xref: /openbmc/linux/fs/jbd2/transaction.c (revision 36bccb11)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 		wait_transaction_locked(journal);
208 		return 1;
209 	}
210 
211 	/*
212 	 * The commit code assumes that it can get enough log space
213 	 * without forcing a checkpoint.  This is *critical* for
214 	 * correctness: a checkpoint of a buffer which is also
215 	 * associated with a committing transaction creates a deadlock,
216 	 * so commit simply cannot force through checkpoints.
217 	 *
218 	 * We must therefore ensure the necessary space in the journal
219 	 * *before* starting to dirty potentially checkpointed buffers
220 	 * in the new transaction.
221 	 */
222 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 		atomic_sub(total, &t->t_outstanding_credits);
224 		read_unlock(&journal->j_state_lock);
225 		write_lock(&journal->j_state_lock);
226 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 			__jbd2_log_wait_for_space(journal);
228 		write_unlock(&journal->j_state_lock);
229 		return 1;
230 	}
231 
232 	/* No reservation? We are done... */
233 	if (!rsv_blocks)
234 		return 0;
235 
236 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 	/* We allow at most half of a transaction to be reserved */
238 	if (needed > journal->j_max_transaction_buffers / 2) {
239 		sub_reserved_credits(journal, rsv_blocks);
240 		atomic_sub(total, &t->t_outstanding_credits);
241 		read_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_reserved,
243 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 			 <= journal->j_max_transaction_buffers / 2);
245 		return 1;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256 
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 			     gfp_t gfp_mask)
259 {
260 	transaction_t	*transaction, *new_transaction = NULL;
261 	int		blocks = handle->h_buffer_credits;
262 	int		rsv_blocks = 0;
263 	unsigned long ts = jiffies;
264 
265 	/*
266 	 * 1/2 of transaction can be reserved so we can practically handle
267 	 * only 1/2 of maximum transaction size per operation
268 	 */
269 	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 		       current->comm, blocks,
272 		       journal->j_max_transaction_buffers / 2);
273 		return -ENOSPC;
274 	}
275 
276 	if (handle->h_rsv_handle)
277 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278 
279 alloc_transaction:
280 	if (!journal->j_running_transaction) {
281 		new_transaction = kmem_cache_zalloc(transaction_cache,
282 						    gfp_mask);
283 		if (!new_transaction) {
284 			/*
285 			 * If __GFP_FS is not present, then we may be
286 			 * being called from inside the fs writeback
287 			 * layer, so we MUST NOT fail.  Since
288 			 * __GFP_NOFAIL is going away, we will arrange
289 			 * to retry the allocation ourselves.
290 			 */
291 			if ((gfp_mask & __GFP_FS) == 0) {
292 				congestion_wait(BLK_RW_ASYNC, HZ/50);
293 				goto alloc_transaction;
294 			}
295 			return -ENOMEM;
296 		}
297 	}
298 
299 	jbd_debug(3, "New handle %p going live.\n", handle);
300 
301 	/*
302 	 * We need to hold j_state_lock until t_updates has been incremented,
303 	 * for proper journal barrier handling
304 	 */
305 repeat:
306 	read_lock(&journal->j_state_lock);
307 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308 	if (is_journal_aborted(journal) ||
309 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310 		read_unlock(&journal->j_state_lock);
311 		jbd2_journal_free_transaction(new_transaction);
312 		return -EROFS;
313 	}
314 
315 	/*
316 	 * Wait on the journal's transaction barrier if necessary. Specifically
317 	 * we allow reserved handles to proceed because otherwise commit could
318 	 * deadlock on page writeback not being able to complete.
319 	 */
320 	if (!handle->h_reserved && journal->j_barrier_count) {
321 		read_unlock(&journal->j_state_lock);
322 		wait_event(journal->j_wait_transaction_locked,
323 				journal->j_barrier_count == 0);
324 		goto repeat;
325 	}
326 
327 	if (!journal->j_running_transaction) {
328 		read_unlock(&journal->j_state_lock);
329 		if (!new_transaction)
330 			goto alloc_transaction;
331 		write_lock(&journal->j_state_lock);
332 		if (!journal->j_running_transaction &&
333 		    (handle->h_reserved || !journal->j_barrier_count)) {
334 			jbd2_get_transaction(journal, new_transaction);
335 			new_transaction = NULL;
336 		}
337 		write_unlock(&journal->j_state_lock);
338 		goto repeat;
339 	}
340 
341 	transaction = journal->j_running_transaction;
342 
343 	if (!handle->h_reserved) {
344 		/* We may have dropped j_state_lock - restart in that case */
345 		if (add_transaction_credits(journal, blocks, rsv_blocks))
346 			goto repeat;
347 	} else {
348 		/*
349 		 * We have handle reserved so we are allowed to join T_LOCKED
350 		 * transaction and we don't have to check for transaction size
351 		 * and journal space.
352 		 */
353 		sub_reserved_credits(journal, blocks);
354 		handle->h_reserved = 0;
355 	}
356 
357 	/* OK, account for the buffers that this operation expects to
358 	 * use and add the handle to the running transaction.
359 	 */
360 	update_t_max_wait(transaction, ts);
361 	handle->h_transaction = transaction;
362 	handle->h_requested_credits = blocks;
363 	handle->h_start_jiffies = jiffies;
364 	atomic_inc(&transaction->t_updates);
365 	atomic_inc(&transaction->t_handle_count);
366 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367 		  handle, blocks,
368 		  atomic_read(&transaction->t_outstanding_credits),
369 		  jbd2_log_space_left(journal));
370 	read_unlock(&journal->j_state_lock);
371 	current->journal_info = handle;
372 
373 	lock_map_acquire(&handle->h_lockdep_map);
374 	jbd2_journal_free_transaction(new_transaction);
375 	return 0;
376 }
377 
378 static struct lock_class_key jbd2_handle_key;
379 
380 /* Allocate a new handle.  This should probably be in a slab... */
381 static handle_t *new_handle(int nblocks)
382 {
383 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
384 	if (!handle)
385 		return NULL;
386 	handle->h_buffer_credits = nblocks;
387 	handle->h_ref = 1;
388 
389 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
390 						&jbd2_handle_key, 0);
391 
392 	return handle;
393 }
394 
395 /**
396  * handle_t *jbd2_journal_start() - Obtain a new handle.
397  * @journal: Journal to start transaction on.
398  * @nblocks: number of block buffer we might modify
399  *
400  * We make sure that the transaction can guarantee at least nblocks of
401  * modified buffers in the log.  We block until the log can guarantee
402  * that much space. Additionally, if rsv_blocks > 0, we also create another
403  * handle with rsv_blocks reserved blocks in the journal. This handle is
404  * is stored in h_rsv_handle. It is not attached to any particular transaction
405  * and thus doesn't block transaction commit. If the caller uses this reserved
406  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
407  * on the parent handle will dispose the reserved one. Reserved handle has to
408  * be converted to a normal handle using jbd2_journal_start_reserved() before
409  * it can be used.
410  *
411  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
412  * on failure.
413  */
414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
415 			      gfp_t gfp_mask, unsigned int type,
416 			      unsigned int line_no)
417 {
418 	handle_t *handle = journal_current_handle();
419 	int err;
420 
421 	if (!journal)
422 		return ERR_PTR(-EROFS);
423 
424 	if (handle) {
425 		J_ASSERT(handle->h_transaction->t_journal == journal);
426 		handle->h_ref++;
427 		return handle;
428 	}
429 
430 	handle = new_handle(nblocks);
431 	if (!handle)
432 		return ERR_PTR(-ENOMEM);
433 	if (rsv_blocks) {
434 		handle_t *rsv_handle;
435 
436 		rsv_handle = new_handle(rsv_blocks);
437 		if (!rsv_handle) {
438 			jbd2_free_handle(handle);
439 			return ERR_PTR(-ENOMEM);
440 		}
441 		rsv_handle->h_reserved = 1;
442 		rsv_handle->h_journal = journal;
443 		handle->h_rsv_handle = rsv_handle;
444 	}
445 
446 	err = start_this_handle(journal, handle, gfp_mask);
447 	if (err < 0) {
448 		if (handle->h_rsv_handle)
449 			jbd2_free_handle(handle->h_rsv_handle);
450 		jbd2_free_handle(handle);
451 		return ERR_PTR(err);
452 	}
453 	handle->h_type = type;
454 	handle->h_line_no = line_no;
455 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
456 				handle->h_transaction->t_tid, type,
457 				line_no, nblocks);
458 	return handle;
459 }
460 EXPORT_SYMBOL(jbd2__journal_start);
461 
462 
463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
464 {
465 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
466 }
467 EXPORT_SYMBOL(jbd2_journal_start);
468 
469 void jbd2_journal_free_reserved(handle_t *handle)
470 {
471 	journal_t *journal = handle->h_journal;
472 
473 	WARN_ON(!handle->h_reserved);
474 	sub_reserved_credits(journal, handle->h_buffer_credits);
475 	jbd2_free_handle(handle);
476 }
477 EXPORT_SYMBOL(jbd2_journal_free_reserved);
478 
479 /**
480  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
481  * @handle: handle to start
482  *
483  * Start handle that has been previously reserved with jbd2_journal_reserve().
484  * This attaches @handle to the running transaction (or creates one if there's
485  * not transaction running). Unlike jbd2_journal_start() this function cannot
486  * block on journal commit, checkpointing, or similar stuff. It can block on
487  * memory allocation or frozen journal though.
488  *
489  * Return 0 on success, non-zero on error - handle is freed in that case.
490  */
491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
492 				unsigned int line_no)
493 {
494 	journal_t *journal = handle->h_journal;
495 	int ret = -EIO;
496 
497 	if (WARN_ON(!handle->h_reserved)) {
498 		/* Someone passed in normal handle? Just stop it. */
499 		jbd2_journal_stop(handle);
500 		return ret;
501 	}
502 	/*
503 	 * Usefulness of mixing of reserved and unreserved handles is
504 	 * questionable. So far nobody seems to need it so just error out.
505 	 */
506 	if (WARN_ON(current->journal_info)) {
507 		jbd2_journal_free_reserved(handle);
508 		return ret;
509 	}
510 
511 	handle->h_journal = NULL;
512 	/*
513 	 * GFP_NOFS is here because callers are likely from writeback or
514 	 * similarly constrained call sites
515 	 */
516 	ret = start_this_handle(journal, handle, GFP_NOFS);
517 	if (ret < 0) {
518 		jbd2_journal_free_reserved(handle);
519 		return ret;
520 	}
521 	handle->h_type = type;
522 	handle->h_line_no = line_no;
523 	return 0;
524 }
525 EXPORT_SYMBOL(jbd2_journal_start_reserved);
526 
527 /**
528  * int jbd2_journal_extend() - extend buffer credits.
529  * @handle:  handle to 'extend'
530  * @nblocks: nr blocks to try to extend by.
531  *
532  * Some transactions, such as large extends and truncates, can be done
533  * atomically all at once or in several stages.  The operation requests
534  * a credit for a number of buffer modications in advance, but can
535  * extend its credit if it needs more.
536  *
537  * jbd2_journal_extend tries to give the running handle more buffer credits.
538  * It does not guarantee that allocation - this is a best-effort only.
539  * The calling process MUST be able to deal cleanly with a failure to
540  * extend here.
541  *
542  * Return 0 on success, non-zero on failure.
543  *
544  * return code < 0 implies an error
545  * return code > 0 implies normal transaction-full status.
546  */
547 int jbd2_journal_extend(handle_t *handle, int nblocks)
548 {
549 	transaction_t *transaction = handle->h_transaction;
550 	journal_t *journal;
551 	int result;
552 	int wanted;
553 
554 	WARN_ON(!transaction);
555 	if (is_handle_aborted(handle))
556 		return -EROFS;
557 	journal = transaction->t_journal;
558 
559 	result = 1;
560 
561 	read_lock(&journal->j_state_lock);
562 
563 	/* Don't extend a locked-down transaction! */
564 	if (transaction->t_state != T_RUNNING) {
565 		jbd_debug(3, "denied handle %p %d blocks: "
566 			  "transaction not running\n", handle, nblocks);
567 		goto error_out;
568 	}
569 
570 	spin_lock(&transaction->t_handle_lock);
571 	wanted = atomic_add_return(nblocks,
572 				   &transaction->t_outstanding_credits);
573 
574 	if (wanted > journal->j_max_transaction_buffers) {
575 		jbd_debug(3, "denied handle %p %d blocks: "
576 			  "transaction too large\n", handle, nblocks);
577 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
578 		goto unlock;
579 	}
580 
581 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
582 	    jbd2_log_space_left(journal)) {
583 		jbd_debug(3, "denied handle %p %d blocks: "
584 			  "insufficient log space\n", handle, nblocks);
585 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
586 		goto unlock;
587 	}
588 
589 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
590 				 transaction->t_tid,
591 				 handle->h_type, handle->h_line_no,
592 				 handle->h_buffer_credits,
593 				 nblocks);
594 
595 	handle->h_buffer_credits += nblocks;
596 	handle->h_requested_credits += nblocks;
597 	result = 0;
598 
599 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
600 unlock:
601 	spin_unlock(&transaction->t_handle_lock);
602 error_out:
603 	read_unlock(&journal->j_state_lock);
604 	return result;
605 }
606 
607 
608 /**
609  * int jbd2_journal_restart() - restart a handle .
610  * @handle:  handle to restart
611  * @nblocks: nr credits requested
612  *
613  * Restart a handle for a multi-transaction filesystem
614  * operation.
615  *
616  * If the jbd2_journal_extend() call above fails to grant new buffer credits
617  * to a running handle, a call to jbd2_journal_restart will commit the
618  * handle's transaction so far and reattach the handle to a new
619  * transaction capabable of guaranteeing the requested number of
620  * credits. We preserve reserved handle if there's any attached to the
621  * passed in handle.
622  */
623 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
624 {
625 	transaction_t *transaction = handle->h_transaction;
626 	journal_t *journal;
627 	tid_t		tid;
628 	int		need_to_start, ret;
629 
630 	WARN_ON(!transaction);
631 	/* If we've had an abort of any type, don't even think about
632 	 * actually doing the restart! */
633 	if (is_handle_aborted(handle))
634 		return 0;
635 	journal = transaction->t_journal;
636 
637 	/*
638 	 * First unlink the handle from its current transaction, and start the
639 	 * commit on that.
640 	 */
641 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
642 	J_ASSERT(journal_current_handle() == handle);
643 
644 	read_lock(&journal->j_state_lock);
645 	spin_lock(&transaction->t_handle_lock);
646 	atomic_sub(handle->h_buffer_credits,
647 		   &transaction->t_outstanding_credits);
648 	if (handle->h_rsv_handle) {
649 		sub_reserved_credits(journal,
650 				     handle->h_rsv_handle->h_buffer_credits);
651 	}
652 	if (atomic_dec_and_test(&transaction->t_updates))
653 		wake_up(&journal->j_wait_updates);
654 	tid = transaction->t_tid;
655 	spin_unlock(&transaction->t_handle_lock);
656 	handle->h_transaction = NULL;
657 	current->journal_info = NULL;
658 
659 	jbd_debug(2, "restarting handle %p\n", handle);
660 	need_to_start = !tid_geq(journal->j_commit_request, tid);
661 	read_unlock(&journal->j_state_lock);
662 	if (need_to_start)
663 		jbd2_log_start_commit(journal, tid);
664 
665 	lock_map_release(&handle->h_lockdep_map);
666 	handle->h_buffer_credits = nblocks;
667 	ret = start_this_handle(journal, handle, gfp_mask);
668 	return ret;
669 }
670 EXPORT_SYMBOL(jbd2__journal_restart);
671 
672 
673 int jbd2_journal_restart(handle_t *handle, int nblocks)
674 {
675 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
676 }
677 EXPORT_SYMBOL(jbd2_journal_restart);
678 
679 /**
680  * void jbd2_journal_lock_updates () - establish a transaction barrier.
681  * @journal:  Journal to establish a barrier on.
682  *
683  * This locks out any further updates from being started, and blocks
684  * until all existing updates have completed, returning only once the
685  * journal is in a quiescent state with no updates running.
686  *
687  * The journal lock should not be held on entry.
688  */
689 void jbd2_journal_lock_updates(journal_t *journal)
690 {
691 	DEFINE_WAIT(wait);
692 
693 	write_lock(&journal->j_state_lock);
694 	++journal->j_barrier_count;
695 
696 	/* Wait until there are no reserved handles */
697 	if (atomic_read(&journal->j_reserved_credits)) {
698 		write_unlock(&journal->j_state_lock);
699 		wait_event(journal->j_wait_reserved,
700 			   atomic_read(&journal->j_reserved_credits) == 0);
701 		write_lock(&journal->j_state_lock);
702 	}
703 
704 	/* Wait until there are no running updates */
705 	while (1) {
706 		transaction_t *transaction = journal->j_running_transaction;
707 
708 		if (!transaction)
709 			break;
710 
711 		spin_lock(&transaction->t_handle_lock);
712 		prepare_to_wait(&journal->j_wait_updates, &wait,
713 				TASK_UNINTERRUPTIBLE);
714 		if (!atomic_read(&transaction->t_updates)) {
715 			spin_unlock(&transaction->t_handle_lock);
716 			finish_wait(&journal->j_wait_updates, &wait);
717 			break;
718 		}
719 		spin_unlock(&transaction->t_handle_lock);
720 		write_unlock(&journal->j_state_lock);
721 		schedule();
722 		finish_wait(&journal->j_wait_updates, &wait);
723 		write_lock(&journal->j_state_lock);
724 	}
725 	write_unlock(&journal->j_state_lock);
726 
727 	/*
728 	 * We have now established a barrier against other normal updates, but
729 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
730 	 * to make sure that we serialise special journal-locked operations
731 	 * too.
732 	 */
733 	mutex_lock(&journal->j_barrier);
734 }
735 
736 /**
737  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
738  * @journal:  Journal to release the barrier on.
739  *
740  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
741  *
742  * Should be called without the journal lock held.
743  */
744 void jbd2_journal_unlock_updates (journal_t *journal)
745 {
746 	J_ASSERT(journal->j_barrier_count != 0);
747 
748 	mutex_unlock(&journal->j_barrier);
749 	write_lock(&journal->j_state_lock);
750 	--journal->j_barrier_count;
751 	write_unlock(&journal->j_state_lock);
752 	wake_up(&journal->j_wait_transaction_locked);
753 }
754 
755 static void warn_dirty_buffer(struct buffer_head *bh)
756 {
757 	char b[BDEVNAME_SIZE];
758 
759 	printk(KERN_WARNING
760 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
761 	       "There's a risk of filesystem corruption in case of system "
762 	       "crash.\n",
763 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
764 }
765 
766 static int sleep_on_shadow_bh(void *word)
767 {
768 	io_schedule();
769 	return 0;
770 }
771 
772 /*
773  * If the buffer is already part of the current transaction, then there
774  * is nothing we need to do.  If it is already part of a prior
775  * transaction which we are still committing to disk, then we need to
776  * make sure that we do not overwrite the old copy: we do copy-out to
777  * preserve the copy going to disk.  We also account the buffer against
778  * the handle's metadata buffer credits (unless the buffer is already
779  * part of the transaction, that is).
780  *
781  */
782 static int
783 do_get_write_access(handle_t *handle, struct journal_head *jh,
784 			int force_copy)
785 {
786 	struct buffer_head *bh;
787 	transaction_t *transaction = handle->h_transaction;
788 	journal_t *journal;
789 	int error;
790 	char *frozen_buffer = NULL;
791 	int need_copy = 0;
792 	unsigned long start_lock, time_lock;
793 
794 	WARN_ON(!transaction);
795 	if (is_handle_aborted(handle))
796 		return -EROFS;
797 	journal = transaction->t_journal;
798 
799 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
800 
801 	JBUFFER_TRACE(jh, "entry");
802 repeat:
803 	bh = jh2bh(jh);
804 
805 	/* @@@ Need to check for errors here at some point. */
806 
807  	start_lock = jiffies;
808 	lock_buffer(bh);
809 	jbd_lock_bh_state(bh);
810 
811 	/* If it takes too long to lock the buffer, trace it */
812 	time_lock = jbd2_time_diff(start_lock, jiffies);
813 	if (time_lock > HZ/10)
814 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
815 			jiffies_to_msecs(time_lock));
816 
817 	/* We now hold the buffer lock so it is safe to query the buffer
818 	 * state.  Is the buffer dirty?
819 	 *
820 	 * If so, there are two possibilities.  The buffer may be
821 	 * non-journaled, and undergoing a quite legitimate writeback.
822 	 * Otherwise, it is journaled, and we don't expect dirty buffers
823 	 * in that state (the buffers should be marked JBD_Dirty
824 	 * instead.)  So either the IO is being done under our own
825 	 * control and this is a bug, or it's a third party IO such as
826 	 * dump(8) (which may leave the buffer scheduled for read ---
827 	 * ie. locked but not dirty) or tune2fs (which may actually have
828 	 * the buffer dirtied, ugh.)  */
829 
830 	if (buffer_dirty(bh)) {
831 		/*
832 		 * First question: is this buffer already part of the current
833 		 * transaction or the existing committing transaction?
834 		 */
835 		if (jh->b_transaction) {
836 			J_ASSERT_JH(jh,
837 				jh->b_transaction == transaction ||
838 				jh->b_transaction ==
839 					journal->j_committing_transaction);
840 			if (jh->b_next_transaction)
841 				J_ASSERT_JH(jh, jh->b_next_transaction ==
842 							transaction);
843 			warn_dirty_buffer(bh);
844 		}
845 		/*
846 		 * In any case we need to clean the dirty flag and we must
847 		 * do it under the buffer lock to be sure we don't race
848 		 * with running write-out.
849 		 */
850 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
851 		clear_buffer_dirty(bh);
852 		set_buffer_jbddirty(bh);
853 	}
854 
855 	unlock_buffer(bh);
856 
857 	error = -EROFS;
858 	if (is_handle_aborted(handle)) {
859 		jbd_unlock_bh_state(bh);
860 		goto out;
861 	}
862 	error = 0;
863 
864 	/*
865 	 * The buffer is already part of this transaction if b_transaction or
866 	 * b_next_transaction points to it
867 	 */
868 	if (jh->b_transaction == transaction ||
869 	    jh->b_next_transaction == transaction)
870 		goto done;
871 
872 	/*
873 	 * this is the first time this transaction is touching this buffer,
874 	 * reset the modified flag
875 	 */
876        jh->b_modified = 0;
877 
878 	/*
879 	 * If there is already a copy-out version of this buffer, then we don't
880 	 * need to make another one
881 	 */
882 	if (jh->b_frozen_data) {
883 		JBUFFER_TRACE(jh, "has frozen data");
884 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
885 		jh->b_next_transaction = transaction;
886 		goto done;
887 	}
888 
889 	/* Is there data here we need to preserve? */
890 
891 	if (jh->b_transaction && jh->b_transaction != transaction) {
892 		JBUFFER_TRACE(jh, "owned by older transaction");
893 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
894 		J_ASSERT_JH(jh, jh->b_transaction ==
895 					journal->j_committing_transaction);
896 
897 		/* There is one case we have to be very careful about.
898 		 * If the committing transaction is currently writing
899 		 * this buffer out to disk and has NOT made a copy-out,
900 		 * then we cannot modify the buffer contents at all
901 		 * right now.  The essence of copy-out is that it is the
902 		 * extra copy, not the primary copy, which gets
903 		 * journaled.  If the primary copy is already going to
904 		 * disk then we cannot do copy-out here. */
905 
906 		if (buffer_shadow(bh)) {
907 			JBUFFER_TRACE(jh, "on shadow: sleep");
908 			jbd_unlock_bh_state(bh);
909 			wait_on_bit(&bh->b_state, BH_Shadow,
910 				    sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
911 			goto repeat;
912 		}
913 
914 		/*
915 		 * Only do the copy if the currently-owning transaction still
916 		 * needs it. If buffer isn't on BJ_Metadata list, the
917 		 * committing transaction is past that stage (here we use the
918 		 * fact that BH_Shadow is set under bh_state lock together with
919 		 * refiling to BJ_Shadow list and at this point we know the
920 		 * buffer doesn't have BH_Shadow set).
921 		 *
922 		 * Subtle point, though: if this is a get_undo_access,
923 		 * then we will be relying on the frozen_data to contain
924 		 * the new value of the committed_data record after the
925 		 * transaction, so we HAVE to force the frozen_data copy
926 		 * in that case.
927 		 */
928 		if (jh->b_jlist == BJ_Metadata || force_copy) {
929 			JBUFFER_TRACE(jh, "generate frozen data");
930 			if (!frozen_buffer) {
931 				JBUFFER_TRACE(jh, "allocate memory for buffer");
932 				jbd_unlock_bh_state(bh);
933 				frozen_buffer =
934 					jbd2_alloc(jh2bh(jh)->b_size,
935 							 GFP_NOFS);
936 				if (!frozen_buffer) {
937 					printk(KERN_ERR
938 					       "%s: OOM for frozen_buffer\n",
939 					       __func__);
940 					JBUFFER_TRACE(jh, "oom!");
941 					error = -ENOMEM;
942 					jbd_lock_bh_state(bh);
943 					goto done;
944 				}
945 				goto repeat;
946 			}
947 			jh->b_frozen_data = frozen_buffer;
948 			frozen_buffer = NULL;
949 			need_copy = 1;
950 		}
951 		jh->b_next_transaction = transaction;
952 	}
953 
954 
955 	/*
956 	 * Finally, if the buffer is not journaled right now, we need to make
957 	 * sure it doesn't get written to disk before the caller actually
958 	 * commits the new data
959 	 */
960 	if (!jh->b_transaction) {
961 		JBUFFER_TRACE(jh, "no transaction");
962 		J_ASSERT_JH(jh, !jh->b_next_transaction);
963 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
964 		spin_lock(&journal->j_list_lock);
965 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
966 		spin_unlock(&journal->j_list_lock);
967 	}
968 
969 done:
970 	if (need_copy) {
971 		struct page *page;
972 		int offset;
973 		char *source;
974 
975 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
976 			    "Possible IO failure.\n");
977 		page = jh2bh(jh)->b_page;
978 		offset = offset_in_page(jh2bh(jh)->b_data);
979 		source = kmap_atomic(page);
980 		/* Fire data frozen trigger just before we copy the data */
981 		jbd2_buffer_frozen_trigger(jh, source + offset,
982 					   jh->b_triggers);
983 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
984 		kunmap_atomic(source);
985 
986 		/*
987 		 * Now that the frozen data is saved off, we need to store
988 		 * any matching triggers.
989 		 */
990 		jh->b_frozen_triggers = jh->b_triggers;
991 	}
992 	jbd_unlock_bh_state(bh);
993 
994 	/*
995 	 * If we are about to journal a buffer, then any revoke pending on it is
996 	 * no longer valid
997 	 */
998 	jbd2_journal_cancel_revoke(handle, jh);
999 
1000 out:
1001 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1002 		jbd2_free(frozen_buffer, bh->b_size);
1003 
1004 	JBUFFER_TRACE(jh, "exit");
1005 	return error;
1006 }
1007 
1008 /**
1009  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1010  * @handle: transaction to add buffer modifications to
1011  * @bh:     bh to be used for metadata writes
1012  *
1013  * Returns an error code or 0 on success.
1014  *
1015  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1016  * because we're write()ing a buffer which is also part of a shared mapping.
1017  */
1018 
1019 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1020 {
1021 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1022 	int rc;
1023 
1024 	/* We do not want to get caught playing with fields which the
1025 	 * log thread also manipulates.  Make sure that the buffer
1026 	 * completes any outstanding IO before proceeding. */
1027 	rc = do_get_write_access(handle, jh, 0);
1028 	jbd2_journal_put_journal_head(jh);
1029 	return rc;
1030 }
1031 
1032 
1033 /*
1034  * When the user wants to journal a newly created buffer_head
1035  * (ie. getblk() returned a new buffer and we are going to populate it
1036  * manually rather than reading off disk), then we need to keep the
1037  * buffer_head locked until it has been completely filled with new
1038  * data.  In this case, we should be able to make the assertion that
1039  * the bh is not already part of an existing transaction.
1040  *
1041  * The buffer should already be locked by the caller by this point.
1042  * There is no lock ranking violation: it was a newly created,
1043  * unlocked buffer beforehand. */
1044 
1045 /**
1046  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1047  * @handle: transaction to new buffer to
1048  * @bh: new buffer.
1049  *
1050  * Call this if you create a new bh.
1051  */
1052 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1053 {
1054 	transaction_t *transaction = handle->h_transaction;
1055 	journal_t *journal;
1056 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1057 	int err;
1058 
1059 	jbd_debug(5, "journal_head %p\n", jh);
1060 	WARN_ON(!transaction);
1061 	err = -EROFS;
1062 	if (is_handle_aborted(handle))
1063 		goto out;
1064 	journal = transaction->t_journal;
1065 	err = 0;
1066 
1067 	JBUFFER_TRACE(jh, "entry");
1068 	/*
1069 	 * The buffer may already belong to this transaction due to pre-zeroing
1070 	 * in the filesystem's new_block code.  It may also be on the previous,
1071 	 * committing transaction's lists, but it HAS to be in Forget state in
1072 	 * that case: the transaction must have deleted the buffer for it to be
1073 	 * reused here.
1074 	 */
1075 	jbd_lock_bh_state(bh);
1076 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1077 		jh->b_transaction == NULL ||
1078 		(jh->b_transaction == journal->j_committing_transaction &&
1079 			  jh->b_jlist == BJ_Forget)));
1080 
1081 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1083 
1084 	if (jh->b_transaction == NULL) {
1085 		/*
1086 		 * Previous jbd2_journal_forget() could have left the buffer
1087 		 * with jbddirty bit set because it was being committed. When
1088 		 * the commit finished, we've filed the buffer for
1089 		 * checkpointing and marked it dirty. Now we are reallocating
1090 		 * the buffer so the transaction freeing it must have
1091 		 * committed and so it's safe to clear the dirty bit.
1092 		 */
1093 		clear_buffer_dirty(jh2bh(jh));
1094 		/* first access by this transaction */
1095 		jh->b_modified = 0;
1096 
1097 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1098 		spin_lock(&journal->j_list_lock);
1099 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1100 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1101 		/* first access by this transaction */
1102 		jh->b_modified = 0;
1103 
1104 		JBUFFER_TRACE(jh, "set next transaction");
1105 		spin_lock(&journal->j_list_lock);
1106 		jh->b_next_transaction = transaction;
1107 	}
1108 	spin_unlock(&journal->j_list_lock);
1109 	jbd_unlock_bh_state(bh);
1110 
1111 	/*
1112 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1113 	 * blocks which contain freed but then revoked metadata.  We need
1114 	 * to cancel the revoke in case we end up freeing it yet again
1115 	 * and the reallocating as data - this would cause a second revoke,
1116 	 * which hits an assertion error.
1117 	 */
1118 	JBUFFER_TRACE(jh, "cancelling revoke");
1119 	jbd2_journal_cancel_revoke(handle, jh);
1120 out:
1121 	jbd2_journal_put_journal_head(jh);
1122 	return err;
1123 }
1124 
1125 /**
1126  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1127  *     non-rewindable consequences
1128  * @handle: transaction
1129  * @bh: buffer to undo
1130  *
1131  * Sometimes there is a need to distinguish between metadata which has
1132  * been committed to disk and that which has not.  The ext3fs code uses
1133  * this for freeing and allocating space, we have to make sure that we
1134  * do not reuse freed space until the deallocation has been committed,
1135  * since if we overwrote that space we would make the delete
1136  * un-rewindable in case of a crash.
1137  *
1138  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1139  * buffer for parts of non-rewindable operations such as delete
1140  * operations on the bitmaps.  The journaling code must keep a copy of
1141  * the buffer's contents prior to the undo_access call until such time
1142  * as we know that the buffer has definitely been committed to disk.
1143  *
1144  * We never need to know which transaction the committed data is part
1145  * of, buffers touched here are guaranteed to be dirtied later and so
1146  * will be committed to a new transaction in due course, at which point
1147  * we can discard the old committed data pointer.
1148  *
1149  * Returns error number or 0 on success.
1150  */
1151 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1152 {
1153 	int err;
1154 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155 	char *committed_data = NULL;
1156 
1157 	JBUFFER_TRACE(jh, "entry");
1158 
1159 	/*
1160 	 * Do this first --- it can drop the journal lock, so we want to
1161 	 * make sure that obtaining the committed_data is done
1162 	 * atomically wrt. completion of any outstanding commits.
1163 	 */
1164 	err = do_get_write_access(handle, jh, 1);
1165 	if (err)
1166 		goto out;
1167 
1168 repeat:
1169 	if (!jh->b_committed_data) {
1170 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1171 		if (!committed_data) {
1172 			printk(KERN_ERR "%s: No memory for committed data\n",
1173 				__func__);
1174 			err = -ENOMEM;
1175 			goto out;
1176 		}
1177 	}
1178 
1179 	jbd_lock_bh_state(bh);
1180 	if (!jh->b_committed_data) {
1181 		/* Copy out the current buffer contents into the
1182 		 * preserved, committed copy. */
1183 		JBUFFER_TRACE(jh, "generate b_committed data");
1184 		if (!committed_data) {
1185 			jbd_unlock_bh_state(bh);
1186 			goto repeat;
1187 		}
1188 
1189 		jh->b_committed_data = committed_data;
1190 		committed_data = NULL;
1191 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1192 	}
1193 	jbd_unlock_bh_state(bh);
1194 out:
1195 	jbd2_journal_put_journal_head(jh);
1196 	if (unlikely(committed_data))
1197 		jbd2_free(committed_data, bh->b_size);
1198 	return err;
1199 }
1200 
1201 /**
1202  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1203  * @bh: buffer to trigger on
1204  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1205  *
1206  * Set any triggers on this journal_head.  This is always safe, because
1207  * triggers for a committing buffer will be saved off, and triggers for
1208  * a running transaction will match the buffer in that transaction.
1209  *
1210  * Call with NULL to clear the triggers.
1211  */
1212 void jbd2_journal_set_triggers(struct buffer_head *bh,
1213 			       struct jbd2_buffer_trigger_type *type)
1214 {
1215 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1216 
1217 	if (WARN_ON(!jh))
1218 		return;
1219 	jh->b_triggers = type;
1220 	jbd2_journal_put_journal_head(jh);
1221 }
1222 
1223 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1224 				struct jbd2_buffer_trigger_type *triggers)
1225 {
1226 	struct buffer_head *bh = jh2bh(jh);
1227 
1228 	if (!triggers || !triggers->t_frozen)
1229 		return;
1230 
1231 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1232 }
1233 
1234 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1235 			       struct jbd2_buffer_trigger_type *triggers)
1236 {
1237 	if (!triggers || !triggers->t_abort)
1238 		return;
1239 
1240 	triggers->t_abort(triggers, jh2bh(jh));
1241 }
1242 
1243 
1244 
1245 /**
1246  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1247  * @handle: transaction to add buffer to.
1248  * @bh: buffer to mark
1249  *
1250  * mark dirty metadata which needs to be journaled as part of the current
1251  * transaction.
1252  *
1253  * The buffer must have previously had jbd2_journal_get_write_access()
1254  * called so that it has a valid journal_head attached to the buffer
1255  * head.
1256  *
1257  * The buffer is placed on the transaction's metadata list and is marked
1258  * as belonging to the transaction.
1259  *
1260  * Returns error number or 0 on success.
1261  *
1262  * Special care needs to be taken if the buffer already belongs to the
1263  * current committing transaction (in which case we should have frozen
1264  * data present for that commit).  In that case, we don't relink the
1265  * buffer: that only gets done when the old transaction finally
1266  * completes its commit.
1267  */
1268 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1269 {
1270 	transaction_t *transaction = handle->h_transaction;
1271 	journal_t *journal;
1272 	struct journal_head *jh;
1273 	int ret = 0;
1274 
1275 	WARN_ON(!transaction);
1276 	if (is_handle_aborted(handle))
1277 		return -EROFS;
1278 	journal = transaction->t_journal;
1279 	jh = jbd2_journal_grab_journal_head(bh);
1280 	if (!jh) {
1281 		ret = -EUCLEAN;
1282 		goto out;
1283 	}
1284 	jbd_debug(5, "journal_head %p\n", jh);
1285 	JBUFFER_TRACE(jh, "entry");
1286 
1287 	jbd_lock_bh_state(bh);
1288 
1289 	if (jh->b_modified == 0) {
1290 		/*
1291 		 * This buffer's got modified and becoming part
1292 		 * of the transaction. This needs to be done
1293 		 * once a transaction -bzzz
1294 		 */
1295 		jh->b_modified = 1;
1296 		if (handle->h_buffer_credits <= 0) {
1297 			ret = -ENOSPC;
1298 			goto out_unlock_bh;
1299 		}
1300 		handle->h_buffer_credits--;
1301 	}
1302 
1303 	/*
1304 	 * fastpath, to avoid expensive locking.  If this buffer is already
1305 	 * on the running transaction's metadata list there is nothing to do.
1306 	 * Nobody can take it off again because there is a handle open.
1307 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1308 	 * result in this test being false, so we go in and take the locks.
1309 	 */
1310 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1311 		JBUFFER_TRACE(jh, "fastpath");
1312 		if (unlikely(jh->b_transaction !=
1313 			     journal->j_running_transaction)) {
1314 			printk(KERN_ERR "JBD2: %s: "
1315 			       "jh->b_transaction (%llu, %p, %u) != "
1316 			       "journal->j_running_transaction (%p, %u)\n",
1317 			       journal->j_devname,
1318 			       (unsigned long long) bh->b_blocknr,
1319 			       jh->b_transaction,
1320 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1321 			       journal->j_running_transaction,
1322 			       journal->j_running_transaction ?
1323 			       journal->j_running_transaction->t_tid : 0);
1324 			ret = -EINVAL;
1325 		}
1326 		goto out_unlock_bh;
1327 	}
1328 
1329 	set_buffer_jbddirty(bh);
1330 
1331 	/*
1332 	 * Metadata already on the current transaction list doesn't
1333 	 * need to be filed.  Metadata on another transaction's list must
1334 	 * be committing, and will be refiled once the commit completes:
1335 	 * leave it alone for now.
1336 	 */
1337 	if (jh->b_transaction != transaction) {
1338 		JBUFFER_TRACE(jh, "already on other transaction");
1339 		if (unlikely(((jh->b_transaction !=
1340 			       journal->j_committing_transaction)) ||
1341 			     (jh->b_next_transaction != transaction))) {
1342 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1343 			       "bad jh for block %llu: "
1344 			       "transaction (%p, %u), "
1345 			       "jh->b_transaction (%p, %u), "
1346 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1347 			       journal->j_devname,
1348 			       (unsigned long long) bh->b_blocknr,
1349 			       transaction, transaction->t_tid,
1350 			       jh->b_transaction,
1351 			       jh->b_transaction ?
1352 			       jh->b_transaction->t_tid : 0,
1353 			       jh->b_next_transaction,
1354 			       jh->b_next_transaction ?
1355 			       jh->b_next_transaction->t_tid : 0,
1356 			       jh->b_jlist);
1357 			WARN_ON(1);
1358 			ret = -EINVAL;
1359 		}
1360 		/* And this case is illegal: we can't reuse another
1361 		 * transaction's data buffer, ever. */
1362 		goto out_unlock_bh;
1363 	}
1364 
1365 	/* That test should have eliminated the following case: */
1366 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1367 
1368 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1369 	spin_lock(&journal->j_list_lock);
1370 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1371 	spin_unlock(&journal->j_list_lock);
1372 out_unlock_bh:
1373 	jbd_unlock_bh_state(bh);
1374 	jbd2_journal_put_journal_head(jh);
1375 out:
1376 	JBUFFER_TRACE(jh, "exit");
1377 	return ret;
1378 }
1379 
1380 /**
1381  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1382  * @handle: transaction handle
1383  * @bh:     bh to 'forget'
1384  *
1385  * We can only do the bforget if there are no commits pending against the
1386  * buffer.  If the buffer is dirty in the current running transaction we
1387  * can safely unlink it.
1388  *
1389  * bh may not be a journalled buffer at all - it may be a non-JBD
1390  * buffer which came off the hashtable.  Check for this.
1391  *
1392  * Decrements bh->b_count by one.
1393  *
1394  * Allow this call even if the handle has aborted --- it may be part of
1395  * the caller's cleanup after an abort.
1396  */
1397 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1398 {
1399 	transaction_t *transaction = handle->h_transaction;
1400 	journal_t *journal;
1401 	struct journal_head *jh;
1402 	int drop_reserve = 0;
1403 	int err = 0;
1404 	int was_modified = 0;
1405 
1406 	WARN_ON(!transaction);
1407 	if (is_handle_aborted(handle))
1408 		return -EROFS;
1409 	journal = transaction->t_journal;
1410 
1411 	BUFFER_TRACE(bh, "entry");
1412 
1413 	jbd_lock_bh_state(bh);
1414 
1415 	if (!buffer_jbd(bh))
1416 		goto not_jbd;
1417 	jh = bh2jh(bh);
1418 
1419 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1420 	 * Don't do any jbd operations, and return an error. */
1421 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1422 			 "inconsistent data on disk")) {
1423 		err = -EIO;
1424 		goto not_jbd;
1425 	}
1426 
1427 	/* keep track of whether or not this transaction modified us */
1428 	was_modified = jh->b_modified;
1429 
1430 	/*
1431 	 * The buffer's going from the transaction, we must drop
1432 	 * all references -bzzz
1433 	 */
1434 	jh->b_modified = 0;
1435 
1436 	if (jh->b_transaction == transaction) {
1437 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1438 
1439 		/* If we are forgetting a buffer which is already part
1440 		 * of this transaction, then we can just drop it from
1441 		 * the transaction immediately. */
1442 		clear_buffer_dirty(bh);
1443 		clear_buffer_jbddirty(bh);
1444 
1445 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1446 
1447 		/*
1448 		 * we only want to drop a reference if this transaction
1449 		 * modified the buffer
1450 		 */
1451 		if (was_modified)
1452 			drop_reserve = 1;
1453 
1454 		/*
1455 		 * We are no longer going to journal this buffer.
1456 		 * However, the commit of this transaction is still
1457 		 * important to the buffer: the delete that we are now
1458 		 * processing might obsolete an old log entry, so by
1459 		 * committing, we can satisfy the buffer's checkpoint.
1460 		 *
1461 		 * So, if we have a checkpoint on the buffer, we should
1462 		 * now refile the buffer on our BJ_Forget list so that
1463 		 * we know to remove the checkpoint after we commit.
1464 		 */
1465 
1466 		spin_lock(&journal->j_list_lock);
1467 		if (jh->b_cp_transaction) {
1468 			__jbd2_journal_temp_unlink_buffer(jh);
1469 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1470 		} else {
1471 			__jbd2_journal_unfile_buffer(jh);
1472 			if (!buffer_jbd(bh)) {
1473 				spin_unlock(&journal->j_list_lock);
1474 				jbd_unlock_bh_state(bh);
1475 				__bforget(bh);
1476 				goto drop;
1477 			}
1478 		}
1479 		spin_unlock(&journal->j_list_lock);
1480 	} else if (jh->b_transaction) {
1481 		J_ASSERT_JH(jh, (jh->b_transaction ==
1482 				 journal->j_committing_transaction));
1483 		/* However, if the buffer is still owned by a prior
1484 		 * (committing) transaction, we can't drop it yet... */
1485 		JBUFFER_TRACE(jh, "belongs to older transaction");
1486 		/* ... but we CAN drop it from the new transaction if we
1487 		 * have also modified it since the original commit. */
1488 
1489 		if (jh->b_next_transaction) {
1490 			J_ASSERT(jh->b_next_transaction == transaction);
1491 			spin_lock(&journal->j_list_lock);
1492 			jh->b_next_transaction = NULL;
1493 			spin_unlock(&journal->j_list_lock);
1494 
1495 			/*
1496 			 * only drop a reference if this transaction modified
1497 			 * the buffer
1498 			 */
1499 			if (was_modified)
1500 				drop_reserve = 1;
1501 		}
1502 	}
1503 
1504 not_jbd:
1505 	jbd_unlock_bh_state(bh);
1506 	__brelse(bh);
1507 drop:
1508 	if (drop_reserve) {
1509 		/* no need to reserve log space for this block -bzzz */
1510 		handle->h_buffer_credits++;
1511 	}
1512 	return err;
1513 }
1514 
1515 /**
1516  * int jbd2_journal_stop() - complete a transaction
1517  * @handle: tranaction to complete.
1518  *
1519  * All done for a particular handle.
1520  *
1521  * There is not much action needed here.  We just return any remaining
1522  * buffer credits to the transaction and remove the handle.  The only
1523  * complication is that we need to start a commit operation if the
1524  * filesystem is marked for synchronous update.
1525  *
1526  * jbd2_journal_stop itself will not usually return an error, but it may
1527  * do so in unusual circumstances.  In particular, expect it to
1528  * return -EIO if a jbd2_journal_abort has been executed since the
1529  * transaction began.
1530  */
1531 int jbd2_journal_stop(handle_t *handle)
1532 {
1533 	transaction_t *transaction = handle->h_transaction;
1534 	journal_t *journal;
1535 	int err = 0, wait_for_commit = 0;
1536 	tid_t tid;
1537 	pid_t pid;
1538 
1539 	if (!transaction)
1540 		goto free_and_exit;
1541 	journal = transaction->t_journal;
1542 
1543 	J_ASSERT(journal_current_handle() == handle);
1544 
1545 	if (is_handle_aborted(handle))
1546 		err = -EIO;
1547 	else
1548 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1549 
1550 	if (--handle->h_ref > 0) {
1551 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1552 			  handle->h_ref);
1553 		return err;
1554 	}
1555 
1556 	jbd_debug(4, "Handle %p going down\n", handle);
1557 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1558 				transaction->t_tid,
1559 				handle->h_type, handle->h_line_no,
1560 				jiffies - handle->h_start_jiffies,
1561 				handle->h_sync, handle->h_requested_credits,
1562 				(handle->h_requested_credits -
1563 				 handle->h_buffer_credits));
1564 
1565 	/*
1566 	 * Implement synchronous transaction batching.  If the handle
1567 	 * was synchronous, don't force a commit immediately.  Let's
1568 	 * yield and let another thread piggyback onto this
1569 	 * transaction.  Keep doing that while new threads continue to
1570 	 * arrive.  It doesn't cost much - we're about to run a commit
1571 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1572 	 * operations by 30x or more...
1573 	 *
1574 	 * We try and optimize the sleep time against what the
1575 	 * underlying disk can do, instead of having a static sleep
1576 	 * time.  This is useful for the case where our storage is so
1577 	 * fast that it is more optimal to go ahead and force a flush
1578 	 * and wait for the transaction to be committed than it is to
1579 	 * wait for an arbitrary amount of time for new writers to
1580 	 * join the transaction.  We achieve this by measuring how
1581 	 * long it takes to commit a transaction, and compare it with
1582 	 * how long this transaction has been running, and if run time
1583 	 * < commit time then we sleep for the delta and commit.  This
1584 	 * greatly helps super fast disks that would see slowdowns as
1585 	 * more threads started doing fsyncs.
1586 	 *
1587 	 * But don't do this if this process was the most recent one
1588 	 * to perform a synchronous write.  We do this to detect the
1589 	 * case where a single process is doing a stream of sync
1590 	 * writes.  No point in waiting for joiners in that case.
1591 	 */
1592 	pid = current->pid;
1593 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1594 		u64 commit_time, trans_time;
1595 
1596 		journal->j_last_sync_writer = pid;
1597 
1598 		read_lock(&journal->j_state_lock);
1599 		commit_time = journal->j_average_commit_time;
1600 		read_unlock(&journal->j_state_lock);
1601 
1602 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1603 						   transaction->t_start_time));
1604 
1605 		commit_time = max_t(u64, commit_time,
1606 				    1000*journal->j_min_batch_time);
1607 		commit_time = min_t(u64, commit_time,
1608 				    1000*journal->j_max_batch_time);
1609 
1610 		if (trans_time < commit_time) {
1611 			ktime_t expires = ktime_add_ns(ktime_get(),
1612 						       commit_time);
1613 			set_current_state(TASK_UNINTERRUPTIBLE);
1614 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1615 		}
1616 	}
1617 
1618 	if (handle->h_sync)
1619 		transaction->t_synchronous_commit = 1;
1620 	current->journal_info = NULL;
1621 	atomic_sub(handle->h_buffer_credits,
1622 		   &transaction->t_outstanding_credits);
1623 
1624 	/*
1625 	 * If the handle is marked SYNC, we need to set another commit
1626 	 * going!  We also want to force a commit if the current
1627 	 * transaction is occupying too much of the log, or if the
1628 	 * transaction is too old now.
1629 	 */
1630 	if (handle->h_sync ||
1631 	    (atomic_read(&transaction->t_outstanding_credits) >
1632 	     journal->j_max_transaction_buffers) ||
1633 	    time_after_eq(jiffies, transaction->t_expires)) {
1634 		/* Do this even for aborted journals: an abort still
1635 		 * completes the commit thread, it just doesn't write
1636 		 * anything to disk. */
1637 
1638 		jbd_debug(2, "transaction too old, requesting commit for "
1639 					"handle %p\n", handle);
1640 		/* This is non-blocking */
1641 		jbd2_log_start_commit(journal, transaction->t_tid);
1642 
1643 		/*
1644 		 * Special case: JBD2_SYNC synchronous updates require us
1645 		 * to wait for the commit to complete.
1646 		 */
1647 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1648 			wait_for_commit = 1;
1649 	}
1650 
1651 	/*
1652 	 * Once we drop t_updates, if it goes to zero the transaction
1653 	 * could start committing on us and eventually disappear.  So
1654 	 * once we do this, we must not dereference transaction
1655 	 * pointer again.
1656 	 */
1657 	tid = transaction->t_tid;
1658 	if (atomic_dec_and_test(&transaction->t_updates)) {
1659 		wake_up(&journal->j_wait_updates);
1660 		if (journal->j_barrier_count)
1661 			wake_up(&journal->j_wait_transaction_locked);
1662 	}
1663 
1664 	if (wait_for_commit)
1665 		err = jbd2_log_wait_commit(journal, tid);
1666 
1667 	lock_map_release(&handle->h_lockdep_map);
1668 
1669 	if (handle->h_rsv_handle)
1670 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1671 free_and_exit:
1672 	jbd2_free_handle(handle);
1673 	return err;
1674 }
1675 
1676 /*
1677  *
1678  * List management code snippets: various functions for manipulating the
1679  * transaction buffer lists.
1680  *
1681  */
1682 
1683 /*
1684  * Append a buffer to a transaction list, given the transaction's list head
1685  * pointer.
1686  *
1687  * j_list_lock is held.
1688  *
1689  * jbd_lock_bh_state(jh2bh(jh)) is held.
1690  */
1691 
1692 static inline void
1693 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1694 {
1695 	if (!*list) {
1696 		jh->b_tnext = jh->b_tprev = jh;
1697 		*list = jh;
1698 	} else {
1699 		/* Insert at the tail of the list to preserve order */
1700 		struct journal_head *first = *list, *last = first->b_tprev;
1701 		jh->b_tprev = last;
1702 		jh->b_tnext = first;
1703 		last->b_tnext = first->b_tprev = jh;
1704 	}
1705 }
1706 
1707 /*
1708  * Remove a buffer from a transaction list, given the transaction's list
1709  * head pointer.
1710  *
1711  * Called with j_list_lock held, and the journal may not be locked.
1712  *
1713  * jbd_lock_bh_state(jh2bh(jh)) is held.
1714  */
1715 
1716 static inline void
1717 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1718 {
1719 	if (*list == jh) {
1720 		*list = jh->b_tnext;
1721 		if (*list == jh)
1722 			*list = NULL;
1723 	}
1724 	jh->b_tprev->b_tnext = jh->b_tnext;
1725 	jh->b_tnext->b_tprev = jh->b_tprev;
1726 }
1727 
1728 /*
1729  * Remove a buffer from the appropriate transaction list.
1730  *
1731  * Note that this function can *change* the value of
1732  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1733  * t_reserved_list.  If the caller is holding onto a copy of one of these
1734  * pointers, it could go bad.  Generally the caller needs to re-read the
1735  * pointer from the transaction_t.
1736  *
1737  * Called under j_list_lock.
1738  */
1739 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1740 {
1741 	struct journal_head **list = NULL;
1742 	transaction_t *transaction;
1743 	struct buffer_head *bh = jh2bh(jh);
1744 
1745 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1746 	transaction = jh->b_transaction;
1747 	if (transaction)
1748 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1749 
1750 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1751 	if (jh->b_jlist != BJ_None)
1752 		J_ASSERT_JH(jh, transaction != NULL);
1753 
1754 	switch (jh->b_jlist) {
1755 	case BJ_None:
1756 		return;
1757 	case BJ_Metadata:
1758 		transaction->t_nr_buffers--;
1759 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1760 		list = &transaction->t_buffers;
1761 		break;
1762 	case BJ_Forget:
1763 		list = &transaction->t_forget;
1764 		break;
1765 	case BJ_Shadow:
1766 		list = &transaction->t_shadow_list;
1767 		break;
1768 	case BJ_Reserved:
1769 		list = &transaction->t_reserved_list;
1770 		break;
1771 	}
1772 
1773 	__blist_del_buffer(list, jh);
1774 	jh->b_jlist = BJ_None;
1775 	if (test_clear_buffer_jbddirty(bh))
1776 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1777 }
1778 
1779 /*
1780  * Remove buffer from all transactions.
1781  *
1782  * Called with bh_state lock and j_list_lock
1783  *
1784  * jh and bh may be already freed when this function returns.
1785  */
1786 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1787 {
1788 	__jbd2_journal_temp_unlink_buffer(jh);
1789 	jh->b_transaction = NULL;
1790 	jbd2_journal_put_journal_head(jh);
1791 }
1792 
1793 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1794 {
1795 	struct buffer_head *bh = jh2bh(jh);
1796 
1797 	/* Get reference so that buffer cannot be freed before we unlock it */
1798 	get_bh(bh);
1799 	jbd_lock_bh_state(bh);
1800 	spin_lock(&journal->j_list_lock);
1801 	__jbd2_journal_unfile_buffer(jh);
1802 	spin_unlock(&journal->j_list_lock);
1803 	jbd_unlock_bh_state(bh);
1804 	__brelse(bh);
1805 }
1806 
1807 /*
1808  * Called from jbd2_journal_try_to_free_buffers().
1809  *
1810  * Called under jbd_lock_bh_state(bh)
1811  */
1812 static void
1813 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1814 {
1815 	struct journal_head *jh;
1816 
1817 	jh = bh2jh(bh);
1818 
1819 	if (buffer_locked(bh) || buffer_dirty(bh))
1820 		goto out;
1821 
1822 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1823 		goto out;
1824 
1825 	spin_lock(&journal->j_list_lock);
1826 	if (jh->b_cp_transaction != NULL) {
1827 		/* written-back checkpointed metadata buffer */
1828 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1829 		__jbd2_journal_remove_checkpoint(jh);
1830 	}
1831 	spin_unlock(&journal->j_list_lock);
1832 out:
1833 	return;
1834 }
1835 
1836 /**
1837  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1838  * @journal: journal for operation
1839  * @page: to try and free
1840  * @gfp_mask: we use the mask to detect how hard should we try to release
1841  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1842  * release the buffers.
1843  *
1844  *
1845  * For all the buffers on this page,
1846  * if they are fully written out ordered data, move them onto BUF_CLEAN
1847  * so try_to_free_buffers() can reap them.
1848  *
1849  * This function returns non-zero if we wish try_to_free_buffers()
1850  * to be called. We do this if the page is releasable by try_to_free_buffers().
1851  * We also do it if the page has locked or dirty buffers and the caller wants
1852  * us to perform sync or async writeout.
1853  *
1854  * This complicates JBD locking somewhat.  We aren't protected by the
1855  * BKL here.  We wish to remove the buffer from its committing or
1856  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1857  *
1858  * This may *change* the value of transaction_t->t_datalist, so anyone
1859  * who looks at t_datalist needs to lock against this function.
1860  *
1861  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1862  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1863  * will come out of the lock with the buffer dirty, which makes it
1864  * ineligible for release here.
1865  *
1866  * Who else is affected by this?  hmm...  Really the only contender
1867  * is do_get_write_access() - it could be looking at the buffer while
1868  * journal_try_to_free_buffer() is changing its state.  But that
1869  * cannot happen because we never reallocate freed data as metadata
1870  * while the data is part of a transaction.  Yes?
1871  *
1872  * Return 0 on failure, 1 on success
1873  */
1874 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1875 				struct page *page, gfp_t gfp_mask)
1876 {
1877 	struct buffer_head *head;
1878 	struct buffer_head *bh;
1879 	int ret = 0;
1880 
1881 	J_ASSERT(PageLocked(page));
1882 
1883 	head = page_buffers(page);
1884 	bh = head;
1885 	do {
1886 		struct journal_head *jh;
1887 
1888 		/*
1889 		 * We take our own ref against the journal_head here to avoid
1890 		 * having to add tons of locking around each instance of
1891 		 * jbd2_journal_put_journal_head().
1892 		 */
1893 		jh = jbd2_journal_grab_journal_head(bh);
1894 		if (!jh)
1895 			continue;
1896 
1897 		jbd_lock_bh_state(bh);
1898 		__journal_try_to_free_buffer(journal, bh);
1899 		jbd2_journal_put_journal_head(jh);
1900 		jbd_unlock_bh_state(bh);
1901 		if (buffer_jbd(bh))
1902 			goto busy;
1903 	} while ((bh = bh->b_this_page) != head);
1904 
1905 	ret = try_to_free_buffers(page);
1906 
1907 busy:
1908 	return ret;
1909 }
1910 
1911 /*
1912  * This buffer is no longer needed.  If it is on an older transaction's
1913  * checkpoint list we need to record it on this transaction's forget list
1914  * to pin this buffer (and hence its checkpointing transaction) down until
1915  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1916  * release it.
1917  * Returns non-zero if JBD no longer has an interest in the buffer.
1918  *
1919  * Called under j_list_lock.
1920  *
1921  * Called under jbd_lock_bh_state(bh).
1922  */
1923 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1924 {
1925 	int may_free = 1;
1926 	struct buffer_head *bh = jh2bh(jh);
1927 
1928 	if (jh->b_cp_transaction) {
1929 		JBUFFER_TRACE(jh, "on running+cp transaction");
1930 		__jbd2_journal_temp_unlink_buffer(jh);
1931 		/*
1932 		 * We don't want to write the buffer anymore, clear the
1933 		 * bit so that we don't confuse checks in
1934 		 * __journal_file_buffer
1935 		 */
1936 		clear_buffer_dirty(bh);
1937 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1938 		may_free = 0;
1939 	} else {
1940 		JBUFFER_TRACE(jh, "on running transaction");
1941 		__jbd2_journal_unfile_buffer(jh);
1942 	}
1943 	return may_free;
1944 }
1945 
1946 /*
1947  * jbd2_journal_invalidatepage
1948  *
1949  * This code is tricky.  It has a number of cases to deal with.
1950  *
1951  * There are two invariants which this code relies on:
1952  *
1953  * i_size must be updated on disk before we start calling invalidatepage on the
1954  * data.
1955  *
1956  *  This is done in ext3 by defining an ext3_setattr method which
1957  *  updates i_size before truncate gets going.  By maintaining this
1958  *  invariant, we can be sure that it is safe to throw away any buffers
1959  *  attached to the current transaction: once the transaction commits,
1960  *  we know that the data will not be needed.
1961  *
1962  *  Note however that we can *not* throw away data belonging to the
1963  *  previous, committing transaction!
1964  *
1965  * Any disk blocks which *are* part of the previous, committing
1966  * transaction (and which therefore cannot be discarded immediately) are
1967  * not going to be reused in the new running transaction
1968  *
1969  *  The bitmap committed_data images guarantee this: any block which is
1970  *  allocated in one transaction and removed in the next will be marked
1971  *  as in-use in the committed_data bitmap, so cannot be reused until
1972  *  the next transaction to delete the block commits.  This means that
1973  *  leaving committing buffers dirty is quite safe: the disk blocks
1974  *  cannot be reallocated to a different file and so buffer aliasing is
1975  *  not possible.
1976  *
1977  *
1978  * The above applies mainly to ordered data mode.  In writeback mode we
1979  * don't make guarantees about the order in which data hits disk --- in
1980  * particular we don't guarantee that new dirty data is flushed before
1981  * transaction commit --- so it is always safe just to discard data
1982  * immediately in that mode.  --sct
1983  */
1984 
1985 /*
1986  * The journal_unmap_buffer helper function returns zero if the buffer
1987  * concerned remains pinned as an anonymous buffer belonging to an older
1988  * transaction.
1989  *
1990  * We're outside-transaction here.  Either or both of j_running_transaction
1991  * and j_committing_transaction may be NULL.
1992  */
1993 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1994 				int partial_page)
1995 {
1996 	transaction_t *transaction;
1997 	struct journal_head *jh;
1998 	int may_free = 1;
1999 
2000 	BUFFER_TRACE(bh, "entry");
2001 
2002 	/*
2003 	 * It is safe to proceed here without the j_list_lock because the
2004 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2005 	 * holding the page lock. --sct
2006 	 */
2007 
2008 	if (!buffer_jbd(bh))
2009 		goto zap_buffer_unlocked;
2010 
2011 	/* OK, we have data buffer in journaled mode */
2012 	write_lock(&journal->j_state_lock);
2013 	jbd_lock_bh_state(bh);
2014 	spin_lock(&journal->j_list_lock);
2015 
2016 	jh = jbd2_journal_grab_journal_head(bh);
2017 	if (!jh)
2018 		goto zap_buffer_no_jh;
2019 
2020 	/*
2021 	 * We cannot remove the buffer from checkpoint lists until the
2022 	 * transaction adding inode to orphan list (let's call it T)
2023 	 * is committed.  Otherwise if the transaction changing the
2024 	 * buffer would be cleaned from the journal before T is
2025 	 * committed, a crash will cause that the correct contents of
2026 	 * the buffer will be lost.  On the other hand we have to
2027 	 * clear the buffer dirty bit at latest at the moment when the
2028 	 * transaction marking the buffer as freed in the filesystem
2029 	 * structures is committed because from that moment on the
2030 	 * block can be reallocated and used by a different page.
2031 	 * Since the block hasn't been freed yet but the inode has
2032 	 * already been added to orphan list, it is safe for us to add
2033 	 * the buffer to BJ_Forget list of the newest transaction.
2034 	 *
2035 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2036 	 * because the buffer_head may be attached to the page straddling
2037 	 * i_size (can happen only when blocksize < pagesize) and thus the
2038 	 * buffer_head can be reused when the file is extended again. So we end
2039 	 * up keeping around invalidated buffers attached to transactions'
2040 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2041 	 * the transaction this buffer was modified in.
2042 	 */
2043 	transaction = jh->b_transaction;
2044 	if (transaction == NULL) {
2045 		/* First case: not on any transaction.  If it
2046 		 * has no checkpoint link, then we can zap it:
2047 		 * it's a writeback-mode buffer so we don't care
2048 		 * if it hits disk safely. */
2049 		if (!jh->b_cp_transaction) {
2050 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2051 			goto zap_buffer;
2052 		}
2053 
2054 		if (!buffer_dirty(bh)) {
2055 			/* bdflush has written it.  We can drop it now */
2056 			goto zap_buffer;
2057 		}
2058 
2059 		/* OK, it must be in the journal but still not
2060 		 * written fully to disk: it's metadata or
2061 		 * journaled data... */
2062 
2063 		if (journal->j_running_transaction) {
2064 			/* ... and once the current transaction has
2065 			 * committed, the buffer won't be needed any
2066 			 * longer. */
2067 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2068 			may_free = __dispose_buffer(jh,
2069 					journal->j_running_transaction);
2070 			goto zap_buffer;
2071 		} else {
2072 			/* There is no currently-running transaction. So the
2073 			 * orphan record which we wrote for this file must have
2074 			 * passed into commit.  We must attach this buffer to
2075 			 * the committing transaction, if it exists. */
2076 			if (journal->j_committing_transaction) {
2077 				JBUFFER_TRACE(jh, "give to committing trans");
2078 				may_free = __dispose_buffer(jh,
2079 					journal->j_committing_transaction);
2080 				goto zap_buffer;
2081 			} else {
2082 				/* The orphan record's transaction has
2083 				 * committed.  We can cleanse this buffer */
2084 				clear_buffer_jbddirty(bh);
2085 				goto zap_buffer;
2086 			}
2087 		}
2088 	} else if (transaction == journal->j_committing_transaction) {
2089 		JBUFFER_TRACE(jh, "on committing transaction");
2090 		/*
2091 		 * The buffer is committing, we simply cannot touch
2092 		 * it. If the page is straddling i_size we have to wait
2093 		 * for commit and try again.
2094 		 */
2095 		if (partial_page) {
2096 			jbd2_journal_put_journal_head(jh);
2097 			spin_unlock(&journal->j_list_lock);
2098 			jbd_unlock_bh_state(bh);
2099 			write_unlock(&journal->j_state_lock);
2100 			return -EBUSY;
2101 		}
2102 		/*
2103 		 * OK, buffer won't be reachable after truncate. We just set
2104 		 * j_next_transaction to the running transaction (if there is
2105 		 * one) and mark buffer as freed so that commit code knows it
2106 		 * should clear dirty bits when it is done with the buffer.
2107 		 */
2108 		set_buffer_freed(bh);
2109 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2110 			jh->b_next_transaction = journal->j_running_transaction;
2111 		jbd2_journal_put_journal_head(jh);
2112 		spin_unlock(&journal->j_list_lock);
2113 		jbd_unlock_bh_state(bh);
2114 		write_unlock(&journal->j_state_lock);
2115 		return 0;
2116 	} else {
2117 		/* Good, the buffer belongs to the running transaction.
2118 		 * We are writing our own transaction's data, not any
2119 		 * previous one's, so it is safe to throw it away
2120 		 * (remember that we expect the filesystem to have set
2121 		 * i_size already for this truncate so recovery will not
2122 		 * expose the disk blocks we are discarding here.) */
2123 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2124 		JBUFFER_TRACE(jh, "on running transaction");
2125 		may_free = __dispose_buffer(jh, transaction);
2126 	}
2127 
2128 zap_buffer:
2129 	/*
2130 	 * This is tricky. Although the buffer is truncated, it may be reused
2131 	 * if blocksize < pagesize and it is attached to the page straddling
2132 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2133 	 * running transaction, journal_get_write_access() won't clear
2134 	 * b_modified and credit accounting gets confused. So clear b_modified
2135 	 * here.
2136 	 */
2137 	jh->b_modified = 0;
2138 	jbd2_journal_put_journal_head(jh);
2139 zap_buffer_no_jh:
2140 	spin_unlock(&journal->j_list_lock);
2141 	jbd_unlock_bh_state(bh);
2142 	write_unlock(&journal->j_state_lock);
2143 zap_buffer_unlocked:
2144 	clear_buffer_dirty(bh);
2145 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2146 	clear_buffer_mapped(bh);
2147 	clear_buffer_req(bh);
2148 	clear_buffer_new(bh);
2149 	clear_buffer_delay(bh);
2150 	clear_buffer_unwritten(bh);
2151 	bh->b_bdev = NULL;
2152 	return may_free;
2153 }
2154 
2155 /**
2156  * void jbd2_journal_invalidatepage()
2157  * @journal: journal to use for flush...
2158  * @page:    page to flush
2159  * @offset:  start of the range to invalidate
2160  * @length:  length of the range to invalidate
2161  *
2162  * Reap page buffers containing data after in the specified range in page.
2163  * Can return -EBUSY if buffers are part of the committing transaction and
2164  * the page is straddling i_size. Caller then has to wait for current commit
2165  * and try again.
2166  */
2167 int jbd2_journal_invalidatepage(journal_t *journal,
2168 				struct page *page,
2169 				unsigned int offset,
2170 				unsigned int length)
2171 {
2172 	struct buffer_head *head, *bh, *next;
2173 	unsigned int stop = offset + length;
2174 	unsigned int curr_off = 0;
2175 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2176 	int may_free = 1;
2177 	int ret = 0;
2178 
2179 	if (!PageLocked(page))
2180 		BUG();
2181 	if (!page_has_buffers(page))
2182 		return 0;
2183 
2184 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2185 
2186 	/* We will potentially be playing with lists other than just the
2187 	 * data lists (especially for journaled data mode), so be
2188 	 * cautious in our locking. */
2189 
2190 	head = bh = page_buffers(page);
2191 	do {
2192 		unsigned int next_off = curr_off + bh->b_size;
2193 		next = bh->b_this_page;
2194 
2195 		if (next_off > stop)
2196 			return 0;
2197 
2198 		if (offset <= curr_off) {
2199 			/* This block is wholly outside the truncation point */
2200 			lock_buffer(bh);
2201 			ret = journal_unmap_buffer(journal, bh, partial_page);
2202 			unlock_buffer(bh);
2203 			if (ret < 0)
2204 				return ret;
2205 			may_free &= ret;
2206 		}
2207 		curr_off = next_off;
2208 		bh = next;
2209 
2210 	} while (bh != head);
2211 
2212 	if (!partial_page) {
2213 		if (may_free && try_to_free_buffers(page))
2214 			J_ASSERT(!page_has_buffers(page));
2215 	}
2216 	return 0;
2217 }
2218 
2219 /*
2220  * File a buffer on the given transaction list.
2221  */
2222 void __jbd2_journal_file_buffer(struct journal_head *jh,
2223 			transaction_t *transaction, int jlist)
2224 {
2225 	struct journal_head **list = NULL;
2226 	int was_dirty = 0;
2227 	struct buffer_head *bh = jh2bh(jh);
2228 
2229 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2230 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2231 
2232 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2233 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2234 				jh->b_transaction == NULL);
2235 
2236 	if (jh->b_transaction && jh->b_jlist == jlist)
2237 		return;
2238 
2239 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2240 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2241 		/*
2242 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2243 		 * instead of buffer_dirty. We should not see a dirty bit set
2244 		 * here because we clear it in do_get_write_access but e.g.
2245 		 * tune2fs can modify the sb and set the dirty bit at any time
2246 		 * so we try to gracefully handle that.
2247 		 */
2248 		if (buffer_dirty(bh))
2249 			warn_dirty_buffer(bh);
2250 		if (test_clear_buffer_dirty(bh) ||
2251 		    test_clear_buffer_jbddirty(bh))
2252 			was_dirty = 1;
2253 	}
2254 
2255 	if (jh->b_transaction)
2256 		__jbd2_journal_temp_unlink_buffer(jh);
2257 	else
2258 		jbd2_journal_grab_journal_head(bh);
2259 	jh->b_transaction = transaction;
2260 
2261 	switch (jlist) {
2262 	case BJ_None:
2263 		J_ASSERT_JH(jh, !jh->b_committed_data);
2264 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2265 		return;
2266 	case BJ_Metadata:
2267 		transaction->t_nr_buffers++;
2268 		list = &transaction->t_buffers;
2269 		break;
2270 	case BJ_Forget:
2271 		list = &transaction->t_forget;
2272 		break;
2273 	case BJ_Shadow:
2274 		list = &transaction->t_shadow_list;
2275 		break;
2276 	case BJ_Reserved:
2277 		list = &transaction->t_reserved_list;
2278 		break;
2279 	}
2280 
2281 	__blist_add_buffer(list, jh);
2282 	jh->b_jlist = jlist;
2283 
2284 	if (was_dirty)
2285 		set_buffer_jbddirty(bh);
2286 }
2287 
2288 void jbd2_journal_file_buffer(struct journal_head *jh,
2289 				transaction_t *transaction, int jlist)
2290 {
2291 	jbd_lock_bh_state(jh2bh(jh));
2292 	spin_lock(&transaction->t_journal->j_list_lock);
2293 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2294 	spin_unlock(&transaction->t_journal->j_list_lock);
2295 	jbd_unlock_bh_state(jh2bh(jh));
2296 }
2297 
2298 /*
2299  * Remove a buffer from its current buffer list in preparation for
2300  * dropping it from its current transaction entirely.  If the buffer has
2301  * already started to be used by a subsequent transaction, refile the
2302  * buffer on that transaction's metadata list.
2303  *
2304  * Called under j_list_lock
2305  * Called under jbd_lock_bh_state(jh2bh(jh))
2306  *
2307  * jh and bh may be already free when this function returns
2308  */
2309 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2310 {
2311 	int was_dirty, jlist;
2312 	struct buffer_head *bh = jh2bh(jh);
2313 
2314 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2315 	if (jh->b_transaction)
2316 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2317 
2318 	/* If the buffer is now unused, just drop it. */
2319 	if (jh->b_next_transaction == NULL) {
2320 		__jbd2_journal_unfile_buffer(jh);
2321 		return;
2322 	}
2323 
2324 	/*
2325 	 * It has been modified by a later transaction: add it to the new
2326 	 * transaction's metadata list.
2327 	 */
2328 
2329 	was_dirty = test_clear_buffer_jbddirty(bh);
2330 	__jbd2_journal_temp_unlink_buffer(jh);
2331 	/*
2332 	 * We set b_transaction here because b_next_transaction will inherit
2333 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2334 	 * take a new one.
2335 	 */
2336 	jh->b_transaction = jh->b_next_transaction;
2337 	jh->b_next_transaction = NULL;
2338 	if (buffer_freed(bh))
2339 		jlist = BJ_Forget;
2340 	else if (jh->b_modified)
2341 		jlist = BJ_Metadata;
2342 	else
2343 		jlist = BJ_Reserved;
2344 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2345 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2346 
2347 	if (was_dirty)
2348 		set_buffer_jbddirty(bh);
2349 }
2350 
2351 /*
2352  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2353  * bh reference so that we can safely unlock bh.
2354  *
2355  * The jh and bh may be freed by this call.
2356  */
2357 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2358 {
2359 	struct buffer_head *bh = jh2bh(jh);
2360 
2361 	/* Get reference so that buffer cannot be freed before we unlock it */
2362 	get_bh(bh);
2363 	jbd_lock_bh_state(bh);
2364 	spin_lock(&journal->j_list_lock);
2365 	__jbd2_journal_refile_buffer(jh);
2366 	jbd_unlock_bh_state(bh);
2367 	spin_unlock(&journal->j_list_lock);
2368 	__brelse(bh);
2369 }
2370 
2371 /*
2372  * File inode in the inode list of the handle's transaction
2373  */
2374 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2375 {
2376 	transaction_t *transaction = handle->h_transaction;
2377 	journal_t *journal;
2378 
2379 	WARN_ON(!transaction);
2380 	if (is_handle_aborted(handle))
2381 		return -EROFS;
2382 	journal = transaction->t_journal;
2383 
2384 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2385 			transaction->t_tid);
2386 
2387 	/*
2388 	 * First check whether inode isn't already on the transaction's
2389 	 * lists without taking the lock. Note that this check is safe
2390 	 * without the lock as we cannot race with somebody removing inode
2391 	 * from the transaction. The reason is that we remove inode from the
2392 	 * transaction only in journal_release_jbd_inode() and when we commit
2393 	 * the transaction. We are guarded from the first case by holding
2394 	 * a reference to the inode. We are safe against the second case
2395 	 * because if jinode->i_transaction == transaction, commit code
2396 	 * cannot touch the transaction because we hold reference to it,
2397 	 * and if jinode->i_next_transaction == transaction, commit code
2398 	 * will only file the inode where we want it.
2399 	 */
2400 	if (jinode->i_transaction == transaction ||
2401 	    jinode->i_next_transaction == transaction)
2402 		return 0;
2403 
2404 	spin_lock(&journal->j_list_lock);
2405 
2406 	if (jinode->i_transaction == transaction ||
2407 	    jinode->i_next_transaction == transaction)
2408 		goto done;
2409 
2410 	/*
2411 	 * We only ever set this variable to 1 so the test is safe. Since
2412 	 * t_need_data_flush is likely to be set, we do the test to save some
2413 	 * cacheline bouncing
2414 	 */
2415 	if (!transaction->t_need_data_flush)
2416 		transaction->t_need_data_flush = 1;
2417 	/* On some different transaction's list - should be
2418 	 * the committing one */
2419 	if (jinode->i_transaction) {
2420 		J_ASSERT(jinode->i_next_transaction == NULL);
2421 		J_ASSERT(jinode->i_transaction ==
2422 					journal->j_committing_transaction);
2423 		jinode->i_next_transaction = transaction;
2424 		goto done;
2425 	}
2426 	/* Not on any transaction list... */
2427 	J_ASSERT(!jinode->i_next_transaction);
2428 	jinode->i_transaction = transaction;
2429 	list_add(&jinode->i_list, &transaction->t_inode_list);
2430 done:
2431 	spin_unlock(&journal->j_list_lock);
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * File truncate and transaction commit interact with each other in a
2438  * non-trivial way.  If a transaction writing data block A is
2439  * committing, we cannot discard the data by truncate until we have
2440  * written them.  Otherwise if we crashed after the transaction with
2441  * write has committed but before the transaction with truncate has
2442  * committed, we could see stale data in block A.  This function is a
2443  * helper to solve this problem.  It starts writeout of the truncated
2444  * part in case it is in the committing transaction.
2445  *
2446  * Filesystem code must call this function when inode is journaled in
2447  * ordered mode before truncation happens and after the inode has been
2448  * placed on orphan list with the new inode size. The second condition
2449  * avoids the race that someone writes new data and we start
2450  * committing the transaction after this function has been called but
2451  * before a transaction for truncate is started (and furthermore it
2452  * allows us to optimize the case where the addition to orphan list
2453  * happens in the same transaction as write --- we don't have to write
2454  * any data in such case).
2455  */
2456 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2457 					struct jbd2_inode *jinode,
2458 					loff_t new_size)
2459 {
2460 	transaction_t *inode_trans, *commit_trans;
2461 	int ret = 0;
2462 
2463 	/* This is a quick check to avoid locking if not necessary */
2464 	if (!jinode->i_transaction)
2465 		goto out;
2466 	/* Locks are here just to force reading of recent values, it is
2467 	 * enough that the transaction was not committing before we started
2468 	 * a transaction adding the inode to orphan list */
2469 	read_lock(&journal->j_state_lock);
2470 	commit_trans = journal->j_committing_transaction;
2471 	read_unlock(&journal->j_state_lock);
2472 	spin_lock(&journal->j_list_lock);
2473 	inode_trans = jinode->i_transaction;
2474 	spin_unlock(&journal->j_list_lock);
2475 	if (inode_trans == commit_trans) {
2476 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2477 			new_size, LLONG_MAX);
2478 		if (ret)
2479 			jbd2_journal_abort(journal, ret);
2480 	}
2481 out:
2482 	return ret;
2483 }
2484