xref: /openbmc/linux/fs/jbd2/transaction.c (revision 39b6f3aa)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits, 0);
93 	atomic_set(&transaction->t_handle_count, 0);
94 	INIT_LIST_HEAD(&transaction->t_inode_list);
95 	INIT_LIST_HEAD(&transaction->t_private_list);
96 
97 	/* Set up the commit timer for the new transaction. */
98 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 	add_timer(&journal->j_commit_timer);
100 
101 	J_ASSERT(journal->j_running_transaction == NULL);
102 	journal->j_running_transaction = transaction;
103 	transaction->t_max_wait = 0;
104 	transaction->t_start = jiffies;
105 	transaction->t_requested = 0;
106 
107 	return transaction;
108 }
109 
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117 
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129 				     unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132 	if (jbd2_journal_enable_debug &&
133 	    time_after(transaction->t_start, ts)) {
134 		ts = jbd2_time_diff(ts, transaction->t_start);
135 		spin_lock(&transaction->t_handle_lock);
136 		if (ts > transaction->t_max_wait)
137 			transaction->t_max_wait = ts;
138 		spin_unlock(&transaction->t_handle_lock);
139 	}
140 #endif
141 }
142 
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149 
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151 			     gfp_t gfp_mask)
152 {
153 	transaction_t	*transaction, *new_transaction = NULL;
154 	tid_t		tid;
155 	int		needed, need_to_start;
156 	int		nblocks = handle->h_buffer_credits;
157 	unsigned long ts = jiffies;
158 
159 	if (nblocks > journal->j_max_transaction_buffers) {
160 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161 		       current->comm, nblocks,
162 		       journal->j_max_transaction_buffers);
163 		return -ENOSPC;
164 	}
165 
166 alloc_transaction:
167 	if (!journal->j_running_transaction) {
168 		new_transaction = kmem_cache_zalloc(transaction_cache,
169 						    gfp_mask);
170 		if (!new_transaction) {
171 			/*
172 			 * If __GFP_FS is not present, then we may be
173 			 * being called from inside the fs writeback
174 			 * layer, so we MUST NOT fail.  Since
175 			 * __GFP_NOFAIL is going away, we will arrange
176 			 * to retry the allocation ourselves.
177 			 */
178 			if ((gfp_mask & __GFP_FS) == 0) {
179 				congestion_wait(BLK_RW_ASYNC, HZ/50);
180 				goto alloc_transaction;
181 			}
182 			return -ENOMEM;
183 		}
184 	}
185 
186 	jbd_debug(3, "New handle %p going live.\n", handle);
187 
188 	/*
189 	 * We need to hold j_state_lock until t_updates has been incremented,
190 	 * for proper journal barrier handling
191 	 */
192 repeat:
193 	read_lock(&journal->j_state_lock);
194 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195 	if (is_journal_aborted(journal) ||
196 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197 		read_unlock(&journal->j_state_lock);
198 		jbd2_journal_free_transaction(new_transaction);
199 		return -EROFS;
200 	}
201 
202 	/* Wait on the journal's transaction barrier if necessary */
203 	if (journal->j_barrier_count) {
204 		read_unlock(&journal->j_state_lock);
205 		wait_event(journal->j_wait_transaction_locked,
206 				journal->j_barrier_count == 0);
207 		goto repeat;
208 	}
209 
210 	if (!journal->j_running_transaction) {
211 		read_unlock(&journal->j_state_lock);
212 		if (!new_transaction)
213 			goto alloc_transaction;
214 		write_lock(&journal->j_state_lock);
215 		if (!journal->j_running_transaction &&
216 		    !journal->j_barrier_count) {
217 			jbd2_get_transaction(journal, new_transaction);
218 			new_transaction = NULL;
219 		}
220 		write_unlock(&journal->j_state_lock);
221 		goto repeat;
222 	}
223 
224 	transaction = journal->j_running_transaction;
225 
226 	/*
227 	 * If the current transaction is locked down for commit, wait for the
228 	 * lock to be released.
229 	 */
230 	if (transaction->t_state == T_LOCKED) {
231 		DEFINE_WAIT(wait);
232 
233 		prepare_to_wait(&journal->j_wait_transaction_locked,
234 					&wait, TASK_UNINTERRUPTIBLE);
235 		read_unlock(&journal->j_state_lock);
236 		schedule();
237 		finish_wait(&journal->j_wait_transaction_locked, &wait);
238 		goto repeat;
239 	}
240 
241 	/*
242 	 * If there is not enough space left in the log to write all potential
243 	 * buffers requested by this operation, we need to stall pending a log
244 	 * checkpoint to free some more log space.
245 	 */
246 	needed = atomic_add_return(nblocks,
247 				   &transaction->t_outstanding_credits);
248 
249 	if (needed > journal->j_max_transaction_buffers) {
250 		/*
251 		 * If the current transaction is already too large, then start
252 		 * to commit it: we can then go back and attach this handle to
253 		 * a new transaction.
254 		 */
255 		DEFINE_WAIT(wait);
256 
257 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
258 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 				TASK_UNINTERRUPTIBLE);
261 		tid = transaction->t_tid;
262 		need_to_start = !tid_geq(journal->j_commit_request, tid);
263 		read_unlock(&journal->j_state_lock);
264 		if (need_to_start)
265 			jbd2_log_start_commit(journal, tid);
266 		schedule();
267 		finish_wait(&journal->j_wait_transaction_locked, &wait);
268 		goto repeat;
269 	}
270 
271 	/*
272 	 * The commit code assumes that it can get enough log space
273 	 * without forcing a checkpoint.  This is *critical* for
274 	 * correctness: a checkpoint of a buffer which is also
275 	 * associated with a committing transaction creates a deadlock,
276 	 * so commit simply cannot force through checkpoints.
277 	 *
278 	 * We must therefore ensure the necessary space in the journal
279 	 * *before* starting to dirty potentially checkpointed buffers
280 	 * in the new transaction.
281 	 *
282 	 * The worst part is, any transaction currently committing can
283 	 * reduce the free space arbitrarily.  Be careful to account for
284 	 * those buffers when checkpointing.
285 	 */
286 
287 	/*
288 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
289 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
290 	 * the committing transaction.  Really, we only need to give it
291 	 * committing_transaction->t_outstanding_credits plus "enough" for
292 	 * the log control blocks.
293 	 * Also, this test is inconsistent with the matching one in
294 	 * jbd2_journal_extend().
295 	 */
296 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
299 		read_unlock(&journal->j_state_lock);
300 		write_lock(&journal->j_state_lock);
301 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302 			__jbd2_log_wait_for_space(journal);
303 		write_unlock(&journal->j_state_lock);
304 		goto repeat;
305 	}
306 
307 	/* OK, account for the buffers that this operation expects to
308 	 * use and add the handle to the running transaction.
309 	 */
310 	update_t_max_wait(transaction, ts);
311 	handle->h_transaction = transaction;
312 	handle->h_requested_credits = nblocks;
313 	handle->h_start_jiffies = jiffies;
314 	atomic_inc(&transaction->t_updates);
315 	atomic_inc(&transaction->t_handle_count);
316 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317 		  handle, nblocks,
318 		  atomic_read(&transaction->t_outstanding_credits),
319 		  __jbd2_log_space_left(journal));
320 	read_unlock(&journal->j_state_lock);
321 
322 	lock_map_acquire(&handle->h_lockdep_map);
323 	jbd2_journal_free_transaction(new_transaction);
324 	return 0;
325 }
326 
327 static struct lock_class_key jbd2_handle_key;
328 
329 /* Allocate a new handle.  This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333 	if (!handle)
334 		return NULL;
335 	handle->h_buffer_credits = nblocks;
336 	handle->h_ref = 1;
337 
338 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
339 						&jbd2_handle_key, 0);
340 
341 	return handle;
342 }
343 
344 /**
345  * handle_t *jbd2_journal_start() - Obtain a new handle.
346  * @journal: Journal to start transaction on.
347  * @nblocks: number of block buffer we might modify
348  *
349  * We make sure that the transaction can guarantee at least nblocks of
350  * modified buffers in the log.  We block until the log can guarantee
351  * that much space.
352  *
353  * This function is visible to journal users (like ext3fs), so is not
354  * called with the journal already locked.
355  *
356  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
357  * on failure.
358  */
359 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
360 			      unsigned int type, unsigned int line_no)
361 {
362 	handle_t *handle = journal_current_handle();
363 	int err;
364 
365 	if (!journal)
366 		return ERR_PTR(-EROFS);
367 
368 	if (handle) {
369 		J_ASSERT(handle->h_transaction->t_journal == journal);
370 		handle->h_ref++;
371 		return handle;
372 	}
373 
374 	handle = new_handle(nblocks);
375 	if (!handle)
376 		return ERR_PTR(-ENOMEM);
377 
378 	current->journal_info = handle;
379 
380 	err = start_this_handle(journal, handle, gfp_mask);
381 	if (err < 0) {
382 		jbd2_free_handle(handle);
383 		current->journal_info = NULL;
384 		return ERR_PTR(err);
385 	}
386 	handle->h_type = type;
387 	handle->h_line_no = line_no;
388 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
389 				handle->h_transaction->t_tid, type,
390 				line_no, nblocks);
391 	return handle;
392 }
393 EXPORT_SYMBOL(jbd2__journal_start);
394 
395 
396 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
397 {
398 	return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
399 }
400 EXPORT_SYMBOL(jbd2_journal_start);
401 
402 
403 /**
404  * int jbd2_journal_extend() - extend buffer credits.
405  * @handle:  handle to 'extend'
406  * @nblocks: nr blocks to try to extend by.
407  *
408  * Some transactions, such as large extends and truncates, can be done
409  * atomically all at once or in several stages.  The operation requests
410  * a credit for a number of buffer modications in advance, but can
411  * extend its credit if it needs more.
412  *
413  * jbd2_journal_extend tries to give the running handle more buffer credits.
414  * It does not guarantee that allocation - this is a best-effort only.
415  * The calling process MUST be able to deal cleanly with a failure to
416  * extend here.
417  *
418  * Return 0 on success, non-zero on failure.
419  *
420  * return code < 0 implies an error
421  * return code > 0 implies normal transaction-full status.
422  */
423 int jbd2_journal_extend(handle_t *handle, int nblocks)
424 {
425 	transaction_t *transaction = handle->h_transaction;
426 	journal_t *journal = transaction->t_journal;
427 	int result;
428 	int wanted;
429 
430 	result = -EIO;
431 	if (is_handle_aborted(handle))
432 		goto out;
433 
434 	result = 1;
435 
436 	read_lock(&journal->j_state_lock);
437 
438 	/* Don't extend a locked-down transaction! */
439 	if (handle->h_transaction->t_state != T_RUNNING) {
440 		jbd_debug(3, "denied handle %p %d blocks: "
441 			  "transaction not running\n", handle, nblocks);
442 		goto error_out;
443 	}
444 
445 	spin_lock(&transaction->t_handle_lock);
446 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
447 
448 	if (wanted > journal->j_max_transaction_buffers) {
449 		jbd_debug(3, "denied handle %p %d blocks: "
450 			  "transaction too large\n", handle, nblocks);
451 		goto unlock;
452 	}
453 
454 	if (wanted > __jbd2_log_space_left(journal)) {
455 		jbd_debug(3, "denied handle %p %d blocks: "
456 			  "insufficient log space\n", handle, nblocks);
457 		goto unlock;
458 	}
459 
460 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
461 				 handle->h_transaction->t_tid,
462 				 handle->h_type, handle->h_line_no,
463 				 handle->h_buffer_credits,
464 				 nblocks);
465 
466 	handle->h_buffer_credits += nblocks;
467 	handle->h_requested_credits += nblocks;
468 	atomic_add(nblocks, &transaction->t_outstanding_credits);
469 	result = 0;
470 
471 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
472 unlock:
473 	spin_unlock(&transaction->t_handle_lock);
474 error_out:
475 	read_unlock(&journal->j_state_lock);
476 out:
477 	return result;
478 }
479 
480 
481 /**
482  * int jbd2_journal_restart() - restart a handle .
483  * @handle:  handle to restart
484  * @nblocks: nr credits requested
485  *
486  * Restart a handle for a multi-transaction filesystem
487  * operation.
488  *
489  * If the jbd2_journal_extend() call above fails to grant new buffer credits
490  * to a running handle, a call to jbd2_journal_restart will commit the
491  * handle's transaction so far and reattach the handle to a new
492  * transaction capabable of guaranteeing the requested number of
493  * credits.
494  */
495 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
496 {
497 	transaction_t *transaction = handle->h_transaction;
498 	journal_t *journal = transaction->t_journal;
499 	tid_t		tid;
500 	int		need_to_start, ret;
501 
502 	/* If we've had an abort of any type, don't even think about
503 	 * actually doing the restart! */
504 	if (is_handle_aborted(handle))
505 		return 0;
506 
507 	/*
508 	 * First unlink the handle from its current transaction, and start the
509 	 * commit on that.
510 	 */
511 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
512 	J_ASSERT(journal_current_handle() == handle);
513 
514 	read_lock(&journal->j_state_lock);
515 	spin_lock(&transaction->t_handle_lock);
516 	atomic_sub(handle->h_buffer_credits,
517 		   &transaction->t_outstanding_credits);
518 	if (atomic_dec_and_test(&transaction->t_updates))
519 		wake_up(&journal->j_wait_updates);
520 	spin_unlock(&transaction->t_handle_lock);
521 
522 	jbd_debug(2, "restarting handle %p\n", handle);
523 	tid = transaction->t_tid;
524 	need_to_start = !tid_geq(journal->j_commit_request, tid);
525 	read_unlock(&journal->j_state_lock);
526 	if (need_to_start)
527 		jbd2_log_start_commit(journal, tid);
528 
529 	lock_map_release(&handle->h_lockdep_map);
530 	handle->h_buffer_credits = nblocks;
531 	ret = start_this_handle(journal, handle, gfp_mask);
532 	return ret;
533 }
534 EXPORT_SYMBOL(jbd2__journal_restart);
535 
536 
537 int jbd2_journal_restart(handle_t *handle, int nblocks)
538 {
539 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
540 }
541 EXPORT_SYMBOL(jbd2_journal_restart);
542 
543 /**
544  * void jbd2_journal_lock_updates () - establish a transaction barrier.
545  * @journal:  Journal to establish a barrier on.
546  *
547  * This locks out any further updates from being started, and blocks
548  * until all existing updates have completed, returning only once the
549  * journal is in a quiescent state with no updates running.
550  *
551  * The journal lock should not be held on entry.
552  */
553 void jbd2_journal_lock_updates(journal_t *journal)
554 {
555 	DEFINE_WAIT(wait);
556 
557 	write_lock(&journal->j_state_lock);
558 	++journal->j_barrier_count;
559 
560 	/* Wait until there are no running updates */
561 	while (1) {
562 		transaction_t *transaction = journal->j_running_transaction;
563 
564 		if (!transaction)
565 			break;
566 
567 		spin_lock(&transaction->t_handle_lock);
568 		prepare_to_wait(&journal->j_wait_updates, &wait,
569 				TASK_UNINTERRUPTIBLE);
570 		if (!atomic_read(&transaction->t_updates)) {
571 			spin_unlock(&transaction->t_handle_lock);
572 			finish_wait(&journal->j_wait_updates, &wait);
573 			break;
574 		}
575 		spin_unlock(&transaction->t_handle_lock);
576 		write_unlock(&journal->j_state_lock);
577 		schedule();
578 		finish_wait(&journal->j_wait_updates, &wait);
579 		write_lock(&journal->j_state_lock);
580 	}
581 	write_unlock(&journal->j_state_lock);
582 
583 	/*
584 	 * We have now established a barrier against other normal updates, but
585 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
586 	 * to make sure that we serialise special journal-locked operations
587 	 * too.
588 	 */
589 	mutex_lock(&journal->j_barrier);
590 }
591 
592 /**
593  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
594  * @journal:  Journal to release the barrier on.
595  *
596  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
597  *
598  * Should be called without the journal lock held.
599  */
600 void jbd2_journal_unlock_updates (journal_t *journal)
601 {
602 	J_ASSERT(journal->j_barrier_count != 0);
603 
604 	mutex_unlock(&journal->j_barrier);
605 	write_lock(&journal->j_state_lock);
606 	--journal->j_barrier_count;
607 	write_unlock(&journal->j_state_lock);
608 	wake_up(&journal->j_wait_transaction_locked);
609 }
610 
611 static void warn_dirty_buffer(struct buffer_head *bh)
612 {
613 	char b[BDEVNAME_SIZE];
614 
615 	printk(KERN_WARNING
616 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
617 	       "There's a risk of filesystem corruption in case of system "
618 	       "crash.\n",
619 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
620 }
621 
622 /*
623  * If the buffer is already part of the current transaction, then there
624  * is nothing we need to do.  If it is already part of a prior
625  * transaction which we are still committing to disk, then we need to
626  * make sure that we do not overwrite the old copy: we do copy-out to
627  * preserve the copy going to disk.  We also account the buffer against
628  * the handle's metadata buffer credits (unless the buffer is already
629  * part of the transaction, that is).
630  *
631  */
632 static int
633 do_get_write_access(handle_t *handle, struct journal_head *jh,
634 			int force_copy)
635 {
636 	struct buffer_head *bh;
637 	transaction_t *transaction;
638 	journal_t *journal;
639 	int error;
640 	char *frozen_buffer = NULL;
641 	int need_copy = 0;
642 	unsigned long start_lock, time_lock;
643 
644 	if (is_handle_aborted(handle))
645 		return -EROFS;
646 
647 	transaction = handle->h_transaction;
648 	journal = transaction->t_journal;
649 
650 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
651 
652 	JBUFFER_TRACE(jh, "entry");
653 repeat:
654 	bh = jh2bh(jh);
655 
656 	/* @@@ Need to check for errors here at some point. */
657 
658  	start_lock = jiffies;
659 	lock_buffer(bh);
660 	jbd_lock_bh_state(bh);
661 
662 	/* If it takes too long to lock the buffer, trace it */
663 	time_lock = jbd2_time_diff(start_lock, jiffies);
664 	if (time_lock > HZ/10)
665 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
666 			jiffies_to_msecs(time_lock));
667 
668 	/* We now hold the buffer lock so it is safe to query the buffer
669 	 * state.  Is the buffer dirty?
670 	 *
671 	 * If so, there are two possibilities.  The buffer may be
672 	 * non-journaled, and undergoing a quite legitimate writeback.
673 	 * Otherwise, it is journaled, and we don't expect dirty buffers
674 	 * in that state (the buffers should be marked JBD_Dirty
675 	 * instead.)  So either the IO is being done under our own
676 	 * control and this is a bug, or it's a third party IO such as
677 	 * dump(8) (which may leave the buffer scheduled for read ---
678 	 * ie. locked but not dirty) or tune2fs (which may actually have
679 	 * the buffer dirtied, ugh.)  */
680 
681 	if (buffer_dirty(bh)) {
682 		/*
683 		 * First question: is this buffer already part of the current
684 		 * transaction or the existing committing transaction?
685 		 */
686 		if (jh->b_transaction) {
687 			J_ASSERT_JH(jh,
688 				jh->b_transaction == transaction ||
689 				jh->b_transaction ==
690 					journal->j_committing_transaction);
691 			if (jh->b_next_transaction)
692 				J_ASSERT_JH(jh, jh->b_next_transaction ==
693 							transaction);
694 			warn_dirty_buffer(bh);
695 		}
696 		/*
697 		 * In any case we need to clean the dirty flag and we must
698 		 * do it under the buffer lock to be sure we don't race
699 		 * with running write-out.
700 		 */
701 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
702 		clear_buffer_dirty(bh);
703 		set_buffer_jbddirty(bh);
704 	}
705 
706 	unlock_buffer(bh);
707 
708 	error = -EROFS;
709 	if (is_handle_aborted(handle)) {
710 		jbd_unlock_bh_state(bh);
711 		goto out;
712 	}
713 	error = 0;
714 
715 	/*
716 	 * The buffer is already part of this transaction if b_transaction or
717 	 * b_next_transaction points to it
718 	 */
719 	if (jh->b_transaction == transaction ||
720 	    jh->b_next_transaction == transaction)
721 		goto done;
722 
723 	/*
724 	 * this is the first time this transaction is touching this buffer,
725 	 * reset the modified flag
726 	 */
727        jh->b_modified = 0;
728 
729 	/*
730 	 * If there is already a copy-out version of this buffer, then we don't
731 	 * need to make another one
732 	 */
733 	if (jh->b_frozen_data) {
734 		JBUFFER_TRACE(jh, "has frozen data");
735 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
736 		jh->b_next_transaction = transaction;
737 		goto done;
738 	}
739 
740 	/* Is there data here we need to preserve? */
741 
742 	if (jh->b_transaction && jh->b_transaction != transaction) {
743 		JBUFFER_TRACE(jh, "owned by older transaction");
744 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
745 		J_ASSERT_JH(jh, jh->b_transaction ==
746 					journal->j_committing_transaction);
747 
748 		/* There is one case we have to be very careful about.
749 		 * If the committing transaction is currently writing
750 		 * this buffer out to disk and has NOT made a copy-out,
751 		 * then we cannot modify the buffer contents at all
752 		 * right now.  The essence of copy-out is that it is the
753 		 * extra copy, not the primary copy, which gets
754 		 * journaled.  If the primary copy is already going to
755 		 * disk then we cannot do copy-out here. */
756 
757 		if (jh->b_jlist == BJ_Shadow) {
758 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
759 			wait_queue_head_t *wqh;
760 
761 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
762 
763 			JBUFFER_TRACE(jh, "on shadow: sleep");
764 			jbd_unlock_bh_state(bh);
765 			/* commit wakes up all shadow buffers after IO */
766 			for ( ; ; ) {
767 				prepare_to_wait(wqh, &wait.wait,
768 						TASK_UNINTERRUPTIBLE);
769 				if (jh->b_jlist != BJ_Shadow)
770 					break;
771 				schedule();
772 			}
773 			finish_wait(wqh, &wait.wait);
774 			goto repeat;
775 		}
776 
777 		/* Only do the copy if the currently-owning transaction
778 		 * still needs it.  If it is on the Forget list, the
779 		 * committing transaction is past that stage.  The
780 		 * buffer had better remain locked during the kmalloc,
781 		 * but that should be true --- we hold the journal lock
782 		 * still and the buffer is already on the BUF_JOURNAL
783 		 * list so won't be flushed.
784 		 *
785 		 * Subtle point, though: if this is a get_undo_access,
786 		 * then we will be relying on the frozen_data to contain
787 		 * the new value of the committed_data record after the
788 		 * transaction, so we HAVE to force the frozen_data copy
789 		 * in that case. */
790 
791 		if (jh->b_jlist != BJ_Forget || force_copy) {
792 			JBUFFER_TRACE(jh, "generate frozen data");
793 			if (!frozen_buffer) {
794 				JBUFFER_TRACE(jh, "allocate memory for buffer");
795 				jbd_unlock_bh_state(bh);
796 				frozen_buffer =
797 					jbd2_alloc(jh2bh(jh)->b_size,
798 							 GFP_NOFS);
799 				if (!frozen_buffer) {
800 					printk(KERN_EMERG
801 					       "%s: OOM for frozen_buffer\n",
802 					       __func__);
803 					JBUFFER_TRACE(jh, "oom!");
804 					error = -ENOMEM;
805 					jbd_lock_bh_state(bh);
806 					goto done;
807 				}
808 				goto repeat;
809 			}
810 			jh->b_frozen_data = frozen_buffer;
811 			frozen_buffer = NULL;
812 			need_copy = 1;
813 		}
814 		jh->b_next_transaction = transaction;
815 	}
816 
817 
818 	/*
819 	 * Finally, if the buffer is not journaled right now, we need to make
820 	 * sure it doesn't get written to disk before the caller actually
821 	 * commits the new data
822 	 */
823 	if (!jh->b_transaction) {
824 		JBUFFER_TRACE(jh, "no transaction");
825 		J_ASSERT_JH(jh, !jh->b_next_transaction);
826 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
827 		spin_lock(&journal->j_list_lock);
828 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
829 		spin_unlock(&journal->j_list_lock);
830 	}
831 
832 done:
833 	if (need_copy) {
834 		struct page *page;
835 		int offset;
836 		char *source;
837 
838 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
839 			    "Possible IO failure.\n");
840 		page = jh2bh(jh)->b_page;
841 		offset = offset_in_page(jh2bh(jh)->b_data);
842 		source = kmap_atomic(page);
843 		/* Fire data frozen trigger just before we copy the data */
844 		jbd2_buffer_frozen_trigger(jh, source + offset,
845 					   jh->b_triggers);
846 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
847 		kunmap_atomic(source);
848 
849 		/*
850 		 * Now that the frozen data is saved off, we need to store
851 		 * any matching triggers.
852 		 */
853 		jh->b_frozen_triggers = jh->b_triggers;
854 	}
855 	jbd_unlock_bh_state(bh);
856 
857 	/*
858 	 * If we are about to journal a buffer, then any revoke pending on it is
859 	 * no longer valid
860 	 */
861 	jbd2_journal_cancel_revoke(handle, jh);
862 
863 out:
864 	if (unlikely(frozen_buffer))	/* It's usually NULL */
865 		jbd2_free(frozen_buffer, bh->b_size);
866 
867 	JBUFFER_TRACE(jh, "exit");
868 	return error;
869 }
870 
871 /**
872  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
873  * @handle: transaction to add buffer modifications to
874  * @bh:     bh to be used for metadata writes
875  *
876  * Returns an error code or 0 on success.
877  *
878  * In full data journalling mode the buffer may be of type BJ_AsyncData,
879  * because we're write()ing a buffer which is also part of a shared mapping.
880  */
881 
882 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
883 {
884 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
885 	int rc;
886 
887 	/* We do not want to get caught playing with fields which the
888 	 * log thread also manipulates.  Make sure that the buffer
889 	 * completes any outstanding IO before proceeding. */
890 	rc = do_get_write_access(handle, jh, 0);
891 	jbd2_journal_put_journal_head(jh);
892 	return rc;
893 }
894 
895 
896 /*
897  * When the user wants to journal a newly created buffer_head
898  * (ie. getblk() returned a new buffer and we are going to populate it
899  * manually rather than reading off disk), then we need to keep the
900  * buffer_head locked until it has been completely filled with new
901  * data.  In this case, we should be able to make the assertion that
902  * the bh is not already part of an existing transaction.
903  *
904  * The buffer should already be locked by the caller by this point.
905  * There is no lock ranking violation: it was a newly created,
906  * unlocked buffer beforehand. */
907 
908 /**
909  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
910  * @handle: transaction to new buffer to
911  * @bh: new buffer.
912  *
913  * Call this if you create a new bh.
914  */
915 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
916 {
917 	transaction_t *transaction = handle->h_transaction;
918 	journal_t *journal = transaction->t_journal;
919 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
920 	int err;
921 
922 	jbd_debug(5, "journal_head %p\n", jh);
923 	err = -EROFS;
924 	if (is_handle_aborted(handle))
925 		goto out;
926 	err = 0;
927 
928 	JBUFFER_TRACE(jh, "entry");
929 	/*
930 	 * The buffer may already belong to this transaction due to pre-zeroing
931 	 * in the filesystem's new_block code.  It may also be on the previous,
932 	 * committing transaction's lists, but it HAS to be in Forget state in
933 	 * that case: the transaction must have deleted the buffer for it to be
934 	 * reused here.
935 	 */
936 	jbd_lock_bh_state(bh);
937 	spin_lock(&journal->j_list_lock);
938 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
939 		jh->b_transaction == NULL ||
940 		(jh->b_transaction == journal->j_committing_transaction &&
941 			  jh->b_jlist == BJ_Forget)));
942 
943 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
944 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
945 
946 	if (jh->b_transaction == NULL) {
947 		/*
948 		 * Previous jbd2_journal_forget() could have left the buffer
949 		 * with jbddirty bit set because it was being committed. When
950 		 * the commit finished, we've filed the buffer for
951 		 * checkpointing and marked it dirty. Now we are reallocating
952 		 * the buffer so the transaction freeing it must have
953 		 * committed and so it's safe to clear the dirty bit.
954 		 */
955 		clear_buffer_dirty(jh2bh(jh));
956 		/* first access by this transaction */
957 		jh->b_modified = 0;
958 
959 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
960 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
961 	} else if (jh->b_transaction == journal->j_committing_transaction) {
962 		/* first access by this transaction */
963 		jh->b_modified = 0;
964 
965 		JBUFFER_TRACE(jh, "set next transaction");
966 		jh->b_next_transaction = transaction;
967 	}
968 	spin_unlock(&journal->j_list_lock);
969 	jbd_unlock_bh_state(bh);
970 
971 	/*
972 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
973 	 * blocks which contain freed but then revoked metadata.  We need
974 	 * to cancel the revoke in case we end up freeing it yet again
975 	 * and the reallocating as data - this would cause a second revoke,
976 	 * which hits an assertion error.
977 	 */
978 	JBUFFER_TRACE(jh, "cancelling revoke");
979 	jbd2_journal_cancel_revoke(handle, jh);
980 out:
981 	jbd2_journal_put_journal_head(jh);
982 	return err;
983 }
984 
985 /**
986  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
987  *     non-rewindable consequences
988  * @handle: transaction
989  * @bh: buffer to undo
990  *
991  * Sometimes there is a need to distinguish between metadata which has
992  * been committed to disk and that which has not.  The ext3fs code uses
993  * this for freeing and allocating space, we have to make sure that we
994  * do not reuse freed space until the deallocation has been committed,
995  * since if we overwrote that space we would make the delete
996  * un-rewindable in case of a crash.
997  *
998  * To deal with that, jbd2_journal_get_undo_access requests write access to a
999  * buffer for parts of non-rewindable operations such as delete
1000  * operations on the bitmaps.  The journaling code must keep a copy of
1001  * the buffer's contents prior to the undo_access call until such time
1002  * as we know that the buffer has definitely been committed to disk.
1003  *
1004  * We never need to know which transaction the committed data is part
1005  * of, buffers touched here are guaranteed to be dirtied later and so
1006  * will be committed to a new transaction in due course, at which point
1007  * we can discard the old committed data pointer.
1008  *
1009  * Returns error number or 0 on success.
1010  */
1011 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1012 {
1013 	int err;
1014 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1015 	char *committed_data = NULL;
1016 
1017 	JBUFFER_TRACE(jh, "entry");
1018 
1019 	/*
1020 	 * Do this first --- it can drop the journal lock, so we want to
1021 	 * make sure that obtaining the committed_data is done
1022 	 * atomically wrt. completion of any outstanding commits.
1023 	 */
1024 	err = do_get_write_access(handle, jh, 1);
1025 	if (err)
1026 		goto out;
1027 
1028 repeat:
1029 	if (!jh->b_committed_data) {
1030 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1031 		if (!committed_data) {
1032 			printk(KERN_EMERG "%s: No memory for committed data\n",
1033 				__func__);
1034 			err = -ENOMEM;
1035 			goto out;
1036 		}
1037 	}
1038 
1039 	jbd_lock_bh_state(bh);
1040 	if (!jh->b_committed_data) {
1041 		/* Copy out the current buffer contents into the
1042 		 * preserved, committed copy. */
1043 		JBUFFER_TRACE(jh, "generate b_committed data");
1044 		if (!committed_data) {
1045 			jbd_unlock_bh_state(bh);
1046 			goto repeat;
1047 		}
1048 
1049 		jh->b_committed_data = committed_data;
1050 		committed_data = NULL;
1051 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1052 	}
1053 	jbd_unlock_bh_state(bh);
1054 out:
1055 	jbd2_journal_put_journal_head(jh);
1056 	if (unlikely(committed_data))
1057 		jbd2_free(committed_data, bh->b_size);
1058 	return err;
1059 }
1060 
1061 /**
1062  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1063  * @bh: buffer to trigger on
1064  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1065  *
1066  * Set any triggers on this journal_head.  This is always safe, because
1067  * triggers for a committing buffer will be saved off, and triggers for
1068  * a running transaction will match the buffer in that transaction.
1069  *
1070  * Call with NULL to clear the triggers.
1071  */
1072 void jbd2_journal_set_triggers(struct buffer_head *bh,
1073 			       struct jbd2_buffer_trigger_type *type)
1074 {
1075 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1076 
1077 	if (WARN_ON(!jh))
1078 		return;
1079 	jh->b_triggers = type;
1080 	jbd2_journal_put_journal_head(jh);
1081 }
1082 
1083 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1084 				struct jbd2_buffer_trigger_type *triggers)
1085 {
1086 	struct buffer_head *bh = jh2bh(jh);
1087 
1088 	if (!triggers || !triggers->t_frozen)
1089 		return;
1090 
1091 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1092 }
1093 
1094 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1095 			       struct jbd2_buffer_trigger_type *triggers)
1096 {
1097 	if (!triggers || !triggers->t_abort)
1098 		return;
1099 
1100 	triggers->t_abort(triggers, jh2bh(jh));
1101 }
1102 
1103 
1104 
1105 /**
1106  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1107  * @handle: transaction to add buffer to.
1108  * @bh: buffer to mark
1109  *
1110  * mark dirty metadata which needs to be journaled as part of the current
1111  * transaction.
1112  *
1113  * The buffer must have previously had jbd2_journal_get_write_access()
1114  * called so that it has a valid journal_head attached to the buffer
1115  * head.
1116  *
1117  * The buffer is placed on the transaction's metadata list and is marked
1118  * as belonging to the transaction.
1119  *
1120  * Returns error number or 0 on success.
1121  *
1122  * Special care needs to be taken if the buffer already belongs to the
1123  * current committing transaction (in which case we should have frozen
1124  * data present for that commit).  In that case, we don't relink the
1125  * buffer: that only gets done when the old transaction finally
1126  * completes its commit.
1127  */
1128 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1129 {
1130 	transaction_t *transaction = handle->h_transaction;
1131 	journal_t *journal = transaction->t_journal;
1132 	struct journal_head *jh;
1133 	int ret = 0;
1134 
1135 	if (is_handle_aborted(handle))
1136 		goto out;
1137 	jh = jbd2_journal_grab_journal_head(bh);
1138 	if (!jh) {
1139 		ret = -EUCLEAN;
1140 		goto out;
1141 	}
1142 	jbd_debug(5, "journal_head %p\n", jh);
1143 	JBUFFER_TRACE(jh, "entry");
1144 
1145 	jbd_lock_bh_state(bh);
1146 
1147 	if (jh->b_modified == 0) {
1148 		/*
1149 		 * This buffer's got modified and becoming part
1150 		 * of the transaction. This needs to be done
1151 		 * once a transaction -bzzz
1152 		 */
1153 		jh->b_modified = 1;
1154 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1155 		handle->h_buffer_credits--;
1156 	}
1157 
1158 	/*
1159 	 * fastpath, to avoid expensive locking.  If this buffer is already
1160 	 * on the running transaction's metadata list there is nothing to do.
1161 	 * Nobody can take it off again because there is a handle open.
1162 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1163 	 * result in this test being false, so we go in and take the locks.
1164 	 */
1165 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1166 		JBUFFER_TRACE(jh, "fastpath");
1167 		if (unlikely(jh->b_transaction !=
1168 			     journal->j_running_transaction)) {
1169 			printk(KERN_EMERG "JBD: %s: "
1170 			       "jh->b_transaction (%llu, %p, %u) != "
1171 			       "journal->j_running_transaction (%p, %u)",
1172 			       journal->j_devname,
1173 			       (unsigned long long) bh->b_blocknr,
1174 			       jh->b_transaction,
1175 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1176 			       journal->j_running_transaction,
1177 			       journal->j_running_transaction ?
1178 			       journal->j_running_transaction->t_tid : 0);
1179 			ret = -EINVAL;
1180 		}
1181 		goto out_unlock_bh;
1182 	}
1183 
1184 	set_buffer_jbddirty(bh);
1185 
1186 	/*
1187 	 * Metadata already on the current transaction list doesn't
1188 	 * need to be filed.  Metadata on another transaction's list must
1189 	 * be committing, and will be refiled once the commit completes:
1190 	 * leave it alone for now.
1191 	 */
1192 	if (jh->b_transaction != transaction) {
1193 		JBUFFER_TRACE(jh, "already on other transaction");
1194 		if (unlikely(jh->b_transaction !=
1195 			     journal->j_committing_transaction)) {
1196 			printk(KERN_EMERG "JBD: %s: "
1197 			       "jh->b_transaction (%llu, %p, %u) != "
1198 			       "journal->j_committing_transaction (%p, %u)",
1199 			       journal->j_devname,
1200 			       (unsigned long long) bh->b_blocknr,
1201 			       jh->b_transaction,
1202 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1203 			       journal->j_committing_transaction,
1204 			       journal->j_committing_transaction ?
1205 			       journal->j_committing_transaction->t_tid : 0);
1206 			ret = -EINVAL;
1207 		}
1208 		if (unlikely(jh->b_next_transaction != transaction)) {
1209 			printk(KERN_EMERG "JBD: %s: "
1210 			       "jh->b_next_transaction (%llu, %p, %u) != "
1211 			       "transaction (%p, %u)",
1212 			       journal->j_devname,
1213 			       (unsigned long long) bh->b_blocknr,
1214 			       jh->b_next_transaction,
1215 			       jh->b_next_transaction ?
1216 			       jh->b_next_transaction->t_tid : 0,
1217 			       transaction, transaction->t_tid);
1218 			ret = -EINVAL;
1219 		}
1220 		/* And this case is illegal: we can't reuse another
1221 		 * transaction's data buffer, ever. */
1222 		goto out_unlock_bh;
1223 	}
1224 
1225 	/* That test should have eliminated the following case: */
1226 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1227 
1228 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1229 	spin_lock(&journal->j_list_lock);
1230 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1231 	spin_unlock(&journal->j_list_lock);
1232 out_unlock_bh:
1233 	jbd_unlock_bh_state(bh);
1234 	jbd2_journal_put_journal_head(jh);
1235 out:
1236 	JBUFFER_TRACE(jh, "exit");
1237 	WARN_ON(ret);	/* All errors are bugs, so dump the stack */
1238 	return ret;
1239 }
1240 
1241 /**
1242  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1243  * @handle: transaction handle
1244  * @bh:     bh to 'forget'
1245  *
1246  * We can only do the bforget if there are no commits pending against the
1247  * buffer.  If the buffer is dirty in the current running transaction we
1248  * can safely unlink it.
1249  *
1250  * bh may not be a journalled buffer at all - it may be a non-JBD
1251  * buffer which came off the hashtable.  Check for this.
1252  *
1253  * Decrements bh->b_count by one.
1254  *
1255  * Allow this call even if the handle has aborted --- it may be part of
1256  * the caller's cleanup after an abort.
1257  */
1258 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1259 {
1260 	transaction_t *transaction = handle->h_transaction;
1261 	journal_t *journal = transaction->t_journal;
1262 	struct journal_head *jh;
1263 	int drop_reserve = 0;
1264 	int err = 0;
1265 	int was_modified = 0;
1266 
1267 	BUFFER_TRACE(bh, "entry");
1268 
1269 	jbd_lock_bh_state(bh);
1270 	spin_lock(&journal->j_list_lock);
1271 
1272 	if (!buffer_jbd(bh))
1273 		goto not_jbd;
1274 	jh = bh2jh(bh);
1275 
1276 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1277 	 * Don't do any jbd operations, and return an error. */
1278 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1279 			 "inconsistent data on disk")) {
1280 		err = -EIO;
1281 		goto not_jbd;
1282 	}
1283 
1284 	/* keep track of whether or not this transaction modified us */
1285 	was_modified = jh->b_modified;
1286 
1287 	/*
1288 	 * The buffer's going from the transaction, we must drop
1289 	 * all references -bzzz
1290 	 */
1291 	jh->b_modified = 0;
1292 
1293 	if (jh->b_transaction == handle->h_transaction) {
1294 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1295 
1296 		/* If we are forgetting a buffer which is already part
1297 		 * of this transaction, then we can just drop it from
1298 		 * the transaction immediately. */
1299 		clear_buffer_dirty(bh);
1300 		clear_buffer_jbddirty(bh);
1301 
1302 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1303 
1304 		/*
1305 		 * we only want to drop a reference if this transaction
1306 		 * modified the buffer
1307 		 */
1308 		if (was_modified)
1309 			drop_reserve = 1;
1310 
1311 		/*
1312 		 * We are no longer going to journal this buffer.
1313 		 * However, the commit of this transaction is still
1314 		 * important to the buffer: the delete that we are now
1315 		 * processing might obsolete an old log entry, so by
1316 		 * committing, we can satisfy the buffer's checkpoint.
1317 		 *
1318 		 * So, if we have a checkpoint on the buffer, we should
1319 		 * now refile the buffer on our BJ_Forget list so that
1320 		 * we know to remove the checkpoint after we commit.
1321 		 */
1322 
1323 		if (jh->b_cp_transaction) {
1324 			__jbd2_journal_temp_unlink_buffer(jh);
1325 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1326 		} else {
1327 			__jbd2_journal_unfile_buffer(jh);
1328 			if (!buffer_jbd(bh)) {
1329 				spin_unlock(&journal->j_list_lock);
1330 				jbd_unlock_bh_state(bh);
1331 				__bforget(bh);
1332 				goto drop;
1333 			}
1334 		}
1335 	} else if (jh->b_transaction) {
1336 		J_ASSERT_JH(jh, (jh->b_transaction ==
1337 				 journal->j_committing_transaction));
1338 		/* However, if the buffer is still owned by a prior
1339 		 * (committing) transaction, we can't drop it yet... */
1340 		JBUFFER_TRACE(jh, "belongs to older transaction");
1341 		/* ... but we CAN drop it from the new transaction if we
1342 		 * have also modified it since the original commit. */
1343 
1344 		if (jh->b_next_transaction) {
1345 			J_ASSERT(jh->b_next_transaction == transaction);
1346 			jh->b_next_transaction = NULL;
1347 
1348 			/*
1349 			 * only drop a reference if this transaction modified
1350 			 * the buffer
1351 			 */
1352 			if (was_modified)
1353 				drop_reserve = 1;
1354 		}
1355 	}
1356 
1357 not_jbd:
1358 	spin_unlock(&journal->j_list_lock);
1359 	jbd_unlock_bh_state(bh);
1360 	__brelse(bh);
1361 drop:
1362 	if (drop_reserve) {
1363 		/* no need to reserve log space for this block -bzzz */
1364 		handle->h_buffer_credits++;
1365 	}
1366 	return err;
1367 }
1368 
1369 /**
1370  * int jbd2_journal_stop() - complete a transaction
1371  * @handle: tranaction to complete.
1372  *
1373  * All done for a particular handle.
1374  *
1375  * There is not much action needed here.  We just return any remaining
1376  * buffer credits to the transaction and remove the handle.  The only
1377  * complication is that we need to start a commit operation if the
1378  * filesystem is marked for synchronous update.
1379  *
1380  * jbd2_journal_stop itself will not usually return an error, but it may
1381  * do so in unusual circumstances.  In particular, expect it to
1382  * return -EIO if a jbd2_journal_abort has been executed since the
1383  * transaction began.
1384  */
1385 int jbd2_journal_stop(handle_t *handle)
1386 {
1387 	transaction_t *transaction = handle->h_transaction;
1388 	journal_t *journal = transaction->t_journal;
1389 	int err, wait_for_commit = 0;
1390 	tid_t tid;
1391 	pid_t pid;
1392 
1393 	J_ASSERT(journal_current_handle() == handle);
1394 
1395 	if (is_handle_aborted(handle))
1396 		err = -EIO;
1397 	else {
1398 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1399 		err = 0;
1400 	}
1401 
1402 	if (--handle->h_ref > 0) {
1403 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1404 			  handle->h_ref);
1405 		return err;
1406 	}
1407 
1408 	jbd_debug(4, "Handle %p going down\n", handle);
1409 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1410 				handle->h_transaction->t_tid,
1411 				handle->h_type, handle->h_line_no,
1412 				jiffies - handle->h_start_jiffies,
1413 				handle->h_sync, handle->h_requested_credits,
1414 				(handle->h_requested_credits -
1415 				 handle->h_buffer_credits));
1416 
1417 	/*
1418 	 * Implement synchronous transaction batching.  If the handle
1419 	 * was synchronous, don't force a commit immediately.  Let's
1420 	 * yield and let another thread piggyback onto this
1421 	 * transaction.  Keep doing that while new threads continue to
1422 	 * arrive.  It doesn't cost much - we're about to run a commit
1423 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1424 	 * operations by 30x or more...
1425 	 *
1426 	 * We try and optimize the sleep time against what the
1427 	 * underlying disk can do, instead of having a static sleep
1428 	 * time.  This is useful for the case where our storage is so
1429 	 * fast that it is more optimal to go ahead and force a flush
1430 	 * and wait for the transaction to be committed than it is to
1431 	 * wait for an arbitrary amount of time for new writers to
1432 	 * join the transaction.  We achieve this by measuring how
1433 	 * long it takes to commit a transaction, and compare it with
1434 	 * how long this transaction has been running, and if run time
1435 	 * < commit time then we sleep for the delta and commit.  This
1436 	 * greatly helps super fast disks that would see slowdowns as
1437 	 * more threads started doing fsyncs.
1438 	 *
1439 	 * But don't do this if this process was the most recent one
1440 	 * to perform a synchronous write.  We do this to detect the
1441 	 * case where a single process is doing a stream of sync
1442 	 * writes.  No point in waiting for joiners in that case.
1443 	 */
1444 	pid = current->pid;
1445 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1446 		u64 commit_time, trans_time;
1447 
1448 		journal->j_last_sync_writer = pid;
1449 
1450 		read_lock(&journal->j_state_lock);
1451 		commit_time = journal->j_average_commit_time;
1452 		read_unlock(&journal->j_state_lock);
1453 
1454 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1455 						   transaction->t_start_time));
1456 
1457 		commit_time = max_t(u64, commit_time,
1458 				    1000*journal->j_min_batch_time);
1459 		commit_time = min_t(u64, commit_time,
1460 				    1000*journal->j_max_batch_time);
1461 
1462 		if (trans_time < commit_time) {
1463 			ktime_t expires = ktime_add_ns(ktime_get(),
1464 						       commit_time);
1465 			set_current_state(TASK_UNINTERRUPTIBLE);
1466 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1467 		}
1468 	}
1469 
1470 	if (handle->h_sync)
1471 		transaction->t_synchronous_commit = 1;
1472 	current->journal_info = NULL;
1473 	atomic_sub(handle->h_buffer_credits,
1474 		   &transaction->t_outstanding_credits);
1475 
1476 	/*
1477 	 * If the handle is marked SYNC, we need to set another commit
1478 	 * going!  We also want to force a commit if the current
1479 	 * transaction is occupying too much of the log, or if the
1480 	 * transaction is too old now.
1481 	 */
1482 	if (handle->h_sync ||
1483 	    (atomic_read(&transaction->t_outstanding_credits) >
1484 	     journal->j_max_transaction_buffers) ||
1485 	    time_after_eq(jiffies, transaction->t_expires)) {
1486 		/* Do this even for aborted journals: an abort still
1487 		 * completes the commit thread, it just doesn't write
1488 		 * anything to disk. */
1489 
1490 		jbd_debug(2, "transaction too old, requesting commit for "
1491 					"handle %p\n", handle);
1492 		/* This is non-blocking */
1493 		jbd2_log_start_commit(journal, transaction->t_tid);
1494 
1495 		/*
1496 		 * Special case: JBD2_SYNC synchronous updates require us
1497 		 * to wait for the commit to complete.
1498 		 */
1499 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1500 			wait_for_commit = 1;
1501 	}
1502 
1503 	/*
1504 	 * Once we drop t_updates, if it goes to zero the transaction
1505 	 * could start committing on us and eventually disappear.  So
1506 	 * once we do this, we must not dereference transaction
1507 	 * pointer again.
1508 	 */
1509 	tid = transaction->t_tid;
1510 	if (atomic_dec_and_test(&transaction->t_updates)) {
1511 		wake_up(&journal->j_wait_updates);
1512 		if (journal->j_barrier_count)
1513 			wake_up(&journal->j_wait_transaction_locked);
1514 	}
1515 
1516 	if (wait_for_commit)
1517 		err = jbd2_log_wait_commit(journal, tid);
1518 
1519 	lock_map_release(&handle->h_lockdep_map);
1520 
1521 	jbd2_free_handle(handle);
1522 	return err;
1523 }
1524 
1525 /**
1526  * int jbd2_journal_force_commit() - force any uncommitted transactions
1527  * @journal: journal to force
1528  *
1529  * For synchronous operations: force any uncommitted transactions
1530  * to disk.  May seem kludgy, but it reuses all the handle batching
1531  * code in a very simple manner.
1532  */
1533 int jbd2_journal_force_commit(journal_t *journal)
1534 {
1535 	handle_t *handle;
1536 	int ret;
1537 
1538 	handle = jbd2_journal_start(journal, 1);
1539 	if (IS_ERR(handle)) {
1540 		ret = PTR_ERR(handle);
1541 	} else {
1542 		handle->h_sync = 1;
1543 		ret = jbd2_journal_stop(handle);
1544 	}
1545 	return ret;
1546 }
1547 
1548 /*
1549  *
1550  * List management code snippets: various functions for manipulating the
1551  * transaction buffer lists.
1552  *
1553  */
1554 
1555 /*
1556  * Append a buffer to a transaction list, given the transaction's list head
1557  * pointer.
1558  *
1559  * j_list_lock is held.
1560  *
1561  * jbd_lock_bh_state(jh2bh(jh)) is held.
1562  */
1563 
1564 static inline void
1565 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1566 {
1567 	if (!*list) {
1568 		jh->b_tnext = jh->b_tprev = jh;
1569 		*list = jh;
1570 	} else {
1571 		/* Insert at the tail of the list to preserve order */
1572 		struct journal_head *first = *list, *last = first->b_tprev;
1573 		jh->b_tprev = last;
1574 		jh->b_tnext = first;
1575 		last->b_tnext = first->b_tprev = jh;
1576 	}
1577 }
1578 
1579 /*
1580  * Remove a buffer from a transaction list, given the transaction's list
1581  * head pointer.
1582  *
1583  * Called with j_list_lock held, and the journal may not be locked.
1584  *
1585  * jbd_lock_bh_state(jh2bh(jh)) is held.
1586  */
1587 
1588 static inline void
1589 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1590 {
1591 	if (*list == jh) {
1592 		*list = jh->b_tnext;
1593 		if (*list == jh)
1594 			*list = NULL;
1595 	}
1596 	jh->b_tprev->b_tnext = jh->b_tnext;
1597 	jh->b_tnext->b_tprev = jh->b_tprev;
1598 }
1599 
1600 /*
1601  * Remove a buffer from the appropriate transaction list.
1602  *
1603  * Note that this function can *change* the value of
1604  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1605  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1606  * of these pointers, it could go bad.  Generally the caller needs to re-read
1607  * the pointer from the transaction_t.
1608  *
1609  * Called under j_list_lock.
1610  */
1611 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1612 {
1613 	struct journal_head **list = NULL;
1614 	transaction_t *transaction;
1615 	struct buffer_head *bh = jh2bh(jh);
1616 
1617 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1618 	transaction = jh->b_transaction;
1619 	if (transaction)
1620 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1621 
1622 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1623 	if (jh->b_jlist != BJ_None)
1624 		J_ASSERT_JH(jh, transaction != NULL);
1625 
1626 	switch (jh->b_jlist) {
1627 	case BJ_None:
1628 		return;
1629 	case BJ_Metadata:
1630 		transaction->t_nr_buffers--;
1631 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1632 		list = &transaction->t_buffers;
1633 		break;
1634 	case BJ_Forget:
1635 		list = &transaction->t_forget;
1636 		break;
1637 	case BJ_IO:
1638 		list = &transaction->t_iobuf_list;
1639 		break;
1640 	case BJ_Shadow:
1641 		list = &transaction->t_shadow_list;
1642 		break;
1643 	case BJ_LogCtl:
1644 		list = &transaction->t_log_list;
1645 		break;
1646 	case BJ_Reserved:
1647 		list = &transaction->t_reserved_list;
1648 		break;
1649 	}
1650 
1651 	__blist_del_buffer(list, jh);
1652 	jh->b_jlist = BJ_None;
1653 	if (test_clear_buffer_jbddirty(bh))
1654 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1655 }
1656 
1657 /*
1658  * Remove buffer from all transactions.
1659  *
1660  * Called with bh_state lock and j_list_lock
1661  *
1662  * jh and bh may be already freed when this function returns.
1663  */
1664 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1665 {
1666 	__jbd2_journal_temp_unlink_buffer(jh);
1667 	jh->b_transaction = NULL;
1668 	jbd2_journal_put_journal_head(jh);
1669 }
1670 
1671 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1672 {
1673 	struct buffer_head *bh = jh2bh(jh);
1674 
1675 	/* Get reference so that buffer cannot be freed before we unlock it */
1676 	get_bh(bh);
1677 	jbd_lock_bh_state(bh);
1678 	spin_lock(&journal->j_list_lock);
1679 	__jbd2_journal_unfile_buffer(jh);
1680 	spin_unlock(&journal->j_list_lock);
1681 	jbd_unlock_bh_state(bh);
1682 	__brelse(bh);
1683 }
1684 
1685 /*
1686  * Called from jbd2_journal_try_to_free_buffers().
1687  *
1688  * Called under jbd_lock_bh_state(bh)
1689  */
1690 static void
1691 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1692 {
1693 	struct journal_head *jh;
1694 
1695 	jh = bh2jh(bh);
1696 
1697 	if (buffer_locked(bh) || buffer_dirty(bh))
1698 		goto out;
1699 
1700 	if (jh->b_next_transaction != NULL)
1701 		goto out;
1702 
1703 	spin_lock(&journal->j_list_lock);
1704 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1705 		/* written-back checkpointed metadata buffer */
1706 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1707 		__jbd2_journal_remove_checkpoint(jh);
1708 	}
1709 	spin_unlock(&journal->j_list_lock);
1710 out:
1711 	return;
1712 }
1713 
1714 /**
1715  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1716  * @journal: journal for operation
1717  * @page: to try and free
1718  * @gfp_mask: we use the mask to detect how hard should we try to release
1719  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1720  * release the buffers.
1721  *
1722  *
1723  * For all the buffers on this page,
1724  * if they are fully written out ordered data, move them onto BUF_CLEAN
1725  * so try_to_free_buffers() can reap them.
1726  *
1727  * This function returns non-zero if we wish try_to_free_buffers()
1728  * to be called. We do this if the page is releasable by try_to_free_buffers().
1729  * We also do it if the page has locked or dirty buffers and the caller wants
1730  * us to perform sync or async writeout.
1731  *
1732  * This complicates JBD locking somewhat.  We aren't protected by the
1733  * BKL here.  We wish to remove the buffer from its committing or
1734  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1735  *
1736  * This may *change* the value of transaction_t->t_datalist, so anyone
1737  * who looks at t_datalist needs to lock against this function.
1738  *
1739  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1740  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1741  * will come out of the lock with the buffer dirty, which makes it
1742  * ineligible for release here.
1743  *
1744  * Who else is affected by this?  hmm...  Really the only contender
1745  * is do_get_write_access() - it could be looking at the buffer while
1746  * journal_try_to_free_buffer() is changing its state.  But that
1747  * cannot happen because we never reallocate freed data as metadata
1748  * while the data is part of a transaction.  Yes?
1749  *
1750  * Return 0 on failure, 1 on success
1751  */
1752 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1753 				struct page *page, gfp_t gfp_mask)
1754 {
1755 	struct buffer_head *head;
1756 	struct buffer_head *bh;
1757 	int ret = 0;
1758 
1759 	J_ASSERT(PageLocked(page));
1760 
1761 	head = page_buffers(page);
1762 	bh = head;
1763 	do {
1764 		struct journal_head *jh;
1765 
1766 		/*
1767 		 * We take our own ref against the journal_head here to avoid
1768 		 * having to add tons of locking around each instance of
1769 		 * jbd2_journal_put_journal_head().
1770 		 */
1771 		jh = jbd2_journal_grab_journal_head(bh);
1772 		if (!jh)
1773 			continue;
1774 
1775 		jbd_lock_bh_state(bh);
1776 		__journal_try_to_free_buffer(journal, bh);
1777 		jbd2_journal_put_journal_head(jh);
1778 		jbd_unlock_bh_state(bh);
1779 		if (buffer_jbd(bh))
1780 			goto busy;
1781 	} while ((bh = bh->b_this_page) != head);
1782 
1783 	ret = try_to_free_buffers(page);
1784 
1785 busy:
1786 	return ret;
1787 }
1788 
1789 /*
1790  * This buffer is no longer needed.  If it is on an older transaction's
1791  * checkpoint list we need to record it on this transaction's forget list
1792  * to pin this buffer (and hence its checkpointing transaction) down until
1793  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1794  * release it.
1795  * Returns non-zero if JBD no longer has an interest in the buffer.
1796  *
1797  * Called under j_list_lock.
1798  *
1799  * Called under jbd_lock_bh_state(bh).
1800  */
1801 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1802 {
1803 	int may_free = 1;
1804 	struct buffer_head *bh = jh2bh(jh);
1805 
1806 	if (jh->b_cp_transaction) {
1807 		JBUFFER_TRACE(jh, "on running+cp transaction");
1808 		__jbd2_journal_temp_unlink_buffer(jh);
1809 		/*
1810 		 * We don't want to write the buffer anymore, clear the
1811 		 * bit so that we don't confuse checks in
1812 		 * __journal_file_buffer
1813 		 */
1814 		clear_buffer_dirty(bh);
1815 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1816 		may_free = 0;
1817 	} else {
1818 		JBUFFER_TRACE(jh, "on running transaction");
1819 		__jbd2_journal_unfile_buffer(jh);
1820 	}
1821 	return may_free;
1822 }
1823 
1824 /*
1825  * jbd2_journal_invalidatepage
1826  *
1827  * This code is tricky.  It has a number of cases to deal with.
1828  *
1829  * There are two invariants which this code relies on:
1830  *
1831  * i_size must be updated on disk before we start calling invalidatepage on the
1832  * data.
1833  *
1834  *  This is done in ext3 by defining an ext3_setattr method which
1835  *  updates i_size before truncate gets going.  By maintaining this
1836  *  invariant, we can be sure that it is safe to throw away any buffers
1837  *  attached to the current transaction: once the transaction commits,
1838  *  we know that the data will not be needed.
1839  *
1840  *  Note however that we can *not* throw away data belonging to the
1841  *  previous, committing transaction!
1842  *
1843  * Any disk blocks which *are* part of the previous, committing
1844  * transaction (and which therefore cannot be discarded immediately) are
1845  * not going to be reused in the new running transaction
1846  *
1847  *  The bitmap committed_data images guarantee this: any block which is
1848  *  allocated in one transaction and removed in the next will be marked
1849  *  as in-use in the committed_data bitmap, so cannot be reused until
1850  *  the next transaction to delete the block commits.  This means that
1851  *  leaving committing buffers dirty is quite safe: the disk blocks
1852  *  cannot be reallocated to a different file and so buffer aliasing is
1853  *  not possible.
1854  *
1855  *
1856  * The above applies mainly to ordered data mode.  In writeback mode we
1857  * don't make guarantees about the order in which data hits disk --- in
1858  * particular we don't guarantee that new dirty data is flushed before
1859  * transaction commit --- so it is always safe just to discard data
1860  * immediately in that mode.  --sct
1861  */
1862 
1863 /*
1864  * The journal_unmap_buffer helper function returns zero if the buffer
1865  * concerned remains pinned as an anonymous buffer belonging to an older
1866  * transaction.
1867  *
1868  * We're outside-transaction here.  Either or both of j_running_transaction
1869  * and j_committing_transaction may be NULL.
1870  */
1871 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1872 				int partial_page)
1873 {
1874 	transaction_t *transaction;
1875 	struct journal_head *jh;
1876 	int may_free = 1;
1877 
1878 	BUFFER_TRACE(bh, "entry");
1879 
1880 	/*
1881 	 * It is safe to proceed here without the j_list_lock because the
1882 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1883 	 * holding the page lock. --sct
1884 	 */
1885 
1886 	if (!buffer_jbd(bh))
1887 		goto zap_buffer_unlocked;
1888 
1889 	/* OK, we have data buffer in journaled mode */
1890 	write_lock(&journal->j_state_lock);
1891 	jbd_lock_bh_state(bh);
1892 	spin_lock(&journal->j_list_lock);
1893 
1894 	jh = jbd2_journal_grab_journal_head(bh);
1895 	if (!jh)
1896 		goto zap_buffer_no_jh;
1897 
1898 	/*
1899 	 * We cannot remove the buffer from checkpoint lists until the
1900 	 * transaction adding inode to orphan list (let's call it T)
1901 	 * is committed.  Otherwise if the transaction changing the
1902 	 * buffer would be cleaned from the journal before T is
1903 	 * committed, a crash will cause that the correct contents of
1904 	 * the buffer will be lost.  On the other hand we have to
1905 	 * clear the buffer dirty bit at latest at the moment when the
1906 	 * transaction marking the buffer as freed in the filesystem
1907 	 * structures is committed because from that moment on the
1908 	 * block can be reallocated and used by a different page.
1909 	 * Since the block hasn't been freed yet but the inode has
1910 	 * already been added to orphan list, it is safe for us to add
1911 	 * the buffer to BJ_Forget list of the newest transaction.
1912 	 *
1913 	 * Also we have to clear buffer_mapped flag of a truncated buffer
1914 	 * because the buffer_head may be attached to the page straddling
1915 	 * i_size (can happen only when blocksize < pagesize) and thus the
1916 	 * buffer_head can be reused when the file is extended again. So we end
1917 	 * up keeping around invalidated buffers attached to transactions'
1918 	 * BJ_Forget list just to stop checkpointing code from cleaning up
1919 	 * the transaction this buffer was modified in.
1920 	 */
1921 	transaction = jh->b_transaction;
1922 	if (transaction == NULL) {
1923 		/* First case: not on any transaction.  If it
1924 		 * has no checkpoint link, then we can zap it:
1925 		 * it's a writeback-mode buffer so we don't care
1926 		 * if it hits disk safely. */
1927 		if (!jh->b_cp_transaction) {
1928 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1929 			goto zap_buffer;
1930 		}
1931 
1932 		if (!buffer_dirty(bh)) {
1933 			/* bdflush has written it.  We can drop it now */
1934 			goto zap_buffer;
1935 		}
1936 
1937 		/* OK, it must be in the journal but still not
1938 		 * written fully to disk: it's metadata or
1939 		 * journaled data... */
1940 
1941 		if (journal->j_running_transaction) {
1942 			/* ... and once the current transaction has
1943 			 * committed, the buffer won't be needed any
1944 			 * longer. */
1945 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1946 			may_free = __dispose_buffer(jh,
1947 					journal->j_running_transaction);
1948 			goto zap_buffer;
1949 		} else {
1950 			/* There is no currently-running transaction. So the
1951 			 * orphan record which we wrote for this file must have
1952 			 * passed into commit.  We must attach this buffer to
1953 			 * the committing transaction, if it exists. */
1954 			if (journal->j_committing_transaction) {
1955 				JBUFFER_TRACE(jh, "give to committing trans");
1956 				may_free = __dispose_buffer(jh,
1957 					journal->j_committing_transaction);
1958 				goto zap_buffer;
1959 			} else {
1960 				/* The orphan record's transaction has
1961 				 * committed.  We can cleanse this buffer */
1962 				clear_buffer_jbddirty(bh);
1963 				goto zap_buffer;
1964 			}
1965 		}
1966 	} else if (transaction == journal->j_committing_transaction) {
1967 		JBUFFER_TRACE(jh, "on committing transaction");
1968 		/*
1969 		 * The buffer is committing, we simply cannot touch
1970 		 * it. If the page is straddling i_size we have to wait
1971 		 * for commit and try again.
1972 		 */
1973 		if (partial_page) {
1974 			jbd2_journal_put_journal_head(jh);
1975 			spin_unlock(&journal->j_list_lock);
1976 			jbd_unlock_bh_state(bh);
1977 			write_unlock(&journal->j_state_lock);
1978 			return -EBUSY;
1979 		}
1980 		/*
1981 		 * OK, buffer won't be reachable after truncate. We just set
1982 		 * j_next_transaction to the running transaction (if there is
1983 		 * one) and mark buffer as freed so that commit code knows it
1984 		 * should clear dirty bits when it is done with the buffer.
1985 		 */
1986 		set_buffer_freed(bh);
1987 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1988 			jh->b_next_transaction = journal->j_running_transaction;
1989 		jbd2_journal_put_journal_head(jh);
1990 		spin_unlock(&journal->j_list_lock);
1991 		jbd_unlock_bh_state(bh);
1992 		write_unlock(&journal->j_state_lock);
1993 		return 0;
1994 	} else {
1995 		/* Good, the buffer belongs to the running transaction.
1996 		 * We are writing our own transaction's data, not any
1997 		 * previous one's, so it is safe to throw it away
1998 		 * (remember that we expect the filesystem to have set
1999 		 * i_size already for this truncate so recovery will not
2000 		 * expose the disk blocks we are discarding here.) */
2001 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2002 		JBUFFER_TRACE(jh, "on running transaction");
2003 		may_free = __dispose_buffer(jh, transaction);
2004 	}
2005 
2006 zap_buffer:
2007 	/*
2008 	 * This is tricky. Although the buffer is truncated, it may be reused
2009 	 * if blocksize < pagesize and it is attached to the page straddling
2010 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2011 	 * running transaction, journal_get_write_access() won't clear
2012 	 * b_modified and credit accounting gets confused. So clear b_modified
2013 	 * here.
2014 	 */
2015 	jh->b_modified = 0;
2016 	jbd2_journal_put_journal_head(jh);
2017 zap_buffer_no_jh:
2018 	spin_unlock(&journal->j_list_lock);
2019 	jbd_unlock_bh_state(bh);
2020 	write_unlock(&journal->j_state_lock);
2021 zap_buffer_unlocked:
2022 	clear_buffer_dirty(bh);
2023 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2024 	clear_buffer_mapped(bh);
2025 	clear_buffer_req(bh);
2026 	clear_buffer_new(bh);
2027 	clear_buffer_delay(bh);
2028 	clear_buffer_unwritten(bh);
2029 	bh->b_bdev = NULL;
2030 	return may_free;
2031 }
2032 
2033 /**
2034  * void jbd2_journal_invalidatepage()
2035  * @journal: journal to use for flush...
2036  * @page:    page to flush
2037  * @offset:  length of page to invalidate.
2038  *
2039  * Reap page buffers containing data after offset in page. Can return -EBUSY
2040  * if buffers are part of the committing transaction and the page is straddling
2041  * i_size. Caller then has to wait for current commit and try again.
2042  */
2043 int jbd2_journal_invalidatepage(journal_t *journal,
2044 				struct page *page,
2045 				unsigned long offset)
2046 {
2047 	struct buffer_head *head, *bh, *next;
2048 	unsigned int curr_off = 0;
2049 	int may_free = 1;
2050 	int ret = 0;
2051 
2052 	if (!PageLocked(page))
2053 		BUG();
2054 	if (!page_has_buffers(page))
2055 		return 0;
2056 
2057 	/* We will potentially be playing with lists other than just the
2058 	 * data lists (especially for journaled data mode), so be
2059 	 * cautious in our locking. */
2060 
2061 	head = bh = page_buffers(page);
2062 	do {
2063 		unsigned int next_off = curr_off + bh->b_size;
2064 		next = bh->b_this_page;
2065 
2066 		if (offset <= curr_off) {
2067 			/* This block is wholly outside the truncation point */
2068 			lock_buffer(bh);
2069 			ret = journal_unmap_buffer(journal, bh, offset > 0);
2070 			unlock_buffer(bh);
2071 			if (ret < 0)
2072 				return ret;
2073 			may_free &= ret;
2074 		}
2075 		curr_off = next_off;
2076 		bh = next;
2077 
2078 	} while (bh != head);
2079 
2080 	if (!offset) {
2081 		if (may_free && try_to_free_buffers(page))
2082 			J_ASSERT(!page_has_buffers(page));
2083 	}
2084 	return 0;
2085 }
2086 
2087 /*
2088  * File a buffer on the given transaction list.
2089  */
2090 void __jbd2_journal_file_buffer(struct journal_head *jh,
2091 			transaction_t *transaction, int jlist)
2092 {
2093 	struct journal_head **list = NULL;
2094 	int was_dirty = 0;
2095 	struct buffer_head *bh = jh2bh(jh);
2096 
2097 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2098 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2099 
2100 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2101 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2102 				jh->b_transaction == NULL);
2103 
2104 	if (jh->b_transaction && jh->b_jlist == jlist)
2105 		return;
2106 
2107 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2108 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2109 		/*
2110 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2111 		 * instead of buffer_dirty. We should not see a dirty bit set
2112 		 * here because we clear it in do_get_write_access but e.g.
2113 		 * tune2fs can modify the sb and set the dirty bit at any time
2114 		 * so we try to gracefully handle that.
2115 		 */
2116 		if (buffer_dirty(bh))
2117 			warn_dirty_buffer(bh);
2118 		if (test_clear_buffer_dirty(bh) ||
2119 		    test_clear_buffer_jbddirty(bh))
2120 			was_dirty = 1;
2121 	}
2122 
2123 	if (jh->b_transaction)
2124 		__jbd2_journal_temp_unlink_buffer(jh);
2125 	else
2126 		jbd2_journal_grab_journal_head(bh);
2127 	jh->b_transaction = transaction;
2128 
2129 	switch (jlist) {
2130 	case BJ_None:
2131 		J_ASSERT_JH(jh, !jh->b_committed_data);
2132 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2133 		return;
2134 	case BJ_Metadata:
2135 		transaction->t_nr_buffers++;
2136 		list = &transaction->t_buffers;
2137 		break;
2138 	case BJ_Forget:
2139 		list = &transaction->t_forget;
2140 		break;
2141 	case BJ_IO:
2142 		list = &transaction->t_iobuf_list;
2143 		break;
2144 	case BJ_Shadow:
2145 		list = &transaction->t_shadow_list;
2146 		break;
2147 	case BJ_LogCtl:
2148 		list = &transaction->t_log_list;
2149 		break;
2150 	case BJ_Reserved:
2151 		list = &transaction->t_reserved_list;
2152 		break;
2153 	}
2154 
2155 	__blist_add_buffer(list, jh);
2156 	jh->b_jlist = jlist;
2157 
2158 	if (was_dirty)
2159 		set_buffer_jbddirty(bh);
2160 }
2161 
2162 void jbd2_journal_file_buffer(struct journal_head *jh,
2163 				transaction_t *transaction, int jlist)
2164 {
2165 	jbd_lock_bh_state(jh2bh(jh));
2166 	spin_lock(&transaction->t_journal->j_list_lock);
2167 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2168 	spin_unlock(&transaction->t_journal->j_list_lock);
2169 	jbd_unlock_bh_state(jh2bh(jh));
2170 }
2171 
2172 /*
2173  * Remove a buffer from its current buffer list in preparation for
2174  * dropping it from its current transaction entirely.  If the buffer has
2175  * already started to be used by a subsequent transaction, refile the
2176  * buffer on that transaction's metadata list.
2177  *
2178  * Called under j_list_lock
2179  * Called under jbd_lock_bh_state(jh2bh(jh))
2180  *
2181  * jh and bh may be already free when this function returns
2182  */
2183 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2184 {
2185 	int was_dirty, jlist;
2186 	struct buffer_head *bh = jh2bh(jh);
2187 
2188 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2189 	if (jh->b_transaction)
2190 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2191 
2192 	/* If the buffer is now unused, just drop it. */
2193 	if (jh->b_next_transaction == NULL) {
2194 		__jbd2_journal_unfile_buffer(jh);
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * It has been modified by a later transaction: add it to the new
2200 	 * transaction's metadata list.
2201 	 */
2202 
2203 	was_dirty = test_clear_buffer_jbddirty(bh);
2204 	__jbd2_journal_temp_unlink_buffer(jh);
2205 	/*
2206 	 * We set b_transaction here because b_next_transaction will inherit
2207 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2208 	 * take a new one.
2209 	 */
2210 	jh->b_transaction = jh->b_next_transaction;
2211 	jh->b_next_transaction = NULL;
2212 	if (buffer_freed(bh))
2213 		jlist = BJ_Forget;
2214 	else if (jh->b_modified)
2215 		jlist = BJ_Metadata;
2216 	else
2217 		jlist = BJ_Reserved;
2218 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2219 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2220 
2221 	if (was_dirty)
2222 		set_buffer_jbddirty(bh);
2223 }
2224 
2225 /*
2226  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2227  * bh reference so that we can safely unlock bh.
2228  *
2229  * The jh and bh may be freed by this call.
2230  */
2231 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2232 {
2233 	struct buffer_head *bh = jh2bh(jh);
2234 
2235 	/* Get reference so that buffer cannot be freed before we unlock it */
2236 	get_bh(bh);
2237 	jbd_lock_bh_state(bh);
2238 	spin_lock(&journal->j_list_lock);
2239 	__jbd2_journal_refile_buffer(jh);
2240 	jbd_unlock_bh_state(bh);
2241 	spin_unlock(&journal->j_list_lock);
2242 	__brelse(bh);
2243 }
2244 
2245 /*
2246  * File inode in the inode list of the handle's transaction
2247  */
2248 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2249 {
2250 	transaction_t *transaction = handle->h_transaction;
2251 	journal_t *journal = transaction->t_journal;
2252 
2253 	if (is_handle_aborted(handle))
2254 		return -EIO;
2255 
2256 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2257 			transaction->t_tid);
2258 
2259 	/*
2260 	 * First check whether inode isn't already on the transaction's
2261 	 * lists without taking the lock. Note that this check is safe
2262 	 * without the lock as we cannot race with somebody removing inode
2263 	 * from the transaction. The reason is that we remove inode from the
2264 	 * transaction only in journal_release_jbd_inode() and when we commit
2265 	 * the transaction. We are guarded from the first case by holding
2266 	 * a reference to the inode. We are safe against the second case
2267 	 * because if jinode->i_transaction == transaction, commit code
2268 	 * cannot touch the transaction because we hold reference to it,
2269 	 * and if jinode->i_next_transaction == transaction, commit code
2270 	 * will only file the inode where we want it.
2271 	 */
2272 	if (jinode->i_transaction == transaction ||
2273 	    jinode->i_next_transaction == transaction)
2274 		return 0;
2275 
2276 	spin_lock(&journal->j_list_lock);
2277 
2278 	if (jinode->i_transaction == transaction ||
2279 	    jinode->i_next_transaction == transaction)
2280 		goto done;
2281 
2282 	/*
2283 	 * We only ever set this variable to 1 so the test is safe. Since
2284 	 * t_need_data_flush is likely to be set, we do the test to save some
2285 	 * cacheline bouncing
2286 	 */
2287 	if (!transaction->t_need_data_flush)
2288 		transaction->t_need_data_flush = 1;
2289 	/* On some different transaction's list - should be
2290 	 * the committing one */
2291 	if (jinode->i_transaction) {
2292 		J_ASSERT(jinode->i_next_transaction == NULL);
2293 		J_ASSERT(jinode->i_transaction ==
2294 					journal->j_committing_transaction);
2295 		jinode->i_next_transaction = transaction;
2296 		goto done;
2297 	}
2298 	/* Not on any transaction list... */
2299 	J_ASSERT(!jinode->i_next_transaction);
2300 	jinode->i_transaction = transaction;
2301 	list_add(&jinode->i_list, &transaction->t_inode_list);
2302 done:
2303 	spin_unlock(&journal->j_list_lock);
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * File truncate and transaction commit interact with each other in a
2310  * non-trivial way.  If a transaction writing data block A is
2311  * committing, we cannot discard the data by truncate until we have
2312  * written them.  Otherwise if we crashed after the transaction with
2313  * write has committed but before the transaction with truncate has
2314  * committed, we could see stale data in block A.  This function is a
2315  * helper to solve this problem.  It starts writeout of the truncated
2316  * part in case it is in the committing transaction.
2317  *
2318  * Filesystem code must call this function when inode is journaled in
2319  * ordered mode before truncation happens and after the inode has been
2320  * placed on orphan list with the new inode size. The second condition
2321  * avoids the race that someone writes new data and we start
2322  * committing the transaction after this function has been called but
2323  * before a transaction for truncate is started (and furthermore it
2324  * allows us to optimize the case where the addition to orphan list
2325  * happens in the same transaction as write --- we don't have to write
2326  * any data in such case).
2327  */
2328 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2329 					struct jbd2_inode *jinode,
2330 					loff_t new_size)
2331 {
2332 	transaction_t *inode_trans, *commit_trans;
2333 	int ret = 0;
2334 
2335 	/* This is a quick check to avoid locking if not necessary */
2336 	if (!jinode->i_transaction)
2337 		goto out;
2338 	/* Locks are here just to force reading of recent values, it is
2339 	 * enough that the transaction was not committing before we started
2340 	 * a transaction adding the inode to orphan list */
2341 	read_lock(&journal->j_state_lock);
2342 	commit_trans = journal->j_committing_transaction;
2343 	read_unlock(&journal->j_state_lock);
2344 	spin_lock(&journal->j_list_lock);
2345 	inode_trans = jinode->i_transaction;
2346 	spin_unlock(&journal->j_list_lock);
2347 	if (inode_trans == commit_trans) {
2348 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2349 			new_size, LLONG_MAX);
2350 		if (ret)
2351 			jbd2_journal_abort(journal, ret);
2352 	}
2353 out:
2354 	return ret;
2355 }
2356