1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 INIT_LIST_HEAD(&transaction->t_private_list); 96 97 /* Set up the commit timer for the new transaction. */ 98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 99 add_timer(&journal->j_commit_timer); 100 101 J_ASSERT(journal->j_running_transaction == NULL); 102 journal->j_running_transaction = transaction; 103 transaction->t_max_wait = 0; 104 transaction->t_start = jiffies; 105 transaction->t_requested = 0; 106 107 return transaction; 108 } 109 110 /* 111 * Handle management. 112 * 113 * A handle_t is an object which represents a single atomic update to a 114 * filesystem, and which tracks all of the modifications which form part 115 * of that one update. 116 */ 117 118 /* 119 * Update transaction's maximum wait time, if debugging is enabled. 120 * 121 * In order for t_max_wait to be reliable, it must be protected by a 122 * lock. But doing so will mean that start_this_handle() can not be 123 * run in parallel on SMP systems, which limits our scalability. So 124 * unless debugging is enabled, we no longer update t_max_wait, which 125 * means that maximum wait time reported by the jbd2_run_stats 126 * tracepoint will always be zero. 127 */ 128 static inline void update_t_max_wait(transaction_t *transaction, 129 unsigned long ts) 130 { 131 #ifdef CONFIG_JBD2_DEBUG 132 if (jbd2_journal_enable_debug && 133 time_after(transaction->t_start, ts)) { 134 ts = jbd2_time_diff(ts, transaction->t_start); 135 spin_lock(&transaction->t_handle_lock); 136 if (ts > transaction->t_max_wait) 137 transaction->t_max_wait = ts; 138 spin_unlock(&transaction->t_handle_lock); 139 } 140 #endif 141 } 142 143 /* 144 * start_this_handle: Given a handle, deal with any locking or stalling 145 * needed to make sure that there is enough journal space for the handle 146 * to begin. Attach the handle to a transaction and set up the 147 * transaction's buffer credits. 148 */ 149 150 static int start_this_handle(journal_t *journal, handle_t *handle, 151 gfp_t gfp_mask) 152 { 153 transaction_t *transaction, *new_transaction = NULL; 154 tid_t tid; 155 int needed, need_to_start; 156 int nblocks = handle->h_buffer_credits; 157 unsigned long ts = jiffies; 158 159 if (nblocks > journal->j_max_transaction_buffers) { 160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 161 current->comm, nblocks, 162 journal->j_max_transaction_buffers); 163 return -ENOSPC; 164 } 165 166 alloc_transaction: 167 if (!journal->j_running_transaction) { 168 new_transaction = kmem_cache_zalloc(transaction_cache, 169 gfp_mask); 170 if (!new_transaction) { 171 /* 172 * If __GFP_FS is not present, then we may be 173 * being called from inside the fs writeback 174 * layer, so we MUST NOT fail. Since 175 * __GFP_NOFAIL is going away, we will arrange 176 * to retry the allocation ourselves. 177 */ 178 if ((gfp_mask & __GFP_FS) == 0) { 179 congestion_wait(BLK_RW_ASYNC, HZ/50); 180 goto alloc_transaction; 181 } 182 return -ENOMEM; 183 } 184 } 185 186 jbd_debug(3, "New handle %p going live.\n", handle); 187 188 /* 189 * We need to hold j_state_lock until t_updates has been incremented, 190 * for proper journal barrier handling 191 */ 192 repeat: 193 read_lock(&journal->j_state_lock); 194 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 195 if (is_journal_aborted(journal) || 196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 197 read_unlock(&journal->j_state_lock); 198 jbd2_journal_free_transaction(new_transaction); 199 return -EROFS; 200 } 201 202 /* Wait on the journal's transaction barrier if necessary */ 203 if (journal->j_barrier_count) { 204 read_unlock(&journal->j_state_lock); 205 wait_event(journal->j_wait_transaction_locked, 206 journal->j_barrier_count == 0); 207 goto repeat; 208 } 209 210 if (!journal->j_running_transaction) { 211 read_unlock(&journal->j_state_lock); 212 if (!new_transaction) 213 goto alloc_transaction; 214 write_lock(&journal->j_state_lock); 215 if (!journal->j_running_transaction && 216 !journal->j_barrier_count) { 217 jbd2_get_transaction(journal, new_transaction); 218 new_transaction = NULL; 219 } 220 write_unlock(&journal->j_state_lock); 221 goto repeat; 222 } 223 224 transaction = journal->j_running_transaction; 225 226 /* 227 * If the current transaction is locked down for commit, wait for the 228 * lock to be released. 229 */ 230 if (transaction->t_state == T_LOCKED) { 231 DEFINE_WAIT(wait); 232 233 prepare_to_wait(&journal->j_wait_transaction_locked, 234 &wait, TASK_UNINTERRUPTIBLE); 235 read_unlock(&journal->j_state_lock); 236 schedule(); 237 finish_wait(&journal->j_wait_transaction_locked, &wait); 238 goto repeat; 239 } 240 241 /* 242 * If there is not enough space left in the log to write all potential 243 * buffers requested by this operation, we need to stall pending a log 244 * checkpoint to free some more log space. 245 */ 246 needed = atomic_add_return(nblocks, 247 &transaction->t_outstanding_credits); 248 249 if (needed > journal->j_max_transaction_buffers) { 250 /* 251 * If the current transaction is already too large, then start 252 * to commit it: we can then go back and attach this handle to 253 * a new transaction. 254 */ 255 DEFINE_WAIT(wait); 256 257 jbd_debug(2, "Handle %p starting new commit...\n", handle); 258 atomic_sub(nblocks, &transaction->t_outstanding_credits); 259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 260 TASK_UNINTERRUPTIBLE); 261 tid = transaction->t_tid; 262 need_to_start = !tid_geq(journal->j_commit_request, tid); 263 read_unlock(&journal->j_state_lock); 264 if (need_to_start) 265 jbd2_log_start_commit(journal, tid); 266 schedule(); 267 finish_wait(&journal->j_wait_transaction_locked, &wait); 268 goto repeat; 269 } 270 271 /* 272 * The commit code assumes that it can get enough log space 273 * without forcing a checkpoint. This is *critical* for 274 * correctness: a checkpoint of a buffer which is also 275 * associated with a committing transaction creates a deadlock, 276 * so commit simply cannot force through checkpoints. 277 * 278 * We must therefore ensure the necessary space in the journal 279 * *before* starting to dirty potentially checkpointed buffers 280 * in the new transaction. 281 * 282 * The worst part is, any transaction currently committing can 283 * reduce the free space arbitrarily. Be careful to account for 284 * those buffers when checkpointing. 285 */ 286 287 /* 288 * @@@ AKPM: This seems rather over-defensive. We're giving commit 289 * a _lot_ of headroom: 1/4 of the journal plus the size of 290 * the committing transaction. Really, we only need to give it 291 * committing_transaction->t_outstanding_credits plus "enough" for 292 * the log control blocks. 293 * Also, this test is inconsistent with the matching one in 294 * jbd2_journal_extend(). 295 */ 296 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 297 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 298 atomic_sub(nblocks, &transaction->t_outstanding_credits); 299 read_unlock(&journal->j_state_lock); 300 write_lock(&journal->j_state_lock); 301 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 302 __jbd2_log_wait_for_space(journal); 303 write_unlock(&journal->j_state_lock); 304 goto repeat; 305 } 306 307 /* OK, account for the buffers that this operation expects to 308 * use and add the handle to the running transaction. 309 */ 310 update_t_max_wait(transaction, ts); 311 handle->h_transaction = transaction; 312 handle->h_requested_credits = nblocks; 313 handle->h_start_jiffies = jiffies; 314 atomic_inc(&transaction->t_updates); 315 atomic_inc(&transaction->t_handle_count); 316 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 317 handle, nblocks, 318 atomic_read(&transaction->t_outstanding_credits), 319 __jbd2_log_space_left(journal)); 320 read_unlock(&journal->j_state_lock); 321 322 lock_map_acquire(&handle->h_lockdep_map); 323 jbd2_journal_free_transaction(new_transaction); 324 return 0; 325 } 326 327 static struct lock_class_key jbd2_handle_key; 328 329 /* Allocate a new handle. This should probably be in a slab... */ 330 static handle_t *new_handle(int nblocks) 331 { 332 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 333 if (!handle) 334 return NULL; 335 handle->h_buffer_credits = nblocks; 336 handle->h_ref = 1; 337 338 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 339 &jbd2_handle_key, 0); 340 341 return handle; 342 } 343 344 /** 345 * handle_t *jbd2_journal_start() - Obtain a new handle. 346 * @journal: Journal to start transaction on. 347 * @nblocks: number of block buffer we might modify 348 * 349 * We make sure that the transaction can guarantee at least nblocks of 350 * modified buffers in the log. We block until the log can guarantee 351 * that much space. 352 * 353 * This function is visible to journal users (like ext3fs), so is not 354 * called with the journal already locked. 355 * 356 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 357 * on failure. 358 */ 359 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask, 360 unsigned int type, unsigned int line_no) 361 { 362 handle_t *handle = journal_current_handle(); 363 int err; 364 365 if (!journal) 366 return ERR_PTR(-EROFS); 367 368 if (handle) { 369 J_ASSERT(handle->h_transaction->t_journal == journal); 370 handle->h_ref++; 371 return handle; 372 } 373 374 handle = new_handle(nblocks); 375 if (!handle) 376 return ERR_PTR(-ENOMEM); 377 378 current->journal_info = handle; 379 380 err = start_this_handle(journal, handle, gfp_mask); 381 if (err < 0) { 382 jbd2_free_handle(handle); 383 current->journal_info = NULL; 384 return ERR_PTR(err); 385 } 386 handle->h_type = type; 387 handle->h_line_no = line_no; 388 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 389 handle->h_transaction->t_tid, type, 390 line_no, nblocks); 391 return handle; 392 } 393 EXPORT_SYMBOL(jbd2__journal_start); 394 395 396 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 397 { 398 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0); 399 } 400 EXPORT_SYMBOL(jbd2_journal_start); 401 402 403 /** 404 * int jbd2_journal_extend() - extend buffer credits. 405 * @handle: handle to 'extend' 406 * @nblocks: nr blocks to try to extend by. 407 * 408 * Some transactions, such as large extends and truncates, can be done 409 * atomically all at once or in several stages. The operation requests 410 * a credit for a number of buffer modications in advance, but can 411 * extend its credit if it needs more. 412 * 413 * jbd2_journal_extend tries to give the running handle more buffer credits. 414 * It does not guarantee that allocation - this is a best-effort only. 415 * The calling process MUST be able to deal cleanly with a failure to 416 * extend here. 417 * 418 * Return 0 on success, non-zero on failure. 419 * 420 * return code < 0 implies an error 421 * return code > 0 implies normal transaction-full status. 422 */ 423 int jbd2_journal_extend(handle_t *handle, int nblocks) 424 { 425 transaction_t *transaction = handle->h_transaction; 426 journal_t *journal = transaction->t_journal; 427 int result; 428 int wanted; 429 430 result = -EIO; 431 if (is_handle_aborted(handle)) 432 goto out; 433 434 result = 1; 435 436 read_lock(&journal->j_state_lock); 437 438 /* Don't extend a locked-down transaction! */ 439 if (handle->h_transaction->t_state != T_RUNNING) { 440 jbd_debug(3, "denied handle %p %d blocks: " 441 "transaction not running\n", handle, nblocks); 442 goto error_out; 443 } 444 445 spin_lock(&transaction->t_handle_lock); 446 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 447 448 if (wanted > journal->j_max_transaction_buffers) { 449 jbd_debug(3, "denied handle %p %d blocks: " 450 "transaction too large\n", handle, nblocks); 451 goto unlock; 452 } 453 454 if (wanted > __jbd2_log_space_left(journal)) { 455 jbd_debug(3, "denied handle %p %d blocks: " 456 "insufficient log space\n", handle, nblocks); 457 goto unlock; 458 } 459 460 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 461 handle->h_transaction->t_tid, 462 handle->h_type, handle->h_line_no, 463 handle->h_buffer_credits, 464 nblocks); 465 466 handle->h_buffer_credits += nblocks; 467 handle->h_requested_credits += nblocks; 468 atomic_add(nblocks, &transaction->t_outstanding_credits); 469 result = 0; 470 471 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 472 unlock: 473 spin_unlock(&transaction->t_handle_lock); 474 error_out: 475 read_unlock(&journal->j_state_lock); 476 out: 477 return result; 478 } 479 480 481 /** 482 * int jbd2_journal_restart() - restart a handle . 483 * @handle: handle to restart 484 * @nblocks: nr credits requested 485 * 486 * Restart a handle for a multi-transaction filesystem 487 * operation. 488 * 489 * If the jbd2_journal_extend() call above fails to grant new buffer credits 490 * to a running handle, a call to jbd2_journal_restart will commit the 491 * handle's transaction so far and reattach the handle to a new 492 * transaction capabable of guaranteeing the requested number of 493 * credits. 494 */ 495 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 496 { 497 transaction_t *transaction = handle->h_transaction; 498 journal_t *journal = transaction->t_journal; 499 tid_t tid; 500 int need_to_start, ret; 501 502 /* If we've had an abort of any type, don't even think about 503 * actually doing the restart! */ 504 if (is_handle_aborted(handle)) 505 return 0; 506 507 /* 508 * First unlink the handle from its current transaction, and start the 509 * commit on that. 510 */ 511 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 512 J_ASSERT(journal_current_handle() == handle); 513 514 read_lock(&journal->j_state_lock); 515 spin_lock(&transaction->t_handle_lock); 516 atomic_sub(handle->h_buffer_credits, 517 &transaction->t_outstanding_credits); 518 if (atomic_dec_and_test(&transaction->t_updates)) 519 wake_up(&journal->j_wait_updates); 520 spin_unlock(&transaction->t_handle_lock); 521 522 jbd_debug(2, "restarting handle %p\n", handle); 523 tid = transaction->t_tid; 524 need_to_start = !tid_geq(journal->j_commit_request, tid); 525 read_unlock(&journal->j_state_lock); 526 if (need_to_start) 527 jbd2_log_start_commit(journal, tid); 528 529 lock_map_release(&handle->h_lockdep_map); 530 handle->h_buffer_credits = nblocks; 531 ret = start_this_handle(journal, handle, gfp_mask); 532 return ret; 533 } 534 EXPORT_SYMBOL(jbd2__journal_restart); 535 536 537 int jbd2_journal_restart(handle_t *handle, int nblocks) 538 { 539 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 540 } 541 EXPORT_SYMBOL(jbd2_journal_restart); 542 543 /** 544 * void jbd2_journal_lock_updates () - establish a transaction barrier. 545 * @journal: Journal to establish a barrier on. 546 * 547 * This locks out any further updates from being started, and blocks 548 * until all existing updates have completed, returning only once the 549 * journal is in a quiescent state with no updates running. 550 * 551 * The journal lock should not be held on entry. 552 */ 553 void jbd2_journal_lock_updates(journal_t *journal) 554 { 555 DEFINE_WAIT(wait); 556 557 write_lock(&journal->j_state_lock); 558 ++journal->j_barrier_count; 559 560 /* Wait until there are no running updates */ 561 while (1) { 562 transaction_t *transaction = journal->j_running_transaction; 563 564 if (!transaction) 565 break; 566 567 spin_lock(&transaction->t_handle_lock); 568 prepare_to_wait(&journal->j_wait_updates, &wait, 569 TASK_UNINTERRUPTIBLE); 570 if (!atomic_read(&transaction->t_updates)) { 571 spin_unlock(&transaction->t_handle_lock); 572 finish_wait(&journal->j_wait_updates, &wait); 573 break; 574 } 575 spin_unlock(&transaction->t_handle_lock); 576 write_unlock(&journal->j_state_lock); 577 schedule(); 578 finish_wait(&journal->j_wait_updates, &wait); 579 write_lock(&journal->j_state_lock); 580 } 581 write_unlock(&journal->j_state_lock); 582 583 /* 584 * We have now established a barrier against other normal updates, but 585 * we also need to barrier against other jbd2_journal_lock_updates() calls 586 * to make sure that we serialise special journal-locked operations 587 * too. 588 */ 589 mutex_lock(&journal->j_barrier); 590 } 591 592 /** 593 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 594 * @journal: Journal to release the barrier on. 595 * 596 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 597 * 598 * Should be called without the journal lock held. 599 */ 600 void jbd2_journal_unlock_updates (journal_t *journal) 601 { 602 J_ASSERT(journal->j_barrier_count != 0); 603 604 mutex_unlock(&journal->j_barrier); 605 write_lock(&journal->j_state_lock); 606 --journal->j_barrier_count; 607 write_unlock(&journal->j_state_lock); 608 wake_up(&journal->j_wait_transaction_locked); 609 } 610 611 static void warn_dirty_buffer(struct buffer_head *bh) 612 { 613 char b[BDEVNAME_SIZE]; 614 615 printk(KERN_WARNING 616 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 617 "There's a risk of filesystem corruption in case of system " 618 "crash.\n", 619 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 620 } 621 622 /* 623 * If the buffer is already part of the current transaction, then there 624 * is nothing we need to do. If it is already part of a prior 625 * transaction which we are still committing to disk, then we need to 626 * make sure that we do not overwrite the old copy: we do copy-out to 627 * preserve the copy going to disk. We also account the buffer against 628 * the handle's metadata buffer credits (unless the buffer is already 629 * part of the transaction, that is). 630 * 631 */ 632 static int 633 do_get_write_access(handle_t *handle, struct journal_head *jh, 634 int force_copy) 635 { 636 struct buffer_head *bh; 637 transaction_t *transaction; 638 journal_t *journal; 639 int error; 640 char *frozen_buffer = NULL; 641 int need_copy = 0; 642 unsigned long start_lock, time_lock; 643 644 if (is_handle_aborted(handle)) 645 return -EROFS; 646 647 transaction = handle->h_transaction; 648 journal = transaction->t_journal; 649 650 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 651 652 JBUFFER_TRACE(jh, "entry"); 653 repeat: 654 bh = jh2bh(jh); 655 656 /* @@@ Need to check for errors here at some point. */ 657 658 start_lock = jiffies; 659 lock_buffer(bh); 660 jbd_lock_bh_state(bh); 661 662 /* If it takes too long to lock the buffer, trace it */ 663 time_lock = jbd2_time_diff(start_lock, jiffies); 664 if (time_lock > HZ/10) 665 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 666 jiffies_to_msecs(time_lock)); 667 668 /* We now hold the buffer lock so it is safe to query the buffer 669 * state. Is the buffer dirty? 670 * 671 * If so, there are two possibilities. The buffer may be 672 * non-journaled, and undergoing a quite legitimate writeback. 673 * Otherwise, it is journaled, and we don't expect dirty buffers 674 * in that state (the buffers should be marked JBD_Dirty 675 * instead.) So either the IO is being done under our own 676 * control and this is a bug, or it's a third party IO such as 677 * dump(8) (which may leave the buffer scheduled for read --- 678 * ie. locked but not dirty) or tune2fs (which may actually have 679 * the buffer dirtied, ugh.) */ 680 681 if (buffer_dirty(bh)) { 682 /* 683 * First question: is this buffer already part of the current 684 * transaction or the existing committing transaction? 685 */ 686 if (jh->b_transaction) { 687 J_ASSERT_JH(jh, 688 jh->b_transaction == transaction || 689 jh->b_transaction == 690 journal->j_committing_transaction); 691 if (jh->b_next_transaction) 692 J_ASSERT_JH(jh, jh->b_next_transaction == 693 transaction); 694 warn_dirty_buffer(bh); 695 } 696 /* 697 * In any case we need to clean the dirty flag and we must 698 * do it under the buffer lock to be sure we don't race 699 * with running write-out. 700 */ 701 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 702 clear_buffer_dirty(bh); 703 set_buffer_jbddirty(bh); 704 } 705 706 unlock_buffer(bh); 707 708 error = -EROFS; 709 if (is_handle_aborted(handle)) { 710 jbd_unlock_bh_state(bh); 711 goto out; 712 } 713 error = 0; 714 715 /* 716 * The buffer is already part of this transaction if b_transaction or 717 * b_next_transaction points to it 718 */ 719 if (jh->b_transaction == transaction || 720 jh->b_next_transaction == transaction) 721 goto done; 722 723 /* 724 * this is the first time this transaction is touching this buffer, 725 * reset the modified flag 726 */ 727 jh->b_modified = 0; 728 729 /* 730 * If there is already a copy-out version of this buffer, then we don't 731 * need to make another one 732 */ 733 if (jh->b_frozen_data) { 734 JBUFFER_TRACE(jh, "has frozen data"); 735 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 736 jh->b_next_transaction = transaction; 737 goto done; 738 } 739 740 /* Is there data here we need to preserve? */ 741 742 if (jh->b_transaction && jh->b_transaction != transaction) { 743 JBUFFER_TRACE(jh, "owned by older transaction"); 744 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 745 J_ASSERT_JH(jh, jh->b_transaction == 746 journal->j_committing_transaction); 747 748 /* There is one case we have to be very careful about. 749 * If the committing transaction is currently writing 750 * this buffer out to disk and has NOT made a copy-out, 751 * then we cannot modify the buffer contents at all 752 * right now. The essence of copy-out is that it is the 753 * extra copy, not the primary copy, which gets 754 * journaled. If the primary copy is already going to 755 * disk then we cannot do copy-out here. */ 756 757 if (jh->b_jlist == BJ_Shadow) { 758 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 759 wait_queue_head_t *wqh; 760 761 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 762 763 JBUFFER_TRACE(jh, "on shadow: sleep"); 764 jbd_unlock_bh_state(bh); 765 /* commit wakes up all shadow buffers after IO */ 766 for ( ; ; ) { 767 prepare_to_wait(wqh, &wait.wait, 768 TASK_UNINTERRUPTIBLE); 769 if (jh->b_jlist != BJ_Shadow) 770 break; 771 schedule(); 772 } 773 finish_wait(wqh, &wait.wait); 774 goto repeat; 775 } 776 777 /* Only do the copy if the currently-owning transaction 778 * still needs it. If it is on the Forget list, the 779 * committing transaction is past that stage. The 780 * buffer had better remain locked during the kmalloc, 781 * but that should be true --- we hold the journal lock 782 * still and the buffer is already on the BUF_JOURNAL 783 * list so won't be flushed. 784 * 785 * Subtle point, though: if this is a get_undo_access, 786 * then we will be relying on the frozen_data to contain 787 * the new value of the committed_data record after the 788 * transaction, so we HAVE to force the frozen_data copy 789 * in that case. */ 790 791 if (jh->b_jlist != BJ_Forget || force_copy) { 792 JBUFFER_TRACE(jh, "generate frozen data"); 793 if (!frozen_buffer) { 794 JBUFFER_TRACE(jh, "allocate memory for buffer"); 795 jbd_unlock_bh_state(bh); 796 frozen_buffer = 797 jbd2_alloc(jh2bh(jh)->b_size, 798 GFP_NOFS); 799 if (!frozen_buffer) { 800 printk(KERN_EMERG 801 "%s: OOM for frozen_buffer\n", 802 __func__); 803 JBUFFER_TRACE(jh, "oom!"); 804 error = -ENOMEM; 805 jbd_lock_bh_state(bh); 806 goto done; 807 } 808 goto repeat; 809 } 810 jh->b_frozen_data = frozen_buffer; 811 frozen_buffer = NULL; 812 need_copy = 1; 813 } 814 jh->b_next_transaction = transaction; 815 } 816 817 818 /* 819 * Finally, if the buffer is not journaled right now, we need to make 820 * sure it doesn't get written to disk before the caller actually 821 * commits the new data 822 */ 823 if (!jh->b_transaction) { 824 JBUFFER_TRACE(jh, "no transaction"); 825 J_ASSERT_JH(jh, !jh->b_next_transaction); 826 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 827 spin_lock(&journal->j_list_lock); 828 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 829 spin_unlock(&journal->j_list_lock); 830 } 831 832 done: 833 if (need_copy) { 834 struct page *page; 835 int offset; 836 char *source; 837 838 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 839 "Possible IO failure.\n"); 840 page = jh2bh(jh)->b_page; 841 offset = offset_in_page(jh2bh(jh)->b_data); 842 source = kmap_atomic(page); 843 /* Fire data frozen trigger just before we copy the data */ 844 jbd2_buffer_frozen_trigger(jh, source + offset, 845 jh->b_triggers); 846 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 847 kunmap_atomic(source); 848 849 /* 850 * Now that the frozen data is saved off, we need to store 851 * any matching triggers. 852 */ 853 jh->b_frozen_triggers = jh->b_triggers; 854 } 855 jbd_unlock_bh_state(bh); 856 857 /* 858 * If we are about to journal a buffer, then any revoke pending on it is 859 * no longer valid 860 */ 861 jbd2_journal_cancel_revoke(handle, jh); 862 863 out: 864 if (unlikely(frozen_buffer)) /* It's usually NULL */ 865 jbd2_free(frozen_buffer, bh->b_size); 866 867 JBUFFER_TRACE(jh, "exit"); 868 return error; 869 } 870 871 /** 872 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 873 * @handle: transaction to add buffer modifications to 874 * @bh: bh to be used for metadata writes 875 * 876 * Returns an error code or 0 on success. 877 * 878 * In full data journalling mode the buffer may be of type BJ_AsyncData, 879 * because we're write()ing a buffer which is also part of a shared mapping. 880 */ 881 882 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 883 { 884 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 885 int rc; 886 887 /* We do not want to get caught playing with fields which the 888 * log thread also manipulates. Make sure that the buffer 889 * completes any outstanding IO before proceeding. */ 890 rc = do_get_write_access(handle, jh, 0); 891 jbd2_journal_put_journal_head(jh); 892 return rc; 893 } 894 895 896 /* 897 * When the user wants to journal a newly created buffer_head 898 * (ie. getblk() returned a new buffer and we are going to populate it 899 * manually rather than reading off disk), then we need to keep the 900 * buffer_head locked until it has been completely filled with new 901 * data. In this case, we should be able to make the assertion that 902 * the bh is not already part of an existing transaction. 903 * 904 * The buffer should already be locked by the caller by this point. 905 * There is no lock ranking violation: it was a newly created, 906 * unlocked buffer beforehand. */ 907 908 /** 909 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 910 * @handle: transaction to new buffer to 911 * @bh: new buffer. 912 * 913 * Call this if you create a new bh. 914 */ 915 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 916 { 917 transaction_t *transaction = handle->h_transaction; 918 journal_t *journal = transaction->t_journal; 919 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 920 int err; 921 922 jbd_debug(5, "journal_head %p\n", jh); 923 err = -EROFS; 924 if (is_handle_aborted(handle)) 925 goto out; 926 err = 0; 927 928 JBUFFER_TRACE(jh, "entry"); 929 /* 930 * The buffer may already belong to this transaction due to pre-zeroing 931 * in the filesystem's new_block code. It may also be on the previous, 932 * committing transaction's lists, but it HAS to be in Forget state in 933 * that case: the transaction must have deleted the buffer for it to be 934 * reused here. 935 */ 936 jbd_lock_bh_state(bh); 937 spin_lock(&journal->j_list_lock); 938 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 939 jh->b_transaction == NULL || 940 (jh->b_transaction == journal->j_committing_transaction && 941 jh->b_jlist == BJ_Forget))); 942 943 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 944 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 945 946 if (jh->b_transaction == NULL) { 947 /* 948 * Previous jbd2_journal_forget() could have left the buffer 949 * with jbddirty bit set because it was being committed. When 950 * the commit finished, we've filed the buffer for 951 * checkpointing and marked it dirty. Now we are reallocating 952 * the buffer so the transaction freeing it must have 953 * committed and so it's safe to clear the dirty bit. 954 */ 955 clear_buffer_dirty(jh2bh(jh)); 956 /* first access by this transaction */ 957 jh->b_modified = 0; 958 959 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 960 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 961 } else if (jh->b_transaction == journal->j_committing_transaction) { 962 /* first access by this transaction */ 963 jh->b_modified = 0; 964 965 JBUFFER_TRACE(jh, "set next transaction"); 966 jh->b_next_transaction = transaction; 967 } 968 spin_unlock(&journal->j_list_lock); 969 jbd_unlock_bh_state(bh); 970 971 /* 972 * akpm: I added this. ext3_alloc_branch can pick up new indirect 973 * blocks which contain freed but then revoked metadata. We need 974 * to cancel the revoke in case we end up freeing it yet again 975 * and the reallocating as data - this would cause a second revoke, 976 * which hits an assertion error. 977 */ 978 JBUFFER_TRACE(jh, "cancelling revoke"); 979 jbd2_journal_cancel_revoke(handle, jh); 980 out: 981 jbd2_journal_put_journal_head(jh); 982 return err; 983 } 984 985 /** 986 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 987 * non-rewindable consequences 988 * @handle: transaction 989 * @bh: buffer to undo 990 * 991 * Sometimes there is a need to distinguish between metadata which has 992 * been committed to disk and that which has not. The ext3fs code uses 993 * this for freeing and allocating space, we have to make sure that we 994 * do not reuse freed space until the deallocation has been committed, 995 * since if we overwrote that space we would make the delete 996 * un-rewindable in case of a crash. 997 * 998 * To deal with that, jbd2_journal_get_undo_access requests write access to a 999 * buffer for parts of non-rewindable operations such as delete 1000 * operations on the bitmaps. The journaling code must keep a copy of 1001 * the buffer's contents prior to the undo_access call until such time 1002 * as we know that the buffer has definitely been committed to disk. 1003 * 1004 * We never need to know which transaction the committed data is part 1005 * of, buffers touched here are guaranteed to be dirtied later and so 1006 * will be committed to a new transaction in due course, at which point 1007 * we can discard the old committed data pointer. 1008 * 1009 * Returns error number or 0 on success. 1010 */ 1011 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1012 { 1013 int err; 1014 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1015 char *committed_data = NULL; 1016 1017 JBUFFER_TRACE(jh, "entry"); 1018 1019 /* 1020 * Do this first --- it can drop the journal lock, so we want to 1021 * make sure that obtaining the committed_data is done 1022 * atomically wrt. completion of any outstanding commits. 1023 */ 1024 err = do_get_write_access(handle, jh, 1); 1025 if (err) 1026 goto out; 1027 1028 repeat: 1029 if (!jh->b_committed_data) { 1030 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1031 if (!committed_data) { 1032 printk(KERN_EMERG "%s: No memory for committed data\n", 1033 __func__); 1034 err = -ENOMEM; 1035 goto out; 1036 } 1037 } 1038 1039 jbd_lock_bh_state(bh); 1040 if (!jh->b_committed_data) { 1041 /* Copy out the current buffer contents into the 1042 * preserved, committed copy. */ 1043 JBUFFER_TRACE(jh, "generate b_committed data"); 1044 if (!committed_data) { 1045 jbd_unlock_bh_state(bh); 1046 goto repeat; 1047 } 1048 1049 jh->b_committed_data = committed_data; 1050 committed_data = NULL; 1051 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1052 } 1053 jbd_unlock_bh_state(bh); 1054 out: 1055 jbd2_journal_put_journal_head(jh); 1056 if (unlikely(committed_data)) 1057 jbd2_free(committed_data, bh->b_size); 1058 return err; 1059 } 1060 1061 /** 1062 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1063 * @bh: buffer to trigger on 1064 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1065 * 1066 * Set any triggers on this journal_head. This is always safe, because 1067 * triggers for a committing buffer will be saved off, and triggers for 1068 * a running transaction will match the buffer in that transaction. 1069 * 1070 * Call with NULL to clear the triggers. 1071 */ 1072 void jbd2_journal_set_triggers(struct buffer_head *bh, 1073 struct jbd2_buffer_trigger_type *type) 1074 { 1075 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1076 1077 if (WARN_ON(!jh)) 1078 return; 1079 jh->b_triggers = type; 1080 jbd2_journal_put_journal_head(jh); 1081 } 1082 1083 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1084 struct jbd2_buffer_trigger_type *triggers) 1085 { 1086 struct buffer_head *bh = jh2bh(jh); 1087 1088 if (!triggers || !triggers->t_frozen) 1089 return; 1090 1091 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1092 } 1093 1094 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1095 struct jbd2_buffer_trigger_type *triggers) 1096 { 1097 if (!triggers || !triggers->t_abort) 1098 return; 1099 1100 triggers->t_abort(triggers, jh2bh(jh)); 1101 } 1102 1103 1104 1105 /** 1106 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1107 * @handle: transaction to add buffer to. 1108 * @bh: buffer to mark 1109 * 1110 * mark dirty metadata which needs to be journaled as part of the current 1111 * transaction. 1112 * 1113 * The buffer must have previously had jbd2_journal_get_write_access() 1114 * called so that it has a valid journal_head attached to the buffer 1115 * head. 1116 * 1117 * The buffer is placed on the transaction's metadata list and is marked 1118 * as belonging to the transaction. 1119 * 1120 * Returns error number or 0 on success. 1121 * 1122 * Special care needs to be taken if the buffer already belongs to the 1123 * current committing transaction (in which case we should have frozen 1124 * data present for that commit). In that case, we don't relink the 1125 * buffer: that only gets done when the old transaction finally 1126 * completes its commit. 1127 */ 1128 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1129 { 1130 transaction_t *transaction = handle->h_transaction; 1131 journal_t *journal = transaction->t_journal; 1132 struct journal_head *jh; 1133 int ret = 0; 1134 1135 if (is_handle_aborted(handle)) 1136 goto out; 1137 jh = jbd2_journal_grab_journal_head(bh); 1138 if (!jh) { 1139 ret = -EUCLEAN; 1140 goto out; 1141 } 1142 jbd_debug(5, "journal_head %p\n", jh); 1143 JBUFFER_TRACE(jh, "entry"); 1144 1145 jbd_lock_bh_state(bh); 1146 1147 if (jh->b_modified == 0) { 1148 /* 1149 * This buffer's got modified and becoming part 1150 * of the transaction. This needs to be done 1151 * once a transaction -bzzz 1152 */ 1153 jh->b_modified = 1; 1154 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1155 handle->h_buffer_credits--; 1156 } 1157 1158 /* 1159 * fastpath, to avoid expensive locking. If this buffer is already 1160 * on the running transaction's metadata list there is nothing to do. 1161 * Nobody can take it off again because there is a handle open. 1162 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1163 * result in this test being false, so we go in and take the locks. 1164 */ 1165 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1166 JBUFFER_TRACE(jh, "fastpath"); 1167 if (unlikely(jh->b_transaction != 1168 journal->j_running_transaction)) { 1169 printk(KERN_EMERG "JBD: %s: " 1170 "jh->b_transaction (%llu, %p, %u) != " 1171 "journal->j_running_transaction (%p, %u)", 1172 journal->j_devname, 1173 (unsigned long long) bh->b_blocknr, 1174 jh->b_transaction, 1175 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1176 journal->j_running_transaction, 1177 journal->j_running_transaction ? 1178 journal->j_running_transaction->t_tid : 0); 1179 ret = -EINVAL; 1180 } 1181 goto out_unlock_bh; 1182 } 1183 1184 set_buffer_jbddirty(bh); 1185 1186 /* 1187 * Metadata already on the current transaction list doesn't 1188 * need to be filed. Metadata on another transaction's list must 1189 * be committing, and will be refiled once the commit completes: 1190 * leave it alone for now. 1191 */ 1192 if (jh->b_transaction != transaction) { 1193 JBUFFER_TRACE(jh, "already on other transaction"); 1194 if (unlikely(jh->b_transaction != 1195 journal->j_committing_transaction)) { 1196 printk(KERN_EMERG "JBD: %s: " 1197 "jh->b_transaction (%llu, %p, %u) != " 1198 "journal->j_committing_transaction (%p, %u)", 1199 journal->j_devname, 1200 (unsigned long long) bh->b_blocknr, 1201 jh->b_transaction, 1202 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1203 journal->j_committing_transaction, 1204 journal->j_committing_transaction ? 1205 journal->j_committing_transaction->t_tid : 0); 1206 ret = -EINVAL; 1207 } 1208 if (unlikely(jh->b_next_transaction != transaction)) { 1209 printk(KERN_EMERG "JBD: %s: " 1210 "jh->b_next_transaction (%llu, %p, %u) != " 1211 "transaction (%p, %u)", 1212 journal->j_devname, 1213 (unsigned long long) bh->b_blocknr, 1214 jh->b_next_transaction, 1215 jh->b_next_transaction ? 1216 jh->b_next_transaction->t_tid : 0, 1217 transaction, transaction->t_tid); 1218 ret = -EINVAL; 1219 } 1220 /* And this case is illegal: we can't reuse another 1221 * transaction's data buffer, ever. */ 1222 goto out_unlock_bh; 1223 } 1224 1225 /* That test should have eliminated the following case: */ 1226 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1227 1228 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1229 spin_lock(&journal->j_list_lock); 1230 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1231 spin_unlock(&journal->j_list_lock); 1232 out_unlock_bh: 1233 jbd_unlock_bh_state(bh); 1234 jbd2_journal_put_journal_head(jh); 1235 out: 1236 JBUFFER_TRACE(jh, "exit"); 1237 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1238 return ret; 1239 } 1240 1241 /** 1242 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1243 * @handle: transaction handle 1244 * @bh: bh to 'forget' 1245 * 1246 * We can only do the bforget if there are no commits pending against the 1247 * buffer. If the buffer is dirty in the current running transaction we 1248 * can safely unlink it. 1249 * 1250 * bh may not be a journalled buffer at all - it may be a non-JBD 1251 * buffer which came off the hashtable. Check for this. 1252 * 1253 * Decrements bh->b_count by one. 1254 * 1255 * Allow this call even if the handle has aborted --- it may be part of 1256 * the caller's cleanup after an abort. 1257 */ 1258 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1259 { 1260 transaction_t *transaction = handle->h_transaction; 1261 journal_t *journal = transaction->t_journal; 1262 struct journal_head *jh; 1263 int drop_reserve = 0; 1264 int err = 0; 1265 int was_modified = 0; 1266 1267 BUFFER_TRACE(bh, "entry"); 1268 1269 jbd_lock_bh_state(bh); 1270 spin_lock(&journal->j_list_lock); 1271 1272 if (!buffer_jbd(bh)) 1273 goto not_jbd; 1274 jh = bh2jh(bh); 1275 1276 /* Critical error: attempting to delete a bitmap buffer, maybe? 1277 * Don't do any jbd operations, and return an error. */ 1278 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1279 "inconsistent data on disk")) { 1280 err = -EIO; 1281 goto not_jbd; 1282 } 1283 1284 /* keep track of whether or not this transaction modified us */ 1285 was_modified = jh->b_modified; 1286 1287 /* 1288 * The buffer's going from the transaction, we must drop 1289 * all references -bzzz 1290 */ 1291 jh->b_modified = 0; 1292 1293 if (jh->b_transaction == handle->h_transaction) { 1294 J_ASSERT_JH(jh, !jh->b_frozen_data); 1295 1296 /* If we are forgetting a buffer which is already part 1297 * of this transaction, then we can just drop it from 1298 * the transaction immediately. */ 1299 clear_buffer_dirty(bh); 1300 clear_buffer_jbddirty(bh); 1301 1302 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1303 1304 /* 1305 * we only want to drop a reference if this transaction 1306 * modified the buffer 1307 */ 1308 if (was_modified) 1309 drop_reserve = 1; 1310 1311 /* 1312 * We are no longer going to journal this buffer. 1313 * However, the commit of this transaction is still 1314 * important to the buffer: the delete that we are now 1315 * processing might obsolete an old log entry, so by 1316 * committing, we can satisfy the buffer's checkpoint. 1317 * 1318 * So, if we have a checkpoint on the buffer, we should 1319 * now refile the buffer on our BJ_Forget list so that 1320 * we know to remove the checkpoint after we commit. 1321 */ 1322 1323 if (jh->b_cp_transaction) { 1324 __jbd2_journal_temp_unlink_buffer(jh); 1325 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1326 } else { 1327 __jbd2_journal_unfile_buffer(jh); 1328 if (!buffer_jbd(bh)) { 1329 spin_unlock(&journal->j_list_lock); 1330 jbd_unlock_bh_state(bh); 1331 __bforget(bh); 1332 goto drop; 1333 } 1334 } 1335 } else if (jh->b_transaction) { 1336 J_ASSERT_JH(jh, (jh->b_transaction == 1337 journal->j_committing_transaction)); 1338 /* However, if the buffer is still owned by a prior 1339 * (committing) transaction, we can't drop it yet... */ 1340 JBUFFER_TRACE(jh, "belongs to older transaction"); 1341 /* ... but we CAN drop it from the new transaction if we 1342 * have also modified it since the original commit. */ 1343 1344 if (jh->b_next_transaction) { 1345 J_ASSERT(jh->b_next_transaction == transaction); 1346 jh->b_next_transaction = NULL; 1347 1348 /* 1349 * only drop a reference if this transaction modified 1350 * the buffer 1351 */ 1352 if (was_modified) 1353 drop_reserve = 1; 1354 } 1355 } 1356 1357 not_jbd: 1358 spin_unlock(&journal->j_list_lock); 1359 jbd_unlock_bh_state(bh); 1360 __brelse(bh); 1361 drop: 1362 if (drop_reserve) { 1363 /* no need to reserve log space for this block -bzzz */ 1364 handle->h_buffer_credits++; 1365 } 1366 return err; 1367 } 1368 1369 /** 1370 * int jbd2_journal_stop() - complete a transaction 1371 * @handle: tranaction to complete. 1372 * 1373 * All done for a particular handle. 1374 * 1375 * There is not much action needed here. We just return any remaining 1376 * buffer credits to the transaction and remove the handle. The only 1377 * complication is that we need to start a commit operation if the 1378 * filesystem is marked for synchronous update. 1379 * 1380 * jbd2_journal_stop itself will not usually return an error, but it may 1381 * do so in unusual circumstances. In particular, expect it to 1382 * return -EIO if a jbd2_journal_abort has been executed since the 1383 * transaction began. 1384 */ 1385 int jbd2_journal_stop(handle_t *handle) 1386 { 1387 transaction_t *transaction = handle->h_transaction; 1388 journal_t *journal = transaction->t_journal; 1389 int err, wait_for_commit = 0; 1390 tid_t tid; 1391 pid_t pid; 1392 1393 J_ASSERT(journal_current_handle() == handle); 1394 1395 if (is_handle_aborted(handle)) 1396 err = -EIO; 1397 else { 1398 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1399 err = 0; 1400 } 1401 1402 if (--handle->h_ref > 0) { 1403 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1404 handle->h_ref); 1405 return err; 1406 } 1407 1408 jbd_debug(4, "Handle %p going down\n", handle); 1409 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1410 handle->h_transaction->t_tid, 1411 handle->h_type, handle->h_line_no, 1412 jiffies - handle->h_start_jiffies, 1413 handle->h_sync, handle->h_requested_credits, 1414 (handle->h_requested_credits - 1415 handle->h_buffer_credits)); 1416 1417 /* 1418 * Implement synchronous transaction batching. If the handle 1419 * was synchronous, don't force a commit immediately. Let's 1420 * yield and let another thread piggyback onto this 1421 * transaction. Keep doing that while new threads continue to 1422 * arrive. It doesn't cost much - we're about to run a commit 1423 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1424 * operations by 30x or more... 1425 * 1426 * We try and optimize the sleep time against what the 1427 * underlying disk can do, instead of having a static sleep 1428 * time. This is useful for the case where our storage is so 1429 * fast that it is more optimal to go ahead and force a flush 1430 * and wait for the transaction to be committed than it is to 1431 * wait for an arbitrary amount of time for new writers to 1432 * join the transaction. We achieve this by measuring how 1433 * long it takes to commit a transaction, and compare it with 1434 * how long this transaction has been running, and if run time 1435 * < commit time then we sleep for the delta and commit. This 1436 * greatly helps super fast disks that would see slowdowns as 1437 * more threads started doing fsyncs. 1438 * 1439 * But don't do this if this process was the most recent one 1440 * to perform a synchronous write. We do this to detect the 1441 * case where a single process is doing a stream of sync 1442 * writes. No point in waiting for joiners in that case. 1443 */ 1444 pid = current->pid; 1445 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1446 u64 commit_time, trans_time; 1447 1448 journal->j_last_sync_writer = pid; 1449 1450 read_lock(&journal->j_state_lock); 1451 commit_time = journal->j_average_commit_time; 1452 read_unlock(&journal->j_state_lock); 1453 1454 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1455 transaction->t_start_time)); 1456 1457 commit_time = max_t(u64, commit_time, 1458 1000*journal->j_min_batch_time); 1459 commit_time = min_t(u64, commit_time, 1460 1000*journal->j_max_batch_time); 1461 1462 if (trans_time < commit_time) { 1463 ktime_t expires = ktime_add_ns(ktime_get(), 1464 commit_time); 1465 set_current_state(TASK_UNINTERRUPTIBLE); 1466 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1467 } 1468 } 1469 1470 if (handle->h_sync) 1471 transaction->t_synchronous_commit = 1; 1472 current->journal_info = NULL; 1473 atomic_sub(handle->h_buffer_credits, 1474 &transaction->t_outstanding_credits); 1475 1476 /* 1477 * If the handle is marked SYNC, we need to set another commit 1478 * going! We also want to force a commit if the current 1479 * transaction is occupying too much of the log, or if the 1480 * transaction is too old now. 1481 */ 1482 if (handle->h_sync || 1483 (atomic_read(&transaction->t_outstanding_credits) > 1484 journal->j_max_transaction_buffers) || 1485 time_after_eq(jiffies, transaction->t_expires)) { 1486 /* Do this even for aborted journals: an abort still 1487 * completes the commit thread, it just doesn't write 1488 * anything to disk. */ 1489 1490 jbd_debug(2, "transaction too old, requesting commit for " 1491 "handle %p\n", handle); 1492 /* This is non-blocking */ 1493 jbd2_log_start_commit(journal, transaction->t_tid); 1494 1495 /* 1496 * Special case: JBD2_SYNC synchronous updates require us 1497 * to wait for the commit to complete. 1498 */ 1499 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1500 wait_for_commit = 1; 1501 } 1502 1503 /* 1504 * Once we drop t_updates, if it goes to zero the transaction 1505 * could start committing on us and eventually disappear. So 1506 * once we do this, we must not dereference transaction 1507 * pointer again. 1508 */ 1509 tid = transaction->t_tid; 1510 if (atomic_dec_and_test(&transaction->t_updates)) { 1511 wake_up(&journal->j_wait_updates); 1512 if (journal->j_barrier_count) 1513 wake_up(&journal->j_wait_transaction_locked); 1514 } 1515 1516 if (wait_for_commit) 1517 err = jbd2_log_wait_commit(journal, tid); 1518 1519 lock_map_release(&handle->h_lockdep_map); 1520 1521 jbd2_free_handle(handle); 1522 return err; 1523 } 1524 1525 /** 1526 * int jbd2_journal_force_commit() - force any uncommitted transactions 1527 * @journal: journal to force 1528 * 1529 * For synchronous operations: force any uncommitted transactions 1530 * to disk. May seem kludgy, but it reuses all the handle batching 1531 * code in a very simple manner. 1532 */ 1533 int jbd2_journal_force_commit(journal_t *journal) 1534 { 1535 handle_t *handle; 1536 int ret; 1537 1538 handle = jbd2_journal_start(journal, 1); 1539 if (IS_ERR(handle)) { 1540 ret = PTR_ERR(handle); 1541 } else { 1542 handle->h_sync = 1; 1543 ret = jbd2_journal_stop(handle); 1544 } 1545 return ret; 1546 } 1547 1548 /* 1549 * 1550 * List management code snippets: various functions for manipulating the 1551 * transaction buffer lists. 1552 * 1553 */ 1554 1555 /* 1556 * Append a buffer to a transaction list, given the transaction's list head 1557 * pointer. 1558 * 1559 * j_list_lock is held. 1560 * 1561 * jbd_lock_bh_state(jh2bh(jh)) is held. 1562 */ 1563 1564 static inline void 1565 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1566 { 1567 if (!*list) { 1568 jh->b_tnext = jh->b_tprev = jh; 1569 *list = jh; 1570 } else { 1571 /* Insert at the tail of the list to preserve order */ 1572 struct journal_head *first = *list, *last = first->b_tprev; 1573 jh->b_tprev = last; 1574 jh->b_tnext = first; 1575 last->b_tnext = first->b_tprev = jh; 1576 } 1577 } 1578 1579 /* 1580 * Remove a buffer from a transaction list, given the transaction's list 1581 * head pointer. 1582 * 1583 * Called with j_list_lock held, and the journal may not be locked. 1584 * 1585 * jbd_lock_bh_state(jh2bh(jh)) is held. 1586 */ 1587 1588 static inline void 1589 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1590 { 1591 if (*list == jh) { 1592 *list = jh->b_tnext; 1593 if (*list == jh) 1594 *list = NULL; 1595 } 1596 jh->b_tprev->b_tnext = jh->b_tnext; 1597 jh->b_tnext->b_tprev = jh->b_tprev; 1598 } 1599 1600 /* 1601 * Remove a buffer from the appropriate transaction list. 1602 * 1603 * Note that this function can *change* the value of 1604 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1605 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1606 * of these pointers, it could go bad. Generally the caller needs to re-read 1607 * the pointer from the transaction_t. 1608 * 1609 * Called under j_list_lock. 1610 */ 1611 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1612 { 1613 struct journal_head **list = NULL; 1614 transaction_t *transaction; 1615 struct buffer_head *bh = jh2bh(jh); 1616 1617 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1618 transaction = jh->b_transaction; 1619 if (transaction) 1620 assert_spin_locked(&transaction->t_journal->j_list_lock); 1621 1622 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1623 if (jh->b_jlist != BJ_None) 1624 J_ASSERT_JH(jh, transaction != NULL); 1625 1626 switch (jh->b_jlist) { 1627 case BJ_None: 1628 return; 1629 case BJ_Metadata: 1630 transaction->t_nr_buffers--; 1631 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1632 list = &transaction->t_buffers; 1633 break; 1634 case BJ_Forget: 1635 list = &transaction->t_forget; 1636 break; 1637 case BJ_IO: 1638 list = &transaction->t_iobuf_list; 1639 break; 1640 case BJ_Shadow: 1641 list = &transaction->t_shadow_list; 1642 break; 1643 case BJ_LogCtl: 1644 list = &transaction->t_log_list; 1645 break; 1646 case BJ_Reserved: 1647 list = &transaction->t_reserved_list; 1648 break; 1649 } 1650 1651 __blist_del_buffer(list, jh); 1652 jh->b_jlist = BJ_None; 1653 if (test_clear_buffer_jbddirty(bh)) 1654 mark_buffer_dirty(bh); /* Expose it to the VM */ 1655 } 1656 1657 /* 1658 * Remove buffer from all transactions. 1659 * 1660 * Called with bh_state lock and j_list_lock 1661 * 1662 * jh and bh may be already freed when this function returns. 1663 */ 1664 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1665 { 1666 __jbd2_journal_temp_unlink_buffer(jh); 1667 jh->b_transaction = NULL; 1668 jbd2_journal_put_journal_head(jh); 1669 } 1670 1671 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1672 { 1673 struct buffer_head *bh = jh2bh(jh); 1674 1675 /* Get reference so that buffer cannot be freed before we unlock it */ 1676 get_bh(bh); 1677 jbd_lock_bh_state(bh); 1678 spin_lock(&journal->j_list_lock); 1679 __jbd2_journal_unfile_buffer(jh); 1680 spin_unlock(&journal->j_list_lock); 1681 jbd_unlock_bh_state(bh); 1682 __brelse(bh); 1683 } 1684 1685 /* 1686 * Called from jbd2_journal_try_to_free_buffers(). 1687 * 1688 * Called under jbd_lock_bh_state(bh) 1689 */ 1690 static void 1691 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1692 { 1693 struct journal_head *jh; 1694 1695 jh = bh2jh(bh); 1696 1697 if (buffer_locked(bh) || buffer_dirty(bh)) 1698 goto out; 1699 1700 if (jh->b_next_transaction != NULL) 1701 goto out; 1702 1703 spin_lock(&journal->j_list_lock); 1704 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1705 /* written-back checkpointed metadata buffer */ 1706 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1707 __jbd2_journal_remove_checkpoint(jh); 1708 } 1709 spin_unlock(&journal->j_list_lock); 1710 out: 1711 return; 1712 } 1713 1714 /** 1715 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1716 * @journal: journal for operation 1717 * @page: to try and free 1718 * @gfp_mask: we use the mask to detect how hard should we try to release 1719 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1720 * release the buffers. 1721 * 1722 * 1723 * For all the buffers on this page, 1724 * if they are fully written out ordered data, move them onto BUF_CLEAN 1725 * so try_to_free_buffers() can reap them. 1726 * 1727 * This function returns non-zero if we wish try_to_free_buffers() 1728 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1729 * We also do it if the page has locked or dirty buffers and the caller wants 1730 * us to perform sync or async writeout. 1731 * 1732 * This complicates JBD locking somewhat. We aren't protected by the 1733 * BKL here. We wish to remove the buffer from its committing or 1734 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1735 * 1736 * This may *change* the value of transaction_t->t_datalist, so anyone 1737 * who looks at t_datalist needs to lock against this function. 1738 * 1739 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1740 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1741 * will come out of the lock with the buffer dirty, which makes it 1742 * ineligible for release here. 1743 * 1744 * Who else is affected by this? hmm... Really the only contender 1745 * is do_get_write_access() - it could be looking at the buffer while 1746 * journal_try_to_free_buffer() is changing its state. But that 1747 * cannot happen because we never reallocate freed data as metadata 1748 * while the data is part of a transaction. Yes? 1749 * 1750 * Return 0 on failure, 1 on success 1751 */ 1752 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1753 struct page *page, gfp_t gfp_mask) 1754 { 1755 struct buffer_head *head; 1756 struct buffer_head *bh; 1757 int ret = 0; 1758 1759 J_ASSERT(PageLocked(page)); 1760 1761 head = page_buffers(page); 1762 bh = head; 1763 do { 1764 struct journal_head *jh; 1765 1766 /* 1767 * We take our own ref against the journal_head here to avoid 1768 * having to add tons of locking around each instance of 1769 * jbd2_journal_put_journal_head(). 1770 */ 1771 jh = jbd2_journal_grab_journal_head(bh); 1772 if (!jh) 1773 continue; 1774 1775 jbd_lock_bh_state(bh); 1776 __journal_try_to_free_buffer(journal, bh); 1777 jbd2_journal_put_journal_head(jh); 1778 jbd_unlock_bh_state(bh); 1779 if (buffer_jbd(bh)) 1780 goto busy; 1781 } while ((bh = bh->b_this_page) != head); 1782 1783 ret = try_to_free_buffers(page); 1784 1785 busy: 1786 return ret; 1787 } 1788 1789 /* 1790 * This buffer is no longer needed. If it is on an older transaction's 1791 * checkpoint list we need to record it on this transaction's forget list 1792 * to pin this buffer (and hence its checkpointing transaction) down until 1793 * this transaction commits. If the buffer isn't on a checkpoint list, we 1794 * release it. 1795 * Returns non-zero if JBD no longer has an interest in the buffer. 1796 * 1797 * Called under j_list_lock. 1798 * 1799 * Called under jbd_lock_bh_state(bh). 1800 */ 1801 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1802 { 1803 int may_free = 1; 1804 struct buffer_head *bh = jh2bh(jh); 1805 1806 if (jh->b_cp_transaction) { 1807 JBUFFER_TRACE(jh, "on running+cp transaction"); 1808 __jbd2_journal_temp_unlink_buffer(jh); 1809 /* 1810 * We don't want to write the buffer anymore, clear the 1811 * bit so that we don't confuse checks in 1812 * __journal_file_buffer 1813 */ 1814 clear_buffer_dirty(bh); 1815 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1816 may_free = 0; 1817 } else { 1818 JBUFFER_TRACE(jh, "on running transaction"); 1819 __jbd2_journal_unfile_buffer(jh); 1820 } 1821 return may_free; 1822 } 1823 1824 /* 1825 * jbd2_journal_invalidatepage 1826 * 1827 * This code is tricky. It has a number of cases to deal with. 1828 * 1829 * There are two invariants which this code relies on: 1830 * 1831 * i_size must be updated on disk before we start calling invalidatepage on the 1832 * data. 1833 * 1834 * This is done in ext3 by defining an ext3_setattr method which 1835 * updates i_size before truncate gets going. By maintaining this 1836 * invariant, we can be sure that it is safe to throw away any buffers 1837 * attached to the current transaction: once the transaction commits, 1838 * we know that the data will not be needed. 1839 * 1840 * Note however that we can *not* throw away data belonging to the 1841 * previous, committing transaction! 1842 * 1843 * Any disk blocks which *are* part of the previous, committing 1844 * transaction (and which therefore cannot be discarded immediately) are 1845 * not going to be reused in the new running transaction 1846 * 1847 * The bitmap committed_data images guarantee this: any block which is 1848 * allocated in one transaction and removed in the next will be marked 1849 * as in-use in the committed_data bitmap, so cannot be reused until 1850 * the next transaction to delete the block commits. This means that 1851 * leaving committing buffers dirty is quite safe: the disk blocks 1852 * cannot be reallocated to a different file and so buffer aliasing is 1853 * not possible. 1854 * 1855 * 1856 * The above applies mainly to ordered data mode. In writeback mode we 1857 * don't make guarantees about the order in which data hits disk --- in 1858 * particular we don't guarantee that new dirty data is flushed before 1859 * transaction commit --- so it is always safe just to discard data 1860 * immediately in that mode. --sct 1861 */ 1862 1863 /* 1864 * The journal_unmap_buffer helper function returns zero if the buffer 1865 * concerned remains pinned as an anonymous buffer belonging to an older 1866 * transaction. 1867 * 1868 * We're outside-transaction here. Either or both of j_running_transaction 1869 * and j_committing_transaction may be NULL. 1870 */ 1871 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1872 int partial_page) 1873 { 1874 transaction_t *transaction; 1875 struct journal_head *jh; 1876 int may_free = 1; 1877 1878 BUFFER_TRACE(bh, "entry"); 1879 1880 /* 1881 * It is safe to proceed here without the j_list_lock because the 1882 * buffers cannot be stolen by try_to_free_buffers as long as we are 1883 * holding the page lock. --sct 1884 */ 1885 1886 if (!buffer_jbd(bh)) 1887 goto zap_buffer_unlocked; 1888 1889 /* OK, we have data buffer in journaled mode */ 1890 write_lock(&journal->j_state_lock); 1891 jbd_lock_bh_state(bh); 1892 spin_lock(&journal->j_list_lock); 1893 1894 jh = jbd2_journal_grab_journal_head(bh); 1895 if (!jh) 1896 goto zap_buffer_no_jh; 1897 1898 /* 1899 * We cannot remove the buffer from checkpoint lists until the 1900 * transaction adding inode to orphan list (let's call it T) 1901 * is committed. Otherwise if the transaction changing the 1902 * buffer would be cleaned from the journal before T is 1903 * committed, a crash will cause that the correct contents of 1904 * the buffer will be lost. On the other hand we have to 1905 * clear the buffer dirty bit at latest at the moment when the 1906 * transaction marking the buffer as freed in the filesystem 1907 * structures is committed because from that moment on the 1908 * block can be reallocated and used by a different page. 1909 * Since the block hasn't been freed yet but the inode has 1910 * already been added to orphan list, it is safe for us to add 1911 * the buffer to BJ_Forget list of the newest transaction. 1912 * 1913 * Also we have to clear buffer_mapped flag of a truncated buffer 1914 * because the buffer_head may be attached to the page straddling 1915 * i_size (can happen only when blocksize < pagesize) and thus the 1916 * buffer_head can be reused when the file is extended again. So we end 1917 * up keeping around invalidated buffers attached to transactions' 1918 * BJ_Forget list just to stop checkpointing code from cleaning up 1919 * the transaction this buffer was modified in. 1920 */ 1921 transaction = jh->b_transaction; 1922 if (transaction == NULL) { 1923 /* First case: not on any transaction. If it 1924 * has no checkpoint link, then we can zap it: 1925 * it's a writeback-mode buffer so we don't care 1926 * if it hits disk safely. */ 1927 if (!jh->b_cp_transaction) { 1928 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1929 goto zap_buffer; 1930 } 1931 1932 if (!buffer_dirty(bh)) { 1933 /* bdflush has written it. We can drop it now */ 1934 goto zap_buffer; 1935 } 1936 1937 /* OK, it must be in the journal but still not 1938 * written fully to disk: it's metadata or 1939 * journaled data... */ 1940 1941 if (journal->j_running_transaction) { 1942 /* ... and once the current transaction has 1943 * committed, the buffer won't be needed any 1944 * longer. */ 1945 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1946 may_free = __dispose_buffer(jh, 1947 journal->j_running_transaction); 1948 goto zap_buffer; 1949 } else { 1950 /* There is no currently-running transaction. So the 1951 * orphan record which we wrote for this file must have 1952 * passed into commit. We must attach this buffer to 1953 * the committing transaction, if it exists. */ 1954 if (journal->j_committing_transaction) { 1955 JBUFFER_TRACE(jh, "give to committing trans"); 1956 may_free = __dispose_buffer(jh, 1957 journal->j_committing_transaction); 1958 goto zap_buffer; 1959 } else { 1960 /* The orphan record's transaction has 1961 * committed. We can cleanse this buffer */ 1962 clear_buffer_jbddirty(bh); 1963 goto zap_buffer; 1964 } 1965 } 1966 } else if (transaction == journal->j_committing_transaction) { 1967 JBUFFER_TRACE(jh, "on committing transaction"); 1968 /* 1969 * The buffer is committing, we simply cannot touch 1970 * it. If the page is straddling i_size we have to wait 1971 * for commit and try again. 1972 */ 1973 if (partial_page) { 1974 jbd2_journal_put_journal_head(jh); 1975 spin_unlock(&journal->j_list_lock); 1976 jbd_unlock_bh_state(bh); 1977 write_unlock(&journal->j_state_lock); 1978 return -EBUSY; 1979 } 1980 /* 1981 * OK, buffer won't be reachable after truncate. We just set 1982 * j_next_transaction to the running transaction (if there is 1983 * one) and mark buffer as freed so that commit code knows it 1984 * should clear dirty bits when it is done with the buffer. 1985 */ 1986 set_buffer_freed(bh); 1987 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1988 jh->b_next_transaction = journal->j_running_transaction; 1989 jbd2_journal_put_journal_head(jh); 1990 spin_unlock(&journal->j_list_lock); 1991 jbd_unlock_bh_state(bh); 1992 write_unlock(&journal->j_state_lock); 1993 return 0; 1994 } else { 1995 /* Good, the buffer belongs to the running transaction. 1996 * We are writing our own transaction's data, not any 1997 * previous one's, so it is safe to throw it away 1998 * (remember that we expect the filesystem to have set 1999 * i_size already for this truncate so recovery will not 2000 * expose the disk blocks we are discarding here.) */ 2001 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2002 JBUFFER_TRACE(jh, "on running transaction"); 2003 may_free = __dispose_buffer(jh, transaction); 2004 } 2005 2006 zap_buffer: 2007 /* 2008 * This is tricky. Although the buffer is truncated, it may be reused 2009 * if blocksize < pagesize and it is attached to the page straddling 2010 * EOF. Since the buffer might have been added to BJ_Forget list of the 2011 * running transaction, journal_get_write_access() won't clear 2012 * b_modified and credit accounting gets confused. So clear b_modified 2013 * here. 2014 */ 2015 jh->b_modified = 0; 2016 jbd2_journal_put_journal_head(jh); 2017 zap_buffer_no_jh: 2018 spin_unlock(&journal->j_list_lock); 2019 jbd_unlock_bh_state(bh); 2020 write_unlock(&journal->j_state_lock); 2021 zap_buffer_unlocked: 2022 clear_buffer_dirty(bh); 2023 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2024 clear_buffer_mapped(bh); 2025 clear_buffer_req(bh); 2026 clear_buffer_new(bh); 2027 clear_buffer_delay(bh); 2028 clear_buffer_unwritten(bh); 2029 bh->b_bdev = NULL; 2030 return may_free; 2031 } 2032 2033 /** 2034 * void jbd2_journal_invalidatepage() 2035 * @journal: journal to use for flush... 2036 * @page: page to flush 2037 * @offset: length of page to invalidate. 2038 * 2039 * Reap page buffers containing data after offset in page. Can return -EBUSY 2040 * if buffers are part of the committing transaction and the page is straddling 2041 * i_size. Caller then has to wait for current commit and try again. 2042 */ 2043 int jbd2_journal_invalidatepage(journal_t *journal, 2044 struct page *page, 2045 unsigned long offset) 2046 { 2047 struct buffer_head *head, *bh, *next; 2048 unsigned int curr_off = 0; 2049 int may_free = 1; 2050 int ret = 0; 2051 2052 if (!PageLocked(page)) 2053 BUG(); 2054 if (!page_has_buffers(page)) 2055 return 0; 2056 2057 /* We will potentially be playing with lists other than just the 2058 * data lists (especially for journaled data mode), so be 2059 * cautious in our locking. */ 2060 2061 head = bh = page_buffers(page); 2062 do { 2063 unsigned int next_off = curr_off + bh->b_size; 2064 next = bh->b_this_page; 2065 2066 if (offset <= curr_off) { 2067 /* This block is wholly outside the truncation point */ 2068 lock_buffer(bh); 2069 ret = journal_unmap_buffer(journal, bh, offset > 0); 2070 unlock_buffer(bh); 2071 if (ret < 0) 2072 return ret; 2073 may_free &= ret; 2074 } 2075 curr_off = next_off; 2076 bh = next; 2077 2078 } while (bh != head); 2079 2080 if (!offset) { 2081 if (may_free && try_to_free_buffers(page)) 2082 J_ASSERT(!page_has_buffers(page)); 2083 } 2084 return 0; 2085 } 2086 2087 /* 2088 * File a buffer on the given transaction list. 2089 */ 2090 void __jbd2_journal_file_buffer(struct journal_head *jh, 2091 transaction_t *transaction, int jlist) 2092 { 2093 struct journal_head **list = NULL; 2094 int was_dirty = 0; 2095 struct buffer_head *bh = jh2bh(jh); 2096 2097 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2098 assert_spin_locked(&transaction->t_journal->j_list_lock); 2099 2100 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2101 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2102 jh->b_transaction == NULL); 2103 2104 if (jh->b_transaction && jh->b_jlist == jlist) 2105 return; 2106 2107 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2108 jlist == BJ_Shadow || jlist == BJ_Forget) { 2109 /* 2110 * For metadata buffers, we track dirty bit in buffer_jbddirty 2111 * instead of buffer_dirty. We should not see a dirty bit set 2112 * here because we clear it in do_get_write_access but e.g. 2113 * tune2fs can modify the sb and set the dirty bit at any time 2114 * so we try to gracefully handle that. 2115 */ 2116 if (buffer_dirty(bh)) 2117 warn_dirty_buffer(bh); 2118 if (test_clear_buffer_dirty(bh) || 2119 test_clear_buffer_jbddirty(bh)) 2120 was_dirty = 1; 2121 } 2122 2123 if (jh->b_transaction) 2124 __jbd2_journal_temp_unlink_buffer(jh); 2125 else 2126 jbd2_journal_grab_journal_head(bh); 2127 jh->b_transaction = transaction; 2128 2129 switch (jlist) { 2130 case BJ_None: 2131 J_ASSERT_JH(jh, !jh->b_committed_data); 2132 J_ASSERT_JH(jh, !jh->b_frozen_data); 2133 return; 2134 case BJ_Metadata: 2135 transaction->t_nr_buffers++; 2136 list = &transaction->t_buffers; 2137 break; 2138 case BJ_Forget: 2139 list = &transaction->t_forget; 2140 break; 2141 case BJ_IO: 2142 list = &transaction->t_iobuf_list; 2143 break; 2144 case BJ_Shadow: 2145 list = &transaction->t_shadow_list; 2146 break; 2147 case BJ_LogCtl: 2148 list = &transaction->t_log_list; 2149 break; 2150 case BJ_Reserved: 2151 list = &transaction->t_reserved_list; 2152 break; 2153 } 2154 2155 __blist_add_buffer(list, jh); 2156 jh->b_jlist = jlist; 2157 2158 if (was_dirty) 2159 set_buffer_jbddirty(bh); 2160 } 2161 2162 void jbd2_journal_file_buffer(struct journal_head *jh, 2163 transaction_t *transaction, int jlist) 2164 { 2165 jbd_lock_bh_state(jh2bh(jh)); 2166 spin_lock(&transaction->t_journal->j_list_lock); 2167 __jbd2_journal_file_buffer(jh, transaction, jlist); 2168 spin_unlock(&transaction->t_journal->j_list_lock); 2169 jbd_unlock_bh_state(jh2bh(jh)); 2170 } 2171 2172 /* 2173 * Remove a buffer from its current buffer list in preparation for 2174 * dropping it from its current transaction entirely. If the buffer has 2175 * already started to be used by a subsequent transaction, refile the 2176 * buffer on that transaction's metadata list. 2177 * 2178 * Called under j_list_lock 2179 * Called under jbd_lock_bh_state(jh2bh(jh)) 2180 * 2181 * jh and bh may be already free when this function returns 2182 */ 2183 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2184 { 2185 int was_dirty, jlist; 2186 struct buffer_head *bh = jh2bh(jh); 2187 2188 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2189 if (jh->b_transaction) 2190 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2191 2192 /* If the buffer is now unused, just drop it. */ 2193 if (jh->b_next_transaction == NULL) { 2194 __jbd2_journal_unfile_buffer(jh); 2195 return; 2196 } 2197 2198 /* 2199 * It has been modified by a later transaction: add it to the new 2200 * transaction's metadata list. 2201 */ 2202 2203 was_dirty = test_clear_buffer_jbddirty(bh); 2204 __jbd2_journal_temp_unlink_buffer(jh); 2205 /* 2206 * We set b_transaction here because b_next_transaction will inherit 2207 * our jh reference and thus __jbd2_journal_file_buffer() must not 2208 * take a new one. 2209 */ 2210 jh->b_transaction = jh->b_next_transaction; 2211 jh->b_next_transaction = NULL; 2212 if (buffer_freed(bh)) 2213 jlist = BJ_Forget; 2214 else if (jh->b_modified) 2215 jlist = BJ_Metadata; 2216 else 2217 jlist = BJ_Reserved; 2218 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2219 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2220 2221 if (was_dirty) 2222 set_buffer_jbddirty(bh); 2223 } 2224 2225 /* 2226 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2227 * bh reference so that we can safely unlock bh. 2228 * 2229 * The jh and bh may be freed by this call. 2230 */ 2231 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2232 { 2233 struct buffer_head *bh = jh2bh(jh); 2234 2235 /* Get reference so that buffer cannot be freed before we unlock it */ 2236 get_bh(bh); 2237 jbd_lock_bh_state(bh); 2238 spin_lock(&journal->j_list_lock); 2239 __jbd2_journal_refile_buffer(jh); 2240 jbd_unlock_bh_state(bh); 2241 spin_unlock(&journal->j_list_lock); 2242 __brelse(bh); 2243 } 2244 2245 /* 2246 * File inode in the inode list of the handle's transaction 2247 */ 2248 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2249 { 2250 transaction_t *transaction = handle->h_transaction; 2251 journal_t *journal = transaction->t_journal; 2252 2253 if (is_handle_aborted(handle)) 2254 return -EIO; 2255 2256 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2257 transaction->t_tid); 2258 2259 /* 2260 * First check whether inode isn't already on the transaction's 2261 * lists without taking the lock. Note that this check is safe 2262 * without the lock as we cannot race with somebody removing inode 2263 * from the transaction. The reason is that we remove inode from the 2264 * transaction only in journal_release_jbd_inode() and when we commit 2265 * the transaction. We are guarded from the first case by holding 2266 * a reference to the inode. We are safe against the second case 2267 * because if jinode->i_transaction == transaction, commit code 2268 * cannot touch the transaction because we hold reference to it, 2269 * and if jinode->i_next_transaction == transaction, commit code 2270 * will only file the inode where we want it. 2271 */ 2272 if (jinode->i_transaction == transaction || 2273 jinode->i_next_transaction == transaction) 2274 return 0; 2275 2276 spin_lock(&journal->j_list_lock); 2277 2278 if (jinode->i_transaction == transaction || 2279 jinode->i_next_transaction == transaction) 2280 goto done; 2281 2282 /* 2283 * We only ever set this variable to 1 so the test is safe. Since 2284 * t_need_data_flush is likely to be set, we do the test to save some 2285 * cacheline bouncing 2286 */ 2287 if (!transaction->t_need_data_flush) 2288 transaction->t_need_data_flush = 1; 2289 /* On some different transaction's list - should be 2290 * the committing one */ 2291 if (jinode->i_transaction) { 2292 J_ASSERT(jinode->i_next_transaction == NULL); 2293 J_ASSERT(jinode->i_transaction == 2294 journal->j_committing_transaction); 2295 jinode->i_next_transaction = transaction; 2296 goto done; 2297 } 2298 /* Not on any transaction list... */ 2299 J_ASSERT(!jinode->i_next_transaction); 2300 jinode->i_transaction = transaction; 2301 list_add(&jinode->i_list, &transaction->t_inode_list); 2302 done: 2303 spin_unlock(&journal->j_list_lock); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * File truncate and transaction commit interact with each other in a 2310 * non-trivial way. If a transaction writing data block A is 2311 * committing, we cannot discard the data by truncate until we have 2312 * written them. Otherwise if we crashed after the transaction with 2313 * write has committed but before the transaction with truncate has 2314 * committed, we could see stale data in block A. This function is a 2315 * helper to solve this problem. It starts writeout of the truncated 2316 * part in case it is in the committing transaction. 2317 * 2318 * Filesystem code must call this function when inode is journaled in 2319 * ordered mode before truncation happens and after the inode has been 2320 * placed on orphan list with the new inode size. The second condition 2321 * avoids the race that someone writes new data and we start 2322 * committing the transaction after this function has been called but 2323 * before a transaction for truncate is started (and furthermore it 2324 * allows us to optimize the case where the addition to orphan list 2325 * happens in the same transaction as write --- we don't have to write 2326 * any data in such case). 2327 */ 2328 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2329 struct jbd2_inode *jinode, 2330 loff_t new_size) 2331 { 2332 transaction_t *inode_trans, *commit_trans; 2333 int ret = 0; 2334 2335 /* This is a quick check to avoid locking if not necessary */ 2336 if (!jinode->i_transaction) 2337 goto out; 2338 /* Locks are here just to force reading of recent values, it is 2339 * enough that the transaction was not committing before we started 2340 * a transaction adding the inode to orphan list */ 2341 read_lock(&journal->j_state_lock); 2342 commit_trans = journal->j_committing_transaction; 2343 read_unlock(&journal->j_state_lock); 2344 spin_lock(&journal->j_list_lock); 2345 inode_trans = jinode->i_transaction; 2346 spin_unlock(&journal->j_list_lock); 2347 if (inode_trans == commit_trans) { 2348 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2349 new_size, LLONG_MAX); 2350 if (ret) 2351 jbd2_journal_abort(journal, ret); 2352 } 2353 out: 2354 return ret; 2355 } 2356