1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) { 199 read_unlock(&journal->j_state_lock); 200 return; 201 } 202 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 203 TASK_UNINTERRUPTIBLE); 204 read_unlock(&journal->j_state_lock); 205 /* 206 * We don't call jbd2_might_wait_for_commit() here as there's no 207 * waiting for outstanding handles happening anymore in T_SWITCH state 208 * and handling of reserved handles actually relies on that for 209 * correctness. 210 */ 211 schedule(); 212 finish_wait(&journal->j_wait_transaction_locked, &wait); 213 } 214 215 static void sub_reserved_credits(journal_t *journal, int blocks) 216 { 217 atomic_sub(blocks, &journal->j_reserved_credits); 218 wake_up(&journal->j_wait_reserved); 219 } 220 221 /* 222 * Wait until we can add credits for handle to the running transaction. Called 223 * with j_state_lock held for reading. Returns 0 if handle joined the running 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 225 * caller must retry. 226 * 227 * Note: because j_state_lock may be dropped depending on the return 228 * value, we need to fake out sparse so ti doesn't complain about a 229 * locking imbalance. Callers of add_transaction_credits will need to 230 * make a similar accomodation. 231 */ 232 static int add_transaction_credits(journal_t *journal, int blocks, 233 int rsv_blocks) 234 __must_hold(&journal->j_state_lock) 235 { 236 transaction_t *t = journal->j_running_transaction; 237 int needed; 238 int total = blocks + rsv_blocks; 239 240 /* 241 * If the current transaction is locked down for commit, wait 242 * for the lock to be released. 243 */ 244 if (t->t_state != T_RUNNING) { 245 WARN_ON_ONCE(t->t_state >= T_FLUSH); 246 wait_transaction_locked(journal); 247 __acquire(&journal->j_state_lock); /* fake out sparse */ 248 return 1; 249 } 250 251 /* 252 * If there is not enough space left in the log to write all 253 * potential buffers requested by this operation, we need to 254 * stall pending a log checkpoint to free some more log space. 255 */ 256 needed = atomic_add_return(total, &t->t_outstanding_credits); 257 if (needed > journal->j_max_transaction_buffers) { 258 /* 259 * If the current transaction is already too large, 260 * then start to commit it: we can then go back and 261 * attach this handle to a new transaction. 262 */ 263 atomic_sub(total, &t->t_outstanding_credits); 264 265 /* 266 * Is the number of reserved credits in the current transaction too 267 * big to fit this handle? Wait until reserved credits are freed. 268 */ 269 if (atomic_read(&journal->j_reserved_credits) + total > 270 journal->j_max_transaction_buffers) { 271 read_unlock(&journal->j_state_lock); 272 jbd2_might_wait_for_commit(journal); 273 wait_event(journal->j_wait_reserved, 274 atomic_read(&journal->j_reserved_credits) + total <= 275 journal->j_max_transaction_buffers); 276 __acquire(&journal->j_state_lock); /* fake out sparse */ 277 return 1; 278 } 279 280 wait_transaction_locked(journal); 281 __acquire(&journal->j_state_lock); /* fake out sparse */ 282 return 1; 283 } 284 285 /* 286 * The commit code assumes that it can get enough log space 287 * without forcing a checkpoint. This is *critical* for 288 * correctness: a checkpoint of a buffer which is also 289 * associated with a committing transaction creates a deadlock, 290 * so commit simply cannot force through checkpoints. 291 * 292 * We must therefore ensure the necessary space in the journal 293 * *before* starting to dirty potentially checkpointed buffers 294 * in the new transaction. 295 */ 296 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 297 atomic_sub(total, &t->t_outstanding_credits); 298 read_unlock(&journal->j_state_lock); 299 jbd2_might_wait_for_commit(journal); 300 write_lock(&journal->j_state_lock); 301 if (jbd2_log_space_left(journal) < 302 journal->j_max_transaction_buffers) 303 __jbd2_log_wait_for_space(journal); 304 write_unlock(&journal->j_state_lock); 305 __acquire(&journal->j_state_lock); /* fake out sparse */ 306 return 1; 307 } 308 309 /* No reservation? We are done... */ 310 if (!rsv_blocks) 311 return 0; 312 313 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 314 /* We allow at most half of a transaction to be reserved */ 315 if (needed > journal->j_max_transaction_buffers / 2) { 316 sub_reserved_credits(journal, rsv_blocks); 317 atomic_sub(total, &t->t_outstanding_credits); 318 read_unlock(&journal->j_state_lock); 319 jbd2_might_wait_for_commit(journal); 320 wait_event(journal->j_wait_reserved, 321 atomic_read(&journal->j_reserved_credits) + rsv_blocks 322 <= journal->j_max_transaction_buffers / 2); 323 __acquire(&journal->j_state_lock); /* fake out sparse */ 324 return 1; 325 } 326 return 0; 327 } 328 329 /* 330 * start_this_handle: Given a handle, deal with any locking or stalling 331 * needed to make sure that there is enough journal space for the handle 332 * to begin. Attach the handle to a transaction and set up the 333 * transaction's buffer credits. 334 */ 335 336 static int start_this_handle(journal_t *journal, handle_t *handle, 337 gfp_t gfp_mask) 338 { 339 transaction_t *transaction, *new_transaction = NULL; 340 int blocks = handle->h_total_credits; 341 int rsv_blocks = 0; 342 unsigned long ts = jiffies; 343 344 if (handle->h_rsv_handle) 345 rsv_blocks = handle->h_rsv_handle->h_total_credits; 346 347 /* 348 * Limit the number of reserved credits to 1/2 of maximum transaction 349 * size and limit the number of total credits to not exceed maximum 350 * transaction size per operation. 351 */ 352 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 353 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 354 printk(KERN_ERR "JBD2: %s wants too many credits " 355 "credits:%d rsv_credits:%d max:%d\n", 356 current->comm, blocks, rsv_blocks, 357 journal->j_max_transaction_buffers); 358 WARN_ON(1); 359 return -ENOSPC; 360 } 361 362 alloc_transaction: 363 /* 364 * This check is racy but it is just an optimization of allocating new 365 * transaction early if there are high chances we'll need it. If we 366 * guess wrong, we'll retry or free unused transaction. 367 */ 368 if (!data_race(journal->j_running_transaction)) { 369 /* 370 * If __GFP_FS is not present, then we may be being called from 371 * inside the fs writeback layer, so we MUST NOT fail. 372 */ 373 if ((gfp_mask & __GFP_FS) == 0) 374 gfp_mask |= __GFP_NOFAIL; 375 new_transaction = kmem_cache_zalloc(transaction_cache, 376 gfp_mask); 377 if (!new_transaction) 378 return -ENOMEM; 379 } 380 381 jbd_debug(3, "New handle %p going live.\n", handle); 382 383 /* 384 * We need to hold j_state_lock until t_updates has been incremented, 385 * for proper journal barrier handling 386 */ 387 repeat: 388 read_lock(&journal->j_state_lock); 389 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 390 if (is_journal_aborted(journal) || 391 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 392 read_unlock(&journal->j_state_lock); 393 jbd2_journal_free_transaction(new_transaction); 394 return -EROFS; 395 } 396 397 /* 398 * Wait on the journal's transaction barrier if necessary. Specifically 399 * we allow reserved handles to proceed because otherwise commit could 400 * deadlock on page writeback not being able to complete. 401 */ 402 if (!handle->h_reserved && journal->j_barrier_count) { 403 read_unlock(&journal->j_state_lock); 404 wait_event(journal->j_wait_transaction_locked, 405 journal->j_barrier_count == 0); 406 goto repeat; 407 } 408 409 if (!journal->j_running_transaction) { 410 read_unlock(&journal->j_state_lock); 411 if (!new_transaction) 412 goto alloc_transaction; 413 write_lock(&journal->j_state_lock); 414 if (!journal->j_running_transaction && 415 (handle->h_reserved || !journal->j_barrier_count)) { 416 jbd2_get_transaction(journal, new_transaction); 417 new_transaction = NULL; 418 } 419 write_unlock(&journal->j_state_lock); 420 goto repeat; 421 } 422 423 transaction = journal->j_running_transaction; 424 425 if (!handle->h_reserved) { 426 /* We may have dropped j_state_lock - restart in that case */ 427 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 428 /* 429 * add_transaction_credits releases 430 * j_state_lock on a non-zero return 431 */ 432 __release(&journal->j_state_lock); 433 goto repeat; 434 } 435 } else { 436 /* 437 * We have handle reserved so we are allowed to join T_LOCKED 438 * transaction and we don't have to check for transaction size 439 * and journal space. But we still have to wait while running 440 * transaction is being switched to a committing one as it 441 * won't wait for any handles anymore. 442 */ 443 if (transaction->t_state == T_SWITCH) { 444 wait_transaction_switching(journal); 445 goto repeat; 446 } 447 sub_reserved_credits(journal, blocks); 448 handle->h_reserved = 0; 449 } 450 451 /* OK, account for the buffers that this operation expects to 452 * use and add the handle to the running transaction. 453 */ 454 update_t_max_wait(transaction, ts); 455 handle->h_transaction = transaction; 456 handle->h_requested_credits = blocks; 457 handle->h_revoke_credits_requested = handle->h_revoke_credits; 458 handle->h_start_jiffies = jiffies; 459 atomic_inc(&transaction->t_updates); 460 atomic_inc(&transaction->t_handle_count); 461 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 462 handle, blocks, 463 atomic_read(&transaction->t_outstanding_credits), 464 jbd2_log_space_left(journal)); 465 read_unlock(&journal->j_state_lock); 466 current->journal_info = handle; 467 468 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 469 jbd2_journal_free_transaction(new_transaction); 470 /* 471 * Ensure that no allocations done while the transaction is open are 472 * going to recurse back to the fs layer. 473 */ 474 handle->saved_alloc_context = memalloc_nofs_save(); 475 return 0; 476 } 477 478 /* Allocate a new handle. This should probably be in a slab... */ 479 static handle_t *new_handle(int nblocks) 480 { 481 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 482 if (!handle) 483 return NULL; 484 handle->h_total_credits = nblocks; 485 handle->h_ref = 1; 486 487 return handle; 488 } 489 490 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 491 int revoke_records, gfp_t gfp_mask, 492 unsigned int type, unsigned int line_no) 493 { 494 handle_t *handle = journal_current_handle(); 495 int err; 496 497 if (!journal) 498 return ERR_PTR(-EROFS); 499 500 if (handle) { 501 J_ASSERT(handle->h_transaction->t_journal == journal); 502 handle->h_ref++; 503 return handle; 504 } 505 506 nblocks += DIV_ROUND_UP(revoke_records, 507 journal->j_revoke_records_per_block); 508 handle = new_handle(nblocks); 509 if (!handle) 510 return ERR_PTR(-ENOMEM); 511 if (rsv_blocks) { 512 handle_t *rsv_handle; 513 514 rsv_handle = new_handle(rsv_blocks); 515 if (!rsv_handle) { 516 jbd2_free_handle(handle); 517 return ERR_PTR(-ENOMEM); 518 } 519 rsv_handle->h_reserved = 1; 520 rsv_handle->h_journal = journal; 521 handle->h_rsv_handle = rsv_handle; 522 } 523 handle->h_revoke_credits = revoke_records; 524 525 err = start_this_handle(journal, handle, gfp_mask); 526 if (err < 0) { 527 if (handle->h_rsv_handle) 528 jbd2_free_handle(handle->h_rsv_handle); 529 jbd2_free_handle(handle); 530 return ERR_PTR(err); 531 } 532 handle->h_type = type; 533 handle->h_line_no = line_no; 534 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 535 handle->h_transaction->t_tid, type, 536 line_no, nblocks); 537 538 return handle; 539 } 540 EXPORT_SYMBOL(jbd2__journal_start); 541 542 543 /** 544 * jbd2_journal_start() - Obtain a new handle. 545 * @journal: Journal to start transaction on. 546 * @nblocks: number of block buffer we might modify 547 * 548 * We make sure that the transaction can guarantee at least nblocks of 549 * modified buffers in the log. We block until the log can guarantee 550 * that much space. Additionally, if rsv_blocks > 0, we also create another 551 * handle with rsv_blocks reserved blocks in the journal. This handle is 552 * stored in h_rsv_handle. It is not attached to any particular transaction 553 * and thus doesn't block transaction commit. If the caller uses this reserved 554 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 555 * on the parent handle will dispose the reserved one. Reserved handle has to 556 * be converted to a normal handle using jbd2_journal_start_reserved() before 557 * it can be used. 558 * 559 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 560 * on failure. 561 */ 562 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 563 { 564 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 565 } 566 EXPORT_SYMBOL(jbd2_journal_start); 567 568 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 569 { 570 journal_t *journal = handle->h_journal; 571 572 WARN_ON(!handle->h_reserved); 573 sub_reserved_credits(journal, handle->h_total_credits); 574 if (t) 575 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 576 } 577 578 void jbd2_journal_free_reserved(handle_t *handle) 579 { 580 journal_t *journal = handle->h_journal; 581 582 /* Get j_state_lock to pin running transaction if it exists */ 583 read_lock(&journal->j_state_lock); 584 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 585 read_unlock(&journal->j_state_lock); 586 jbd2_free_handle(handle); 587 } 588 EXPORT_SYMBOL(jbd2_journal_free_reserved); 589 590 /** 591 * jbd2_journal_start_reserved() - start reserved handle 592 * @handle: handle to start 593 * @type: for handle statistics 594 * @line_no: for handle statistics 595 * 596 * Start handle that has been previously reserved with jbd2_journal_reserve(). 597 * This attaches @handle to the running transaction (or creates one if there's 598 * not transaction running). Unlike jbd2_journal_start() this function cannot 599 * block on journal commit, checkpointing, or similar stuff. It can block on 600 * memory allocation or frozen journal though. 601 * 602 * Return 0 on success, non-zero on error - handle is freed in that case. 603 */ 604 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 605 unsigned int line_no) 606 { 607 journal_t *journal = handle->h_journal; 608 int ret = -EIO; 609 610 if (WARN_ON(!handle->h_reserved)) { 611 /* Someone passed in normal handle? Just stop it. */ 612 jbd2_journal_stop(handle); 613 return ret; 614 } 615 /* 616 * Usefulness of mixing of reserved and unreserved handles is 617 * questionable. So far nobody seems to need it so just error out. 618 */ 619 if (WARN_ON(current->journal_info)) { 620 jbd2_journal_free_reserved(handle); 621 return ret; 622 } 623 624 handle->h_journal = NULL; 625 /* 626 * GFP_NOFS is here because callers are likely from writeback or 627 * similarly constrained call sites 628 */ 629 ret = start_this_handle(journal, handle, GFP_NOFS); 630 if (ret < 0) { 631 handle->h_journal = journal; 632 jbd2_journal_free_reserved(handle); 633 return ret; 634 } 635 handle->h_type = type; 636 handle->h_line_no = line_no; 637 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 638 handle->h_transaction->t_tid, type, 639 line_no, handle->h_total_credits); 640 return 0; 641 } 642 EXPORT_SYMBOL(jbd2_journal_start_reserved); 643 644 /** 645 * jbd2_journal_extend() - extend buffer credits. 646 * @handle: handle to 'extend' 647 * @nblocks: nr blocks to try to extend by. 648 * @revoke_records: number of revoke records to try to extend by. 649 * 650 * Some transactions, such as large extends and truncates, can be done 651 * atomically all at once or in several stages. The operation requests 652 * a credit for a number of buffer modifications in advance, but can 653 * extend its credit if it needs more. 654 * 655 * jbd2_journal_extend tries to give the running handle more buffer credits. 656 * It does not guarantee that allocation - this is a best-effort only. 657 * The calling process MUST be able to deal cleanly with a failure to 658 * extend here. 659 * 660 * Return 0 on success, non-zero on failure. 661 * 662 * return code < 0 implies an error 663 * return code > 0 implies normal transaction-full status. 664 */ 665 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 666 { 667 transaction_t *transaction = handle->h_transaction; 668 journal_t *journal; 669 int result; 670 int wanted; 671 672 if (is_handle_aborted(handle)) 673 return -EROFS; 674 journal = transaction->t_journal; 675 676 result = 1; 677 678 read_lock(&journal->j_state_lock); 679 680 /* Don't extend a locked-down transaction! */ 681 if (transaction->t_state != T_RUNNING) { 682 jbd_debug(3, "denied handle %p %d blocks: " 683 "transaction not running\n", handle, nblocks); 684 goto error_out; 685 } 686 687 nblocks += DIV_ROUND_UP( 688 handle->h_revoke_credits_requested + revoke_records, 689 journal->j_revoke_records_per_block) - 690 DIV_ROUND_UP( 691 handle->h_revoke_credits_requested, 692 journal->j_revoke_records_per_block); 693 spin_lock(&transaction->t_handle_lock); 694 wanted = atomic_add_return(nblocks, 695 &transaction->t_outstanding_credits); 696 697 if (wanted > journal->j_max_transaction_buffers) { 698 jbd_debug(3, "denied handle %p %d blocks: " 699 "transaction too large\n", handle, nblocks); 700 atomic_sub(nblocks, &transaction->t_outstanding_credits); 701 goto unlock; 702 } 703 704 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 705 transaction->t_tid, 706 handle->h_type, handle->h_line_no, 707 handle->h_total_credits, 708 nblocks); 709 710 handle->h_total_credits += nblocks; 711 handle->h_requested_credits += nblocks; 712 handle->h_revoke_credits += revoke_records; 713 handle->h_revoke_credits_requested += revoke_records; 714 result = 0; 715 716 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 717 unlock: 718 spin_unlock(&transaction->t_handle_lock); 719 error_out: 720 read_unlock(&journal->j_state_lock); 721 return result; 722 } 723 724 static void stop_this_handle(handle_t *handle) 725 { 726 transaction_t *transaction = handle->h_transaction; 727 journal_t *journal = transaction->t_journal; 728 int revokes; 729 730 J_ASSERT(journal_current_handle() == handle); 731 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 732 current->journal_info = NULL; 733 /* 734 * Subtract necessary revoke descriptor blocks from handle credits. We 735 * take care to account only for revoke descriptor blocks the 736 * transaction will really need as large sequences of transactions with 737 * small numbers of revokes are relatively common. 738 */ 739 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 740 if (revokes) { 741 int t_revokes, revoke_descriptors; 742 int rr_per_blk = journal->j_revoke_records_per_block; 743 744 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 745 > handle->h_total_credits); 746 t_revokes = atomic_add_return(revokes, 747 &transaction->t_outstanding_revokes); 748 revoke_descriptors = 749 DIV_ROUND_UP(t_revokes, rr_per_blk) - 750 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 751 handle->h_total_credits -= revoke_descriptors; 752 } 753 atomic_sub(handle->h_total_credits, 754 &transaction->t_outstanding_credits); 755 if (handle->h_rsv_handle) 756 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 757 transaction); 758 if (atomic_dec_and_test(&transaction->t_updates)) 759 wake_up(&journal->j_wait_updates); 760 761 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 762 /* 763 * Scope of the GFP_NOFS context is over here and so we can restore the 764 * original alloc context. 765 */ 766 memalloc_nofs_restore(handle->saved_alloc_context); 767 } 768 769 /** 770 * jbd2__journal_restart() - restart a handle . 771 * @handle: handle to restart 772 * @nblocks: nr credits requested 773 * @revoke_records: number of revoke record credits requested 774 * @gfp_mask: memory allocation flags (for start_this_handle) 775 * 776 * Restart a handle for a multi-transaction filesystem 777 * operation. 778 * 779 * If the jbd2_journal_extend() call above fails to grant new buffer credits 780 * to a running handle, a call to jbd2_journal_restart will commit the 781 * handle's transaction so far and reattach the handle to a new 782 * transaction capable of guaranteeing the requested number of 783 * credits. We preserve reserved handle if there's any attached to the 784 * passed in handle. 785 */ 786 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 787 gfp_t gfp_mask) 788 { 789 transaction_t *transaction = handle->h_transaction; 790 journal_t *journal; 791 tid_t tid; 792 int need_to_start; 793 int ret; 794 795 /* If we've had an abort of any type, don't even think about 796 * actually doing the restart! */ 797 if (is_handle_aborted(handle)) 798 return 0; 799 journal = transaction->t_journal; 800 tid = transaction->t_tid; 801 802 /* 803 * First unlink the handle from its current transaction, and start the 804 * commit on that. 805 */ 806 jbd_debug(2, "restarting handle %p\n", handle); 807 stop_this_handle(handle); 808 handle->h_transaction = NULL; 809 810 /* 811 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 812 * get rid of pointless j_state_lock traffic like this. 813 */ 814 read_lock(&journal->j_state_lock); 815 need_to_start = !tid_geq(journal->j_commit_request, tid); 816 read_unlock(&journal->j_state_lock); 817 if (need_to_start) 818 jbd2_log_start_commit(journal, tid); 819 handle->h_total_credits = nblocks + 820 DIV_ROUND_UP(revoke_records, 821 journal->j_revoke_records_per_block); 822 handle->h_revoke_credits = revoke_records; 823 ret = start_this_handle(journal, handle, gfp_mask); 824 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 825 ret ? 0 : handle->h_transaction->t_tid, 826 handle->h_type, handle->h_line_no, 827 handle->h_total_credits); 828 return ret; 829 } 830 EXPORT_SYMBOL(jbd2__journal_restart); 831 832 833 int jbd2_journal_restart(handle_t *handle, int nblocks) 834 { 835 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 836 } 837 EXPORT_SYMBOL(jbd2_journal_restart); 838 839 /** 840 * jbd2_journal_lock_updates () - establish a transaction barrier. 841 * @journal: Journal to establish a barrier on. 842 * 843 * This locks out any further updates from being started, and blocks 844 * until all existing updates have completed, returning only once the 845 * journal is in a quiescent state with no updates running. 846 * 847 * The journal lock should not be held on entry. 848 */ 849 void jbd2_journal_lock_updates(journal_t *journal) 850 { 851 DEFINE_WAIT(wait); 852 853 jbd2_might_wait_for_commit(journal); 854 855 write_lock(&journal->j_state_lock); 856 ++journal->j_barrier_count; 857 858 /* Wait until there are no reserved handles */ 859 if (atomic_read(&journal->j_reserved_credits)) { 860 write_unlock(&journal->j_state_lock); 861 wait_event(journal->j_wait_reserved, 862 atomic_read(&journal->j_reserved_credits) == 0); 863 write_lock(&journal->j_state_lock); 864 } 865 866 /* Wait until there are no running updates */ 867 while (1) { 868 transaction_t *transaction = journal->j_running_transaction; 869 870 if (!transaction) 871 break; 872 873 spin_lock(&transaction->t_handle_lock); 874 prepare_to_wait(&journal->j_wait_updates, &wait, 875 TASK_UNINTERRUPTIBLE); 876 if (!atomic_read(&transaction->t_updates)) { 877 spin_unlock(&transaction->t_handle_lock); 878 finish_wait(&journal->j_wait_updates, &wait); 879 break; 880 } 881 spin_unlock(&transaction->t_handle_lock); 882 write_unlock(&journal->j_state_lock); 883 schedule(); 884 finish_wait(&journal->j_wait_updates, &wait); 885 write_lock(&journal->j_state_lock); 886 } 887 write_unlock(&journal->j_state_lock); 888 889 /* 890 * We have now established a barrier against other normal updates, but 891 * we also need to barrier against other jbd2_journal_lock_updates() calls 892 * to make sure that we serialise special journal-locked operations 893 * too. 894 */ 895 mutex_lock(&journal->j_barrier); 896 } 897 898 /** 899 * jbd2_journal_unlock_updates () - release barrier 900 * @journal: Journal to release the barrier on. 901 * 902 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 903 * 904 * Should be called without the journal lock held. 905 */ 906 void jbd2_journal_unlock_updates (journal_t *journal) 907 { 908 J_ASSERT(journal->j_barrier_count != 0); 909 910 mutex_unlock(&journal->j_barrier); 911 write_lock(&journal->j_state_lock); 912 --journal->j_barrier_count; 913 write_unlock(&journal->j_state_lock); 914 wake_up(&journal->j_wait_transaction_locked); 915 } 916 917 static void warn_dirty_buffer(struct buffer_head *bh) 918 { 919 printk(KERN_WARNING 920 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 921 "There's a risk of filesystem corruption in case of system " 922 "crash.\n", 923 bh->b_bdev, (unsigned long long)bh->b_blocknr); 924 } 925 926 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 927 static void jbd2_freeze_jh_data(struct journal_head *jh) 928 { 929 struct page *page; 930 int offset; 931 char *source; 932 struct buffer_head *bh = jh2bh(jh); 933 934 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 935 page = bh->b_page; 936 offset = offset_in_page(bh->b_data); 937 source = kmap_atomic(page); 938 /* Fire data frozen trigger just before we copy the data */ 939 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 940 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 941 kunmap_atomic(source); 942 943 /* 944 * Now that the frozen data is saved off, we need to store any matching 945 * triggers. 946 */ 947 jh->b_frozen_triggers = jh->b_triggers; 948 } 949 950 /* 951 * If the buffer is already part of the current transaction, then there 952 * is nothing we need to do. If it is already part of a prior 953 * transaction which we are still committing to disk, then we need to 954 * make sure that we do not overwrite the old copy: we do copy-out to 955 * preserve the copy going to disk. We also account the buffer against 956 * the handle's metadata buffer credits (unless the buffer is already 957 * part of the transaction, that is). 958 * 959 */ 960 static int 961 do_get_write_access(handle_t *handle, struct journal_head *jh, 962 int force_copy) 963 { 964 struct buffer_head *bh; 965 transaction_t *transaction = handle->h_transaction; 966 journal_t *journal; 967 int error; 968 char *frozen_buffer = NULL; 969 unsigned long start_lock, time_lock; 970 971 journal = transaction->t_journal; 972 973 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 974 975 JBUFFER_TRACE(jh, "entry"); 976 repeat: 977 bh = jh2bh(jh); 978 979 /* @@@ Need to check for errors here at some point. */ 980 981 start_lock = jiffies; 982 lock_buffer(bh); 983 spin_lock(&jh->b_state_lock); 984 985 /* If it takes too long to lock the buffer, trace it */ 986 time_lock = jbd2_time_diff(start_lock, jiffies); 987 if (time_lock > HZ/10) 988 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 989 jiffies_to_msecs(time_lock)); 990 991 /* We now hold the buffer lock so it is safe to query the buffer 992 * state. Is the buffer dirty? 993 * 994 * If so, there are two possibilities. The buffer may be 995 * non-journaled, and undergoing a quite legitimate writeback. 996 * Otherwise, it is journaled, and we don't expect dirty buffers 997 * in that state (the buffers should be marked JBD_Dirty 998 * instead.) So either the IO is being done under our own 999 * control and this is a bug, or it's a third party IO such as 1000 * dump(8) (which may leave the buffer scheduled for read --- 1001 * ie. locked but not dirty) or tune2fs (which may actually have 1002 * the buffer dirtied, ugh.) */ 1003 1004 if (buffer_dirty(bh)) { 1005 /* 1006 * First question: is this buffer already part of the current 1007 * transaction or the existing committing transaction? 1008 */ 1009 if (jh->b_transaction) { 1010 J_ASSERT_JH(jh, 1011 jh->b_transaction == transaction || 1012 jh->b_transaction == 1013 journal->j_committing_transaction); 1014 if (jh->b_next_transaction) 1015 J_ASSERT_JH(jh, jh->b_next_transaction == 1016 transaction); 1017 warn_dirty_buffer(bh); 1018 } 1019 /* 1020 * In any case we need to clean the dirty flag and we must 1021 * do it under the buffer lock to be sure we don't race 1022 * with running write-out. 1023 */ 1024 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1025 clear_buffer_dirty(bh); 1026 set_buffer_jbddirty(bh); 1027 } 1028 1029 unlock_buffer(bh); 1030 1031 error = -EROFS; 1032 if (is_handle_aborted(handle)) { 1033 spin_unlock(&jh->b_state_lock); 1034 goto out; 1035 } 1036 error = 0; 1037 1038 /* 1039 * The buffer is already part of this transaction if b_transaction or 1040 * b_next_transaction points to it 1041 */ 1042 if (jh->b_transaction == transaction || 1043 jh->b_next_transaction == transaction) 1044 goto done; 1045 1046 /* 1047 * this is the first time this transaction is touching this buffer, 1048 * reset the modified flag 1049 */ 1050 jh->b_modified = 0; 1051 1052 /* 1053 * If the buffer is not journaled right now, we need to make sure it 1054 * doesn't get written to disk before the caller actually commits the 1055 * new data 1056 */ 1057 if (!jh->b_transaction) { 1058 JBUFFER_TRACE(jh, "no transaction"); 1059 J_ASSERT_JH(jh, !jh->b_next_transaction); 1060 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1061 /* 1062 * Make sure all stores to jh (b_modified, b_frozen_data) are 1063 * visible before attaching it to the running transaction. 1064 * Paired with barrier in jbd2_write_access_granted() 1065 */ 1066 smp_wmb(); 1067 spin_lock(&journal->j_list_lock); 1068 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1069 spin_unlock(&journal->j_list_lock); 1070 goto done; 1071 } 1072 /* 1073 * If there is already a copy-out version of this buffer, then we don't 1074 * need to make another one 1075 */ 1076 if (jh->b_frozen_data) { 1077 JBUFFER_TRACE(jh, "has frozen data"); 1078 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1079 goto attach_next; 1080 } 1081 1082 JBUFFER_TRACE(jh, "owned by older transaction"); 1083 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1084 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1085 1086 /* 1087 * There is one case we have to be very careful about. If the 1088 * committing transaction is currently writing this buffer out to disk 1089 * and has NOT made a copy-out, then we cannot modify the buffer 1090 * contents at all right now. The essence of copy-out is that it is 1091 * the extra copy, not the primary copy, which gets journaled. If the 1092 * primary copy is already going to disk then we cannot do copy-out 1093 * here. 1094 */ 1095 if (buffer_shadow(bh)) { 1096 JBUFFER_TRACE(jh, "on shadow: sleep"); 1097 spin_unlock(&jh->b_state_lock); 1098 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1099 goto repeat; 1100 } 1101 1102 /* 1103 * Only do the copy if the currently-owning transaction still needs it. 1104 * If buffer isn't on BJ_Metadata list, the committing transaction is 1105 * past that stage (here we use the fact that BH_Shadow is set under 1106 * bh_state lock together with refiling to BJ_Shadow list and at this 1107 * point we know the buffer doesn't have BH_Shadow set). 1108 * 1109 * Subtle point, though: if this is a get_undo_access, then we will be 1110 * relying on the frozen_data to contain the new value of the 1111 * committed_data record after the transaction, so we HAVE to force the 1112 * frozen_data copy in that case. 1113 */ 1114 if (jh->b_jlist == BJ_Metadata || force_copy) { 1115 JBUFFER_TRACE(jh, "generate frozen data"); 1116 if (!frozen_buffer) { 1117 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1118 spin_unlock(&jh->b_state_lock); 1119 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1120 GFP_NOFS | __GFP_NOFAIL); 1121 goto repeat; 1122 } 1123 jh->b_frozen_data = frozen_buffer; 1124 frozen_buffer = NULL; 1125 jbd2_freeze_jh_data(jh); 1126 } 1127 attach_next: 1128 /* 1129 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1130 * before attaching it to the running transaction. Paired with barrier 1131 * in jbd2_write_access_granted() 1132 */ 1133 smp_wmb(); 1134 jh->b_next_transaction = transaction; 1135 1136 done: 1137 spin_unlock(&jh->b_state_lock); 1138 1139 /* 1140 * If we are about to journal a buffer, then any revoke pending on it is 1141 * no longer valid 1142 */ 1143 jbd2_journal_cancel_revoke(handle, jh); 1144 1145 out: 1146 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1147 jbd2_free(frozen_buffer, bh->b_size); 1148 1149 JBUFFER_TRACE(jh, "exit"); 1150 return error; 1151 } 1152 1153 /* Fast check whether buffer is already attached to the required transaction */ 1154 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1155 bool undo) 1156 { 1157 struct journal_head *jh; 1158 bool ret = false; 1159 1160 /* Dirty buffers require special handling... */ 1161 if (buffer_dirty(bh)) 1162 return false; 1163 1164 /* 1165 * RCU protects us from dereferencing freed pages. So the checks we do 1166 * are guaranteed not to oops. However the jh slab object can get freed 1167 * & reallocated while we work with it. So we have to be careful. When 1168 * we see jh attached to the running transaction, we know it must stay 1169 * so until the transaction is committed. Thus jh won't be freed and 1170 * will be attached to the same bh while we run. However it can 1171 * happen jh gets freed, reallocated, and attached to the transaction 1172 * just after we get pointer to it from bh. So we have to be careful 1173 * and recheck jh still belongs to our bh before we return success. 1174 */ 1175 rcu_read_lock(); 1176 if (!buffer_jbd(bh)) 1177 goto out; 1178 /* This should be bh2jh() but that doesn't work with inline functions */ 1179 jh = READ_ONCE(bh->b_private); 1180 if (!jh) 1181 goto out; 1182 /* For undo access buffer must have data copied */ 1183 if (undo && !jh->b_committed_data) 1184 goto out; 1185 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1186 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1187 goto out; 1188 /* 1189 * There are two reasons for the barrier here: 1190 * 1) Make sure to fetch b_bh after we did previous checks so that we 1191 * detect when jh went through free, realloc, attach to transaction 1192 * while we were checking. Paired with implicit barrier in that path. 1193 * 2) So that access to bh done after jbd2_write_access_granted() 1194 * doesn't get reordered and see inconsistent state of concurrent 1195 * do_get_write_access(). 1196 */ 1197 smp_mb(); 1198 if (unlikely(jh->b_bh != bh)) 1199 goto out; 1200 ret = true; 1201 out: 1202 rcu_read_unlock(); 1203 return ret; 1204 } 1205 1206 /** 1207 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1208 * for metadata (not data) update. 1209 * @handle: transaction to add buffer modifications to 1210 * @bh: bh to be used for metadata writes 1211 * 1212 * Returns: error code or 0 on success. 1213 * 1214 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1215 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1216 */ 1217 1218 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1219 { 1220 struct journal_head *jh; 1221 int rc; 1222 1223 if (is_handle_aborted(handle)) 1224 return -EROFS; 1225 1226 if (jbd2_write_access_granted(handle, bh, false)) 1227 return 0; 1228 1229 jh = jbd2_journal_add_journal_head(bh); 1230 /* We do not want to get caught playing with fields which the 1231 * log thread also manipulates. Make sure that the buffer 1232 * completes any outstanding IO before proceeding. */ 1233 rc = do_get_write_access(handle, jh, 0); 1234 jbd2_journal_put_journal_head(jh); 1235 return rc; 1236 } 1237 1238 1239 /* 1240 * When the user wants to journal a newly created buffer_head 1241 * (ie. getblk() returned a new buffer and we are going to populate it 1242 * manually rather than reading off disk), then we need to keep the 1243 * buffer_head locked until it has been completely filled with new 1244 * data. In this case, we should be able to make the assertion that 1245 * the bh is not already part of an existing transaction. 1246 * 1247 * The buffer should already be locked by the caller by this point. 1248 * There is no lock ranking violation: it was a newly created, 1249 * unlocked buffer beforehand. */ 1250 1251 /** 1252 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1253 * @handle: transaction to new buffer to 1254 * @bh: new buffer. 1255 * 1256 * Call this if you create a new bh. 1257 */ 1258 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1259 { 1260 transaction_t *transaction = handle->h_transaction; 1261 journal_t *journal; 1262 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1263 int err; 1264 1265 jbd_debug(5, "journal_head %p\n", jh); 1266 err = -EROFS; 1267 if (is_handle_aborted(handle)) 1268 goto out; 1269 journal = transaction->t_journal; 1270 err = 0; 1271 1272 JBUFFER_TRACE(jh, "entry"); 1273 /* 1274 * The buffer may already belong to this transaction due to pre-zeroing 1275 * in the filesystem's new_block code. It may also be on the previous, 1276 * committing transaction's lists, but it HAS to be in Forget state in 1277 * that case: the transaction must have deleted the buffer for it to be 1278 * reused here. 1279 */ 1280 spin_lock(&jh->b_state_lock); 1281 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1282 jh->b_transaction == NULL || 1283 (jh->b_transaction == journal->j_committing_transaction && 1284 jh->b_jlist == BJ_Forget))); 1285 1286 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1287 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1288 1289 if (jh->b_transaction == NULL) { 1290 /* 1291 * Previous jbd2_journal_forget() could have left the buffer 1292 * with jbddirty bit set because it was being committed. When 1293 * the commit finished, we've filed the buffer for 1294 * checkpointing and marked it dirty. Now we are reallocating 1295 * the buffer so the transaction freeing it must have 1296 * committed and so it's safe to clear the dirty bit. 1297 */ 1298 clear_buffer_dirty(jh2bh(jh)); 1299 /* first access by this transaction */ 1300 jh->b_modified = 0; 1301 1302 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1303 spin_lock(&journal->j_list_lock); 1304 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1305 spin_unlock(&journal->j_list_lock); 1306 } else if (jh->b_transaction == journal->j_committing_transaction) { 1307 /* first access by this transaction */ 1308 jh->b_modified = 0; 1309 1310 JBUFFER_TRACE(jh, "set next transaction"); 1311 spin_lock(&journal->j_list_lock); 1312 jh->b_next_transaction = transaction; 1313 spin_unlock(&journal->j_list_lock); 1314 } 1315 spin_unlock(&jh->b_state_lock); 1316 1317 /* 1318 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1319 * blocks which contain freed but then revoked metadata. We need 1320 * to cancel the revoke in case we end up freeing it yet again 1321 * and the reallocating as data - this would cause a second revoke, 1322 * which hits an assertion error. 1323 */ 1324 JBUFFER_TRACE(jh, "cancelling revoke"); 1325 jbd2_journal_cancel_revoke(handle, jh); 1326 out: 1327 jbd2_journal_put_journal_head(jh); 1328 return err; 1329 } 1330 1331 /** 1332 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1333 * non-rewindable consequences 1334 * @handle: transaction 1335 * @bh: buffer to undo 1336 * 1337 * Sometimes there is a need to distinguish between metadata which has 1338 * been committed to disk and that which has not. The ext3fs code uses 1339 * this for freeing and allocating space, we have to make sure that we 1340 * do not reuse freed space until the deallocation has been committed, 1341 * since if we overwrote that space we would make the delete 1342 * un-rewindable in case of a crash. 1343 * 1344 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1345 * buffer for parts of non-rewindable operations such as delete 1346 * operations on the bitmaps. The journaling code must keep a copy of 1347 * the buffer's contents prior to the undo_access call until such time 1348 * as we know that the buffer has definitely been committed to disk. 1349 * 1350 * We never need to know which transaction the committed data is part 1351 * of, buffers touched here are guaranteed to be dirtied later and so 1352 * will be committed to a new transaction in due course, at which point 1353 * we can discard the old committed data pointer. 1354 * 1355 * Returns error number or 0 on success. 1356 */ 1357 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1358 { 1359 int err; 1360 struct journal_head *jh; 1361 char *committed_data = NULL; 1362 1363 if (is_handle_aborted(handle)) 1364 return -EROFS; 1365 1366 if (jbd2_write_access_granted(handle, bh, true)) 1367 return 0; 1368 1369 jh = jbd2_journal_add_journal_head(bh); 1370 JBUFFER_TRACE(jh, "entry"); 1371 1372 /* 1373 * Do this first --- it can drop the journal lock, so we want to 1374 * make sure that obtaining the committed_data is done 1375 * atomically wrt. completion of any outstanding commits. 1376 */ 1377 err = do_get_write_access(handle, jh, 1); 1378 if (err) 1379 goto out; 1380 1381 repeat: 1382 if (!jh->b_committed_data) 1383 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1384 GFP_NOFS|__GFP_NOFAIL); 1385 1386 spin_lock(&jh->b_state_lock); 1387 if (!jh->b_committed_data) { 1388 /* Copy out the current buffer contents into the 1389 * preserved, committed copy. */ 1390 JBUFFER_TRACE(jh, "generate b_committed data"); 1391 if (!committed_data) { 1392 spin_unlock(&jh->b_state_lock); 1393 goto repeat; 1394 } 1395 1396 jh->b_committed_data = committed_data; 1397 committed_data = NULL; 1398 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1399 } 1400 spin_unlock(&jh->b_state_lock); 1401 out: 1402 jbd2_journal_put_journal_head(jh); 1403 if (unlikely(committed_data)) 1404 jbd2_free(committed_data, bh->b_size); 1405 return err; 1406 } 1407 1408 /** 1409 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1410 * @bh: buffer to trigger on 1411 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1412 * 1413 * Set any triggers on this journal_head. This is always safe, because 1414 * triggers for a committing buffer will be saved off, and triggers for 1415 * a running transaction will match the buffer in that transaction. 1416 * 1417 * Call with NULL to clear the triggers. 1418 */ 1419 void jbd2_journal_set_triggers(struct buffer_head *bh, 1420 struct jbd2_buffer_trigger_type *type) 1421 { 1422 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1423 1424 if (WARN_ON_ONCE(!jh)) 1425 return; 1426 jh->b_triggers = type; 1427 jbd2_journal_put_journal_head(jh); 1428 } 1429 1430 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1431 struct jbd2_buffer_trigger_type *triggers) 1432 { 1433 struct buffer_head *bh = jh2bh(jh); 1434 1435 if (!triggers || !triggers->t_frozen) 1436 return; 1437 1438 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1439 } 1440 1441 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1442 struct jbd2_buffer_trigger_type *triggers) 1443 { 1444 if (!triggers || !triggers->t_abort) 1445 return; 1446 1447 triggers->t_abort(triggers, jh2bh(jh)); 1448 } 1449 1450 /** 1451 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1452 * @handle: transaction to add buffer to. 1453 * @bh: buffer to mark 1454 * 1455 * mark dirty metadata which needs to be journaled as part of the current 1456 * transaction. 1457 * 1458 * The buffer must have previously had jbd2_journal_get_write_access() 1459 * called so that it has a valid journal_head attached to the buffer 1460 * head. 1461 * 1462 * The buffer is placed on the transaction's metadata list and is marked 1463 * as belonging to the transaction. 1464 * 1465 * Returns error number or 0 on success. 1466 * 1467 * Special care needs to be taken if the buffer already belongs to the 1468 * current committing transaction (in which case we should have frozen 1469 * data present for that commit). In that case, we don't relink the 1470 * buffer: that only gets done when the old transaction finally 1471 * completes its commit. 1472 */ 1473 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1474 { 1475 transaction_t *transaction = handle->h_transaction; 1476 journal_t *journal; 1477 struct journal_head *jh; 1478 int ret = 0; 1479 1480 if (is_handle_aborted(handle)) 1481 return -EROFS; 1482 if (!buffer_jbd(bh)) 1483 return -EUCLEAN; 1484 1485 /* 1486 * We don't grab jh reference here since the buffer must be part 1487 * of the running transaction. 1488 */ 1489 jh = bh2jh(bh); 1490 jbd_debug(5, "journal_head %p\n", jh); 1491 JBUFFER_TRACE(jh, "entry"); 1492 1493 /* 1494 * This and the following assertions are unreliable since we may see jh 1495 * in inconsistent state unless we grab bh_state lock. But this is 1496 * crucial to catch bugs so let's do a reliable check until the 1497 * lockless handling is fully proven. 1498 */ 1499 if (data_race(jh->b_transaction != transaction && 1500 jh->b_next_transaction != transaction)) { 1501 spin_lock(&jh->b_state_lock); 1502 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1503 jh->b_next_transaction == transaction); 1504 spin_unlock(&jh->b_state_lock); 1505 } 1506 if (jh->b_modified == 1) { 1507 /* If it's in our transaction it must be in BJ_Metadata list. */ 1508 if (data_race(jh->b_transaction == transaction && 1509 jh->b_jlist != BJ_Metadata)) { 1510 spin_lock(&jh->b_state_lock); 1511 if (jh->b_transaction == transaction && 1512 jh->b_jlist != BJ_Metadata) 1513 pr_err("JBD2: assertion failure: h_type=%u " 1514 "h_line_no=%u block_no=%llu jlist=%u\n", 1515 handle->h_type, handle->h_line_no, 1516 (unsigned long long) bh->b_blocknr, 1517 jh->b_jlist); 1518 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1519 jh->b_jlist == BJ_Metadata); 1520 spin_unlock(&jh->b_state_lock); 1521 } 1522 goto out; 1523 } 1524 1525 journal = transaction->t_journal; 1526 spin_lock(&jh->b_state_lock); 1527 1528 if (jh->b_modified == 0) { 1529 /* 1530 * This buffer's got modified and becoming part 1531 * of the transaction. This needs to be done 1532 * once a transaction -bzzz 1533 */ 1534 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1535 ret = -ENOSPC; 1536 goto out_unlock_bh; 1537 } 1538 jh->b_modified = 1; 1539 handle->h_total_credits--; 1540 } 1541 1542 /* 1543 * fastpath, to avoid expensive locking. If this buffer is already 1544 * on the running transaction's metadata list there is nothing to do. 1545 * Nobody can take it off again because there is a handle open. 1546 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1547 * result in this test being false, so we go in and take the locks. 1548 */ 1549 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1550 JBUFFER_TRACE(jh, "fastpath"); 1551 if (unlikely(jh->b_transaction != 1552 journal->j_running_transaction)) { 1553 printk(KERN_ERR "JBD2: %s: " 1554 "jh->b_transaction (%llu, %p, %u) != " 1555 "journal->j_running_transaction (%p, %u)\n", 1556 journal->j_devname, 1557 (unsigned long long) bh->b_blocknr, 1558 jh->b_transaction, 1559 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1560 journal->j_running_transaction, 1561 journal->j_running_transaction ? 1562 journal->j_running_transaction->t_tid : 0); 1563 ret = -EINVAL; 1564 } 1565 goto out_unlock_bh; 1566 } 1567 1568 set_buffer_jbddirty(bh); 1569 1570 /* 1571 * Metadata already on the current transaction list doesn't 1572 * need to be filed. Metadata on another transaction's list must 1573 * be committing, and will be refiled once the commit completes: 1574 * leave it alone for now. 1575 */ 1576 if (jh->b_transaction != transaction) { 1577 JBUFFER_TRACE(jh, "already on other transaction"); 1578 if (unlikely(((jh->b_transaction != 1579 journal->j_committing_transaction)) || 1580 (jh->b_next_transaction != transaction))) { 1581 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1582 "bad jh for block %llu: " 1583 "transaction (%p, %u), " 1584 "jh->b_transaction (%p, %u), " 1585 "jh->b_next_transaction (%p, %u), jlist %u\n", 1586 journal->j_devname, 1587 (unsigned long long) bh->b_blocknr, 1588 transaction, transaction->t_tid, 1589 jh->b_transaction, 1590 jh->b_transaction ? 1591 jh->b_transaction->t_tid : 0, 1592 jh->b_next_transaction, 1593 jh->b_next_transaction ? 1594 jh->b_next_transaction->t_tid : 0, 1595 jh->b_jlist); 1596 WARN_ON(1); 1597 ret = -EINVAL; 1598 } 1599 /* And this case is illegal: we can't reuse another 1600 * transaction's data buffer, ever. */ 1601 goto out_unlock_bh; 1602 } 1603 1604 /* That test should have eliminated the following case: */ 1605 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1606 1607 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1608 spin_lock(&journal->j_list_lock); 1609 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1610 spin_unlock(&journal->j_list_lock); 1611 out_unlock_bh: 1612 spin_unlock(&jh->b_state_lock); 1613 out: 1614 JBUFFER_TRACE(jh, "exit"); 1615 return ret; 1616 } 1617 1618 /** 1619 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1620 * @handle: transaction handle 1621 * @bh: bh to 'forget' 1622 * 1623 * We can only do the bforget if there are no commits pending against the 1624 * buffer. If the buffer is dirty in the current running transaction we 1625 * can safely unlink it. 1626 * 1627 * bh may not be a journalled buffer at all - it may be a non-JBD 1628 * buffer which came off the hashtable. Check for this. 1629 * 1630 * Decrements bh->b_count by one. 1631 * 1632 * Allow this call even if the handle has aborted --- it may be part of 1633 * the caller's cleanup after an abort. 1634 */ 1635 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1636 { 1637 transaction_t *transaction = handle->h_transaction; 1638 journal_t *journal; 1639 struct journal_head *jh; 1640 int drop_reserve = 0; 1641 int err = 0; 1642 int was_modified = 0; 1643 1644 if (is_handle_aborted(handle)) 1645 return -EROFS; 1646 journal = transaction->t_journal; 1647 1648 BUFFER_TRACE(bh, "entry"); 1649 1650 jh = jbd2_journal_grab_journal_head(bh); 1651 if (!jh) { 1652 __bforget(bh); 1653 return 0; 1654 } 1655 1656 spin_lock(&jh->b_state_lock); 1657 1658 /* Critical error: attempting to delete a bitmap buffer, maybe? 1659 * Don't do any jbd operations, and return an error. */ 1660 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1661 "inconsistent data on disk")) { 1662 err = -EIO; 1663 goto drop; 1664 } 1665 1666 /* keep track of whether or not this transaction modified us */ 1667 was_modified = jh->b_modified; 1668 1669 /* 1670 * The buffer's going from the transaction, we must drop 1671 * all references -bzzz 1672 */ 1673 jh->b_modified = 0; 1674 1675 if (jh->b_transaction == transaction) { 1676 J_ASSERT_JH(jh, !jh->b_frozen_data); 1677 1678 /* If we are forgetting a buffer which is already part 1679 * of this transaction, then we can just drop it from 1680 * the transaction immediately. */ 1681 clear_buffer_dirty(bh); 1682 clear_buffer_jbddirty(bh); 1683 1684 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1685 1686 /* 1687 * we only want to drop a reference if this transaction 1688 * modified the buffer 1689 */ 1690 if (was_modified) 1691 drop_reserve = 1; 1692 1693 /* 1694 * We are no longer going to journal this buffer. 1695 * However, the commit of this transaction is still 1696 * important to the buffer: the delete that we are now 1697 * processing might obsolete an old log entry, so by 1698 * committing, we can satisfy the buffer's checkpoint. 1699 * 1700 * So, if we have a checkpoint on the buffer, we should 1701 * now refile the buffer on our BJ_Forget list so that 1702 * we know to remove the checkpoint after we commit. 1703 */ 1704 1705 spin_lock(&journal->j_list_lock); 1706 if (jh->b_cp_transaction) { 1707 __jbd2_journal_temp_unlink_buffer(jh); 1708 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1709 } else { 1710 __jbd2_journal_unfile_buffer(jh); 1711 jbd2_journal_put_journal_head(jh); 1712 } 1713 spin_unlock(&journal->j_list_lock); 1714 } else if (jh->b_transaction) { 1715 J_ASSERT_JH(jh, (jh->b_transaction == 1716 journal->j_committing_transaction)); 1717 /* However, if the buffer is still owned by a prior 1718 * (committing) transaction, we can't drop it yet... */ 1719 JBUFFER_TRACE(jh, "belongs to older transaction"); 1720 /* ... but we CAN drop it from the new transaction through 1721 * marking the buffer as freed and set j_next_transaction to 1722 * the new transaction, so that not only the commit code 1723 * knows it should clear dirty bits when it is done with the 1724 * buffer, but also the buffer can be checkpointed only 1725 * after the new transaction commits. */ 1726 1727 set_buffer_freed(bh); 1728 1729 if (!jh->b_next_transaction) { 1730 spin_lock(&journal->j_list_lock); 1731 jh->b_next_transaction = transaction; 1732 spin_unlock(&journal->j_list_lock); 1733 } else { 1734 J_ASSERT(jh->b_next_transaction == transaction); 1735 1736 /* 1737 * only drop a reference if this transaction modified 1738 * the buffer 1739 */ 1740 if (was_modified) 1741 drop_reserve = 1; 1742 } 1743 } else { 1744 /* 1745 * Finally, if the buffer is not belongs to any 1746 * transaction, we can just drop it now if it has no 1747 * checkpoint. 1748 */ 1749 spin_lock(&journal->j_list_lock); 1750 if (!jh->b_cp_transaction) { 1751 JBUFFER_TRACE(jh, "belongs to none transaction"); 1752 spin_unlock(&journal->j_list_lock); 1753 goto drop; 1754 } 1755 1756 /* 1757 * Otherwise, if the buffer has been written to disk, 1758 * it is safe to remove the checkpoint and drop it. 1759 */ 1760 if (!buffer_dirty(bh)) { 1761 __jbd2_journal_remove_checkpoint(jh); 1762 spin_unlock(&journal->j_list_lock); 1763 goto drop; 1764 } 1765 1766 /* 1767 * The buffer is still not written to disk, we should 1768 * attach this buffer to current transaction so that the 1769 * buffer can be checkpointed only after the current 1770 * transaction commits. 1771 */ 1772 clear_buffer_dirty(bh); 1773 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1774 spin_unlock(&journal->j_list_lock); 1775 } 1776 drop: 1777 __brelse(bh); 1778 spin_unlock(&jh->b_state_lock); 1779 jbd2_journal_put_journal_head(jh); 1780 if (drop_reserve) { 1781 /* no need to reserve log space for this block -bzzz */ 1782 handle->h_total_credits++; 1783 } 1784 return err; 1785 } 1786 1787 /** 1788 * jbd2_journal_stop() - complete a transaction 1789 * @handle: transaction to complete. 1790 * 1791 * All done for a particular handle. 1792 * 1793 * There is not much action needed here. We just return any remaining 1794 * buffer credits to the transaction and remove the handle. The only 1795 * complication is that we need to start a commit operation if the 1796 * filesystem is marked for synchronous update. 1797 * 1798 * jbd2_journal_stop itself will not usually return an error, but it may 1799 * do so in unusual circumstances. In particular, expect it to 1800 * return -EIO if a jbd2_journal_abort has been executed since the 1801 * transaction began. 1802 */ 1803 int jbd2_journal_stop(handle_t *handle) 1804 { 1805 transaction_t *transaction = handle->h_transaction; 1806 journal_t *journal; 1807 int err = 0, wait_for_commit = 0; 1808 tid_t tid; 1809 pid_t pid; 1810 1811 if (--handle->h_ref > 0) { 1812 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1813 handle->h_ref); 1814 if (is_handle_aborted(handle)) 1815 return -EIO; 1816 return 0; 1817 } 1818 if (!transaction) { 1819 /* 1820 * Handle is already detached from the transaction so there is 1821 * nothing to do other than free the handle. 1822 */ 1823 memalloc_nofs_restore(handle->saved_alloc_context); 1824 goto free_and_exit; 1825 } 1826 journal = transaction->t_journal; 1827 tid = transaction->t_tid; 1828 1829 if (is_handle_aborted(handle)) 1830 err = -EIO; 1831 1832 jbd_debug(4, "Handle %p going down\n", handle); 1833 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1834 tid, handle->h_type, handle->h_line_no, 1835 jiffies - handle->h_start_jiffies, 1836 handle->h_sync, handle->h_requested_credits, 1837 (handle->h_requested_credits - 1838 handle->h_total_credits)); 1839 1840 /* 1841 * Implement synchronous transaction batching. If the handle 1842 * was synchronous, don't force a commit immediately. Let's 1843 * yield and let another thread piggyback onto this 1844 * transaction. Keep doing that while new threads continue to 1845 * arrive. It doesn't cost much - we're about to run a commit 1846 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1847 * operations by 30x or more... 1848 * 1849 * We try and optimize the sleep time against what the 1850 * underlying disk can do, instead of having a static sleep 1851 * time. This is useful for the case where our storage is so 1852 * fast that it is more optimal to go ahead and force a flush 1853 * and wait for the transaction to be committed than it is to 1854 * wait for an arbitrary amount of time for new writers to 1855 * join the transaction. We achieve this by measuring how 1856 * long it takes to commit a transaction, and compare it with 1857 * how long this transaction has been running, and if run time 1858 * < commit time then we sleep for the delta and commit. This 1859 * greatly helps super fast disks that would see slowdowns as 1860 * more threads started doing fsyncs. 1861 * 1862 * But don't do this if this process was the most recent one 1863 * to perform a synchronous write. We do this to detect the 1864 * case where a single process is doing a stream of sync 1865 * writes. No point in waiting for joiners in that case. 1866 * 1867 * Setting max_batch_time to 0 disables this completely. 1868 */ 1869 pid = current->pid; 1870 if (handle->h_sync && journal->j_last_sync_writer != pid && 1871 journal->j_max_batch_time) { 1872 u64 commit_time, trans_time; 1873 1874 journal->j_last_sync_writer = pid; 1875 1876 read_lock(&journal->j_state_lock); 1877 commit_time = journal->j_average_commit_time; 1878 read_unlock(&journal->j_state_lock); 1879 1880 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1881 transaction->t_start_time)); 1882 1883 commit_time = max_t(u64, commit_time, 1884 1000*journal->j_min_batch_time); 1885 commit_time = min_t(u64, commit_time, 1886 1000*journal->j_max_batch_time); 1887 1888 if (trans_time < commit_time) { 1889 ktime_t expires = ktime_add_ns(ktime_get(), 1890 commit_time); 1891 set_current_state(TASK_UNINTERRUPTIBLE); 1892 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1893 } 1894 } 1895 1896 if (handle->h_sync) 1897 transaction->t_synchronous_commit = 1; 1898 1899 /* 1900 * If the handle is marked SYNC, we need to set another commit 1901 * going! We also want to force a commit if the transaction is too 1902 * old now. 1903 */ 1904 if (handle->h_sync || 1905 time_after_eq(jiffies, transaction->t_expires)) { 1906 /* Do this even for aborted journals: an abort still 1907 * completes the commit thread, it just doesn't write 1908 * anything to disk. */ 1909 1910 jbd_debug(2, "transaction too old, requesting commit for " 1911 "handle %p\n", handle); 1912 /* This is non-blocking */ 1913 jbd2_log_start_commit(journal, tid); 1914 1915 /* 1916 * Special case: JBD2_SYNC synchronous updates require us 1917 * to wait for the commit to complete. 1918 */ 1919 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1920 wait_for_commit = 1; 1921 } 1922 1923 /* 1924 * Once stop_this_handle() drops t_updates, the transaction could start 1925 * committing on us and eventually disappear. So we must not 1926 * dereference transaction pointer again after calling 1927 * stop_this_handle(). 1928 */ 1929 stop_this_handle(handle); 1930 1931 if (wait_for_commit) 1932 err = jbd2_log_wait_commit(journal, tid); 1933 1934 free_and_exit: 1935 if (handle->h_rsv_handle) 1936 jbd2_free_handle(handle->h_rsv_handle); 1937 jbd2_free_handle(handle); 1938 return err; 1939 } 1940 1941 /* 1942 * 1943 * List management code snippets: various functions for manipulating the 1944 * transaction buffer lists. 1945 * 1946 */ 1947 1948 /* 1949 * Append a buffer to a transaction list, given the transaction's list head 1950 * pointer. 1951 * 1952 * j_list_lock is held. 1953 * 1954 * jh->b_state_lock is held. 1955 */ 1956 1957 static inline void 1958 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1959 { 1960 if (!*list) { 1961 jh->b_tnext = jh->b_tprev = jh; 1962 *list = jh; 1963 } else { 1964 /* Insert at the tail of the list to preserve order */ 1965 struct journal_head *first = *list, *last = first->b_tprev; 1966 jh->b_tprev = last; 1967 jh->b_tnext = first; 1968 last->b_tnext = first->b_tprev = jh; 1969 } 1970 } 1971 1972 /* 1973 * Remove a buffer from a transaction list, given the transaction's list 1974 * head pointer. 1975 * 1976 * Called with j_list_lock held, and the journal may not be locked. 1977 * 1978 * jh->b_state_lock is held. 1979 */ 1980 1981 static inline void 1982 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1983 { 1984 if (*list == jh) { 1985 *list = jh->b_tnext; 1986 if (*list == jh) 1987 *list = NULL; 1988 } 1989 jh->b_tprev->b_tnext = jh->b_tnext; 1990 jh->b_tnext->b_tprev = jh->b_tprev; 1991 } 1992 1993 /* 1994 * Remove a buffer from the appropriate transaction list. 1995 * 1996 * Note that this function can *change* the value of 1997 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1998 * t_reserved_list. If the caller is holding onto a copy of one of these 1999 * pointers, it could go bad. Generally the caller needs to re-read the 2000 * pointer from the transaction_t. 2001 * 2002 * Called under j_list_lock. 2003 */ 2004 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2005 { 2006 struct journal_head **list = NULL; 2007 transaction_t *transaction; 2008 struct buffer_head *bh = jh2bh(jh); 2009 2010 lockdep_assert_held(&jh->b_state_lock); 2011 transaction = jh->b_transaction; 2012 if (transaction) 2013 assert_spin_locked(&transaction->t_journal->j_list_lock); 2014 2015 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2016 if (jh->b_jlist != BJ_None) 2017 J_ASSERT_JH(jh, transaction != NULL); 2018 2019 switch (jh->b_jlist) { 2020 case BJ_None: 2021 return; 2022 case BJ_Metadata: 2023 transaction->t_nr_buffers--; 2024 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2025 list = &transaction->t_buffers; 2026 break; 2027 case BJ_Forget: 2028 list = &transaction->t_forget; 2029 break; 2030 case BJ_Shadow: 2031 list = &transaction->t_shadow_list; 2032 break; 2033 case BJ_Reserved: 2034 list = &transaction->t_reserved_list; 2035 break; 2036 } 2037 2038 __blist_del_buffer(list, jh); 2039 jh->b_jlist = BJ_None; 2040 if (transaction && is_journal_aborted(transaction->t_journal)) 2041 clear_buffer_jbddirty(bh); 2042 else if (test_clear_buffer_jbddirty(bh)) 2043 mark_buffer_dirty(bh); /* Expose it to the VM */ 2044 } 2045 2046 /* 2047 * Remove buffer from all transactions. The caller is responsible for dropping 2048 * the jh reference that belonged to the transaction. 2049 * 2050 * Called with bh_state lock and j_list_lock 2051 */ 2052 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2053 { 2054 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2055 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2056 2057 __jbd2_journal_temp_unlink_buffer(jh); 2058 jh->b_transaction = NULL; 2059 } 2060 2061 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2062 { 2063 struct buffer_head *bh = jh2bh(jh); 2064 2065 /* Get reference so that buffer cannot be freed before we unlock it */ 2066 get_bh(bh); 2067 spin_lock(&jh->b_state_lock); 2068 spin_lock(&journal->j_list_lock); 2069 __jbd2_journal_unfile_buffer(jh); 2070 spin_unlock(&journal->j_list_lock); 2071 spin_unlock(&jh->b_state_lock); 2072 jbd2_journal_put_journal_head(jh); 2073 __brelse(bh); 2074 } 2075 2076 /* 2077 * Called from jbd2_journal_try_to_free_buffers(). 2078 * 2079 * Called under jh->b_state_lock 2080 */ 2081 static void 2082 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2083 { 2084 struct journal_head *jh; 2085 2086 jh = bh2jh(bh); 2087 2088 if (buffer_locked(bh) || buffer_dirty(bh)) 2089 goto out; 2090 2091 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2092 goto out; 2093 2094 spin_lock(&journal->j_list_lock); 2095 if (jh->b_cp_transaction != NULL) { 2096 /* written-back checkpointed metadata buffer */ 2097 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2098 __jbd2_journal_remove_checkpoint(jh); 2099 } 2100 spin_unlock(&journal->j_list_lock); 2101 out: 2102 return; 2103 } 2104 2105 /** 2106 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2107 * @journal: journal for operation 2108 * @page: to try and free 2109 * 2110 * For all the buffers on this page, 2111 * if they are fully written out ordered data, move them onto BUF_CLEAN 2112 * so try_to_free_buffers() can reap them. 2113 * 2114 * This function returns non-zero if we wish try_to_free_buffers() 2115 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2116 * We also do it if the page has locked or dirty buffers and the caller wants 2117 * us to perform sync or async writeout. 2118 * 2119 * This complicates JBD locking somewhat. We aren't protected by the 2120 * BKL here. We wish to remove the buffer from its committing or 2121 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2122 * 2123 * This may *change* the value of transaction_t->t_datalist, so anyone 2124 * who looks at t_datalist needs to lock against this function. 2125 * 2126 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2127 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2128 * will come out of the lock with the buffer dirty, which makes it 2129 * ineligible for release here. 2130 * 2131 * Who else is affected by this? hmm... Really the only contender 2132 * is do_get_write_access() - it could be looking at the buffer while 2133 * journal_try_to_free_buffer() is changing its state. But that 2134 * cannot happen because we never reallocate freed data as metadata 2135 * while the data is part of a transaction. Yes? 2136 * 2137 * Return 0 on failure, 1 on success 2138 */ 2139 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page) 2140 { 2141 struct buffer_head *head; 2142 struct buffer_head *bh; 2143 int ret = 0; 2144 2145 J_ASSERT(PageLocked(page)); 2146 2147 head = page_buffers(page); 2148 bh = head; 2149 do { 2150 struct journal_head *jh; 2151 2152 /* 2153 * We take our own ref against the journal_head here to avoid 2154 * having to add tons of locking around each instance of 2155 * jbd2_journal_put_journal_head(). 2156 */ 2157 jh = jbd2_journal_grab_journal_head(bh); 2158 if (!jh) 2159 continue; 2160 2161 spin_lock(&jh->b_state_lock); 2162 __journal_try_to_free_buffer(journal, bh); 2163 spin_unlock(&jh->b_state_lock); 2164 jbd2_journal_put_journal_head(jh); 2165 if (buffer_jbd(bh)) 2166 goto busy; 2167 } while ((bh = bh->b_this_page) != head); 2168 2169 ret = try_to_free_buffers(page); 2170 busy: 2171 return ret; 2172 } 2173 2174 /* 2175 * This buffer is no longer needed. If it is on an older transaction's 2176 * checkpoint list we need to record it on this transaction's forget list 2177 * to pin this buffer (and hence its checkpointing transaction) down until 2178 * this transaction commits. If the buffer isn't on a checkpoint list, we 2179 * release it. 2180 * Returns non-zero if JBD no longer has an interest in the buffer. 2181 * 2182 * Called under j_list_lock. 2183 * 2184 * Called under jh->b_state_lock. 2185 */ 2186 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2187 { 2188 int may_free = 1; 2189 struct buffer_head *bh = jh2bh(jh); 2190 2191 if (jh->b_cp_transaction) { 2192 JBUFFER_TRACE(jh, "on running+cp transaction"); 2193 __jbd2_journal_temp_unlink_buffer(jh); 2194 /* 2195 * We don't want to write the buffer anymore, clear the 2196 * bit so that we don't confuse checks in 2197 * __journal_file_buffer 2198 */ 2199 clear_buffer_dirty(bh); 2200 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2201 may_free = 0; 2202 } else { 2203 JBUFFER_TRACE(jh, "on running transaction"); 2204 __jbd2_journal_unfile_buffer(jh); 2205 jbd2_journal_put_journal_head(jh); 2206 } 2207 return may_free; 2208 } 2209 2210 /* 2211 * jbd2_journal_invalidatepage 2212 * 2213 * This code is tricky. It has a number of cases to deal with. 2214 * 2215 * There are two invariants which this code relies on: 2216 * 2217 * i_size must be updated on disk before we start calling invalidatepage on the 2218 * data. 2219 * 2220 * This is done in ext3 by defining an ext3_setattr method which 2221 * updates i_size before truncate gets going. By maintaining this 2222 * invariant, we can be sure that it is safe to throw away any buffers 2223 * attached to the current transaction: once the transaction commits, 2224 * we know that the data will not be needed. 2225 * 2226 * Note however that we can *not* throw away data belonging to the 2227 * previous, committing transaction! 2228 * 2229 * Any disk blocks which *are* part of the previous, committing 2230 * transaction (and which therefore cannot be discarded immediately) are 2231 * not going to be reused in the new running transaction 2232 * 2233 * The bitmap committed_data images guarantee this: any block which is 2234 * allocated in one transaction and removed in the next will be marked 2235 * as in-use in the committed_data bitmap, so cannot be reused until 2236 * the next transaction to delete the block commits. This means that 2237 * leaving committing buffers dirty is quite safe: the disk blocks 2238 * cannot be reallocated to a different file and so buffer aliasing is 2239 * not possible. 2240 * 2241 * 2242 * The above applies mainly to ordered data mode. In writeback mode we 2243 * don't make guarantees about the order in which data hits disk --- in 2244 * particular we don't guarantee that new dirty data is flushed before 2245 * transaction commit --- so it is always safe just to discard data 2246 * immediately in that mode. --sct 2247 */ 2248 2249 /* 2250 * The journal_unmap_buffer helper function returns zero if the buffer 2251 * concerned remains pinned as an anonymous buffer belonging to an older 2252 * transaction. 2253 * 2254 * We're outside-transaction here. Either or both of j_running_transaction 2255 * and j_committing_transaction may be NULL. 2256 */ 2257 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2258 int partial_page) 2259 { 2260 transaction_t *transaction; 2261 struct journal_head *jh; 2262 int may_free = 1; 2263 2264 BUFFER_TRACE(bh, "entry"); 2265 2266 /* 2267 * It is safe to proceed here without the j_list_lock because the 2268 * buffers cannot be stolen by try_to_free_buffers as long as we are 2269 * holding the page lock. --sct 2270 */ 2271 2272 jh = jbd2_journal_grab_journal_head(bh); 2273 if (!jh) 2274 goto zap_buffer_unlocked; 2275 2276 /* OK, we have data buffer in journaled mode */ 2277 write_lock(&journal->j_state_lock); 2278 spin_lock(&jh->b_state_lock); 2279 spin_lock(&journal->j_list_lock); 2280 2281 /* 2282 * We cannot remove the buffer from checkpoint lists until the 2283 * transaction adding inode to orphan list (let's call it T) 2284 * is committed. Otherwise if the transaction changing the 2285 * buffer would be cleaned from the journal before T is 2286 * committed, a crash will cause that the correct contents of 2287 * the buffer will be lost. On the other hand we have to 2288 * clear the buffer dirty bit at latest at the moment when the 2289 * transaction marking the buffer as freed in the filesystem 2290 * structures is committed because from that moment on the 2291 * block can be reallocated and used by a different page. 2292 * Since the block hasn't been freed yet but the inode has 2293 * already been added to orphan list, it is safe for us to add 2294 * the buffer to BJ_Forget list of the newest transaction. 2295 * 2296 * Also we have to clear buffer_mapped flag of a truncated buffer 2297 * because the buffer_head may be attached to the page straddling 2298 * i_size (can happen only when blocksize < pagesize) and thus the 2299 * buffer_head can be reused when the file is extended again. So we end 2300 * up keeping around invalidated buffers attached to transactions' 2301 * BJ_Forget list just to stop checkpointing code from cleaning up 2302 * the transaction this buffer was modified in. 2303 */ 2304 transaction = jh->b_transaction; 2305 if (transaction == NULL) { 2306 /* First case: not on any transaction. If it 2307 * has no checkpoint link, then we can zap it: 2308 * it's a writeback-mode buffer so we don't care 2309 * if it hits disk safely. */ 2310 if (!jh->b_cp_transaction) { 2311 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2312 goto zap_buffer; 2313 } 2314 2315 if (!buffer_dirty(bh)) { 2316 /* bdflush has written it. We can drop it now */ 2317 __jbd2_journal_remove_checkpoint(jh); 2318 goto zap_buffer; 2319 } 2320 2321 /* OK, it must be in the journal but still not 2322 * written fully to disk: it's metadata or 2323 * journaled data... */ 2324 2325 if (journal->j_running_transaction) { 2326 /* ... and once the current transaction has 2327 * committed, the buffer won't be needed any 2328 * longer. */ 2329 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2330 may_free = __dispose_buffer(jh, 2331 journal->j_running_transaction); 2332 goto zap_buffer; 2333 } else { 2334 /* There is no currently-running transaction. So the 2335 * orphan record which we wrote for this file must have 2336 * passed into commit. We must attach this buffer to 2337 * the committing transaction, if it exists. */ 2338 if (journal->j_committing_transaction) { 2339 JBUFFER_TRACE(jh, "give to committing trans"); 2340 may_free = __dispose_buffer(jh, 2341 journal->j_committing_transaction); 2342 goto zap_buffer; 2343 } else { 2344 /* The orphan record's transaction has 2345 * committed. We can cleanse this buffer */ 2346 clear_buffer_jbddirty(bh); 2347 __jbd2_journal_remove_checkpoint(jh); 2348 goto zap_buffer; 2349 } 2350 } 2351 } else if (transaction == journal->j_committing_transaction) { 2352 JBUFFER_TRACE(jh, "on committing transaction"); 2353 /* 2354 * The buffer is committing, we simply cannot touch 2355 * it. If the page is straddling i_size we have to wait 2356 * for commit and try again. 2357 */ 2358 if (partial_page) { 2359 spin_unlock(&journal->j_list_lock); 2360 spin_unlock(&jh->b_state_lock); 2361 write_unlock(&journal->j_state_lock); 2362 jbd2_journal_put_journal_head(jh); 2363 return -EBUSY; 2364 } 2365 /* 2366 * OK, buffer won't be reachable after truncate. We just clear 2367 * b_modified to not confuse transaction credit accounting, and 2368 * set j_next_transaction to the running transaction (if there 2369 * is one) and mark buffer as freed so that commit code knows 2370 * it should clear dirty bits when it is done with the buffer. 2371 */ 2372 set_buffer_freed(bh); 2373 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2374 jh->b_next_transaction = journal->j_running_transaction; 2375 jh->b_modified = 0; 2376 spin_unlock(&journal->j_list_lock); 2377 spin_unlock(&jh->b_state_lock); 2378 write_unlock(&journal->j_state_lock); 2379 jbd2_journal_put_journal_head(jh); 2380 return 0; 2381 } else { 2382 /* Good, the buffer belongs to the running transaction. 2383 * We are writing our own transaction's data, not any 2384 * previous one's, so it is safe to throw it away 2385 * (remember that we expect the filesystem to have set 2386 * i_size already for this truncate so recovery will not 2387 * expose the disk blocks we are discarding here.) */ 2388 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2389 JBUFFER_TRACE(jh, "on running transaction"); 2390 may_free = __dispose_buffer(jh, transaction); 2391 } 2392 2393 zap_buffer: 2394 /* 2395 * This is tricky. Although the buffer is truncated, it may be reused 2396 * if blocksize < pagesize and it is attached to the page straddling 2397 * EOF. Since the buffer might have been added to BJ_Forget list of the 2398 * running transaction, journal_get_write_access() won't clear 2399 * b_modified and credit accounting gets confused. So clear b_modified 2400 * here. 2401 */ 2402 jh->b_modified = 0; 2403 spin_unlock(&journal->j_list_lock); 2404 spin_unlock(&jh->b_state_lock); 2405 write_unlock(&journal->j_state_lock); 2406 jbd2_journal_put_journal_head(jh); 2407 zap_buffer_unlocked: 2408 clear_buffer_dirty(bh); 2409 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2410 clear_buffer_mapped(bh); 2411 clear_buffer_req(bh); 2412 clear_buffer_new(bh); 2413 clear_buffer_delay(bh); 2414 clear_buffer_unwritten(bh); 2415 bh->b_bdev = NULL; 2416 return may_free; 2417 } 2418 2419 /** 2420 * jbd2_journal_invalidatepage() 2421 * @journal: journal to use for flush... 2422 * @page: page to flush 2423 * @offset: start of the range to invalidate 2424 * @length: length of the range to invalidate 2425 * 2426 * Reap page buffers containing data after in the specified range in page. 2427 * Can return -EBUSY if buffers are part of the committing transaction and 2428 * the page is straddling i_size. Caller then has to wait for current commit 2429 * and try again. 2430 */ 2431 int jbd2_journal_invalidatepage(journal_t *journal, 2432 struct page *page, 2433 unsigned int offset, 2434 unsigned int length) 2435 { 2436 struct buffer_head *head, *bh, *next; 2437 unsigned int stop = offset + length; 2438 unsigned int curr_off = 0; 2439 int partial_page = (offset || length < PAGE_SIZE); 2440 int may_free = 1; 2441 int ret = 0; 2442 2443 if (!PageLocked(page)) 2444 BUG(); 2445 if (!page_has_buffers(page)) 2446 return 0; 2447 2448 BUG_ON(stop > PAGE_SIZE || stop < length); 2449 2450 /* We will potentially be playing with lists other than just the 2451 * data lists (especially for journaled data mode), so be 2452 * cautious in our locking. */ 2453 2454 head = bh = page_buffers(page); 2455 do { 2456 unsigned int next_off = curr_off + bh->b_size; 2457 next = bh->b_this_page; 2458 2459 if (next_off > stop) 2460 return 0; 2461 2462 if (offset <= curr_off) { 2463 /* This block is wholly outside the truncation point */ 2464 lock_buffer(bh); 2465 ret = journal_unmap_buffer(journal, bh, partial_page); 2466 unlock_buffer(bh); 2467 if (ret < 0) 2468 return ret; 2469 may_free &= ret; 2470 } 2471 curr_off = next_off; 2472 bh = next; 2473 2474 } while (bh != head); 2475 2476 if (!partial_page) { 2477 if (may_free && try_to_free_buffers(page)) 2478 J_ASSERT(!page_has_buffers(page)); 2479 } 2480 return 0; 2481 } 2482 2483 /* 2484 * File a buffer on the given transaction list. 2485 */ 2486 void __jbd2_journal_file_buffer(struct journal_head *jh, 2487 transaction_t *transaction, int jlist) 2488 { 2489 struct journal_head **list = NULL; 2490 int was_dirty = 0; 2491 struct buffer_head *bh = jh2bh(jh); 2492 2493 lockdep_assert_held(&jh->b_state_lock); 2494 assert_spin_locked(&transaction->t_journal->j_list_lock); 2495 2496 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2497 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2498 jh->b_transaction == NULL); 2499 2500 if (jh->b_transaction && jh->b_jlist == jlist) 2501 return; 2502 2503 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2504 jlist == BJ_Shadow || jlist == BJ_Forget) { 2505 /* 2506 * For metadata buffers, we track dirty bit in buffer_jbddirty 2507 * instead of buffer_dirty. We should not see a dirty bit set 2508 * here because we clear it in do_get_write_access but e.g. 2509 * tune2fs can modify the sb and set the dirty bit at any time 2510 * so we try to gracefully handle that. 2511 */ 2512 if (buffer_dirty(bh)) 2513 warn_dirty_buffer(bh); 2514 if (test_clear_buffer_dirty(bh) || 2515 test_clear_buffer_jbddirty(bh)) 2516 was_dirty = 1; 2517 } 2518 2519 if (jh->b_transaction) 2520 __jbd2_journal_temp_unlink_buffer(jh); 2521 else 2522 jbd2_journal_grab_journal_head(bh); 2523 jh->b_transaction = transaction; 2524 2525 switch (jlist) { 2526 case BJ_None: 2527 J_ASSERT_JH(jh, !jh->b_committed_data); 2528 J_ASSERT_JH(jh, !jh->b_frozen_data); 2529 return; 2530 case BJ_Metadata: 2531 transaction->t_nr_buffers++; 2532 list = &transaction->t_buffers; 2533 break; 2534 case BJ_Forget: 2535 list = &transaction->t_forget; 2536 break; 2537 case BJ_Shadow: 2538 list = &transaction->t_shadow_list; 2539 break; 2540 case BJ_Reserved: 2541 list = &transaction->t_reserved_list; 2542 break; 2543 } 2544 2545 __blist_add_buffer(list, jh); 2546 jh->b_jlist = jlist; 2547 2548 if (was_dirty) 2549 set_buffer_jbddirty(bh); 2550 } 2551 2552 void jbd2_journal_file_buffer(struct journal_head *jh, 2553 transaction_t *transaction, int jlist) 2554 { 2555 spin_lock(&jh->b_state_lock); 2556 spin_lock(&transaction->t_journal->j_list_lock); 2557 __jbd2_journal_file_buffer(jh, transaction, jlist); 2558 spin_unlock(&transaction->t_journal->j_list_lock); 2559 spin_unlock(&jh->b_state_lock); 2560 } 2561 2562 /* 2563 * Remove a buffer from its current buffer list in preparation for 2564 * dropping it from its current transaction entirely. If the buffer has 2565 * already started to be used by a subsequent transaction, refile the 2566 * buffer on that transaction's metadata list. 2567 * 2568 * Called under j_list_lock 2569 * Called under jh->b_state_lock 2570 * 2571 * When this function returns true, there's no next transaction to refile to 2572 * and the caller has to drop jh reference through 2573 * jbd2_journal_put_journal_head(). 2574 */ 2575 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2576 { 2577 int was_dirty, jlist; 2578 struct buffer_head *bh = jh2bh(jh); 2579 2580 lockdep_assert_held(&jh->b_state_lock); 2581 if (jh->b_transaction) 2582 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2583 2584 /* If the buffer is now unused, just drop it. */ 2585 if (jh->b_next_transaction == NULL) { 2586 __jbd2_journal_unfile_buffer(jh); 2587 return true; 2588 } 2589 2590 /* 2591 * It has been modified by a later transaction: add it to the new 2592 * transaction's metadata list. 2593 */ 2594 2595 was_dirty = test_clear_buffer_jbddirty(bh); 2596 __jbd2_journal_temp_unlink_buffer(jh); 2597 2598 /* 2599 * b_transaction must be set, otherwise the new b_transaction won't 2600 * be holding jh reference 2601 */ 2602 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2603 2604 /* 2605 * We set b_transaction here because b_next_transaction will inherit 2606 * our jh reference and thus __jbd2_journal_file_buffer() must not 2607 * take a new one. 2608 */ 2609 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2610 WRITE_ONCE(jh->b_next_transaction, NULL); 2611 if (buffer_freed(bh)) 2612 jlist = BJ_Forget; 2613 else if (jh->b_modified) 2614 jlist = BJ_Metadata; 2615 else 2616 jlist = BJ_Reserved; 2617 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2618 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2619 2620 if (was_dirty) 2621 set_buffer_jbddirty(bh); 2622 return false; 2623 } 2624 2625 /* 2626 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2627 * bh reference so that we can safely unlock bh. 2628 * 2629 * The jh and bh may be freed by this call. 2630 */ 2631 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2632 { 2633 bool drop; 2634 2635 spin_lock(&jh->b_state_lock); 2636 spin_lock(&journal->j_list_lock); 2637 drop = __jbd2_journal_refile_buffer(jh); 2638 spin_unlock(&jh->b_state_lock); 2639 spin_unlock(&journal->j_list_lock); 2640 if (drop) 2641 jbd2_journal_put_journal_head(jh); 2642 } 2643 2644 /* 2645 * File inode in the inode list of the handle's transaction 2646 */ 2647 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2648 unsigned long flags, loff_t start_byte, loff_t end_byte) 2649 { 2650 transaction_t *transaction = handle->h_transaction; 2651 journal_t *journal; 2652 2653 if (is_handle_aborted(handle)) 2654 return -EROFS; 2655 journal = transaction->t_journal; 2656 2657 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2658 transaction->t_tid); 2659 2660 spin_lock(&journal->j_list_lock); 2661 jinode->i_flags |= flags; 2662 2663 if (jinode->i_dirty_end) { 2664 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2665 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2666 } else { 2667 jinode->i_dirty_start = start_byte; 2668 jinode->i_dirty_end = end_byte; 2669 } 2670 2671 /* Is inode already attached where we need it? */ 2672 if (jinode->i_transaction == transaction || 2673 jinode->i_next_transaction == transaction) 2674 goto done; 2675 2676 /* 2677 * We only ever set this variable to 1 so the test is safe. Since 2678 * t_need_data_flush is likely to be set, we do the test to save some 2679 * cacheline bouncing 2680 */ 2681 if (!transaction->t_need_data_flush) 2682 transaction->t_need_data_flush = 1; 2683 /* On some different transaction's list - should be 2684 * the committing one */ 2685 if (jinode->i_transaction) { 2686 J_ASSERT(jinode->i_next_transaction == NULL); 2687 J_ASSERT(jinode->i_transaction == 2688 journal->j_committing_transaction); 2689 jinode->i_next_transaction = transaction; 2690 goto done; 2691 } 2692 /* Not on any transaction list... */ 2693 J_ASSERT(!jinode->i_next_transaction); 2694 jinode->i_transaction = transaction; 2695 list_add(&jinode->i_list, &transaction->t_inode_list); 2696 done: 2697 spin_unlock(&journal->j_list_lock); 2698 2699 return 0; 2700 } 2701 2702 int jbd2_journal_inode_ranged_write(handle_t *handle, 2703 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2704 { 2705 return jbd2_journal_file_inode(handle, jinode, 2706 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2707 start_byte + length - 1); 2708 } 2709 2710 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2711 loff_t start_byte, loff_t length) 2712 { 2713 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2714 start_byte, start_byte + length - 1); 2715 } 2716 2717 /* 2718 * File truncate and transaction commit interact with each other in a 2719 * non-trivial way. If a transaction writing data block A is 2720 * committing, we cannot discard the data by truncate until we have 2721 * written them. Otherwise if we crashed after the transaction with 2722 * write has committed but before the transaction with truncate has 2723 * committed, we could see stale data in block A. This function is a 2724 * helper to solve this problem. It starts writeout of the truncated 2725 * part in case it is in the committing transaction. 2726 * 2727 * Filesystem code must call this function when inode is journaled in 2728 * ordered mode before truncation happens and after the inode has been 2729 * placed on orphan list with the new inode size. The second condition 2730 * avoids the race that someone writes new data and we start 2731 * committing the transaction after this function has been called but 2732 * before a transaction for truncate is started (and furthermore it 2733 * allows us to optimize the case where the addition to orphan list 2734 * happens in the same transaction as write --- we don't have to write 2735 * any data in such case). 2736 */ 2737 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2738 struct jbd2_inode *jinode, 2739 loff_t new_size) 2740 { 2741 transaction_t *inode_trans, *commit_trans; 2742 int ret = 0; 2743 2744 /* This is a quick check to avoid locking if not necessary */ 2745 if (!jinode->i_transaction) 2746 goto out; 2747 /* Locks are here just to force reading of recent values, it is 2748 * enough that the transaction was not committing before we started 2749 * a transaction adding the inode to orphan list */ 2750 read_lock(&journal->j_state_lock); 2751 commit_trans = journal->j_committing_transaction; 2752 read_unlock(&journal->j_state_lock); 2753 spin_lock(&journal->j_list_lock); 2754 inode_trans = jinode->i_transaction; 2755 spin_unlock(&journal->j_list_lock); 2756 if (inode_trans == commit_trans) { 2757 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2758 new_size, LLONG_MAX); 2759 if (ret) 2760 jbd2_journal_abort(journal, ret); 2761 } 2762 out: 2763 return ret; 2764 } 2765