1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) { 199 read_unlock(&journal->j_state_lock); 200 return; 201 } 202 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 203 TASK_UNINTERRUPTIBLE); 204 read_unlock(&journal->j_state_lock); 205 /* 206 * We don't call jbd2_might_wait_for_commit() here as there's no 207 * waiting for outstanding handles happening anymore in T_SWITCH state 208 * and handling of reserved handles actually relies on that for 209 * correctness. 210 */ 211 schedule(); 212 finish_wait(&journal->j_wait_transaction_locked, &wait); 213 } 214 215 static void sub_reserved_credits(journal_t *journal, int blocks) 216 { 217 atomic_sub(blocks, &journal->j_reserved_credits); 218 wake_up(&journal->j_wait_reserved); 219 } 220 221 /* 222 * Wait until we can add credits for handle to the running transaction. Called 223 * with j_state_lock held for reading. Returns 0 if handle joined the running 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 225 * caller must retry. 226 */ 227 static int add_transaction_credits(journal_t *journal, int blocks, 228 int rsv_blocks) 229 { 230 transaction_t *t = journal->j_running_transaction; 231 int needed; 232 int total = blocks + rsv_blocks; 233 234 /* 235 * If the current transaction is locked down for commit, wait 236 * for the lock to be released. 237 */ 238 if (t->t_state != T_RUNNING) { 239 WARN_ON_ONCE(t->t_state >= T_FLUSH); 240 wait_transaction_locked(journal); 241 return 1; 242 } 243 244 /* 245 * If there is not enough space left in the log to write all 246 * potential buffers requested by this operation, we need to 247 * stall pending a log checkpoint to free some more log space. 248 */ 249 needed = atomic_add_return(total, &t->t_outstanding_credits); 250 if (needed > journal->j_max_transaction_buffers) { 251 /* 252 * If the current transaction is already too large, 253 * then start to commit it: we can then go back and 254 * attach this handle to a new transaction. 255 */ 256 atomic_sub(total, &t->t_outstanding_credits); 257 258 /* 259 * Is the number of reserved credits in the current transaction too 260 * big to fit this handle? Wait until reserved credits are freed. 261 */ 262 if (atomic_read(&journal->j_reserved_credits) + total > 263 journal->j_max_transaction_buffers) { 264 read_unlock(&journal->j_state_lock); 265 jbd2_might_wait_for_commit(journal); 266 wait_event(journal->j_wait_reserved, 267 atomic_read(&journal->j_reserved_credits) + total <= 268 journal->j_max_transaction_buffers); 269 return 1; 270 } 271 272 wait_transaction_locked(journal); 273 return 1; 274 } 275 276 /* 277 * The commit code assumes that it can get enough log space 278 * without forcing a checkpoint. This is *critical* for 279 * correctness: a checkpoint of a buffer which is also 280 * associated with a committing transaction creates a deadlock, 281 * so commit simply cannot force through checkpoints. 282 * 283 * We must therefore ensure the necessary space in the journal 284 * *before* starting to dirty potentially checkpointed buffers 285 * in the new transaction. 286 */ 287 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 288 atomic_sub(total, &t->t_outstanding_credits); 289 read_unlock(&journal->j_state_lock); 290 jbd2_might_wait_for_commit(journal); 291 write_lock(&journal->j_state_lock); 292 if (jbd2_log_space_left(journal) < 293 journal->j_max_transaction_buffers) 294 __jbd2_log_wait_for_space(journal); 295 write_unlock(&journal->j_state_lock); 296 return 1; 297 } 298 299 /* No reservation? We are done... */ 300 if (!rsv_blocks) 301 return 0; 302 303 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 304 /* We allow at most half of a transaction to be reserved */ 305 if (needed > journal->j_max_transaction_buffers / 2) { 306 sub_reserved_credits(journal, rsv_blocks); 307 atomic_sub(total, &t->t_outstanding_credits); 308 read_unlock(&journal->j_state_lock); 309 jbd2_might_wait_for_commit(journal); 310 wait_event(journal->j_wait_reserved, 311 atomic_read(&journal->j_reserved_credits) + rsv_blocks 312 <= journal->j_max_transaction_buffers / 2); 313 return 1; 314 } 315 return 0; 316 } 317 318 /* 319 * start_this_handle: Given a handle, deal with any locking or stalling 320 * needed to make sure that there is enough journal space for the handle 321 * to begin. Attach the handle to a transaction and set up the 322 * transaction's buffer credits. 323 */ 324 325 static int start_this_handle(journal_t *journal, handle_t *handle, 326 gfp_t gfp_mask) 327 { 328 transaction_t *transaction, *new_transaction = NULL; 329 int blocks = handle->h_total_credits; 330 int rsv_blocks = 0; 331 unsigned long ts = jiffies; 332 333 if (handle->h_rsv_handle) 334 rsv_blocks = handle->h_rsv_handle->h_total_credits; 335 336 /* 337 * Limit the number of reserved credits to 1/2 of maximum transaction 338 * size and limit the number of total credits to not exceed maximum 339 * transaction size per operation. 340 */ 341 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 342 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 343 printk(KERN_ERR "JBD2: %s wants too many credits " 344 "credits:%d rsv_credits:%d max:%d\n", 345 current->comm, blocks, rsv_blocks, 346 journal->j_max_transaction_buffers); 347 WARN_ON(1); 348 return -ENOSPC; 349 } 350 351 alloc_transaction: 352 if (!journal->j_running_transaction) { 353 /* 354 * If __GFP_FS is not present, then we may be being called from 355 * inside the fs writeback layer, so we MUST NOT fail. 356 */ 357 if ((gfp_mask & __GFP_FS) == 0) 358 gfp_mask |= __GFP_NOFAIL; 359 new_transaction = kmem_cache_zalloc(transaction_cache, 360 gfp_mask); 361 if (!new_transaction) 362 return -ENOMEM; 363 } 364 365 jbd_debug(3, "New handle %p going live.\n", handle); 366 367 /* 368 * We need to hold j_state_lock until t_updates has been incremented, 369 * for proper journal barrier handling 370 */ 371 repeat: 372 read_lock(&journal->j_state_lock); 373 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 374 if (is_journal_aborted(journal) || 375 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 376 read_unlock(&journal->j_state_lock); 377 jbd2_journal_free_transaction(new_transaction); 378 return -EROFS; 379 } 380 381 /* 382 * Wait on the journal's transaction barrier if necessary. Specifically 383 * we allow reserved handles to proceed because otherwise commit could 384 * deadlock on page writeback not being able to complete. 385 */ 386 if (!handle->h_reserved && journal->j_barrier_count) { 387 read_unlock(&journal->j_state_lock); 388 wait_event(journal->j_wait_transaction_locked, 389 journal->j_barrier_count == 0); 390 goto repeat; 391 } 392 393 if (!journal->j_running_transaction) { 394 read_unlock(&journal->j_state_lock); 395 if (!new_transaction) 396 goto alloc_transaction; 397 write_lock(&journal->j_state_lock); 398 if (!journal->j_running_transaction && 399 (handle->h_reserved || !journal->j_barrier_count)) { 400 jbd2_get_transaction(journal, new_transaction); 401 new_transaction = NULL; 402 } 403 write_unlock(&journal->j_state_lock); 404 goto repeat; 405 } 406 407 transaction = journal->j_running_transaction; 408 409 if (!handle->h_reserved) { 410 /* We may have dropped j_state_lock - restart in that case */ 411 if (add_transaction_credits(journal, blocks, rsv_blocks)) 412 goto repeat; 413 } else { 414 /* 415 * We have handle reserved so we are allowed to join T_LOCKED 416 * transaction and we don't have to check for transaction size 417 * and journal space. But we still have to wait while running 418 * transaction is being switched to a committing one as it 419 * won't wait for any handles anymore. 420 */ 421 if (transaction->t_state == T_SWITCH) { 422 wait_transaction_switching(journal); 423 goto repeat; 424 } 425 sub_reserved_credits(journal, blocks); 426 handle->h_reserved = 0; 427 } 428 429 /* OK, account for the buffers that this operation expects to 430 * use and add the handle to the running transaction. 431 */ 432 update_t_max_wait(transaction, ts); 433 handle->h_transaction = transaction; 434 handle->h_requested_credits = blocks; 435 handle->h_revoke_credits_requested = handle->h_revoke_credits; 436 handle->h_start_jiffies = jiffies; 437 atomic_inc(&transaction->t_updates); 438 atomic_inc(&transaction->t_handle_count); 439 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 440 handle, blocks, 441 atomic_read(&transaction->t_outstanding_credits), 442 jbd2_log_space_left(journal)); 443 read_unlock(&journal->j_state_lock); 444 current->journal_info = handle; 445 446 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 447 jbd2_journal_free_transaction(new_transaction); 448 /* 449 * Ensure that no allocations done while the transaction is open are 450 * going to recurse back to the fs layer. 451 */ 452 handle->saved_alloc_context = memalloc_nofs_save(); 453 return 0; 454 } 455 456 /* Allocate a new handle. This should probably be in a slab... */ 457 static handle_t *new_handle(int nblocks) 458 { 459 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 460 if (!handle) 461 return NULL; 462 handle->h_total_credits = nblocks; 463 handle->h_ref = 1; 464 465 return handle; 466 } 467 468 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 469 int revoke_records, gfp_t gfp_mask, 470 unsigned int type, unsigned int line_no) 471 { 472 handle_t *handle = journal_current_handle(); 473 int err; 474 475 if (!journal) 476 return ERR_PTR(-EROFS); 477 478 if (handle) { 479 J_ASSERT(handle->h_transaction->t_journal == journal); 480 handle->h_ref++; 481 return handle; 482 } 483 484 nblocks += DIV_ROUND_UP(revoke_records, 485 journal->j_revoke_records_per_block); 486 handle = new_handle(nblocks); 487 if (!handle) 488 return ERR_PTR(-ENOMEM); 489 if (rsv_blocks) { 490 handle_t *rsv_handle; 491 492 rsv_handle = new_handle(rsv_blocks); 493 if (!rsv_handle) { 494 jbd2_free_handle(handle); 495 return ERR_PTR(-ENOMEM); 496 } 497 rsv_handle->h_reserved = 1; 498 rsv_handle->h_journal = journal; 499 handle->h_rsv_handle = rsv_handle; 500 } 501 handle->h_revoke_credits = revoke_records; 502 503 err = start_this_handle(journal, handle, gfp_mask); 504 if (err < 0) { 505 if (handle->h_rsv_handle) 506 jbd2_free_handle(handle->h_rsv_handle); 507 jbd2_free_handle(handle); 508 return ERR_PTR(err); 509 } 510 handle->h_type = type; 511 handle->h_line_no = line_no; 512 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 513 handle->h_transaction->t_tid, type, 514 line_no, nblocks); 515 516 return handle; 517 } 518 EXPORT_SYMBOL(jbd2__journal_start); 519 520 521 /** 522 * jbd2_journal_start() - Obtain a new handle. 523 * @journal: Journal to start transaction on. 524 * @nblocks: number of block buffer we might modify 525 * 526 * We make sure that the transaction can guarantee at least nblocks of 527 * modified buffers in the log. We block until the log can guarantee 528 * that much space. Additionally, if rsv_blocks > 0, we also create another 529 * handle with rsv_blocks reserved blocks in the journal. This handle is 530 * stored in h_rsv_handle. It is not attached to any particular transaction 531 * and thus doesn't block transaction commit. If the caller uses this reserved 532 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 533 * on the parent handle will dispose the reserved one. Reserved handle has to 534 * be converted to a normal handle using jbd2_journal_start_reserved() before 535 * it can be used. 536 * 537 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 538 * on failure. 539 */ 540 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 541 { 542 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 543 } 544 EXPORT_SYMBOL(jbd2_journal_start); 545 546 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 547 { 548 journal_t *journal = handle->h_journal; 549 550 WARN_ON(!handle->h_reserved); 551 sub_reserved_credits(journal, handle->h_total_credits); 552 if (t) 553 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 554 } 555 556 void jbd2_journal_free_reserved(handle_t *handle) 557 { 558 journal_t *journal = handle->h_journal; 559 560 /* Get j_state_lock to pin running transaction if it exists */ 561 read_lock(&journal->j_state_lock); 562 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 563 read_unlock(&journal->j_state_lock); 564 jbd2_free_handle(handle); 565 } 566 EXPORT_SYMBOL(jbd2_journal_free_reserved); 567 568 /** 569 * jbd2_journal_start_reserved() - start reserved handle 570 * @handle: handle to start 571 * @type: for handle statistics 572 * @line_no: for handle statistics 573 * 574 * Start handle that has been previously reserved with jbd2_journal_reserve(). 575 * This attaches @handle to the running transaction (or creates one if there's 576 * not transaction running). Unlike jbd2_journal_start() this function cannot 577 * block on journal commit, checkpointing, or similar stuff. It can block on 578 * memory allocation or frozen journal though. 579 * 580 * Return 0 on success, non-zero on error - handle is freed in that case. 581 */ 582 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 583 unsigned int line_no) 584 { 585 journal_t *journal = handle->h_journal; 586 int ret = -EIO; 587 588 if (WARN_ON(!handle->h_reserved)) { 589 /* Someone passed in normal handle? Just stop it. */ 590 jbd2_journal_stop(handle); 591 return ret; 592 } 593 /* 594 * Usefulness of mixing of reserved and unreserved handles is 595 * questionable. So far nobody seems to need it so just error out. 596 */ 597 if (WARN_ON(current->journal_info)) { 598 jbd2_journal_free_reserved(handle); 599 return ret; 600 } 601 602 handle->h_journal = NULL; 603 /* 604 * GFP_NOFS is here because callers are likely from writeback or 605 * similarly constrained call sites 606 */ 607 ret = start_this_handle(journal, handle, GFP_NOFS); 608 if (ret < 0) { 609 handle->h_journal = journal; 610 jbd2_journal_free_reserved(handle); 611 return ret; 612 } 613 handle->h_type = type; 614 handle->h_line_no = line_no; 615 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 616 handle->h_transaction->t_tid, type, 617 line_no, handle->h_total_credits); 618 return 0; 619 } 620 EXPORT_SYMBOL(jbd2_journal_start_reserved); 621 622 /** 623 * jbd2_journal_extend() - extend buffer credits. 624 * @handle: handle to 'extend' 625 * @nblocks: nr blocks to try to extend by. 626 * @revoke_records: number of revoke records to try to extend by. 627 * 628 * Some transactions, such as large extends and truncates, can be done 629 * atomically all at once or in several stages. The operation requests 630 * a credit for a number of buffer modifications in advance, but can 631 * extend its credit if it needs more. 632 * 633 * jbd2_journal_extend tries to give the running handle more buffer credits. 634 * It does not guarantee that allocation - this is a best-effort only. 635 * The calling process MUST be able to deal cleanly with a failure to 636 * extend here. 637 * 638 * Return 0 on success, non-zero on failure. 639 * 640 * return code < 0 implies an error 641 * return code > 0 implies normal transaction-full status. 642 */ 643 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 644 { 645 transaction_t *transaction = handle->h_transaction; 646 journal_t *journal; 647 int result; 648 int wanted; 649 650 if (is_handle_aborted(handle)) 651 return -EROFS; 652 journal = transaction->t_journal; 653 654 result = 1; 655 656 read_lock(&journal->j_state_lock); 657 658 /* Don't extend a locked-down transaction! */ 659 if (transaction->t_state != T_RUNNING) { 660 jbd_debug(3, "denied handle %p %d blocks: " 661 "transaction not running\n", handle, nblocks); 662 goto error_out; 663 } 664 665 nblocks += DIV_ROUND_UP( 666 handle->h_revoke_credits_requested + revoke_records, 667 journal->j_revoke_records_per_block) - 668 DIV_ROUND_UP( 669 handle->h_revoke_credits_requested, 670 journal->j_revoke_records_per_block); 671 spin_lock(&transaction->t_handle_lock); 672 wanted = atomic_add_return(nblocks, 673 &transaction->t_outstanding_credits); 674 675 if (wanted > journal->j_max_transaction_buffers) { 676 jbd_debug(3, "denied handle %p %d blocks: " 677 "transaction too large\n", handle, nblocks); 678 atomic_sub(nblocks, &transaction->t_outstanding_credits); 679 goto unlock; 680 } 681 682 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 683 transaction->t_tid, 684 handle->h_type, handle->h_line_no, 685 handle->h_total_credits, 686 nblocks); 687 688 handle->h_total_credits += nblocks; 689 handle->h_requested_credits += nblocks; 690 handle->h_revoke_credits += revoke_records; 691 handle->h_revoke_credits_requested += revoke_records; 692 result = 0; 693 694 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 695 unlock: 696 spin_unlock(&transaction->t_handle_lock); 697 error_out: 698 read_unlock(&journal->j_state_lock); 699 return result; 700 } 701 702 static void stop_this_handle(handle_t *handle) 703 { 704 transaction_t *transaction = handle->h_transaction; 705 journal_t *journal = transaction->t_journal; 706 int revokes; 707 708 J_ASSERT(journal_current_handle() == handle); 709 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 710 current->journal_info = NULL; 711 /* 712 * Subtract necessary revoke descriptor blocks from handle credits. We 713 * take care to account only for revoke descriptor blocks the 714 * transaction will really need as large sequences of transactions with 715 * small numbers of revokes are relatively common. 716 */ 717 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 718 if (revokes) { 719 int t_revokes, revoke_descriptors; 720 int rr_per_blk = journal->j_revoke_records_per_block; 721 722 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 723 > handle->h_total_credits); 724 t_revokes = atomic_add_return(revokes, 725 &transaction->t_outstanding_revokes); 726 revoke_descriptors = 727 DIV_ROUND_UP(t_revokes, rr_per_blk) - 728 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 729 handle->h_total_credits -= revoke_descriptors; 730 } 731 atomic_sub(handle->h_total_credits, 732 &transaction->t_outstanding_credits); 733 if (handle->h_rsv_handle) 734 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 735 transaction); 736 if (atomic_dec_and_test(&transaction->t_updates)) 737 wake_up(&journal->j_wait_updates); 738 739 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 740 /* 741 * Scope of the GFP_NOFS context is over here and so we can restore the 742 * original alloc context. 743 */ 744 memalloc_nofs_restore(handle->saved_alloc_context); 745 } 746 747 /** 748 * jbd2__journal_restart() - restart a handle . 749 * @handle: handle to restart 750 * @nblocks: nr credits requested 751 * @revoke_records: number of revoke record credits requested 752 * @gfp_mask: memory allocation flags (for start_this_handle) 753 * 754 * Restart a handle for a multi-transaction filesystem 755 * operation. 756 * 757 * If the jbd2_journal_extend() call above fails to grant new buffer credits 758 * to a running handle, a call to jbd2_journal_restart will commit the 759 * handle's transaction so far and reattach the handle to a new 760 * transaction capable of guaranteeing the requested number of 761 * credits. We preserve reserved handle if there's any attached to the 762 * passed in handle. 763 */ 764 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 765 gfp_t gfp_mask) 766 { 767 transaction_t *transaction = handle->h_transaction; 768 journal_t *journal; 769 tid_t tid; 770 int need_to_start; 771 int ret; 772 773 /* If we've had an abort of any type, don't even think about 774 * actually doing the restart! */ 775 if (is_handle_aborted(handle)) 776 return 0; 777 journal = transaction->t_journal; 778 tid = transaction->t_tid; 779 780 /* 781 * First unlink the handle from its current transaction, and start the 782 * commit on that. 783 */ 784 jbd_debug(2, "restarting handle %p\n", handle); 785 stop_this_handle(handle); 786 handle->h_transaction = NULL; 787 788 /* 789 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 790 * get rid of pointless j_state_lock traffic like this. 791 */ 792 read_lock(&journal->j_state_lock); 793 need_to_start = !tid_geq(journal->j_commit_request, tid); 794 read_unlock(&journal->j_state_lock); 795 if (need_to_start) 796 jbd2_log_start_commit(journal, tid); 797 handle->h_total_credits = nblocks + 798 DIV_ROUND_UP(revoke_records, 799 journal->j_revoke_records_per_block); 800 handle->h_revoke_credits = revoke_records; 801 ret = start_this_handle(journal, handle, gfp_mask); 802 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 803 ret ? 0 : handle->h_transaction->t_tid, 804 handle->h_type, handle->h_line_no, 805 handle->h_total_credits); 806 return ret; 807 } 808 EXPORT_SYMBOL(jbd2__journal_restart); 809 810 811 int jbd2_journal_restart(handle_t *handle, int nblocks) 812 { 813 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 814 } 815 EXPORT_SYMBOL(jbd2_journal_restart); 816 817 /** 818 * jbd2_journal_lock_updates () - establish a transaction barrier. 819 * @journal: Journal to establish a barrier on. 820 * 821 * This locks out any further updates from being started, and blocks 822 * until all existing updates have completed, returning only once the 823 * journal is in a quiescent state with no updates running. 824 * 825 * The journal lock should not be held on entry. 826 */ 827 void jbd2_journal_lock_updates(journal_t *journal) 828 { 829 DEFINE_WAIT(wait); 830 831 jbd2_might_wait_for_commit(journal); 832 833 write_lock(&journal->j_state_lock); 834 ++journal->j_barrier_count; 835 836 /* Wait until there are no reserved handles */ 837 if (atomic_read(&journal->j_reserved_credits)) { 838 write_unlock(&journal->j_state_lock); 839 wait_event(journal->j_wait_reserved, 840 atomic_read(&journal->j_reserved_credits) == 0); 841 write_lock(&journal->j_state_lock); 842 } 843 844 /* Wait until there are no running updates */ 845 while (1) { 846 transaction_t *transaction = journal->j_running_transaction; 847 848 if (!transaction) 849 break; 850 851 spin_lock(&transaction->t_handle_lock); 852 prepare_to_wait(&journal->j_wait_updates, &wait, 853 TASK_UNINTERRUPTIBLE); 854 if (!atomic_read(&transaction->t_updates)) { 855 spin_unlock(&transaction->t_handle_lock); 856 finish_wait(&journal->j_wait_updates, &wait); 857 break; 858 } 859 spin_unlock(&transaction->t_handle_lock); 860 write_unlock(&journal->j_state_lock); 861 schedule(); 862 finish_wait(&journal->j_wait_updates, &wait); 863 write_lock(&journal->j_state_lock); 864 } 865 write_unlock(&journal->j_state_lock); 866 867 /* 868 * We have now established a barrier against other normal updates, but 869 * we also need to barrier against other jbd2_journal_lock_updates() calls 870 * to make sure that we serialise special journal-locked operations 871 * too. 872 */ 873 mutex_lock(&journal->j_barrier); 874 } 875 876 /** 877 * jbd2_journal_unlock_updates () - release barrier 878 * @journal: Journal to release the barrier on. 879 * 880 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 881 * 882 * Should be called without the journal lock held. 883 */ 884 void jbd2_journal_unlock_updates (journal_t *journal) 885 { 886 J_ASSERT(journal->j_barrier_count != 0); 887 888 mutex_unlock(&journal->j_barrier); 889 write_lock(&journal->j_state_lock); 890 --journal->j_barrier_count; 891 write_unlock(&journal->j_state_lock); 892 wake_up(&journal->j_wait_transaction_locked); 893 } 894 895 static void warn_dirty_buffer(struct buffer_head *bh) 896 { 897 printk(KERN_WARNING 898 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 899 "There's a risk of filesystem corruption in case of system " 900 "crash.\n", 901 bh->b_bdev, (unsigned long long)bh->b_blocknr); 902 } 903 904 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 905 static void jbd2_freeze_jh_data(struct journal_head *jh) 906 { 907 struct page *page; 908 int offset; 909 char *source; 910 struct buffer_head *bh = jh2bh(jh); 911 912 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 913 page = bh->b_page; 914 offset = offset_in_page(bh->b_data); 915 source = kmap_atomic(page); 916 /* Fire data frozen trigger just before we copy the data */ 917 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 918 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 919 kunmap_atomic(source); 920 921 /* 922 * Now that the frozen data is saved off, we need to store any matching 923 * triggers. 924 */ 925 jh->b_frozen_triggers = jh->b_triggers; 926 } 927 928 /* 929 * If the buffer is already part of the current transaction, then there 930 * is nothing we need to do. If it is already part of a prior 931 * transaction which we are still committing to disk, then we need to 932 * make sure that we do not overwrite the old copy: we do copy-out to 933 * preserve the copy going to disk. We also account the buffer against 934 * the handle's metadata buffer credits (unless the buffer is already 935 * part of the transaction, that is). 936 * 937 */ 938 static int 939 do_get_write_access(handle_t *handle, struct journal_head *jh, 940 int force_copy) 941 { 942 struct buffer_head *bh; 943 transaction_t *transaction = handle->h_transaction; 944 journal_t *journal; 945 int error; 946 char *frozen_buffer = NULL; 947 unsigned long start_lock, time_lock; 948 949 journal = transaction->t_journal; 950 951 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 952 953 JBUFFER_TRACE(jh, "entry"); 954 repeat: 955 bh = jh2bh(jh); 956 957 /* @@@ Need to check for errors here at some point. */ 958 959 start_lock = jiffies; 960 lock_buffer(bh); 961 spin_lock(&jh->b_state_lock); 962 963 /* If it takes too long to lock the buffer, trace it */ 964 time_lock = jbd2_time_diff(start_lock, jiffies); 965 if (time_lock > HZ/10) 966 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 967 jiffies_to_msecs(time_lock)); 968 969 /* We now hold the buffer lock so it is safe to query the buffer 970 * state. Is the buffer dirty? 971 * 972 * If so, there are two possibilities. The buffer may be 973 * non-journaled, and undergoing a quite legitimate writeback. 974 * Otherwise, it is journaled, and we don't expect dirty buffers 975 * in that state (the buffers should be marked JBD_Dirty 976 * instead.) So either the IO is being done under our own 977 * control and this is a bug, or it's a third party IO such as 978 * dump(8) (which may leave the buffer scheduled for read --- 979 * ie. locked but not dirty) or tune2fs (which may actually have 980 * the buffer dirtied, ugh.) */ 981 982 if (buffer_dirty(bh)) { 983 /* 984 * First question: is this buffer already part of the current 985 * transaction or the existing committing transaction? 986 */ 987 if (jh->b_transaction) { 988 J_ASSERT_JH(jh, 989 jh->b_transaction == transaction || 990 jh->b_transaction == 991 journal->j_committing_transaction); 992 if (jh->b_next_transaction) 993 J_ASSERT_JH(jh, jh->b_next_transaction == 994 transaction); 995 warn_dirty_buffer(bh); 996 } 997 /* 998 * In any case we need to clean the dirty flag and we must 999 * do it under the buffer lock to be sure we don't race 1000 * with running write-out. 1001 */ 1002 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1003 clear_buffer_dirty(bh); 1004 set_buffer_jbddirty(bh); 1005 } 1006 1007 unlock_buffer(bh); 1008 1009 error = -EROFS; 1010 if (is_handle_aborted(handle)) { 1011 spin_unlock(&jh->b_state_lock); 1012 goto out; 1013 } 1014 error = 0; 1015 1016 /* 1017 * The buffer is already part of this transaction if b_transaction or 1018 * b_next_transaction points to it 1019 */ 1020 if (jh->b_transaction == transaction || 1021 jh->b_next_transaction == transaction) 1022 goto done; 1023 1024 /* 1025 * this is the first time this transaction is touching this buffer, 1026 * reset the modified flag 1027 */ 1028 jh->b_modified = 0; 1029 1030 /* 1031 * If the buffer is not journaled right now, we need to make sure it 1032 * doesn't get written to disk before the caller actually commits the 1033 * new data 1034 */ 1035 if (!jh->b_transaction) { 1036 JBUFFER_TRACE(jh, "no transaction"); 1037 J_ASSERT_JH(jh, !jh->b_next_transaction); 1038 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1039 /* 1040 * Make sure all stores to jh (b_modified, b_frozen_data) are 1041 * visible before attaching it to the running transaction. 1042 * Paired with barrier in jbd2_write_access_granted() 1043 */ 1044 smp_wmb(); 1045 spin_lock(&journal->j_list_lock); 1046 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1047 spin_unlock(&journal->j_list_lock); 1048 goto done; 1049 } 1050 /* 1051 * If there is already a copy-out version of this buffer, then we don't 1052 * need to make another one 1053 */ 1054 if (jh->b_frozen_data) { 1055 JBUFFER_TRACE(jh, "has frozen data"); 1056 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1057 goto attach_next; 1058 } 1059 1060 JBUFFER_TRACE(jh, "owned by older transaction"); 1061 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1062 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1063 1064 /* 1065 * There is one case we have to be very careful about. If the 1066 * committing transaction is currently writing this buffer out to disk 1067 * and has NOT made a copy-out, then we cannot modify the buffer 1068 * contents at all right now. The essence of copy-out is that it is 1069 * the extra copy, not the primary copy, which gets journaled. If the 1070 * primary copy is already going to disk then we cannot do copy-out 1071 * here. 1072 */ 1073 if (buffer_shadow(bh)) { 1074 JBUFFER_TRACE(jh, "on shadow: sleep"); 1075 spin_unlock(&jh->b_state_lock); 1076 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1077 goto repeat; 1078 } 1079 1080 /* 1081 * Only do the copy if the currently-owning transaction still needs it. 1082 * If buffer isn't on BJ_Metadata list, the committing transaction is 1083 * past that stage (here we use the fact that BH_Shadow is set under 1084 * bh_state lock together with refiling to BJ_Shadow list and at this 1085 * point we know the buffer doesn't have BH_Shadow set). 1086 * 1087 * Subtle point, though: if this is a get_undo_access, then we will be 1088 * relying on the frozen_data to contain the new value of the 1089 * committed_data record after the transaction, so we HAVE to force the 1090 * frozen_data copy in that case. 1091 */ 1092 if (jh->b_jlist == BJ_Metadata || force_copy) { 1093 JBUFFER_TRACE(jh, "generate frozen data"); 1094 if (!frozen_buffer) { 1095 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1096 spin_unlock(&jh->b_state_lock); 1097 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1098 GFP_NOFS | __GFP_NOFAIL); 1099 goto repeat; 1100 } 1101 jh->b_frozen_data = frozen_buffer; 1102 frozen_buffer = NULL; 1103 jbd2_freeze_jh_data(jh); 1104 } 1105 attach_next: 1106 /* 1107 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1108 * before attaching it to the running transaction. Paired with barrier 1109 * in jbd2_write_access_granted() 1110 */ 1111 smp_wmb(); 1112 jh->b_next_transaction = transaction; 1113 1114 done: 1115 spin_unlock(&jh->b_state_lock); 1116 1117 /* 1118 * If we are about to journal a buffer, then any revoke pending on it is 1119 * no longer valid 1120 */ 1121 jbd2_journal_cancel_revoke(handle, jh); 1122 1123 out: 1124 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1125 jbd2_free(frozen_buffer, bh->b_size); 1126 1127 JBUFFER_TRACE(jh, "exit"); 1128 return error; 1129 } 1130 1131 /* Fast check whether buffer is already attached to the required transaction */ 1132 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1133 bool undo) 1134 { 1135 struct journal_head *jh; 1136 bool ret = false; 1137 1138 /* Dirty buffers require special handling... */ 1139 if (buffer_dirty(bh)) 1140 return false; 1141 1142 /* 1143 * RCU protects us from dereferencing freed pages. So the checks we do 1144 * are guaranteed not to oops. However the jh slab object can get freed 1145 * & reallocated while we work with it. So we have to be careful. When 1146 * we see jh attached to the running transaction, we know it must stay 1147 * so until the transaction is committed. Thus jh won't be freed and 1148 * will be attached to the same bh while we run. However it can 1149 * happen jh gets freed, reallocated, and attached to the transaction 1150 * just after we get pointer to it from bh. So we have to be careful 1151 * and recheck jh still belongs to our bh before we return success. 1152 */ 1153 rcu_read_lock(); 1154 if (!buffer_jbd(bh)) 1155 goto out; 1156 /* This should be bh2jh() but that doesn't work with inline functions */ 1157 jh = READ_ONCE(bh->b_private); 1158 if (!jh) 1159 goto out; 1160 /* For undo access buffer must have data copied */ 1161 if (undo && !jh->b_committed_data) 1162 goto out; 1163 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1164 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1165 goto out; 1166 /* 1167 * There are two reasons for the barrier here: 1168 * 1) Make sure to fetch b_bh after we did previous checks so that we 1169 * detect when jh went through free, realloc, attach to transaction 1170 * while we were checking. Paired with implicit barrier in that path. 1171 * 2) So that access to bh done after jbd2_write_access_granted() 1172 * doesn't get reordered and see inconsistent state of concurrent 1173 * do_get_write_access(). 1174 */ 1175 smp_mb(); 1176 if (unlikely(jh->b_bh != bh)) 1177 goto out; 1178 ret = true; 1179 out: 1180 rcu_read_unlock(); 1181 return ret; 1182 } 1183 1184 /** 1185 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1186 * for metadata (not data) update. 1187 * @handle: transaction to add buffer modifications to 1188 * @bh: bh to be used for metadata writes 1189 * 1190 * Returns: error code or 0 on success. 1191 * 1192 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1193 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1194 */ 1195 1196 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1197 { 1198 struct journal_head *jh; 1199 int rc; 1200 1201 if (is_handle_aborted(handle)) 1202 return -EROFS; 1203 1204 if (jbd2_write_access_granted(handle, bh, false)) 1205 return 0; 1206 1207 jh = jbd2_journal_add_journal_head(bh); 1208 /* We do not want to get caught playing with fields which the 1209 * log thread also manipulates. Make sure that the buffer 1210 * completes any outstanding IO before proceeding. */ 1211 rc = do_get_write_access(handle, jh, 0); 1212 jbd2_journal_put_journal_head(jh); 1213 return rc; 1214 } 1215 1216 1217 /* 1218 * When the user wants to journal a newly created buffer_head 1219 * (ie. getblk() returned a new buffer and we are going to populate it 1220 * manually rather than reading off disk), then we need to keep the 1221 * buffer_head locked until it has been completely filled with new 1222 * data. In this case, we should be able to make the assertion that 1223 * the bh is not already part of an existing transaction. 1224 * 1225 * The buffer should already be locked by the caller by this point. 1226 * There is no lock ranking violation: it was a newly created, 1227 * unlocked buffer beforehand. */ 1228 1229 /** 1230 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1231 * @handle: transaction to new buffer to 1232 * @bh: new buffer. 1233 * 1234 * Call this if you create a new bh. 1235 */ 1236 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1237 { 1238 transaction_t *transaction = handle->h_transaction; 1239 journal_t *journal; 1240 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1241 int err; 1242 1243 jbd_debug(5, "journal_head %p\n", jh); 1244 err = -EROFS; 1245 if (is_handle_aborted(handle)) 1246 goto out; 1247 journal = transaction->t_journal; 1248 err = 0; 1249 1250 JBUFFER_TRACE(jh, "entry"); 1251 /* 1252 * The buffer may already belong to this transaction due to pre-zeroing 1253 * in the filesystem's new_block code. It may also be on the previous, 1254 * committing transaction's lists, but it HAS to be in Forget state in 1255 * that case: the transaction must have deleted the buffer for it to be 1256 * reused here. 1257 */ 1258 spin_lock(&jh->b_state_lock); 1259 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1260 jh->b_transaction == NULL || 1261 (jh->b_transaction == journal->j_committing_transaction && 1262 jh->b_jlist == BJ_Forget))); 1263 1264 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1265 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1266 1267 if (jh->b_transaction == NULL) { 1268 /* 1269 * Previous jbd2_journal_forget() could have left the buffer 1270 * with jbddirty bit set because it was being committed. When 1271 * the commit finished, we've filed the buffer for 1272 * checkpointing and marked it dirty. Now we are reallocating 1273 * the buffer so the transaction freeing it must have 1274 * committed and so it's safe to clear the dirty bit. 1275 */ 1276 clear_buffer_dirty(jh2bh(jh)); 1277 /* first access by this transaction */ 1278 jh->b_modified = 0; 1279 1280 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1281 spin_lock(&journal->j_list_lock); 1282 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1283 spin_unlock(&journal->j_list_lock); 1284 } else if (jh->b_transaction == journal->j_committing_transaction) { 1285 /* first access by this transaction */ 1286 jh->b_modified = 0; 1287 1288 JBUFFER_TRACE(jh, "set next transaction"); 1289 spin_lock(&journal->j_list_lock); 1290 jh->b_next_transaction = transaction; 1291 spin_unlock(&journal->j_list_lock); 1292 } 1293 spin_unlock(&jh->b_state_lock); 1294 1295 /* 1296 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1297 * blocks which contain freed but then revoked metadata. We need 1298 * to cancel the revoke in case we end up freeing it yet again 1299 * and the reallocating as data - this would cause a second revoke, 1300 * which hits an assertion error. 1301 */ 1302 JBUFFER_TRACE(jh, "cancelling revoke"); 1303 jbd2_journal_cancel_revoke(handle, jh); 1304 out: 1305 jbd2_journal_put_journal_head(jh); 1306 return err; 1307 } 1308 1309 /** 1310 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1311 * non-rewindable consequences 1312 * @handle: transaction 1313 * @bh: buffer to undo 1314 * 1315 * Sometimes there is a need to distinguish between metadata which has 1316 * been committed to disk and that which has not. The ext3fs code uses 1317 * this for freeing and allocating space, we have to make sure that we 1318 * do not reuse freed space until the deallocation has been committed, 1319 * since if we overwrote that space we would make the delete 1320 * un-rewindable in case of a crash. 1321 * 1322 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1323 * buffer for parts of non-rewindable operations such as delete 1324 * operations on the bitmaps. The journaling code must keep a copy of 1325 * the buffer's contents prior to the undo_access call until such time 1326 * as we know that the buffer has definitely been committed to disk. 1327 * 1328 * We never need to know which transaction the committed data is part 1329 * of, buffers touched here are guaranteed to be dirtied later and so 1330 * will be committed to a new transaction in due course, at which point 1331 * we can discard the old committed data pointer. 1332 * 1333 * Returns error number or 0 on success. 1334 */ 1335 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1336 { 1337 int err; 1338 struct journal_head *jh; 1339 char *committed_data = NULL; 1340 1341 if (is_handle_aborted(handle)) 1342 return -EROFS; 1343 1344 if (jbd2_write_access_granted(handle, bh, true)) 1345 return 0; 1346 1347 jh = jbd2_journal_add_journal_head(bh); 1348 JBUFFER_TRACE(jh, "entry"); 1349 1350 /* 1351 * Do this first --- it can drop the journal lock, so we want to 1352 * make sure that obtaining the committed_data is done 1353 * atomically wrt. completion of any outstanding commits. 1354 */ 1355 err = do_get_write_access(handle, jh, 1); 1356 if (err) 1357 goto out; 1358 1359 repeat: 1360 if (!jh->b_committed_data) 1361 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1362 GFP_NOFS|__GFP_NOFAIL); 1363 1364 spin_lock(&jh->b_state_lock); 1365 if (!jh->b_committed_data) { 1366 /* Copy out the current buffer contents into the 1367 * preserved, committed copy. */ 1368 JBUFFER_TRACE(jh, "generate b_committed data"); 1369 if (!committed_data) { 1370 spin_unlock(&jh->b_state_lock); 1371 goto repeat; 1372 } 1373 1374 jh->b_committed_data = committed_data; 1375 committed_data = NULL; 1376 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1377 } 1378 spin_unlock(&jh->b_state_lock); 1379 out: 1380 jbd2_journal_put_journal_head(jh); 1381 if (unlikely(committed_data)) 1382 jbd2_free(committed_data, bh->b_size); 1383 return err; 1384 } 1385 1386 /** 1387 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1388 * @bh: buffer to trigger on 1389 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1390 * 1391 * Set any triggers on this journal_head. This is always safe, because 1392 * triggers for a committing buffer will be saved off, and triggers for 1393 * a running transaction will match the buffer in that transaction. 1394 * 1395 * Call with NULL to clear the triggers. 1396 */ 1397 void jbd2_journal_set_triggers(struct buffer_head *bh, 1398 struct jbd2_buffer_trigger_type *type) 1399 { 1400 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1401 1402 if (WARN_ON(!jh)) 1403 return; 1404 jh->b_triggers = type; 1405 jbd2_journal_put_journal_head(jh); 1406 } 1407 1408 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1409 struct jbd2_buffer_trigger_type *triggers) 1410 { 1411 struct buffer_head *bh = jh2bh(jh); 1412 1413 if (!triggers || !triggers->t_frozen) 1414 return; 1415 1416 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1417 } 1418 1419 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1420 struct jbd2_buffer_trigger_type *triggers) 1421 { 1422 if (!triggers || !triggers->t_abort) 1423 return; 1424 1425 triggers->t_abort(triggers, jh2bh(jh)); 1426 } 1427 1428 /** 1429 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1430 * @handle: transaction to add buffer to. 1431 * @bh: buffer to mark 1432 * 1433 * mark dirty metadata which needs to be journaled as part of the current 1434 * transaction. 1435 * 1436 * The buffer must have previously had jbd2_journal_get_write_access() 1437 * called so that it has a valid journal_head attached to the buffer 1438 * head. 1439 * 1440 * The buffer is placed on the transaction's metadata list and is marked 1441 * as belonging to the transaction. 1442 * 1443 * Returns error number or 0 on success. 1444 * 1445 * Special care needs to be taken if the buffer already belongs to the 1446 * current committing transaction (in which case we should have frozen 1447 * data present for that commit). In that case, we don't relink the 1448 * buffer: that only gets done when the old transaction finally 1449 * completes its commit. 1450 */ 1451 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1452 { 1453 transaction_t *transaction = handle->h_transaction; 1454 journal_t *journal; 1455 struct journal_head *jh; 1456 int ret = 0; 1457 1458 if (is_handle_aborted(handle)) 1459 return -EROFS; 1460 if (!buffer_jbd(bh)) 1461 return -EUCLEAN; 1462 1463 /* 1464 * We don't grab jh reference here since the buffer must be part 1465 * of the running transaction. 1466 */ 1467 jh = bh2jh(bh); 1468 jbd_debug(5, "journal_head %p\n", jh); 1469 JBUFFER_TRACE(jh, "entry"); 1470 1471 /* 1472 * This and the following assertions are unreliable since we may see jh 1473 * in inconsistent state unless we grab bh_state lock. But this is 1474 * crucial to catch bugs so let's do a reliable check until the 1475 * lockless handling is fully proven. 1476 */ 1477 if (jh->b_transaction != transaction && 1478 jh->b_next_transaction != transaction) { 1479 spin_lock(&jh->b_state_lock); 1480 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1481 jh->b_next_transaction == transaction); 1482 spin_unlock(&jh->b_state_lock); 1483 } 1484 if (jh->b_modified == 1) { 1485 /* If it's in our transaction it must be in BJ_Metadata list. */ 1486 if (jh->b_transaction == transaction && 1487 jh->b_jlist != BJ_Metadata) { 1488 spin_lock(&jh->b_state_lock); 1489 if (jh->b_transaction == transaction && 1490 jh->b_jlist != BJ_Metadata) 1491 pr_err("JBD2: assertion failure: h_type=%u " 1492 "h_line_no=%u block_no=%llu jlist=%u\n", 1493 handle->h_type, handle->h_line_no, 1494 (unsigned long long) bh->b_blocknr, 1495 jh->b_jlist); 1496 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1497 jh->b_jlist == BJ_Metadata); 1498 spin_unlock(&jh->b_state_lock); 1499 } 1500 goto out; 1501 } 1502 1503 journal = transaction->t_journal; 1504 spin_lock(&jh->b_state_lock); 1505 1506 if (jh->b_modified == 0) { 1507 /* 1508 * This buffer's got modified and becoming part 1509 * of the transaction. This needs to be done 1510 * once a transaction -bzzz 1511 */ 1512 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1513 ret = -ENOSPC; 1514 goto out_unlock_bh; 1515 } 1516 jh->b_modified = 1; 1517 handle->h_total_credits--; 1518 } 1519 1520 /* 1521 * fastpath, to avoid expensive locking. If this buffer is already 1522 * on the running transaction's metadata list there is nothing to do. 1523 * Nobody can take it off again because there is a handle open. 1524 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1525 * result in this test being false, so we go in and take the locks. 1526 */ 1527 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1528 JBUFFER_TRACE(jh, "fastpath"); 1529 if (unlikely(jh->b_transaction != 1530 journal->j_running_transaction)) { 1531 printk(KERN_ERR "JBD2: %s: " 1532 "jh->b_transaction (%llu, %p, %u) != " 1533 "journal->j_running_transaction (%p, %u)\n", 1534 journal->j_devname, 1535 (unsigned long long) bh->b_blocknr, 1536 jh->b_transaction, 1537 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1538 journal->j_running_transaction, 1539 journal->j_running_transaction ? 1540 journal->j_running_transaction->t_tid : 0); 1541 ret = -EINVAL; 1542 } 1543 goto out_unlock_bh; 1544 } 1545 1546 set_buffer_jbddirty(bh); 1547 1548 /* 1549 * Metadata already on the current transaction list doesn't 1550 * need to be filed. Metadata on another transaction's list must 1551 * be committing, and will be refiled once the commit completes: 1552 * leave it alone for now. 1553 */ 1554 if (jh->b_transaction != transaction) { 1555 JBUFFER_TRACE(jh, "already on other transaction"); 1556 if (unlikely(((jh->b_transaction != 1557 journal->j_committing_transaction)) || 1558 (jh->b_next_transaction != transaction))) { 1559 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1560 "bad jh for block %llu: " 1561 "transaction (%p, %u), " 1562 "jh->b_transaction (%p, %u), " 1563 "jh->b_next_transaction (%p, %u), jlist %u\n", 1564 journal->j_devname, 1565 (unsigned long long) bh->b_blocknr, 1566 transaction, transaction->t_tid, 1567 jh->b_transaction, 1568 jh->b_transaction ? 1569 jh->b_transaction->t_tid : 0, 1570 jh->b_next_transaction, 1571 jh->b_next_transaction ? 1572 jh->b_next_transaction->t_tid : 0, 1573 jh->b_jlist); 1574 WARN_ON(1); 1575 ret = -EINVAL; 1576 } 1577 /* And this case is illegal: we can't reuse another 1578 * transaction's data buffer, ever. */ 1579 goto out_unlock_bh; 1580 } 1581 1582 /* That test should have eliminated the following case: */ 1583 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1584 1585 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1586 spin_lock(&journal->j_list_lock); 1587 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1588 spin_unlock(&journal->j_list_lock); 1589 out_unlock_bh: 1590 spin_unlock(&jh->b_state_lock); 1591 out: 1592 JBUFFER_TRACE(jh, "exit"); 1593 return ret; 1594 } 1595 1596 /** 1597 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1598 * @handle: transaction handle 1599 * @bh: bh to 'forget' 1600 * 1601 * We can only do the bforget if there are no commits pending against the 1602 * buffer. If the buffer is dirty in the current running transaction we 1603 * can safely unlink it. 1604 * 1605 * bh may not be a journalled buffer at all - it may be a non-JBD 1606 * buffer which came off the hashtable. Check for this. 1607 * 1608 * Decrements bh->b_count by one. 1609 * 1610 * Allow this call even if the handle has aborted --- it may be part of 1611 * the caller's cleanup after an abort. 1612 */ 1613 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1614 { 1615 transaction_t *transaction = handle->h_transaction; 1616 journal_t *journal; 1617 struct journal_head *jh; 1618 int drop_reserve = 0; 1619 int err = 0; 1620 int was_modified = 0; 1621 1622 if (is_handle_aborted(handle)) 1623 return -EROFS; 1624 journal = transaction->t_journal; 1625 1626 BUFFER_TRACE(bh, "entry"); 1627 1628 jh = jbd2_journal_grab_journal_head(bh); 1629 if (!jh) { 1630 __bforget(bh); 1631 return 0; 1632 } 1633 1634 spin_lock(&jh->b_state_lock); 1635 1636 /* Critical error: attempting to delete a bitmap buffer, maybe? 1637 * Don't do any jbd operations, and return an error. */ 1638 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1639 "inconsistent data on disk")) { 1640 err = -EIO; 1641 goto drop; 1642 } 1643 1644 /* keep track of whether or not this transaction modified us */ 1645 was_modified = jh->b_modified; 1646 1647 /* 1648 * The buffer's going from the transaction, we must drop 1649 * all references -bzzz 1650 */ 1651 jh->b_modified = 0; 1652 1653 if (jh->b_transaction == transaction) { 1654 J_ASSERT_JH(jh, !jh->b_frozen_data); 1655 1656 /* If we are forgetting a buffer which is already part 1657 * of this transaction, then we can just drop it from 1658 * the transaction immediately. */ 1659 clear_buffer_dirty(bh); 1660 clear_buffer_jbddirty(bh); 1661 1662 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1663 1664 /* 1665 * we only want to drop a reference if this transaction 1666 * modified the buffer 1667 */ 1668 if (was_modified) 1669 drop_reserve = 1; 1670 1671 /* 1672 * We are no longer going to journal this buffer. 1673 * However, the commit of this transaction is still 1674 * important to the buffer: the delete that we are now 1675 * processing might obsolete an old log entry, so by 1676 * committing, we can satisfy the buffer's checkpoint. 1677 * 1678 * So, if we have a checkpoint on the buffer, we should 1679 * now refile the buffer on our BJ_Forget list so that 1680 * we know to remove the checkpoint after we commit. 1681 */ 1682 1683 spin_lock(&journal->j_list_lock); 1684 if (jh->b_cp_transaction) { 1685 __jbd2_journal_temp_unlink_buffer(jh); 1686 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1687 } else { 1688 __jbd2_journal_unfile_buffer(jh); 1689 jbd2_journal_put_journal_head(jh); 1690 } 1691 spin_unlock(&journal->j_list_lock); 1692 } else if (jh->b_transaction) { 1693 J_ASSERT_JH(jh, (jh->b_transaction == 1694 journal->j_committing_transaction)); 1695 /* However, if the buffer is still owned by a prior 1696 * (committing) transaction, we can't drop it yet... */ 1697 JBUFFER_TRACE(jh, "belongs to older transaction"); 1698 /* ... but we CAN drop it from the new transaction through 1699 * marking the buffer as freed and set j_next_transaction to 1700 * the new transaction, so that not only the commit code 1701 * knows it should clear dirty bits when it is done with the 1702 * buffer, but also the buffer can be checkpointed only 1703 * after the new transaction commits. */ 1704 1705 set_buffer_freed(bh); 1706 1707 if (!jh->b_next_transaction) { 1708 spin_lock(&journal->j_list_lock); 1709 jh->b_next_transaction = transaction; 1710 spin_unlock(&journal->j_list_lock); 1711 } else { 1712 J_ASSERT(jh->b_next_transaction == transaction); 1713 1714 /* 1715 * only drop a reference if this transaction modified 1716 * the buffer 1717 */ 1718 if (was_modified) 1719 drop_reserve = 1; 1720 } 1721 } else { 1722 /* 1723 * Finally, if the buffer is not belongs to any 1724 * transaction, we can just drop it now if it has no 1725 * checkpoint. 1726 */ 1727 spin_lock(&journal->j_list_lock); 1728 if (!jh->b_cp_transaction) { 1729 JBUFFER_TRACE(jh, "belongs to none transaction"); 1730 spin_unlock(&journal->j_list_lock); 1731 goto drop; 1732 } 1733 1734 /* 1735 * Otherwise, if the buffer has been written to disk, 1736 * it is safe to remove the checkpoint and drop it. 1737 */ 1738 if (!buffer_dirty(bh)) { 1739 __jbd2_journal_remove_checkpoint(jh); 1740 spin_unlock(&journal->j_list_lock); 1741 goto drop; 1742 } 1743 1744 /* 1745 * The buffer is still not written to disk, we should 1746 * attach this buffer to current transaction so that the 1747 * buffer can be checkpointed only after the current 1748 * transaction commits. 1749 */ 1750 clear_buffer_dirty(bh); 1751 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1752 spin_unlock(&journal->j_list_lock); 1753 } 1754 drop: 1755 __brelse(bh); 1756 spin_unlock(&jh->b_state_lock); 1757 jbd2_journal_put_journal_head(jh); 1758 if (drop_reserve) { 1759 /* no need to reserve log space for this block -bzzz */ 1760 handle->h_total_credits++; 1761 } 1762 return err; 1763 } 1764 1765 /** 1766 * jbd2_journal_stop() - complete a transaction 1767 * @handle: transaction to complete. 1768 * 1769 * All done for a particular handle. 1770 * 1771 * There is not much action needed here. We just return any remaining 1772 * buffer credits to the transaction and remove the handle. The only 1773 * complication is that we need to start a commit operation if the 1774 * filesystem is marked for synchronous update. 1775 * 1776 * jbd2_journal_stop itself will not usually return an error, but it may 1777 * do so in unusual circumstances. In particular, expect it to 1778 * return -EIO if a jbd2_journal_abort has been executed since the 1779 * transaction began. 1780 */ 1781 int jbd2_journal_stop(handle_t *handle) 1782 { 1783 transaction_t *transaction = handle->h_transaction; 1784 journal_t *journal; 1785 int err = 0, wait_for_commit = 0; 1786 tid_t tid; 1787 pid_t pid; 1788 1789 if (--handle->h_ref > 0) { 1790 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1791 handle->h_ref); 1792 if (is_handle_aborted(handle)) 1793 return -EIO; 1794 return 0; 1795 } 1796 if (!transaction) { 1797 /* 1798 * Handle is already detached from the transaction so there is 1799 * nothing to do other than free the handle. 1800 */ 1801 memalloc_nofs_restore(handle->saved_alloc_context); 1802 goto free_and_exit; 1803 } 1804 journal = transaction->t_journal; 1805 tid = transaction->t_tid; 1806 1807 if (is_handle_aborted(handle)) 1808 err = -EIO; 1809 1810 jbd_debug(4, "Handle %p going down\n", handle); 1811 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1812 tid, handle->h_type, handle->h_line_no, 1813 jiffies - handle->h_start_jiffies, 1814 handle->h_sync, handle->h_requested_credits, 1815 (handle->h_requested_credits - 1816 handle->h_total_credits)); 1817 1818 /* 1819 * Implement synchronous transaction batching. If the handle 1820 * was synchronous, don't force a commit immediately. Let's 1821 * yield and let another thread piggyback onto this 1822 * transaction. Keep doing that while new threads continue to 1823 * arrive. It doesn't cost much - we're about to run a commit 1824 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1825 * operations by 30x or more... 1826 * 1827 * We try and optimize the sleep time against what the 1828 * underlying disk can do, instead of having a static sleep 1829 * time. This is useful for the case where our storage is so 1830 * fast that it is more optimal to go ahead and force a flush 1831 * and wait for the transaction to be committed than it is to 1832 * wait for an arbitrary amount of time for new writers to 1833 * join the transaction. We achieve this by measuring how 1834 * long it takes to commit a transaction, and compare it with 1835 * how long this transaction has been running, and if run time 1836 * < commit time then we sleep for the delta and commit. This 1837 * greatly helps super fast disks that would see slowdowns as 1838 * more threads started doing fsyncs. 1839 * 1840 * But don't do this if this process was the most recent one 1841 * to perform a synchronous write. We do this to detect the 1842 * case where a single process is doing a stream of sync 1843 * writes. No point in waiting for joiners in that case. 1844 * 1845 * Setting max_batch_time to 0 disables this completely. 1846 */ 1847 pid = current->pid; 1848 if (handle->h_sync && journal->j_last_sync_writer != pid && 1849 journal->j_max_batch_time) { 1850 u64 commit_time, trans_time; 1851 1852 journal->j_last_sync_writer = pid; 1853 1854 read_lock(&journal->j_state_lock); 1855 commit_time = journal->j_average_commit_time; 1856 read_unlock(&journal->j_state_lock); 1857 1858 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1859 transaction->t_start_time)); 1860 1861 commit_time = max_t(u64, commit_time, 1862 1000*journal->j_min_batch_time); 1863 commit_time = min_t(u64, commit_time, 1864 1000*journal->j_max_batch_time); 1865 1866 if (trans_time < commit_time) { 1867 ktime_t expires = ktime_add_ns(ktime_get(), 1868 commit_time); 1869 set_current_state(TASK_UNINTERRUPTIBLE); 1870 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1871 } 1872 } 1873 1874 if (handle->h_sync) 1875 transaction->t_synchronous_commit = 1; 1876 1877 /* 1878 * If the handle is marked SYNC, we need to set another commit 1879 * going! We also want to force a commit if the transaction is too 1880 * old now. 1881 */ 1882 if (handle->h_sync || 1883 time_after_eq(jiffies, transaction->t_expires)) { 1884 /* Do this even for aborted journals: an abort still 1885 * completes the commit thread, it just doesn't write 1886 * anything to disk. */ 1887 1888 jbd_debug(2, "transaction too old, requesting commit for " 1889 "handle %p\n", handle); 1890 /* This is non-blocking */ 1891 jbd2_log_start_commit(journal, tid); 1892 1893 /* 1894 * Special case: JBD2_SYNC synchronous updates require us 1895 * to wait for the commit to complete. 1896 */ 1897 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1898 wait_for_commit = 1; 1899 } 1900 1901 /* 1902 * Once stop_this_handle() drops t_updates, the transaction could start 1903 * committing on us and eventually disappear. So we must not 1904 * dereference transaction pointer again after calling 1905 * stop_this_handle(). 1906 */ 1907 stop_this_handle(handle); 1908 1909 if (wait_for_commit) 1910 err = jbd2_log_wait_commit(journal, tid); 1911 1912 free_and_exit: 1913 if (handle->h_rsv_handle) 1914 jbd2_free_handle(handle->h_rsv_handle); 1915 jbd2_free_handle(handle); 1916 return err; 1917 } 1918 1919 /* 1920 * 1921 * List management code snippets: various functions for manipulating the 1922 * transaction buffer lists. 1923 * 1924 */ 1925 1926 /* 1927 * Append a buffer to a transaction list, given the transaction's list head 1928 * pointer. 1929 * 1930 * j_list_lock is held. 1931 * 1932 * jh->b_state_lock is held. 1933 */ 1934 1935 static inline void 1936 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1937 { 1938 if (!*list) { 1939 jh->b_tnext = jh->b_tprev = jh; 1940 *list = jh; 1941 } else { 1942 /* Insert at the tail of the list to preserve order */ 1943 struct journal_head *first = *list, *last = first->b_tprev; 1944 jh->b_tprev = last; 1945 jh->b_tnext = first; 1946 last->b_tnext = first->b_tprev = jh; 1947 } 1948 } 1949 1950 /* 1951 * Remove a buffer from a transaction list, given the transaction's list 1952 * head pointer. 1953 * 1954 * Called with j_list_lock held, and the journal may not be locked. 1955 * 1956 * jh->b_state_lock is held. 1957 */ 1958 1959 static inline void 1960 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1961 { 1962 if (*list == jh) { 1963 *list = jh->b_tnext; 1964 if (*list == jh) 1965 *list = NULL; 1966 } 1967 jh->b_tprev->b_tnext = jh->b_tnext; 1968 jh->b_tnext->b_tprev = jh->b_tprev; 1969 } 1970 1971 /* 1972 * Remove a buffer from the appropriate transaction list. 1973 * 1974 * Note that this function can *change* the value of 1975 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1976 * t_reserved_list. If the caller is holding onto a copy of one of these 1977 * pointers, it could go bad. Generally the caller needs to re-read the 1978 * pointer from the transaction_t. 1979 * 1980 * Called under j_list_lock. 1981 */ 1982 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1983 { 1984 struct journal_head **list = NULL; 1985 transaction_t *transaction; 1986 struct buffer_head *bh = jh2bh(jh); 1987 1988 lockdep_assert_held(&jh->b_state_lock); 1989 transaction = jh->b_transaction; 1990 if (transaction) 1991 assert_spin_locked(&transaction->t_journal->j_list_lock); 1992 1993 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1994 if (jh->b_jlist != BJ_None) 1995 J_ASSERT_JH(jh, transaction != NULL); 1996 1997 switch (jh->b_jlist) { 1998 case BJ_None: 1999 return; 2000 case BJ_Metadata: 2001 transaction->t_nr_buffers--; 2002 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2003 list = &transaction->t_buffers; 2004 break; 2005 case BJ_Forget: 2006 list = &transaction->t_forget; 2007 break; 2008 case BJ_Shadow: 2009 list = &transaction->t_shadow_list; 2010 break; 2011 case BJ_Reserved: 2012 list = &transaction->t_reserved_list; 2013 break; 2014 } 2015 2016 __blist_del_buffer(list, jh); 2017 jh->b_jlist = BJ_None; 2018 if (transaction && is_journal_aborted(transaction->t_journal)) 2019 clear_buffer_jbddirty(bh); 2020 else if (test_clear_buffer_jbddirty(bh)) 2021 mark_buffer_dirty(bh); /* Expose it to the VM */ 2022 } 2023 2024 /* 2025 * Remove buffer from all transactions. The caller is responsible for dropping 2026 * the jh reference that belonged to the transaction. 2027 * 2028 * Called with bh_state lock and j_list_lock 2029 */ 2030 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2031 { 2032 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2033 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2034 2035 __jbd2_journal_temp_unlink_buffer(jh); 2036 jh->b_transaction = NULL; 2037 } 2038 2039 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2040 { 2041 struct buffer_head *bh = jh2bh(jh); 2042 2043 /* Get reference so that buffer cannot be freed before we unlock it */ 2044 get_bh(bh); 2045 spin_lock(&jh->b_state_lock); 2046 spin_lock(&journal->j_list_lock); 2047 __jbd2_journal_unfile_buffer(jh); 2048 spin_unlock(&journal->j_list_lock); 2049 spin_unlock(&jh->b_state_lock); 2050 jbd2_journal_put_journal_head(jh); 2051 __brelse(bh); 2052 } 2053 2054 /* 2055 * Called from jbd2_journal_try_to_free_buffers(). 2056 * 2057 * Called under jh->b_state_lock 2058 */ 2059 static void 2060 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2061 { 2062 struct journal_head *jh; 2063 2064 jh = bh2jh(bh); 2065 2066 if (buffer_locked(bh) || buffer_dirty(bh)) 2067 goto out; 2068 2069 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2070 goto out; 2071 2072 spin_lock(&journal->j_list_lock); 2073 if (jh->b_cp_transaction != NULL) { 2074 /* written-back checkpointed metadata buffer */ 2075 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2076 __jbd2_journal_remove_checkpoint(jh); 2077 } 2078 spin_unlock(&journal->j_list_lock); 2079 out: 2080 return; 2081 } 2082 2083 /** 2084 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2085 * @journal: journal for operation 2086 * @page: to try and free 2087 * 2088 * For all the buffers on this page, 2089 * if they are fully written out ordered data, move them onto BUF_CLEAN 2090 * so try_to_free_buffers() can reap them. 2091 * 2092 * This function returns non-zero if we wish try_to_free_buffers() 2093 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2094 * We also do it if the page has locked or dirty buffers and the caller wants 2095 * us to perform sync or async writeout. 2096 * 2097 * This complicates JBD locking somewhat. We aren't protected by the 2098 * BKL here. We wish to remove the buffer from its committing or 2099 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2100 * 2101 * This may *change* the value of transaction_t->t_datalist, so anyone 2102 * who looks at t_datalist needs to lock against this function. 2103 * 2104 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2105 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2106 * will come out of the lock with the buffer dirty, which makes it 2107 * ineligible for release here. 2108 * 2109 * Who else is affected by this? hmm... Really the only contender 2110 * is do_get_write_access() - it could be looking at the buffer while 2111 * journal_try_to_free_buffer() is changing its state. But that 2112 * cannot happen because we never reallocate freed data as metadata 2113 * while the data is part of a transaction. Yes? 2114 * 2115 * Return 0 on failure, 1 on success 2116 */ 2117 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page) 2118 { 2119 struct buffer_head *head; 2120 struct buffer_head *bh; 2121 bool has_write_io_error = false; 2122 int ret = 0; 2123 2124 J_ASSERT(PageLocked(page)); 2125 2126 head = page_buffers(page); 2127 bh = head; 2128 do { 2129 struct journal_head *jh; 2130 2131 /* 2132 * We take our own ref against the journal_head here to avoid 2133 * having to add tons of locking around each instance of 2134 * jbd2_journal_put_journal_head(). 2135 */ 2136 jh = jbd2_journal_grab_journal_head(bh); 2137 if (!jh) 2138 continue; 2139 2140 spin_lock(&jh->b_state_lock); 2141 __journal_try_to_free_buffer(journal, bh); 2142 spin_unlock(&jh->b_state_lock); 2143 jbd2_journal_put_journal_head(jh); 2144 if (buffer_jbd(bh)) 2145 goto busy; 2146 2147 /* 2148 * If we free a metadata buffer which has been failed to 2149 * write out, the jbd2 checkpoint procedure will not detect 2150 * this failure and may lead to filesystem inconsistency 2151 * after cleanup journal tail. 2152 */ 2153 if (buffer_write_io_error(bh)) { 2154 pr_err("JBD2: Error while async write back metadata bh %llu.", 2155 (unsigned long long)bh->b_blocknr); 2156 has_write_io_error = true; 2157 } 2158 } while ((bh = bh->b_this_page) != head); 2159 2160 ret = try_to_free_buffers(page); 2161 2162 busy: 2163 if (has_write_io_error) 2164 jbd2_journal_abort(journal, -EIO); 2165 2166 return ret; 2167 } 2168 2169 /* 2170 * This buffer is no longer needed. If it is on an older transaction's 2171 * checkpoint list we need to record it on this transaction's forget list 2172 * to pin this buffer (and hence its checkpointing transaction) down until 2173 * this transaction commits. If the buffer isn't on a checkpoint list, we 2174 * release it. 2175 * Returns non-zero if JBD no longer has an interest in the buffer. 2176 * 2177 * Called under j_list_lock. 2178 * 2179 * Called under jh->b_state_lock. 2180 */ 2181 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2182 { 2183 int may_free = 1; 2184 struct buffer_head *bh = jh2bh(jh); 2185 2186 if (jh->b_cp_transaction) { 2187 JBUFFER_TRACE(jh, "on running+cp transaction"); 2188 __jbd2_journal_temp_unlink_buffer(jh); 2189 /* 2190 * We don't want to write the buffer anymore, clear the 2191 * bit so that we don't confuse checks in 2192 * __journal_file_buffer 2193 */ 2194 clear_buffer_dirty(bh); 2195 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2196 may_free = 0; 2197 } else { 2198 JBUFFER_TRACE(jh, "on running transaction"); 2199 __jbd2_journal_unfile_buffer(jh); 2200 jbd2_journal_put_journal_head(jh); 2201 } 2202 return may_free; 2203 } 2204 2205 /* 2206 * jbd2_journal_invalidatepage 2207 * 2208 * This code is tricky. It has a number of cases to deal with. 2209 * 2210 * There are two invariants which this code relies on: 2211 * 2212 * i_size must be updated on disk before we start calling invalidatepage on the 2213 * data. 2214 * 2215 * This is done in ext3 by defining an ext3_setattr method which 2216 * updates i_size before truncate gets going. By maintaining this 2217 * invariant, we can be sure that it is safe to throw away any buffers 2218 * attached to the current transaction: once the transaction commits, 2219 * we know that the data will not be needed. 2220 * 2221 * Note however that we can *not* throw away data belonging to the 2222 * previous, committing transaction! 2223 * 2224 * Any disk blocks which *are* part of the previous, committing 2225 * transaction (and which therefore cannot be discarded immediately) are 2226 * not going to be reused in the new running transaction 2227 * 2228 * The bitmap committed_data images guarantee this: any block which is 2229 * allocated in one transaction and removed in the next will be marked 2230 * as in-use in the committed_data bitmap, so cannot be reused until 2231 * the next transaction to delete the block commits. This means that 2232 * leaving committing buffers dirty is quite safe: the disk blocks 2233 * cannot be reallocated to a different file and so buffer aliasing is 2234 * not possible. 2235 * 2236 * 2237 * The above applies mainly to ordered data mode. In writeback mode we 2238 * don't make guarantees about the order in which data hits disk --- in 2239 * particular we don't guarantee that new dirty data is flushed before 2240 * transaction commit --- so it is always safe just to discard data 2241 * immediately in that mode. --sct 2242 */ 2243 2244 /* 2245 * The journal_unmap_buffer helper function returns zero if the buffer 2246 * concerned remains pinned as an anonymous buffer belonging to an older 2247 * transaction. 2248 * 2249 * We're outside-transaction here. Either or both of j_running_transaction 2250 * and j_committing_transaction may be NULL. 2251 */ 2252 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2253 int partial_page) 2254 { 2255 transaction_t *transaction; 2256 struct journal_head *jh; 2257 int may_free = 1; 2258 2259 BUFFER_TRACE(bh, "entry"); 2260 2261 /* 2262 * It is safe to proceed here without the j_list_lock because the 2263 * buffers cannot be stolen by try_to_free_buffers as long as we are 2264 * holding the page lock. --sct 2265 */ 2266 2267 jh = jbd2_journal_grab_journal_head(bh); 2268 if (!jh) 2269 goto zap_buffer_unlocked; 2270 2271 /* OK, we have data buffer in journaled mode */ 2272 write_lock(&journal->j_state_lock); 2273 spin_lock(&jh->b_state_lock); 2274 spin_lock(&journal->j_list_lock); 2275 2276 /* 2277 * We cannot remove the buffer from checkpoint lists until the 2278 * transaction adding inode to orphan list (let's call it T) 2279 * is committed. Otherwise if the transaction changing the 2280 * buffer would be cleaned from the journal before T is 2281 * committed, a crash will cause that the correct contents of 2282 * the buffer will be lost. On the other hand we have to 2283 * clear the buffer dirty bit at latest at the moment when the 2284 * transaction marking the buffer as freed in the filesystem 2285 * structures is committed because from that moment on the 2286 * block can be reallocated and used by a different page. 2287 * Since the block hasn't been freed yet but the inode has 2288 * already been added to orphan list, it is safe for us to add 2289 * the buffer to BJ_Forget list of the newest transaction. 2290 * 2291 * Also we have to clear buffer_mapped flag of a truncated buffer 2292 * because the buffer_head may be attached to the page straddling 2293 * i_size (can happen only when blocksize < pagesize) and thus the 2294 * buffer_head can be reused when the file is extended again. So we end 2295 * up keeping around invalidated buffers attached to transactions' 2296 * BJ_Forget list just to stop checkpointing code from cleaning up 2297 * the transaction this buffer was modified in. 2298 */ 2299 transaction = jh->b_transaction; 2300 if (transaction == NULL) { 2301 /* First case: not on any transaction. If it 2302 * has no checkpoint link, then we can zap it: 2303 * it's a writeback-mode buffer so we don't care 2304 * if it hits disk safely. */ 2305 if (!jh->b_cp_transaction) { 2306 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2307 goto zap_buffer; 2308 } 2309 2310 if (!buffer_dirty(bh)) { 2311 /* bdflush has written it. We can drop it now */ 2312 __jbd2_journal_remove_checkpoint(jh); 2313 goto zap_buffer; 2314 } 2315 2316 /* OK, it must be in the journal but still not 2317 * written fully to disk: it's metadata or 2318 * journaled data... */ 2319 2320 if (journal->j_running_transaction) { 2321 /* ... and once the current transaction has 2322 * committed, the buffer won't be needed any 2323 * longer. */ 2324 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2325 may_free = __dispose_buffer(jh, 2326 journal->j_running_transaction); 2327 goto zap_buffer; 2328 } else { 2329 /* There is no currently-running transaction. So the 2330 * orphan record which we wrote for this file must have 2331 * passed into commit. We must attach this buffer to 2332 * the committing transaction, if it exists. */ 2333 if (journal->j_committing_transaction) { 2334 JBUFFER_TRACE(jh, "give to committing trans"); 2335 may_free = __dispose_buffer(jh, 2336 journal->j_committing_transaction); 2337 goto zap_buffer; 2338 } else { 2339 /* The orphan record's transaction has 2340 * committed. We can cleanse this buffer */ 2341 clear_buffer_jbddirty(bh); 2342 __jbd2_journal_remove_checkpoint(jh); 2343 goto zap_buffer; 2344 } 2345 } 2346 } else if (transaction == journal->j_committing_transaction) { 2347 JBUFFER_TRACE(jh, "on committing transaction"); 2348 /* 2349 * The buffer is committing, we simply cannot touch 2350 * it. If the page is straddling i_size we have to wait 2351 * for commit and try again. 2352 */ 2353 if (partial_page) { 2354 spin_unlock(&journal->j_list_lock); 2355 spin_unlock(&jh->b_state_lock); 2356 write_unlock(&journal->j_state_lock); 2357 jbd2_journal_put_journal_head(jh); 2358 return -EBUSY; 2359 } 2360 /* 2361 * OK, buffer won't be reachable after truncate. We just clear 2362 * b_modified to not confuse transaction credit accounting, and 2363 * set j_next_transaction to the running transaction (if there 2364 * is one) and mark buffer as freed so that commit code knows 2365 * it should clear dirty bits when it is done with the buffer. 2366 */ 2367 set_buffer_freed(bh); 2368 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2369 jh->b_next_transaction = journal->j_running_transaction; 2370 jh->b_modified = 0; 2371 spin_unlock(&journal->j_list_lock); 2372 spin_unlock(&jh->b_state_lock); 2373 write_unlock(&journal->j_state_lock); 2374 jbd2_journal_put_journal_head(jh); 2375 return 0; 2376 } else { 2377 /* Good, the buffer belongs to the running transaction. 2378 * We are writing our own transaction's data, not any 2379 * previous one's, so it is safe to throw it away 2380 * (remember that we expect the filesystem to have set 2381 * i_size already for this truncate so recovery will not 2382 * expose the disk blocks we are discarding here.) */ 2383 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2384 JBUFFER_TRACE(jh, "on running transaction"); 2385 may_free = __dispose_buffer(jh, transaction); 2386 } 2387 2388 zap_buffer: 2389 /* 2390 * This is tricky. Although the buffer is truncated, it may be reused 2391 * if blocksize < pagesize and it is attached to the page straddling 2392 * EOF. Since the buffer might have been added to BJ_Forget list of the 2393 * running transaction, journal_get_write_access() won't clear 2394 * b_modified and credit accounting gets confused. So clear b_modified 2395 * here. 2396 */ 2397 jh->b_modified = 0; 2398 spin_unlock(&journal->j_list_lock); 2399 spin_unlock(&jh->b_state_lock); 2400 write_unlock(&journal->j_state_lock); 2401 jbd2_journal_put_journal_head(jh); 2402 zap_buffer_unlocked: 2403 clear_buffer_dirty(bh); 2404 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2405 clear_buffer_mapped(bh); 2406 clear_buffer_req(bh); 2407 clear_buffer_new(bh); 2408 clear_buffer_delay(bh); 2409 clear_buffer_unwritten(bh); 2410 bh->b_bdev = NULL; 2411 return may_free; 2412 } 2413 2414 /** 2415 * jbd2_journal_invalidatepage() 2416 * @journal: journal to use for flush... 2417 * @page: page to flush 2418 * @offset: start of the range to invalidate 2419 * @length: length of the range to invalidate 2420 * 2421 * Reap page buffers containing data after in the specified range in page. 2422 * Can return -EBUSY if buffers are part of the committing transaction and 2423 * the page is straddling i_size. Caller then has to wait for current commit 2424 * and try again. 2425 */ 2426 int jbd2_journal_invalidatepage(journal_t *journal, 2427 struct page *page, 2428 unsigned int offset, 2429 unsigned int length) 2430 { 2431 struct buffer_head *head, *bh, *next; 2432 unsigned int stop = offset + length; 2433 unsigned int curr_off = 0; 2434 int partial_page = (offset || length < PAGE_SIZE); 2435 int may_free = 1; 2436 int ret = 0; 2437 2438 if (!PageLocked(page)) 2439 BUG(); 2440 if (!page_has_buffers(page)) 2441 return 0; 2442 2443 BUG_ON(stop > PAGE_SIZE || stop < length); 2444 2445 /* We will potentially be playing with lists other than just the 2446 * data lists (especially for journaled data mode), so be 2447 * cautious in our locking. */ 2448 2449 head = bh = page_buffers(page); 2450 do { 2451 unsigned int next_off = curr_off + bh->b_size; 2452 next = bh->b_this_page; 2453 2454 if (next_off > stop) 2455 return 0; 2456 2457 if (offset <= curr_off) { 2458 /* This block is wholly outside the truncation point */ 2459 lock_buffer(bh); 2460 ret = journal_unmap_buffer(journal, bh, partial_page); 2461 unlock_buffer(bh); 2462 if (ret < 0) 2463 return ret; 2464 may_free &= ret; 2465 } 2466 curr_off = next_off; 2467 bh = next; 2468 2469 } while (bh != head); 2470 2471 if (!partial_page) { 2472 if (may_free && try_to_free_buffers(page)) 2473 J_ASSERT(!page_has_buffers(page)); 2474 } 2475 return 0; 2476 } 2477 2478 /* 2479 * File a buffer on the given transaction list. 2480 */ 2481 void __jbd2_journal_file_buffer(struct journal_head *jh, 2482 transaction_t *transaction, int jlist) 2483 { 2484 struct journal_head **list = NULL; 2485 int was_dirty = 0; 2486 struct buffer_head *bh = jh2bh(jh); 2487 2488 lockdep_assert_held(&jh->b_state_lock); 2489 assert_spin_locked(&transaction->t_journal->j_list_lock); 2490 2491 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2492 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2493 jh->b_transaction == NULL); 2494 2495 if (jh->b_transaction && jh->b_jlist == jlist) 2496 return; 2497 2498 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2499 jlist == BJ_Shadow || jlist == BJ_Forget) { 2500 /* 2501 * For metadata buffers, we track dirty bit in buffer_jbddirty 2502 * instead of buffer_dirty. We should not see a dirty bit set 2503 * here because we clear it in do_get_write_access but e.g. 2504 * tune2fs can modify the sb and set the dirty bit at any time 2505 * so we try to gracefully handle that. 2506 */ 2507 if (buffer_dirty(bh)) 2508 warn_dirty_buffer(bh); 2509 if (test_clear_buffer_dirty(bh) || 2510 test_clear_buffer_jbddirty(bh)) 2511 was_dirty = 1; 2512 } 2513 2514 if (jh->b_transaction) 2515 __jbd2_journal_temp_unlink_buffer(jh); 2516 else 2517 jbd2_journal_grab_journal_head(bh); 2518 jh->b_transaction = transaction; 2519 2520 switch (jlist) { 2521 case BJ_None: 2522 J_ASSERT_JH(jh, !jh->b_committed_data); 2523 J_ASSERT_JH(jh, !jh->b_frozen_data); 2524 return; 2525 case BJ_Metadata: 2526 transaction->t_nr_buffers++; 2527 list = &transaction->t_buffers; 2528 break; 2529 case BJ_Forget: 2530 list = &transaction->t_forget; 2531 break; 2532 case BJ_Shadow: 2533 list = &transaction->t_shadow_list; 2534 break; 2535 case BJ_Reserved: 2536 list = &transaction->t_reserved_list; 2537 break; 2538 } 2539 2540 __blist_add_buffer(list, jh); 2541 jh->b_jlist = jlist; 2542 2543 if (was_dirty) 2544 set_buffer_jbddirty(bh); 2545 } 2546 2547 void jbd2_journal_file_buffer(struct journal_head *jh, 2548 transaction_t *transaction, int jlist) 2549 { 2550 spin_lock(&jh->b_state_lock); 2551 spin_lock(&transaction->t_journal->j_list_lock); 2552 __jbd2_journal_file_buffer(jh, transaction, jlist); 2553 spin_unlock(&transaction->t_journal->j_list_lock); 2554 spin_unlock(&jh->b_state_lock); 2555 } 2556 2557 /* 2558 * Remove a buffer from its current buffer list in preparation for 2559 * dropping it from its current transaction entirely. If the buffer has 2560 * already started to be used by a subsequent transaction, refile the 2561 * buffer on that transaction's metadata list. 2562 * 2563 * Called under j_list_lock 2564 * Called under jh->b_state_lock 2565 * 2566 * When this function returns true, there's no next transaction to refile to 2567 * and the caller has to drop jh reference through 2568 * jbd2_journal_put_journal_head(). 2569 */ 2570 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2571 { 2572 int was_dirty, jlist; 2573 struct buffer_head *bh = jh2bh(jh); 2574 2575 lockdep_assert_held(&jh->b_state_lock); 2576 if (jh->b_transaction) 2577 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2578 2579 /* If the buffer is now unused, just drop it. */ 2580 if (jh->b_next_transaction == NULL) { 2581 __jbd2_journal_unfile_buffer(jh); 2582 return true; 2583 } 2584 2585 /* 2586 * It has been modified by a later transaction: add it to the new 2587 * transaction's metadata list. 2588 */ 2589 2590 was_dirty = test_clear_buffer_jbddirty(bh); 2591 __jbd2_journal_temp_unlink_buffer(jh); 2592 2593 /* 2594 * b_transaction must be set, otherwise the new b_transaction won't 2595 * be holding jh reference 2596 */ 2597 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2598 2599 /* 2600 * We set b_transaction here because b_next_transaction will inherit 2601 * our jh reference and thus __jbd2_journal_file_buffer() must not 2602 * take a new one. 2603 */ 2604 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2605 WRITE_ONCE(jh->b_next_transaction, NULL); 2606 if (buffer_freed(bh)) 2607 jlist = BJ_Forget; 2608 else if (jh->b_modified) 2609 jlist = BJ_Metadata; 2610 else 2611 jlist = BJ_Reserved; 2612 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2613 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2614 2615 if (was_dirty) 2616 set_buffer_jbddirty(bh); 2617 return false; 2618 } 2619 2620 /* 2621 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2622 * bh reference so that we can safely unlock bh. 2623 * 2624 * The jh and bh may be freed by this call. 2625 */ 2626 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2627 { 2628 bool drop; 2629 2630 spin_lock(&jh->b_state_lock); 2631 spin_lock(&journal->j_list_lock); 2632 drop = __jbd2_journal_refile_buffer(jh); 2633 spin_unlock(&jh->b_state_lock); 2634 spin_unlock(&journal->j_list_lock); 2635 if (drop) 2636 jbd2_journal_put_journal_head(jh); 2637 } 2638 2639 /* 2640 * File inode in the inode list of the handle's transaction 2641 */ 2642 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2643 unsigned long flags, loff_t start_byte, loff_t end_byte) 2644 { 2645 transaction_t *transaction = handle->h_transaction; 2646 journal_t *journal; 2647 2648 if (is_handle_aborted(handle)) 2649 return -EROFS; 2650 journal = transaction->t_journal; 2651 2652 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2653 transaction->t_tid); 2654 2655 spin_lock(&journal->j_list_lock); 2656 jinode->i_flags |= flags; 2657 2658 if (jinode->i_dirty_end) { 2659 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2660 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2661 } else { 2662 jinode->i_dirty_start = start_byte; 2663 jinode->i_dirty_end = end_byte; 2664 } 2665 2666 /* Is inode already attached where we need it? */ 2667 if (jinode->i_transaction == transaction || 2668 jinode->i_next_transaction == transaction) 2669 goto done; 2670 2671 /* 2672 * We only ever set this variable to 1 so the test is safe. Since 2673 * t_need_data_flush is likely to be set, we do the test to save some 2674 * cacheline bouncing 2675 */ 2676 if (!transaction->t_need_data_flush) 2677 transaction->t_need_data_flush = 1; 2678 /* On some different transaction's list - should be 2679 * the committing one */ 2680 if (jinode->i_transaction) { 2681 J_ASSERT(jinode->i_next_transaction == NULL); 2682 J_ASSERT(jinode->i_transaction == 2683 journal->j_committing_transaction); 2684 jinode->i_next_transaction = transaction; 2685 goto done; 2686 } 2687 /* Not on any transaction list... */ 2688 J_ASSERT(!jinode->i_next_transaction); 2689 jinode->i_transaction = transaction; 2690 list_add(&jinode->i_list, &transaction->t_inode_list); 2691 done: 2692 spin_unlock(&journal->j_list_lock); 2693 2694 return 0; 2695 } 2696 2697 int jbd2_journal_inode_ranged_write(handle_t *handle, 2698 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2699 { 2700 return jbd2_journal_file_inode(handle, jinode, 2701 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2702 start_byte + length - 1); 2703 } 2704 2705 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2706 loff_t start_byte, loff_t length) 2707 { 2708 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2709 start_byte, start_byte + length - 1); 2710 } 2711 2712 /* 2713 * File truncate and transaction commit interact with each other in a 2714 * non-trivial way. If a transaction writing data block A is 2715 * committing, we cannot discard the data by truncate until we have 2716 * written them. Otherwise if we crashed after the transaction with 2717 * write has committed but before the transaction with truncate has 2718 * committed, we could see stale data in block A. This function is a 2719 * helper to solve this problem. It starts writeout of the truncated 2720 * part in case it is in the committing transaction. 2721 * 2722 * Filesystem code must call this function when inode is journaled in 2723 * ordered mode before truncation happens and after the inode has been 2724 * placed on orphan list with the new inode size. The second condition 2725 * avoids the race that someone writes new data and we start 2726 * committing the transaction after this function has been called but 2727 * before a transaction for truncate is started (and furthermore it 2728 * allows us to optimize the case where the addition to orphan list 2729 * happens in the same transaction as write --- we don't have to write 2730 * any data in such case). 2731 */ 2732 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2733 struct jbd2_inode *jinode, 2734 loff_t new_size) 2735 { 2736 transaction_t *inode_trans, *commit_trans; 2737 int ret = 0; 2738 2739 /* This is a quick check to avoid locking if not necessary */ 2740 if (!jinode->i_transaction) 2741 goto out; 2742 /* Locks are here just to force reading of recent values, it is 2743 * enough that the transaction was not committing before we started 2744 * a transaction adding the inode to orphan list */ 2745 read_lock(&journal->j_state_lock); 2746 commit_trans = journal->j_committing_transaction; 2747 read_unlock(&journal->j_state_lock); 2748 spin_lock(&journal->j_list_lock); 2749 inode_trans = jinode->i_transaction; 2750 spin_unlock(&journal->j_list_lock); 2751 if (inode_trans == commit_trans) { 2752 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2753 new_size, LLONG_MAX); 2754 if (ret) 2755 jbd2_journal_abort(journal, ret); 2756 } 2757 out: 2758 return ret; 2759 } 2760