient log space\n", handle, nblocks);
413 		goto unlock;
414 	}
415 
416 	handle->h_buffer_credits += nblocks;
417 	atomic_add(nblocks, &transaction->t_outstanding_credits);
418 	result = 0;
419 
420 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
421 unlock:
422 	spin_unlock(&transaction->t_handle_lock);
423 error_out:
424 	read_unlock(&journal->j_state_lock);
425 out:
426 	return result;
427 }
428 
429 
430 /**
431  * int jbd2_journal_restart() - restart a handle .
432  * @handle:  handle to restart
433  * @nblocks: nr credits requested
434  *
435  * Restart a handle for a multi-transaction filesystem
436  * operation.
437  *
438  * If the jbd2_journal_extend() call above fails to grant new buffer credits
439  * to a running handle, a call to jbd2_journal_restart will commit the
440  * handle's transaction so far and reattach the handle to a new
441  * transaction capabable of guaranteeing the requested number of
442  * credits.
443  */
444 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
445 {
446 	transaction_t *transaction = handle->h_transaction;
447 	journal_t *journal = transaction->t_journal;
448 	tid_t		tid;
449 	int		need_to_start, ret;
450 
451 	/* If we've had an abort of any type, don't even think about
452 	 * actually doing the restart! */
453 	if (is_handle_aborted(handle))
454 		return 0;
455 
456 	/*
457 	 * First unlink the handle from its current transaction, and start the
458 	 * commit on that.
459 	 */
460 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
461 	J_ASSERT(journal_current_handle() == handle);
462 
463 	read_lock(&journal->j_state_lock);
464 	spin_lock(&transaction->t_handle_lock);
465 	atomic_sub(handle->h_buffer_credits,
466 		   &transaction->t_outstanding_credits);
467 	if (atomic_dec_and_test(&transaction->t_updates))
468 		wake_up(&journal->j_wait_updates);
469 	spin_unlock(&transaction->t_handle_lock);
470 
471 	jbd_debug(2, "restarting handle %p\n", handle);
472 	tid = transaction->t_tid;
473 	need_to_start = !tid_geq(journal->j_commit_request, tid);
474 	read_unlock(&journal->j_state_lock);
475 	if (need_to_start)
476 		jbd2_log_start_commit(journal, tid);
477 
478 	lock_map_release(&handle->h_lockdep_map);
479 	handle->h_buffer_credits = nblocks;
480 	ret = start_this_handle(journal, handle, gfp_mask);
481 	return ret;
482 }
483 EXPORT_SYMBOL(jbd2__journal_restart);
484 
485 
486 int jbd2_journal_restart(handle_t *handle, int nblocks)
487 {
488 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
489 }
490 EXPORT_SYMBOL(jbd2_journal_restart);
491 
492 /**
493  * void jbd2_journal_lock_updates () - establish a transaction barrier.
494  * @journal:  Journal to establish a barrier on.
495  *
496  * This locks out any further updates from being started, and blocks
497  * until all existing updates have completed, returning only once the
498  * journal is in a quiescent state with no updates running.
499  *
500  * The journal lock should not be held on entry.
501  */
502 void jbd2_journal_lock_updates(journal_t *journal)
503 {
504 	DEFINE_WAIT(wait);
505 
506 	write_lock(&journal->j_state_lock);
507 	++journal->j_barrier_count;
508 
509 	/* Wait until there are no running updates */
510 	while (1) {
511 		transaction_t *transaction = journal->j_running_transaction;
512 
513 		if (!transaction)
514 			break;
515 
516 		spin_lock(&transaction->t_handle_lock);
517 		if (!atomic_read(&transaction->t_updates)) {
518 			spin_unlock(&transaction->t_handle_lock);
519 			break;
520 		}
521 		prepare_to_wait(&journal->j_wait_updates, &wait,
522 				TASK_UNINTERRUPTIBLE);
523 		spin_unlock(&transaction->t_handle_lock);
524 		write_unlock(&journal->j_state_lock);
525 		schedule();
526 		finish_wait(&journal->j_wait_updates, &wait);
527 		write_lock(&journal->j_state_lock);
528 	}
529 	write_unlock(&journal->j_state_lock);
530 
531 	/*
532 	 * We have now established a barrier against other normal updates, but
533 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
534 	 * to make sure that we serialise special journal-locked operations
535 	 * too.
536 	 */
537 	mutex_lock(&journal->j_barrier);
538 }
539 
540 /**
541  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
542  * @journal:  Journal to release the barrier on.
543  *
544  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
545  *
546  * Should be called without the journal lock held.
547  */
548 void jbd2_journal_unlock_updates (journal_t *journal)
549 {
550 	J_ASSERT(journal->j_barrier_count != 0);
551 
552 	mutex_unlock(&journal->j_barrier);
553 	write_lock(&journal->j_state_lock);
554 	--journal->j_barrier_count;
555 	write_unlock(&journal->j_state_lock);
556 	wake_up(&journal->j_wait_transaction_locked);
557 }
558 
559 static void warn_dirty_buffer(struct buffer_head *bh)
560 {
561 	char b[BDEVNAME_SIZE];
562 
563 	printk(KERN_WARNING
564 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
565 	       "There's a risk of filesystem corruption in case of system "
566 	       "crash.\n",
567 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
568 }
569 
570 /*
571  * If the buffer is already part of the current transaction, then there
572  * is nothing we need to do.  If it is already part of a prior
573  * transaction which we are still committing to disk, then we need to
574  * make sure that we do not overwrite the old copy: we do copy-out to
575  * preserve the copy going to disk.  We also account the buffer against
576  * the handle's metadata buffer credits (unless the buffer is already
577  * part of the transaction, that is).
578  *
579  */
580 static int
581 do_get_write_access(handle_t *handle, struct journal_head *jh,
582 			int force_copy)
583 {
584 	struct buffer_head *bh;
585 	transaction_t *transaction;
586 	journal_t *journal;
587 	int error;
588 	char *frozen_buffer = NULL;
589 	int need_copy = 0;
590 
591 	if (is_handle_aborted(handle))
592 		return -EROFS;
593 
594 	transaction = handle->h_transaction;
595 	journal = transaction->t_journal;
596 
597 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
598 
599 	JBUFFER_TRACE(jh, "entry");
600 repeat:
601 	bh = jh2bh(jh);
602 
603 	/* @@@ Need to check for errors here at some point. */
604 
605 	lock_buffer(bh);
606 	jbd_lock_bh_state(bh);
607 
608 	/* We now hold the buffer lock so it is safe to query the buffer
609 	 * state.  Is the buffer dirty?
610 	 *
611 	 * If so, there are two possibilities.  The buffer may be
612 	 * non-journaled, and undergoing a quite legitimate writeback.
613 	 * Otherwise, it is journaled, and we don't expect dirty buffers
614 	 * in that state (the buffers should be marked JBD_Dirty
615 	 * instead.)  So either the IO is being done under our own
616 	 * control and this is a bug, or it's a third party IO such as
617 	 * dump(8) (which may leave the buffer scheduled for read ---
618 	 * ie. locked but not dirty) or tune2fs (which may actually have
619 	 * the buffer dirtied, ugh.)  */
620 
621 	if (buffer_dirty(bh)) {
622 		/*
623 		 * First question: is this buffer already part of the current
624 		 * transaction or the existing committing transaction?
625 		 */
626 		if (jh->b_transaction) {
627 			J_ASSERT_JH(jh,
628 				jh->b_transaction == transaction ||
629 				jh->b_transaction ==
630 					journal->j_committing_transaction);
631 			if (jh->b_next_transaction)
632 				J_ASSERT_JH(jh, jh->b_next_transaction ==
633 							transaction);
634 			warn_dirty_buffer(bh);
635 		}
636 		/*
637 		 * In any case we need to clean the dirty flag and we must
638 		 * do it under the buffer lock to be sure we don't race
639 		 * with running write-out.
640 		 */
641 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
642 		clear_buffer_dirty(bh);
643 		set_buffer_jbddirty(bh);
644 	}
645 
646 	unlock_buffer(bh);
647 
648 	error = -EROFS;
649 	if (is_handle_aborted(handle)) {
650 		jbd_unlock_bh_state(bh);
651 		goto out;
652 	}
653 	error = 0;
654 
655 	/*
656 	 * The buffer is already part of this transaction if b_transaction or
657 	 * b_next_transaction points to it
658 	 */
659 	if (jh->b_transaction == transaction ||
660 	    jh->b_next_transaction == transaction)
661 		goto done;
662 
663 	/*
664 	 * this is the first time this transaction is touching this buffer,
665 	 * reset the modified flag
666 	 */
667        jh->b_modified = 0;
668 
669 	/*
670 	 * If there is already a copy-out version of this buffer, then we don't
671 	 * need to make another one
672 	 */
673 	if (jh->b_frozen_data) {
674 		JBUFFER_TRACE(jh, "has frozen data");
675 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
676 		jh->b_next_transaction = transaction;
677 		goto done;
678 	}
679 
680 	/* Is there data here we need to preserve? */
681 
682 	if (jh->b_transaction && jh->b_transaction != transaction) {
683 		JBUFFER_TRACE(jh, "owned by older transaction");
684 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
685 		J_ASSERT_JH(jh, jh->b_transaction ==
686 					journal->j_committing_transaction);
687 
688 		/* There is one case we have to be very careful about.
689 		 * If the committing transaction is currently writing
690 		 * this buffer out to disk and has NOT made a copy-out,
691 		 * then we cannot modify the buffer contents at all
692 		 * right now.  The essence of copy-out is that it is the
693 		 * extra copy, not the primary copy, which gets
694 		 * journaled.  If the primary copy is already going to
695 		 * disk then we cannot do copy-out here. */
696 
697 		if (jh->b_jlist == BJ_Shadow) {
698 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
699 			wait_queue_head_t *wqh;
700 
701 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
702 
703 			JBUFFER_TRACE(jh, "on shadow: sleep");
704 			jbd_unlock_bh_state(bh);
705 			/* commit wakes up all shadow buffers after IO */
706 			for ( ; ; ) {
707 				prepare_to_wait(wqh, &wait.wait,
708 						TASK_UNINTERRUPTIBLE);
709 				if (jh->b_jlist != BJ_Shadow)
710 					break;
711 				schedule();
712 			}
713 			finish_wait(wqh, &wait.wait);
714 			goto repeat;
715 		}
716 
717 		/* Only do the copy if the currently-owning transaction
718 		 * still needs it.  If it is on the Forget list, the
719 		 * committing transaction is past that stage.  The
720 		 * buffer had better remain locked during the kmalloc,
721 		 * but that should be true --- we hold the journal lock
722 		 * still and the buffer is already on the BUF_JOURNAL
723 		 * list so won't be flushed.
724 		 *
725 		 * Subtle point, though: if this is a get_undo_access,
726 		 * then we will be relying on the frozen_data to contain
727 		 * the new value of the committed_data record after the
728 		 * transaction, so we HAVE to force the frozen_data copy
729 		 * in that case. */
730 
731 		if (jh->b_jlist != BJ_Forget || force_copy) {
732 			JBUFFER_TRACE(jh, "generate frozen data");
733 			if (!frozen_buffer) {
734 				JBUFFER_TRACE(jh, "allocate memory for buffer");
735 				jbd_unlock_bh_state(bh);
736 				frozen_buffer =
737 					jbd2_alloc(jh2bh(jh)->b_size,
738 							 GFP_NOFS);
739 				if (!frozen_buffer) {
740 					printk(KERN_EMERG
741 					       "%s: OOM for frozen_buffer\n",
742 					       __func__);
743 					JBUFFER_TRACE(jh, "oom!");
744 					error = -ENOMEM;
745 					jbd_lock_bh_state(bh);
746 					goto done;
747 				}
748 				goto repeat;
749 			}
750 			jh->b_frozen_data = frozen_buffer;
751 			frozen_buffer = NULL;
752 			need_copy = 1;
753 		}
754 		jh->b_next_transaction = transaction;
755 	}
756 
757 
758 	/*
759 	 * Finally, if the buffer is not journaled right now, we need to make
760 	 * sure it doesn't get written to disk before the caller actually
761 	 * commits the new data
762 	 */
763 	if (!jh->b_transaction) {
764 		JBUFFER_TRACE(jh, "no transaction");
765 		J_ASSERT_JH(jh, !jh->b_next_transaction);
766 		jh->b_transaction = transaction;
767 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
768 		spin_lock(&journal->j_list_lock);
769 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
770 		spin_unlock(&journal->j_list_lock);
771 	}
772 
773 done:
774 	if (need_copy) {
775 		struct page *page;
776 		int offset;
777 		char *source;
778 
779 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
780 			    "Possible IO failure.\n");
781 		page = jh2bh(jh)->b_page;
782 		offset = offset_in_page(jh2bh(jh)->b_data);
783 		source = kmap_atomic(page, KM_USER0);
784 		/* Fire data frozen trigger just before we copy the data */
785 		jbd2_buffer_frozen_trigger(jh, source + offset,
786 					   jh->b_triggers);
787 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
788 		kunmap_atomic(source, KM_USER0);
789 
790 		/*
791 		 * Now that the frozen data is saved off, we need to store
792 		 * any matching triggers.
793 		 */
794 		jh->b_frozen_triggers = jh->b_triggers;
795 	}
796 	jbd_unlock_bh_state(bh);
797 
798 	/*
799 	 * If we are about to journal a buffer, then any revoke pending on it is
800 	 * no longer valid
801 	 */
802 	jbd2_journal_cancel_revoke(handle, jh);
803 
804 out:
805 	if (unlikely(frozen_buffer))	/* It's usually NULL */
806 		jbd2_free(frozen_buffer, bh->b_size);
807 
808 	JBUFFER_TRACE(jh, "exit");
809 	return error;
810 }
811 
812 /**
813  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
814  * @handle: transaction to add buffer modifications to
815  * @bh:     bh to be used for metadata writes
816  * @credits: variable that will receive credits for the buffer
817  *
818  * Returns an error code or 0 on success.
819  *
820  * In full data journalling mode the buffer may be of type BJ_AsyncData,
821  * because we're write()ing a buffer which is also part of a shared mapping.
822  */
823 
824 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
825 {
826 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
827 	int rc;
828 
829 	/* We do not want to get caught playing with fields which the
830 	 * log thread also manipulates.  Make sure that the buffer
831 	 * completes any outstanding IO before proceeding. */
832 	rc = do_get_write_access(handle, jh, 0);
833 	jbd2_journal_put_journal_head(jh);
834 	return rc;
835 }
836 
837 
838 /*
839  * When the user wants to journal a newly created buffer_head
840  * (ie. getblk() returned a new buffer and we are going to populate it
841  * manually rather than reading off disk), then we need to keep the
842  * buffer_head locked until it has been completely filled with new
843  * data.  In this case, we should be able to make the assertion that
844  * the bh is not already part of an existing transaction.
845  *
846  * The buffer should already be locked by the caller by this point.
847  * There is no lock ranking violation: it was a newly created,
848  * unlocked buffer beforehand. */
849 
850 /**
851  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
852  * @handle: transaction to new buffer to
853  * @bh: new buffer.
854  *
855  * Call this if you create a new bh.
856  */
857 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
858 {
859 	transaction_t *transaction = handle->h_transaction;
860 	journal_t *journal = transaction->t_journal;
861 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
862 	int err;
863 
864 	jbd_debug(5, "journal_head %p\n", jh);
865 	err = -EROFS;
866 	if (is_handle_aborted(handle))
867 		goto out;
868 	err = 0;
869 
870 	JBUFFER_TRACE(jh, "entry");
871 	/*
872 	 * The buffer may already belong to this transaction due to pre-zeroing
873 	 * in the filesystem's new_block code.  It may also be on the previous,
874 	 * committing transaction's lists, but it HAS to be in Forget state in
875 	 * that case: the transaction must have deleted the buffer for it to be
876 	 * reused here.
877 	 */
878 	jbd_lock_bh_state(bh);
879 	spin_lock(&journal->j_list_lock);
880 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
881 		jh->b_transaction == NULL ||
882 		(jh->b_transaction == journal->j_committing_transaction &&
883 			  jh->b_jlist == BJ_Forget)));
884 
885 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
886 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
887 
888 	if (jh->b_transaction == NULL) {
889 		/*
890 		 * Previous jbd2_journal_forget() could have left the buffer
891 		 * with jbddirty bit set because it was being committed. When
892 		 * the commit finished, we've filed the buffer for
893 		 * checkpointing and marked it dirty. Now we are reallocating
894 		 * the buffer so the transaction freeing it must have
895 		 * committed and so it's safe to clear the dirty bit.
896 		 */
897 		clear_buffer_dirty(jh2bh(jh));
898 		jh->b_transaction = transaction;
899 
900 		/* first access by this transaction */
901 		jh->b_modified = 0;
902 
903 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
904 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
905 	} else if (jh->b_transaction == journal->j_committing_transaction) {
906 		/* first access by this transaction */
907 		jh->b_modified = 0;
908 
909 		JBUFFER_TRACE(jh, "set next transaction");
910 		jh->b_next_transaction = transaction;
911 	}
912 	spin_unlock(&journal->j_list_lock);
913 	jbd_unlock_bh_state(bh);
914 
915 	/*
916 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
917 	 * blocks which contain freed but then revoked metadata.  We need
918 	 * to cancel the revoke in case we end up freeing it yet again
919 	 * and the reallocating as data - this would cause a second revoke,
920 	 * which hits an assertion error.
921 	 */
922 	JBUFFER_TRACE(jh, "cancelling revoke");
923 	jbd2_journal_cancel_revoke(handle, jh);
924 	jbd2_journal_put_journal_head(jh);
925 out:
926 	return err;
927 }
928 
929 /**
930  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
931  *     non-rewindable consequences
932  * @handle: transaction
933  * @bh: buffer to undo
934  * @credits: store the number of taken credits here (if not NULL)
935  *
936  * Sometimes there is a need to distinguish between metadata which has
937  * been committed to disk and that which has not.  The ext3fs code uses
938  * this for freeing and allocating space, we have to make sure that we
939  * do not reuse freed space until the deallocation has been committed,
940  * since if we overwrote that space we would make the delete
941  * un-rewindable in case of a crash.
942  *
943  * To deal with that, jbd2_journal_get_undo_access requests write access to a
944  * buffer for parts of non-rewindable operations such as delete
945  * operations on the bitmaps.  The journaling code must keep a copy of
946  * the buffer's contents prior to the undo_access call until such time
947  * as we know that the buffer has definitely been committed to disk.
948  *
949  * We never need to know which transaction the committed data is part
950  * of, buffers touched here are guaranteed to be dirtied later and so
951  * will be committed to a new transaction in due course, at which point
952  * we can discard the old committed data pointer.
953  *
954  * Returns error number or 0 on success.
955  */
956 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
957 {
958 	int err;
959 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
960 	char *committed_data = NULL;
961 
962 	JBUFFER_TRACE(jh, "entry");
963 
964 	/*
965 	 * Do this first --- it can drop the journal lock, so we want to
966 	 * make sure that obtaining the committed_data is done
967 	 * atomically wrt. completion of any outstanding commits.
968 	 */
969 	err = do_get_write_access(handle, jh, 1);
970 	if (err)
971 		goto out;
972 
973 repeat:
974 	if (!jh->b_committed_data) {
975 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
976 		if (!committed_data) {
977 			printk(KERN_EMERG "%s: No memory for committed data\n",
978 				__func__);
979 			err = -ENOMEM;
980 			goto out;
981 		}
982 	}
983 
984 	jbd_lock_bh_state(bh);
985 	if (!jh->b_committed_data) {
986 		/* Copy out the current buffer contents into the
987 		 * preserved, committed copy. */
988 		JBUFFER_TRACE(jh, "generate b_committed data");
989 		if (!committed_data) {
990 			jbd_unlock_bh_state(bh);
991 			goto repeat;
992 		}
993 
994 		jh->b_committed_data = committed_data;
995 		committed_data = NULL;
996 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
997 	}
998 	jbd_unlock_bh_state(bh);
999 out:
1000 	jbd2_journal_put_journal_head(jh);
1001 	if (unlikely(committed_data))
1002 		jbd2_free(committed_data, bh->b_size);
1003 	return err;
1004 }
1005 
1006 /**
1007  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1008  * @bh: buffer to trigger on
1009  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1010  *
1011  * Set any triggers on this journal_head.  This is always safe, because
1012  * triggers for a committing buffer will be saved off, and triggers for
1013  * a running transaction will match the buffer in that transaction.
1014  *
1015  * Call with NULL to clear the triggers.
1016  */
1017 void jbd2_journal_set_triggers(struct buffer_head *bh,
1018 			       struct jbd2_buffer_trigger_type *type)
1019 {
1020 	struct journal_head *jh = bh2jh(bh);
1021 
1022 	jh->b_triggers = type;
1023 }
1024 
1025 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1026 				struct jbd2_buffer_trigger_type *triggers)
1027 {
1028 	struct buffer_head *bh = jh2bh(jh);
1029 
1030 	if (!triggers || !triggers->t_frozen)
1031 		return;
1032 
1033 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1034 }
1035 
1036 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1037 			       struct jbd2_buffer_trigger_type *triggers)
1038 {
1039 	if (!triggers || !triggers->t_abort)
1040 		return;
1041 
1042 	triggers->t_abort(triggers, jh2bh(jh));
1043 }
1044 
1045 
1046 
1047 /**
1048  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1049  * @handle: transaction to add buffer to.
1050  * @bh: buffer to mark
1051  *
1052  * mark dirty metadata which needs to be journaled as part of the current
1053  * transaction.
1054  *
1055  * The buffer is placed on the transaction's metadata list and is marked
1056  * as belonging to the transaction.
1057  *
1058  * Returns error number or 0 on success.
1059  *
1060  * Special care needs to be taken if the buffer already belongs to the
1061  * current committing transaction (in which case we should have frozen
1062  * data present for that commit).  In that case, we don't relink the
1063  * buffer: that only gets done when the old transaction finally
1064  * completes its commit.
1065  */
1066 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1067 {
1068 	transaction_t *transaction = handle->h_transaction;
1069 	journal_t *journal = transaction->t_journal;
1070 	struct journal_head *jh = bh2jh(bh);
1071 
1072 	jbd_debug(5, "journal_head %p\n", jh);
1073 	JBUFFER_TRACE(jh, "entry");
1074 	if (is_handle_aborted(handle))
1075 		goto out;
1076 
1077 	jbd_lock_bh_state(bh);
1078 
1079 	if (jh->b_modified == 0) {
1080 		/*
1081 		 * This buffer's got modified and becoming part
1082 		 * of the transaction. This needs to be done
1083 		 * once a transaction -bzzz
1084 		 */
1085 		jh->b_modified = 1;
1086 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1087 		handle->h_buffer_credits--;
1088 	}
1089 
1090 	/*
1091 	 * fastpath, to avoid expensive locking.  If this buffer is already
1092 	 * on the running transaction's metadata list there is nothing to do.
1093 	 * Nobody can take it off again because there is a handle open.
1094 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1095 	 * result in this test being false, so we go in and take the locks.
1096 	 */
1097 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1098 		JBUFFER_TRACE(jh, "fastpath");
1099 		J_ASSERT_JH(jh, jh->b_transaction ==
1100 					journal->j_running_transaction);
1101 		goto out_unlock_bh;
1102 	}
1103 
1104 	set_buffer_jbddirty(bh);
1105 
1106 	/*
1107 	 * Metadata already on the current transaction list doesn't
1108 	 * need to be filed.  Metadata on another transaction's list must
1109 	 * be committing, and will be refiled once the commit completes:
1110 	 * leave it alone for now.
1111 	 */
1112 	if (jh->b_transaction != transaction) {
1113 		JBUFFER_TRACE(jh, "already on other transaction");
1114 		J_ASSERT_JH(jh, jh->b_transaction ==
1115 					journal->j_committing_transaction);
1116 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1117 		/* And this case is illegal: we can't reuse another
1118 		 * transaction's data buffer, ever. */
1119 		goto out_unlock_bh;
1120 	}
1121 
1122 	/* That test should have eliminated the following case: */
1123 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1124 
1125 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1126 	spin_lock(&journal->j_list_lock);
1127 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1128 	spin_unlock(&journal->j_list_lock);
1129 out_unlock_bh:
1130 	jbd_unlock_bh_state(bh);
1131 out:
1132 	JBUFFER_TRACE(jh, "exit");
1133 	return 0;
1134 }
1135 
1136 /*
1137  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1138  * updates, if the update decided in the end that it didn't need access.
1139  *
1140  */
1141 void
1142 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1143 {
1144 	BUFFER_TRACE(bh, "entry");
1145 }
1146 
1147 /**
1148  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1149  * @handle: transaction handle
1150  * @bh:     bh to 'forget'
1151  *
1152  * We can only do the bforget if there are no commits pending against the
1153  * buffer.  If the buffer is dirty in the current running transaction we
1154  * can safely unlink it.
1155  *
1156  * bh may not be a journalled buffer at all - it may be a non-JBD
1157  * buffer which came off the hashtable.  Check for this.
1158  *
1159  * Decrements bh->b_count by one.
1160  *
1161  * Allow this call even if the handle has aborted --- it may be part of
1162  * the caller's cleanup after an abort.
1163  */
1164 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1165 {
1166 	transaction_t *transaction = handle->h_transaction;
1167 	journal_t *journal = transaction->t_journal;
1168 	struct journal_head *jh;
1169 	int drop_reserve = 0;
1170 	int err = 0;
1171 	int was_modified = 0;
1172 
1173 	BUFFER_TRACE(bh, "entry");
1174 
1175 	jbd_lock_bh_state(bh);
1176 	spin_lock(&journal->j_list_lock);
1177 
1178 	if (!buffer_jbd(bh))
1179 		goto not_jbd;
1180 	jh = bh2jh(bh);
1181 
1182 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1183 	 * Don't do any jbd operations, and return an error. */
1184 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1185 			 "inconsistent data on disk")) {
1186 		err = -EIO;
1187 		goto not_jbd;
1188 	}
1189 
1190 	/* keep track of wether or not this transaction modified us */
1191 	was_modified = jh->b_modified;
1192 
1193 	/*
1194 	 * The buffer's going from the transaction, we must drop
1195 	 * all references -bzzz
1196 	 */
1197 	jh->b_modified = 0;
1198 
1199 	if (jh->b_transaction == handle->h_transaction) {
1200 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1201 
1202 		/* If we are forgetting a buffer which is already part
1203 		 * of this transaction, then we can just drop it from
1204 		 * the transaction immediately. */
1205 		clear_buffer_dirty(bh);
1206 		clear_buffer_jbddirty(bh);
1207 
1208 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1209 
1210 		/*
1211 		 * we only want to drop a reference if this transaction
1212 		 * modified the buffer
1213 		 */
1214 		if (was_modified)
1215 			drop_reserve = 1;
1216 
1217 		/*
1218 		 * We are no longer going to journal this buffer.
1219 		 * However, the commit of this transaction is still
1220 		 * important to the buffer: the delete that we are now
1221 		 * processing might obsolete an old log entry, so by
1222 		 * committing, we can satisfy the buffer's checkpoint.
1223 		 *
1224 		 * So, if we have a checkpoint on the buffer, we should
1225 		 * now refile the buffer on our BJ_Forget list so that
1226 		 * we know to remove the checkpoint after we commit.
1227 		 */
1228 
1229 		if (jh->b_cp_transaction) {
1230 			__jbd2_journal_temp_unlink_buffer(jh);
1231 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1232 		} else {
1233 			__jbd2_journal_unfile_buffer(jh);
1234 			jbd2_journal_remove_journal_head(bh);
1235 			__brelse(bh);
1236 			if (!buffer_jbd(bh)) {
1237 				spin_unlock(&journal->j_list_lock);
1238 				jbd_unlock_bh_state(bh);
1239 				__bforget(bh);
1240 				goto drop;
1241 			}
1242 		}
1243 	} else if (jh->b_transaction) {
1244 		J_ASSERT_JH(jh, (jh->b_transaction ==
1245 				 journal->j_committing_transaction));
1246 		/* However, if the buffer is still owned by a prior
1247 		 * (committing) transaction, we can't drop it yet... */
1248 		JBUFFER_TRACE(jh, "belongs to older transaction");
1249 		/* ... but we CAN drop it from the new transaction if we
1250 		 * have also modified it since the original commit. */
1251 
1252 		if (jh->b_next_transaction) {
1253 			J_ASSERT(jh->b_next_transaction == transaction);
1254 			jh->b_next_transaction = NULL;
1255 
1256 			/*
1257 			 * only drop a reference if this transaction modified
1258 			 * the buffer
1259 			 */
1260 			if (was_modified)
1261 				drop_reserve = 1;
1262 		}
1263 	}
1264 
1265 not_jbd:
1266 	spin_unlock(&journal->j_list_lock);
1267 	jbd_unlock_bh_state(bh);
1268 	__brelse(bh);
1269 drop:
1270 	if (drop_reserve) {
1271 		/* no need to reserve log space for this block -bzzz */
1272 		handle->h_buffer_credits++;
1273 	}
1274 	return err;
1275 }
1276 
1277 /**
1278  * int jbd2_journal_stop() - complete a transaction
1279  * @handle: tranaction to complete.
1280  *
1281  * All done for a particular handle.
1282  *
1283  * There is not much action needed here.  We just return any remaining
1284  * buffer credits to the transaction and remove the handle.  The only
1285  * complication is that we need to start a commit operation if the
1286  * filesystem is marked for synchronous update.
1287  *
1288  * jbd2_journal_stop itself will not usually return an error, but it may
1289  * do so in unusual circumstances.  In particular, expect it to
1290  * return -EIO if a jbd2_journal_abort has been executed since the
1291  * transaction began.
1292  */
1293 int jbd2_journal_stop(handle_t *handle)
1294 {
1295 	transaction_t *transaction = handle->h_transaction;
1296 	journal_t *journal = transaction->t_journal;
1297 	int err, wait_for_commit = 0;
1298 	tid_t tid;
1299 	pid_t pid;
1300 
1301 	J_ASSERT(journal_current_handle() == handle);
1302 
1303 	if (is_handle_aborted(handle))
1304 		err = -EIO;
1305 	else {
1306 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1307 		err = 0;
1308 	}
1309 
1310 	if (--handle->h_ref > 0) {
1311 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1312 			  handle->h_ref);
1313 		return err;
1314 	}
1315 
1316 	jbd_debug(4, "Handle %p going down\n", handle);
1317 
1318 	/*
1319 	 * Implement synchronous transaction batching.  If the handle
1320 	 * was synchronous, don't force a commit immediately.  Let's
1321 	 * yield and let another thread piggyback onto this
1322 	 * transaction.  Keep doing that while new threads continue to
1323 	 * arrive.  It doesn't cost much - we're about to run a commit
1324 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1325 	 * operations by 30x or more...
1326 	 *
1327 	 * We try and optimize the sleep time against what the
1328 	 * underlying disk can do, instead of having a static sleep
1329 	 * time.  This is useful for the case where our storage is so
1330 	 * fast that it is more optimal to go ahead and force a flush
1331 	 * and wait for the transaction to be committed than it is to
1332 	 * wait for an arbitrary amount of time for new writers to
1333 	 * join the transaction.  We achieve this by measuring how
1334 	 * long it takes to commit a transaction, and compare it with
1335 	 * how long this transaction has been running, and if run time
1336 	 * < commit time then we sleep for the delta and commit.  This
1337 	 * greatly helps super fast disks that would see slowdowns as
1338 	 * more threads started doing fsyncs.
1339 	 *
1340 	 * But don't do this if this process was the most recent one
1341 	 * to perform a synchronous write.  We do this to detect the
1342 	 * case where a single process is doing a stream of sync
1343 	 * writes.  No point in waiting for joiners in that case.
1344 	 */
1345 	pid = current->pid;
1346 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1347 		u64 commit_time, trans_time;
1348 
1349 		journal->j_last_sync_writer = pid;
1350 
1351 		read_lock(&journal->j_state_lock);
1352 		commit_time = journal->j_average_commit_time;
1353 		read_unlock(&journal->j_state_lock);
1354 
1355 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1356 						   transaction->t_start_time));
1357 
1358 		commit_time = max_t(u64, commit_time,
1359 				    1000*journal->j_min_batch_time);
1360 		commit_time = min_t(u64, commit_time,
1361 				    1000*journal->j_max_batch_time);
1362 
1363 		if (trans_time < commit_time) {
1364 			ktime_t expires = ktime_add_ns(ktime_get(),
1365 						       commit_time);
1366 			set_current_state(TASK_UNINTERRUPTIBLE);
1367 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1368 		}
1369 	}
1370 
1371 	if (handle->h_sync)
1372 		transaction->t_synchronous_commit = 1;
1373 	current->journal_info = NULL;
1374 	atomic_sub(handle->h_buffer_credits,
1375 		   &transaction->t_outstanding_credits);
1376 
1377 	/*
1378 	 * If the handle is marked SYNC, we need to set another commit
1379 	 * going!  We also want to force a commit if the current
1380 	 * transaction is occupying too much of the log, or if the
1381 	 * transaction is too old now.
1382 	 */
1383 	if (handle->h_sync ||
1384 	    (atomic_read(&transaction->t_outstanding_credits) >
1385 	     journal->j_max_transaction_buffers) ||
1386 	    time_after_eq(jiffies, transaction->t_expires)) {
1387 		/* Do this even for aborted journals: an abort still
1388 		 * completes the commit thread, it just doesn't write
1389 		 * anything to disk. */
1390 
1391 		jbd_debug(2, "transaction too old, requesting commit for "
1392 					"handle %p\n", handle);
1393 		/* This is non-blocking */
1394 		jbd2_log_start_commit(journal, transaction->t_tid);
1395 
1396 		/*
1397 		 * Special case: JBD2_SYNC synchronous updates require us
1398 		 * to wait for the commit to complete.
1399 		 */
1400 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1401 			wait_for_commit = 1;
1402 	}
1403 
1404 	/*
1405 	 * Once we drop t_updates, if it goes to zero the transaction
1406 	 * could start commiting on us and eventually disappear.  So
1407 	 * once we do this, we must not dereference transaction
1408 	 * pointer again.
1409 	 */
1410 	tid = transaction->t_tid;
1411 	if (atomic_dec_and_test(&transaction->t_updates)) {
1412 		wake_up(&journal->j_wait_updates);
1413 		if (journal->j_barrier_count)
1414 			wake_up(&journal->j_wait_transaction_locked);
1415 	}
1416 
1417 	if (wait_for_commit)
1418 		err = jbd2_log_wait_commit(journal, tid);
1419 
1420 	lock_map_release(&handle->h_lockdep_map);
1421 
1422 	jbd2_free_handle(handle);
1423 	return err;
1424 }
1425 
1426 /**
1427  * int jbd2_journal_force_commit() - force any uncommitted transactions
1428  * @journal: journal to force
1429  *
1430  * For synchronous operations: force any uncommitted transactions
1431  * to disk.  May seem kludgy, but it reuses all the handle batching
1432  * code in a very simple manner.
1433  */
1434 int jbd2_journal_force_commit(journal_t *journal)
1435 {
1436 	handle_t *handle;
1437 	int ret;
1438 
1439 	handle = jbd2_journal_start(journal, 1);
1440 	if (IS_ERR(handle)) {
1441 		ret = PTR_ERR(handle);
1442 	} else {
1443 		handle->h_sync = 1;
1444 		ret = jbd2_journal_stop(handle);
1445 	}
1446 	return ret;
1447 }
1448 
1449 /*
1450  *
1451  * List management code snippets: various functions for manipulating the
1452  * transaction buffer lists.
1453  *
1454  */
1455 
1456 /*
1457  * Append a buffer to a transaction list, given the transaction's list head
1458  * pointer.
1459  *
1460  * j_list_lock is held.
1461  *
1462  * jbd_lock_bh_state(jh2bh(jh)) is held.
1463  */
1464 
1465 static inline void
1466 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1467 {
1468 	if (!*list) {
1469 		jh->b_tnext = jh->b_tprev = jh;
1470 		*list = jh;
1471 	} else {
1472 		/* Insert at the tail of the list to preserve order */
1473 		struct journal_head *first = *list, *last = first->b_tprev;
1474 		jh->b_tprev = last;
1475 		jh->b_tnext = first;
1476 		last->b_tnext = first->b_tprev = jh;
1477 	}
1478 }
1479 
1480 /*
1481  * Remove a buffer from a transaction list, given the transaction's list
1482  * head pointer.
1483  *
1484  * Called with j_list_lock held, and the journal may not be locked.
1485  *
1486  * jbd_lock_bh_state(jh2bh(jh)) is held.
1487  */
1488 
1489 static inline void
1490 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1491 {
1492 	if (*list == jh) {
1493 		*list = jh->b_tnext;
1494 		if (*list == jh)
1495 			*list = NULL;
1496 	}
1497 	jh->b_tprev->b_tnext = jh->b_tnext;
1498 	jh->b_tnext->b_tprev = jh->b_tprev;
1499 }
1500 
1501 /*
1502  * Remove a buffer from the appropriate transaction list.
1503  *
1504  * Note that this function can *change* the value of
1505  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1506  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1507  * of these pointers, it could go bad.  Generally the caller needs to re-read
1508  * the pointer from the transaction_t.
1509  *
1510  * Called under j_list_lock.  The journal may not be locked.
1511  */
1512 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1513 {
1514 	struct journal_head **list = NULL;
1515 	transaction_t *transaction;
1516 	struct buffer_head *bh = jh2bh(jh);
1517 
1518 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1519 	transaction = jh->b_transaction;
1520 	if (transaction)
1521 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1522 
1523 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1524 	if (jh->b_jlist != BJ_None)
1525 		J_ASSERT_JH(jh, transaction != NULL);
1526 
1527 	switch (jh->b_jlist) {
1528 	case BJ_None:
1529 		return;
1530 	case BJ_Metadata:
1531 		transaction->t_nr_buffers--;
1532 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1533 		list = &transaction->t_buffers;
1534 		break;
1535 	case BJ_Forget:
1536 		list = &transaction->t_forget;
1537 		break;
1538 	case BJ_IO:
1539 		list = &transaction->t_iobuf_list;
1540 		break;
1541 	case BJ_Shadow:
1542 		list = &transaction->t_shadow_list;
1543 		break;
1544 	case BJ_LogCtl:
1545 		list = &transaction->t_log_list;
1546 		break;
1547 	case BJ_Reserved:
1548 		list = &transaction->t_reserved_list;
1549 		break;
1550 	}
1551 
1552 	__blist_del_buffer(list, jh);
1553 	jh->b_jlist = BJ_None;
1554 	if (test_clear_buffer_jbddirty(bh))
1555 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1556 }
1557 
1558 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1559 {
1560 	__jbd2_journal_temp_unlink_buffer(jh);
1561 	jh->b_transaction = NULL;
1562 }
1563 
1564 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1565 {
1566 	jbd_lock_bh_state(jh2bh(jh));
1567 	spin_lock(&journal->j_list_lock);
1568 	__jbd2_journal_unfile_buffer(jh);
1569 	spin_unlock(&journal->j_list_lock);
1570 	jbd_unlock_bh_state(jh2bh(jh));
1571 }
1572 
1573 /*
1574  * Called from jbd2_journal_try_to_free_buffers().
1575  *
1576  * Called under jbd_lock_bh_state(bh)
1577  */
1578 static void
1579 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1580 {
1581 	struct journal_head *jh;
1582 
1583 	jh = bh2jh(bh);
1584 
1585 	if (buffer_locked(bh) || buffer_dirty(bh))
1586 		goto out;
1587 
1588 	if (jh->b_next_transaction != NULL)
1589 		goto out;
1590 
1591 	spin_lock(&journal->j_list_lock);
1592 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1593 		/* written-back checkpointed metadata buffer */
1594 		if (jh->b_jlist == BJ_None) {
1595 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1596 			__jbd2_journal_remove_checkpoint(jh);
1597 			jbd2_journal_remove_journal_head(bh);
1598 			__brelse(bh);
1599 		}
1600 	}
1601 	spin_unlock(&journal->j_list_lock);
1602 out:
1603 	return;
1604 }
1605 
1606 /**
1607  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1608  * @journal: journal for operation
1609  * @page: to try and free
1610  * @gfp_mask: we use the mask to detect how hard should we try to release
1611  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1612  * release the buffers.
1613  *
1614  *
1615  * For all the buffers on this page,
1616  * if they are fully written out ordered data, move them onto BUF_CLEAN
1617  * so try_to_free_buffers() can reap them.
1618  *
1619  * This function returns non-zero if we wish try_to_free_buffers()
1620  * to be called. We do this if the page is releasable by try_to_free_buffers().
1621  * We also do it if the page has locked or dirty buffers and the caller wants
1622  * us to perform sync or async writeout.
1623  *
1624  * This complicates JBD locking somewhat.  We aren't protected by the
1625  * BKL here.  We wish to remove the buffer from its committing or
1626  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1627  *
1628  * This may *change* the value of transaction_t->t_datalist, so anyone
1629  * who looks at t_datalist needs to lock against this function.
1630  *
1631  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1632  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1633  * will come out of the lock with the buffer dirty, which makes it
1634  * ineligible for release here.
1635  *
1636  * Who else is affected by this?  hmm...  Really the only contender
1637  * is do_get_write_access() - it could be looking at the buffer while
1638  * journal_try_to_free_buffer() is changing its state.  But that
1639  * cannot happen because we never reallocate freed data as metadata
1640  * while the data is part of a transaction.  Yes?
1641  *
1642  * Return 0 on failure, 1 on success
1643  */
1644 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1645 				struct page *page, gfp_t gfp_mask)
1646 {
1647 	struct buffer_head *head;
1648 	struct buffer_head *bh;
1649 	int ret = 0;
1650 
1651 	J_ASSERT(PageLocked(page));
1652 
1653 	head = page_buffers(page);
1654 	bh = head;
1655 	do {
1656 		struct journal_head *jh;
1657 
1658 		/*
1659 		 * We take our own ref against the journal_head here to avoid
1660 		 * having to add tons of locking around each instance of
1661 		 * jbd2_journal_remove_journal_head() and
1662 		 * jbd2_journal_put_journal_head().
1663 		 */
1664 		jh = jbd2_journal_grab_journal_head(bh);
1665 		if (!jh)
1666 			continue;
1667 
1668 		jbd_lock_bh_state(bh);
1669 		__journal_try_to_free_buffer(journal, bh);
1670 		jbd2_journal_put_journal_head(jh);
1671 		jbd_unlock_bh_state(bh);
1672 		if (buffer_jbd(bh))
1673 			goto busy;
1674 	} while ((bh = bh->b_this_page) != head);
1675 
1676 	ret = try_to_free_buffers(page);
1677 
1678 busy:
1679 	return ret;
1680 }
1681 
1682 /*
1683  * This buffer is no longer needed.  If it is on an older transaction's
1684  * checkpoint list we need to record it on this transaction's forget list
1685  * to pin this buffer (and hence its checkpointing transaction) down until
1686  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1687  * release it.
1688  * Returns non-zero if JBD no longer has an interest in the buffer.
1689  *
1690  * Called under j_list_lock.
1691  *
1692  * Called under jbd_lock_bh_state(bh).
1693  */
1694 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1695 {
1696 	int may_free = 1;
1697 	struct buffer_head *bh = jh2bh(jh);
1698 
1699 	__jbd2_journal_unfile_buffer(jh);
1700 
1701 	if (jh->b_cp_transaction) {
1702 		JBUFFER_TRACE(jh, "on running+cp transaction");
1703 		/*
1704 		 * We don't want to write the buffer anymore, clear the
1705 		 * bit so that we don't confuse checks in
1706 		 * __journal_file_buffer
1707 		 */
1708 		clear_buffer_dirty(bh);
1709 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1710 		may_free = 0;
1711 	} else {
1712 		JBUFFER_TRACE(jh, "on running transaction");
1713 		jbd2_journal_remove_journal_head(bh);
1714 		__brelse(bh);
1715 	}
1716 	return may_free;
1717 }
1718 
1719 /*
1720  * jbd2_journal_invalidatepage
1721  *
1722  * This code is tricky.  It has a number of cases to deal with.
1723  *
1724  * There are two invariants which this code relies on:
1725  *
1726  * i_size must be updated on disk before we start calling invalidatepage on the
1727  * data.
1728  *
1729  *  This is done in ext3 by defining an ext3_setattr method which
1730  *  updates i_size before truncate gets going.  By maintaining this
1731  *  invariant, we can be sure that it is safe to throw away any buffers
1732  *  attached to the current transaction: once the transaction commits,
1733  *  we know that the data will not be needed.
1734  *
1735  *  Note however that we can *not* throw away data belonging to the
1736  *  previous, committing transaction!
1737  *
1738  * Any disk blocks which *are* part of the previous, committing
1739  * transaction (and which therefore cannot be discarded immediately) are
1740  * not going to be reused in the new running transaction
1741  *
1742  *  The bitmap committed_data images guarantee this: any block which is
1743  *  allocated in one transaction and removed in the next will be marked
1744  *  as in-use in the committed_data bitmap, so cannot be reused until
1745  *  the next transaction to delete the block commits.  This means that
1746  *  leaving committing buffers dirty is quite safe: the disk blocks
1747  *  cannot be reallocated to a different file and so buffer aliasing is
1748  *  not possible.
1749  *
1750  *
1751  * The above applies mainly to ordered data mode.  In writeback mode we
1752  * don't make guarantees about the order in which data hits disk --- in
1753  * particular we don't guarantee that new dirty data is flushed before
1754  * transaction commit --- so it is always safe just to discard data
1755  * immediately in that mode.  --sct
1756  */
1757 
1758 /*
1759  * The journal_unmap_buffer helper function returns zero if the buffer
1760  * concerned remains pinned as an anonymous buffer belonging to an older
1761  * transaction.
1762  *
1763  * We're outside-transaction here.  Either or both of j_running_transaction
1764  * and j_committing_transaction may be NULL.
1765  */
1766 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1767 {
1768 	transaction_t *transaction;
1769 	struct journal_head *jh;
1770 	int may_free = 1;
1771 	int ret;
1772 
1773 	BUFFER_TRACE(bh, "entry");
1774 
1775 	/*
1776 	 * It is safe to proceed here without the j_list_lock because the
1777 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1778 	 * holding the page lock. --sct
1779 	 */
1780 
1781 	if (!buffer_jbd(bh))
1782 		goto zap_buffer_unlocked;
1783 
1784 	/* OK, we have data buffer in journaled mode */
1785 	write_lock(&journal->j_state_lock);
1786 	jbd_lock_bh_state(bh);
1787 	spin_lock(&journal->j_list_lock);
1788 
1789 	jh = jbd2_journal_grab_journal_head(bh);
1790 	if (!jh)
1791 		goto zap_buffer_no_jh;
1792 
1793 	/*
1794 	 * We cannot remove the buffer from checkpoint lists until the
1795 	 * transaction adding inode to orphan list (let's call it T)
1796 	 * is committed.  Otherwise if the transaction changing the
1797 	 * buffer would be cleaned from the journal before T is
1798 	 * committed, a crash will cause that the correct contents of
1799 	 * the buffer will be lost.  On the other hand we have to
1800 	 * clear the buffer dirty bit at latest at the moment when the
1801 	 * transaction marking the buffer as freed in the filesystem
1802 	 * structures is committed because from that moment on the
1803 	 * buffer can be reallocated and used by a different page.
1804 	 * Since the block hasn't been freed yet but the inode has
1805 	 * already been added to orphan list, it is safe for us to add
1806 	 * the buffer to BJ_Forget list of the newest transaction.
1807 	 */
1808 	transaction = jh->b_transaction;
1809 	if (transaction == NULL) {
1810 		/* First case: not on any transaction.  If it
1811 		 * has no checkpoint link, then we can zap it:
1812 		 * it's a writeback-mode buffer so we don't care
1813 		 * if it hits disk safely. */
1814 		if (!jh->b_cp_transaction) {
1815 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1816 			goto zap_buffer;
1817 		}
1818 
1819 		if (!buffer_dirty(bh)) {
1820 			/* bdflush has written it.  We can drop it now */
1821 			goto zap_buffer;
1822 		}
1823 
1824 		/* OK, it must be in the journal but still not
1825 		 * written fully to disk: it's metadata or
1826 		 * journaled data... */
1827 
1828 		if (journal->j_running_transaction) {
1829 			/* ... and once the current transaction has
1830 			 * committed, the buffer won't be needed any
1831 			 * longer. */
1832 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1833 			ret = __dispose_buffer(jh,
1834 					journal->j_running_transaction);
1835 			jbd2_journal_put_journal_head(jh);
1836 			spin_unlock(&journal->j_list_lock);
1837 			jbd_unlock_bh_state(bh);
1838 			write_unlock(&journal->j_state_lock);
1839 			return ret;
1840 		} else {
1841 			/* There is no currently-running transaction. So the
1842 			 * orphan record which we wrote for this file must have
1843 			 * passed into commit.  We must attach this buffer to
1844 			 * the committing transaction, if it exists. */
1845 			if (journal->j_committing_transaction) {
1846 				JBUFFER_TRACE(jh, "give to committing trans");
1847 				ret = __dispose_buffer(jh,
1848 					journal->j_committing_transaction);
1849 				jbd2_journal_put_journal_head(jh);
1850 				spin_unlock(&journal->j_list_lock);
1851 				jbd_unlock_bh_state(bh);
1852 				write_unlock(&journal->j_state_lock);
1853 				return ret;
1854 			} else {
1855 				/* The orphan record's transaction has
1856 				 * committed.  We can cleanse this buffer */
1857 				clear_buffer_jbddirty(bh);
1858 				goto zap_buffer;
1859 			}
1860 		}
1861 	} else if (transaction == journal->j_committing_transaction) {
1862 		JBUFFER_TRACE(jh, "on committing transaction");
1863 		/*
1864 		 * The buffer is committing, we simply cannot touch
1865 		 * it. So we just set j_next_transaction to the
1866 		 * running transaction (if there is one) and mark
1867 		 * buffer as freed so that commit code knows it should
1868 		 * clear dirty bits when it is done with the buffer.
1869 		 */
1870 		set_buffer_freed(bh);
1871 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1872 			jh->b_next_transaction = journal->j_running_transaction;
1873 		jbd2_journal_put_journal_head(jh);
1874 		spin_unlock(&journal->j_list_lock);
1875 		jbd_unlock_bh_state(bh);
1876 		write_unlock(&journal->j_state_lock);
1877 		return 0;
1878 	} else {
1879 		/* Good, the buffer belongs to the running transaction.
1880 		 * We are writing our own transaction's data, not any
1881 		 * previous one's, so it is safe to throw it away
1882 		 * (remember that we expect the filesystem to have set
1883 		 * i_size already for this truncate so recovery will not
1884 		 * expose the disk blocks we are discarding here.) */
1885 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1886 		JBUFFER_TRACE(jh, "on running transaction");
1887 		may_free = __dispose_buffer(jh, transaction);
1888 	}
1889 
1890 zap_buffer:
1891 	jbd2_journal_put_journal_head(jh);
1892 zap_buffer_no_jh:
1893 	spin_unlock(&journal->j_list_lock);
1894 	jbd_unlock_bh_state(bh);
1895 	write_unlock(&journal->j_state_lock);
1896 zap_buffer_unlocked:
1897 	clear_buffer_dirty(bh);
1898 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1899 	clear_buffer_mapped(bh);
1900 	clear_buffer_req(bh);
1901 	clear_buffer_new(bh);
1902 	bh->b_bdev = NULL;
1903 	return may_free;
1904 }
1905 
1906 /**
1907  * void jbd2_journal_invalidatepage()
1908  * @journal: journal to use for flush...
1909  * @page:    page to flush
1910  * @offset:  length of page to invalidate.
1911  *
1912  * Reap page buffers containing data after offset in page.
1913  *
1914  */
1915 void jbd2_journal_invalidatepage(journal_t *journal,
1916 		      struct page *page,
1917 		      unsigned long offset)
1918 {
1919 	struct buffer_head *head, *bh, *next;
1920 	unsigned int curr_off = 0;
1921 	int may_free = 1;
1922 
1923 	if (!PageLocked(page))
1924 		BUG();
1925 	if (!page_has_buffers(page))
1926 		return;
1927 
1928 	/* We will potentially be playing with lists other than just the
1929 	 * data lists (especially for journaled data mode), so be
1930 	 * cautious in our locking. */
1931 
1932 	head = bh = page_buffers(page);
1933 	do {
1934 		unsigned int next_off = curr_off + bh->b_size;
1935 		next = bh->b_this_page;
1936 
1937 		if (offset <= curr_off) {
1938 			/* This block is wholly outside the truncation point */
1939 			lock_buffer(bh);
1940 			may_free &= journal_unmap_buffer(journal, bh);
1941 			unlock_buffer(bh);
1942 		}
1943 		curr_off = next_off;
1944 		bh = next;
1945 
1946 	} while (bh != head);
1947 
1948 	if (!offset) {
1949 		if (may_free && try_to_free_buffers(page))
1950 			J_ASSERT(!page_has_buffers(page));
1951 	}
1952 }
1953 
1954 /*
1955  * File a buffer on the given transaction list.
1956  */
1957 void __jbd2_journal_file_buffer(struct journal_head *jh,
1958 			transaction_t *transaction, int jlist)
1959 {
1960 	struct journal_head **list = NULL;
1961 	int was_dirty = 0;
1962 	struct buffer_head *bh = jh2bh(jh);
1963 
1964 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1965 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1966 
1967 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1968 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1969 				jh->b_transaction == NULL);
1970 
1971 	if (jh->b_transaction && jh->b_jlist == jlist)
1972 		return;
1973 
1974 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1975 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1976 		/*
1977 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1978 		 * instead of buffer_dirty. We should not see a dirty bit set
1979 		 * here because we clear it in do_get_write_access but e.g.
1980 		 * tune2fs can modify the sb and set the dirty bit at any time
1981 		 * so we try to gracefully handle that.
1982 		 */
1983 		if (buffer_dirty(bh))
1984 			warn_dirty_buffer(bh);
1985 		if (test_clear_buffer_dirty(bh) ||
1986 		    test_clear_buffer_jbddirty(bh))
1987 			was_dirty = 1;
1988 	}
1989 
1990 	if (jh->b_transaction)
1991 		__jbd2_journal_temp_unlink_buffer(jh);
1992 	jh->b_transaction = transaction;
1993 
1994 	switch (jlist) {
1995 	case BJ_None:
1996 		J_ASSERT_JH(jh, !jh->b_committed_data);
1997 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1998 		return;
1999 	case BJ_Metadata:
2000 		transaction->t_nr_buffers++;
2001 		list = &transaction->t_buffers;
2002 		break;
2003 	case BJ_Forget:
2004 		list = &transaction->t_forget;
2005 		break;
2006 	case BJ_IO:
2007 		list = &transaction->t_iobuf_list;
2008 		break;
2009 	case BJ_Shadow:
2010 		list = &transaction->t_shadow_list;
2011 		break;
2012 	case BJ_LogCtl:
2013 		list = &transaction->t_log_list;
2014 		break;
2015 	case BJ_Reserved:
2016 		list = &transaction->t_reserved_list;
2017 		break;
2018 	}
2019 
2020 	__blist_add_buffer(list, jh);
2021 	jh->b_jlist = jlist;
2022 
2023 	if (was_dirty)
2024 		set_buffer_jbddirty(bh);
2025 }
2026 
2027 void jbd2_journal_file_buffer(struct journal_head *jh,
2028 				transaction_t *transaction, int jlist)
2029 {
2030 	jbd_lock_bh_state(jh2bh(jh));
2031 	spin_lock(&transaction->t_journal->j_list_lock);
2032 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2033 	spin_unlock(&transaction->t_journal->j_list_lock);
2034 	jbd_unlock_bh_state(jh2bh(jh));
2035 }
2036 
2037 /*
2038  * Remove a buffer from its current buffer list in preparation for
2039  * dropping it from its current transaction entirely.  If the buffer has
2040  * already started to be used by a subsequent transaction, refile the
2041  * buffer on that transaction's metadata list.
2042  *
2043  * Called under journal->j_list_lock
2044  *
2045  * Called under jbd_lock_bh_state(jh2bh(jh))
2046  */
2047 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2048 {
2049 	int was_dirty, jlist;
2050 	struct buffer_head *bh = jh2bh(jh);
2051 
2052 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2053 	if (jh->b_transaction)
2054 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2055 
2056 	/* If the buffer is now unused, just drop it. */
2057 	if (jh->b_next_transaction == NULL) {
2058 		__jbd2_journal_unfile_buffer(jh);
2059 		return;
2060 	}
2061 
2062 	/*
2063 	 * It has been modified by a later transaction: add it to the new
2064 	 * transaction's metadata list.
2065 	 */
2066 
2067 	was_dirty = test_clear_buffer_jbddirty(bh);
2068 	__jbd2_journal_temp_unlink_buffer(jh);
2069 	jh->b_transaction = jh->b_next_transaction;
2070 	jh->b_next_transaction = NULL;
2071 	if (buffer_freed(bh))
2072 		jlist = BJ_Forget;
2073 	else if (jh->b_modified)
2074 		jlist = BJ_Metadata;
2075 	else
2076 		jlist = BJ_Reserved;
2077 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2078 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2079 
2080 	if (was_dirty)
2081 		set_buffer_jbddirty(bh);
2082 }
2083 
2084 /*
2085  * For the unlocked version of this call, also make sure that any
2086  * hanging journal_head is cleaned up if necessary.
2087  *
2088  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2089  * operation on a buffer_head, in which the caller is probably going to
2090  * be hooking the journal_head onto other lists.  In that case it is up
2091  * to the caller to remove the journal_head if necessary.  For the
2092  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2093  * doing anything else to the buffer so we need to do the cleanup
2094  * ourselves to avoid a jh leak.
2095  *
2096  * *** The journal_head may be freed by this call! ***
2097  */
2098 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2099 {
2100 	struct buffer_head *bh = jh2bh(jh);
2101 
2102 	jbd_lock_bh_state(bh);
2103 	spin_lock(&journal->j_list_lock);
2104 
2105 	__jbd2_journal_refile_buffer(jh);
2106 	jbd_unlock_bh_state(bh);
2107 	jbd2_journal_remove_journal_head(bh);
2108 
2109 	spin_unlock(&journal->j_list_lock);
2110 	__brelse(bh);
2111 }
2112 
2113 /*
2114  * File inode in the inode list of the handle's transaction
2115  */
2116 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2117 {
2118 	transaction_t *transaction = handle->h_transaction;
2119 	journal_t *journal = transaction->t_journal;
2120 
2121 	if (is_handle_aborted(handle))
2122 		return -EIO;
2123 
2124 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2125 			transaction->t_tid);
2126 
2127 	/*
2128 	 * First check whether inode isn't already on the transaction's
2129 	 * lists without taking the lock. Note that this check is safe
2130 	 * without the lock as we cannot race with somebody removing inode
2131 	 * from the transaction. The reason is that we remove inode from the
2132 	 * transaction only in journal_release_jbd_inode() and when we commit
2133 	 * the transaction. We are guarded from the first case by holding
2134 	 * a reference to the inode. We are safe against the second case
2135 	 * because if jinode->i_transaction == transaction, commit code
2136 	 * cannot touch the transaction because we hold reference to it,
2137 	 * and if jinode->i_next_transaction == transaction, commit code
2138 	 * will only file the inode where we want it.
2139 	 */
2140 	if (jinode->i_transaction == transaction ||
2141 	    jinode->i_next_transaction == transaction)
2142 		return 0;
2143 
2144 	spin_lock(&journal->j_list_lock);
2145 
2146 	if (jinode->i_transaction == transaction ||
2147 	    jinode->i_next_transaction == transaction)
2148 		goto done;
2149 
2150 	/* On some different transaction's list - should be
2151 	 * the committing one */
2152 	if (jinode->i_transaction) {
2153 		J_ASSERT(jinode->i_next_transaction == NULL);
2154 		J_ASSERT(jinode->i_transaction ==
2155 					journal->j_committing_transaction);
2156 		jinode->i_next_transaction = transaction;
2157 		goto done;
2158 	}
2159 	/* Not on any transaction list... */
2160 	J_ASSERT(!jinode->i_next_transaction);
2161 	jinode->i_transaction = transaction;
2162 	list_add(&jinode->i_list, &transaction->t_inode_list);
2163 done:
2164 	spin_unlock(&journal->j_list_lock);
2165 
2166 	return 0;
2167 }
2168 
2169 /*
2170  * File truncate and transaction commit interact with each other in a
2171  * non-trivial way.  If a transaction writing data block A is
2172  * committing, we cannot discard the data by truncate until we have
2173  * written them.  Otherwise if we crashed after the transaction with
2174  * write has committed but before the transaction with truncate has
2175  * committed, we could see stale data in block A.  This function is a
2176  * helper to solve this problem.  It starts writeout of the truncated
2177  * part in case it is in the committing transaction.
2178  *
2179  * Filesystem code must call this function when inode is journaled in
2180  * ordered mode before truncation happens and after the inode has been
2181  * placed on orphan list with the new inode size. The second condition
2182  * avoids the race that someone writes new data and we start
2183  * committing the transaction after this function has been called but
2184  * before a transaction for truncate is started (and furthermore it
2185  * allows us to optimize the case where the addition to orphan list
2186  * happens in the same transaction as write --- we don't have to write
2187  * any data in such case).
2188  */
2189 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2190 					struct jbd2_inode *jinode,
2191 					loff_t new_size)
2192 {
2193 	transaction_t *inode_trans, *commit_trans;
2194 	int ret = 0;
2195 
2196 	/* This is a quick check to avoid locking if not necessary */
2197 	if (!jinode->i_transaction)
2198 		goto out;
2199 	/* Locks are here just to force reading of recent values, it is
2200 	 * enough that the transaction was not committing before we started
2201 	 * a transaction adding the inode to orphan list */
2202 	read_lock(&journal->j_state_lock);
2203 	commit_trans = journal->j_committing_transaction;
2204 	read_unlock(&journal->j_state_lock);
2205 	spin_lock(&journal->j_list_lock);
2206 	inode_trans = jinode->i_transaction;
2207 	spin_unlock(&journal->j_list_lock);
2208 	if (inode_trans == commit_trans) {
2209 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2210 			new_size, LLONG_MAX);
2211 		if (ret)
2212 			jbd2_journal_abort(journal, ret);
2213 	}
2214 out:
2215 	return ret;
2216 }
2217